Sample records for spin wave stiffness

  1. Spin-wave dynamics in the helimagnet FeGe studied by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Siegfried, S.-A.; Sukhanov, A. S.; Altynbaev, E. V.; Honecker, D.; Heinemann, A.; Tsvyashchenko, A. V.; Grigoriev, S. V.

    2017-04-01

    We have studied the spin-wave stiffness of the Dzyaloshinskii-Moriya helimagnet FeGe in a temperature range from 225 K up to TC≈278.7 K by small-angle neutron scattering. The method we have used is based on [Grigoriev et al., Phys. Rev. B 92, 220415(R) (2015), 10.1103/PhysRevB.92.220415] and was extended here for the application in polycrystalline samples. We confirm the validity of the anisotropic spin-wave dispersion for FeGe caused by the Dzyaloshinskii-Moriya interaction. We have shown that the spin-wave stiffness A for the FeGe helimagnet decreases with a temperature as A (T ) =194 [1 -0.7 (T/TC) 4.2] meVÅ 2 . The finite value of the spin-wave stiffness A =58 meVÅ 2 at TC classifies the order-disorder phase transition in FeGe as being the first-order one.

  2. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  3. Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. V.; Altynbaev, E. V.; Siegfried, S.-A.; Pschenichnyi, K. A.; Menzel, D.; Heinemann, A.; Chaboussant, G.

    2018-01-01

    The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state of the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi with x =0.03 , 0.06, 0.09, and 0.10. The Mn1 -xFexSi compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x =0.11 and 0.17, respectively. We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x , rather than Tc(x ) . These findings classify the thermal phase transition in all Mn1 -xFexSi compounds as an abrupt change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.

  4. Systematic study of the spin stiffness dependence on phosphorus alloying in the ferromagnetic semiconductor (Ga,Mn)As

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shihab, S.; Thevenard, L.; Bardeleben, H. J. von

    2015-04-06

    We study the dependence of the spin stiffness constant on the phosphorus concentration in the ferromagnetic semiconductor (Ga,Mn)(As,P) with the aim of determining whether alloying with phosphorus is detrimental, neutral, or advantageous to the spin stiffness. Time-resolved magneto-optical experiments are carried out in thin epilayers. Laser pulses excite two perpendicular standing spin wave modes, which are exchange related. We show that the first mode is spatially uniform across the layer corresponding to a k≈0 wavevector. From the two frequencies and k-vector spacings we obtain the spin stiffness constant for different phosphorus concentrations using weak surface pinning conditions. The mode assessmentmore » is checked by comparison to the spin stiffness obtained from domain pattern analysis for samples with out-of-plane magnetization. The spin stiffness is found to exhibit little variation with phosphorus concentration in contradiction with ab-initio predictions.« less

  5. Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics

    DOE PAGES

    Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...

    2017-02-03

    Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less

  6. Magnetic excitations in the itinerant antifferromagnet Mn sub 90 Cu sub 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Baca, J.A.; Nicklow, R.M.; Hagen, M.E.

    1991-01-01

    We have performed a neutron scattering experiment in order to study the spin dynamics of the itinerant-electron-antiferromagnet Mn{sub 90}Cu{sub 10} at room temperature. Strongly-damped spin waves of energies up to 68 MeV have been observed. These excitations have been found to be consistent with a linear dispersion relation with a stiffness constant of about 140 MeV -- {Angstrom} and an energy gap of 8.2 MeV. The spin-wave damping is consistent with theoretical calculations that predict a damping linear in the wavevector q. These results are qualitatively consistent with recent measurements by Nicklow and Tsunoda, and with earlier measurements by Wiltshiremore » and collaborators. 5 refs., 1 fig.« less

  7. Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films

    NASA Astrophysics Data System (ADS)

    Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2013-06-01

    A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.

  8. Vanishing spin stiffness in the spin-1/2 Heisenberg chain for any nonzero temperature

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Prosen, T.; Campbell, D. K.

    2015-10-01

    Whether at the zero spin density m =0 and finite temperatures T >0 the spin stiffness of the spin-1 /2 X X X chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m =0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m2L in the thermodynamic limit of chain length L →∞ , for any finite, nonzero temperature, which implies the absence of ballistic transport for T >0 for m =0 . Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999), 10.1103/PhysRevLett.82.1764] leads to the exact stiffness values at finite temperature T >0 for models whose stiffness is finite at T =0 , similar to the spin stiffness of the spin-1 /2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.

  9. Stiffness-constant variation in nickel-based alloys: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennion, M.; Hennion, B.

    1979-01-01

    Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations are interpreted within a random-phase approximation, coherent-potential approximation (RPA-CPA) band model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the magnetic moment on the impurity for all the investigated alloys. For alloys such as NiCr, NiV, NiMo, and NiRu, the magnetizations of which deviate from the Slater-Pauling curve, our determination does not correspond tomore » previous works and is consequently discussed. The limits of the model appear mainly due to local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors.« less

  10. Structural, Electronic and Elastic Properties of Half-Heusler Alloys CrNiZ (Z = Al, Si, Ge and As)

    NASA Astrophysics Data System (ADS)

    Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z.

    2018-06-01

    In the present work, a self-consistent ab-initio calculation using the full- potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT) was used to study the structural, electronic, magnetic and elastic properties of the half Heusler alloys CrNiZ (Z = Al, Si, Ge and As) in three phases ( α, β and γ phases). The generalized gradient approximation (GGA) described by Perdew-Burke-Ernzerhof (PBE) was used. The results obtained for the spin-polarized band structure and the density of states show a halfmetallic behavior for the four compounds. The elastic constants ( C ij ) show that our compounds are ductile, stiff and anisotropic.

  11. Spin Wave Resonances in La_0.67Ba_0.33MnO_3

    NASA Astrophysics Data System (ADS)

    Lofland, S. E.; Dominguez, M.; Tyagi, S. D.; Bhagat, S. M.; Kwon, C.; Robson, M. C.; Sharma, R. P.; Ramesh, R.; Venkatesan, T.

    1996-03-01

    Thin ( ~ 110 nm thick) films of La_0.67Ba_0.33MnO3 (LBMO) were prepared by pulsed laser deposition on LaAlO3 substrates. Some films were grown directly onto LaAlO3 while other films were made by first creating a ~ 80 nm thick buffer layer of SrTiO3 (STO) and then capped with a 20 nm thick layer of STO. X-ray and RBS measurements showed the films to be of high crystalline quality. Film thickness was determined by RBS. Spin wave resonance (SWR) measurements were performed at both 10 and 36 GHz. In both types of films Portis (equally spaced) modes were observed. This indicated a non-uniform magnetization which has a parabolic spatial distribution. However, certain tri-layer films showed Kittel modes which follow the n^2 dependence of the mode number n on the resonance field. From the mode separation and the thickness, we calculate the spin stiffness D(0) to be 47 ± 10 meVÅWith this value of D and the magnetization M, we estimate a spatial variation of the magnetization of ~ 20% for those films which showed Portis modes.

  12. Clarification of the different roles of surface anisotropy for thermal spin waves and FMR modes

    NASA Astrophysics Data System (ADS)

    Rado, G. T.; Walker, J. C.

    1982-11-01

    Measurements by Mössbauer spectroscopy of the position dependence of the hyperfine field in monocrystalline iron films show that the fractional deviation of the spontaneous magnetization at temperature T from its value at T=0 K is larger by a factor of about two at a film surface than in the film's interior. This result agrees with an early theoretical prediction of a factor of exactly two which is based on the assumption that the surface anisotropy is zero. In contrast, the results of recent ferromagnetic resonance experiments on ultra-thin films of monocrystalline iron were shown to be dominated by a surface anistropy which is nonzero. This discrepancy is reconciled for measurements at T=300 K by making use of the general boundary condition which contains the exchange stiffness A and some component(s) of the surface anisotropy Ksurf. The crucial argument is that at 300 K the thermally excited spin wavelengths are so short that at the film surfaces the normal derivative 2A∂m↘/∂n of the oscillating magnetization m↘ is very much larger than Ksurfm↘. Thus Ksurfm↘ is neglible for thermal spin waves even though it is comparable to 2A∂m↘/∂n for the long decay distances (or wavelengths) occurring in ferromagnetic resonance.

  13. Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yoshihiro

    2017-09-01

    The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρs in the ordered phase and the vortex-condensate stiffness ρv in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρs,v/Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρs/ρv admits a quantitative measure of deviation from selfduality.

  14. MR elastography of the breast:preliminary clinical results.

    PubMed

    Lorenzen, J; Sinkus, R; Lorenzen, M; Dargatz, M; Leussler, C; Röschmann, P; Adam, G

    2002-07-01

    Imaging of breast tumors and various breast tissues using magnetic resonance (MR) elastography (MRE) to explore the potential of elasticity as a new parameter for the diagnosis of breast lesions. Low-frequency mechanical waves are transmitted into breast tissue by means of an oscillator. The local characteristics of the mechanical wave are determined by the underlying elastic properties of the tissue. Theses waves can be displayed by means of a motion-sensitive spin-echo MR sequence within the phase of the MR image. Elasticity reconstruction is performed on the basis of 8 "snapshots" of each wave within the three spatial directions. We performed in-vivo measurements in 15 female patients with malignant tumors of the breast, 5 patients with benign breast tumors, and 15 healthy volunteers. Malignant invasive breast tumors documented the highest values of elasticity with a median of 15.9 kPa and a wide range of stiffnesses between 8 and 28 kPa. In contrast, benign breast lesions represented low values of elasticity, which were significantly different from malignant breast tumors (median elasticity: 7.0 kPa; p = 0.0012). This was comparable to the stiffest tissue areas in healthy volunteers (median elasticity 7.0 kPa), whereas breast parenchyma (median: 2.5 kPa) and fatty breast tissue (median: 1.7 kPa) showed the lowest values of elasticity. Two invasive ductal carcinomas had elasticity values of 8 kPa and two stiff parenchyma areas in healthy volunteers had elasticities of 13 and 15 kPa. These lesions could not be differentiated by their elasticity. We conclude that MRE is a promising new imaging modality with the capability to assess the viscoelastic properties of breast tumors and the surrounding tissues. However, from our preliminary results in a small number of patients it is obvious that there is an overlap in the elasticity ranges of soft malignant tumors and stiff benign lesions.

  15. High-pressure ultrasonic study of the commensurate-incommensurate spin-density-wave transition in an antiferromagnetic Cr-0.3 at. % Ru alloy single crystal

    NASA Astrophysics Data System (ADS)

    Cankurtaran, M.; Saunders, G. A.; Wang, Q.; Ford, P. J.; Alberts, H. L.

    1992-12-01

    A comprehensive experimental study has been made of the elastic and nonlinear acoustic behavior of a dilute Cr alloy as it undergoes a commensurate (C)-incommensurate (I) spin-density-wave transition. Simultaneous measurements of the temperature dependence of ultrasonic wave velocity and attenuation of longitudinal and shear 10-MHz ultrasonic waves propagated along both the [100] and the [110] direction of Cr-0.3 at. % Ru alloy single crystal have been made in the temperature range 200-300 K. The temperature dependence of ultrasonic attenuation for each mode is characterized by a spikelike peak centered at TCI (=238.6 K) (on cooling) and at TIC (=255.6 K) (on warming). The velocities of both longitudinal and shear ultrasonic waves exhibit a large and steep increase at TCI on cooling and a similar drop at TIC on warming with a pronounced hysteresis between TIC and TCI. These observations show that the transition between the commensurate and incommensurate phases is first order. Measurements of the effects of hydrostatic pressure (up to 0.15 GPa) on the velocities of ultrasonic waves, which were made at several fixed temperatures between 248 and 297 K, show similar features: a steep increase at PCI (increasing pressure) and a similar drop at PIC (decreasing pressure) with a well-defined hysteresis. Both TCI and TIC increase strongly and approximately linearly with pressure, the mean values of dTCI/dP and dTIC/dP being (333+/-3) K/GPa and (277+/-5) K/GPa, respectively. The pressure and temperature dependencies of the anomalies in the ultrasonic wave velocity have been used to locate both the C-I and I-C boundaries on the magnetic P-T phase diagram. There is a triple point (at about 315 K and 0.22 GPa) where the paramagnetic, commensurate, and incommensurate spin-density-wave phases coexist. Results for the complete sets of the elastic stiffness tensor components and their hydrostatic pressure derivatives have been used to evaluate the acoustic-mode Grüneisen parameters in both the commensurate and incommensurate phases. These quantify the vibrational anharmonicity of each acoustic phonon mode in the long-wavelength limit and establish which acoustic modes interact strongly with the spin-density waves. Pronounced longitudinal acoustic-mode softening under pressure results in negative Grüneisen parameters, a particularly marked feature of the commensurate phase.

  16. Arterial stiffness estimation based photoplethysmographic pulse wave analysis

    NASA Astrophysics Data System (ADS)

    Huotari, Matti; Maatta, Kari; Kostamovaara, Juha

    2010-11-01

    Arterial stiffness is one of the indices of vascular healthiness. It is based on pulse wave analysis. In the case we decompose the pulse waveform for the estimation and determination of arterial elasticity. Firstly, optically measured with photoplethysmograph and then investigating means by four lognormal pulse waveforms for which we can find very good fit between the original and summed decomposed pulse wave. Several studies have demonstrated that these kinds of measures predict cardiovascular events. While dynamic factors, e.g., arterial stiffness, depend on fixed structural features of the vascular wall. Arterial stiffness is estimated based on pulse wave decomposition analysis in the radial and tibial arteries. Elucidation of the precise relationship between endothelial function and vascular stiffness awaits still further study.

  17. Comparison Between Neck and Shoulder Stiffness Determined by Shear Wave Ultrasound Elastography and a Muscle Hardness Meter.

    PubMed

    Akagi, Ryota; Kusama, Saki

    2015-08-01

    The goals of this study were to compare neck and shoulder stiffness values determined by shear wave ultrasound elastography with those obtained with a muscle hardness meter and to verify the correspondence between objective and subjective stiffness in the neck and shoulder. Twenty-four young men and women participated in the study. Their neck and shoulder stiffness was determined at six sites. Before the start of the measurements, patients rated their present subjective symptoms of neck and shoulder stiffness on a 6-point verbal scale. At all measurement sites, the correlation coefficients between the values of muscle hardness indices determined by the muscle hardness meter and shear wave ultrasound elastography were not significant. Furthermore, individuals' subjective neck and shoulder stiffness did not correspond to their objective symptoms. These results suggest that the use of shear wave ultrasound elastography is essential to more precisely assess neck and shoulder stiffness. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Longitudinal spread of mechanical excitation through tectorial membrane traveling waves

    PubMed Central

    Sellon, Jonathan B.; Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.

    2015-01-01

    The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity. PMID:26438861

  19. Wave propagation in elastic and damped structures with stabilized negative-stiffness components

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    2017-09-01

    Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.

  20. Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect.

    PubMed

    Brächer, T; Fabre, M; Meyer, T; Fischer, T; Auffret, S; Boulle, O; Ebels, U; Pirro, P; Gaudin, G

    2017-12-13

    The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co 8 Fe 72 B 20 /MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.

  1. Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.

    2018-03-01

    We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.

  2. Arterial stiffness and wave reflection: sex differences and relationship with left ventricular diastolic function.

    PubMed

    Russo, Cesare; Jin, Zhezhen; Palmieri, Vittorio; Homma, Shunichi; Rundek, Tatjana; Elkind, Mitchell S V; Sacco, Ralph L; Di Tullio, Marco R

    2012-08-01

    Increased arterial stiffness and wave reflection have been reported in heart failure with normal ejection fraction (HFNEF) and in asymptomatic left ventricular (LV) diastolic dysfunction, a precursor of HFNEF. It is unclear whether women, who have higher frequency of HFNEF, are more vulnerable than men to the deleterious effects of arterial stiffness on LV diastolic function. We investigated, in a large community-based cohort, whether sex differences exist in the relationship among arterial stiffness, wave reflection, and LV diastolic function. Arterial stiffness and wave reflection were assessed in 983 participants from the Cardiovascular Abnormalities and Brain Lesions study using applanation tonometry. The central pulse pressure/stroke volume index, total arterial compliance, pulse pressure amplification, and augmentation index were used as parameters of arterial stiffness and wave reflection. LV diastolic function was evaluated by 2-dimensional echocardiography and tissue-Doppler imaging. Arterial stiffness and wave reflection were greater in women compared with men, independent of body size and heart rate (all P<0.01), and showed inverse relationships with parameters of diastolic function in both sexes. Further adjustment for cardiovascular risk factors attenuated these relationships; however, a higher central pulse pressure/stroke volume index predicted LV diastolic dysfunction in women (odds ratio, 1.54; 95% confidence intervals, 1.03 to 2.30) and men (odds ratio, 2.09; 95% confidence interval, 1.30 to 3.39), independent of other risk factors. In conclusion, in our community-based cohort study, higher arterial stiffness was associated with worse LV diastolic function in men and women. Women's higher arterial stiffness, independent of body size, may contribute to their greater susceptibility to develop HFNEF.

  3. Demonstration of a robust magnonic spin wave interferometer.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  4. Demonstration of a robust magnonic spin wave interferometer

    PubMed Central

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-01-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe. PMID:27443989

  5. Exchange and spin-orbit induced phenomena in diluted (Ga,Mn)As from first principles

    NASA Astrophysics Data System (ADS)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2016-08-01

    Physical properties induced by exchange interactions (Curie temperature and spin stiffness) and spin-orbit coupling (anomalous Hall effect, anisotropic magnetoresistance, and Gilbert damping) in the diluted (Ga,Mn)As ferromagnetic semiconductor are studied from first principles. Recently developed Kubo-Bastin transport theory and nonlocal torque operator formulation of the Gilbert damping as formulated in the tight-binding linear muffin-tin orbital method are used. The first-principles Liechtenstein mapping is employed to construct an effective Heisenberg Hamiltonian and to estimate Curie temperature and spin stiffness in the real-space random-phase approximation. Good agreement of calculated physical quantities with experiments on well-annealed samples containing only a small amount of compensating defects is obtained.

  6. Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines

    PubMed Central

    Dutta, Sourav; Chang, Sou-Chi; Kani, Nickvash; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Naeemi, Azad

    2015-01-01

    The possibility of using spin waves for information transmission and processing has been an area of active research due to the unique ability to manipulate the amplitude and phase of the spin waves for building complex logic circuits with less physical resources and low power consumption. Previous proposals on spin wave logic circuits have suggested the idea of utilizing the magneto-electric effect for spin wave amplification and amplitude- or phase-dependent switching of magneto-electric cells. Here, we propose a comprehensive scheme for building a clocked non-volatile spin wave device by introducing a charge-to-spin converter that translates information from electrical domain to spin domain, magneto-electric spin wave repeaters that operate in three different regimes - spin wave transmitter, non-volatile memory and spin wave detector, and a novel clocking scheme that ensures sequential transmission of information and non-reciprocity. The proposed device satisfies the five essential requirements for logic application: nonlinearity, amplification, concatenability, feedback prevention, and complete set of Boolean operations. PMID:25955353

  7. Spin wave scattering and interference in ferromagnetic cross

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanayakkara, Kasuni; Kozhanov, Alexander; Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303

    2015-10-28

    Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.

  8. Theory of nonreciprocal spin-wave excitations in spin Hall oscillators with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Zivieri, R.; Giordano, A.; Verba, R.; Azzerboni, B.; Carpentieri, M.; Slavin, A. N.; Finocchio, G.

    2018-04-01

    A two-dimensional analytical model for the description of the excitation of nonreciprocal spin waves by spin current in spin Hall oscillators in the presence of the interfacial Dzyaloshinskii-Moriya interaction (i -DMI) is developed. The theory allows one to calculate the threshold current for the excitation of spin waves, as well as the frequencies and spatial profiles of the excited spin-wave modes. It is found that the frequency of the excited spin waves exhibits a quadratic redshift with the i -DMI strength. At the same time, in the range of small and moderate values of the i -DMI constant, the averaged wave number of the excited spin waves is almost independent of the i -DMI, which results in a rather weak dependence on the i -DMI of the threshold current of the spin-wave excitation. The obtained analytical results are confirmed by the results of micromagnetic simulations.

  9. Spin wave nonreciprocity for logic device applications

    NASA Astrophysics Data System (ADS)

    Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo

    2013-11-01

    The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications.

  10. Spin wave nonreciprocity for logic device applications

    PubMed Central

    Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo

    2013-01-01

    The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications. PMID:24196318

  11. Aortic stiffness and the balance between cardiac oxygen supply and demand: the Rotterdam Study.

    PubMed

    Guelen, Ilja; Mattace-Raso, Francesco Us; van Popele, Nicole M; Westerhof, Berend E; Hofman, Albert; Witteman, Jacqueline Cm; Bos, Willem Jan W

    2008-06-01

    Aortic stiffness is an independent predictor of cardiovascular morbidity and mortality. We investigated whether aortic stiffness, estimated as aortic pulse wave velocity, is associated with decreased perfusion pressure estimated as the cardiac oxygen supply potential. Aortic stiffness and aortic pressure waves, reconstructed from finger blood pressure waves, were obtained in 2490 older adults within the framework of the Rotterdam Study, a large population-based study. Cardiac oxygen supply and demand were estimated using pulse wave analysis techniques, and related to aortic stiffness by linear regression analyses after adjustment for age, sex, mean arterial pressure and heart rate. Cardiac oxygen demand, estimated as the Systolic Pressure Time Index and the Rate Pressure Product, increased with increasing aortic stiffness [0.27 mmHg s (95% confidence interval: 0.21; 0.34)] and [42.2 mmHg/min (95% confidence interval: 34.1; 50.3)], respectively. Cardiac oxygen supply potential estimated as the Diastolic Pressure Time Index decreased [-0.70 mmHg s (95% confidence interval: -0.86; -0.54)] with aortic stiffening. Accordingly, the supply/demand ratio Diastolic Pressure Time Index/Systolic Pressure Time Index -1.11 (95% confidence interval: -0.14; -0.009) decreased with increasing aortic stiffness. Aortic stiffness is associated with estimates of increased cardiac oxygen demand and a decreased cardiac oxygen supply potential. These results may offer additional explanation for the relation between aortic stiffness and cardiovascular morbidity and mortality.

  12. Sound Velocity Measurements in the Low and the High Field Phases of the Nuclear-Ordered bcc Solid 3He in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sasaki, Satoshi; Nakayama, Atsuyoshi; Sasaki, Yutaka; Mizusaki, Takao

    2008-06-01

    We have measured the temperature and magnetic-field dependences of the sound velocity for one longitudinal and two transverse waves in the low field phase (LFP) and the high field phase (HFP) of nuclear spin ordered bcc solid 3He crystals with a single magnetic domain along the melting curve. From sound velocity measurements for various crystal orientations as a function of the sound propagation direction, we determined the elastic stiffness constants, c ij ( T, B). In the LFP with tetragonal symmetry for the nuclear spin structure, we extracted six nuclear spin elastic stiffness constants Δ c {/ij ℓ }( T,0.06 T) from the temperature dependence of the sound velocity at 0.06 T and Δ c {/ij ℓ }(0.5 mK, B) from the magnetic-field dependence of sound velocity at 0.5 mK. In the HFP with cubic symmetry for the nuclear spin structure, we extracted three Δ c {/ij h }( T,0.50 T) at 0.50 T and Δ c {/ij h }(0.5 mK, B) at 0.5 mK. At the first-order magnetic phase transition from the LFP to the HFP at the lower critical field B c1, large jumps in sound velocities were observed for various crystal directions and we extracted three Δ c_{ij}^{total}|_{B_{c1}} . Using the thermodynamic relation between Δ c ij and the change in the internal energy for the exchange interaction in this system, Δ U ex( T, B), Δ c ij are related to the generalized second-order Grüneisen constants Γ{/ij X }≡ ∂ 2ln X/ ∂ ɛ i ∂ ɛ j as Δ c ij ( T, B)=Γ{/ij X }Δ U ex( T, B), where X represents some physical quantity which depends on the molar volume and ɛ j is the j-th component of a strain tensor. In the LFP, the Δ c {/ij ℓ }( T,0.06 T) were proportional to T 4, and Δ c {/ij ℓ }(0.5 mK, B) were proportional to B 2. We extracted Γ_{ij}^{s^{ell}} for the spin wave velocity in the LFP, s ℓ , from Δ c {/ij ℓ }( T,0.06 T) and Γ^{1/χ^{ell}}_{ij} for the inverse susceptibility, 1/ χ ℓ from Δ c {/ij ℓ }(0.5 mK, B). In the HFP, Δ c {/ij h }( T,0.50 T) were proportional to T 4 and Δ c {/ij h }(0.5 mK,Δ B) were proportional to Δ B(≡ B- B c1). We obtained Γ _{ij}^{sh} for the spin wave velocity in the HFP, s h , from Δ c {/ij h }( T,0.50 T) and Γ^{B_{c1}}_{ij} for B c1 from Δ c {/ij h }(0.5 mK,Δ B). The values obtained for Γ_{ij}^{s^{ell}} and Γ _{ij}^{1/χ^{ell}} were compared with the Multiple Spin Exchange model (MSE) with three parameters by using analytic expressions for s ℓ and χ ℓ . The three-parameter MSE does not agree with the observed Δ c ij in the LFP.

  13. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position.

    PubMed

    Chen, Johnson; O'Dell, Michael; He, Wen; Du, Li-Juan; Li, Pai-Chi; Gao, Jing

    To assess differences in biceps brachii muscle (BBM) stiffness as evaluated by ultrasound shear wave elastography (SWE). The passive stiffness of the BBM was quantified with shear wave velocity (SWV) measurements obtained from 10 healthy volunteers (5 men and 5 women, mean age 50years, age range 42-63 years) with the elbow at full extension and 30° flexion in this IRB-approved study. Potential differences between two depths within the muscle, two elbow positions, the two arms, and sexes were assessed by using two-tailed t-test. The reproducibility of SWV measurements was tested by using intraclass correlation coefficient (ICC). Significantly higher passive BBM stiffness was found at full elbow extension compared to 30° of flexion (p≤0.00006 for both arms). Significantly higher passive stiffness in women was seen for the right arm (p=0.04 for both elbow positions). Good correlation of shear wave velocity measured at the different depths. The ICC for interobserver and intraobserver variation was high. SWE is a reliable quantitative tool for assessing BBM stiffness, with differences in stiffness based on elbow position demonstrated and based on sex suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Realization of spin wave switch for data processing

    NASA Astrophysics Data System (ADS)

    Balinskiy, M.; Chiang, H.; Khitun, A.

    2018-05-01

    In this work, experimental data on a spin wave switch based on spin wave interference is reported. The switch is a three terminal device where spin wave propagation between the source and the drain is modulated by the control spin wave signal. The prototype is a micrometer scale device based on Y3Fe2(FeO4)3 film. The output characteristics show the oscillation of the output spin wave signal as a function of the phase difference between the source and the drain spin wave signals. The On/Off ratio of the prototype exceeds 20 dB at room temperature. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. The advantages and shortcomings of spin wave switches are also discussed.

  15. Diastolic Function in Normal Sinus Rhythm vs. Chronic Atrial Fibrillation: Comparison by Fractionation of E-wave Deceleration Time into Stiffness and Relaxation Components.

    PubMed

    Mossahebi, Sina; Kovács, Sándor J

    2014-01-01

    Although the electrophysiologic derangement responsible for atrial fibrillation (AF) has been elucidated, how AF remodels the ventricular chamber and affects diastolic function (DF) has not been fully characterized. The previously validated Parametrized Diastolic Filling (PDF) formalism models suction-initiated filling kinematically and generates error-minimized fits to E-wave contours using unique load (x o ), relaxation (c), and stiffness (k) parameters. It predicts that E-wave deceleration time (DT) is a function of both stiffness and relaxation. Ascribing DT s to stiffness and DTr to relaxation such that DT=DT s +DT r is legitimate because of causality and their predicted and observed high correlation (r=0.82 and r=0.94) with simultaneous (diastatic) chamber stiffness (dP/dV) and isovolumic relaxation (tau), respectively. We analyzed simultaneous echocardiography-cardiac catheterization data and compared 16 age matched, chronic AF subjects to 16, normal sinus rhythm (NSR) subjects (650 beats). All subjects had diastatic intervals. Conventional DF parameters (DT, AT, E peak , E dur , E-VTI, E/E') and E-wave derived PDF parameters (c, k, DT s , DT r ) were compared. Total DT and DT s , DT r in AF were shorter than in NSR (p<0.005), chamber stiffness, (k) in AF was higher than in NSR (p<0.001). For NSR, 75% of DT was due to stiffness and 25% was due to relaxation whereas for AF 81% of DT was due to stiffness and 19% was due to relaxation (p<0.005). We conclude that compared to NSR, increased chamber stiffness is one measurable consequence of chamber remodeling in chronic, rate controlled AF. A larger fraction of E-wave DT in AF is due to stiffness compared to NSR. By trending individual subjects, this method can elucidate and characterize the beneficial or adverse long-term effects on chamber remodeling due to alternative therapies in terms of chamber stiffness and relaxation.

  16. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes

    NASA Astrophysics Data System (ADS)

    Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2017-10-01

    We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.

  17. Spin-transfer torque induced spin waves in antiferromagnetic insulators

    DOE PAGES

    Daniels, Matthew W.; Guo, Wei; Stocks, George Malcolm; ...

    2015-01-01

    We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations.

  18. Homogeneous microwave field emitted propagating spin waves: Direct imaging and modeling

    NASA Astrophysics Data System (ADS)

    Lohman, Mathis; Mozooni, Babak; McCord, Jeffrey

    2018-03-01

    We explore the generation of propagating dipolar spin waves by homogeneous magnetic field excitation in the proximity of the boundaries of magnetic microstructures. Domain wall motion, precessional dynamics, and propagating spin waves are directly imaged by time-resolved wide-field magneto-optical Kerr effect microscopy. The aspects of spin wave generation are clarified by micromagnetic calculations matching the experimental results. The region of dipolar spin wave formation is confined to the local resonant excitation due to non-uniform internal demagnetization fields at the edges of the patterned sample. Magnetic domain walls act as a border for the propagation of plane and low damped spin waves, thus restraining the spin waves within the individual magnetic domains. The findings are of significance for the general understanding of structural and configurational magnetic boundaries for the creation, the propagation, and elimination of spin waves.

  19. Spin Josephson effect in topological superconductor-ferromagnet junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, C. D.; Wang, J., E-mail: jwang@seu.edu.cn

    2014-03-21

    The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state thatmore » contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.« less

  20. Tunable short-wavelength spin wave excitation from pinned magnetic domain walls

    PubMed Central

    Van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan

    2016-01-01

    Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893

  1. Shear wave speed recovery in sonoelastography using crawling wave data.

    PubMed

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-07-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.

  2. Shear wave speed recovery in sonoelastography using crawling wave data

    PubMed Central

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-01-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane. PMID:20649204

  3. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  4. Reconfigurable nanoscale spin-wave directional coupler

    PubMed Central

    Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.

    2018-01-01

    Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117

  5. Spin wave propagation in perpendicular magnetized 20 nm Yttrium Iron Garnet with different antenna design

    NASA Astrophysics Data System (ADS)

    Chen, Jilei; Stueckler, Tobias; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Chang, Houchen; Liu, Tao; Wu, Mingzhong; Liu, Chuanpu; Liao, Zhimin; Yu, Dapeng; Fert Beijing research institute Team; Colorado State University Team; Peking University Collaboration

    Magnonics offers a new way to transport information using spin waves free of charge current and could lead to a new paradigm in the area of computing. Forward volume (FV) mode spin wave with perpendicular magnetized configuration is suitable for spin wave logic device because it is free of non-reciprocity effect. Here, we study FV mode spin wave propagation in YIG thin film with an ultra-low damping. We integrated differently designed antenna i.e., coplanar waveguide and micro stripline with different dimensions. The k vectors of the spin waves defined by the design of the antenna are calculated using Fourier transform. We show FV mode spin wave propagation results by measuring S12 parameter from vector network analyzer and we extract the group velocity of the FV mode spin wave as well as its dispersion relations.

  6. Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang

    2016-10-01

    Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.

  7. Reconfigurable nanoscale spin-wave directional coupler.

    PubMed

    Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V

    2018-01-01

    Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.

  8. Growth and spin-wave properties of thin Y{sub 3}Fe{sub 5}O{sub 12} films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stognij, A. I.; Novitskii, N. N.; Lutsev, L. V., E-mail: l-lutsev@mail.ru

    2015-07-14

    We describe synthesis of submicron Y{sub 3}Fe{sub 5}O{sub 12} (YIG) films sputtered on Si substrates and present results of the investigation of ferromagnetic resonance (FMR) and spin waves in YIG/SiO{sub 2}/Si structures. It is found that decrease of the annealing time leads to essential reduction of the FMR linewidth ΔH and, consequently, to reduction of relaxation losses of spin waves. Spin-wave propagation in in-plane magnetized YIG/SiO{sub 2}/Si structures is studied. We observe the asymmetry of amplitude-frequency characteristics of the Damon-Eshbach spin waves caused by different localizations of spin waves at the free YIG surface and at the YIG/SiO{sub 2} interface.more » Growth of the generating microwave power leads to spin-wave instability and changes amplitude-frequency characteristics of spin waves.« less

  9. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de; Bessonov, V.

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by themore » nonlinear scattering of the coherent spin waves from current-induced excitations.« less

  10. Random anisotropy model approach on ion beam sputtered Co 20Cu 80 granular alloy

    NASA Astrophysics Data System (ADS)

    Errahmani, H.; Hassanaı̈n, N.; Berrada, A.; Abid, M.; Lassri, H.; Schmerber, G.; Dinia, A.

    2002-03-01

    The Co 20Cu 80 granular film has been elaborated using ion beam sputtering technique. The magnetic properties of the sample were studied in the temperature range 5-300 K at H⩽50 kOe. From the thermomagnetisation curve, which is found to obey to the Bloch law, we have extracted the spin wave stiffness constant D and the exchange constant A. The magnetic experimental results have been interpreted in the framework of random anisotropy model. We have determined the local anisotropy constant KL and the local correlation length of anisotropy axis Ra, which is compared to the experimental grains size obtained by transmission electronic microscopy.

  11. All-Electrical Measurement of Interfacial Dzyaloshinskii-Moriya Interaction Using Collective Spin-Wave Dynamics.

    PubMed

    Lee, Jong Min; Jang, Chaun; Min, Byoung-Chul; Lee, Seo-Won; Lee, Kyung-Jin; Chang, Joonyeon

    2016-01-13

    Dzyaloshinskii-Moriya interaction (DMI), which arises from the broken inversion symmetry and spin-orbit coupling, is of prime interest as it leads to a stabilization of chiral magnetic order and provides an efficient manipulation of magnetic nanostructures. Here, we report all-electrical measurement of DMI using propagating spin wave spectroscopy based on the collective spin wave with a well-defined wave vector. We observe a substantial frequency shift of spin waves depending on the spin chirality in Pt/Co/MgO structures. After subtracting the contribution from other sources to the frequency shift, it is possible to quantify the DMI energy in Pt/Co/MgO systems. The result reveals that the DMI in Pt/Co/MgO originates from the interfaces, and the sign of DMI corresponds to the inversion asymmetry of the film structures. The electrical excitation and detection of spin waves and the influence of interfacial DMI on the collective spin-wave dynamics will pave the way to the emerging field of spin-wave logic devices.

  12. Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladii, O.; Henry, Y.; Bailleul, M.

    2016-05-16

    We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 10{sup 11} A/m{sup 2} in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.

  13. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    NASA Astrophysics Data System (ADS)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  14. All-optical observation and reconstruction of spin wave dispersion

    PubMed Central

    Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji

    2017-01-01

    To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations. PMID:28604690

  15. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    PubMed

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  16. Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.

    2018-02-01

    Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0

  17. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    PubMed

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  18. Antiferromagnetic domain wall as spin wave polarizer

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    Spin waves are collective excitations of local magnetizations that can effectively propagate information even in magnetic insulators. In antiferromagnet, spin waves are endowed with additional polarization freedom. Here we propose that the antiferromagnetic domain wall can act as a spin wave polarizer, which perfectly passes one linearly polarized spin wave while substantially reflects the perpendicular one. We show that the polarizing effect lies in the suppression of one linear polarization inside domain wall, in close analogy to the wire-grid optical polarizer. Our finding opens up new possibilities in magnonic processing by harnessing spin wave polarization in antiferromagnet.

  19. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa

    2016-07-28

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show thatmore » the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.« less

  20. Current-induced modulation of backward spin-waves in metallic microstructures

    NASA Astrophysics Data System (ADS)

    Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji

    2017-03-01

    We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.

  1. Spin flip statistics and spin wave interference patterns in Ising ferromagnetic films: A Monte Carlo study.

    PubMed

    Acharyya, Muktish

    2017-07-01

    The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.

  2. Topologically protected unidirectional edge spin waves

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong; Wang, Xiansi; Su, Ying

    Magnetic materials are highly correlated spin systems that do not respect the time-reversal symmetry. The low-energy excitations of magnetic materials are spin waves whose quanta are magnons. Like electronic materials that can be topologically nontrivial, a magnetic material can also be topologically nontrivial with topologically protected unidirectional edge states. These edge states should be superb channels of processing and manipulating spin waves because they are robust against perturbations and geometry changes, unlike the normal spin wave states that are very sensitive to the system changes and geometry. Therefore, the magnetic topological matter is of fundamental interest and technologically useful in magnonics. Here, we show that ferromagnetically interacting spins on a two-dimensional honeycomb lattice with nearest-neighbour interactions and governed by the Landau-Lifshitz-Gilbert equation, can be topologically nontrivial with gapped bulk spin waves and gapless edge spin waves. These edge spin waves are indeed very robust against defects under topological protection. Because of the unidirectional nature of these topologically protected edge spin waves, an interesting functional magnonic device called beam splitter can be made out of a domain wall in a strip. It is shown that an in-coming spin wave beam along one edge splits into two spin wave beams propagating along two opposite directions on the other edge after passing through a domain wall. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 16301816) and the Grant from NNSF of China (No. 11374249). X.S.W acknowledge support from UESTC.

  3. Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets

    NASA Astrophysics Data System (ADS)

    dos Santos, Flaviano José; dos Santos Dias, Manuel; Guimarães, Filipe Souza Mendes; Bouaziz, Juba; Lounis, Samir

    2018-01-01

    Topological noncollinear magnetic phases of matter are at the heart of many proposals for future information nanotechnology, with novel device concepts based on ultrathin films and nanowires. Their operation requires understanding and control of the underlying dynamics, including excitations such as spin waves. So far, no experimental technique has attempted to probe large wave-vector spin waves in noncollinear low-dimensional systems. In this paper, we explain how inelastic electron scattering, being suitable for investigations of surfaces and thin films, can detect the collective spin-excitation spectra of noncollinear magnets. To reveal the particularities of spin waves in such noncollinear samples, we propose the usage of spin-polarized electron-energy-loss spectroscopy augmented with a spin analyzer. With the spin analyzer detecting the polarization of the scattered electrons, four spin-dependent scattering channels are defined, which allow us to filter and select specific spin-wave modes. We take as examples a topological nontrivial skyrmion lattice, a spin-spiral phase, and the conventional ferromagnet. Then we demonstrate that, counterintuitively and in contrast to the ferromagnetic case, even non-spin-flip processes can generate spin waves in noncollinear substrates. The measured dispersion and lifetime of the excitation modes permit us to fingerprint the magnetic nature of the substrate.

  4. Phase-to-intensity conversion of magnonic spin currents and application to the design of a majority gate

    PubMed Central

    Brächer, T.; Heussner, F.; Pirro, P.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.

    2016-01-01

    Magnonic spin currents in the form of spin waves and their quanta, magnons, are a promising candidate for a new generation of wave-based logic devices beyond CMOS, where information is encoded in the phase of travelling spin-wave packets. The direct readout of this phase on a chip is of vital importance to couple magnonic circuits to conventional CMOS electronics. Here, we present the conversion of the spin-wave phase into a spin-wave intensity by local non-adiabatic parallel pumping in a microstructure. This conversion takes place within the spin-wave system itself and the resulting spin-wave intensity can be conveniently transformed into a DC voltage. We also demonstrate how the phase-to-intensity conversion can be used to extract the majority information from an all-magnonic majority gate. This conversion method promises a convenient readout of the magnon phase in future magnon-based devices. PMID:27905539

  5. Evaluation of interlayer interfacial stiffness and layer wave velocity of multilayered structures by ultrasonic spectroscopy.

    PubMed

    Ishii, Yosuke; Biwa, Shiro

    2014-07-01

    An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the characteristics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered structure with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of local maxima and minima of the spectrum provided that all interfaces and layers have the same properties. The effectiveness of the proposed procedure is investigated from the perspective of the sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed procedure is also investigated when the stiffness of each interface is subjected to small random fluctuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the longitudinal wave velocity of plies in the thickness direction evaluated from the experimental reflection spectrum are shown to be consistent with simple theoretical estimations.

  6. Spin-wave-driven high-speed domain-wall motions in soft magnetic nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jaehak; Yoo, Myoung-Woo; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    We report on a micromagnetic simulation study of interactions between propagating spin waves and a head-to-head domain wall in geometrically confined magnetic nanotubes. We found that incident spin waves of specific frequencies can lead to sufficiently high-speed (on the order of a few hundreds of m/s or higher) domain-wall motions in the same direction as that of the incident spin-waves. The domain-wall motions and their speed vary remarkably with the frequency and the amplitude of the incident spin-waves. High-speed domain-wall motions originate from the transfer torque of spin waves' linear momentum to the domain wall, through the partial or completemore » reflection of the incident spin waves from the domain wall. This work provides a fundamental understanding of the interaction of the spin waves with a domain wall in the magnetic nanotubes as well as a route to all-magnetic control of domain-wall motions in the magnetic nanoelements.« less

  7. Spectrum Gaps of Spin Waves Generated by Interference in a Uniform Nanostripe Waveguide

    PubMed Central

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Tang, Xiaoli; Zhong, Zhiyong

    2014-01-01

    We studied spin waves excited by two or more excitation sources in a uniform nanostripe waveguide without periodic structures. Several distinct spectrum gaps formed by spin waves interference rather than by Bragg reflection were observed. We found the center frequency and the number of spectrum gaps of spin waves can be controlled by modulating the distance, number and width of the excitation sources. The results obtained by micromagnetic simulations agree well with that of analytical calculations. Our work therefore paves a new way to control the spectrum gaps of spin waves, which is promising for future spin wave-based devices. PMID:25082001

  8. Antiferromagnetic domain wall as spin wave polarizer and retarder.

    PubMed

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    2017-08-02

    As a collective quasiparticle excitation of the magnetic order in magnetic materials, spin wave, or magnon when quantized, can propagate in both conducting and insulating materials. Like the manipulation of its optical counterpart, the ability to manipulate spin wave polarization is not only important but also fundamental for magnonics. With only one type of magnetic lattice, ferromagnets can only accommodate the right-handed circularly polarized spin wave modes, which leaves no freedom for polarization manipulation. In contrast, antiferromagnets, with two opposite magnetic sublattices, have both left and right-circular polarizations, and all linear and elliptical polarizations. Here we demonstrate theoretically and confirm by micromagnetic simulations that, in the presence of Dzyaloshinskii-Moriya interaction, an antiferromagnetic domain wall acts naturally as a spin wave polarizer or a spin wave retarder (waveplate). Our findings provide extremely simple yet flexible routes toward magnonic information processing by harnessing the polarization degree of freedom of spin wave.Spin waves are promising candidates as carriers for energy-efficient information processing, but they have not yet been fully explored application wise. Here the authors theoretically demonstrate that antiferromagnetic domain walls are naturally spin wave polarizers and retarders, two key components of magnonic devices.

  9. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  10. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    NASA Astrophysics Data System (ADS)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  11. Symmetric and asymmetric exchange stiffnesses of transition-metal thin film interfaces in external electric field

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Pradipto, A.-M.; Akiyama, T.; Ito, T.; Oguchi, T.; Weinert, M.

    2018-07-01

    The electric-field induced modifications of the symmetric and asymmetric exchange stiffness constants for the prototypical transition-metal system of a Co monolayer on Pt(111) are determined from first-principles calculated total energy differences of spin-spiral states with oppositely rotating magnetizations in the presence of both the external field and spin-orbit coupling. The trend underlying the modifications is shown to be linked to orbital magnetism. The results demonstrate that an electric field may be a promising approach to manipulate macroscopically magnetic textures.

  12. An Investigation of the Immediate Effect of Static Stretching on the Morphology and Stiffness of Achilles Tendon in Dominant and Non-Dominant Legs

    PubMed Central

    Chiu, Tsz-chun Roxy; Ngo, Hiu-ching; Lau, Lai-wa; Leung, King-wah; Lo, Man-him; Yu, Ho-fai; Ying, Michael

    2016-01-01

    Aims This study was undertaken to investigate the immediate effect of static stretching on normal Achilles tendon morphology and stiffness, and the different effect on dominant and non-dominant legs; and to evaluate inter-operator and intra-operator reliability of using shear-wave elastography in measuring Achilles tendon stiffness. Methods 20 healthy subjects (13 males, 7 females) were included in the study. Thickness, cross-sectional area and stiffness of Achilles tendons in both legs were measured before and after 5-min static stretching using grey-scale ultrasound and shear-wave elastography. Inter-operator and intra-operator reliability of tendon stiffness measurements of six operators were evaluated. Results Result showed that there was no significant change in the thickness and cross-sectional area of Achilles tendon after static stretching in both dominant and non-dominant legs (p > 0.05). Tendon stiffness showed a significant increase in non-dominant leg (p < 0.05) but not in dominant leg (p > 0.05). The inter-operator reliability of shear-wave elastography measurements was 0.749 and the intra-operator reliability ranged from 0.751 to 0.941. Conclusion Shear-wave elastography is a useful and non-invasive imaging tool to assess the immediate stiffness change of Achilles tendon in response to static stretching with high intra-operator and inter-operator reliability. PMID:27120097

  13. Influence of interfacial Dzyaloshinskii-Moriya interaction on the parametric amplification of spin waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Roman, E-mail: verrv@ukr.net; Tiberkevich, Vasil; Slavin, Andrei

    2015-09-14

    The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) on the parametric amplification of spin waves propagating in ultrathin ferromagnetic film is considered theoretically. It is shown that the IDMI changes the relation between the group velocities of the signal and idler spin waves in a parametric amplifier, which may result in the complete vanishing of the reversed idler wave. In the optimized case, the idler spin wave does not propagate from the pumping region at all, which increases the efficiency of the amplification of the signal wave and suppresses the spurious impact of the idler waves on neighboring spin-wave processingmore » devices.« less

  14. Type 2 diabetes is associated with increased pulse wave velocity measured at different sites of the arterial system but not augmentation index in a Chinese population.

    PubMed

    Zhang, Minghua; Bai, Yongyi; Ye, Ping; Luo, Leiming; Xiao, Wenkai; Wu, Hongmei; Liu, Dejun

    2011-10-01

    Patients with type 2 diabetes have increased stiffness of central elastic arteries. However, whether peripheral muscular artery stiffness is equally affected by the disease remains sparsely examined. Moreover, the association between pulse wave velocity (PWV) and augmentation index (AIx) in diabetes is poorly understood. Type 2 diabetes is associated with the alterations in arterial stiffness (PWV and AIx) in a community-based population. A total of 79 Chinese patients with type 2 diabetes and 79 sex-, age- (±3 years), and body mass index- (±2 kg/m(2) ) matched healthy controls were studied. Carotid-femoral pulse wave velocity (CF-PWV), carotid-radial pulse wave velocity (CR-PWV), and carotid-ankle pulse wave velocity (CA-PWV) were calculated from tonometry waveforms and body surface measurements, whereas AIx was assessed using pulse wave analyses. In univariate analysis, patients with type 2 diabetes showed increased CF-PWV (P < 0.001), CR-PWV (P = 0.012), and CA-PWV (P = 0.016), and lower AIx (P = 0.017) than the control group. In multiple linear regression models adjusting for covariates, type 2 diabetes remained a significant determinant of CF-PWV. Fasting glucose was associated with CR-PWV but was not related to CA-PWV or AIx. Our findings suggest that patients with type 2 diabetes have increased central and peripheral artery stiffness, but preserved AIx compared to controls. Diabetes was a predictor of central artery stiffness, and glucose was a determinant of peripheral artery stiffness. © 2011 Wiley Periodicals, Inc.

  15. Influence of the Verwey Transition on the Spin-Wave Dispersion of Magnetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQueeny, R. J.; Yethiraj, Mohana; Montfrooij, W.

    Inelastic neutron-scattering measurements of the spin-wave spectrum of magnetite (Fe{sub 3}O{sub 4}) that shed new light on the Verwey transition problem are presented. Above the Verwey transition, the spin waves can fit a simple Heisenberg model. Below TV, a large gap (8?meV) forms in the acoustic spin-wave branch at q = (0,0,1/2) and E = 43?meV. Heisenberg models with large unit cells were used to examine the spin waves when the superexchange is modified to reflect the crystallographic symmetry lowering due to either atomic distortions or charge ordering and find that neither of these models predicts the spin-wave gap.

  16. "Magnon Spintronics"

    NASA Astrophysics Data System (ADS)

    Yu, Haiming; Xiao, Jiang; Pirro, Philipp

    2018-03-01

    We are proud to present a collection of 12 cutting-edge research articles on the emerging field "magnon spintronics" investigating the properties of spin waves or magnons towards their potential applications in low-power-consumption information technologies. Magnons (quasiparticles of spin waves) are collective excitations of magnetizations in a magnetic system. The concept for such excitations was first introduced 1930 by Felix Bloch [1] who described ferromagnetism in a lattice. The field of magnon spintronics [2] or magnonics [3] aims at utilizing magnons to realize information processing and storage. The propagation of spin waves is free of charge transport, hence a successful realization of magnonic devices can innately avoid Joule heating induced energy loss in nowadays micro- or nano-electronic devices. Magnonics has made many progresses in recent years, including the demonstration of magnonic logic devices [4]. Towards the aim to generate magnonic devices, it is an essential step to find materials suitable for conveying spin waves. One outstanding candidate is a ferromagnetic insulator yttrium iron garnet (YIG). It offers an out standing low damping which allows the propagation of spin waves over relatively long distances. Experiments on such a thin YIG film with an out-of-plane magnetization have been performed by Chen et al. [5]. They excited so called forward volume mode spin waves and determined the propagating spin wave properties, such as the group velocities. Lohman et al. [6] has successfully imaged the propagating spin waves using time-resolved MOKE microscopy and show agreement with micromagnetic modellings. For very long time, YIG is the most ideal material for spin waves thanks to its ultra-low damping. However, it remains a major challenge integrate YIG on to Silicon substrate. Magnetic Heusler alloys on the other hand, can be easily grown on Si substrate and also shows reasonably good damping properties, which allow spin waves to propagate over a distance as long as 100 μm demonstrated by Stueckler et al. [7]. This is so far a record of spin wave propagation distance in ferromagnetic Heusler alloy thin films. Jaroslaw et al. [8] studied spin waves in planar quasicrystal of Penrose tiling showing distinctive magnonic gaps. This proves the impact of quasiperiodic long-range order on the spectrum of spin waves.

  17. The link between tissue elasticity and thermal dose in vivo

    NASA Astrophysics Data System (ADS)

    Sapin-de Brosses, Emilie; Pernot, Mathieu; Tanter, Mickaël

    2011-12-01

    The objective of this study was to investigate in vivo the relationship between stiffness and thermal dose. For this purpose, shear wave elastography (SWE)—a novel ultrasound-based technique for real-time mapping of the stiffness of biological soft tissues—is performed in temperature-controlled experiments. Experiments were conducted on nine anesthetized rats. Their right leg was put in a thermo-regulated waterbath. The right leg of each animal was heated at one particular temperature between 38 °C and 48.5 °C for 15 min to 3 h. Shear waves were generated in the muscle using the acoustic radiation force induced by a linear ultrasonic probe. The shear wave propagation was imaged in real time by the probe using an ultrafast scanner prototype (10 000 frames s-1). The local tissue stiffness was derived from the shear wave speed. Two optical fiber sensors were inserted into the muscle to measure in situ the temperature. Stiffness was found to increase strongly during the experiments. When expressed as a function of the thermal dose, the stiffness curves were found to be the same for all experiments. A thermal dose threshold was found at 202 min for an eightfold stiffness increase. Finally, the time-temperature relationship was established for different stiffness ratios. The slope of the time-temperature relationship based on stiffness measurements was found identical to the one obtained for cell death in the seminal paper on the thermal dose by Sapareto and Dewey in 1984 (Int. J. Radiat. Oncol. Biol. Phys. 10 787-800). The present results highlight the stiffness increase as a good indicator of thermal necrosis. SWE imaging can be used in vivo for necrosis threshold determination in thermal therapy.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru

    We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less

  19. Associations between Type 2 Diabetes Mellitus and Arterial Stiffness: A Prospective Analysis Based on the Maine-Syracuse Study.

    PubMed

    Elias, Merrill F; Crichton, Georgina E; Dearborn, Peter J; Robbins, Michael A; Abhayaratna, Walter P

    2018-03-01

    The aim of this study was to investigate prospective associations between type 2 diabetes mellitus status and the gold standard non-invasive method for ascertaining arterial stiffness, carotid femoral pulse wave velocity. The prospective analysis employed 508 community-dwelling participants (mean age 61 years, 60% women) from the Maine-Syracuse Longitudinal Study. Pulse wave velocity at wave 7 (2006-2010) was compared between those with type 2 diabetes mellitus at wave 6 (2001-2006) ( n = 52) and non-diabetics at wave 6 ( n = 456), with adjustment for demographic factors, cardiovascular risk factors and lifestyle- and pulse wave velocity-related factors. Type 2 diabetes mellitus status was associated with a significantly higher pulse wave velocity (12.5 ± 0.36 vs. 10.4 ± 0.12 m/s). Multivariate adjustment for other cardiovascular risk factors and lifestyle- and pulse wave velocity-related variables did not attenuate the findings. The risk of an elevated pulse wave velocity (≥12 m/s) was over 9 times higher for those with uncontrolled type 2 diabetes mellitus than for those without diabetes (OR 9.14, 95% CI 3.23-25.9, p < 0.001). Type 2 diabetes mellitus, particularly if uncontrolled, is significantly associated with risk of arterial stiffness later in life. Effective management of diabetes mellitus is an important element of protection from arterial stiffness.

  20. Surface spin-electron acoustic waves in magnetically ordered metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru

    2016-05-09

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less

  1. A switchable spin-wave signal splitter for magnonic networks

    NASA Astrophysics Data System (ADS)

    Heussner, F.; Serga, A. A.; Brächer, T.; Hillebrands, B.; Pirro, P.

    2017-09-01

    The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.

  2. All electrical propagating spin wave spectroscopy with broadband wavevector capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciubotaru, F., E-mail: Florin.Ciubotaru@imec.be; KU Leuven, Departement Electrotechniek; Devolder, T.

    2016-07-04

    We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for themore » all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.« less

  3. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

    PubMed Central

    Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.

    2016-01-01

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261

  4. Flexural wave suppression by an elastic metamaterial beam with zero bending stiffness

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Yan; Wu, Jiu Hui; Hu, Guang Zhong; Wang, Yu Chun

    2017-04-01

    In this paper, different from Bragg scattering or local resonance mechanisms, a novel mechanism of an ultra-low-frequency broadband for flexural waves propagating in a one-dimensional elastic metamaterial beam with zero bending stiffness is proposed, which consists of periodic hinge-linked blocks. The dispersion relationship of this kind of metamaterial beam is derived and analyzed, from which we find that these hinge-linked blocks can produce the zero bending stiffness. Thus, the flexural waves within the metamaterial beam can be suppressed, and an ultra-low-frequency wide band-gap is formed in which the first branch is generated by the zero bending spring and the second branch by the negative velocity of the metamaterial beam. Numerical results show that the elastic metamaterial beams with zero bending stiffness can indeed generate an ultra-low-frequency wide band gap even starting from almost zero frequency, such as from 0 Hz to 525 Hz in our structure. Therefore, the puzzle of realizing an ultra-low-frequency broadband of flexural waves may have been better solved, which could be applied in controlling ultra-low-frequency elastic waves in engineering.

  5. Carotid artery stiffness evaluated early by wave intensity in normal left ventricular function in post-radiotherapy patients with nasopharyngeal carcinoma.

    PubMed

    Zhang, Zhuo; Luo, Runlan; Tan, Bijun; Qian, Jing; Duan, Yanfang; Wang, Nan; Li, Guangsen

    2018-04-01

    This study aims to assess carotid elasticity early in normal left ventricular function in post-radiotherapy patients with nasopharyngeal carcinoma (NPC) by wave intensity. Sixty-seven post-radiotherapy patients all with normal left ventricular function were classified into group NPC1 and group NPC2 based on their carotid intima-media thickness. Thirty age- and sex-matched NPC patients without any history of irradiation and chemotherapy were included as a control group. Carotid parameters, including stiffness constant (β), pressure-strain elastic modulus (Ep), arterial compliance (AC), stiffness constant pulse wave velocity (PWVβ), and wave intensity pulse wave velocity (PWVWI) were measured. There were no significant differences in conventional echocardiographic variables among the three groups. In comparison with the control group, β, Ep, PWVβ, and PWVWI were significantly increased, while AC was significantly decreased in the NPC1 and NPC2 groups, and there were differences between the NPC1 group and NPC2 group (all P < 0.05). This study suggested that carotid artery stiffness increased with reduced carotid compliance in post-RT with NPC.

  6. Spin-Wave Chirality and Its Manifestations in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Proskurin, Igor; Stamps, Robert L.; Ovchinnikov, Alexander S.; Kishine, Jun-ichiro

    2017-10-01

    As first demonstrated by Tang and Cohen in chiral optics, the asymmetry in the rate of electromagnetic energy absorption between left and right enantiomers is determined by an optical chirality density. Here, we demonstrate that this effect can exist in magnetic spin systems. By constructing a formal analogy with electrodynamics, we show that in antiferromagnets with broken chiral symmetry, the asymmetry in local spin-wave energy absorption is proportional to a spin-wave chirality density, which is a direct counterpart of optical zilch. We propose that injection of a pure spin current into an antiferromagnet may serve as a chiral symmetry breaking mechanism, since its effect in the spin-wave approximation can be expressed in terms of additional Lifshitz invariants. We use linear response theory to show that the spin current induces a nonequilibrium spin-wave chirality density.

  7. Spectrum of spin waves in cold polarized gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  8. Dielectric permeability tensor and linear waves in spin-1/2 quantum kinetics with non-trivial equilibrium spin-distribution functions

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.; Kuz'menkov, L. S.

    2017-11-01

    A consideration of waves propagating parallel to the external magnetic field is presented. The dielectric permeability tensor is derived from the quantum kinetic equations with non-trivial equilibrium spin-distribution functions in the linear approximation on the amplitude of wave perturbations. It is possible to consider the equilibrium spin-distribution functions with nonzero z-projection proportional to the difference of the Fermi steps of electrons with the chosen spin direction, while x- and y-projections are equal to zero. It is called the trivial equilibrium spin-distribution functions. In the general case, x- and y-projections of the spin-distribution functions are nonzero which is called the non-trivial regime. A corresponding equilibrium solution is found in Andreev [Phys. Plasmas 23, 062103 (2016)]. The contribution of the nontrivial part of the spin-distribution function appears in the dielectric permeability tensor in the additive form. It is explicitly found here. A corresponding modification in the dispersion equation for the transverse waves is derived. The contribution of the nontrivial part of the spin-distribution function in the spectrum of transverse waves is calculated numerically. It is found that the term caused by the nontrivial part of the spin-distribution function can be comparable with the classic terms for the relatively small wave vectors and frequencies above the cyclotron frequency. In a majority of regimes, the extra spin caused term dominates over the spin term found earlier, except the small frequency regime, where their contributions in the whistler spectrum are comparable. A decrease of the left-hand circularly polarized wave frequency, an increase of the high-frequency right-hand circularly polarized wave frequency, and a decrease of frequency changing by an increase of frequency at the growth of the wave vector for the whistler are found. A considerable decrease of the spin wave frequency is found either. It results in an increase of module of the negative group velocity of the spin wave. The found dispersion equations are used for obtaining of an effective quantum hydrodynamics reproducing these results. This generalization requires the introduction of the corresponding equation of state for the thermal part of the spin current in the spin evolution equation.

  9. Surface Wave Elastometry of the Cornea in Porcine and Human Donor Eyes

    PubMed Central

    Dupps, William J.; Netto, Marcelo V.; Herekar, Satish; Krueger, Ronald R.

    2007-01-01

    PURPOSE To introduce a nondestructive technique for characterization of corneal stiffness, determine measurement precision, and investigate comparative stiffness values along central, radial, and circumferential vectors in porcine corneas. The effects of epithelial debridement, relaxing incisions, and crosslink-mediated stiffening on surface wave velocity are also studied. METHODS A handheld prototype system was used to measure ultrasound surface wave propagation time between two fixed-distance transducers along a ten-position map. Repeatability was assessed with replicate measurements in 6 porcine corneas. In 12 porcine globes with controlled intraocular pressure (IOP), serial measurements were performed before and after epithelial removal, then after 250- and 750-μm-deep relaxing incisions. In human globes with constant intravitreal pressure, central wave velocity and transcorneal IOP measurements were compared before and after collagen cross-linking. RESULTS Measurement repeatability across all regions was between 2.2% and 8.1%. Epithelial removal resulted in increases in measured stiffness in 67% of eyes, but statistical power was insufficient to detect a systematic change. Wave velocity across a central incision decreased significantly after 250-μm keratotomy (P<.001), but did not undergo a significant further decrease with deeper keratotomy. Meridional stiffness changes consistent with coupling effects were detected after keratotomy. Surface wave velocity and transcorneal IOP measurements increased markedly after collagen cross-linking despite maintenance of a constant IOP. CONCLUSIONS Handheld corneal elastometry provides a repeatable measure of regional stiffness changes after relaxing incisions and collagen cross-linking in in vitro experiments. Surface wave elastometry allows focal assessment of corneal biomechanical properties that are relevant in refractive surgery, ectatic disease, and glaucoma. PMID:17269246

  10. Interplay between arterial stiffness and diastolic function: a marker of ventricular-vascular coupling.

    PubMed

    Zito, Concetta; Mohammed, Moemen; Todaro, Maria Chiara; Khandheria, Bijoy K; Cusmà-Piccione, Maurizio; Oreto, Giuseppe; Pugliatti, Pietro; Abusalima, Mohamed; Antonini-Canterin, Francesco; Vriz, Olga; Carerj, Scipione

    2014-11-01

    We evaluated the interplay between left ventricular diastolic function and large-artery stiffness in asymptomatic patients at increased risk of heart failure and no structural heart disease (Stage A). We divided 127 consecutive patients (mean age 49 ± 17 years) with risk factors for heart failure who were referred to our laboratory to rule out structural heart disease into two groups according to presence (Group 1, n = 35) or absence (Group 2, n = 92) of grade I left ventricular diastolic dysfunction. Doppler imaging with high-resolution echo-tracking software was used to measure intima-media thickness (IMT) and stiffness of carotid arteries. Group 1 had significantly higher mean age, blood pressure, left ventricular mass index, carotid IMT and arterial stiffness than Group 2 (P < 0.05). Overall, carotid stiffness indices (β-stiffness index, augmentation index and elastic modulus) and 'one-point' pulse wave velocity each showed inverse correlation with E-wave velocity, E' velocity and E/A ratio, and direct correlation with A-wave velocity, E-wave deceleration time and E/E' ratio (P < 0.05). Arterial compliance showed negative correlations with the echocardiographic indices of left ventricular diastolic function (P < 0.05). On logistic regression analysis, age, hypertension, SBP, pulse pressure, left ventricular mass index, carotid IMT and stiffness parameters were associated with grade I left ventricular diastolic dysfunction (P < 0.05 for each). However, on multivariate logistic analysis, only 'one-point' pulse wave velocity and age were independent predictors (P = 0.038 and P = 0.016, respectively). An independent association between grade I left ventricular diastolic dysfunction and increased arterial stiffness is demonstrated at the earliest stage of heart failure. Hence, assessment of vascular function, beyond cardiac function, should be included in a comprehensive clinical evaluation of these patients.

  11. Spin wave interference in YIG cross junction

    DOE PAGES

    Balinskiy, M.; Gutierrez, D.; Chiang, H.; ...

    2017-01-17

    This work is aimed at studying the interference between backward volume magnetostatic spin waves and magnetostatic surface spin waves in a magnetic cross junction. These two types of magnetostatic waves possess different dispersion with zero frequency overlap in infinite magnetic films. However, the interference may be observed in finite structures due to the effect magnetic shape anisotropy. We report experimental data on spin wave interference in a micrometer size Y 3Fe 2(FeO 4) 3 cross junction. There are four micro antennas fabricated at the edges of the cross arms. Two of these antennas located on the orthogonal arms are usedmore » for spin wave generation, and the other two antennas are used for the inductive voltage detection. The phase difference between the input signals is controlled by the phase shifter. Prominent spin wave interference is observed at the selected combination of operational frequency and bias magnetic field. The maximum On/Off ratio exceeds 30dB at room temperature. The obtained results are important for a variety of magnetic devices based on spin wave interference.« less

  12. Nonlinear spin waves in magnetic thin films - foldover, dispersive shock waves, and spin pumping

    NASA Astrophysics Data System (ADS)

    Janantha, Pasdunkorale Arachchige Praveen

    Three nonlinear phenomena of spin waves and the spin Seebeck effect in yttrium iron garnet (YIG)/Pt bi-layer structures are studied in this thesis and are reported in detail in Chapters 4-7. In the fourth chapter, the first observation of foldover effect of nonlinear eigenmodes in feedback ring systems is reported. The experiments made use of a system that consisted of a YIG thin film strip, which supported the propagation of forward volume spin waves, and a microwave amplifier, which amplified the signal from the output of the YIG strip and then fed it back to the input of the strip. The signal amplitude vs. frequency response in this ring system showed resonant peaks which resulted from ring eigenmodes. With an increase in the resonance amplitude, those resonant peaks evolved from symmetric peaks to asymmetric ones and then folded over to higher frequencies. The experimental observations were reproduced by theoretical calculations that took into account the nonlinearity-produced frequency shift of the traveling spin waves. The fifth chapter presents the first experimental observation of the formation of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear spin waves. The experiments used a microwave step pulse to excite a spin-wave step pulse in a YIG thin film strip, in which the spin-wave amplitude increases rapidly. Under certain conditions, the spin-wave pulse evolved into a DSW excitation that consisted of a train of dark soliton-like dips with both the dip width and depth increasing from the front to the back and was terminated by a black soliton that had an almost zero intensity and a nearly 180° phase jump at its center. The sixth chapter reports on the spin pumping due to traveling spin waves. The experiment used a micron-thick YIG strip capped by a nanometer-thick Pt layer. The YIG film was biased by an in-plane magnetic field. The spin waves pumped spin currents into the Pt layer, and the later produced electrical voltages across the length of the Pt strip through the inverse spin Hall effect (ISHE). Several distinct pumping regimes were observed and were interpreted in the frame work of the nonlinear three-wave splitting processes of the spin waves. The seventh chapter presents the first experimental work on the roles of damping in the spin Seebeck effect (SSE). The experiments used YIG/Pt bi-layered structures where the YIG films exhibited very similar structural and static magnetic properties but very different damping. The data indicate that a decrease in the damping of the YIG film gives rise to an increase in the SSE coefficient, and this response shows quasi-linear behavior. The data also indicate that the SSE coefficient shows no notable dependences on the enhanced damping due to spin pumping.

  13. High resolution electron energy loss spectroscopy of spin waves in ultra-thin film - The return of the adiabatic approximation?

    NASA Astrophysics Data System (ADS)

    Ibach, Harald

    2014-12-01

    The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.

  14. Divergent effects of laughter and mental stress on arterial stiffness and central hemodynamics.

    PubMed

    Vlachopoulos, Charalambos; Xaplanteris, Panagiotis; Alexopoulos, Nikolaos; Aznaouridis, Konstantinos; Vasiliadou, Carmen; Baou, Katerina; Stefanadi, Elli; Stefanadis, Christodoulos

    2009-05-01

    To investigate the effect of laughter and mental stress on arterial stiffness and central hemodynamics. Arterial stiffness and wave reflections are independent predictors of cardiovascular risk. Chronic psychological stress is an independent risk factor for cardiovascular events, whereas acute stress deteriorates vascular function. Eighteen healthy individuals were studied on three occasions, according to a randomized, single-blind, crossover, sham procedure-controlled design. The effects of viewing a 30-minute segment of two films inducing laughter or stress were assessed. Carotid-femoral pulse wave velocity was used as an index of arterial stiffness; augmentation index was used as a measure of wave reflections. Laughter decreased pulse wave velocity (by 0.30 m/sec, p = .01), and augmentation index (by 2.72%, p = .05). Conversely, stress increased pulse wave velocity (by 0.29 m/sec, p = .05) and augmentation index (by 5.1%, p = .005). Laughter decreased cortisol levels by 1.67 microg/dl (p = .02), soluble P-selectin by 26 ng/ml (p = .02) and marginally von Willebrand factor (by 2.4%, p = .07) and increased total oxidative status (by 61 micromol/L, p < .001). Stress decreased interleukin-6 (by 0.11 pg/ml, p = .04) and increased total oxidative status (by 44 micromol/L, p = .007). Soluble CD40 ligand and fibrinogen remained unchanged. Positive (laughter) and negative (stress) behavioral interventions have divergent acute effects on arterial stiffness and wave reflections. These findings have important clinical implications extending the spectrum of lifestyle modifications that can ameliorate arterial function.

  15. Measuring the Carotid to Femoral Pulse Wave Velocity (Cf-PWV) to Evaluate Arterial Stiffness.

    PubMed

    Ji, Hongwei; Xiong, Jing; Yu, Shikai; Chi, Chen; Bai, Bin; Teliewubai, Jiadela; Lu, Yuyan; Zhang, Yi; Xu, Yawei

    2018-05-03

    For the elderly, arterial stiffening is a good marker for aging evaluation and it is recommended that the arterial stiffness be determined noninvasively by the measurement of carotid to femoral pulse wave velocity (cf-PWV) (Class I; Level of Evidence A). In literature, numerous community-based or disease-specific studies have reported that higher cf-PWV is associated with increased cardiovascular risk. Here, we discuss strategies to evaluate arterial stiffness with cf-PWV. Following the well-defined steps detailed here, e.g., proper position operator, distance measurement, and tonometer position, we will obtain a standard cf-PWV value to evaluate arterial stiffness. In this paper, a detailed stepwise method to record a good quality PWV and pulse wave analysis (PWA) using a non-invasive tonometry-based device will be discussed.

  16. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    PubMed

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  17. Acute changes in arterial stiffness following exercise in people with metabolic syndrome.

    PubMed

    Radhakrishnan, Jeyasundar; Swaminathan, Narasimman; Pereira, Natasha M; Henderson, Keiran; Brodie, David A

    This study aims to examine the changes in arterial stiffness immediately following sub-maximal exercise in people with metabolic syndrome. Ninety-four adult participants (19-80 years) with metabolic syndrome gave written consent and were measured for arterial stiffness using a SphygmoCor (SCOR-PVx, Version 8.0, Atcor Medical Private Ltd, USA) immediately before and within 5-10min after an incremental shuttle walk test. The arterial stiffness measures used were pulse wave velocity (PWV), aortic pulse pressure (PP), augmentation pressure, augmentation index (AI), subendocardial viability ratio (SEVR) and ejection duration (ED). There was a significant increase (p<0.05) in most of the arterial stiffness variables following exercise. Exercise capacity had a strong inverse correlation with arterial stiffness and age (p<0.01). Age influences arterial stiffness. Exercise capacity is inversely related to arterial stiffness and age in people with metabolic syndrome. Exercise induced changes in arterial stiffness measured using pulse wave analysis is an important tool that provides further evidence in studying cardiovascular risk in metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  18. Numerical assessment of the stiffness index.

    PubMed

    Epstein, Sally; Vergnaud, Anne-Claire; Elliott, Paul; Chowienczyk, Phil; Alastruey, Jordi

    2014-01-01

    Elevated systemic vascular stiffness is associated with increased risk of cardiovascular disease. It has been suggested that the time difference between the two characteristic peaks of the digital volume pulse (DVP) measured at the finger using photoplethysmography is related to the stiffness of the arterial tree, and inversely proportional to the stiffness index (SI). However, the precise physical meaning of the SI and its relation to aortic pulse wave velocity (aPWV) is yet to be ascertained. In this study we investigated numerically the effect of changes in arterial wall stiffness, peripheral resistances, peripheral compliances or peripheral wave reflections on the SI and aPWV. The SI was calculated from the digital area waveform simulated using a nonlinear one-dimensional model of pulse wave propagation in a 75-artery network, which includes the larger arteries of the hand. Our results show that aPWV is affected by changes in aortic stiffness, but the SI is primarily affected by changes in the stiffness of all conduit vessels. Thus, the SI is not a direct substitute for aPWV. Moreover, our results suggest that peripheral reflections in the upper body delay the time of arrival of the first peak in the DVP. The second peak is predominantly caused by the impedance mismatch within the 75 arterial segments, rather than by peripheral reflections.

  19. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed formore » excitation fluences higher than 100 mJ/cm{sup 2}.« less

  20. Acoustic parametric pumping of spin waves

    NASA Astrophysics Data System (ADS)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  1. Localized Defect Modes in a Two-Dimensional Array of Magnetic Nanodots

    DTIC Science & Technology

    2013-06-22

    number of defects it is possible to obtain the information about the entire spin-wave spectrum of the array. Index Terms—Spin waves, magnonic crystal...multistability opens a way for the development of a novel type of artificial materials with tunable microwave properties – reconfigurable magnonic ...information about the entire spin-wave spectrum of the array. 15. SUBJECT TERMS Spin waves, magnonic crystal, magnetic dot, ferromagnetic resonance

  2. Spin-wave wavelength down-conversion at thickness steps

    NASA Astrophysics Data System (ADS)

    Stigloher, Johannes; Taniguchi, Takuya; Madami, Marco; Decker, Martin; Körner, Helmut S.; Moriyama, Takahiro; Gubbiotti, Gianluca; Ono, Teruo; Back, Christian H.

    2018-05-01

    We report a systematic experimental study on the refraction and reflection of magnetostatic spin-waves at a thickness step between two Permalloy films of different thickness. The transmitted spin-waves for the transition from a thick film to a thin film have a higher wave vector compared to the incoming waves. Consequently, such systems may find use as passive wavelength transformers in magnonic networks. We investigate the spin-wave transmission behavior by studying the influence of the external magnetic field, incident angle, and thickness ratio of the films using time-resolved scanning Kerr microscopy and micro-focused Brillouin light scattering.

  3. Foundation stiffness in the linear modeling of wind turbines

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Yu, Chih-Peng; Chen, Yan-Hao; Lai, Jiunnren; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2017-04-01

    Effects of foundation stiffness on the linear vibrations of wind turbine systems are of concerns for both planning and construction of wind turbine systems. Current study performed numerical modeling for such a problem using linear spectral finite elements. The effects of foundation stiffness were investigated for various combinations of shear wave velocity of soil, size of tower base plate, and pile length. Multiple piles are also included in the models such that the foundation stiffness can be analyzed more realistically. The results indicate that the shear wave velocity of soil and the size of tower base plate have notable effects on the dominant frequency of the turbine-tower system. The larger the lateral dimension, the stiffer the foundation. Large pile cap and multiple spaced piles result in higher stiffness than small pile cap and a mono-pile. The lateral stiffness of a mono-pile mainly depends on the shear wave velocity of soil with the exception for a very short pile that the end constraints may affect the lateral vibration of the superstructure. Effective pile length may be determined by comparing the simulation results of the frictional pile to those of the end-bearing pile.

  4. First-Principles Prediction of Electronic, Magnetic, and Optical Properties of Co2MnAs Full-Heusler Half-Metallic Compound

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Sarmazdeh, M. Majidiyan; Mendi, R. Taghavi; Boochani, A.

    2017-04-01

    Electronic, magnetic, and optical properties of Co2MnAs full-Heusler compound have been calculated using a first-principles approach with the full-potential linearized augmented plane-wave (FP-LAPW) method and generalized gradient approximation plus U (GGA + U). The results are compared with various properties of Co2Mn Z ( Z = Si, Ge, Al, Ga, Sn) full-Heusler compounds. The results of our calculations show that Co2MnAs is a half-metallic ferromagnetic compound with 100% spin polarization at the Fermi level. The total magnetic moment and half-metallic gap of Co2MnAs compound are found to be 6.00 μ B and 0.43 eV, respectively. It is also predicted that the spin-wave stiffness constant and Curie temperature of Co2MnAs compound are about 3.99 meV nm2 and 1109 K, respectively. The optical results show that the dominant behavior, at energy below 2 eV, is due to interactions of free electrons in the system. Interband optical transitions have been calculated based on the imaginary part of the dielectric function and analysis of critical points in the second energy derivative of the dielectric function. The results show that there is more than one plasmon energy for Co2MnAs compound, with the highest occurring at 25 eV. Also, the refractive index variations and optical reflectivity for radiation at normal incidence are calculated for Co2MnAs. Because of its high magnetic moment, high Curie temperature, and 100% spin polarization at the Fermi level as well as its optical properties, Co2MnAs is a good candidate for use in spintronic components and magnetooptical devices.

  5. Exchange stiffness of Ca-doped YIG

    NASA Astrophysics Data System (ADS)

    Avgin, I.; Huber, D. L.

    1994-05-01

    An effective medium theory for the zero-temperature exchange stiffness of uncompensated Ca-doped YIG is presented. The theory is based on the assumption that the effect of the Ca impurities is to produce strong, random ferromagnetic interactions between spins on the a and d sublattices. In the simplest version of the theory, a fraction, x, of the ad exchange integrals are large and positive, x being related to the Ca concentration. The stiffness is calculated as function of x for arbitrary perturbed ad exchange integral, Jxad. For Jxad≳(1/5)‖8Jaa+3Jdd‖, with Jaa and Jdd denoting the aa and dd exchange integrals, respectively, there is a critical concentration, Xc, such that when x≳Xc, the stiffness is complex. It is suggested that Xc delineates the region where there are significant departures from colinearity in the ground state of the Fe spins. Extension of the theory to a model where the Ca doping is assumed to generate Fe4+ ions on the tetrahedral sites is discussed. Possible experimental tests of the theory are mentioned.

  6. Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose

    NASA Astrophysics Data System (ADS)

    Behzad, Hamed; Panahi, Roozbeh

    2017-06-01

    In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.

  7. Music decreases aortic stiffness and wave reflections.

    PubMed

    Vlachopoulos, Charalambos; Aggelakas, Angelos; Ioakeimidis, Nikolaos; Xaplanteris, Panagiotis; Terentes-Printzios, Dimitrios; Abdelrasoul, Mahmoud; Lazaros, George; Tousoulis, Dimitris

    2015-05-01

    Music has been related to cardiovascular health and used as adjunct therapy in patients with cardiovascular disease. Aortic stiffness and wave reflections are predictors of cardiovascular risk. We investigated the short-term effect of classical and rock music on arterial stiffness and wave reflections. Twenty healthy individuals (22.5±2.5 years) were studied on three different occasions and listened to a 30-min music track compilation (classical, rock, or no music for the sham procedure). Both classical and rock music resulted in a decrease of carotid-femoral pulse wave velocity (PWV) immediately after the end of music listening (all p<0.01). Augmentation index (AIx) decreased with either classical or rock music in a more sustained way (nadir by 6.0% and 5.8%, respectively, at time zero post-music listening, all p<0.01). When music preference was taken into consideration, both classical and rock music had a more potent effect on PWV in classical aficionados (by 0.20 m/s, p=0.003 and 0.13 m/s, p=0.015, respectively), whereas there was no effect in rock aficionados (all p=NS). Regarding wave reflections, classical music led to a more potent response in classical aficionados (AIx decrease by 9.45%), whereas rock led to a more potent response to rock aficionados (by 10.7%, all p<0.01). Music, both classical and rock, decreases aortic stiffness and wave reflections. Effect on aortic stiffness lasts for as long as music is listened to, while classical music has a sustained effect on wave reflections. These findings may have important implications, extending the spectrum of lifestyle modifications that can ameliorate arterial function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Arterial stiffness is associated to cardiorespiratory fitness and body mass index in young Swedish adults: The Lifestyle, Biomarkers, and Atherosclerosis study.

    PubMed

    Fernberg, Ulrika; Fernström, Maria; Hurtig-Wennlöf, Anita

    2017-11-01

    Background Early changes in the large muscular arteries are already associated with risk factors as hypertension and obesity in adolescence and young adulthood. The present study examines the association between arterial stiffness measurements, pulse wave velocity and augmentation index and lifestyle-related factors, body composition and cardiorespiratory fitness, in young, healthy, Swedish adults. Design This study used a population-based cross-sectional sample. Methods The 834 participants in the study were self-reported healthy, non-smoking, age 18-25 years. Augmentation index and pulse wave velocity were measured with applanation tonometry. Cardiorespiratory fitness was measured by ergometer bike test to estimate maximal oxygen uptake. Body mass index (kg/m 2 ) was calculated and categorised according to classification by the World Health Organisation. Results Young Swedish adults with obesity and low cardiorespiratory fitness have significantly higher pulse wave velocity and augmentation index than non-obese young adults with medium or high cardiorespiratory fitness. The observed U-shaped association between pulse wave velocity and body mass index categories in women indicates that it might be more beneficial to be normal weight than underweight when assessing the arterial stiffness with pulse wave velocity. The highest mean pulse wave velocity was found in overweight/obese individuals with low cardiorespiratory fitness. The lowest mean pulse wave velocity was found in normal weight individuals with high cardiorespiratory fitness. Cardiorespiratory fitness had a stronger effect than body mass index on arterial stiffness in multiple regression analyses. Conclusions The inverse association between cardiorespiratory fitness and arterial stiffness is observed already in young adults. The study result highlights the importance of high cardiorespiratory fitness, but also that underweight individuals may be a possible risk group that needs to be further studied.

  9. Magnetic domain walls as reconfigurable spin-wave nano-channels

    NASA Astrophysics Data System (ADS)

    Wagner, Kai

    Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.

  10. Spin-wave diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Jin; Yu, Weichao; Wu, Ruqian

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less

  11. Spin-wave diode

    DOE PAGES

    Lan, Jin; Yu, Weichao; Wu, Ruqian; ...

    2015-12-28

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less

  12. Multi-directional emission and detection of spin waves propagating in yttrium iron garnet with wavelengths down to about 100 nm

    NASA Astrophysics Data System (ADS)

    Maendl, Stefan; Grundler, Dirk

    2018-05-01

    We performed broadband spin-wave spectroscopy on 200 nm thick yttrium iron garnet containing arrays of partially embedded magnetic nanodisks. Using integrated coplanar waveguides (CPWs), we studied the excitation and transmission of spin waves depending on the presence of nanomagnet arrays of different lateral extensions. By means of the grating coupler effect, we excited spin waves propagating in multiple lateral directions with wavelengths down to 111 nm. They exhibited group velocities of up to 1 km/s. Detection of such short-wavelength spin waves was possible only in symmetrically designed emitter/detector configurations, not with a bare CPW. We report spin waves propagating between grating couplers under oblique angles exhibiting a wave vector component parallel to the CPW. The effective propagation distance amounted to about 80 μm. Such transmission signals were not addressed before and substantiate the versatility of the grating coupler effect for implementing nanomagnonic circuits.

  13. Arterial Stiffness in Children: Pediatric Measurement and Considerations

    PubMed Central

    Savant, Jonathan D.; Furth, Susan L.; Meyers, Kevin E.C.

    2014-01-01

    Background Arterial stiffness is a natural consequence of aging, accelerated in certain chronic conditions, and predictive of cardiovascular events in adults. Emerging research suggests the importance of arterial stiffness in pediatric populations. Methods There are different indices of arterial stiffness. The present manuscript focuses on carotid-femoral pulse wave velocity and pulse wave analysis, although other methodologies are discussed. Also reviewed are specific measurement considerations for pediatric populations and the literature describing arterial stiffness in children with certain chronic conditions (primary hypertension, obesity, diabetes, chronic kidney disease, hypercholesterolemia, genetic syndromes involving vasculopathy, and solid organ transplant recipients). Conclusions The measurement of arterial stiffness in children is feasible and, under controlled conditions, can give accurate information about the underlying state of the arteries. This potentially adds valuable information about the functionality of the cardiovascular system in children with a variety of chronic diseases well beyond that of the brachial artery blood pressure. PMID:26587447

  14. Strain Elastography - How To Do It?

    PubMed Central

    Dietrich, Christoph F.; Barr, Richard G.; Farrokh, André; Dighe, Manjiri; Hocke, Michael; Jenssen, Christian; Dong, Yi; Saftoiu, Adrian; Havre, Roald Flesland

    2017-01-01

    Tissue stiffness assessed by palpation for diagnosing pathology has been used for thousands of years. Ultrasound elastography has been developed more recently to display similar information on tissue stiffness as an image. There are two main types of ultrasound elastography, strain and shear wave. Strain elastography is a qualitative technique and provides information on the relative stiffness between one tissue and another. Shear wave elastography is a quantitative method and provides an estimated value of the tissue stiffness that can be expressed in either the shear wave speed through the tissues in meters/second, or converted to the Young’s modulus making some assumptions and expressed in kPa. Each technique has its advantages and disadvantages and they are often complimentary to each other in clinical practice. This article reviews the principles, technique, and interpretation of strain elastography in various organs. It describes how to optimize technique, while pitfalls and artifacts are also discussed. PMID:29226273

  15. Seismic analysis of the frame structure reformed by cutting off column and jacking based on stiffness ratio

    NASA Astrophysics Data System (ADS)

    Zhao, J. K.; Xu, X. S.

    2017-11-01

    The cutting off column and jacking technology is a method for increasing story height, which has been widely used and paid much attention in engineering. The stiffness will be changed after the process of cutting off column and jacking, which directly affects the overall seismic performance. It is usually necessary to take seismic strengthening measures to enhance the stiffness. A five story frame structure jacking project in Jinan High-tech Zone was taken as an example, and three finite element models were established which contains the frame model before lifting, after lifting and after strengthening. Based on the stiffness, the dynamic time-history analysis was carried out to research its seismic performance under the EL-Centro seismic wave, the Taft seismic wave and the Tianjin artificial seismic wave. The research can provide some guidance for the design and construction of the entire jack lifting structure.

  16. Generation of dark and bright spin wave envelope soliton trains through self-modulational instability in magnetic films.

    PubMed

    Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E

    2004-10-08

    The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.

  17. Shear wave elastography with a new reliability indicator.

    PubMed

    Dietrich, Christoph F; Dong, Yi

    2016-09-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  18. Shear wave elastography with a new reliability indicator

    PubMed Central

    Dong, Yi

    2016-01-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731

  19. A transverse separate-spin-evolution streaming instability

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Andreev, Pavel A.; Murtaza, G.

    2018-05-01

    By using the separate spin evolution quantum hydrodynamical model, the instability of transverse mode due to electron streaming in a partially spin polarized magnetized degenerate plasma is studied. The electron spin polarization gives birth to a new spin-dependent wave (i.e., separate spin evolution streaming driven ordinary wave) in the real wave spectrum. It is shown that the spin polarization and streaming speed significantly affect the frequency of this new mode. Analyzing growth rate, it is found that the electron spin effects reduce the growth rate and shift the threshold of instability as well as its termination point towards higher values. Additionally, how the other parameters like electron streaming and Fermi pressure influence the growth rate is also investigated. Current study can help towards better understanding of the existence of new waves and streaming instability in the astrophysical plasmas.

  20. Spin-wave interference in microscopic permalloy tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balhorn, Felix; Nagrodzki, Lukas; Mendach, Stefan

    2013-06-03

    We present permalloy coated needles which act as spin-wave resonators. The permalloy coated needles were investigated using microwave absorption spectroscopy. Thereby, we found up to three resonant modes which correspond to constructively interfering azimuthal spin waves. The resonant modes are well reproduced in calculations based on an analytical model for the spin-wave dispersion employing periodic boundary conditions. The dependence of the resonance frequencies on the needles' radii and the external magnetic field is demonstrated experimentally.

  1. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Pirro, P.; Hillebrands, B.

    2017-06-01

    Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an excellent tool to generate and to amplify spin waves in these systems in a wide wavevector range. In particular, the amplification greatly benefits from the discreteness of the spin-wave spectra since the size of the microstructures is comparable to the spin-wave wavelength. This opens up new, interesting routes of spin-wave amplification and manipulation. In this review, we will give an overview over the recent developments and achievements in this field.

  2. Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braecher, T.; Sebastian, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern

    2013-04-01

    We present the generation of propagating backward volume (BV) spin waves in a T shaped Ni{sub 81}Fe{sub 19} microstructure. These waves are created from counterpropagating Damon Eshbach spin waves, which are excited using microstrip antennas. By employing Brillouin light scattering microscopy, we show how the phase relation between the counterpropagating waves determines the mode generated in the center of the structure, and prove its propagation inside the longitudinally magnetized part of the T shaped microstructure. This gives access to the effective generation of backward volume spin waves with full control over the generated transverse mode.

  3. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    PubMed Central

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-01-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113

  4. Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.

    PubMed

    Le Crom, Bénédicte; Castaings, Michel

    2010-04-01

    This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.

  5. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-03-23

    The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.

  6. Absence of high-temperature ballistic transport in the spin-1/2 XXX chain within the grand-canonical ensemble

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Prosen, T.

    2017-01-01

    Whether in the thermodynamic limit, vanishing magnetic field h → 0, and nonzero temperature the spin stiffness of the spin-1/2 XXX Heisenberg chain is finite or vanishes within the grand-canonical ensemble remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we provide an upper bound on the stiffness and show that within that ensemble it vanishes for h → 0 in the thermodynamic limit of chain length L → ∞, at high temperatures T → ∞. Our approach uses a representation in terms of the L physical spins 1/2. For all configurations that generate the exact spin-S energy and momentum eigenstates such a configuration involves a number 2S of unpaired spins 1/2 in multiplet configurations and L - 2 S spins 1/2 that are paired within Msp = L / 2 - S spin-singlet pairs. The Bethe-ansatz strings of length n = 1 and n > 1 describe a single unbound spin-singlet pair and a configuration within which n pairs are bound, respectively. In the case of n > 1 pairs this holds both for ideal and deformed strings associated with n complex rapidities with the same real part. The use of such a spin 1/2 representation provides useful physical information on the problem under investigation in contrast to often less controllable numerical studies. Our results provide strong evidence for the absence of ballistic transport in the spin-1/2 XXX Heisenberg chain in the thermodynamic limit, for high temperatures T → ∞, vanishing magnetic field h → 0 and within the grand-canonical ensemble.

  7. Strong excitation of surface and bulk spin waves in yttrium iron garnet placed in a split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-02-01

    This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.

  8. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  9. Excitation of short-wavelength spin waves in magnonic waveguides

    NASA Astrophysics Data System (ADS)

    Demidov, V. E.; Kostylev, M. P.; Rott, K.; Münchenberger, J.; Reiss, G.; Demokritov, S. O.

    2011-08-01

    By using phase-resolved micro-focus Brillouin light scattering spectroscopy, we demonstrate experimentally a phenomenon of wavelength conversion of spin waves propagating in tapered Permalloy waveguides. We show that this phenomenon enables efficient excitation of spin waves with sub-micrometer wavelengths being much smaller than the width of the microstrip antenna used for the excitation. The proposed excitation mechanism removes restrictions on the spin-wave wavelength imposed by the size of the antenna and enables improvement of performances of integrated magnonic devices.

  10. Theory of spin and lattice wave dynamics excited by focused laser pulses

    NASA Astrophysics Data System (ADS)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  11. Dynamic generation of spin-wave currents in hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com

    2016-11-15

    Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yizhou, E-mail: yliu062@ucr.edu; Yin, Gen; Lake, Roger K., E-mail: rlake@ece.ucr.edu

    Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resultingmore » from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, A., E-mail: apapp@nd.edu; Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088; Porod, W., E-mail: porod@nd.edu

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnetmore » structures can be the basis of potentially high-performance, ultra low-power computing devices.« less

  14. Coriolis effect in optics: unified geometric phase and spin-Hall effect.

    PubMed

    Bliokh, Konstantin Y; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez

    2008-07-18

    We examine the spin-orbit coupling effects that appear when a wave carrying intrinsic angular momentum interacts with a medium. The Berry phase is shown to be a manifestation of the Coriolis effect in a noninertial reference frame attached to the wave. In the most general case, when both the direction of propagation and the state of the wave are varied, the phase is given by a simple expression that unifies the spin redirection Berry phase and the Pancharatnam-Berry phase. The theory is supported by the experiment demonstrating the spin-orbit coupling of electromagnetic waves via a surface plasmon nanostructure. The measurements verify the unified geometric phase, demonstrated by the observed polarization-dependent shift (spin-Hall effect) of the waves.

  15. Antiferromagnetic Spin Wave Field-Effect Transistor

    DOE PAGES

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; ...

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less

  16. Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal

    NASA Astrophysics Data System (ADS)

    Baumgaertl, Korbinian; Watanabe, Sho; Grundler, Dirk

    2018-04-01

    Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co 20 Fe 60 B 20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program a single stripe of opposed magnetization in an otherwise saturated 1D MC. Its influence on propagating spin waves is studied via broadband microwave spectroscopy. Depending on an in-plane bias magnetic field, we observe spin wave phase shifts of up to almost π and field-controlled attenuation attributed to the reversed nanostripe. Our findings are of importance for magnetologics, where the control of spin wave phases is essential.

  17. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  18. Light Intensity Physical Activity Trial

    ClinicalTrials.gov

    2018-01-30

    Diabetes Mellitus; Physical Exercise; Light Intensity Physical Activity; Arterial Stiffness; Aortic Stiffness; Pulse Wave Velocity; Type2 Diabetes; Sedentary Lifestyle; Artery Disease; Physical Activity

  19. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness

    NASA Technical Reports Server (NTRS)

    Seale, M. D.; Madaras, E. I.

    1999-01-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  20. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness.

    PubMed

    Seale, M D; Madaras, E I

    1999-09-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  1. FAST TRACK COMMUNICATION: Spin waves in the (0, π) and (0, π, π) ordered SDW states of the t-t' Hubbard model: application to doped iron pnictides

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Nimisha; Singh, Avinash

    2010-10-01

    Spin waves in the (0, π) and (0, π, π) ordered spin-density-wave (SDW) states of the t-t' Hubbard model are investigated at finite doping. In the presence of small t', these composite ferro-antiferromagnetic (F-AF) states are found to be strongly stabilized at finite hole doping due to enhanced carrier-induced ferromagnetic spin couplings as in metallic ferromagnets. Anisotropic spin-wave velocities, a spin-wave energy scale of around 200 meV, reduced magnetic moment and rapid suppression of magnetic order with electron doping x (corresponding to F substitution of O atoms in LaO1 - xFxFeAs or Ni substitution of Fe atoms in BaFe2 - xNixAs2) obtained in this model are in agreement with observed magnetic properties of doped iron pnictides.

  2. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats.

    PubMed

    Decano, Julius L; Pasion, Khristine A; Black, Nicole; Giordano, Nicholas J; Herrera, Victoria L; Ruiz-Opazo, Nelson

    2016-01-11

    Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and salt-sensitive hypertension in Dahl rats based upon reported blood pressure QTLs in equivalent (Dahl S x R)-intercrosses.

  3. Arterial waveguide model for shear wave elastography: implementation and in vitro validation

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.

    2017-07-01

    Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.

  4. Computational investigation of feedback loop as a potential source of neuromechanical wave speed discrepancy in swimming animals

    NASA Astrophysics Data System (ADS)

    Patel, Namu; Patankar, Neelesh A.

    2017-11-01

    Aquatic locomotion relies on feedback loops to generate the flexural muscle moment needed to attain the reference shape. Experimentalists have consistently reported a difference between the electromyogram (EMG) and curvature wave speeds. The EMG wave speed has been found to correlate with the cross-sectional moment wave. The correlation, however, remains unexplained. Using feedback dependent controller models, we demonstrate two scenarios - one at higher passive elastic stiffness and another at lower passive elastic stiffness of the body. The former case becomes equivalent to the penalty type mathematical model for swimming used in prior literature and it does not reproduce neuromechanical wave speed discrepancy. The latter case at lower elastic stiffness does reproduce the wave speed discrepancy and appears to be biologically most relevant. These findings are applied to develop testable hypotheses about control mechanisms that animals might be using at during low and high Reynolds number swimming. This work is supported by NSF Grants DMS-1547394, CBET-1066575, ACI-1460334, and IOS-1456830. Travel for NP is supported by Institute for Defense Analyses.

  5. Functions of fish skin: flexural stiffness and steady swimming of longnose gar, Lepisosteus osseus

    PubMed

    Long; Hale; Mchenry; Westneat

    1996-01-01

    The functions of fish skin during swimming remain enigmatic. Does skin stiffen the body and alter the propagation of the axial undulatory wave? To address this question, we measured the skin's in situ flexural stiffness and in vivo mechanical role in the longnose gar Lepisosteus osseus. To measure flexural stiffness, dead gar were gripped and bent in a device that measured applied bending moment (N m) and the resulting midline curvature (m-1). From these values, the flexural stiffness of the body (EI in N m2) was calculated before and after sequential alterations of skin structure. Cutting of the dermis between two caudal scale rows significantly reduced the flexural stiffness of the body and increased the neutral zone of curvature, a region of bending without detectable stiffness. Neither bending property was significantly altered by the removal of a caudal scale row. These alterations in skin structure were also made in live gar and the kinematics of steady swimming was measured before and after each treatment. Cutting of the dermis between two caudal scale rows, performed under anesthesia, changed the swimming kinematics of the fish: tailbeat frequency (Hz) and propulsive wave speed (body lengths per second, L s-1) decreased, while the depth (in L) of the trailing edge of the tail increased. The decreases in tailbeat frequency and wave speed are consistent with predictions of the theory of forced, harmonic vibrations; wave speed, if equated with resonance frequency, is proportional to the square root of a structure's stiffness. While it did not significantly reduce the body's flexural stiffness, surgical removal of a caudal scale row resulted in increased tailbeat amplitude and the relative total hydrodynamic power. In an attempt to understand the specific function of the scale row, we propose a model in which a scale row resists medio-lateral force applied by a single myomere, thus functioning to enhance mechanical advantage for bending. Finally, surgical removal of a precaudal scale row did not significantly alter any of the kinematic variables. This lack of effect is associated with a lower midline curvature of the precaudal region during swimming compared with that of the caudal region. Overall, these results demonstrate a causal relationship between skin, the passive flexural stiffness it imparts to the body and the influence of body stiffness on the undulatory wave speed and cycle frequency at which gar choose to swim.

  6. Size dependence of spin-torque induced magnetic switching in CoFeB-based perpendicular magnetization tunnel junctions (invited)

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.

    2012-04-01

    CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.

  7. Association of objectively measured physical activity and sedentary time with arterial stiffness in women with systemic lupus erythematosus with mild disease activity.

    PubMed

    Morillas-de-Laguno, Pablo; Vargas-Hitos, José A; Rosales-Castillo, Antonio; Sáez-Urán, Luis Manuel; Montalbán-Méndez, Cristina; Gavilán-Carrera, Blanca; Navarro-Mateos, Carmen; Acosta-Manzano, Pedro; Delgado-Fernández, Manuel; Sabio, José M; Ortego-Centeno, Norberto; Callejas-Rubio, José L; Soriano-Maldonado, Alberto

    2018-01-01

    To examine the association of objectively measured physical activity (PA) intensity levels and sedentary time with arterial stiffness in women with systemic lupus erythematosus (SLE) with mild disease activity and to analyze whether participants meeting the international PA guidelines have lower arterial stiffness than those not meeting the PA guidelines. The study comprised 47 women with SLE (average age 41.2 [standard deviation 13.9]) years, with clinical and treatment stability during the 6 months prior to the study. PA intensity levels and sedentary time were objectively measured with triaxial accelerometry. Arterial stiffness was assessed through pulse wave velocity, evaluated by Mobil-O-Graph® 24h pulse wave analysis monitor. The average time in moderate to vigorous PA in bouts of ≥10 consecutive minutes was 135.1±151.8 minutes per week. There was no association of PA intensity levels and sedentary time with arterial stiffness, either in crude analyses or after adjusting for potential confounders. Participants who met the international PA guidelines did not show lower pulse wave velocity than those not meeting them (b = -0.169; 95% CI: -0.480 to 0.143; P = 0.280). Our results suggest that PA intensity levels and sedentary time are not associated with arterial stiffness in patients with SLE. Further analyses revealed that patients with SLE meeting international PA guidelines did not present lower arterial stiffness than those not meeting the PA guidelines. Future prospective research is needed to better understand the association of PA and sedentary time with arterial stiffness in patients with SLE.

  8. Ferromagnetic resonance in bulk nanocrystalline Ni

    NASA Astrophysics Data System (ADS)

    Prakash Madduri, P. V.; Mathew, S. P.; Kaul, S. N.

    2018-03-01

    A detailed lineshape analysis of the ferromagnetic resonance (FMR) spectra taken on pulse electrodeposited nanocrystalline (nc-) Ni sheets (with the average crystallite size, d, varying from 10 nm to 40 nm) at temperatures ranging from 113 K to 325 K yield accurate values for saturation magnetization, Ms (T), Landé splitting factor, g, anisotropy field, Hk (T) , resonance field, Hres , and FMR linewidth, ΔHpp (T) . Thermally-excited spin-wave (SW) excitations completely account for Ms (T) and the SW description of Ms (T) gives the values for the saturation magnetization and spin-wave stiffness at absolute zero of temperature, i.e., Ms (0) and D0 , for nc-Ni samples of different d that are in excellent agreement with the corresponding values deduced previously from an elaborate SW analysis of the bulk magnetization data. While Ms (0) varies with d as Ms (0) d - 3 / 2,D0 follows the power law D0 ∼d 4 / 3 . The angular variations of Hres in the 'in-plane' as well as 'out-of-plane' sample configurations, demonstrate that the main contribution to Hk (T) comes from the cubic magnetocrystalline anisotropy. The exchange-conductivity mechanism describes the observed thermal decline of ΔHpp reasonably well but fails to explain the very large magnitude of ΔHpp at any given temperature. By comparison, the Landau-Lifshitz-Gilbert (LLG) damping gives a much greater contribution to ΔHpp but the LLG contribution is relatively insensitive to temperature.

  9. Microwave excitation of spin wave beams in thin ferromagnetic films

    PubMed Central

    Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.

    2016-01-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711

  10. Quantifying the effects of hydration on corneal stiffness with optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.

    2018-02-01

    Several methods have been proposed to assess changes in corneal biomechanical properties due to various factors, such as degenerative diseases, intraocular pressure, and therapeutic interventions (e.g. corneal collagen crosslinking). However, the effect of the corneal tissue hydration state on corneal stiffness is not well understood. In this work, we induce low amplitude (< 10 μm) elastic waves with a focused micro air-pulse in fresh in situ rabbit corneas (n = 10) in the whole eye-globe configuration at an artificially controlled intraocular pressure. The waves were then detected with a phase-stabilized swept source optical coherence elastography system. Baseline measurements were taken every 20 minutes for an hour while the corneas were hydrated with 1X PBS. After the measurement at 60 minutes, a 20% dextran solution was topically instilled to dehydrate the corneas. The measurements were repeated every 20 minutes again for an hour. The results showed that the elastic wave velocity decreased as the corneal thickness decreased. Finite element modeling (FEM) was performed using the corneal geometry and elastic wave propagation speed to assess the stiffness of the samples. The results show that the stiffness increased from 430 kPa during hydration with PBS to 500 kPa after dehydration with dextran, demonstrating that corneal hydration state, apart from geometry and intraocular pressure, can change the stiffness of the cornea.

  11. Quantification of aortic stiffness using MR elastography and its comparison to MRI-based pulse wave velocity.

    PubMed

    Damughatla, Anirudh R; Raterman, Brian; Sharkey-Toppen, Travis; Jin, Ning; Simonetti, Orlando P; White, Richard D; Kolipaka, Arunark

    2015-01-01

    To determine the correlation in abdominal aortic stiffness obtained using magnetic resonance elastography (MRE) (μ(MRE)) and MRI-based pulse wave velocity (PWV) shear stiffness (μ(PWV)) estimates in normal volunteers of varying age, and also to determine the correlation between μ(MRE) and μ(PWV). In vivo aortic MRE and MRI were performed on 21 healthy volunteers with ages ranging from 18 to 65 years to obtain wave and velocity data along the long axis of the abdominal aorta. The MRE wave images were analyzed to obtain mean stiffness and the phase contrast images were analyzed to obtain PWV measurements and indirectly estimate stiffness values from the Moens-Korteweg equation. Both μ(MRE) and μ(PWV) measurements increased with age, demonstrating linear correlations with R(2) values of 0.81 and 0.67, respectively. Significant difference (P ≤ 0.001) in mean μ(MRE) and μ(PWV) between young and old healthy volunteers was also observed. Furthermore, a poor linear correlation of R(2) value of 0.43 was determined between μ(MRE) and μ(PWV) in the initial pool of volunteers. The results of this study indicate linear correlations between μ(MRE) and μ(PWV) with normal aging of the abdominal aorta. Significant differences in mean μ(MRE) and μ(PWV) between young and old healthy volunteers were observed. © 2013 Wiley Periodicals, Inc.

  12. Spin wave filtering and guiding in Permalloy/iron nanowires

    NASA Astrophysics Data System (ADS)

    Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.

    2018-03-01

    We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.

  13. Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  14. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  15. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    PubMed Central

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  16. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanoi, K.; Yokotani, Y.; Cui, X.

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of themore » standing spin wave is an important advantage for the high power operation of the spin-wave device.« less

  17. Associations of Novel and Traditional Vascular Biomarkers of Arterial Stiffness: Results of the SAPALDIA 3 Cohort Study.

    PubMed

    Endes, Simon; Caviezel, Seraina; Schaffner, Emmanuel; Dratva, Julia; Schindler, Christian; Künzli, Nino; Bachler, Martin; Wassertheurer, Siegfried; Probst-Hensch, Nicole; Schmidt-Trucksäss, Arno

    There is a lack of evidence concerning associations between novel parameters of arterial stiffness as cardiovascular risk markers and traditional structural and functional vascular biomarkers in a population-based Caucasian cohort. We examined these associations in the second follow-up of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA 3). Arterial stiffness was measured oscillometrically by pulse wave analysis to derive the cardio-ankle vascular index (CAVI), brachial-ankle (baPWV) and aortic pulse wave velocity (aPWV), and amplitude of the forward and backward wave. Carotid ultrasonography was used to measure carotid intima-media thickness (cIMT) and carotid lumen diameter (LD), and to derive a distensibility coefficient (DC). We used multivariable linear regression models adjusted for several potential confounders for 2,733 people aged 50-81 years. CAVI, aPWV and the amplitude of the forward and backward wave were significant predictors of cIMT (p < 0.001). All parameters were significantly associated with LD (p < 0.001), with aPWV and the amplitude of the forward wave explaining the highest proportion of variance (2%). Only CAVI and baPWV were significant predictors of DC (p < 0.001), explaining more than 0.3% of the DC variance. We demonstrated that novel non-invasive oscillometric arterial stiffness parameters are differentially associated with specific established structural and functional local stiffness parameters. Longitudinal studies are needed to follow-up on these cross-sectional findings and to evaluate their relevance for clinical phenotypes.

  18. Relations of arterial stiffness with postural change in mean arterial pressure in middle-aged adults: The Framingham Heart Study

    PubMed Central

    Torjesen, Alyssa; Cooper, Leroy L.; Rong, Jian; Larson, Martin G.; Hamburg, Naomi M.; Levy, Daniel; Benjamin, Emelia J.; Vasan, Ramachandran S.; Mitchell, Gary F.

    2017-01-01

    Impaired regulation of blood pressure upon standing can lead to adverse outcomes, including falls, syncope, and disorientation. Mean arterial pressure typically increases upon standing; however, an insufficient increase or a decline in mean arterial pressure upon standing may result in decreased cerebral perfusion. Orthostatic hypotension has been reported in older people with increased arterial stiffness, whereas the association between orthostatic change in mean arterial pressure and arterial stiffness in young-to-middle aged individuals has not been examined. We analyzed orthostatic blood pressure response and comprehensive hemodynamic data in 3205 participants (1693 [53%] women) in the Framingham Heart Study Third Generation cohort. Participants were predominantly middle-aged (mean age: 46±9 years). Arterial stiffness was assessed using carotid-femoral pulse wave velocity, forward pressure wave amplitude, and characteristic impedance of the aorta. Adjusting for standard cardiovascular disease risk factors, orthostatic change in mean arterial pressure (6.9±7.7 mm Hg) was inversely associated with carotid-femoral pulse wave velocity (partial correlation, rp = −0.084, P<0.0001), forward wave amplitude (rp = −0.129, P<0.0001), and characteristic impedance (rp = −0.094, P<0.0001). The negative relation between forward wave amplitude and change in mean arterial pressure on standing was accentuated in women (P=0.002 for sex interaction). Thus, higher aortic stiffness was associated with a blunted orthostatic increase in mean arterial pressure, even in middle age. The clinical implications of these findings warrant further study. PMID:28264924

  19. Influence of tantalum underlayer on magnetization dynamics in Ni{sub 81}Fe{sub 19} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jae Hyun; Deorani, Praveen; Yoon, Jungbum

    2015-07-13

    The effect of tantalum (Ta) underlayer is investigated in Ni{sub 81}Fe{sub 19} thin films for magnetization dynamics. The damping parameters extracted from spin wave measurements increase systematically with increasing Ta thickness, whereas the damping parameters from ferromagnetic resonance measurements are found to be weakly dependent on the Ta thickness. The difference is attributed to propagating properties of spin wave and short spin diffusion length in Ta. The group velocity of spin waves is found to be constant for different Ta thicknesses, and nonreciprocity of spin waves is not affected by the Ta thickness. The experimental observations are supported by micromagneticmore » simulations.« less

  20. Extending geometrical optics: A Lagrangian theory for vector waves

    NASA Astrophysics Data System (ADS)

    Ruiz, D. E.

    2016-10-01

    Even diffraction aside, the commonly known equations of geometrical optics (GO) are not entirely accurate. GO considers wave rays as classical particles, which are completely described by their coordinates and momenta, but rays have another degree of freedom, namely, polarization. As a result, wave rays can behave as particles with spin. A well-known example of polarization dynamics is wave-mode conversion, which can be interpreted as rotation of the (classical) ``wave spin.'' However, there are other less-known manifestations of the wave spin, such as polarization precession and polarization-driven bending of ray trajectories. This talk presents recent advances in extending and reformulating GO as a first-principle Lagrangian theory, whose effective-gauge Hamiltonian governs both mentioned polarization phenomena simultaneously. Examples and numerical results are presented. When applied to classical waves, the theory correctly predicts the polarization-driven divergence of left- and right- polarized electromagnetic waves in isotropic media, such as dielectrics and nonmagnetized plasmas. In the case of particles with spin, the formalism also yields a point-particle Lagrangian model for the Dirac electron, i.e. the relativistic spin-1/2 electron, which includes both the Stern-Gerlach spin potential and the Bargmann-Michel-Telegdi spin precession. Additionally, the same theory contributes, perhaps unexpectedly, to the understanding of ponderomotive effects in both wave and particle dynamics; e.g., the formalism allows to obtain the ponderomotive Hamiltonian for a Dirac electron interacting with an arbitrarily large electromagnetic laser field with spin effects included. Supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.

  1. Accuracy of real-time shear wave elastography in the assessment of normal liver tissue in the guinea pig (cavia porcellus).

    PubMed

    Glińska-Suchocka, K; Kubiak, K; Spużak, J; Jankowski, M; Borusewicz, P

    2017-03-28

    Shear wave elastography is a novel technique enabling real-time measurement of the elasticity of liver tissue. The color map is superimposed on the classic ultrasound image of the assessed tissue, which enables a precise evaluation of the stiffness of the liver tissue. The aim of the study was to assess the stiffness of normal liver tissue in the guinea pig using shear wave elastography. The study was carried out on 36 guinea pigs using the SuperSonic Imagine Aixplorer scanner, and a 1 to 6 MH convex SC6-1 transducer. An ultrasound guided Try-Cut liver core needle biopsy was carried out in all the studied animals and the collected samples were examined to exclude pathological lesions. The mean liver tissue stiffness ranged from 0.89 to 5.40 kPa. We found that shear wave elastography is an easy, non-invasive technique that can be used to assess the stiffness of liver tissue. The obtained results can be used in future studies to assess the types and changes of liver tissue in the course of various types of liver disease.

  2. Does short-term whole-body vibration training affect arterial stiffness in chronic stroke? A preliminary study

    PubMed Central

    Yule, Christie E.; Stoner, Lee; Hodges, Lynette D.; Cochrane, Darryl J.

    2016-01-01

    [Purpose] Previous studies have shown that stroke is associated with increased arterial stiffness that can be diminished by a program of physical activity. A novel exercise intervention, whole-body vibration (WBV), is reported to significantly improve arterial stiffness in healthy men and older sedentary adults. However, little is known about its efficacy in reducing arterial stiffness in chronic stroke. [Subjects and Methods] Six participants with chronic stroke were randomly assigned to 4 weeks of WBV training or control followed by cross-over after a 2-week washout period. WBV intervention consisted of 3 sessions of 5 min intermittent WBV per week for 4 weeks. Arterial stiffness (carotid arterial stiffness, pulse wave velocity [PWV], pulse and wave analysis [PWA]) were measured before/after each intervention. [Results] No significant improvements were reported with respect to carotid arterial stiffness, PWV, and PWA between WBV and control. However, carotid arterial stiffness showed a decrease over time following WBV compared to control, but this was not significant. [Conclusion] Three days/week for 4 weeks of WBV seems too short to elicit appropriate changes in arterial stiffness in chronic stroke. However, no adverse effects were reported, indicating that WBV is a safe and acceptable exercise modality for people with chronic stroke. PMID:27134400

  3. Microscopic theory of exchange and dipole-exchange spin waves in magnetic thin films

    NASA Astrophysics Data System (ADS)

    Pereira, Joao Milton, Jr.

    The aim of this work is to develop a microscopic theory of bulk and surface spin wave modes (or magnons) in thin films of some specific ordered magnetic materials, particularly antiferromagnets. Both exchange and magnetic dipole-dipole interactions are taken into account, depending on the material and the wavevector regime. First we study the dispersion relations of spin waves for situations in which the dominant interaction is the short-range exchange coupling between the magnetic sites. We begin by investigating ferromagnetic films with a cubic body centered (b.c.c.) crystal structure a surfaces corresponding to (111) crystal planes. The spin wave frequencies are calculated by a method that generalizes previous techniques used for simpler systems, which allows us to find analytical solutions. The results are then compared with recent experimental data for Ni films grown epitaxially on a W substrate. Then we investigate spin waves in antiferromagnetic systems. Calculations are made for the dispersion relations of exchange-dominated spin waves in antiferromagnetic thin films with simple cubic (s.c.) crystal structures, for three different surface orientations, namely (001), (101) and (111). The results are obtained by using a method similar to the one developed for the ferromagnetic film in the previous chapter. We calculate the effect of finite film thickness in coupling the spin wave modes localized near the two surfaces, leading to a splitting of several of the mode branches that occur in the semi-infinite limit. Another aspect that we consider is the influence, for the (101) orientation, of the direction of propagation on the spin wave frequencies, as well as the effect of non-equivalent sublattices in the (111) case. Next, we investigate the spin waves in antiferromagnetic films made of materials in which the long-range dipole-dipole interaction between the magnetic sites is included, along with the exchange coupling. In this case, we employ a Hamiltonian formalism that uses a transformation of the spin operators to creation and annihilation operators. Initially, we calculate the linear dipole-exchange spin wave spectrum, by considering only the bilinear terms in the transformed Hamiltonian. The theory is applied to antiferromagnetic films with s.c. and b.c.c. structures. The higher-order terms are later included by means of a diagrammatic perturbation technique, which allows us to obtain expressions for the damping and energy shift of the spin wave modes in b.c.c. antiferromagnetic films. Numerical results are then shown for ultrathin films of the antiferromagnet MnF2.

  4. Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.

    2018-04-01

    We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.

  5. Aortic stiffness is associated with visceral adiposity in older adults enrolled in the study of health, aging, and body composition.

    PubMed

    Sutton-Tyrrell, K; Newman, A; Simonsick, E M; Havlik, R; Pahor, M; Lakatta, E; Spurgeon, H; Vaitkevicius, P

    2001-09-01

    The central arteries stiffen with age, causing hemodynamic alterations that have been associated with cardiovascular events. Changes in body fat with age may be related to aortic stiffening. The association between vascular stiffness and body fat was evaluated in 2488 older adults (mean age, 74 years; 52% female; 40% black) enrolled in the Study of Health, Aging, and Body Composition (Health ABC), a prospective study of changes in weight and body composition. Clinical sites were located in Pittsburgh, Pa, and Memphis, Tenn. Aortic pulse wave velocity was used as an indirect measure of aortic stiffness. A faster pulse wave velocity indicates a stiffer aorta. Body fat measures were evaluated with dual energy x-ray absorptiometry and computed tomography. Independent of age and blood pressure, pulse wave velocity was positively associated with weight, abdominal circumference, abdominal subcutaneous fat, abdominal visceral fat, thigh fat area, and total fat (P<0.001 for all). The strongest association was with abdominal visceral fat. Elevated pulse wave velocity was also positively associated with history of diabetes and higher levels of glucose, insulin, and hemoglobin A1c (P<0.001 for all). In multivariate analysis, independent positive associations with pulse wave velocity were found for age, systolic blood pressure, heart rate, abdominal visceral fat, smoking, hemoglobin A1c, and history of hypertension. The association between pulse wave velocity and abdominal visceral fat was consistent across tertiles of body weight. Among older adults, higher levels of visceral fat are associated with greater aortic stiffness as measured by pulse wave velocity.

  6. Langmuir instability in partially spin polarized bounded degenerate plasma

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Jamil, M.; Murtaza, G.

    2018-04-01

    Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.

  7. Spin waves and magnetic exchange interactions in the spin-ladder compound RbFe 2 Se 3

    DOE PAGES

    Wang, Meng; Yi, Ming; Jin, Shangjian; ...

    2016-07-20

    In this paper, we report an inelastic neutron scattering study of the spin waves of the one-dimensional antiferromagnetic spin ladder compound RbFe 2Se 3. The results reveal that the products, SJ's, of the spin S and the magnetic exchange interaction J along the antiferromagnetic (leg) direction and the ferromagnetic (rung) direction are comparable with those for the stripe ordered phase of the parent compounds of the iron-based superconductors. Also, the universality of the SJ's implies nearly universal spin wave dynamics and the irrelevance of the fermiology for the existence of the stripe antiferromagnetic order among various Fe-based materials.

  8. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbiotti, G.; Tacchi, S.; Montoncello, F.

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained bymore » dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.« less

  9. Dynamics of a magnetic skyrmionium driven by spin waves

    NASA Astrophysics Data System (ADS)

    Li, Sai; Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Kang, Wang; Liu, Xiaoxi; Zhou, Yan; Zhao, Weisheng

    2018-04-01

    A magnetic skyrmionium is a skyrmion-like structure, but carries a zero net skyrmion number which can be used as a building block for non-volatile information processing devices. Here, we study the dynamics of a magnetic skyrmionium driven by propagating spin waves. It is found that the skyrmionium can be effectively driven into motion by spin waves showing a tiny skyrmion Hall effect, whose mobility is much better than that of the skyrmion at the same condition. We also show that the skyrmionium mobility depends on the nanotrack width and the damping coefficient and can be controlled by an external out-of-plane magnetic field. In addition, we demonstrate that the skyrmionium motion driven by spin waves is inertial. Our results indicate that the skyrmionium is a promising building block for building spin-wave spintronic devices.

  10. Spin wave propagation detected over 100 μm in half-metallic Heusler alloy Co2MnSi

    NASA Astrophysics Data System (ADS)

    Stückler, Tobias; Liu, Chuanpu; Yu, Haiming; Heimbach, Florian; Chen, Jilei; Hu, Junfeng; Tu, Sa; Alam, Md. Shah; Zhang, Jianyu; Zhang, Youguang; Farrell, Ian L.; Emeny, Chrissy; Granville, Simon; Liao, Zhi-Min; Yu, Dapeng; Zhao, Weisheng

    2018-03-01

    The field of magnon spintronics offers a charge current free way of information transportation by using spin waves (SWs). Compared to forward volume spin waves for example, Damon-Eshbach (DE) SWs need a relatively weak external magnetic field which is suitable for small spintronic devices. In this work we study DE SWs in Co2MnSi, a half-metallic Heusler alloy with significant potential for magnonics. Thin films have been produced by pulsed laser deposition. Integrated coplanar waveguide (CPW) antennas with different distances between emitter and detection antenna have been prepared on a Co2MnSi film. We used a vector network analyzer to measure spin wave reflection and transmission. We observe spin wave propagation up to 100 μm, a new record for half-metallic Heusler thin films.

  11. Manipulation of propagating spin waves in straight and curved magnetic microstrips

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Liu, Hau-Jian; Schultheiss, Helmut; Vogt, Katrin; Hoffmann, Axel; Buchanan, Kristen

    2012-02-01

    The main challenges in realizing magnonics devices are the generation, manipulation and detection of spin waves, especially in metallic magnetic materials where the length scales are of interest for applications. We have studied the propagation of spin waves in transversely magnetized Permalloy (Py) microstrips of different shapes using micro-Brillouin light scattering. The Py stripe was 30-nm thick, several micrometers wide and >50 μm long. Spin waves were excited in the Py strip using a 2-μm wide antenna. We compare the spin wave propagation along a straight wire to the propagation along a magnetic microstrip with a smooth bend. We will also discuss the use of a current through a gold wire under the Permalloy to provide a local magnetic field to maintain a transverse magnetization around the bend.

  12. Effect of Wave Reflection and Arterial Stiffness on the Risk of Development of Hypertension in Japanese Men.

    PubMed

    Tomiyama, Hirofumi; Komatsu, Shunsuke; Shiina, Kazuki; Matsumoto, Chisa; Kimura, Kazutaka; Fujii, Masatsune; Takahashi, Lisa; Chikamori, Taishiro; Yamashina, Akira

    2018-05-08

    We conducted analyses of repeated-measures data to examine whether pressure wave reflection acts additively or synergistically with arterial stiffness in the pathogenesis of hypertension. In 3172 middle-aged (42±9 years) healthy Japanese men without hypertension at the study baseline, systolic and diastolic blood pressures, brachial-ankle pulse wave velocity, and radial augmentation index were measured annually during a 9-year study period. Of these, 474 participants (15%) developed hypertension by the end of the study period. Binary logistic regression analysis demonstrated significant individual odds ratios for both baseline brachial-ankle pulse wave velocity and radial augmentation index for the development of hypertension. The rate of onset of hypertension during the study period was highest in the participant group with high values for both brachial-ankle pulse wave velocity and radial augmentation index at study baseline (262 of 965 participants: 27%). The generalized estimating equation analysis revealed that both radial augmentation index (estimate=0.06, SE=0.03, P =0.05) and brachial-ankle pulse wave velocity (estimate=0.07×10 -1 , SE=0.02×10 -1 , P <0.01) showed significant longitudinal association with new onset of hypertension, with no significant interaction. In Japanese men, abnormal wave reflection and increased arterial stiffness may be additively associated with the risk of new onset of hypertension. Abnormal wave reflection and elevated central blood pressure may be longitudinally associated with increase in arterial stiffness, and this longitudinal association may be a mechanism underlying the additive effect of these 2 variables on the risk of new onset of hypertension. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Brown, Duncan A.; Harry, Ian; Lundgren, Andrew; Nitz, Alexander H.

    2012-10-01

    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.

  14. Current-induced instability of domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans

    2018-01-01

    We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.

  15. Feasibility of two-dimensional speckle tracking in evaluation of arterial stiffness: Comparison with pulse wave velocity and conventional sonographic markers of atherosclerosis.

    PubMed

    Podgórski, Michał; Grzelak, Piotr; Kaczmarska, Magdalena; Polguj, Michał; Łukaszewski, Maciej; Stefańczyk, Ludomir

    2018-02-01

    Objective Arterial stiffening is an early marker of atherosclerosis that has a prognostic value for cardiovascular morbidity and mortality. Although many markers of arterial hardening have been proposed, the search is on for newer, more user-friendly and reliable surrogates. One such potential candidate has emerged from cardiology, the speckle-tracking technique. The aim of this study was to evaluate the feasibility of the two-dimensional speckle tracking for the evaluation of arterial wall stiffness in comparison with standard stiffness parameters. Methods Carotid ultrasound and applanation tonometry were performed in 188 patients with no cardiovascular risk factors. The following parameters were then evaluated: the intima-media complex thickness, distensibility coefficient, β-stiffness index, circumferential strain/strain rate, and pulse wave velocity and augmentation index. These variables were compared with each other and with patient age, and their reliability was assessed with Bland-Altman plots. Results Strain parameters derived from two-dimensional speckle tracking and intima-media complex thickness correlated better with age and pulse wave velocity than standard makers of arterial stiffness. Moreover, the reliability of these measurements was significantly higher than conventional surrogates. Conclusions Two-dimensional speckle tracing is a reliable method for the evaluation of arterial stiffness. Therefore, together with intima-media complex thickness measurement, it offers great potential in clinical practice as an early marker of atherosclerosis.

  16. Magnonic waveguide based on exchange-spring magnetic structure

    NASA Astrophysics Data System (ADS)

    Wang, Lixiang; Gao, Leisen; Jin, Lichuan; Liao, Yulong; Wen, Tianlong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong

    2018-05-01

    A soft/hard exchange-spring coupled bilayer magnetic structure is proposed to obtain a narrow channel for spin-wave propagation. Micromagnetic simulations show that broad-band Damon-Eshbach geometry spin waves are strongly constrained within the channel and propagate effectively with a high group velocity. The beam width of the bound spin waves is almost independent from the frequency and is smaller than 24nm. Two side spin beams appearing at the low-frequency excitation are demonstrated to be coupled with the channel spins by dipole-dipole interaction. In contrast to a domain wall, the channel formed by exchange-spring coupling is easier to be realized in experimental scenarios and holds stronger immunity to surroundings. This work is expected to open new possibilities for energy-efficient spin-wave guiding as well as to help shape the field of beam magnonics.

  17. Design and development of the spinning mode synthesizer

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Reethof, G.

    1973-01-01

    Design and development of a flexible source of spinning modes which is capable of generating independent spinning waves of controlled complexity and spin speed without the introduction of broad band elements is reported. These features were accomplished through the use of eight commercial loudspeakers located in an equally spaced circular array with diameter of 11 inches and properly phased so that the system could generate a spinning wave. The constructed apparatus was tested in an anechoic environment and found capable of generating a plane, one and two lobed spinning wave of high quality with a sound pressure level of 120 db and at frequencies ranging from 1500 to 2500 Hz at a distance of 4 ft in the far field. The wave speeds investigated varied from 8000 to 18000 rad/sec which represent supersonic peripheral speeds.

  18. Association of objectively measured physical activity and sedentary time with arterial stiffness in women with systemic lupus erythematosus with mild disease activity

    PubMed Central

    Vargas-Hitos, José A.; Gavilán-Carrera, Blanca; Navarro-Mateos, Carmen; Acosta-Manzano, Pedro; Delgado-Fernández, Manuel; Sabio, José M.; Ortego-Centeno, Norberto; Callejas-Rubio, José L.; Soriano-Maldonado, Alberto

    2018-01-01

    Objectives To examine the association of objectively measured physical activity (PA) intensity levels and sedentary time with arterial stiffness in women with systemic lupus erythematosus (SLE) with mild disease activity and to analyze whether participants meeting the international PA guidelines have lower arterial stiffness than those not meeting the PA guidelines. Methods The study comprised 47 women with SLE (average age 41.2 [standard deviation 13.9]) years, with clinical and treatment stability during the 6 months prior to the study. PA intensity levels and sedentary time were objectively measured with triaxial accelerometry. Arterial stiffness was assessed through pulse wave velocity, evaluated by Mobil-O-Graph® 24h pulse wave analysis monitor. Results The average time in moderate to vigorous PA in bouts of ≥10 consecutive minutes was 135.1±151.8 minutes per week. There was no association of PA intensity levels and sedentary time with arterial stiffness, either in crude analyses or after adjusting for potential confounders. Participants who met the international PA guidelines did not show lower pulse wave velocity than those not meeting them (b = -0.169; 95% CI: -0.480 to 0.143; P = 0.280). Conclusions Our results suggest that PA intensity levels and sedentary time are not associated with arterial stiffness in patients with SLE. Further analyses revealed that patients with SLE meeting international PA guidelines did not present lower arterial stiffness than those not meeting the PA guidelines. Future prospective research is needed to better understand the association of PA and sedentary time with arterial stiffness in patients with SLE. PMID:29694382

  19. Classical and quantum cosmology with two perfect fluids: stiff matter and radiation

    NASA Astrophysics Data System (ADS)

    Alvarenga, F. G.; Fracalossi, R.; Freitas, R. C.; Gonçalves, S. V. B.

    2017-11-01

    In this work the homogeneous and isotropic Universe of Friedmann-Robertson-Walker is studied in the presence of two fluids: stiff matter and radiation described by the Schutz's formalism. We obtain to the classic case the behaviour of the scale factor of the universe. For the quantum case the wave packets are constructed and the wave function of the universe is found.

  20. From mean-field localized magnetism to itinerant spin fluctuations in the "nonmetallic metal" FeCrAs

    NASA Astrophysics Data System (ADS)

    Plumb, K. W.; Stock, C.; Rodriguez-Rivera, J. A.; Castellan, J.-P.; Taylor, J. W.; Lau, B.; Wu, W.; Julian, S. R.; Kim, Young-June

    2018-05-01

    FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a "nonmetal metal." The anomalous resistivity occurs for temperatures below ˜900 K. We have carried out neutron scattering experiments on powder and single crystal samples to study the magnetic dynamics and critical fluctuations in FeCrAs. Magnetic neutron diffraction measurements find Cr3 + magnetic order setting in at TN=115 K ˜10 meV with a mean-field critical exponent. Using neutron spectroscopy we observe gapless, high velocity, magnetic fluctuations emanating from magnetic positions with propagation wave vector q⃗0=(1/3 ,1/3 ) , which persists up to at least 80 meV ˜927 K, an energy scale much larger than TN. Despite the mean-field magnetic order at low temperatures, the magnetism in FeCrAs therefore displays a response which resembles that of itinerant magnets at high energy transfers. We suggest that the presence of stiff high-energy spin fluctuations extending up to a temperature scale of ˜900 K is the origin of the unusual temperature dependence of the resistivity.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostylev, M.

    In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wavemore » numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.« less

  2. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  3. Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.

    2015-05-01

    Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01277e

  4. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  5. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach.

    PubMed

    Chronopoulos, Dimitrios; Collet, Manuel; Ichchou, Mohamed

    2015-02-17

    The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated.

  6. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach

    PubMed Central

    Chronopoulos, Dimitrios; Collet, Manuel; Ichchou, Mohamed; Shah, Tahir

    2015-01-01

    The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated. PMID:28787972

  7. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    NASA Astrophysics Data System (ADS)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  8. Theory of unidirectional spin heat conveyer

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroto; Maekawa, Sadamichi

    2015-05-01

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  9. Theory of unidirectional spin heat conveyer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Hiroto, E-mail: adachi.hiroto@jaea.go.jp; Maekawa, Sadamichi

    2015-05-07

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  10. Overcoming thermal noise in non-volatile spin wave logic.

    PubMed

    Dutta, Sourav; Nikonov, Dmitri E; Manipatruni, Sasikanth; Young, Ian A; Naeemi, Azad

    2017-05-15

    Spin waves are propagating disturbances in magnetically ordered materials, analogous to lattice waves in solid systems and are often described from a quasiparticle point of view as magnons. The attractive advantages of Joule-heat-free transmission of information, utilization of the phase of the wave as an additional degree of freedom and lower footprint area compared to conventional charge-based devices have made spin waves or magnon spintronics a promising candidate for beyond-CMOS wave-based computation. However, any practical realization of an all-magnon based computing system must undergo the essential steps of a careful selection of materials and demonstrate robustness with respect to thermal noise or variability. Here, we aim at identifying suitable materials and theoretically demonstrate the possibility of achieving error-free clocked non-volatile spin wave logic device, even in the presence of thermal noise and clock jitter or clock skew.

  11. Serum uric Acid level and diverse impacts on regional arterial stiffness and wave reflection.

    PubMed

    Bian, Suyan; Guo, Hongyang; Ye, Ping; Luo, Leiming; Wu, Hongmei; Xiao, Wenkai

    2012-01-01

    Both increased arterial stiffness and hyperuricaemia are associated with elevated cardiovascular risks. Little is known about the relations of serum uric acid (UA) level to regional arterial stiffness and wave reflection. The aim of the study was to investigate the gender-specific association of serum UA and indices of arterial function in a community-based investigation in China. Cross-sectional data from 2374 adults (mean age 58.24 years) who underwent routine laboratory tests, regional pulse wave velocity (PWV) and pulse wave analysis measurements were analyzed in a gender-specific manner. None of the participants had atherosclerotic cardiovascular disease, chronic renal failure, systemic inflammatory disease, gout, or were under treatment which would affect serum UA level. Men had higher serum UA level than women. Subjects with hyperuricaemia had significantly higher carotid-ankle PWV in both genders (P< 0.05), and the carotid-femoral PWV (PWVc-f) was higher in women (P< 0.001) while the augmentation index was marginally lower in men (P = 0.049). Multiple regression analysis showed that serum UA was an independent determinant only for PWVc-f in women (β = 0.104, P = 0.027) when adjusted for atherogenic confounders. No other independent relationship was found between UA level and other surrogates of arterial stiffness. Serum UA levels are associated with alterations in systemic arterial stiffness that differ in men and women. Women might be more susceptible to large vascular damage associated with hyperuricaemia.

  12. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less

  13. Long-range mutual synchronization of spin Hall nano-oscillators

    NASA Astrophysics Data System (ADS)

    Awad, A. A.; Dürrenfeld, P.; Houshang, A.; Dvornik, M.; Iacocca, E.; Dumas, R. K.; Åkerman, J.

    2017-03-01

    The spin Hall effect in a non-magnetic metal with spin-orbit coupling injects transverse spin currents into adjacent magnetic layers, where the resulting spin transfer torque can drive spin wave auto-oscillations. Such spin Hall nano-oscillators (SHNOs) hold great promise as extremely compact and broadband microwave signal generators and magnonic spin wave injectors. Here we show that SHNOs can also be mutually synchronized with unprecedented efficiency. We demonstrate mutual synchronization of up to nine individual SHNOs, each separated by 300 nm. Through further tailoring of the connection regions we can extend the synchronization range to 4 μm. The mutual synchronization is observed electrically as an increase in the power and coherence of the microwave signal, and confirmed optically using micro-Brillouin light scattering microscopy as two spin wave regions sharing the same spectral content, in agreement with our micromagnetic simulations.

  14. Parametric instability of spinning elastic rings excited by fluctuating space-fixed stiffnesses

    NASA Astrophysics Data System (ADS)

    Liu, Chunguang; Cooley, Christopher G.; Parker, Robert G.

    2017-07-01

    This study investigates the vibration of rotating elastic rings that are dynamically excited by an arbitrary number of space-fixed discrete stiffnesses with periodically fluctuating stiffnesses. The rotating, elastic ring is modeled using thin-ring theory with radial and tangential deformations. Primary and combination instability regions are determined in closed-form using the method of multiple scales. The ratio of peak-to-peak fluctuation to average discrete stiffness is used as the perturbation parameter, so the resulting perturbation analysis is not limited to small mean values of discrete stiffnesses. The natural frequencies and vibration modes are determined by discretizing the governing equations using Galerkin's method. Results are demonstrated for compliant gear applications. The perturbation results are validated by direct numerical integration of the equations of motion and Floquet theory. The bandwidths of the instability regions correlate with the fractional strain energy stored in the discrete stiffnesses. For rings with multiple discrete stiffnesses, the phase differences between them can eliminate large amplitude response under certain conditions.

  15. OPTICS. Quantum spin Hall effect of light.

    PubMed

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.

  16. Evaluation of fatty liver fibrosis in rabbits using real-time shear wave elastography

    PubMed Central

    LU, YONGPING; WEI, JIA; TANG, YUEYUE; YUAN, YUAN; HUANG, YANLING; ZHANG, YONG; LI, YUNYAN

    2014-01-01

    The aim of the present study was to detect the elastic modulus (stiffness) of the livers of rabbits with non-alcoholic and alcoholic fatty liver disease using real-time shear wave elastography (SWE), and to investigate the fibrosis development process in the formation of fatty liver. The stiffness of the fatty livers in rabbit models prepared via feeding with alcohol or a high-fat diet were measured using a real-time SWE ultrasound system and a 4–15-MHz linear array probe, and the liver stiffness was compared with the pathological staging of the disease. The stiffness of the liver was positively correlated with the degree of pathological change in fatty liver disease (P<0.01). The stiffness of the liver in the alcoholic fatty liver group was higher compared with that in the non-alcoholic fatty liver and control groups, and the stiffness in the non-alcoholic fatty liver group was higher than that in the control group (P<0.01). Real-time SWE objectively identified the trend in the changing stiffness of the liver and noninvasively detected the development of fibrosis in the progression of non-alcoholic and alcoholic fatty liver disease. PMID:25009583

  17. Isotropic transmission of magnon spin information without a magnetic field.

    PubMed

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-07-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.

  18. Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study

    NASA Astrophysics Data System (ADS)

    Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.

    2009-02-01

    Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.

  19. Isotropic transmission of magnon spin information without a magnetic field

    PubMed Central

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-01-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033

  20. Wave mixing in coupled phononic crystals via a variable stiffness mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Yong; Chong, Christopher; Kevrekidis, Panayotis G.; Yang, Jinkyu

    2016-10-01

    We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels - primary and control ones - via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the primary channel can be manipulated by the control channel's signal. We show that the application of control waves allows the selection of a specific mode through the primary channel. We also demonstrate that the mixing of two wave modes is possible whereby a modulation effect is observed. A detailed study of the design parameters is also carried out to optimize the switching capabilities of the proposed system. Finally, we verify that the system can fulfill both switching and amplification functionalities, potentially enabling the realization of an acoustic transistor.

  1. Ambulatory (24 h) blood pressure and arterial stiffness measurement in Marfan syndrome patients: a case control feasibility and pilot study.

    PubMed

    Hillebrand, Matthias; Nouri, Ghazaleh; Hametner, Bernhard; Parragh, Stephanie; Köster, Jelena; Mortensen, Kai; Schwarz, Achim; von Kodolitsch, Yskert; Wassertheurer, Siegfried

    2016-05-06

    The aim of this work is the investigation of measures of ambulatory brachial and aortic blood pressure and indices of arterial stiffness and aortic wave reflection in Marfan patients. A case-control study was conducted including patients with diagnosed Marfan syndrome following Ghent2 nosology and healthy controls matched for sex, age and daytime brachial systolic blood pressure. For each subject a 24 h ambulatory blood pressure and 24 h pulse wave analysis measurement was performed. All parameters showed a circadian pattern whereby pressure dipping was more pronounced in Marfan patients. During daytime only Marfan patients with aortic root surgery showed increased pulse wave velocity. In contrast, various nighttime measurements, wave reflection determinants and circadian patterns showed a significant difference. The findings of our study provide evidence that ambulatory measurement of arterial stiffness parameters is feasible and that these determinants are significantly different in Marfan syndrome patients compared to controls in particular at nighttime. Further investigation is therefore indicated.

  2. Oblique propagation of E.M. wave in magnetized quantum plasma with two different spin states

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Ahmad, Nafees; Singh, Shiv

    2018-05-01

    The dispersion relation for the oblique propagation of electromagnetic wave in high density homogeneous quantum plasma is established. The growth rate has been evaluated. The difference in the concentration of spin-up and spin-down electrons have taken in to account and effects of spin polarization is analyzed.

  3. Confined states in photonic-magnonic crystals with complex unit cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk

    2016-08-21

    We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less

  4. Design of a CMOS integrated on-chip oscilloscope for spin wave characterization

    NASA Astrophysics Data System (ADS)

    Egel, Eugen; Meier, Christian; Csaba, György; Breitkreutz-von Gamm, Stephan

    2017-05-01

    Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF) receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz) signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA). Then, it is down-converted by a mixer to Intermediate Frequency (IF). Finally, an Operational Amplifier (OpAmp) brings the IF signal to higher voltages (50-300 mV). The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO) is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.

  5. Free and forced vibrations of a tyre using a wave/finite element approach

    NASA Astrophysics Data System (ADS)

    Waki, Y.; Mace, B. R.; Brennan, M. J.

    2009-06-01

    Free and forced vibrations of a tyre are predicted using a wave/finite element (WFE) approach. A short circumferential segment of the tyre is modelled using conventional finite element (FE) methods, a periodicity condition applied and the mass and stiffness matrices post-processed to yield wave properties. Since conventional FE methods are used, commercial FE packages and existing element libraries can be utilised. An eigenvalue problem is formulated in terms of the transfer matrix of the segment. Zhong's method is used to improve numerical conditioning. The eigenvalues and eigenvectors give the wavenumbers and wave mode shapes, which in turn define transformations between the physical and wave domains. A method is described by which the frequency dependent material properties of the rubber components of the tyre can be included without the need to remesh the structure. Expressions for the forced response are developed which are numerically well-conditioned. Numerical results for a smooth tyre are presented. Dispersion curves for real, imaginary and complex wavenumbers are shown. The propagating waves are associated with various forms of motion of the tread supported by the stiffness of the side wall. Various dispersion phenomena are observed, including curve veering, non-zero cut-off and waves for which the phase velocity and the group velocity have opposite signs. Results for the forced response are compared with experimental measurements and good agreement is seen. The forced response is numerically determined for both finite area and point excitations. It is seen that the size of area of the excitation is particularly important at high frequencies. When the size of the excitation area is small enough compared to the tread thickness, the response at high frequencies becomes stiffness-like (reactive) and the effect of shear stiffness becomes important.

  6. Detecting the phonon spin in magnon-phonon conversion experiments

    NASA Astrophysics Data System (ADS)

    Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.

    2018-05-01

    Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.

  7. Cardiovascular Health and Arterial Stiffness: The Maine Syracuse Longitudinal Study

    PubMed Central

    Crichton, Georgina E; Elias, Merrill F; Robbins, Michael A

    2014-01-01

    Ideal cardiovascular health is a recently defined construct by the American Heart Association (AHA) to promote cardiovascular disease reduction. Arterial stiffness is a major risk factor for cardiovascular disease. The extent to which the presence of multiple prevalent cardiovascular risk factors and health behaviors is associated with arterial stiffness is unknown. The aim of this study was to examine the association between the AHA construct of cardiovascular health and arterial stiffness, as indexed by pulse wave velocity and pulse pressure. The AHA health metrics, comprising of four health behaviors (smoking, body mass index, physical activity, and diet) and three health factors (total cholesterol, blood pressure, and fasting plasma glucose) were evaluated among 505 participants in the Maine-Syracuse Longitudinal Study. Outcome measures were carotid-femoral pulse wave velocity (PWV) and pulse pressure measured at 4 to 5-year follow-up. Better cardiovascular health, comprising both health factors and behaviors, was associated with lower arterial stiffness, as indexed by pulse wave velocity and pulse pressure. Those with at least five health metrics at ideal levels had significantly lower PWV (9.8 m/s) than those with two or less ideal health metrics (11.7 m/s) (P<0.001). This finding remained with the addition of demographic and PWV-related variables (P=0.004). PMID:24384629

  8. Development of an intravascular ultrasound elastography based on a dual-element transducer

    NASA Astrophysics Data System (ADS)

    Shih, Cho-Chiang; Chen, Pei-Yu; Ma, Teng; Zhou, Qifa; Shung, K. Kirk; Huang, Chih-Chung

    2018-04-01

    The ability to measure the elastic properties of plaques and vessels would be useful in clinical diagnoses, particularly for detecting a vulnerable plaque. This study demonstrates the feasibility of the combination of intravascular ultrasound (IVUS) and acoustic radiation force elasticity imaging for detecting the distribution of stiffness within atherosclerotic arteries ex vivo. A dual-frequency IVUS transducer with two elements was used to induce the propagation of the shear wave (by the 8.5 MHz pushing element) which could be simultaneously monitored by the 31 MHz imaging element. The wave-amplitude image and the wave-velocity image were reconstructed by measuring the peak displacement and wave velocity of shear wave propagation, respectively. System performance was verified using gelatin phantoms. The phantom results demonstrate that the stiffness differences of shear modulus of 1.6 kPa can be distinguished through the wave-amplitude and wave-velocity images. The stiffness distributions of the atherosclerotic aorta from a rabbit were obtained, for which the values of peak displacement and the shear wave velocity were 3.7 ± 1.2 µm and 0.38 ± 0.19 m s-1 for the lipid-rich plaques, and 1.0 ± 0.2 µm and 3.45 ± 0.45 m s-1 for the arterial walls, respectively. These results indicate that IVUS elasticity imaging can be used to distinguish the elastic properties of plaques and vessels.

  9. Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parameswaran, A.; Pardi, S.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.; Hotan, A.; Palfreyman, J.

    2011-08-01

    We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 × 10-24 for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of ~10-3. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.

  10. Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

    PubMed Central

    De, Anulekha; Mondal, Sucheta; Sahoo, Sourav; Barman, Saswati; Otani, Yoshichika; Mitra, Rajib Kumar

    2018-01-01

    Ferromagnetic antidot arrays have emerged as a system of tremendous interest due to their interesting spin configuration and dynamics as well as their potential applications in magnetic storage, memory, logic, communications and sensing devices. Here, we report experimental and numerical investigation of ultrafast magnetization dynamics in a new type of antidot lattice in the form of triangular-shaped Ni80Fe20 antidots arranged in a hexagonal array. Time-resolved magneto-optical Kerr effect and micromagnetic simulations have been exploited to study the magnetization precession and spin-wave modes of the antidot lattice with varying lattice constant and in-plane orientation of the bias-magnetic field. A remarkable variation in the spin-wave modes with the orientation of in-plane bias magnetic field is found to be associated with the conversion of extended spin-wave modes to quantized ones and vice versa. The lattice constant also influences this variation in spin-wave spectra and spin-wave mode profiles. These observations are important for potential applications of the antidot lattices with triangular holes in future magnonic and spintronic devices. PMID:29719763

  11. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance.

    PubMed

    Andreev, Pavel A

    2015-03-01

    The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.

  12. Gravitational wave searches for aligned-spin binary neutron stars using nonspinning templates

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk; Lee, Chang-Hwan

    2018-01-01

    We study gravitational wave searches for merging binary neutron stars (NSs). We use nonspinning template waveforms towards the signals emitted from aligned-spin NS-NS binaries, in which the spins of the NSs are aligned with the orbital angular momentum. We use the TaylorF2 waveform model, which can generate inspiral waveforms emitted from aligned-spin compact binaries. We employ the single effective spin parameter χeff to represent the effect of two component spins (χ1, χ2) on the wave function. For a target system, we choose a binary consisting of the same component masses of 1.4 M ⊙ and consider the spins up to χ i = 0.4. We investigate fitting factors of the nonspinning templates to evaluate their efficiency in gravitational wave searches for the aligned-spin NS-NS binaries. We find that the templates can achieve the fitting factors exceeding 0.97 only for the signals in the range of -0.2 ≲ χeff ≲ 0. Therefore, we demonstrate the necessity of using aligned-spin templates not to lose the signals outside that range. We also show how much the recovered total mass can be biased from the true value depending on the spin of the signal.

  13. Spin correlations and spin-wave excitations in Dirac-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Araki, Yasufumi; Nomura, Kentaro

    We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

  14. Scaling of the flow-stiffness relationship in weakly correlated single fractures

    NASA Astrophysics Data System (ADS)

    Petrovitch, Christopher L.

    The remote characterization of the hydraulic properties of fractures in rocks is important in many subsurface projects. Fractures create uncertainty in the hydraulic properties of the subsurface in that their topology controls the amount of flow that can occur in addition to that from the matrix. In turn, the fracture topology is also affected by stress which alters the topology as the stress changes directly. This alteration of fracture topology with stress is captured by fracture specific stiffness. The specific stiffness of a single fracture can be remotely probed from the attenuation and velocity of seismic waves. The hydromechanical coupling of single fractures, i.e. the relationship between flow and stiffness, holds the key to finding a method to remotely characterize a fractures hydraulic properties. This thesis is separated into two parts: (1) a description of the hydromechanical coupling of fractures based on numerical models used to generate synthetic fractures, compute the flow through a fracture, and deform fracture topologies to unravel the scaling function that is fundamental to the hydromechanical coupling of single fractures; (2) a Discontinuous Galerkin (DG) method was developed to accurately simulate the scattered seismic waves from realistic fracture topologies. The scaling regimes of fluid flow and specific stiffness in weakly correlated fractures are identified by using techniques from Percolation Theory and initially treating the two processes separately. The fixed points associated with fluid flow were found to display critical scaling while the fixed points for specific stiffness were trivial. The two processes could be indirectly related because the trivial scaling of the mechanical properties allowed the specific stiffness to be used as surrogate to the void area fraction. The dynamic transport exponent was extracted at threshold by deforming fracture geometries within the effective medium regime (near the ``cubic law'' regime) to the critical regime. From this, a scaling function was defined for the hydromechanical coupling. This scaling function provides the link between fluid flow and fracture specific stiffness so that seismic waves may be used to remotely probe the hydraulic properties of fractures. Then, the DG method is shown to be capable of measuring such fracture specific stiffnesses by numerically measuring the velocity of interface waves when propagated across laboratory measured fracture geometries of Austin Chalk.

  15. Experimental demonstration of the vertical spin existence in evanescent waves

    NASA Astrophysics Data System (ADS)

    Maksimyak, P. P.; Maksimyak, A. P.; Ivanskyi, D. I.

    2018-01-01

    Physical existence of the recently discovered vertical spin arising in an evanescent light wave due to the total internal reflection of a linearly polarized probing beam with azimuthal angle 45° is experimentally verified. Mechanical action, caused by optical force, associated with the extraordinary transverse component of the spin in evanescent wave is demonstrated. The motion of a birefringent plate in a direction controlled by simultaneous action of the canonical momentum and the transversal spin momentum is observed. The contribution of the canonical and spin momenta in determination of the trajectory of the resulting motion occur commensurable under exceptionally delicately determined experimental conditions.

  16. Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mruczkiewicz, M.; Krawczyk, M.

    2014-03-21

    We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allowmore » us to define a structure based on a 30 nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.« less

  17. Spin-wave utilization in a quantum computer

    NASA Astrophysics Data System (ADS)

    Khitun, A.; Ostroumov, R.; Wang, K. L.

    2001-12-01

    We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.

  18. Dielectric magnetic microparticles as photomagnonic cavities: Enhancing the modulation of near-infrared light by spin waves

    NASA Astrophysics Data System (ADS)

    Almpanis, Evangelos

    2018-05-01

    The coupling between spin waves and optical Mie resonances inside a dielectric magnetic spherical particle, which acts simultaneously as a photonic and magnonic (photomagnonic) cavity, is investigated by means of numerical calculations accurate to arbitrary order in the magnetooptical coupling coefficient. Isolated dielectric magnetic particles with diameters of just a few microns support high-Q optical Mie resonances at near-infrared frequencies and localized spin waves, providing an ultrasmall and compact platform in the emerging field of cavity optomagnonics. Our results predict the occurrence of strong interaction effects, beyond the linear-response approximation, which lead to enhanced modulation of near-infrared light by spin waves through multimagnon absorption and emission mechanisms.

  19. Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations

    NASA Astrophysics Data System (ADS)

    Yang, Li; Pu, Han

    2016-09-01

    We show that the wave function in one spatial sector x1

  20. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.

    2015-11-01

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

  1. Wave propagation in a multilayered laminated cross-ply composite plate

    NASA Technical Reports Server (NTRS)

    Shah, A. H.; Datta, S. K.; Karunasena, W.

    1991-01-01

    Dispersion of guided waves in a cross-ply laminated plate has been studied here using a stiffness method and an exact method. It is shown that the number of laminae strongly influences the dispersion behavior. Further, it is found that when the number of laminae is sufficiently large, then the dispersion behavior can be predicted by treating the plate as homogeneous with six stiffness constants obtained by using an effective modulus method.

  2. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness.

    PubMed

    Willemet, Marie; Chowienczyk, Phil; Alastruey, Jordi

    2015-08-15

    While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. Copyright © 2015 the American Physiological Society.

  3. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness

    PubMed Central

    Chowienczyk, Phil; Alastruey, Jordi

    2015-01-01

    While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. PMID:26055792

  4. Metal-ligand delocalization and spin density in the CuCl2 and [CuCl4](2-) molecules: Some insights from wave function theory.

    PubMed

    Giner, Emmanuel; Angeli, Celestino

    2015-09-28

    The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl2 and [CuCl4](2-) systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.

  5. Omnidirectional spin-wave nanograting coupler

    PubMed Central

    Yu, Haiming; Duerr, G.; Huber, R.; Bahr, M.; Schwarze, T.; Brandl, F.; Grundler, D.

    2013-01-01

    Magnonics as an emerging nanotechnology offers functionalities beyond current semiconductor technology. Spin waves used in cellular nonlinear networks are expected to speed up technologically, demanding tasks such as image processing and speech recognition at low power consumption. However, efficient coupling to microelectronics poses a vital challenge. Previously developed techniques for spin-wave excitation (for example, by using parametric pumping in a cavity) may not allow for the relevant downscaling or provide only individual point-like sources. Here we demonstrate that a grating coupler of periodically nanostructured magnets provokes multidirectional emission of short-wavelength spin waves with giantly enhanced amplitude compared with a bare microwave antenna. Exploring the dependence on ferromagnetic materials, lattice constants and the applied magnetic field, we find the magnonic grating coupler to be more versatile compared with gratings in photonics and plasmonics. Our results allow one to convert, in particular, straight microwave antennas into omnidirectional emitters for short-wavelength spin waves, which are key to cellular nonlinear networks and integrated magnonics. PMID:24189978

  6. Spin memory effect for compact binaries in the post-Newtonian approximation

    NASA Astrophysics Data System (ADS)

    Nichols, David A.

    2017-04-01

    The spin memory effect is a recently predicted relativistic phenomenon in asymptotically flat spacetimes that become nonradiative infinitely far in the past and future. Between these early and late times, the magnetic-parity part of the time integral of the gravitational-wave strain can undergo a nonzero change; this difference is the spin memory effect. Families of freely falling observers around an isolated source can measure this effect, in principle, and fluxes of angular momentum per unit solid angle (or changes in superspin charges) generate the effect. The spin memory effect had not been computed explicitly for astrophysical sources of gravitational waves, such as compact binaries. In this paper, we compute the spin memory in terms of a set of radiative multipole moments of the gravitational-wave strain. The result of this calculation allows us to establish the following results about the spin memory: (i) We find that the accumulation of the spin memory behaves in a qualitatively different way from that of the displacement memory effect for nonspinning, quasicircular compact binaries in the post-Newtonian approximation: the spin memory undergoes a large secular growth over the duration of the inspiral, whereas for the displacement effect this increase is small. (ii) The rate at which the spin memory grows is equivalent to a nonlinear, but nonoscillatory and nonhereditary effect in the gravitational waveform that had been previously calculated for nonspinning, quasicircular compact binaries. (iii) This rate of buildup of the spin memory could potentially be detected by future gravitational-wave detectors by carefully combining the measured waveforms from hundreds of gravitational-wave detections of compact binaries.

  7. Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes

    NASA Astrophysics Data System (ADS)

    Zhang, Beining; Wang, Zhenyu; Cao, Yunshan; Yan, Peng; Wang, X. R.

    2018-03-01

    One recent breakthrough in the field of magnonics is the experimental realization of reconfigurable spin-wave nanochannels formed by a magnetic domain wall with a width of 10-100 nm [Wagner et al., Nat. Nano. 11, 432 (2016), 10.1038/nnano.2015.339]. This remarkable progress enables an energy-efficient spin-wave propagation with a well-defined wave vector along its propagating path inside the wall. In the mentioned experiment, a microfocus Brillouin light scattering spectroscopy was taken in a line-scans manner to measure the frequency of the bounded spin wave. Due to their localization nature, the confined spin waves can hardly be detected from outside the wall channel, which guarantees the information security to some extent. In this work, we theoretically propose a scheme to detect/eavesdrop on the spin waves inside the domain-wall nanochannel via nonlinear three-magnon processes. We send a spin wave (ωi,ki) in one magnetic domain to interact with the bounded mode (ωb,kb) in the wall, where kb is parallel with the domain-wall channel defined as the z ̂ axis. Two kinds of three-magnon processes, i.e., confluence and splitting, are expected to occur. The confluence process is conventional: conservation of energy and momentum parallel with the wall indicates a transmitted wave in the opposite domain with ω (k ) =ωi+ωb and (ki+kb-k ) .z ̂=0 , while the momentum perpendicular to the domain wall is not necessary to be conserved due to the nonuniform internal field near the wall. We predict a stimulated three-magnon splitting (or "magnon laser") effect: the presence of a bound magnon propagating along the domain wall channel assists the splitting of the incident wave into two modes, one is ω1=ωb,k1=kb identical to the bound mode in the channel, and the other one is ω2=ωi-ωb with (ki-kb-k2) .z ̂=0 propagating in the opposite magnetic domain. Micromagnetic simulations confirm our theoretical analysis. These results demonstrate that one is able to uniquely infer the spectrum of the spin wave in the domain-wall nanochannel once we know both the injection and the transmitted waves.

  8. Excitation of propagating spin waves by pure spin current

    NASA Astrophysics Data System (ADS)

    Demokritov, Sergej

    Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590

    The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less

  10. Pure detection of the acoustic spin pumping in Pt/YIG/PZT structures

    NASA Astrophysics Data System (ADS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Saitoh, Eiji

    2014-11-01

    The acoustic spin pumping (ASP) stands for the generation of a spin voltage from sound waves in a ferromagnet/paramagnet junction. In this letter, we propose and demonstrate a method for pure detection of the ASP, which enables the separation of sound-wave-driven spin currents from the spin Seebeck effect due to the heating of a sample caused by a sound-wave injection. Our demonstration using a Pt/YIG/PZT sample shows that the ASP signal in this structure measured by a conventional method is considerably offset by the heating signal and that the pure ASP signal is one order of magnitude greater than that reported in the previous study.

  11. Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Di Ciolo, Andrea; Jackeli, George

    2018-05-01

    We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.

  12. Higher-dimensional Wannier functions of multiparameter Hamiltonians

    NASA Astrophysics Data System (ADS)

    Hanke, Jan-Philipp; Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2015-05-01

    When using Wannier functions to study the electronic structure of multiparameter Hamiltonians H(k ,λ ) carrying a dependence on crystal momentum k and an additional periodic parameter λ , one usually constructs several sets of Wannier functions for a set of values of λ . We present the concept of higher-dimensional Wannier functions (HDWFs), which provide a minimal and accurate description of the electronic structure of multiparameter Hamiltonians based on a single set of HDWFs. The obstacle of nonorthogonality of Bloch functions at different λ is overcome by introducing an auxiliary real space, which is reciprocal to the parameter λ . We derive a generalized interpolation scheme and emphasize the essential conceptual and computational simplifications in using the formalism, for instance, in the evaluation of linear response coefficients. We further implement the necessary machinery to construct HDWFs from ab initio within the full potential linearized augmented plane-wave method (FLAPW). We apply our implementation to accurately interpolate the Hamiltonian of a one-dimensional magnetic chain of Mn atoms in two important cases of λ : (i) the spin-spiral vector q and (ii) the direction of the ferromagnetic magnetization m ̂. Using the generalized interpolation of the energy, we extract the corresponding values of magnetocrystalline anisotropy energy, Heisenberg exchange constants, and spin stiffness, which compare very well with the values obtained from direct first principles calculations. For toy models we demonstrate that the method of HDWFs can also be used in applications such as the virtual crystal approximation, ferroelectric polarization, and spin torques.

  13. Spin waves in planar quasicrystal of Penrose tiling

    NASA Astrophysics Data System (ADS)

    Rychły, J.; Mieszczak, S.; Kłos, J. W.

    2018-03-01

    We investigated two-dimensional magnonic structures which are the counterparts of photonic quasicrystals forming Penrose tiling. We considered the slab composed of Ni (or Py) disks embedded in Fe (or Co) matrix. The disks are arranged in quasiperiodic Penrose-like structure. The infinite quasicrystal was approximated by its rectangular section with periodic boundary conditions applied. This approach allowed us to use the plane wave method to find the frequency spectrum of eigenmodes for spin waves and their spatial profiles. The calculated integrated density of states shows more distinctive magnonic gaps for the structure composed of materials of high magnetic contrast (Ni and Fe) and relatively high filling fraction. This proves the impact of quasiperiodic long-range order on the spectrum of spin waves. We also investigated the localization of spin wave eingenmodes resulting from the quasiperiodicity of the structure.

  14. Spin waves in rings of classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinz-Jürgen; Schröder, Christian; Luban, Marshall

    2017-03-01

    We theoretically and numerically investigate spin waves that occur in systems of classical magnetic dipoles that are arranged at the vertices of a regular polygon and interact solely via their magnetic fields. There are certain limiting cases that can be analyzed in detail. One case is that of spin waves as infinitesimal excitations from the system’s ground state, where the dispersion relation can be determined analytically. The frequencies of these infinitesimal spin waves are compared with the peaks of the Fourier transform of the thermal expectation value of the autocorrelation function calculated by Monte Carlo simulations. In the special case of vanishing wave number an exact solution of the equations of motion is possible describing synchronized oscillations with finite amplitudes. Finally, the limiting case of a dipole chain with N\\longrightarrow ∞ is investigated and completely solved.

  15. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?

    PubMed

    Evans, Andrew; Rauchhaus, Petra; Whelehan, Patsy; Thomson, Kim; Purdie, Colin A; Jordan, Lee B; Michie, Caroline O; Thompson, Alastair; Vinnicombe, Sarah

    2014-01-01

    Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospectively analysed from 396 consecutive patients. The mean stiffness values were obtained using the Aixplorer® ultrasound machine from SuperSonic Imagine Ltd. Measurements were taken from a region of interest positioned over the stiffest part of the abnormality. The average of the mean stiffness value obtained from each of two orthogonal image planes was used for analysis. Associations between lymph node involvement and mean lesion stiffness, invasive cancer size, histologic grade, tumour type, ER expression, HER-2 status and vascular invasion were assessed using univariate and multivariate logistic regression. At univariate analysis, invasive size, histologic grade, HER-2 status, vascular invasion, tumour type and mean stiffness were significantly associated with nodal involvement. Nodal involvement rates ranged from 7 % for tumours with mean stiffness <50 kPa to 41 % for tumours with a mean stiffness of >150 kPa. At multivariate analysis, invasive size, tumour type, vascular invasion, and mean stiffness maintained independent significance. Mean stiffness at SWE is an independent predictor of lymph node metastasis and thus can confer prognostic information additional to that provided by conventional preoperative tumour assessment and staging.

  16. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.

    PubMed

    Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami

    2013-11-01

    A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.

  17. Surprises from the spins: astrophysics and relativity with detections of spinning black-hole mergers

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide

    2018-03-01

    Measurements of black-hole spins are of crucial importance to fulfill the promise of gravitational-wave astronomy. On the astrophysics side, spins are perhaps the cleanest indicator of black-hole evolutionary processes, thus providing a preferred way to discriminate how LIGO's black holes form. On the relativity side, spins are responsible for peculiar dynamical phenomena (from precessional modulations in the long inspiral to gravitational-wave recoils at merger) which encode precious information on the underlying astrophysical processes. I present some examples to explore this deep and fascinating interplay between spin dynamics (relativity) and environmental effects (astrophysics). Black-hole spins indeed hide remarkable surprises on both fronts: morphologies, resonances, constraints on supernova kicks, multiple merger generations and more... These findings were presented at 12th Edoardo Amaldi Conference on Gravitational Waves, held on July 9-14, 2017 in Pasadena, CA, USA.

  18. Odd-frequency pairing in superconducting heterostructures .

    NASA Astrophysics Data System (ADS)

    Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.

    2007-03-01

    We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.

  19. Uric Acid Level Has a J-Shaped Association with Arterial Stiffness in Korean Postmenopausal Women.

    PubMed

    Lee, Hyungbin; Jung, Young-Hyo; Kwon, Yu-Jin; Park, Byoungjin

    2017-11-01

    Uric acid has been reported to function both as an oxidant or antioxidant depending on the context. A previous study in the Korean population reported a positive linear association between serum uric acid level and arterial stiffness in men, but little is known about how serum uric acid level is related to the risk of increased arterial stiffness in Korean postmenopausal women. We performed a cross-sectional study of 293 subjects who participated in a health examination program run by the health promotion center of Gangnam Severance Hospital between October 2007 and July 2010. High brachial-ankle pulse wave velocity was defined as a brachial-ankle pulse wave velocity of more than 1,450 cm/s. The odds ratios (ORs) for high brachial-ankle pulse wave velocity were calculated using multivariate logistic regression analysis across uric acid quartiles after adjusting for other indicators of cardiovascular risk. The 293 postmenopausal women were divided into quartiles according to uric acid level. The mean brachial-ankle pulse wave velocity values of each quartile were as follows: Q1, 1,474 cm/s; Q2, 1,375 cm/s; Q3, 1,422 cm/s; Q4, 1,528 cm/s. The second quartile was designated as the control group based on mean brachial-ankle pulse wave velocity value. Multivariate adjusted ORs (95% confidence intervals) for brachial-ankle pulse wave velocity across the uric acid quartiles were 2.642 (Q1, 1.095-6.3373), 1.00, 4.305 (Q3, 1.798-10.307), and 4.375 (Q4, 1.923-9.949), after adjusting for confounding variables. Serum uric acid level has a J-shaped association with arterial stiffness in Korean postmenopausal women.

  20. Effect of dark chocolate on arterial function in healthy individuals.

    PubMed

    Vlachopoulos, Charalambos; Aznaouridis, Konstantinos; Alexopoulos, Nikolaos; Economou, Emmanuel; Andreadou, Ioanna; Stefanadis, Christodoulos

    2005-06-01

    Epidemiologic studies suggest that high flavonoid intake confers a benefit on cardiovascular outcome. Endothelial function, arterial stiffness, and wave reflections are important determinants of cardiovascular performance and are predictors of cardiovascular risk. The effect of flavonoid-rich dark chocolate (100 g) on endothelial function, aortic stiffness, wave reflections, and oxidant status were studied for 3 h in 17 young healthy volunteers according to a randomized, single-blind, sham procedure-controlled, cross-over protocol. Flow-mediated dilation (FMD) of the brachial artery, aortic augmentation index (AIx), and carotid-femoral pulse wave velocity (PWV) were used as measures of endothelial function, wave reflections, and aortic stiffness, respectively. Plasma oxidant status was evaluated with measurement of plasma malondialdehyde (MDA) and total antioxidant capacity (TAC). Chocolate led to a significant increase in resting and hyperemic brachial artery diameter throughout the study (maximum increase by 0.15 mm and 0.18 mm, respectively, P < .001 for both). The FMD increased significantly at 60 min (absolute increase 1.43%, P < .05). The AIx was significantly decreased with chocolate throughout the study (maximum absolute decrease 7.8%, P < .001), indicating a decrease in wave reflections, whereas PWV did not change to a significant extent. Plasma MDA and TAC did not change after chocolate, indicating no alterations in plasma oxidant status. Our study shows for the first time that consumption of dark chocolate acutely decreases wave reflections, that it does not affect aortic stiffness, and that it may exert a beneficial effect on endothelial function in healthy adults. Chocolate consumption may exert a protective effect on the cardiovascular system; further studies are warranted to assess any long-term effects.

  1. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    DOE PAGES

    Bonetti, S.; Kukreja, R.; Chen, Z.; ...

    2015-11-16

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetrymore » of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.« less

  2. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Kumar, Dheeraj; Adeyeye, Adekunle Olusola

    2016-05-01

    Spin-wave-based devices promise to usher in an era of low-power computing where information is carried by the precession of the electrons' spin instead of dissipative translation of their charge. This potential is, however, undermined by the need for a bias magnetic field, which must remain powered on to maintain an anisotropic device characteristic. Here, we propose a reconfigurable waveguide design that can transmit and locally manipulate spin waves without the need for any external bias field once initialized. We experimentally demonstrate the transmission of spin waves in straight as well as curved waveguides without a bias field, which has been elusive so far. Furthermore, we experimentally show a binary gating of the spin-wave signal by controlled switching of the magnetization, locally, in the waveguide. The results have potential implications in high-density integration and energy-efficient operation of nanomagnetic devices at room temperature.

  3. Temperature dependence of current polarization in Ni80Fe20 by spin wave Doppler measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Meng; Dennis, Cindi; McMichael, Robert

    2010-03-01

    The temperature dependence of current polarization in ferromagnetic metals will be important for operation of spin-torque switched memories and domain wall devices in a wide temperature range. Here, we use the spin wave Doppler technique[1] to measure the temperature dependence of both the magnetization drift velocity v(T) and the current polarization P(T) in Ni80Fe20. We obtain these values from current-dependent shifts of the spin wave transmission resonance frequency for fixed-wavelength spin waves in current-carrying wires. For current densities of 10^11 A/m^2, we obtain v(T) decreasing from 4.8 ±0.3 m/s to 4.1 ±0.1 m/s and P(T) dropping from 0.75±0.05 to 0.58±0.02 over a temperature range from 80 K to 340 K. [1] V. Vlaminck et al. Science 322, 410 (2008);

  4. Nanopatterned reconfigurable spin-textures for magnonics

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).

  5. Co-Investigator Proposal for Enstrophy - - Filamentation of Auroral Currents

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M.

    2000-01-01

    Cornell University provided three instruments for the Enstrophy experiment: an electric field meter, a plasma wave receiver, and a magnetometer for measuring FAC. The electric field meter consisted of a 6 m Weitzmann boom system with analog signal processing and 12 bit ADC, which yielded one electric field component instantaneously and a two dimensional electric field every half spin. The plasma wave receiver used the same sensing system with the addition of pre-amplifiers in the spheres to sense plasma waves up to and including the electron Langmuir frequency. Signal processing employed a variety of continuous and snap shot techniques depending on the frequency range and band width. The science magnetometer provided by Cornell University was a Billingsly design fluxgate previously used on spacecraft missions but without radiation hardening. The magnetometer was mounted on a one meter, stiff aluminum "flop-down" boom. The Enstrophy payload was launched on february 11, 1999. Because of a design flaw in the event timers, the magnetometer boom was deployed before the payload despun. As a result the magnetometer separated mechanically from the boom but maintained electrical connection. This was confirmed by the calculation of the scalar magnetic field from all three vector components of the magnetic field. However, the individual vector values had no scientific value. The electric field and plasma wave instrumentation worked as designed. The data from these instruments was provided to the University of New Hampshire and to the Principal Investigator, as proposed.

  6. Highly retrievable spin-wave-photon entanglement source.

    PubMed

    Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-05-29

    Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

  7. Cerebrovascular Damage Mediates Relations Between Aortic Stiffness and Memory.

    PubMed

    Cooper, Leroy L; Woodard, Todd; Sigurdsson, Sigurdur; van Buchem, Mark A; Torjesen, Alyssa A; Inker, Lesley A; Aspelund, Thor; Eiriksdottir, Gudny; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J; Mitchell, Gary F

    2016-01-01

    Aortic stiffness is associated with cognitive decline. Here, we examined the association between carotid-femoral pulse wave velocity and cognitive function and investigated whether cerebrovascular remodeling and parenchymal small vessel disease damage mediate the relation. Analyses were based on 1820 (60% women) participants in the Age, Gene/Environment Susceptibility-Reykjavik Study. Multivariable linear regression models adjusted for vascular and demographic confounders showed that higher carotid-femoral pulse wave velocity was related to lower memory score (standardized β: -0.071±0.023; P=0.002). Cerebrovascular resistance and white matter hyperintensities were each associated with carotid-femoral pulse wave velocity and memory (P<0.05). Together, cerebrovascular resistance and white matter hyperintensities (total indirect effect: -0.029; 95% CI, -0.043 to -0.017) attenuated the direct relation between carotid-femoral pulse wave velocity and memory (direct effect: -0.042; 95% CI, -0.087 to 0.003; P=0.07) and explained ≈41% of the observed effect. Our results suggest that in older adults, associations between aortic stiffness and memory are mediated by pathways that include cerebral microvascular remodeling and microvascular parenchymal damage. © 2015 American Heart Association, Inc.

  8. Effect of cholesterol lowering on stiffness of aortic and femoral arterial walls in rabbits on a high fat diet.

    PubMed

    Xue, Li; Xu, Wan-Hai; Xu, Jin-Zhi; Zhang, Tong; Bi, Hong-Yuan; Shen, Bao-Zhong

    2009-06-20

    Researches in arterial elasticity have increased over the past few years. We investigated the effects of simvastatin on vascular stiffness in fat fed rabbits by ultrasonography. Thirty rabbits were assigned randomly to 3 groups: normal control group (A), the cholesterol group (B), simvastatin group (C: high fat diet for 4 weeks and high fat diet + simvastatin for further 4 weeks). Stiffness coefficient, pressure strain elastic modulus and velocity of pulse waves in abdominal aorta and femoral artery were measured by ultrasonographic echo tracking at the end of the 4th and the 8th weeks. At the end of the 4th week, stiffness coefficient, pressure strain elastic modulus and pulse wave velocity of femoral artery were significantly increased in group B compared with those in group A. Similarly, at the end of the 8th week, the same parameters of abdominal aorta were significantly increased in group B compared with those in group A. In contrast, stiffness coefficient, pressure strain elastic modulus and pulse wave velocity of femoral artery were significantly decreased in group C compared with those in group B, however, there was no significant difference in parameters of abdominal aorta between groups B and C. Short term administration of simvastatin can improve the elasticity of femoral artery but not abdominal aorta.

  9. Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy.

    PubMed

    Pichiecchio, Anna; Alessandrino, Francesco; Bortolotto, Chandra; Cerica, Alessandra; Rosti, Cristina; Raciti, Maria Vittoria; Rossi, Marta; Berardinelli, Angela; Baranello, Giovanni; Bastianello, Stefano; Calliada, Fabrizio

    2018-06-01

    The aim of this study was to determine muscle tissue elasticity, measured with shear-wave elastography, in selected lower limb muscles of patients affected by Duchenne muscular dystrophy (DMD) and to correlate the values obtained with those recorded in healthy children and with muscle magnetic resonance imaging (MRI) data from the same DMD children, specifically the pattern on T1-weighted (w) and short-tau inversion recovery (STIR) sequences. Five preschool DMD children and five age-matched healthy children were studied with shear-wave elastography. In the DMD children, muscle stiffness was moderately higher compared with the muscle stiffness in HC, in the rectus femoris, vastus lateralis, adductor magnus and gluteus maximus muscles. On muscle MRI T1-w images showed fatty replacement in 3/5 patients at the level of the GM, while thigh and leg muscles were affected in 2/5; hyperintensity on STIR images was identified in 4/5 patients. No significant correlation was observed between stiffness values and MRI scoring. Our study demonstrated that lower limb muscles of preschool DMD patients show fatty replacement and patchy edema on muscle MRI and increased stiffness on shear-wave elastography. In conclusion, although further studies in larger cohorts are needed, shear-wave elastography could be considered a useful non-invasive tool to easily monitor muscle changes in early stages of the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Normal Pregnancy Is Associated with Changes in Central Hemodynamics and Enhanced Recruitable, but Not Resting, Endothelial Function

    PubMed Central

    Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Scasso, Santiago; Bia, Daniel

    2015-01-01

    Introduction. Flow-mediated dilation (FMD), low flow-mediated constriction (L-FMC), and reactive hyperemia-related changes in carotid-to-radial pulse wave velocity (ΔPWVcr%) could offer complementary information about both “recruitability” and “resting” endothelial function (EF). Carotid-to-femoral pulse wave velocity (PWVcf) and pulse wave analysis-derived parameters (i.e., AIx@75) are the gold standard methods for noninvasive evaluation of aortic stiffness and central hemodynamics. If healthy pregnancy is associated with both changes in resting and recruitable EF, as well as in several arterial parameters, it remains unknown and/or controversial. Objectives. To simultaneously and noninvasively assess in healthy pregnant (HP) and nonpregnant (NP) women central parameters in conjunction with “basal and recruitable” EF, employing new complementary approaches. Methods. HP (n = 11, 34.2 ± 3.3 weeks of gestation) and age- and cardiovascular risk factors-matched NP (n = 22) were included. Aortic blood pressure (BP), AIx@75, PWVcf, common carotid stiffness, and intima-media thickness, as well as FMD, L-FMC, and ΔPWVcr %, were measured. Results. Aortic BP, stiffness, and AIx@75 were reduced in HP. ΔPWVcr% and FMD were enhanced in HP in comparison to NP. No differences were found in L-FMC between groups. Conclusion. HP is associated with reduced aortic stiffness, central BP, wave reflections, and enhanced recruitable, but not resting, EF. PMID:26421317

  11. Large Spin-Wave Bullet in a Ferrimagnetic Insulator Driven by the Spin Hall Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, M. B.; Zhang, W.; Sklenar, J.

    2016-02-01

    Due to its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y 3Fe 5O 12 based on the excitation and detection by SHEs. The driven spin dynamics in Y 3Fe 5O 12 is directly imaged by spatially-resolved microfocused Brillouin light scattering (BLS) spectroscopy.more » Previously, ST-FMR experiments assumed a uniform precession across the sample, which is not valid in our measurements. A strong spin-wave localization in the center of the sample is observed indicating the formation of a nonlinear, self-localized spin-wave `bullet'.« less

  12. Use of shear horizontal waves to distinguish adhesive thickness variation from reduction in bonding strength.

    PubMed

    Predoi, Mihai Valentin; Ech Cherif El Kettani, Mounsif; Leduc, Damien; Pareige, Pascal; Coné, Khadidiatou

    2015-08-01

    The capability of shear horizontal (SH) guided waves, to evaluate geometrical imperfections in a bonding layer, is investigated. SH waves are used in a three-layer structure in which the adhesive layer has variable thickness. It is proven that the SH waves are adapting to the local thickness of the adhesive layer (adiabatic waves). This is particularly useful in case of small thickness variations, which is of technical interest. The influence of thickness and stiffness of the adhesive layer on the wavenumbers are investigated. The selected SH2 mode is proven to be very sensitive to the adhesive layer thickness variation in the given frequency range and considerably less sensitive to the adhesive stiffness variation. This property is due to its specific displacement field and is important in practical applications, such as inspection techniques based on SH waves, in order to avoid false alarms.

  13. Relationship between glycaemic levels and arterial stiffness in non-diabetic adults.

    PubMed

    Cavero-Redondo, Iván; Martínez-Vizcaíno, Vicente; Álvarez-Bueno, Celia; Recio-Rodríguez, José Ignacio; Gómez-Marcos, Manuel Ángel; García-Ortiz, Luis

    2018-01-23

    To examine, in a non-diabetic population, whether the association between arterial stiffness and glycaemic levels depends on the test used as a glycaemic indicator, fasting plasma glucose (FPG) or glycated haemoglobin A1c (HbA1c). A cross-sectional analysis of a 220 non-diabetic subsample from the EVIDENT II study in which FPG, HbA1c and arterial stiffness-related parameters (pulse wave velocity, radial and central augmentation index, and central pulse pressure) were determined. Mean differences in arterial stiffness-related parameters by HbA1c and FPG tertiles were tested using analysis of covariance. All means of arterial stiffness-related parameters increased by HbA1c tertiles, although mean differences were only statistically significant in pulse wave velocity (p ≤.001), even after controlling for potential confounders (HbA1c <5.30% = 6.88 m/s; HbA1c 5.30%-5.59% = 7.06 m/s; and HbA1c ≥5.60% = 8.16 m/s, p =.004). Conversely, mean differences in pulse wave velocity by FPG tertiles did not reach statistically significant differences after controlling for potential confounders (FPG 4.44 mmol/l = 7.18 m/s; FPG 4.44 mmol/l-4.87 mmol/l = 7.26 m/s; and FPG ≥4.88 mmol/l = 7.93 m/s, p =.066). Glucose levels in a non-diabetic population were associated with arterial stiffness but better when levels were determined using HbA1c. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. Ultrasonic Shear Wave Elasticity Imaging (SWEI) Sequencing and Data Processing Using a Verasonics Research Scanner

    PubMed Central

    Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2017-01-01

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage. PMID:28092508

  15. Stiffness Corrections for the Vibration Frequency of a Stretched Wire

    ERIC Educational Resources Information Center

    Hornung, H. G.; Durie, M. J.

    1977-01-01

    Discusses the need of introducing corrections due to wire stiffness arising from end constraints and wire axis distribution curvature in the measurement of ac electrical frequency by exciting transverse standing waves in a stretched steel wire. (SL)

  16. In vivo quantification of liver stiffness in a rat model of hepatic fibrosis with acoustic radiation force.

    PubMed

    Wang, Michael H; Palmeri, Mark L; Guy, Cynthia D; Yang, Liu; Hedlund, Laurence W; Diehl, Anna Mae; Nightingale, Kathryn R

    2009-10-01

    Liver fibrosis is currently staged using needle biopsy, a highly invasive procedure with a number of disadvantages. Measurement of liver stiffness changes that accompany progression of the disease may provide a quantitative and noninvasive method to assess the health of the liver. The purpose of this study is to investigate the correlation between liver stiffness measured by radiation force induced shear waves and disease related changes in the liver. An additional aim is to present initial findings on the effects of liver viscosity on radiation force induced shear wave morphology. Liver fibrosis was induced in 10 rats using carbon tetrachloride (CCl(4)), while five rats acted as controls. Liver stiffness was measured in vivo in all rats after a treatment period of 8 weeks using a modified Siemens SONOLINE Antares scanner (Siemens Medical Solutions USA, Ultrasound Division, Issaquah, WA, USA). The spatial coherence of radiation force induced shear waves propagating in the viscoelastic rat liver decreased significantly with propagation distance, compared with shear waves in an elastic phantom and a finite element model of a purely elastic medium. Animals were sacrificed after imaging and liver samples were taken for histopathologic analysis and collagen quantification using picrosirius red staining and hydroxyproline assay. At the end of the treatment period, five rats had healthy livers (stage F0), while six had severe fibrosis (F3) and the rest had light to moderate fibrosis (F1 and F2). The measured liver stiffness for the F0 group was 1.5+/-0.1 kPa (mean+/-95% confidence interval) and for F3 livers was 1.8+/-0.2 kPa. In this study, liver stiffness was found to be linearly correlated with the amount of collagen in the liver measured by picrosirius red staining (r(2)=0.43, p=0.008). In addition, stiffness spatial heterogeneity was also linearly correlated with liver collagen content (r(2)=0.58, p=0.001) by picrosirius red staining. These results are consistent with those obtained by Salameh et al. (2007) and Yin et al. (2007b) using animal models of liver fibrosis and MR elastography. This suggests that stiffness measurement using acoustic radiation force can provide a quantitative assessment of the extent of fibrosis in the liver and can be potentially used for the diagnosis, management and study of liver fibrosis.

  17. Gauge invariant gluon spin operator for spinless nonlinear wave solutions

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Kim, Youngman; Pak, D. G.; Tsukioka, Takuya; Zhang, P. M.

    2017-04-01

    We consider nonlinear wave type solutions with intrinsic mass scale parameter and zero spin in a pure SU(2) quantum chromodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered nonlinear wave type solutions have common features: presence of the mass scale parameter, nonvanishing projection of the color fields along the propagation direction and zero spin. The last property requires revision of the gauge invariant definition of the spin density operator which is supposed to produce spin one states for the massless vector gluon field. We construct a gauge invariant definition of the classical gluon spin density operator which is unique and Lorentz frame independent.

  18. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less

  19. Central arterial stiffness is associated with systemic inflammation among Asians with type 2 diabetes.

    PubMed

    Zhang, Xiao; Liu, Jian Jun; Fang Sum, Chee; Ying, Yeoh Lee; Tavintharan, Subramaniam; Ng, Xiao Wei; Su, Chang; Low, Serena; Lee, Simon Bm; Tang, Wern Ee; Lim, Su Chi

    2016-07-01

    To examine the relationship between inflammation and central arterial stiffness in a type 2 diabetes Asian cohort. Central arterial stiffness was estimated by carotid-femoral pulse wave velocity and augmentation index. Linear regression model was used to evaluate the association of high-sensitivity C-reactive protein and soluble receptor for advanced glycation end products with pulse wave velocity and augmentation index. High-sensitivity C-reactive protein was analysed as a continuous variable and categories (<1, 1-3, and >3 mg/L). There is no association between high-sensitivity C-reactive protein and pulse wave velocity. Augmentation index increased with high-sensitivity C-reactive protein as a continuous variable (β = 0.328, p = 0.049) and categories (β = 1.474, p = 0.008 for high-sensitivity C-reactive protein: 1-3 mg/L and β = 1.323, p = 0.019 for high-sensitivity C-reactive protein: >3 mg/L) after multivariable adjustment. No association was observed between augmentation index and soluble receptor for advanced glycation end products. Each unit increase in natural log-transformed soluble receptor for advanced glycation end products was associated with 0.328 m/s decrease in pulse wave velocity after multivariable adjustment (p = 0.007). Elevated high-sensitivity C-reactive protein and decreased soluble receptor for advanced glycation end products are associated with augmentation index and pulse wave velocity, respectively, suggesting the potential role of systemic inflammation in the pathogenesis of central arterial stiffness in type 2 diabetes. © The Author(s) 2016.

  20. Cardiorespiratory fitness and age-related arterial stiffness in women with systemic lupus erythematosus.

    PubMed

    Montalbán-Méndez, Cristina; Soriano-Maldonado, Alberto; Vargas-Hitos, José A; Sáez-Urán, Luis M; Rosales-Castillo, Antonio; Morillas-de-Laguno, Pablo; Gavilán-Carrera, Blanca; Jiménez-Alonso, Juan

    2018-03-01

    The aim of this study was twofold: (i) to examine the association of cardiorespiratory fitness with arterial stiffness in women with systemic lupus erythematosus; (ii) to assess the potential interaction of cardiorespiratory fitness with age on arterial stiffness in this population. A total of 49 women with systemic lupus erythematosus (mean age 41.3 [standard deviation 13.8] years) and clinical stability during the previous 6 months were included in the study. Arterial stiffness was assessed through pulse wave velocity (Mobil-O-Graph® 24 hours pulse wave velocity monitor). Cardiorespiratory fitness was estimated with the Siconolfi step test and the 6-minute walk test. Cardiorespiratory fitness was inversely associated with pulse wave velocity in crude analyses (P < .05), although this relationship was attenuated when age and other cardiovascular risk factors were controlled. There was a cardiorespiratory fitness × age interaction effect on pulse wave velocity, regardless of the test used to estimate cardiorespiratory fitness (P < .001 for the Siconolfi step test; P = .005 for the 6-minute walk test), indicating that higher cardiorespiratory fitness was associated with a lower increase in pulse wave velocity per each year increase in age. The results of this study suggest that cardiorespiratory fitness might attenuate the age-related arterial stiffening in women with systemic lupus erythematosus and might thus contribute to the primary prevention of cardiovascular disease in this population. As the cross-sectional design precludes establishing causal relationships, future clinical trials should confirm or contrast these findings. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.

  1. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less

  2. Aortic-Brachial Pulse Wave Velocity Ratio: A Measure of Arterial Stiffness Gradient Not Affected by Mean Arterial Pressure.

    PubMed

    Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen

    2018-03-01

    Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient. Aortic-brachial PWV ratio, a measure of arterial stiffness gradient, is independent of MAP.

  3. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea.

    PubMed

    Dewey, James B; Xia, Anping; Müller, Ulrich; Belyantseva, Inna A; Applegate, Brian E; Oghalai, John S

    2018-06-05

    The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Sun, Ning

    2018-04-01

    Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.

  5. Metal-ligand delocalization and spin density in the CuCl{sub 2} and [CuCl{sub 4}]{sup 2−} molecules: Some insights from wave function theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it

    2015-09-28

    The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl{sub 2} and [CuCl{sub 4}]{sup 2−} systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that eachmore » valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.« less

  6. Spin dynamics of possible density wave states in the pseudogap phase of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Wang, Zhiqiang; Chakravarty, Sudip

    2012-12-01

    In a recent inelastic neutron scattering experiment in the pseudogap state of the high-temperature superconductor YBa2Cu3O6.6, an unusual “vertical” dispersion of the spin excitations with a large in-plane anisotropy was observed. In this paper, we discuss in detail the spin susceptibility of the singlet d-density wave, the triplet d-density wave as well as the more common spin density wave orders with hopping anisotropies. From numerical calculations within the framework of random phase approximation, we find nearly vertical dispersion relations for spin excitations with anisotropic incommensurability at low energy ω≤90meV, which are reminiscent of the experiments. At very high energy ω≥165meV, we also find energy-dependent incommensurability. Although there are some important differences between the three cases, unpolarized neutron measurements cannot discriminate between these alternate possibilities; the vertical dispersion, however, is a distinct feature of all three density wave states in contrast to the superconducting state, which shows an hour-glass shape dispersion.

  7. Lorentz-boosted evanescent waves

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.

    2018-06-01

    Polarization, spin, and helicity are important properties of electromagnetic waves. It is commonly believed that helicity is invariant under the Lorentz transformations. This is indeed so for plane waves and their localized superpositions. However, this is not the case for evanescent waves, which are well-defined only in a half-space, and are characterized by complex wave vectors. Here we describe transformations of evanescent electromagnetic waves and their polarization/spin/helicity properties under the Lorentz boosts along the three spatial directions.

  8. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  9. Theory of magnetoelastic resonance in a monoaxial chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Tereshchenko, A. A.; Ovchinnikov, A. S.; Proskurin, Igor; Sinitsyn, E. V.; Kishine, Jun-ichiro

    2018-05-01

    We study magnetoelastic resonance phenomena in a monoaxial chiral helimagnet belonging to the hexagonal crystal class. By computing the spectrum of a coupled elastic wave and spin wave, it is demonstrated how hybridization occurs depending on their chirality. Specific features of the magnetoelastic resonance are discussed for the conical phase and the soliton lattice phase stabilized in the monoaxial chiral helimagnet. The former phase exhibits appreciable nonreciprocity of the spectrum, and the latter is characterized by a multiresonance behavior. We propose that the nonreciprocal spin wave around the forced-ferromagnetic state has potential capability to convert the linearly polarized elastic wave to a circularly polarized one with the chirality opposite to the spin-wave chirality.

  10. Topological helical edge states in water waves over a topographical bottom

    NASA Astrophysics Data System (ADS)

    Wu, Shiqiao; Wu, Ying; Mei, Jun

    2018-02-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full-wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  11. Tunable Snell's law for spin waves in heterochiral magnetic films

    NASA Astrophysics Data System (ADS)

    Mulkers, Jeroen; Van Waeyenberge, Bartel; Milošević, Milorad V.

    2018-03-01

    Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.

  12. FMR-driven spin pumping in Y3Fe5O12-based structures

    NASA Astrophysics Data System (ADS)

    Yang, Fengyuan; Hammel, P. Chris

    2018-06-01

    Ferromagnetic resonance driven spin pumping, a topic of steadily increasing interest since its emergence over two decades ago, remains one of the most exciting research fields in condensed matter physics. Among the many materials that have been explored for spin pumping, yttrium iron garnet (YIG) is one of the most extensively studied because of its exceptionally low magnetic damping and insulating nature. There is a great amount of literature in the spin pumping and related research fields, too broad for this review to cover. In this Topical Review, we focus on the YIG-based spin pumping results carried out by our groups, including: the mechanism and technical details of our off-axis sputtering technique for the growth of single-crystalline YIG epitaxial films with a high degree ordering, experimental evidence for the high quality of the YIG films, spin pumping results from YIG into various transition metals and their heterostructures, dynamic spin transport in YIG/antiferromagnet hybrid structures, intralayer spin pumping by localized spin wave modes confined by a micromagnetic probe, dynamic spin coupling between YIG and nitrogen-vacancy centers in diamond, parametric spin pumping from high-wavevector spin waves in YIG, and localized spin wave mode behavior in broadly tunable spatially complex magnetic configurations. These results build on the power and versatility of YIG spin pumping to improve our understanding of spin dynamics, spin currents, spin Hall physics, spin–orbit coupling, dynamic magnetic coupling, and the relationship between these phenomena in a broad range of materials, geometries, and settings.

  13. NMR studies of spin dynamics in cuprates

    NASA Astrophysics Data System (ADS)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  14. Williams syndrome predisposes to vascular stiffness modified by antihypertensive use and copy number changes in NCF1.

    PubMed

    Kozel, Beth A; Danback, Joshua R; Waxler, Jessica L; Knutsen, Russell H; de Las Fuentes, Lisa; Reusz, Gyorgy S; Kis, Eva; Bhatt, Ami B; Pober, Barbara R

    2014-01-01

    Williams syndrome is caused by the deletion of 26 to 28 genes, including elastin, on human chromosome 7. Elastin insufficiency leads to the cardiovascular hallmarks of this condition, namely focal stenosis and hypertension. Extrapolation from the Eln(+/-) mouse suggests that affected people may also have stiff vasculature, a risk factor for stroke, myocardial infarction, and cardiac death. NCF1, one of the variably deleted Williams genes, is a component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex and is involved in the generation of oxidative stress, making it an interesting candidate modifier for vascular stiffness. Using a case-control design, vascular stiffness was evaluated by pulse wave velocity in 77 Williams cases and matched controls. Cases had stiffer conducting vessels than controls (P<0.001), with increased stiffness observed in even the youngest children with Williams syndrome. Pulse wave velocity increased with age at comparable rates in cases and controls, and although the degree of vascular stiffness varied, it was seen in both hypertensive and normotensive Williams participants. Use of antihypertensive medication and extension of the Williams deletion to include NCF1 were associated with protection from vascular stiffness. These findings demonstrate that vascular stiffness is a primary vascular phenotype in Williams syndrome and that treatment with antihypertensives or agents inhibiting oxidative stress may be important in managing patients with this condition, potentially even those who are not overtly hypertensive.

  15. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    PubMed

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  16. Magnetic small-angle neutron scattering of bulk ferromagnets.

    PubMed

    Michels, Andreas

    2014-09-24

    We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.

  17. Final Technical Report for DE-SC0008149

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Kristen

    The major goal of this project is to study spin waves in magnetic thin films, especially how spin waves respond to external stimuli. This is expected to lead to new insight into dynamic processes and new ideas for methods to control spin waves. Experimental studies are being done primarily using time- and spatially-resolved Brillouin light scattering (BLS) measurements on extended and patterned magnetic thin films. BLS is a versatile tool that provides a non-invasive probe of spin dynamics with frequencies of ~1 GHz to well over 100 GHz, diffraction-limited spatial resolution, 250-ps temporal resolution, and it is sensitive enough tomore » detect thermal magnons.« less

  18. New Hybridized Surface Wave Approach for Geotechnical Modeling of Shear Wave Velocity at Strong Motion Recording Stations

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Carkin, B.; Minasian, D.

    2006-12-01

    Strong motion recording (SMR) networks often have little or no shear wave velocity measurements at stations where characterization of site amplification and site period effects is needed. Using the active Spectral Analysis of Surface Waves (SASW) method, and passive H/V microtremor method we have investigated nearly two hundred SMR sites in California, Alaska, Japan, Australia, China and Taiwan. We are conducting these studies, in part, to develop a new hybridized method of site characterization that utilizes a parallel array of harmonic-wave sources for active-source SASW, and a single long period seismometer for passive-source microtremor measurement. Surface wave methods excel in their ability to non-invasively and rapidly characterize the variation of ground stiffness properties with depth below the surface. These methods are lightweight, inexpensive to deploy, and time-efficient. They have been shown to produce accurate and deep soil stiffness profiles. By placing and wiring shakers in a large parallel circuit, either side-by-side on the ground or in a trailer-mounted array, a strong in-phase harmonic wave can be produced. The effect of arraying many sources in parallel is to increase the amplitude of waves received at far-away spaced seismometers at low frequencies so as to extend the longest wavelengths of the captured dispersion curve. The USGS system for profiling uses this concept by arraying between two and eight electro-mechanical harmonic-wave shakers. With large parallel arrays of vibrators, a dynamic force in excess of 1000 lb can be produced to vibrate the ground and produce surface waves. We adjust the harmonic wave through a swept-sine procedure to profile surface wave dispersion down to a frequency of 1 Hz and out to surface wave-wavelengths of 200-1000 meters, depending on the site stiffness. The parallel-array SASW procedure is augmented using H/V microtremor data collected with the active source turned off. Passive array microtremor data reveal the natural and resonance characteristics of the ground by capturing persistent natural vibrations. These microtremors are the result of the interaction of surface waves arriving from distant sources and the stiffness structure of the site under investigation. As such, these resonance effects are effective in constraining the layer thicknesses of the SASW shear wave velocity structure and aid in determining the depth of the deepest layer. Together, the hybridized SASW and H/V procedure provides a complete data set for modeling the geotechnical aspects of ground amplification of earthquake motions. Data from these investigations are available at http://walrus.wr.usgs.gov/geotech.

  19. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling

    PubMed Central

    Levy, Miguel; Karki, Dolendra

    2017-01-01

    We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals. PMID:28059120

  20. Universal spin-momentum locked optical forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalhor, Farid; Thundat, Thomas; Jacob, Zubin, E-mail: zjacob@purdue.edu

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reportedmore » phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.« less

  1. Imaging mechanical properties of hepatic tissue by magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Yin, Meng; Rouviere, Olivier; Burgart, Lawrence J.; Fidler, Jeff L.; Manduca, Armando; Ehman, Richard L.

    2006-03-01

    PURPOSE: To assess the feasibility of a modified phase-contrast MRI technique (MR Elastography) for quantitatively assessing the mechanical properties of hepatic tissues by imaging propagating acoustic shear waves. MATERIALS AND METHODS: Both phantom and human studies were performed to develop and optimize a practical imaging protocol by visualizing and investigating the diffraction field of shear waves generated from pneumatic longitudinal drivers. The effects of interposed ribs in a transcostal approach were also investigated. A gradient echo MRE pulse sequence was adapted for shear wave imaging in the liver during suspended respiration, and then tested to measure hepatic shear stiffness in 13 healthy volunteers and 1 patient with chronic liver disease to determine the potential of non-invasively detecting liver fibrosis. RESULTS: Phantom studies demonstrate that longitudinal waves generated by the driver are mode-converted to shear waves in a distribution governed by diffraction principles. The transcostal approach was determined to be the most effective method for generating shear waves in human studies. Hepatic stiffness measurements in the 13 normal volunteers demonstrated a mean value of 2.0+/-0.2kPa. The shear stiffness measurement in the patient was much higher at 8.5kPa. CONCLUSION: MR Elastography of the liver shows promise as a method to non-invasively detect and characterize diffuse liver disease, potentially reducing the need for biopsy to diagnose hepatic fibrosis.

  2. Tidal Love numbers and moment-Love relations of polytropic stars

    NASA Astrophysics Data System (ADS)

    Yip, Kenny L. S.; Leung, P. T.

    2017-12-01

    The physical significance of tidal deformation in astronomical systems has long been known. The recently discovered universal I-Love-Q relations, which connect moment of inertia, quadrupole tidal Love number and spin-induced quadrupole moment of compact stars, also underscore the special role of tidal deformation in gravitational wave astronomy. Motivated by the observation that such relations also prevail in Newtonian stars and crucially depend on the stiffness of a star, we consider the tidal Love numbers of Newtonian polytropic stars whose stiffness is characterized by a polytropic index n. We first perturbatively solve the Lane-Emden equation governing the profile of polytropic stars through the application of the scaled delta expansion method and then formulate perturbation series for the multipolar tidal Love number about the two exactly solvable cases with n = 0 and n = 1, respectively. Making use of these two series to form a two-point Padé approximant, we find an approximate expression of the quadrupole tidal Love number, whose error is less than 2.5 × 10-5 per cent (0.39 per cent) for n ∈ [0, 1] (n ∈ [0, 3]). Similarly, we also determine the mass moments for polytropic stars accurately. Based on these findings, we are able to show that the I-Love-Q relations are in general stationary about the incompressible limit irrespective of the equation of state of a star. Moreover, for the I-Love-Q relations, there is a secondary stationary point near n ≈ 0.4444, thus showing the insensitivity to n for n ∈ [0, 1]. Our investigation clearly tracks the universality of the I-Love-Q relations from their validity for stiff stars such as neutron stars to their breakdown for soft stars.

  3. RELATIONS BETWEEN DAIRY FOOD INTAKE AND ARTERIAL STIFFNESS: PULSE WAVE VELOCITY AND PULSE PRESSURE

    PubMed Central

    Crichton, Georgina E.; Elias, Merrrill F.; Dore, Gregory A.; Abhayaratna, Walter P.; Robbins, Michael A.

    2012-01-01

    Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial stiffness including carotid-femoral pulse wave velocity and pulse pressure. A cross-sectional analysis of a subset of the Maine Syracuse Longitudinal Study sample was performed. A linear decrease in pulse wave velocity was observed across increasing intakes of dairy food consumption (ranging from never/rarely to daily dairy food intake). The negative linear relationship between pulse wave velocity and intake of dairy food was independent of demographic variables, other cardiovascular disease risk factors and nutrition variables. The pattern of results was very similar for pulse pressure, while no association between dairy food intake and lipid levels was found. Further intervention studies are needed to ascertain whether dairy food intake may be an appropriate dietary intervention for the attenuation of age-related arterial stiffening and reduction of cardiovascular disease risk. PMID:22431583

  4. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2010-07-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  5. The expected spins of gravitational wave sources with isolated field binary progenitors

    NASA Astrophysics Data System (ADS)

    Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.

    2018-01-01

    We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.

  6. On the mechanical modeling of tensegrity columns subject to impact loading

    NASA Astrophysics Data System (ADS)

    Amendola, Ada; Favata, Antonino; Micheletti, Andrea

    2018-04-01

    A physical model of a tensegrity columns is additively manufactured in a titanium alloy. After removing sacrificial supports, such a model is post-tensioned through suitable insertion of Spectra cables. The wave dynamics of the examined system is first experimentally investigated by recording the motion through high-speed cameras assisted by a digital image correlation algorithm, which returns time-histories of the axial displacements of the bases of each prism of the column. Next, the experimental response is mechanically simulated by means of two different models: a stick-and-spring model accounting for the presence of bending-stiff connections between the 3D-printed elements (mixed bending-stretching response), and a tensegrity model accounting for a purely stretching response. The comparison of theory and experiment reveals that the presence of bending-stiff connections weakens the nonlinearity of the wave dynamics of the system. A stretching-dominated response instead supports highly compact solitary waves in the presence of small prestress and negligible bending stiffness of connections.

  7. Using magnons to probe spintronic materials properties

    NASA Astrophysics Data System (ADS)

    McMichael, Robert

    2012-02-01

    For many spin-based electronic devices, from the read sensors in modern hard disk drives to future spintronic logic concepts, the device physics originates in spin polarized currents in ferromagnetic metals. In this talk, I will describe a novel ``Spin Wave Doppler'' method that uses the interaction of spin waves with spin-polarized currents to determine the spin drift velocity and the spin current polarization [1]. Owing to differences between the band structures of majority-spin and minority-spin electrons, the electrical current also carries an angular momentum current and magnetic moment current. Passing these coupled currents though a magnetic wire changes the linear excitations of the magnetization, i.e spin waves. Interestingly, the excitations can be described as drifting ``downstream'' with the electron flow. We measure this drift velocity by monitoring the spin-wave-mediated transmission between pairs of periodically patterned antennas on magnetic wires as a function of current density in the wire. The transmission frequency resonance shifts by 2πδf = vk where the drift velocity v is proportional to both the current density and the current polarization P. I will discuss measurements of the spin polarization of the current in Ni80Fe20 [2], and novel alloys (CoFe)1-xGax [3] and (Ni80Fe20)1-xGdx [4]. [4pt] [1] V. Vlaminck and M. Bailleul, Science, 322, 410 (2008) [0pt] [2] M. Zhu, C. L. Dennis, and R. D. McMichael, Phys. Rev. B, 81, 140407 (2010). [0pt] [3] M. Zhu, B. D. Soe, R. D. McMichael, M. J. Carey, S. Maat, and J. R. Childress, Appl. Phys. Lett., 98, 072510 (2011). [0pt] [4] R. L. Thomas, M. Zhu, C. L. Dennis, V. Misra and R. D. McMichael, J. Appl. Phys., 110, 033902 (2011).

  8. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  9. Arterial stiffness and cardiovascular events: the Framingham Heart Study.

    PubMed

    Mitchell, Gary F; Hwang, Shih-Jen; Vasan, Ramachandran S; Larson, Martin G; Pencina, Michael J; Hamburg, Naomi M; Vita, Joseph A; Levy, Daniel; Benjamin, Emelia J

    2010-02-02

    Various measures of arterial stiffness and wave reflection have been proposed as cardiovascular risk markers. Prior studies have not assessed relations of a comprehensive panel of stiffness measures to prognosis in the community. We used proportional hazards models to analyze first-onset major cardiovascular disease events (myocardial infarction, unstable angina, heart failure, or stroke) in relation to arterial stiffness (pulse wave velocity [PWV]), wave reflection (augmentation index, carotid-brachial pressure amplification), and central pulse pressure in 2232 participants (mean age, 63 years; 58% women) in the Framingham Heart Study. During median follow-up of 7.8 (range, 0.2 to 8.9) years, 151 of 2232 participants (6.8%) experienced an event. In multivariable models adjusted for age, sex, systolic blood pressure, use of antihypertensive therapy, total and high-density lipoprotein cholesterol concentrations, smoking, and presence of diabetes mellitus, higher aortic PWV was associated with a 48% increase in cardiovascular disease risk (95% confidence interval, 1.16 to 1.91 per SD; P=0.002). After PWV was added to a standard risk factor model, integrated discrimination improvement was 0.7% (95% confidence interval, 0.05% to 1.3%; P<0.05). In contrast, augmentation index, central pulse pressure, and pulse pressure amplification were not related to cardiovascular disease outcomes in multivariable models. Higher aortic stiffness assessed by PWV is associated with increased risk for a first cardiovascular event. Aortic PWV improves risk prediction when added to standard risk factors and may represent a valuable biomarker of cardiovascular disease risk in the community.

  10. Use of Guided Acoustic Waves to Assess the Effects of Thermal-Mechanical Cycling on Composite Stiffness

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2000-01-01

    The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.

  11. Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2018-06-01

    The separate spin evolution (SSE) of electrons causes the existence of the spin-electron acoustic wave. Extraordinary spin-electron acoustic waves (SEAWs) propagating perpendicular to the external magnetic field have a large contribution of the transverse electric field. Its spectrum has been studied in the quasi-classical limit at the consideration of the separate spin evolution. The spin-spin interaction and the quantum Bohm potential give contribution in the spectrum extraordinary SEAWs. This contribution is studied in this paper. Moreover, it is demonstrated that the spin-spin interaction leads to the existence of the extraordinary SEAWs if the SSE is neglected. It has been found that the SSE causes the instability of the extraordinary SEAW at the large wavelengths, but the quantum Bohm potential leads to the full stabilization of the spectrum.

  12. Very narrow excited Ωc baryons

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2017-06-01

    Recently, LHCb reported the discovery of five extremely narrow excited Ωc baryons decaying into Ξc+K-. We interpret these baryons as bound states of a c quark and a P -wave s s diquark. For such a system, there are exactly five possible combinations of spin and orbital angular momentum. The narrowness of the states could be a signal that it is hard to pull apart the two s quarks in a diquark. We predict two of spin 1 /2 , two of spin 3 /2 , and one of spin 5 /2 , all with negative parity. Of the five states, two can decay in S -wave, and three can decay in D -wave. Some of the D -wave states might be narrower than the S -wave states. We discuss the relations among the five masses expected in the quark model and the likely spin assignments, and we compare them with the data. A similar pattern is expected for negative-parity excited Ωb states. An alternative interpretation is noted in which the heaviest two states are 2 S excitations with JP=1 /2+ and 3 /2+, while the lightest three are those with JP=3 /2- , 3 /2- , 5 /2- , expected to decay via D -waves. In this case, we expect JP=1 /2- Ωc states around 2904 and 2978 MeV.

  13. Influence of arterial wave reflection on carotid blood pressure and intima-media thickness in older endurance trained men and women with pre-hypertension.

    PubMed

    Heffernan, Kevin S; Jae, Sae Young; Tomayko, Emily; Ishaque, Muhammad R; Fernhall, Bo; Wilund, Kenneth R

    2009-05-01

    Increased carotid intima-media thickness (IMT) with aging is a significant predictor of mortality. Older endurance trained (ET) individuals have lower carotid artery stiffness but similar carotid IMT when compared to sedentary (SED) age-matched peers. The purpose of this study was to examine the contribution of arterial wave reflections to carotid hemodynamics and IMT in older ET and SED with pre-hypertension. Subjects consisted of endurance-trained master athletes and age-matched sedentary controls (mean age 67 years). Carotid artery Beta-stiffness index and IMT was assessed with ultrasonography. Carotid pressure and augmented pressure from wave reflections (obtained from pulse contour analysis) was measured with applanation tonometry. Carotid systolic blood pressure (SBP) and IMT were not different between groups (P>0.05). Carotid stiffness was significantly lower in ET versus SED (7.3 +/- 0.8 versus 9.9 +/- 0.6, P<0.05). Augmented pressure was significantly greater in ET versus SED (17.7 +/- 1.6 versus 13.3 +/- 1.5 mmHg, P<0.05). When adjusting for differences in resting heart rate, there were no group differences in augmented pressure. In conclusion, older ET persons with pre-hypertension have reduced carotid artery stiffness, but similar carotid SBP and carotid IMT when compared to SED. The lack of change in carotid SBP and IMT in older ET may be related to the inability of chronic exercise training to reduce bradycardia-related augmented pressure from wave reflections with aging.

  14. Validation of Shear Wave Elastography in Skeletal Muscle

    PubMed Central

    Eby, Sarah F.; Song, Pengfei; Chen, Shigao; Chen, Qingshan; Greenleaf, James F.; An, Kai-Nan

    2013-01-01

    Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463 – 0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle. PMID:23953670

  15. Motion and dynamic responses of a semisubmersible in freak waves

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deng, Yan-fei; Li, Lei; Tian, Xin-liang; Li, Jun

    2017-12-01

    The present research aims at clarifying the effects of freak wave on the motion and dynamic responses of a semisubmersible. To reveal the effects of mooring stiffness, two mooring systems were employed in the model tests and time-domain simulations. The 6-DOF motion responses and mooring tensions have been measured and the 3-DOF motions of fairleads were calculated as well. From the time series, trajectories and statistics information, the interactions between the freak wave and the semisubmersible have been demonstrated and the effects of mooring stiffness have been identified. The shortage of numerical simulations based on 3D potential flow theory is presented. Results show that the freak wave is likely to cause large horizontal motions for soft mooring system and to result in extremely large mooring tensions for tight mooring system. Therefore, the freak wave is a real threat for the marine structure, which needs to be carefully considered at design stage.

  16. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, N., E-mail: rossn2282@gmail.com; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au; Stamps, R. L.

    2014-09-21

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs inmore » the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.« less

  17. Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas

    NASA Astrophysics Data System (ADS)

    Körner, H. S.; Stigloher, J.; Back, C. H.

    2017-09-01

    We experimentally demonstrate by time-resolved scanning magneto-optical Kerr microscopy the possibility to locally excite multiple spin-wave beams in the dipolar-dominated regime in metallic NiFe films. For this purpose we employ differently shaped nonuniform microwave antennas consisting of several coplanar waveguide sections different in size, thereby adapting an approach for the generation of spin-wave beams in the exchange-dominated regime suggested by Gruszecki et al. [Sci. Rep. 6, 22367 (2016), 10.1038/srep22367]. The occurring spin-wave beams are diffractive and we show that the width of the beam and its widening as it propagates can be tailored by the shape and the length of the nonuniformity. Moreover, the propagation direction of the diffractive beams can be manipulated by changing the bias field direction.

  18. Exchange Stiffness in Thin-Film Cobalt Alloys

    NASA Astrophysics Data System (ADS)

    Eyrich, Charles

    The exchange stiffness, Aex, is one of the key parameters controlling magnetization reversal in magnetic materials but is very difficult to measure, especially in thin films. We developed a new technique for measuring the exchange stiffness of a magnetic material based on the formation of a spin spiral within two antiferromagnetically coupled ferromagnetic films [1]. Using this method, I was able to measure the exchange stiffness of thin film Co alloyed with Cr, Fe, Ni, Pd, Pt and Ru. The results of this work showed that the rate at which a substituent element reduces the exchange stiffness is not directly related to its effect on the magnetization of the alloy. These measured trends have been understood by combining measurements of element specific magnetic moments obtained using X-ray magnetic circular dichroism (XMCD) and material specific modeling based on density functional theory (DFT) within the local density approximation (LDA). The experimental results also hint at significant reduction of the exchange stiffness at the interface that can account for the difference between our results and those obtained on bulk materials.

  19. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν <1 /2 but kF*=√{4 π ρh } for ν >1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  20. Enhanced Spin Conductance of a Thin-Film Insulating Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Bender, Scott A.; Skarsvâg, Hans; Brataas, Arne; Duine, Rembert A.

    2017-08-01

    We investigate spin transport by thermally excited spin waves in an antiferromagnetic insulator. Starting from a stochastic Landau-Lifshitz-Gilbert phenomenology, we obtain the out-of-equilibrium spin-wave properties. In linear response to spin biasing and a temperature gradient, we compute the spin transport through a normal-metal-antiferromagnet-normal-metal heterostructure. We show that the spin conductance diverges as one approaches the spin-flop transition; this enhancement of the conductance should be readily observable by sweeping the magnetic field across the spin-flop transition. The results from such experiments may, on the one hand, enhance our understanding of spin transport near a phase transition, and on the other be useful for applications that require a large degree of tunability of spin currents. In contrast, the spin Seebeck coefficient does not diverge at the spin-flop transition. Furthermore, the spin Seebeck coefficient is finite even at zero magnetic field, provided that the normal metal contacts break the symmetry between the antiferromagnetic sublattices.

  1. Factors associated with arterial stiffness in children aged 9-10 years

    PubMed Central

    Batista, Milena Santos; Mill, José Geraldo; Pereira, Taisa Sabrina Silva; Fernandes, Carolina Dadalto Rocha; Molina, Maria del Carmen Bisi

    2015-01-01

    OBJECTIVE To analyze the factors associated with stiffness of the great arteries in prepubertal children. METHODS This study with convenience sample of 231 schoolchildren aged 9-10 years enrolled in public and private schools in Vitória, ES, Southeastern Brazil, in 2010-2011. Anthropometric and hemodynamic data, blood pressure, and pulse wave velocity in the carotid-femoral segment were obtained. Data on current and previous health conditions were obtained by questionnaire and notes on the child’s health card. Multiple linear regression was applied to identify the partial and total contribution of the factors in determining the pulse wave velocity values. RESULTS Among the students, 50.2% were female and 55.4% were 10 years old. Among those classified in the last tertile of pulse wave velocity, 60.0% were overweight, with higher mean blood pressure, waist circumference, and waist-to-height ratio. Birth weight was not associated with pulse wave velocity. After multiple linear regression analysis, body mass index (BMI) and diastolic blood pressure remained in the model. CONCLUSIONS BMI was the most important factor in determining arterial stiffness in children aged 9-10 years. PMID:25902563

  2. Early-time cosmology with stiff era from modified gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-11-01

    In this work, we shall incorporate a stiff era in the Universe's evolution in the context of F (R ) gravity. After deriving the vacuum F (R ) gravity, which may realize a stiff evolution, we combine the stiff F (R ) gravity with an R2 model, and we construct a qualitative model for the inflationary and stiff era, with the latter commencing after the end of the inflationary era. We assume that the baryogenesis occurs during the stiff era, and we calculate the baryon to entropy ratio, which effectively constraints the functional form of the stiff F (R ) gravity. Further constraints on the stiff F (R ) gravity may come from the primordial gravitational waves, and particularly their scalar mode, which is characteristic of the F (R ) gravity theory. The stiff era presence does not contradict the standard cosmology era, namely, inflation, and the radiation-matter domination eras. Furthermore, we investigate which F (R ) gravity may realize a dust and stiff matter dominated Einstein-Hilbert evolution.

  3. Free androgen index as a determinant of arterial stiffness in menopause: a mediation analysis.

    PubMed

    Lambrinoudaki, Irene; Georgiopoulos, Georgios A; Athanasouli, Fani; Armeni, Elena; Rizos, Demetrios; Augoulea, Areti; Chatzidou, Sofia; Koutli, Evangelia; Makris, Nikolaos; Kanakakis, Ioannis; Stamatelopoulos, Kimon

    2017-06-01

    Associations of endogenous androgens in menopause with blood pressure (BP) and indices of arterial stiffness are reported, but directional relationships are not clear. Structural equation modeling is a contemporary statistical method, which allows assessment of such relationships and improves pathway understanding. We recruited 411 consecutive apparently healthy postmenopausal women who underwent noninvasive vascular evaluation. This included pulse wave analysis (aortic pressures and arterial wave reflections [augmentation index]), measurement of aortic stiffness by pulse wave velocity (PWV), stiffness index (SI), and flow-mediated dilatation. A cumulative marker combining PWV and SI (combined local and aortic arterial stiffness [CAS]) was also assessed. Free androgen index (FAI) was calculated from circulating total testosterone and sex hormone-binding globulin. FAI was an independent determinant of systolic BP (SBP) (P = 0.032), SI (P = 0.042), and PWV (P = 0.027). Under structural equation modeling analysis, FAI was a direct predictor for PWV (beta = 0.149, P = 0.014), SI (beta = 0.154, P = 0.022), and CAS (beta = 0.193, P = 0.02), whereas SBP was a parallel mediator of androgen's vascular effects on PWV (beta = 0.280, P < 0.001) and CAS (beta = 0.248, P = 0.004), but not SI (beta = 0.024, P = 0.404). FAI-induced increase in arterial stiffness via flow-mediated dilatation was not established. FAI was not a determinant of augmentation index. In healthy postmenopausal women, FAI was directly associated with PWV, SI, and CAS. FAI also directly correlated with SBP, which in turn concurrently increased PWV and CAS. The directional correlations found herein, imply that endogenous androgens may be causally associated with indices of arterial stiffness both directly and indirectly. This hypothesis should be confirmed in further studies with causal design.

  4. Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2004-01-01

    The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for a duration of 10,000 hours are reported.

  5. Arterial wave intensity and ventricular-arterial coupling by vascular ultrasound: rationale and methods for the automated analysis of forwards and backwards running waves.

    PubMed

    Rakebrandt, F; Palombo, C; Swampillai, J; Schön, F; Donald, A; Kozàkovà, M; Kato, K; Fraser, A G

    2009-02-01

    Wave intensity (WI) in the circulation is estimated noninvasively as the product of instantaneous changes in pressure and velocity. We recorded diameter as a surrogate for pressure, and velocity in the right common carotid artery using an Aloka SSD-5500 ultrasound scanner. We developed automated software, applying the water hammer equation to obtain local wave speed from the slope of a pressure/velocity loop during early systole to separate net WI into individual forwards and backwards-running waves. A quality index was developed to test for noisy data. The timing, duration, peak amplitude and net energy of separated WI components were measured in healthy subjects with a wide age range. Age and arterial stiffness were independent predictors of local wave speed, whereas backwards-travelling waves correlated more strongly with ventricular systolic function than with age-related changes in arterial stiffness. Separated WI offers detailed insight into ventricular-arterial interactions that may be useful for assessing the relative contributions of ventricular and vascular function to wave travel.

  6. Helical waves in easy-plane antiferromagnets

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  7. Parallel database search and prime factorization with magnonic holographic memory devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khitun, Alexander

    In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploitmore » wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.« less

  8. Parallel database search and prime factorization with magnonic holographic memory devices

    NASA Astrophysics Data System (ADS)

    Khitun, Alexander

    2015-12-01

    In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploit wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.

  9. On the damping of right hand circularly polarized waves in spin quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Z.; Hussain, A., E-mail: ah-gcu@yahoo.com; Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320

    2014-12-15

    General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ∥}v≫(ω+ω{sub ce}),(ω+ω{sub cg}) and (ii) k{sub ∥}v≪(ω+ω{sub ce}),(ω+ω{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effectsmore » can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.« less

  10. Parallel pumping of a ferromagnetic nanostripe: Confinement quantization and off-resonant driving

    NASA Astrophysics Data System (ADS)

    Yarbrough, P. M.; Livesey, K. L.

    2018-01-01

    The parametric excitation of spin waves in a rectangular, ferromagnetic nanowire in the parallel pump configuration and with an applied field along the long axis of the wire is studied theoretically, using a semi-classical and semi-analytic Hamiltonian approach. We find that as a function of static applied field strength, there are jumps in the pump power needed to excite thermal spin waves. At these jumps, there is the possibility to non-resonantly excite spin waves near kz = 0. Spin waves with negative or positive group velocity and with different standing wave structures across the wire width can be excited by tuning the applied field. By using a magnetostatic Green's function that depends on both the nanowire's width and thickness—rather than just its aspect ratio—we also find that the threshold field strength varies considerably for nanowires with the same aspect ratio but of different sizes. Comparisons between different methods of calculations are made and the advantages and disadvantages of each are discussed.

  11. Pulse wave velocity is associated with cognitive impairment in hemodialysis patients.

    PubMed

    Angermann, Susanne; Baumann, Marcus; Wassertheurer, Siegfried; Mayer, Christopher Clemens; Steubl, Dominik; Hauser, Christine; Suttmann, Yana; Reichelt, Anna-Lena; Satanovskij, Robin; Lorenz, Georg; Lukas, Moritz; Haller, Bernhard; Heemann, Uwe; Grimmer, Timo; Schmaderer, Christoph

    2017-07-01

    Cognitive impairment in hemodialysis patients is common and associated with adverse outcomes. So far, the underlying pathogenesis remains unclear. Therefore, we examined the potential relationship between cognitive impairment and three different categories of risk factors with particular focus on arterial stiffness measured by pulse wave velocity (PWV). A total of 201 chronic hemodialysis patients underwent cognitive testing under standardized conditions using the Montreal Cognitive Assessment (MoCA). Demographic data including cardiovascular risk factors, dialysis-associated factors as well as factors related to chronic kidney disease (CKD) were analyzed. To account for arterial stiffness, PWV was measured by ambulatory blood pressure monitoried with an oscillometric device that records brachial blood pressure along with pulse waves. In our cohort, 60.2% of patients showed pathological MoCA test results indicating cognitive impairment. PWV was significantly associated with cognitive impairment apart from age, educational level, diabetes, and hypercholesterolemia. High prevalence of cognitive impairment in hemodialysis patients was confirmed. For the first time, an association between cognitive impairment and arterial stiffness was detected in a larger cohort of hemodialysis patients. Concerning the underlying pathogenesis of cognitive impairment, current results revealed a potential involvement of arterial stiffness, which has to be further evaluated in future studies. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Transurethral prostate magnetic resonance elastography: prospective imaging requirements.

    PubMed

    Arani, Arvin; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Tissue stiffness is known to undergo alterations when affected by prostate cancer and may serve as an indicator of the disease. Stiffness measurements can be made with magnetic resonance elastography performed using a transurethral actuator to generate shear waves in the prostate gland. The goal of this study was to help determine the imaging requirements of transurethral magnetic resonance elastography and to evaluate whether the spatial and stiffness resolution of this technique overlapped with the requirements for prostate cancer detection. Through the use of prostate-mimicking gelatin phantoms, frequencies of at least 400 Hz were necessary to obtain accurate stiffness measurements of 10 mm diameter inclusions, but the detection of inclusions with diameters as small as 4.75 mm was possible at 200 Hz. The shear wave attenuation coefficient was measured in vivo in the canine prostate gland, and was used to predict the detectable penetration depth of shear waves in prostate tissue. These results suggested that frequencies below 200 Hz could propagate to the prostate boundary with a signal to noise ratio (SNR) of 60 and an actuator capable of producing 60 μm displacements. These requirements are achievable with current imaging and actuator technologies, and motivate further investigation of magnetic resonance elastography for the targeting of prostate cancer. Copyright © 2010 Wiley-Liss, Inc.

  13. A movable-mass attitude stabilization system for cable-connected artificial-g space stations

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Hardison, T. L.

    1974-01-01

    The development of an active, momentum-exchange system to be used for attitude stabilization of a class of cable-connected artificial-g space stations is studied. A system which employs a single movable control mass is examined for the control of a space station which has the physical appearance of two cylinders connected axially by cables. The dynamic model for the space station includes its aggregate rigid body rotation and relative torsional rotation between the bodies. A zero torsional stiffness design (one cable) and a maximum torsional stiffness design (eight cables) are examined in various stages of deployment, for selected spin velocities ranging from 4 rpm upwards. A linear, time-invariant, feed-back control system is employed, with gains calculated via a root-specification procedure. The movable mass controller provides critical wobble-damping capability for the crew quarters for all configurations and spin velocity.

  14. Unidirectional spin-wave heat conveyer.

    PubMed

    An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E

    2013-06-01

    When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.

  15. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    NASA Technical Reports Server (NTRS)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  16. Shear Wave Elastography--A New Quantitative Assessment of Post-Irradiation Neck Fibrosis.

    PubMed

    Liu, K H; Bhatia, K; Chu, W; He, L T; Leung, S F; Ahuja, A T

    2015-08-01

    Shear wave elastography (SWE) is a new technique which provides quantitative assessment of soft tissue stiffness. The aim of this study was to assess the reliability of SWE stiffness measurements and its usefulness in evaluating post-irradiation neck fibrosis. 50 subjects (25 patients with previous radiotherapy to the neck and 25 sex and age-matched controls) were recruited for comparison of SWE stiffness measurements (Aixplorer, Supersonic Imagine). 30 subjects (16 healthy individuals and 14 post-irradiated patients) were recruited for a reliability study of SWE stiffness measurements. SWE stiffness measurements of the sternocleidomastoid muscle and the overlying subcutaneous tissues of the neck were made. The cross-sectional area and thickness of the sternocleidomastoid muscle and the overlying subcutaneous tissue thickness of the neck were also measured. The post-irradiation duration of the patients was recorded. The intraclass correlation coefficients for the intraoperator and interoperator reliability of deep and subcutaneous tissue SWE stiffness ranged from 0.90-0.99 and 0.77-0.94, respectively. The SWE stiffness measurements (mean +/- SD) of deep and subcutaneous tissues were significantly higher in the post-irradiated patients (64.6 ± 46.8 kPa and 63.9 ± 53.1 kPa, respectively) than the sex and age-matched controls (19.9 ± 7.8 kPa and 15.3 ± 8.37 respectively) (p < 0.001). The SWE stiffness increased with increasing post-irradiation therapy duration in the Kruskal Wallis test (p < 0.001) and correlated with muscle atrophy and subcutaneous tissue thinning (p < 0.01). SWE is a reliable technique and may potentially be an objective and specific tool in quantifying deep and subcutaneous tissue stiffness, which in turn reflects the severity of neck fibrosis. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    DTIC Science & Technology

    2017-06-27

    realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based

  18. Damped spin waves in the intermediate ordered phases in Ni 3V 2O 8

    DOE PAGES

    Ehlers, Georg; Podlesnyak, Andrey A.; Frontzek, Matthias D.; ...

    2015-06-09

    Here, spin dynamics in the intermediate ordered phases (between 4 and 9 K) in Ni 3V 2O 8 have been studied with inelastic neutron scattering. It is found that the spin waves are very diffuse, indicative of short lived correlations and the coexistence of paramagnetic moments with the long-range ordered state.

  19. Surface Andreev Bound States and Odd-Frequency Pairing in Topological Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Tanaka, Yukio; Tamura, Shun

    2018-04-01

    In this review, we summarize the achievement of the physics of surface Andreev bound states (SABS) up to now. The route of this activity has started from the physics of SABS of unconventional superconductors where the pair potential has a sign change on the Fermi surface. It has been established that SABS can be regarded as a topological edge state with topological invariant defined in the bulk Hamiltonian. On the other hand, SABS accompanies odd-frequency pairing like spin-triplet s-wave or spin-singlet p-wave. In a spin-triplet superconductor junction, induced odd-frequency pairing can penetrate into a diffusive normal metal (DN) attached to the superconductor. It causes so called anomalous proximity effect where the local density of states of quasiparticle in DN has a zero energy peak. When bulk pairing symmetry is spin-triplet px-wave, the anomalous proximity effect becomes prominent and the zero bias voltage conductance is always quantized independent of the resistance in DN and interface. Finally, we show that the present anomalous proximity effect is realized in an artificial topological superconducting system, where a nanowire with spin-orbit coupling and Zeeman field is put on the conventional spin-singlet s-wave superconductor.

  20. Comparison of peritumoral stromal tissue stiffness obtained by shear wave elastography between benign and malignant breast lesions.

    PubMed

    Park, Hye Sun; Shin, Hee Jung; Shin, Ki Chang; Cha, Joo Hee; Chae, Eun Young; Choi, Woo Jung; Kim, Hak Hee

    2018-01-01

    Background Aggressive breast cancers produce abnormal peritumoral stiff areas, which can differ between benign and malignant lesions and between different subtypes of breast cancer. Purpose To compare the tissue stiffness of the inner tumor, tumor border, and peritumoral stroma (PS) between benign and malignant breast masses by shear wave elastography (SWE). Material and Methods We enrolled 133 consecutive patients who underwent preoperative SWE. Using OsiriX commercial software, we generated multiple 2-mm regions of interest (ROIs) in a linear arrangement on the inner tumor, tumor border, and PS. We obtained the mean elasticity value (E mean ) of each ROI, and compared the E mean between benign and malignant tumors. Odds ratios (ORs) for prediction of malignancy were calculated. Subgroup analyses were performed among tumor subtypes. Results There were 85 malignant and 48 benign masses. The E mean of the tumor border and PS were significantly different between benign and malignant masses ( P < 0.05 for all). ORs for malignancy were 1.06, 1.08, 1.05, and 1.04 for stiffness of the tumor border, proximal PS, middle PS, and distal PS, respectively ( P < 0.05 for all). Malignant masses with a stiff rim were significantly larger than malignant masses without a stiff rim, and were more commonly associated with the luminal B and triple negative subtypes. Conclusion Stiffness of the tumor border and PS obtained by SWE were significantly different between benign and malignant masses. Malignant masses with a stiff rim were larger in size and associated with more aggressive pathologic subtypes.

  1. Two-spinor description of massive particles and relativistic spin projection operators

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Podoinitsyn, M. A.

    2018-04-01

    On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.

  2. Association of arterial stiffness with single nucleotide polymorphism rs1333049 and metabolic risk factors.

    PubMed

    Phababpha, Suphawadee; Kukongviriyapan, Upa; Pakdeechote, Poungrat; Senggunprai, Laddawan; Kukongviriyapan, Veerapol; Settasatian, Chatri; Tatsanavivat, Pyatat; Intharaphet, Phongsak; Senthong, Vichai; Komanasin, Nantarat; Settasatian, Nongnuch; Greenwald, Stephen E

    2013-06-21

    Increased arterial stiffness is a cardiovascular outcome of metabolic syndrome (MetS). The chromosome 9p21 locus has been identified as a major locus for risk of coronary artery disease (CAD). The single nucleotide polymorphism (SNP), rs1333049 on chromosome 9p21.3 has been strongly associated with CAD and myocardial infarction. Increased arterial stiffness could be the link between the 9p21 polymorphism and increased cardiovascular risk. Since the impact of a genetic polymorphism on arterial stiffness especially in Asian populations has not been well defined, we aimed to investigate the association of arterial stiffness with rs 1333049 variant on chromosome 9p21.3 in Thai subjects with and without MetS risk factors. A total of 208 Thai subjects, aged 35-75 years, 135 with and 73 without MetS, according to IDF and NCEP-ATPIII criteria, were included in this study. Aortic-femoral pulse wave velocity (afPWV), brachial-ankle pulse wave velocity (baPWV) and aortic ankle pulse wave velocity (aaPWV) were measured and used as markers of arterial stiffness. The chromosome 9p21.3 locus, represented by the rs 1333049 variant and blood biochemistry were evaluated. Arterial stiffness was elevated in subjects with MetS when compared with nonMetS subjects. PWV, especially afPWV increased progressively with increasing number of MetS risk factors (r = 0.322, P <0.001). We also found that the frequency distribution of the rs1333049 genotypes is significantly associated with the afPWV (P <0.05). In multivariate analyses, there was an association between homozygous C allele and afPWV (Odds ratio (OR), 8.16; 95% confidence interval (CI), 1.91 to 34.90; P = 0.005), while the GC genotype was not related to afPWV (OR, 1.79; 95% CI, 0.84 to 3.77; P = 0.129) when compared with the GG genotype. Our findings demonstrate for the first time that arterial stiffness is associated with genetic polymorphism in 9p21 and metabolic risk factors in a Thai population.

  3. Association of arterial stiffness with single nucleotide polymorphism rs1333049 and metabolic risk factors

    PubMed Central

    2013-01-01

    Background Increased arterial stiffness is a cardiovascular outcome of metabolic syndrome (MetS). The chromosome 9p21 locus has been identified as a major locus for risk of coronary artery disease (CAD). The single nucleotide polymorphism (SNP), rs1333049 on chromosome 9p21.3 has been strongly associated with CAD and myocardial infarction. Increased arterial stiffness could be the link between the 9p21 polymorphism and increased cardiovascular risk. Since the impact of a genetic polymorphism on arterial stiffness especially in Asian populations has not been well defined, we aimed to investigate the association of arterial stiffness with rs 1333049 variant on chromosome 9p21.3 in Thai subjects with and without MetS risk factors. Methods A total of 208 Thai subjects, aged 35–75 years, 135 with and 73 without MetS, according to IDF and NCEP-ATPIII criteria, were included in this study. Aortic-femoral pulse wave velocity (afPWV), brachial-ankle pulse wave velocity (baPWV) and aortic ankle pulse wave velocity (aaPWV) were measured and used as markers of arterial stiffness. The chromosome 9p21.3 locus, represented by the rs 1333049 variant and blood biochemistry were evaluated. Results Arterial stiffness was elevated in subjects with MetS when compared with nonMetS subjects. PWV, especially afPWV increased progressively with increasing number of MetS risk factors (r = 0.322, P <0.001). We also found that the frequency distribution of the rs1333049 genotypes is significantly associated with the afPWV (P <0.05). In multivariate analyses, there was an association between homozygous C allele and afPWV (Odds ratio (OR), 8.16; 95% confidence interval (CI), 1.91 to 34.90; P = 0.005), while the GC genotype was not related to afPWV (OR, 1.79; 95% CI, 0.84 to 3.77; P = 0.129) when compared with the GG genotype. Conclusions Our findings demonstrate for the first time that arterial stiffness is associated with genetic polymorphism in 9p21 and metabolic risk factors in a Thai population. PMID:23787071

  4. Magnetosonic waves interactions in a spin-1/2 degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sheng-Chang, E-mail: lsc1128lsc@126.com; Han, Jiu-Ning

    2014-03-15

    We investigate the magnetosonic waves and their interactions in a spin-1/2 degenerate quantum plasma. With the help of the extended Poincaré-Lighthill-Kuo perturbation method, we derive two Korteweg-de Vries-Burgers equations to describe the magnetosonic waves. The parameter region where exists magnetosonic waves and the phase diagram of the compressive and rarefactive solitary waves with different plasma parameters are shown. We further explore the effects of quantum diffraction, quantum statistics, and electron spin magnetization on the head-on collisions of magnetosonic solitary waves. We obtain the collision-induced phase shifts (trajectory changes) analytically. Both for the compressive and rarefactive solitary waves, it is foundmore » that the collisions only lead to negative phase shifts. Our present study should be useful to understand the collective phenomena related to the magnetosonic wave collisions in degenerate plasmas like those in the outer shell of massive white dwarfs as well as to the potential applications of plasmas.« less

  5. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  6. Local spin-density-wave order inside vortex cores in multiband superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Vivek; Koshelev, Alexei E.

    Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less

  7. Local spin-density-wave order inside vortex cores in multiband superconductors

    DOE PAGES

    Mishra, Vivek; Koshelev, Alexei E.

    2015-08-13

    Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less

  8. Temperature dependences of the electric polarization and wave number of incommensurate structures in multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, S. A., E-mail: pikin@ns.crys.ras.ru

    2016-05-15

    It is shown that the electric polarization and wave number of incommensurate modulations, proportional to each other, increase according to the Landau law in spin multiferroic cycloids near the Néel temperature. In this case, the constant magnetization component (including the one for a conical spiral) is oriented perpendicular to the spin incommensurability wave vector. A similar temperature behavior should manifest itself for spin helicoids, the axes of which are oriented parallel to the polarization vector but their spin rotation planes are oriented perpendicular to the antiferromagnetic order plane. When the directions of axes of the magnetization helicoid and polarization vectormore » coincide, the latter is quadratic with respect to magnetization and linearly depends on temperature, whereas the incommensurate-modulation wave number barely depends on temperature. Structural distortions of unit cells for multiferroics of different types determine their axial behavior.« less

  9. Dirty two-band superconductivity with interband pairing order

    NASA Astrophysics Data System (ADS)

    Asano, Yasuhiro; Sasaki, Akihiro; Golubov, Alexander A.

    2018-04-01

    We study theoretically the effects of random nonmagnetic impurities on the superconducting transition temperature T c in a two-band superconductor characterized by an equal-time s-wave interband pairing order parameter. Because of the two-band degree of freedom, it is possible to define a spin-triplet s-wave pairing order parameter as well as a spin-singlet s-wave order parameter. The former belongs to odd-band-parity symmetry class, whereas the latter belongs to even-band-parity symmetry class. In a spin-singlet superconductor, T c is insensitive to the impurity concentration when we estimate the self-energy due to the random impurity potential within the Born approximation. On the other hand in a spin-triplet superconductor, T c decreases with the increase of the impurity concentration. We conclude that Cooper pairs belonging to odd-band-parity symmetry class are fragile under the random impurity potential even though they have s-wave pairing symmetry.

  10. Photodrive of magnetic bubbles via magnetoelastic waves

    PubMed Central

    Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori

    2015-01-01

    Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets. PMID:26150487

  11. Photodrive of magnetic bubbles via magnetoelastic waves.

    PubMed

    Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori

    2015-07-21

    Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets.

  12. Femtosecond laser excitation of multiple spin waves and composition dependence of Gilbert damping in full-Heusler Co{sub 2}Fe{sub 1−x}Mn{sub x}Al films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chuyuan; Li, Shufa; Lai, Tianshu, E-mail: stslts@mail.sysu.edu.cn, E-mail: jhzhao@red.semi.ac.cn

    2013-12-02

    Spin-wave dynamics in 30 nm thick Co{sub 2}Fe{sub 1−x}Mn{sub x}Al full-Heusler films is investigated using time-resolved magneto-optical polar Kerr spectroscopy under an external field perpendicular to films. Damon-Eshbach (DE) and the first-order perpendicular standing spin-wave (PSSW) modes are observed simultaneously in four samples with x = 0, 0.3, 0.7, and 1. The frequency of DE and PSSW modes does not apparently depend on composition x, but damping of DE mode significantly on x and reaches the minimum as x = 0.7. The efficient coherent excitation of DE spin wave exhibits the promising application of Co{sub 2}Fe{sub 0.3}Mn{sub 0.7}Al films in magnonic devices.

  13. Digital Photoplethysmography for Assessment of Arterial Stiffness: Repeatability and Comparison with Applanation Tonometry

    PubMed Central

    Östling, Gerd; Nilsson, Peter M.

    2015-01-01

    Introduction Arterial stiffness is an independent risk factor for cardiovascular morbidity and can be assessed by applanation tonometry by measuring pulse wave velocity (PWV) and augmentation index (AIX) by pressure pulse wave analysis (PWA). As an inexpensive and operator independent alternative, photoelectric plethysmography (PPG) has been introduced with analysis of the digital volume pulse wave (DPA) and its second derivatives of wave reflections. Objective The objective was to investigate the repeatability of arterial stiffness parameters measured by digital pulse wave analysis (DPA) and the associations to applanation tonometry parameters. Methods and Results 112 pregnant and non-pregnant individuals of different ages and genders were examined with SphygmoCor arterial wall tonometry and Meridian DPA finger photoplethysmography. Coefficients of repeatability, Bland-Altman plots, intraclass correlation coefficients and correlations to heart rate (HR) and body height were calculated for DPA variables, and the DPA variables were compared to tonometry variables left ventricular ejection time (LVET), PWV and AIX. No DPA variable showed any systematic measurement error or excellent repeatability, but dicrotic index (DI), dicrotic dilatation index (DDI), cardiac ejection elasticity index (EEI), aging index (AI) and second derivatives of the crude pulse wave curve, b/a and e/a, showed good repeatability. Overall, the correlations to AIX were better than to PWV, with correlations coefficients >0.70 for EEI, AI and b/a. Considering the level of repeatability and the correlations to tonometry, the overall best DPA parameters were EEI, AI and b/a. The two pansystolic time parameters, ejection time compensated (ETc) by DPA and LVET by tonometry, showed a significant but weak correlation. Conclusion For estimation of the LV function, ETc, EEI and b/a are suitable, for large artery stiffness EEI, and for small arteries DI and DDI. The only global parameter, AI, showed a high repeatability and the overall best correlations with AIX and PWV. PMID:26291079

  14. Measuring Age-Dependent Myocardial Stiffness across the Cardiac Cycle using MR Elastography: A Reproducibility Study

    PubMed Central

    Wassenaar, Peter A; Eleswarpu, Chethanya N; Schroeder, Samuel A; Mo, Xiaokui; Raterman, Brian D; White, Richard D; Kolipaka, Arunark

    2015-01-01

    Purpose To assess reproducibility in measuring left ventricular (LV) myocardial stiffness in volunteers throughout the cardiac cycle using magnetic resonance elastography (MRE) and to determine its correlation with age. Methods Cardiac MRE (CMRE) was performed on 29 normal volunteers, with ages ranging from 21 to 73 years. For assessing reproducibility of CMRE-derived stiffness measurements, scans were repeated per volunteer. Wave images were acquired throughout the LV myocardium, and were analyzed to obtain mean stiffness during the cardiac cycle. CMRE-derived stiffness values were correlated to age. Results Concordance correlation coefficient revealed good inter-scan agreement with rc of 0.77, with p-value<0.0001. Significantly higher myocardial stiffness was observed during end-systole (ES) compared to end-diastole (ED) across all subjects. Additionally, increased deviation between ES and ED stiffness was observed with increased age. Conclusion CMRE-derived stiffness is reproducible, with myocardial stiffness changing cyclically across the cardiac cycle. Stiffness is significantly higher during ES compared to ED. With age, ES myocardial stiffness increases more than ED, giving rise to an increased deviation between the two. PMID:26010456

  15. Spin-wave resonances and surface spin pinning in Ga1-xMnxAs thin films

    NASA Astrophysics Data System (ADS)

    Bihler, C.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2009-01-01

    We investigate the dependence of the spin-wave resonance (SWR) spectra of Ga0.95Mn0.05As thin films on the sample treatment. We find that for the external magnetic field perpendicular to the film plane, the SWR spectrum of the as-grown thin films and the changes upon etching and short-term hydrogenation can be quantitatively explained via a linear gradient in the uniaxial magnetic anisotropy field in growth direction. The model also qualitatively explains the SWR spectra observed for the in-plane easy-axis orientation of the external magnetic field. Furthermore, we observe a change in the effective surface spin pinning of the partially hydrogenated sample, which results from the tail in the hydrogen-diffusion profile. The latter leads to a rapidly changing hole concentration/magnetic anisotropy profile acting as a barrier for the spin-wave excitations. Therefore, short-term hydrogenation constitutes a simple method to efficiently manipulate the surface spin pinning.

  16. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less

  17. Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lim, Jinho; Bang, Wonbae; Trossman, Jonathan; Amanov, Dovran; Ketterson, John B.

    2018-05-01

    We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field.

  18. Non-autonomous multi-rogue waves for spin-1 coupled nonlinear Gross-Pitaevskii equation and management by external potentials.

    PubMed

    Li, Li; Yu, Fajun

    2017-09-06

    We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of these solutions are investigated analytically. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers and super-fluids.

  19. Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films

    NASA Astrophysics Data System (ADS)

    Janantha, P. A. Praveen; Sprenger, Patrick; Hoefer, Mark A.; Wu, Mingzhong

    2017-07-01

    The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y3Fe5O12 thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.

  20. Arterial Wave Reflection and Aortic Valve Calcification in an Elderly Community-Based Cohort

    PubMed Central

    Sera, Fusako; Russo, Cesare; Iwata, Shinichi; Jin, Zhezhen; Rundek, Tatjana; Elkind, Mitchell S.V.; Homma, Shunichi; Sacco, Ralph L.; Di Tullio, Marco R.

    2015-01-01

    Background Aortic valve calcification (AVC) without stenosis is common in the elderly, is associated with cardiovascular morbidity and mortality, and may progress to aortic valve stenosis. Arterial stiffness and pulse wave reflection are important components of proximal aortic hemodynamics, but their relationship with AVC is not established. Methods To investigate the relationship of arterial wave reflection and stiffness with AVC, pulse wave analysis and AVC evaluation by echocardiography were performed in 867 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study. Participants were divided into 4 categories based on the severity and extent of AVC: 1) none or mild focal AVC; 2) mild diffuse AVC; 3) moderate-severe focal AVC; and 4) moderate-severe diffuse AVC. Central blood pressures and pulse pressure, total arterial compliance, augmentation index, and time to wave reflection were assessed using applanation tonometry. Results Indicators of arterial stiffness and wave reflection were significantly associated with AVC severity, except for central systolic and diastolic pressures and time to reflection. After adjustment for pertinent covariates (age, sex, race/ethnicity, and eGFR), only augmentation pressure (P = .02) and augmentation index (P = .002) were associated with the severity of AVC. Multivariable logistic regression analysis revealed that augmentation pressure (odds ratio per mmHg = 1.14; 95% confidence interval, 1.02–1.27; P = .02) and augmentation index (odds ratio per percentage point = 1.07; 95% confidence interval, 1.01–1.13; P = .02) were associated with an increase risk of moderate-severe diffuse AVC, even when central blood pressure value was included in the same model. Conclusions Arterial wave reflection is associated with AVC severity, independent of blood pressure values. Increased contribution of wave reflection to central blood pressure could be involved in the process leading to AVC. PMID:25600036

  1. Biomechanical Analysis of an Expandable Lumbar Interbody Spacer.

    PubMed

    Soriano-Baron, Hector; Newcomb, Anna G U S; Malhotra, Devika; Palma, Atilio E; Martinez-Del-Campo, Eduardo; Crawford, Neil R; Theodore, Nicholas; Kelly, Brian P; Kaibara, Taro

    2018-06-01

    Recently developed expandable interbody spacers are widely accepted in spinal surgery; however, the resulting biomechanical effects of their use have not yet been fully studied. We analyzed the biomechanical effects of an expandable polyetheretherketone interbody spacer inserted through a bilateral posterior approach with and without different modalities of posterior augmentation. Biomechanical nondestructive flexibility testing was performed in 7 human cadaveric lumbar (L2-L5) specimens followed by axial compressive loading. Each specimen was tested under 6 conditions: 1) intact, 2) bilateral L3-L4 cortical screw/rod (CSR) alone, 3) WaveD alone, 4) WaveD + CSR, 5) WaveD + bilateral L3-L4 pedicle screw/rod (PSR), and 6) WaveD + CSR/PSR, where CSR/PSR was a hybrid construct comprising bilateral cortical-level L3 and pedicle-level L4 screws interconnected by rods. The range of motion (ROM) with the interbody spacer alone decreased significantly compared with the intact condition during flexion-extension (P = 0.02) but not during lateral bending or axial rotation (P ≥ 0.19). The addition of CSR or PSR to the interbody spacer alone condition significantly decreased the ROM compared with the interbody spacer alone (P ≤ 0.002); and WaveD + CSR, WaveD + PSR, and WaveD + CSR/PSR (hybrid) (P ≥ 0.29) did not differ. The axial compressive stiffness (resistance to change in foraminal height during compressive loading) with the interbody spacer alone did not differ from the intact condition (P = 0.96), whereas WaveD + posterior instrumentation significantly increased compressive stiffness compared with the intact condition and the interbody spacer alone (P ≤ 0.001). The WaveD alone significantly reduced ROM during flexion-extension while maintaining the axial compressive stiffness. CSR, PSR, and CSR/PSR hybrid constructs were all effective in augmenting the expandable interbody spacer system and improving its stability. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Dynamics of periodic mechanical structures containing bistable elastic elements: From elastic to solitary wave propagation

    NASA Astrophysics Data System (ADS)

    Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M.

    2014-08-01

    We investigate the nonlinear dynamics of a periodic chain of bistable elements consisting of masses connected by elastic springs whose constraint arrangement gives rise to a large-deformation snap-through instability. We show that the resulting negative-stiffness effect produces three different regimes of (linear and nonlinear) wave propagation in the periodic medium, depending on the wave amplitude. At small amplitudes, linear elastic waves experience dispersion that is controllable by the geometry and by the level of precompression. At moderate to large amplitudes, solitary waves arise in the weakly and strongly nonlinear regime. For each case, we present closed-form analytical solutions and we confirm our theoretical findings by specific numerical examples. The precompression reveals a class of wave propagation for a partially positive and negative potential. The presented results highlight opportunities in the design of mechanical metamaterials based on negative-stiffness elements, which go beyond current concepts primarily based on linear elastic wave propagation. Our findings shed light on the rich effective dynamics achievable by nonlinear small-scale instabilities in solids and structures.

  3. Generalized spin-wave theory: Application to the bilinear-biquadratic model

    NASA Astrophysics Data System (ADS)

    Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.

    2014-08-01

    We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.

  4. Effect of omega-3 polyunsaturated fatty acid supplementation on central arterial stiffness and arterial wave reflections in young and older healthy adults

    PubMed Central

    Monahan, Kevin D; Feehan, Robert P; Blaha, Cheryl; McLaughlin, Daniel J

    2015-01-01

    Increased central arterial stiffness and enhanced arterial wave reflections may contribute to increased risk of cardiovascular disease development with advancing age. Omega-3 polyunsaturated fatty acid (n-3) ingestion may reduce cardiovascular risk via favorable effects exerted on arterial structure and function. We determined the effects of n-3 supplementation (4 g/day for 12 weeks) on important measures of central arterial stiffness (carotid-femoral pulse wave velocity; PWV) and arterial wave reflection (central augmentation index) in young (n = 12; 25 ± 1-year-old, mean ± SE) and older (n = 12; 66 ± 2) healthy adults. We hypothesized that n-3 supplementation would decrease carotid-femoral PWV and central augmentation index in older adults. Our results indicate that carotid-femoral PWV and central augmentation index were greater in older (988 ± 65 cm/sec and 33 ± 2%) than in young adults (656 ± 16 cm/sec and 3 ± 4%: both P < 0.05 compared to older) before the intervention (Pre). N-3 supplementation decreased carotid-femoral PWV in older (Δ-9 ± 2% Precompared to Post; P < 0.05), but not young adults (Δ2 ± 3%). Central augmentation index was unchanged by n-3 supplementation in young (3 ± 4 vs. 0 ± 4% for Pre and Post, respectively) and older adults (33 ± 2 vs. 35 ± 3%). Arterial blood pressure at rest, although increased with age, was not altered by n-3 supplementation in young or older adults. Collectively, these data indicate that 12 weeks of daily n-3 supplementation decreases an important measure of central arterial stiffness (carotid-femoral PWV) in older, but not young healthy adults. The mechanism underlying decreased central arterial stiffness with n-3 supplementation is unknown, but appears to be independent of effects on arterial blood pressure or arterial wave reflections. PMID:26109192

  5. Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion.

    PubMed

    Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu

    2018-03-22

    The aim of this study was to investigate the acute repeated bouts of aerobic exercise decrease leg arterial stiffness. However, the influence of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion is unknown. The present study investigates the acute effects of repeated bouts of aerobic exercise on arterial stiffness after the 75-g oral glucose tolerance test (OGTT). Ten healthy young men (age, 23.2 ± 0.9 years) performed repeated bouts of aerobic exercise trial (RE, 65% peak oxygen uptake; two 15 min bouts of cycling performed 20 min apart) and control trial (CON, seated and resting in a quiet room) at 80 min before the 75-g OGTT on separate days in a randomized, controlled crossover fashion. Carotid-femoral (aortic) and femoral-ankle (leg) pulse wave velocity, carotid augmentation index, brachial and ankle blood pressure, heart rate and blood glucose and insulin levels were measured before (baseline) and 30, 60 and 120 min after the 75-g OGTT. Leg pulse wave velocity, ankle systolic blood pressure and blood glucose levels increased from baseline after the 75-g OGTT in the CON trial, but not in the RE trial. The present findings indicate that acute repeated bouts of aerobic exercise before glucose ingestion suppress increases in leg arterial stiffness following glucose ingestion. RE trial repeated bouts of aerobic exercise trial; CON trial control trial; BG blood glucose; VO 2peak peak oxygen uptake; PWV Pulse wave velocity; AIx carotid augmentation index; BP blood pressure; HR heart rate; CVs coefficients of variation; RPE Ratings of perceived exertion; SE standard error.

  6. Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects.

    PubMed

    Wu, Hsien-Tsai; Liu, Cyuan-Cin; Lin, Po-Hsun; Chung, Hui-Ming; Liu, Ming-Chien; Yip, Hon-Kan; Liu, An-Bang; Sun, Cheuk-Kwan

    2010-11-01

    Although contour analysis of pulse waves has been proposed as a non-invasive means in assessing arterial stiffness in atherosclerosis, accurate determination of the conventional parameters is usually precluded by distorted waveforms in the aged and atherosclerotic objects. We aimed at testing reliable indices in these patient populations. Digital volume pulse (DVP) curve was obtained from 428 subjects recruited from a health screening program at a single medical center from January 2007 to July 2008. Demographic data, blood pressure, and conventional parameters for contour analysis including pulse wave velocity (PWV), crest time (CT), stiffness index (SI), and reflection index (RI) were recorded. Two indices including normalized crest time (NCT) and crest time ratio (CTR) were also analysed and compared with the known parameters. Though ambiguity of dicrotic notch precluded an accurate determination of the two key conventional parameters for assessing arterial stiffness (i.e. SI and RI), NCT and CTR were unaffected because the sum of CT and T(DVP) (i.e. the duration between the systolic and diastolic peak) tended to remain constant. NCT and CTR also correlated significantly with age, systolic and diastolic blood pressure, PWV, SI and RI (all P<0.01). NCT and CTR not only showed significant positive correlations with the conventional parameters for assessment of atherosclerosis (i.e. SI, RI, and PWV), but they also are of particular value in assessing degree of arterial stiffness in subjects with indiscernible peak of diastolic wave that precludes the use of conventional parameters in waveform contour analysis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking

    PubMed Central

    Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.

    2017-01-01

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049

  8. Automated liver elasticity calculation for 3D MRE

    NASA Astrophysics Data System (ADS)

    Dzyubak, Bogdan; Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.

    2017-03-01

    Magnetic Resonance Elastography (MRE) is a phase-contrast MRI technique which calculates quantitative stiffness images, called elastograms, by imaging the propagation of acoustic waves in tissues. It is used clinically to diagnose liver fibrosis. Automated analysis of MRE is difficult as the corresponding MRI magnitude images (which contain anatomical information) are affected by intensity inhomogeneity, motion artifact, and poor tissue- and edge-contrast. Additionally, areas with low wave amplitude must be excluded. An automated algorithm has already been successfully developed and validated for clinical 2D MRE. 3D MRE acquires substantially more data and, due to accelerated acquisition, has exacerbated image artifacts. Also, the current 3D MRE processing does not yield a confidence map to indicate MRE wave quality and guide ROI selection, as is the case in 2D. In this study, extension of the 2D automated method, with a simple wave-amplitude metric, was developed and validated against an expert reader in a set of 57 patient exams with both 2D and 3D MRE. The stiffness discrepancy with the expert for 3D MRE was -0.8% +/- 9.45% and was better than discrepancy with the same reader for 2D MRE (-3.2% +/- 10.43%), and better than the inter-reader discrepancy observed in previous studies. There were no automated processing failures in this dataset. Thus, the automated liver elasticity calculation (ALEC) algorithm is able to calculate stiffness from 3D MRE data with minimal bias and good precision, while enabling stiffness measurements to be fully reproducible and to be easily performed on the large 3D MRE datasets.

  9. Triglyceride to HDL-C ratio and increased arterial stiffness in children, adolescents, and young adults.

    PubMed

    Urbina, Elaine M; Khoury, Philip R; McCoy, Connie E; Dolan, Lawrence M; Daniels, Stephen R; Kimball, Thomas R

    2013-04-01

    Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases.

  10. Triglyceride to HDL-C Ratio and Increased Arterial Stiffness in Children, Adolescents, and Young Adults

    PubMed Central

    Khoury, Philip R.; McCoy, Connie E.; Dolan, Lawrence M.; Daniels, Stephen R.; Kimball, Thomas R.

    2013-01-01

    BACKGROUND AND OBJECTIVE: Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. METHODS: Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). RESULTS: There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. CONCLUSIONS: TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases. PMID:23460684

  11. A waved journal bearing concept with improved steady-state and dynamic performance

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1994-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  12. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease.

    PubMed

    Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T

    2017-03-01

    Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P < .001). Agreement was excellent for measured stiffness between five reviewers for both 2D GRE (ICC, 0.97; 95% confidence interval: 0.95, 0.98) and 2D SE-EPI (ICC, 0.98; 95% confidence interval: 0.96, 0.99). Mean ICC (n = 5) for agreement between 2D GRE and 2D SE-EPI MR elastography was 0.93 (range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.

  13. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: a validation study.

    PubMed

    Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam

    2013-02-01

    Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al(2)O(3) particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al(2)O(3). The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al(2)O(3) phantom at a depth of 52.4 and 36.6 mm, respectively. PAA mixed with Al(2)O(3) provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal prostate tissue.

  14. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study

    PubMed Central

    Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam

    2013-01-01

    Purpose: Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Methods: Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Results: Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al2O3 particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al2O3. The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al2O3 phantom at a depth of 52.4 and 36.6 mm, respectively. Conclusions: PAA mixed with Al2O3 provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal prostate tissue. PMID:23387774

  15. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  16. Bias-free spin-wave phase shifter for magnonic logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei

    2016-06-15

    A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.

  17. Spin waves in micro-structured yttrium iron garnet nanometer-thick films

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; ...

    2015-03-24

    Here, we investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of 40 nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spinwave amplitude of 10 μm was observed. This leads to an estimated Gilbert damping constant of α = (8.79 ± 0.73) x 10 $-$4, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. Furthermore, we compared the theoretically calculated spatial interference of waveguide modes to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.

  18. Intrinsic superspin Hall current

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  19. Electromagnetic wave propagating along a space curve

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi

    2018-03-01

    By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.

  20. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    NASA Astrophysics Data System (ADS)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  1. Effects of Accretion Disks on Spins and Eccentricities of Binaries, and Implications for Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Baker, John

    2012-01-01

    Effects of accretion disks on spins and eccentricities of binaries, and implications for gravitational waves. John Baker Space-based gravitational wave observations will allow exquisitely precise measurements of massive black hole binary properties. Through several recently suggested processes, these properties may depend on interactions with accretion disks through the merger process. I will discuss ways that accretion may influence those binary properties which may be probed by gravitational-wave observations.

  2. Gravitational wave emission from oscillating millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  3. Excitations of breathers and rogue wave in the Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Wen; Duan, Liang; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We study the excitations of breathers and rogue wave in a classical Heisenberg spin chain with twist interaction, which is governed by a fourth-order integrable nonlinear Schrödinger equation. The dynamics of these waves have been extracted from an exact solution. In particular, the corresponding existence conditions based on the parameters of perturbation wave number K, magnon number N, background wave vector ks and amplitude c are presented explicitly. Furthermore, the characteristics of magnetic moment distribution corresponding to these nonlinear waves are also investigated in detail. Finally, we discussed the state transition of three types nonlinear localized waves under the different excitation conditions.

  4. Out-of-equilibrium dynamics of photoexcited spin-state concentration waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Andrea; Buron-Le Cointe, M.; Lorenc, M.

    2015-01-28

    The spin crossover compound [Fe IIH 2L 2-Me][PF 6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. Lastly, by combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSCW

  5. Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Gu, Chenjie; Zhou, Yan; Fangohr, Hans

    2017-07-01

    We theoretically investigate the spin-wave (magnon) excitations in a classical antiferromagnetic spin chain with easy-axis anisotropy. We obtain a Dirac-like equation by linearizing the Landau-Lifshitz-Gilbert equation in this antiferromagnetic system, in contrast to the ferromagnetic system in which a Schrödinger-type equation is derived. The Hamiltonian operator in the Dirac-like equation is a pseudo-Hermitian. We compute and demonstrate relativistic Zitterbewegung (trembling motion) in the antiferromagnetic spin chain by measuring the expectation values of the wave-packet position.

  6. Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.

    2018-05-01

    We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.

  7. Are rapid changes in brain elasticity possible?

    NASA Astrophysics Data System (ADS)

    Parker, K. J.

    2017-09-01

    Elastography of the brain is a topic of clinical and preclinical research, motivated by the potential for viscoelastic measures of the brain to provide sensitive indicators of pathological processes, and to assist in early diagnosis. To date, studies of the normal brain and of those with confirmed neurological disorders have reported a wide range of shear stiffness and shear wave speeds, even within similar categories. A range of factors including the shear wave frequency, and the age of the individual are thought to have a possible influence. However, it may be that short term dynamics within the brain may have an influence on the measured stiffness. This hypothesis is addressed quantitatively using the framework of the microchannel flow model, which derives the tissue stiffness, complex modulus, and shear wave speed as a function of the vascular and fluid network in combination with the elastic matrix that comprise the brain. Transformation rules are applied so that any changes in the fluid channels or the elastic matrix can be mapped to changes in observed elastic properties on a macroscopic scale. The results are preliminary but demonstrate that measureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic or electrochemical changes in the state of any region of the brain. The value of this preliminary exploration is to identify possible mechanisms and order-of-magnitude changes that may be testable in vivo by specialized protocols.

  8. Glycated hemoglobin correlates with arterial stiffness and endothelial dysfunction in patients with resistant hypertension and uncontrolled diabetes mellitus.

    PubMed

    Moreno, Beatriz; de Faria, Ana Paula; Ritter, Alessandra Mileni Versuti; Yugar, Lara Buonalumi Tacito; Ferreira-Melo, Silvia Elaine; Amorim, Rivadavio; Modolo, Rodrigo; Fattori, André; Yugar-Toledo, Juan Carlos; Coca, Antonio; Moreno, Heitor

    2018-05-01

    This study aimed to evaluate the effects of glycated hemoglobin (HbA 1c ) on flow-mediated dilation, intima-media thickness, pulse wave velocity, and left ventricular mass index in patients with resistant hypertension (RHTN) comparing RHTN-controlled diabetes mellitus and RHTN-uncontrolled type 2 diabetes mellitus. Two groups were formed: HbA 1c <7.0% (RHTN-controlled diabetes mellitus: n = 98) and HbA 1c ≥7.0% (RHTN-uncontrolled diabetes mellitus: n = 122). Intima-media thickness and flow-mediated dilation were measured by high-resolution ultrasound, left ventricular mass index by echocardiography, and arterial stiffness by carotid-femoral pulse wave velocity. No differences in blood pressure levels were found between the groups but body mass index was higher in patients with RHTN-uncontrolled diabetes mellitus. Endothelial dysfunction and arterial stiffness were worse in patients with RHTN-uncontrolled diabetes mellitus. Intima-media thickness and left ventricular mass index measurements were similar between the groups. After adjustments, multiple linear regression analyses showed that HbA 1c was an independent predictor of flow-mediated dilation and pulse wave velocity in all patients with RHTN. In conclusion, HbA 1c may predict the grade of arterial stiffness and endothelial dysfunction in patients with RHTN, and superimposed uncontrolled diabetes mellitus implicates further impairment of vascular function. ©2018 Wiley Periodicals, Inc.

  9. Morning blood pressure surge and arterial stiffness in newly diagnosed hypertensive patients.

    PubMed

    Kıvrak, Ali; Özbiçer, Süleyman; Kalkan, Gülhan Yüksel; Gür, Mustafa

    2017-06-01

    We aimed to investigate the relationship between the morning blood pressure (BP) surge and arterial stiffness in patients with newly diagnosed hypertension. Three hundred and twenty four (mean age 51.7 ± 11.4 years) patients who had newly diagnosed hypertension with 24 h ambulatory BP monitoring were enrolled. Parameters of arterial stiffness, pulse wave velocity and augmentation index (Aix) were measured by applanation tonometry and aortic distensibility was calculated by echocardiography. Compared with the other groups, pulse wave velocity, day-night systolic BP (SBP) difference (p < 0.001, for all) and hs-CRP (p = 0.005) were higher in morning BP surge high group. Aortic distensibility values were significantly lower in morning BP surge high group compared to the other groups (p < 0.05, for all). Morning BP surge was found to be independently associated with pulse wave velocity (β = 0.286, p < 0.001), aortic distensibility (β= -0.384, p < 0.001) and day-night SBP difference (β = 0.229, p < 0.001) in multivariate linear regression analysis. We found independent relationship between morning BP surge and arterial stiffness which is a surrogate endpoint for cardiovascular diseases. The inverse relationship between morning BP surge and aortic distensibility and direct relation found in our study is new to the literature.

  10. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2014-01-01

    Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.

  11. Branching and resonant characteristics of surface plasma waves in a semi-bounded quantum plasma including spin-current effects

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Gwanyong; Jung, Young-Dae

    2018-05-01

    The dispersion relation for the waves propagating on the surface of a bounded quantum plasma with consideration of electron spin-current and ion-stream is derived and numerically investigated. We have found that one of the real parts of the wave frequency has the branching behavior beyond the instability domains. In such a region where the frequency branching occurs, the waves exhibit purely propagating mode. The resonant instability has also been investigated. We have found that when the phase velocity of the wave is close to the velocity of ion-stream the wave becomes unstable. However, the resonant growth rate is remarkably reduced by the effect of electron spin-current. The growth rate is also decreased by either the reduction of ion-stream velocity or the increase in quantum wavelength. Thus, the quantum effect in terms of the quantum wave number is found to suppress the resonant instability. It is also found that the increase in Fermi energy can reduce the growth rate of the resonant wave in the quantum plasma.

  12. Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.

    PubMed

    Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  13. Dynamics of a fluid-driven crack in three dimensions by the finite difference method

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard

    1986-12-01

    The finite difference method is applied to the study of the dynamics of a three-dimensional fluid-filled crack excited into resonance by the sudden failure of a small barrier of area ΔS on the crack surface. The impulse response of the crack is examined for various ratios of crack width to crack length and for several values of the crack stiffness C = (b/μ)(L/d), where b is the bulk modulus of the fluid, μ is the rigidity of the solid, and L and d are the crack length and crack thickness, respectively. The motion of the crack is characterized by distinct time scales representing the duration of brittle failure and the periods of acoustic resonance in the lateral and longitudinal dimensions of the source. The rupture has a duration proportional to the area of crack expansion and is the trigger responsible for the excitation of the crack into resonance; the resonant periods are proportional to the crack stiffness and to the width and length of the crack. The crack wave sustaining the resonance is analogous to the tube wave propagating in a fluid-filled borehole. It is dispersive, showing a phase velocity that decreases with increasing wavelength. Its wave speed is always lower than the acoustic velocity of the fluid and shows a strong dependence on the crack stiffness, decreasing as the stiffness increases. The initial motion of the crack surface is an opening, and the radiated far-field compressional wave starts with a strong but brief compression which has a duration proportional to the crack stiffness and size of the rupture area; the amplitude of this pulse increases with the area of rupture but decreases with increasing stiffness. Flow into the newly created cavity triggers a pressure drop in the fluid, which produces a partial collapse of the wall propagated over the crack surface at the speed of the crack wave. The collapse of the crack surface generates a weak long-period component of dilatation following the compressional first motion in the far-field P wave train; the dilatational component is clearer in the signal from stiffer cracks when seen in the direction of the rupture. The energy loss by radiation is stronger for high frequencies, resulting in a progressive enrichment of the crack response in lower frequencies over the duration of resonance. These source characteristics translate into a far-field signature that is marked by a high-frequency content near its onset and dominated by a longer-period component in its coda. The source duration shows a strong dependence on the fluid viscosity and associated viscous damping at the crack wall.

  14. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  15. Acupuncture therapy improves vascular hemodynamics and stiffness in middle-age hypertensive individuals.

    PubMed

    Terenteva, Nina; Chernykh, Oksana; Sanchez-Gonzalez, Marcos A; Wong, Alexei

    2018-02-01

    Acupuncture (ACU) is becoming a more common practice among hypertensive individuals. However, the reported therapeutic effects of ACU in lowering brachial blood pressure (BP) are ambiguous. Therefore, evaluating more sensitive markers of arterial functioning might unveil the protective effects of ACU on hypertension. We examined the effects of an 8-week ACU therapy intervention on vascular hemodynamics and stiffness in middle-age hypertensive individuals. Participants were randomly assigned to either ACU (n = 23) or a control group (n = 22). Brachial and aortic BP, wave reflection (AIx) and arterial stiffness (SI) were measured before and after 8 weeks. There was a significant group x time interaction (P < 0.05) for brachial and aortic BP, AIx and SI which significantly decreased (P < 0.05) following ACU but not after control. ACU led to reductions in brachial and aortic BP, wave reflection and arterial stiffness in middle-age hypertensive individuals. ACU might be effective in the prevention and treatment of hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  17. Reliability of Leg and Vertical Stiffness During High Speed Treadmill Running.

    PubMed

    Pappas, Panagiotis; Dallas, Giorgos; Paradisis, Giorgos

    2017-04-01

    In research, the accurate and reliable measurement of leg and vertical stiffness could contribute to valid interpretations. The current study aimed at determining the intraparticipant variability (ie, intraday and interday reliabilities) of leg and vertical stiffness, as well as related parameters, during high speed treadmill running, using the "sine-wave" method. Thirty-one males ran on a treadmill at 6.67 m∙s -1 , and the contact and flight times were measured. To determine the intraday reliability, three 10-s running bouts with 10-min recovery were performed. In addition, to examine the interday reliability, three 10-s running bouts on 3 separate days with 48-h interbout intervals were performed. The reliability statistics included repeated-measure analysis of variance, average intertrial correlations, intraclass correlation coefficients (ICCs), Cronbach's α reliability coefficient, and the coefficient of variation (CV%). Both intraday and interday reliabilities were high for leg and vertical stiffness (ICC > 0.939 and CV < 4.3%), as well as related variables (ICC > 0.934 and CV < 3.9%). It was thus inferred that the measurements of leg and vertical stiffness, as well as the related parameters obtained using the "sine-wave" method during treadmill running at 6.67 m∙s -1 , were highly reliable, both within and across days.

  18. Simultaneous laser excitation of backward volume and perpendicular standing spin waves in full-Heusler Co2FeAl0.5Si0.5 films

    PubMed Central

    Chen, Zhifeng; Yan, Yong; Li, Shufa; Xu, Xiaoguang; Jiang, Yong; Lai, Tianshu

    2017-01-01

    Spin-wave dynamics in full-Heusler Co2FeAl0.5Si0.5 films are studied using all-optical pump-probe magneto-optical polar Kerr spectroscopy. Backward volume magnetostatic spin-wave (BVMSW) mode is observed in films with thickness ranging from 20 to 100 nm besides perpendicular standing spin-wave (PSSW) mode, and found to be excited more efficiently than the PSSW mode. The field dependence of the effective Gilbert damping parameter appears especial extrinsic origin. The relationship between the lifetime and the group velocity of BVMSW mode is revealed. The frequency of BVMSW mode does not obviously depend on the film thickness, but the lifetime and the effective damping appear to do so. The simultaneous excitation of BVMSW and PSSW in Heusler alloy films as well as the characterization of their dynamic behaviors may be of interest for magnonic and spintronic applications. PMID:28195160

  19. Spin-dependent analysis of two-dimensional electron liquids

    NASA Astrophysics Data System (ADS)

    Bulutay, C.; Tanatar, B.

    2002-05-01

    Two-dimensional electron liquid (2D EL) at full Fermi degeneracy is revisited, giving special attention to the spin-polarization effects. First, we extend the recently proposed classical-map hypernetted-chain (CHNC) technique to the 2D EL, while preserving the simplicity of the original proposal. An efficient implementation of CHNC is given utilizing Lado's quadrature expressions for the isotropic Fourier transforms. Our results indicate that the paramagnetic phase stays to be the ground state until the Wigner crystallization density, even though the energy separation with the ferromagnetic and other partially polarized states become minute. We analyze compressibility and spin stiffness variations with respect to density and spin polarization, the latter being overlooked until now. Spin-dependent static structure factor and pair-distribution functions are computed; agreement with the available quantum Monte Carlo data persists even in the strong-coupling regime of the 2D EL.

  20. Local NMR relaxation rates T1-1 and T2-1 depending on the d -vector symmetry in the vortex state of chiral and helical p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenta K.; Ichioka, Masanori; Onari, Seiichiro

    2018-04-01

    Local NMR relaxation rates in the vortex state of chiral and helical p -wave superconductors are investigated by the quasiclassical Eilenberger theory. We calculate the spatial and resonance frequency dependences of the local NMR spin-lattice relaxation rate T1-1 and spin-spin relaxation rate T2-1. Depending on the relation between the NMR relaxation direction and the d -vector symmetry, the local T1-1 and T2-1 in the vortex core region show different behaviors. When the NMR relaxation direction is parallel to the d -vector component, the local NMR relaxation rate is anomalously suppressed by the negative coherence effect due to the spin dependence of the odd-frequency s -wave spin-triplet Cooper pairs. The difference between the local T1-1 and T2-1 in the site-selective NMR measurement is expected to be a method to examine the d -vector symmetry of candidate materials for spin-triplet superconductors.

  1. Sonographic evaluation of the immediate effects of eccentric heel drop exercise on Achilles tendon and gastrocnemius muscle stiffness using shear wave elastography

    PubMed Central

    Leung, Wilson K.C.; Chu, KL

    2017-01-01

    Background Mechanical loading is crucial for muscle and tendon tissue remodeling. Eccentric heel drop exercise has been proven to be effective in the management of Achilles tendinopathy, yet its induced change in the mechanical property (i.e., stiffness) of the Achilles tendon (AT), medial and lateral gastrocnemius muscles (MG and LG) was unknown. Given that shear wave elastography has emerged as a powerful tool in assessing soft tissue stiffness with promising intra- and inter-operator reliability, the objective of this study was hence to characterize the stiffness of the AT, MG and LG in response to an acute bout of eccentric heel drop exercise. Methods Forty-five healthy young adults (36 males and nine females) performed 10 sets of 15-repetition heel drop exercise on their dominant leg with fully-extended knee, during which the AT and gastrocnemius muscles, but not soleus, were highly stretched. Before and immediately after the heel drop exercise, elastic moduli of the AT, MG and LG were measured by shear wave elastography. Results After the heel drop exercise, the stiffness of AT increased significantly by 41.8 + 33.5% (P < 0.001), whereas the increases in the MG and LG stiffness were found to be more drastic by 75 + 47.7% (P < 0.001) and 71.7 + 51.8% (P < 0.001), respectively. Regarding the AT, MG and LG stiffness measurements, the inter-operator reliability was 0.940, 0.987 and 0.986, and the intra-operator reliability was 0.916 to 0.978, 0.801 to 0.961 and 0.889 to 0.985, respectively. Discussion The gastrocnemius muscles were shown to bear larger mechanical loads than the AT during an acute bout of eccentric heel drop exercise. The findings from this pilot study shed some light on how and to what extent the AT and gastrocnemius muscles mechanically responds to an isolated set of heel drop exercise. Taken together, appropriate eccentric load might potentially benefit mechanical adaptations of the AT and gastrocnemius muscles in the rehabilitation of patients with Achilles tendinopathy. PMID:28740756

  2. Spin waves, vortices, fermions, and duality in the Ising and Baxter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogilvie, M.C.

    1981-10-15

    Field-theoretic methods are applied to a number of two-dimensional lattice models with Abelian symmetry groups. It is shown, using a vortex+spin-wave decomposition, that the Z/sub p/-Villain models are related to a class of continuum field theories with analogous duality properties. Fermion operators for these field theories are discussed. In the case of the Ising model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory in the continuum limit. The continuum limit of the Baxter model is also studied, and the recent results of Kadanoff and Brown are rederived and extended.

  3. Observation of spin waves in Pd(1. 5% Fe). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, J.W.; Rhyne, J.J.; Budnick, J.I.

    1982-01-01

    Inelastic neutron scattering measurements have been carried out on the giant-moment alloy system Pd(1.5% Fe), which is in the dilute ferromagnetic regime. Below the Curie temperature of 67K, relatively well-defined spin-wave excitations have been observed in the small wavevector region (Q < 0.14/A). The dispersion of these excitations is consistent with the quadratic relation E = D(Q/sup 2/) expected for an isotropic ferromagnet, with D = 40 meV-(A/sup 2/) at a temperature of the 40K. With increasing temperature, the spin waves are found to renormalize in energy, and broaden rapidly both with increasing Q and increasing temperature.

  4. Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baramsai, B.; Mitchell, G. E.; Chyzh, A.

    2011-06-01

    A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{supmore » {pi}} = 1{sup -} and 2{sup -}.« less

  5. Surface magnetism in a chiral d -wave superconductor with hexagonal symmetry

    NASA Astrophysics Data System (ADS)

    Goryo, Jun; Imai, Yoshiki; Rui, W. B.; Sigrist, Manfred; Schnyder, Andreas P.

    2017-10-01

    Surface properties are examined in a chiral d -wave superconductor with hexagonal symmetry, whose one-body Hamiltonian possesses intrinsic spin-orbit coupling identical to the one characterizing the topological nature of the Kane-Mele honeycomb insulator. In the normal state, spin-orbit coupling gives rise to spontaneous surface spin currents, whereas in the superconducting state, besides the spin currents, there exist also charge surface currents, due to chiral pairing symmetry. Interestingly, the combination of these two currents results in a surface spin polarization, whose spatial dependence is markedly different on the zigzag and armchair surfaces. We discuss various potential candidate materials, such as SrPtAs, which may exhibit these surface properties.

  6. Wave equations in conformal gravity

    NASA Astrophysics Data System (ADS)

    Du, Juan-Juan; Wang, Xue-Jing; He, You-Biao; Yang, Si-Jiang; Li, Zhong-Heng

    2018-05-01

    We study the wave equation governing massless fields of all spins (s = 0, 1 2, 1, 3 2 and 2) in the most general spherical symmetric metric of conformal gravity. The equation is separable, the solution of the angular part is a spin-weighted spherical harmonic, and the radial wave function may be expressed in terms of solutions of the Heun equation which has four regular singular points. We also consider various special cases of the metric and find that the angular wave functions are the same for all cases, the actual shape of the metric functions affects only the radial wave function. It is interesting to note that each radial equation can be transformed into a known ordinary differential equation (i.e. Heun equation, or confluent Heun equation, or hypergeometric equation). The results show that there are analytic solutions for all the wave equations of massless spin fields in the spacetimes of conformal gravity. This is amazing because exact solutions are few and far between for other spacetimes.

  7. Cross-sectional relations of arterial stiffness, pressure pulsatility, wave reflection, and arterial calcification.

    PubMed

    Tsao, Connie W; Pencina, Karol M; Massaro, Joseph M; Benjamin, Emelia J; Levy, Daniel; Vasan, Ramachandran S; Hoffmann, Udo; O'Donnell, Christopher J; Mitchell, Gary F

    2014-11-01

    Arterial hemodynamics and vascular calcification are associated with increased risk for cardiovascular disease, but their inter-relations remain unclear. We sought to examine the associations of arterial stiffness, pressure pulsatility, and wave reflection with arterial calcification in individuals free of prevalent cardiovascular disease. Framingham Heart Study Third Generation and Offspring Cohort participants free of cardiovascular disease underwent applanation tonometry to measure arterial stiffness, pressure pulsatility, and wave reflection, including carotid-femoral pulse wave velocity, central pulse pressure, forward wave amplitude, and augmentation index. Participants in each cohort (n=1905, 45±6 years and n=1015, 65±9 years, respectively) underwent multidetector computed tomography to assess the presence and quantity of thoracic aortic calcification, abdominal aortic calcification, and coronary artery calcification. In multivariable-adjusted models, both higher carotid-femoral pulse wave velocity and central pulse pressure were associated with greater thoracic aortic calcification and abdominal aortic calcification, whereas higher augmentation index was associated with abdominal aortic calcification. Among the tonometry measures, carotid-femoral pulse wave velocity was the strongest correlate of all calcification measures in multivariable-adjusted models (odds ratio per SD for thoracic aortic calcification, 2.69 [95% confidence interval, 2.17-3.35]; abdominal aortic calcification, 1.47 [95% confidence interval, 1.26-1.73]; and coronary artery calcification, 1.48 [95% confidence interval, 1.28-1.72]; all P<0.001, respectively). We observed stronger relations of carotid-femoral pulse wave velocity, central pulse pressure, and forward wave amplitude with nearly all continuous calcification measures in the younger Third Generation Cohort as compared with the Offspring Cohort. In community-dwelling individuals without prevalent cardiovascular disease, abnormal central arterial hemodynamics were positively associated with vascular calcification and were observed at younger ages than previously recognized. The mechanisms of these associations may be bidirectional and deserve further study. © 2014 American Heart Association, Inc.

  8. Aortic stiffness predicts functional outcome in patients after ischemic stroke.

    PubMed

    Gasecki, Dariusz; Rojek, Agnieszka; Kwarciany, Mariusz; Kubach, Marlena; Boutouyrie, Pierre; Nyka, Walenty; Laurent, Stephane; Narkiewicz, Krzysztof

    2012-02-01

    Increased aortic stiffness (measured by carotid-femoral pulse wave velocity) and central augmentation index have been shown to independently predict cardiovascular events, including stroke. We studied whether pulse wave velocity and central augmentation index predict functional outcome after ischemic stroke. In a prospective study, we enrolled 99 patients with acute ischemic stroke (age 63.7 ± 12.4 years, admission National Institutes of Health Stroke Scale score 6.6 ± 6.6, mean ± SD). Carotid-femoral pulse wave velocity and central augmentation index (SphygmoCor) were measured 1 week after stroke onset. Functional outcome was evaluated 90 days after stroke using the modified Rankin Scale with modified Rankin Scale score of 0 to 1 considered an excellent outcome. In univariate analysis, low carotid-femoral pulse wave velocity (P=0.000001) and low central augmentation index (P=0.028) were significantly associated with excellent stroke outcome. Age, severity of stroke, presence of previous stroke, diabetes, heart rate, and peripheral pressures also predicted stroke functional outcome. In multivariate analysis, the predictive value of carotid-femoral pulse wave velocity (<9.4 m/s) remained significant (OR, 0.21; 95% CI, 0.06-0.79; P=0.02) after adjustment for age, National Institutes of Health Stroke Scale score on admission, and presence of previous stroke. By contrast, central augmentation index had no significant predictive value after adjustment. This study indicates that aortic stiffness is an independent predictor of functional outcome in patients with acute ischemic stroke.

  9. Association of Parental Hypertension With Arterial Stiffness in Nonhypertensive Offspring: The Framingham Heart Study.

    PubMed

    Andersson, Charlotte; Quiroz, Rene; Enserro, Danielle; Larson, Martin G; Hamburg, Naomi M; Vita, Joseph A; Levy, Daniel; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S

    2016-09-01

    High arterial stiffness seems to be causally involved in the pathogenesis of hypertension. We tested the hypothesis that offspring of parents with hypertension may display higher arterial stiffness before clinically manifest hypertension, given that hypertension is a heritable condition. We compared arterial tonometry measures in a sample of 1564 nonhypertensive Framingham Heart Study third-generation cohort participants (mean age: 38 years; 55% women) whose parents were enrolled in the Framingham Offspring Study. A total of 468, 715, and 381 participants had 0 (referent), 1, and 2 parents with hypertension. Parental hypertension was associated with greater offspring mean arterial pressure (multivariable-adjusted estimate=2.9 mm Hg; 95% confidence interval, 1.9-3.9, and 4.2 mm Hg; 95% confidence interval, 2.9-5.5, for 1 and 2 parents with hypertension, respectively; P<0.001 for both) and with greater forward pressure wave amplitude (1.6 mm Hg; 95% confidence interval, 0.6-2.7, and 1.9 mm Hg; 95% confidence interval, 0.6-3.2, for 1 and 2 parents with hypertension, respectively; P=0.003 for both). Carotid-femoral pulse wave velocity and augmentation index displayed similar dose-dependent relations with parental hypertension in sex-, age-, and height-adjusted models, but associations were attenuated on further adjustment. Offspring with at least 1 parent in the upper quartile of augmentation index and carotid-femoral pulse wave velocity had significantly higher values themselves (P≤0.02). In conclusion, in this community-based sample of young, nonhypertensive adults, we observed greater arterial stiffness in offspring of parents with hypertension. These observations are consistent with higher vascular stiffness at an early stage in the pathogenesis of hypertension. © 2016 American Heart Association, Inc.

  10. Current-induced spin wave Doppler shift

    NASA Astrophysics Data System (ADS)

    Bailleul, Matthieu

    2010-03-01

    In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).

  11. Co- and contra-directional vertical coupling between ferromagnetic layers with grating for short-wavelength spin wave generation

    NASA Astrophysics Data System (ADS)

    Graczyk, Piotr; Zelent, Mateusz; Krawczyk, Maciej

    2018-05-01

    The possibility to generate short spin waves (SWs) is of great interest in the field of magnonics nowadays. We present an effective and technically affordable way of conversion of long SWs, which may be generated by conventional microwave antenna, to the short, sub-micrometer waves. It is achieved by grating-assisted resonant dynamic dipolar interaction between two ferromagnetic layers separated by some distance. We analyze criteria for the optimal conversion giving a semi-analytical approach for the coupling coefficient. We show by the numerical calculations the efficient energy transfer between layers which may be either of co-directional or contra-directional type. Such a system may operate either as a short spin wave generator or a frequency filter, moving forward possible application of magnonics.

  12. Lattice Waves, Spin Waves, and Neutron Scattering

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  13. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  14. Magnon detection using a ferroic collinear multilayer spin valve.

    PubMed

    Cramer, Joel; Fuhrmann, Felix; Ritzmann, Ulrike; Gall, Vanessa; Niizeki, Tomohiko; Ramos, Rafael; Qiu, Zhiyong; Hou, Dazhi; Kikkawa, Takashi; Sinova, Jairo; Nowak, Ulrich; Saitoh, Eiji; Kläui, Mathias

    2018-03-14

    Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y 3 Fe 5 O 12 |CoO|Co, we find that the detection amplitude of spin currents emitted by ferromagnetic resonance spin pumping depends on the relative alignment of the Y 3 Fe 5 O 12 and Co magnetization. This yields a spin valve-like behavior with an amplitude change of 120% in our systems. We demonstrate the reliability of the effect and identify its origin by both temperature-dependent and power-dependent measurements.

  15. Second sound experiments in superfluid 3He-A1 phase in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Bastea, Marina

    The Asb1 phase of sp3He is the first observed magnetic superfluid, stable only in the presence of an external magnetic field. Due to the broken relative gauge and spin rotational symmetry, the two associated collective modes, the second sound and the longitudinal spin waves are expected to appear as a single mode which we call the spin-entropy wave. Our work is focused on consistently mapping the behavior of the spin-entropy wave in the superfluid Asb{1} phase of sp3He, under a wide range of experimental conditions. Our results address fundamental questions such as the identification of the order parameter symmetry in the superfluid states, the nature of the pairing state in the Asb1 phase and the superfluid density anisotropy. We extensively investigated the propagation of the spin-entropy wave as a function of temperature, magnetic field between 1 and 8 Tesla and liquid pressure up to 30 bar. Our results show that the superfluid density is directly proportional to the magnitude of the external field in the specified range, as predicted by theory. We discovered that in the vicinity of the transition to the Asb2 phase, over a fairly large temperature range, the spin-entropy wave suffers a divergent attenuation. The observed effects were suggested as evidence for the presence of a minority condensate population, "down spin" pairs, specific for the Asb2 phase, as predicted by Monien and Tewordt. We measured the superfluid density dependence on the pressure between 10 and 30 bar and directly related it to the fourth order coefficients of the Ginzburg-Landau free energy expansion. The pressure dependence of three of these coefficients and their strong coupling corrections was found to be consistent with the theoretical predictions of Sauls and Serene. Our results support the identification of the A phase as the Anderson-Brinkman-Morel axial state and provide an important consistency check for the phase diagram carried out by groups at USC and Cornell. We performed experiments in two different geometries (cylindrical and rectangular) for two relative orientations of the external field and the wave propagation direction, to measure the anisotropy of the superfluid density. We found that the spin-entropy wave propagation exhibits a non-linear character when the external field is perpendicular to the wave-vector. We modeled the textural configuration and the expected response of the system based on the free energy minimization criterion. The results of our theoretical model are in very good agreement with the experimental data.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergely, Laszlo Arpad; Department of Experimental Physics, University of Szeged, Dom ter 9, Szeged 6720; Department of Applied Science, London South Bank University, 103 Borough Road, London SE1 0AA

    We give here a new third post-Newtonian (3PN) spin-spin contribution (in the PN parameter {epsilon}) to the accumulated orbital phase of a compact binary, arising from the spin-orbit precessional motion of the spins. In the equal mass case, this contribution vanishes, but Laser Interferometer Space Antenna (LISA) sources of merging supermassive binary black holes have typically a mass ratio of 1:10. For such nonequal masses, this 3PN correction is periodic in time, with a period approximately {epsilon}{sup -1} times larger than the period of gravitational waves. We derive a renormalized and simpler expression of the spin-spin coefficient at 2PN, asmore » an average over the time scale of this period of the combined 2PN and 3PN contribution. We also find that for LISA sources the quadrupole-monopole contribution to the phase dominates over the spin-spin contribution, while the self-spin contribution is negligible even for the dominant spin. Finally, we define a renormalized total spin coefficient {sigma} to be employed in the search for gravitational waves emitted by LISA sources.« less

  17. Application of shear-wave elastography to estimate the stiffness of the male striated urethral sphincter during voluntary contractions.

    PubMed

    Stafford, Ryan E; Aljuraifani, Rafeef; Hug, François; Hodges, Paul W

    2017-04-01

    To investigate whether increases in stiffness can be detected in the anatomical region associated with the striated urethral sphincter (SUS) during voluntary activation using shear-wave elastography (SWE); to identify the location and area of the stiffness increase relative to the point of greatest dorsal displacement of the mid urethra (i.e. SUS); and to determine the relationship between muscle stiffness and contraction intensity. In all, 10 healthy men participated. A linear ultrasound (US) transducer was placed mid-sagittal on the perineum adjacent to a pair of electromyography electrodes that recorded non-specific pelvic floor muscle activity. Stiffness in the area expected to contain the SUS was estimated via US SWE at rest and during voluntary pelvic floor muscles contractions to 5%, 10% and 15% maximum. Still image frames were exported for each repetition and analysed with software that detected increases in stiffness above 150% of the resting stiffness. Pelvic floor muscle contraction elicited an increase in stiffness above threshold within the region expected to contain the SUS for all participants and contraction intensities. The mean (SD) ventral-dorsal distance between the centre of the stiffness area and region of maximal motion of the mid-urethra (caused by SUS contraction) was 5.6 (1.8), 6.2 (0.8), and 5.8 (0.7) mm for 5%, 10% and 15% maximal voluntary contraction, respectively. Greater pelvic floor muscle contraction intensity resulted in a concomitant increase in stiffness, which differed between contraction intensities (5% vs 10%, P < 0.001; 5% vs 15%, P < 0.001; 10% vs 15%, P = 0.003). Voluntary contraction of the pelvic floor muscles in men is associated with an area of stiffness increase measured with SWE, which concurs with the expected location of the SUS. The increase in stiffness occurred in association with an increase in perineal surface electromyography activity, providing evidence that stiffness amplitude relates to general pelvic floor muscle contraction intensity. Future applications of SWE may include investigations of patient populations in which dysfunction of the SUS is thought to play an important role, or investigation of the effect of rehabilitation programmes that target this muscle. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  18. Simultaneous MR elastography and diffusion acquisitions: diffusion-MRE (dMRE).

    PubMed

    Yin, Ziying; Magin, Richard L; Klatt, Dieter

    2014-05-01

    To present a new technique for concurrent MR elastography (MRE) and diffusion MRI: diffusion-MRE (dMRE). In dMRE, shear wave motion and MR signal decay due to diffusion are encoded into the phase and magnitude components of the MR signal by using a pair of bipolar gradients for both motion-sensitization and diffusion encoding. The pulse sequence timing is adjusted so that the bipolar gradients are sensitive to both coherent and incoherent intravoxel motions. The shape, number, and duration of the gradient lobes can be adjusted to provide flexibility and encoding efficiency. In this proof-of-concept study, dMRE was validated using a tissue phantom composed of a gel bead embedded in a hydrated mixture of agarose and gelatin. The apparent diffusion coefficient (ADC) and shear stiffness measured using dMRE were compared with results obtained from separate, conventional spin-echo (SE) diffusion and SE-MRE acquisitions. The averaged ADC values (n = 3) for selected ROIs in the beads were (1.75 ± 0.16) μm(2) /ms and (1.74 ± 0.16) μm(2) /ms for SE-diffusion and dMRE methods, respectively. The corresponding shear stiffness values in the beads were (2.45 ± 0.23) kPa and (2.42 ± 0.20) kPa. Simultaneous MRE and diffusion acquisition is feasible and can be implemented with no observable interference between the two methods. Copyright © 2014 Wiley Periodicals, Inc.

  19. A computational model of the cardiovascular system coupled with an upper-arm oscillometric cuff and its application to studying the suprasystolic cuff oscillation wave, concerning its value in assessing arterial stiffness.

    PubMed

    Liang, Fuyou; Takagi, Shu; Himeno, Ryutaro; Liu, Hao

    2013-01-01

    A variety of methods have been proposed to noninvasively assess arterial stiffness using single or multiple oscillometric cuffs. A common pitfall of most of such methods is that the individual-specific accuracy of assessment is not clearly known due to an insufficient understanding of the relationships between the characteristics of cuff oscillometry and cardiovascular properties. To provide a tool for quantitatively investigating such relationships, we developed a computational model of the cardiovascular system coupled with an oscillometric cuff wrapped around the left upper arm. The model was first examined by simulating the inflation-deflation process of the cuff. The simulated results reasonably reproduced the well-established characteristics of cuff oscillometry. The model was then applied to study the oscillation wave generated by a suprasystolic cuff that is currently under considerable debate regarding its validity for assessing aortic stiffness. The simulated results confirmed the experimental observations that the suprasystolic cuff oscillation wave resembles the blood pressure wave in the proximal brachial artery and is characterised by the presence of two systolic peaks. A systemic analysis on the simulation results for various cardiovascular/physiological conditions revealed that neither the time lag nor the height difference between the two peaks is a direct indicator of aortic stiffness. These findings provided useful evidence for explaining the conflicts among previous studies. Finally, it was stressed that although the emphasis of this study has been placed on a suprasystolic upper-arm cuff, the model could be employed to address more issues related to oscillometric cuffs.

  20. Automated Liver Elasticity Calculation for 3D MRE

    PubMed Central

    Dzyubak, Bogdan; Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.

    2017-01-01

    Magnetic Resonance Elastography (MRE) is a phase-contrast MRI technique which calculates quantitative stiffness images, called elastograms, by imaging the propagation of acoustic waves in tissues. It is used clinically to diagnose liver fibrosis. Automated analysis of MRE is difficult as the corresponding MRI magnitude images (which contain anatomical information) are affected by intensity inhomogeneity, motion artifact, and poor tissue- and edge-contrast. Additionally, areas with low wave amplitude must be excluded. An automated algorithm has already been successfully developed and validated for clinical 2D MRE. 3D MRE acquires substantially more data and, due to accelerated acquisition, has exacerbated image artifacts. Also, the current 3D MRE processing does not yield a confidence map to indicate MRE wave quality and guide ROI selection, as is the case in 2D. In this study, extension of the 2D automated method, with a simple wave-amplitude metric, was developed and validated against an expert reader in a set of 57 patient exams with both 2D and 3D MRE. The stiffness discrepancy with the expert for 3D MRE was −0.8% ± 9.45% and was better than discrepancy with the same reader for 2D MRE (−3.2% ± 10.43%), and better than the inter-reader discrepancy observed in previous studies. There were no automated processing failures in this dataset. Thus, the automated liver elasticity calculation (ALEC) algorithm is able to calculate stiffness from 3D MRE data with minimal bias and good precision, while enabling stiffness measurements to be fully reproducible and to be easily performed on the large 3D MRE datasets. PMID:29033488

  1. A novel device for measuring arterial stiffness using finger-toe pulse wave velocity: Validation study of the pOpmètre®.

    PubMed

    Alivon, Maureen; Vo-Duc Phuong, Thao; Vignon, Virginie; Bozec, Erwan; Khettab, Hakim; Hanon, Olivier; Briet, Marie; Halimi, Jean-Michel; Hallab, Magid; Plichart, Matthieu; Mohammedi, Kamel; Marre, Michel; Boutouyrie, Pierre; Laurent, Stéphane

    2015-04-01

    The finger-toe pathway could be a good alternative for assessing arterial stiffness conveniently. To evaluate the accuracy of the pOpmètre®--a new device that measures finger-toe pulse wave velocity (ft-PWV). The pOpmètre has two photodiode sensors, positioned on the finger and the toe. Pulse waves are recorded continuously for 20 seconds, and the difference in pulse wave transit time between toe and finger (ft-TT) is calculated. The travelled distance is estimated using subject height. Study 1 compared ft-PWV with carotid-femoral PWV (cf-PWV) obtained by the reference method (SphygmoCor®) in 86 subjects (mean age 53±20 years), including 69 patients with various pathologies and 17 healthy normotensives. Study 2 compared changes in ft-PWV and cf-PWV during a cold pressor test in 10 healthy subjects. Study 3 assessed repeatability in 45 patients. ft-PWV correlated significantly with cf-PWV (R2=0.43; P<0.0001). A better correlation was found in terms of transit time (R2=0.61; P<0.0001). The discrepancy between transit times was related to age. The cold pressor test induced parallel changes in cf-PWV and ft-PWV, with increased aortic stiffness that was reversible during recovery. Intra-session repeatability was very good, with a coefficient of variation of 4.52%. The pOpmètre® allows measurement of arterial stiffness in routine clinical practice. The greatest advantages of ft-PWV are simplicity, rapidity, feasibility, acceptability by patients and correct agreement with the reference technique. Further studies are needed to adjust for bias and to validate the pOpmètre in larger populations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  3. Estimation of spin contamination error in dissociative adsorption of Au2 onto MgO(0 0 1) surface: First application of approximate spin projection (AP) method to plane wave basis

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-06-01

    Spin contamination error in the total energy of the Au2/MgO system was estimated using the density functional theory/plane-wave scheme and approximate spin projection methods. This is the first investigation in which the errors in chemical phenomena on a periodic surface are estimated. The spin contamination error of the system was 0.06 eV. This value is smaller than that of the dissociation of Au2 in the gas phase (0.10 eV). This is because of the destabilization of the singlet spin state due to the weakening of the Au-Au interaction caused by the Au-MgO interaction.

  4. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE PAGES

    Miao, H.; Lorenzana, J.; Seibold, G.; ...

    2017-11-07

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  5. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  6. Irreversible Markov chains in spin models: Topological excitations

    NASA Astrophysics Data System (ADS)

    Lei, Ze; Krauth, Werner

    2018-01-01

    We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.

  7. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Lorenzana, J.; Seibold, G.

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  8. Unidirectional Spin-Wave-Propagation-Induced Seebeck Voltage in a PEDOT:PSS/YIG Bilayer

    NASA Astrophysics Data System (ADS)

    Wang, P.; Zhou, L. F.; Jiang, S. W.; Luan, Z. Z.; Shu, D. J.; Ding, H. F.; Wu, D.

    2018-01-01

    We clarify the physical origin of the dc voltage generation in a bilayer of a conducting polymer film and a micrometer-thick magnetic insulator Y3Fe5O12 (YIG) film under ferromagnetic resonance and/or spin wave excitation conditions. The previous attributed mechanism, the inverse spin Hall effect in the polymer [Nat. Mater. 12, 622 (2013), 10.1038/nmat3634], is excluded by two control experiments. We find an in-plane temperature gradient in YIG which has the same angular dependence with the generated voltage. Both vanish when the YIG thickness is reduced to a few nanometers. Thus, we argue that the dc voltage is governed by the Seebeck effect in the polymer, where the temperature gradient is created by the nonreciprocal magnetostatic surface spin wave propagation in YIG.

  9. New technique for excitation of bulk and surface spin waves in ferromagnets

    NASA Astrophysics Data System (ADS)

    Bogacz, S. A.; Ketterson, J. B.

    1985-09-01

    A meander-line magnetic transducer is discussed in the context of bulk and surface spin-wave generation in ferromagnets. The magnetic field created by the transducer was calculated in closed analytic form for this model. The linear response of the ferromagnet to the inhomogenous surface disturbance of arbitrary ω and k was obtained as a self-consistent solution to the Bloch equation of motion and the Maxwell equations, subject to appropriate boundary condition. In particular, the energy flux through the boundary displays a sharp resonantlike absorption maximum concentrated at the frequency of the magnetostatic Damon-Eshbach (DE) surface mode; furthermore, the energy transfer spectrum is cut off abruptly below the threshold frequency of the bulk spin waves. The application of the meander line to the spin diffusion problem in NMR is also discussed.

  10. Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Mihalceanu, Laura; Vasyuchka, Vitaliy I.; Bozhko, Dmytro A.; Langner, Thomas; Nechiporuk, Alexey Yu.; Romanyuk, Vladyslav F.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    Low-energy consumption enabled by charge-free information transport, which is free from Joule heating, and the ability to process phase-encoded data through the use of nanometer-sized interference devices operating at GHz and THz frequencies are just a few benefits of spin-wave-based technologies. Moreover, when approaching cryogenic temperatures, quantum phenomena in spin-wave systems pave the path towards quantum information processing. In view of these applications, the lifetime of magnons—spin-wave quanta—is of high relevance for the fields of magnonics, magnon spintronics, and quantum computing. Here, the relaxation behavior of parametrically excited magnons having wave numbers from zero up to 6 ×105rad cm-1 was experimentally investigated in the temperature range from 20 to 340 K in single-crystal yttrium iron garnet (YIG) films of different thickness epitaxially grown on gallium gadolinium garnet (GGG) substrates as well as in a bulk YIG crystal—the magnonic materials featuring the lowest magnetic damping thus far known. Due to magnon-magnon interactions, the relaxation rate of the parametric magnons increases with an increase of their wave numbers. In the thinner samples, this increase is less pronounced, which can be associated with a stronger quantization of their magnon spectra. For the YIG films, we have found a significant increase in the magnon relaxation rate below 150 K—up to eight times the reference value at 340 K—in the entire range of probed wave numbers, which is in direct opposition to that in ultrapure YIG crystals. This increase is related to rare-earth impurities contaminating the YIG samples with a slight contribution caused by the coupling of spin waves to the spin system of the paramagnetic GGG substrate at the lowest temperatures.

  11. Breathers and rogue waves in a Heisenberg ferromagnetic spin chain or an alpha helical protein

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Wei; Gao, Yi-Tian; Su, Chuan-Qi; Wang, Qi-Min; Lan, Zhong-Zhou

    2017-07-01

    In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation for a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain or an alpha helical protein has been investigated. Breathers and rogue waves are constructed via the Darboux transformation and generalized Darboux transformation, respectively. Results of the breathers and rogue waves are presented: (1) The first- and second-order Akhmediev breathers and Kuznetsov-Ma solitons are presented with different values of variable coefficients which are related to the energy transfer or higher-order excitations and interactions in the helical protein, or related to the spin excitations resulting from the lowest order continuum approximation and octupole-dipole interaction in a Heisenberg ferromagnetic spin chain, and the nonlinear periodic breathers resulting from the Akhmediev breathers are studied as well; (2) For the first- and second-order rogue waves, we find that they can be split into many similar components when the variable coefficients are polynomial functions of time; (3) Rogue waves can also be split when the variable coefficients are hyperbolic secant functions of time, but the profile of each component in such a case is different.

  12. Development of a spinning wave heat engine

    NASA Technical Reports Server (NTRS)

    Zinn, B. T.; Powell, E. A.; Hubbartt, J. E.

    1982-01-01

    A theoretical analysis and an experimental investigation were conducted to assess the feasibility of developing a spinning wave heat engine. Such as engine would utilize a large amplitude traveling acoustic wave rotating around a cylindrica chamber, and it should not suffer from the inefficiency, noise, and intermittent thrust which characterizes pulse jet engines. The objective of this investigation was to determine whether an artificially driven large amplitude spinning transverse wave could induce a steady flow of air through the combustion chamber under cold flow conditions. In the theoretical analysis the Maslen and Moore perturbation technique was extended to study flat cylinders (pancake geometry) with completely open side walls and a central opening. In the parallel experimental study, a test moel was used to determine resonant frequencies and radial pressure distributions, as well as oscillatory and steady flow velocities at the inner and outer peripheries. The experimental frequency was nearly the same as the theoretical acoustic value for a model of the same outer diameter but without a central hole. Although the theoretical analysis did not predict a steady velocity component, simulaneous measurements of hotwire and microphone responses have shown that the spinning wave pumps a mean flow radially outward through the cavity.

  13. Arterial stiffness in people with Type 2 diabetes and obstructive sleep apnoea.

    PubMed

    Hvelplund Kristiansen, M; Banghøj, A M; Laugesen, E; Tarnow, L

    2018-05-15

    To examine whether people with Type 2 diabetes with concurrent obstructive sleep apnoea have increased arterial stiffness as compared with people with Type 2 diabetes without obstructive sleep apnoea. In a study with a case-control design, 40 people with Type 2 diabetes and treatment-naïve moderate to severe obstructive sleep apnoea (Apnoea-Hypopnoea Index ≥15) and a control group of 31 people with Type 2 diabetes without obstructive sleep apnoea (Apnoea-Hypopnoea Index <5) were examined. Obstructive sleep apnoea status was evaluated using the ApneaLink ® + home-monitoring device (Resmed Inc., San Diego, CA, USA), providing the Apnoea-Hypopnoea Index scores. Arterial stiffness was assessed according to carotid-femoral pulse wave velocity using the Sphygmocor device and the oscillometric Mobil-O-Graph ® (I.E.M. GmbH, Stolberg, Germany). Carotid-femoral pulse wave velocity was not significantly different between participants with Type 2 diabetes with obstructive sleep apnoea and those without obstructive sleep apnoea (10.7±2.2 m/s vs 10.3±2.1 m/s; P=0.513), whereas oscillometric pulse wave velocity was significantly higher in participants with Type 2 diabetes with obstructive sleep apnoea than in those without obstructive sleep apnoea (9.5±1.0 m/s vs 8.6±1.4 m/s; P=0.002). In multiple regression analysis, age (P=0.002), gender (men; P=0.018) and HbA 1c (P=0.027) were associated with carotid-femoral pulse wave velocity, and systolic blood pressure (P=0.004) and age (P<0.001) were associated with oscillometric pulse wave velocity. After adjustment, presence of obstructive sleep apnoea was not independently associated with pulse wave velocity whether assessed by tonometry or oscillometry. In conclusion, the present study did not find an age- and blood pressure-independent association between moderate to severe obstructive sleep apnoea and arterial stiffness in non-sleepy people with Type 2 diabetes. (Clinical trial registration number: NCT02482584). © 2018 Diabetes UK.

  14. Nondestructive evaluation of standing trees with a stress wave method.

    Treesearch

    Xiping Wang; Robert J. Ross; Michael McClellan; R. James Barbour; John R. Erickson; John W. Forsman; Gary D. McGinnis

    2001-01-01

    The primary objective of this study was to investigate the usefulness of a stress wave technique for evaluating wood strength and stiffness of young-growth western hemlock and Sitka spruce in standing trees. A secondary objective was to determine if the effects of silvicultural practices on wood quality can be identified using this technique. Stress wave measurements...

  15. Threshold value of home pulse pressure predicting arterial stiffness in patients with type 2 diabetes: KAMOGAWA-HBP study.

    PubMed

    Kitagawa, Noriyuki; Ushigome, Emi; Matsumoto, Shinobu; Oyabu, Chikako; Ushigome, Hidetaka; Yokota, Isao; Asano, Mai; Tanaka, Muhei; Yamazaki, Masahiro; Fukui, Michiaki

    2018-03-01

    This cross-sectional multicenter study was designed to evaluate the threshold value of home pulse pressure (PP) and home systolic blood pressure (SBP) predicting the arterial stiffness in 876 patients with type 2 diabetes. We measured the area under the receiver-operating characteristic curve (AUC) and estimated the ability of home PP to identify arterial stiffness using Youden-Index defined cut-off point. The arterial stiffness was measured using the brachial-ankle pulse wave velocity (baPWV). AUC for arterial stiffness in morning PP was significantly greater than that in morning SBP (P < .001). AUC for arterial stiffness in evening PP was also significantly greater than that in evening SBP (P < .001). The optimal cut-off points for morning PP and evening PP, which predicted arterial stiffness, were 54.6 and 56.9 mm Hg, respectively. Our findings indicate that we should pay more attention to increased home PP in patients with type 2 diabetes. ©2018 Wiley Periodicals, Inc.

  16. Searches for Gravitational Waves from Known Pulsars with Science Run 5 LIGO Data

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Acernese, F.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Alshourbagy, M.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, C.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Boccara, C.; Bodiya, T. P.; Bogue, L.; Bondu, F.; Bonelli, L.; Bork, R.; Boschi, V.; Bose, S.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Van Den Broeck, C.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Budzyński, R.; Bulik, T.; Bullington, A.; Bulten, H. J.; Buonanno, A.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Carbognani, F.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cokelaer, T.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Corda, C.; Cornish, N.; Corsi, A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dari, A.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franzen, A.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Granata, M.; Granata, V.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Guidi, G.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Huet, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Jaranowski, P.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Sancho de la Jordana, L.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krishnan, B.; Królak, A.; Kumar, R.; Kwee, P.; La Penna, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy, N.; Letendre, N.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mackowski, J.-M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Menzinger, F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Michel, C.; Milano, L.; Miller, J.; Minelli, J.; Minenkov, Y.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; MowLowry, C.; Mueller, G.; Muhammad, D.; zur Mühlen, H.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pagliaroli, G.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parameshwaraiah, V.; Pardi, S.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabaste, O.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Russell, P.; Ryan, K.; Sakata, S.; Salemi, F.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; van der Sluys, M. V.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Terenzi, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres, C.; Torrie, C.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van der Putten, S.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; van Veggel, A. A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Was, M.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yvert, M.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Bégin, S.; Corongiu, A.; D'Amico, N.; Freire, P. C. C.; Hessels, J. W. T.; Hobbs, G. B.; Kramer, M.; Lyne, A. G.; Manchester, R. N.; Marshall, F. E.; Middleditch, J.; Possenti, A.; Ransom, S. M.; Stairs, I. H.; Stappers, B.; LIGO Scientific Collaboration; Virgo Collaboration

    2010-04-01

    We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of 7 below the spin-down limit. This limits the power radiated via gravitational waves to be less than ~2% of the available spin-down power. For the X-ray pulsar J0537 - 6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars, several of the measured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3 × 10-26 for J1603 - 7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0 × 10-8 for J2124 - 3358.

  17. Scattering of Dirac waves off Kerr black holes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Mukhopadhyay, Banibrata

    2000-10-01

    Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr geometry into radial and angular parts. Here we solve the complete wave equation and find out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-efficients are computed. We compare the solutions with several parameters to show how a spinning black hole recognizes the mass and energy of incoming waves. Very close to the horizon the solutions become independent of the particle parameters, indicating the universality of the behaviour.

  18. Fermion superfluid with hybridized s- and p-wave pairings

    NASA Astrophysics Data System (ADS)

    Zhou, LiHong; Yi, Wei; Cui, XiaoLing

    2017-12-01

    Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s- and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s- and p-wave interactions, which is realizable in a two-component 40K Fermi gas with close-by s- and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s- and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.

  19. Using magnetic resonance elastography to assess the dynamic mechanical properties of cartilage

    NASA Astrophysics Data System (ADS)

    Lopez, Orlando; Amrami, Kimberly; Rossman, Phillip; Ehman, Richard L.

    2004-04-01

    This work explored the feasibility of using Magnetic Resonance Elastography (MRE) technology to enable in vitro quantification of dynamic mechanical behavior of cartilage through its thickness. A customized system for MRE of cartilage was designed to include components for adequate generation and detection of high frequency mechanical shear waves within small and stiff materials. The system included components for mechanical excitation, motion encoding, and imaging of small samples. Limitations in sensitivity to motion encoding of high frequency propagating mechanical waves using a whole body coil (i.e. Gmax = 2.2 G/cm) required the design of a local gradient coil system to achieve a gain in gradient strength of at least 5 times. The performance of the new system was tested using various cartilage-mimicking phantom materials. MRE of a stiff 5% agar gelatin phantom demonstrated gains in sensitivity to motion encoding of high frequency mechanical waves in cartilage like materials. MRE of fetal bovine cartilage samples yielded a distribution of shear stiffness within the thickness of the cartilage similar to values found in the literature, hence, suggesting the feasibility of using MRE to non-invasively and directly assess the dynamic mechanical properties of cartilage.

  20. Effect of omega-3 polyunsaturated fatty acid supplementation on central arterial stiffness and arterial wave reflections in young and older healthy adults.

    PubMed

    Monahan, Kevin D; Feehan, Robert P; Blaha, Cheryl; McLaughlin, Daniel J

    2015-06-01

    Increased central arterial stiffness and enhanced arterial wave reflections may contribute to increased risk of cardiovascular disease development with advancing age. Omega-3 polyunsaturated fatty acid (n-3) ingestion may reduce cardiovascular risk via favorable effects exerted on arterial structure and function. We determined the effects of n-3 supplementation (4 g/day for 12 weeks) on important measures of central arterial stiffness (carotid-femoral pulse wave velocity; PWV) and arterial wave reflection (central augmentation index) in young (n = 12; 25 ± 1-year-old, mean ± SE) and older (n = 12; 66 ± 2) healthy adults. We hypothesized that n-3 supplementation would decrease carotid-femoral PWV and central augmentation index in older adults. Our results indicate that carotid-femoral PWV and central augmentation index were greater in older (988 ± 65 cm/sec and 33 ± 2%) than in young adults (656 ± 16 cm/sec and 3 ± 4%: both P < 0.05 compared to older) before the intervention (Pre). N-3 supplementation decreased carotid-femoral PWV in older (∆-9 ± 2% Precompared to Post; P < 0.05), but not young adults (∆2 ± 3%). Central augmentation index was unchanged by n-3 supplementation in young (3 ± 4 vs. 0 ± 4% for Pre and Post, respectively) and older adults (33 ± 2 vs. 35 ± 3%). Arterial blood pressure at rest, although increased with age, was not altered by n-3 supplementation in young or older adults. Collectively, these data indicate that 12 weeks of daily n-3 supplementation decreases an important measure of central arterial stiffness (carotid-femoral PWV) in older, but not young healthy adults. The mechanism underlying decreased central arterial stiffness with n-3 supplementation is unknown, but appears to be independent of effects on arterial blood pressure or arterial wave reflections. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Design of Transverse Spinning of Light with Globally Unique Handedness

    NASA Astrophysics Data System (ADS)

    Piao, Xianji; Yu, Sunkyu; Park, Namkyoo

    2018-05-01

    Access to the transverse spin of light has unlocked new regimes in topological photonics. To achieve the transverse spin from nonzero longitudinal fields, various platforms that derive transversely confined waves based on focusing, interference, or evanescent waves have been suggested. Nonetheless, because of the transverse confinement inherently accompanying sign reversal of the field derivative, the resulting transverse spin handedness of each field experiences spatial inversion, which leads to a mismatch between the intensities of the field and its spin component and hinders the global observation of the transverse spin. Here, we reveal a globally pure transverse spin of the electric field in which the field intensity signifies the spin distribution. Starting from the target spin mode for the inverse design of required spatial profiles of anisotropic permittivities, we show that the elliptic-hyperbolic transition around the epsilon-near-zero permittivity allows for the global conservation of transverse spin handedness of the electric field across the topological interface between anisotropic metamaterials. Extending to the non-Hermitian regime, we develop annihilated transverse spin modes to cover the entire Poincaré sphere of the meridional plane. This result realizes the complete optical analogy of three-dimensional quantum spin states.

  2. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  3. Application of Modified Spin-Echo–based Sequences for Hepatic MR Elastography: Evaluation, Comparison with the Conventional Gradient-Echo Sequence, and Preliminary Clinical Experience

    PubMed Central

    Mariappan, Yogesh K.; Dzyubak, Bogdan; Glaser, Kevin J.; Venkatesh, Sudhakar K.; Sirlin, Claude B.; Hooker, Jonathan; McGee, Kiaran P.

    2017-01-01

    Purpose To (a) evaluate modified spin-echo (SE) magnetic resonance (MR) elastographic sequences for acquiring MR images with improved signal-to-noise ratio (SNR) in patients in whom the standard gradient-echo (GRE) MR elastographic sequence yields low hepatic signal intensity and (b) compare the stiffness values obtained with these sequences with those obtained with the conventional GRE sequence. Materials and Methods This HIPAA-compliant retrospective study was approved by the institutional review board; the requirement to obtain informed consent was waived. Data obtained with modified SE and SE echo-planar imaging (EPI) MR elastographic pulse sequences with short echo times were compared with those obtained with the conventional GRE MR elastographic sequence in two patient cohorts, one that exhibited adequate liver signal intensity and one that exhibited low liver signal intensity. Shear stiffness values obtained with the three sequences in 130 patients with successful GRE-based examinations were retrospectively tested for statistical equivalence by using a 5% margin. In 47 patients in whom GRE examinations were considered to have failed because of low SNR, the SNR and confidence level with the SE-based sequences were compared with those with the GRE sequence. Results The results of this study helped confirm the equivalence of SE MR elastography and SE-EPI MR elastography to GRE MR elastography (P = .0212 and P = .0001, respectively). The SE and SE-EPI MR elastographic sequences provided substantially improved SNR and stiffness inversion confidence level in 47 patients in whom GRE MR elastography had failed. Conclusion Modified SE-based MR elastographic sequences provide higher SNR MR elastographic data and reliable stiffness measurements; thus, they enable quantification of stiffness in patients in whom the conventional GRE MR elastographic sequence failed owing to low signal intensity. The equivalence of the three sequences indicates that the current diagnostic thresholds are applicable to SE MR elastographic sequences for assessing liver fibrosis. © RSNA, 2016 PMID:27509543

  4. Cross-Sectional Associations of Flow Reversal, Vascular Function, and Arterial Stiffness in the Framingham Heart Study.

    PubMed

    Bretón-Romero, Rosa; Wang, Na; Palmisano, Joseph; Larson, Martin G; Vasan, Ramachandran S; Mitchell, Gary F; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M

    2016-12-01

    Experimental studies link oscillatory flow accompanied by flow reversal to impaired endothelial cell function. The relation of flow reversal with vascular function and arterial stiffness remains incompletely defined. We measured brachial diastolic flow patterns along with vasodilator function in addition to tonometry-based central and peripheral arterial stiffness in 5708 participants (age 47±13 years, 53% women) in the Framingham Heart Study Offspring and Third Generation cohorts. Brachial artery diastolic flow reversal was present in 35% of the participants. In multivariable regression models, the presence of flow reversal was associated with lower flow-mediated dilation (3.9±0.2 versus 5.0±0.2%; P<0.0001) and reactive hyperemic flow velocity (50±0.99 versus 57±0.93 cm/s; P<0.0001). The presence of flow reversal (compared with absence) was associated with higher central aortic stiffness (carotid-femoral pulse wave velocity 9.3±0.1 versus 8.9±0.1 m/s), lower muscular artery stiffness (carotid-radial pulse wave velocity 9.6±0.1 versus 9.8±0.1 m/s), and higher forearm vascular resistance (5.32±0.03 versus 4.66±0.02 log dyne/s/cm 5 ; P<0.0001). The relations of diastolic flow velocity with flow-mediated dilation, aortic stiffness, and forearm vascular resistance were nonlinear, with a steeper decline in vascular function associated with increasing magnitude of flow reversal. In our large, community-based sample, brachial artery flow reversal was common and associated with impaired vasodilator function and higher aortic stiffness. Our findings are consistent with the concept that flow reversal may contribute to vascular dysfunction. © 2016 American Heart Association, Inc.

  5. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  6. Classical aspects of higher spin topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang; Zhang, Jian-Dong

    2012-10-01

    We study the classical solutions of three-dimensional topologically massive gravity (TMG) and its higher spin generalization, in the first-order formulation. The action of higher spin TMG has been proposed by Chen and Long (2011 J. High Energy Phys. JHEP12(2011)114) to be of a Chern-Simons-like form. The equations of motion are more complicated than the ones in pure higher spin AdS3 gravity, but are still tractable. As all the solutions in higher spin gravity are automatically the solutions of higher spin TMG, we focus on other solutions. We manage to find the AdS pp-wave solutions with higher spin hair and find that the non-vanishing higher spin fields may or may not modify the pp-wave geometry. In order to discuss the warped spacetime, we introduce the notion of a special Killing vector, which is defined to be the symmetry on the frame-like fields. We reproduce various warped spacetimes of TMG in our framework, with the help of special Killing vectors.

  7. Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M.; Mazzera, M.; Ledingham, P. M.; Cristiani, M.; de Riedmatten, H.

    2013-04-01

    We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr3+:Y2SiO5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light.

  8. Two-dimensional dispersion of magnetostatic volume spin waves

    NASA Astrophysics Data System (ADS)

    Buijnsters, Frank J.; van Tilburg, Lennert J. A.; Fasolino, Annalisa; Katsnelson, Mikhail I.

    2018-06-01

    Owing to the dipolar (magnetostatic) interaction, long-wavelength spin waves in in-plane magnetized films show an unusual dispersion behavior, which can be mathematically described by the model of and and refinements thereof. However, solving the two-dimensional dispersion requires the evaluation of a set of coupled transcendental equations and one has to rely on numerics. In this work, we present a systematic perturbative analysis of the spin wave model. An expansion in the in-plane wavevector allows us to obtain explicit closed-form expressions for the dispersion relation and mode profiles in various asymptotic regimes. Moreover, we derive a very accurate semi-analytical expression for the dispersion relation of the lowest-frequency mode that is straightforward to evaluate.

  9. Spin-density wave state in simple hexagonal graphite

    NASA Astrophysics Data System (ADS)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  10. A scenario for magnonic spin-wave traps

    PubMed Central

    Busse, Frederik; Mansurova, Maria; Lenk, Benjamin; von der Ehe, Marvin; Münzenberg, Markus

    2015-01-01

    Spatially resolved measurements of the magnetization dynamics on a thin CoFeB film induced by an intense laser pump-pulse reveal that the frequencies of resulting spin-wave modes depend strongly on the distance to the pump center. This can be attributed to a laser generated temperature profile. We determine a shift of 0.5 GHz in the spin-wave frequency due to the spatial thermal profile induced by the femtosecond pump pulse that persists for up to one nanosecond. Similar experiments are presented for a magnonic crystal composed of a CoFeB-film based antidot lattice with a Damon Eshbach mode at the Brillouin zone boundary and its consequences are discussed. PMID:26279466

  11. Entanglement of light-shift compensated atomic spin waves with telecom light.

    PubMed

    Dudin, Y O; Radnaev, A G; Zhao, R; Blumoff, J Z; Kennedy, T A B; Kuzmich, A

    2010-12-31

    Entanglement of a 795 nm light polarization qubit and an atomic Rb spin-wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S=2.65±0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing in a cold Rb gas is employed to perform light qubit conversion between near infrared (795 nm) and telecom (1367 nm) wavelengths, and after propagation in a telecom fiber, to invert the conversion process. Observed Bell inequality violation (S=2.66±0.09), at 10 ms storage, confirms preservation of memory-light entanglement through the two stages of light qubit frequency conversion.

  12. Arterial wave reflection and aortic valve calcification in an elderly community-based cohort.

    PubMed

    Sera, Fusako; Russo, Cesare; Iwata, Shinichi; Jin, Zhezhen; Rundek, Tatjana; Elkind, Mitchell S V; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R

    2015-04-01

    Aortic valve calcification (AVC) without stenosis is common in the elderly, is associated with cardiovascular morbidity and mortality, and may progress to aortic valve stenosis. Arterial stiffness and pulse-wave reflection are important components of proximal aortic hemodynamics, but their relationship with AVC is not established. To investigate the relationship of arterial wave reflection and stiffness with AVC, pulse wave analysis and AVC evaluation by echocardiography were performed in 867 participants from the Cardiovascular Abnormalities and Brain Lesions study. Participants were divided into four categories on the basis of the severity and extent of AVC: (1) none or mild focal AVC, (2) mild diffuse AVC, (3) moderate to severe focal AVC, and (4) moderate to severe diffuse AVC. Central blood pressures and pulse pressure, total arterial compliance, augmentation index, and time to wave reflection were assessed using applanation tonometry. Indicators of arterial stiffness and wave reflection were significantly associated with AVC severity, except for central systolic and diastolic pressures and time to reflection. After adjustment for pertinent covariates (age, sex, race/ethnicity, and estimated glomerular filtration rate), only augmentation pressure (P = .02) and augmentation index (P = .002) were associated with the severity of AVC. Multivariate logistic regression analysis revealed that augmentation pressure (odds ratio per mm Hg, 1.14; 95% confidence interval, 1.02-1.27; P = .02) and augmentation index (odds ratio per percentage point, 1.07; 95% confidence interval, 1.01-1.13; P = .02) were associated with an increased risk for moderate to severe diffuse AVC, even when central blood pressure value was included in the same model. Arterial wave reflection is associated with AVC severity, independent of blood pressure values. Increased contribution of wave reflection to central blood pressure could be involved in the process leading to AVC. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  13. Entanglement entropy of critical spin liquids.

    PubMed

    Zhang, Yi; Grover, Tarun; Vishwanath, Ashvin

    2011-08-05

    Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterizes their quantum structure. In particular we calculate the Renyi entropy S(2) on model wave functions obtained by Gutzwiller projection of a Fermi sea. Although the wave functions are not sign positive, S(2) can be calculated on relatively large systems (>324 spins) using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi sea state violates the boundary law, with S(2) enhanced by a logarithmic factor. This is an unusual result for a bosonic wave function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.

  14. Coherence rephasing combined with spin-wave storage using chirped control pulses

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2014-06-01

    Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.

  15. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices

    DOE PAGES

    Montoncello, F.; Giovannini, L.; Bang, Wonbae; ...

    2018-01-18

    In this paper, we theoretically and experimentally investigate magnetization reversal and associated spin-wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three permalloy macrospins making up the vertex have an elliptical cross section and a uniform thickness. We study the dc magnetization curve and the frequency versus field curves (dispersions) of those spin-wave modes that produce the largest response. We also investigate each macrospin reversal from a dynamic perspective, by performing micromagnetic simulations of the reversal processes, and revealing their relationships to the soft-mode profile calculated at the equilibrium state immediately before reversal. The theoretical results aremore » compared with the measured magnetization curves and ferromagnetic resonance spectra. Finally, the agreement achieved suggests that a much deeper understanding of magnetization reversal and accompanying hysteresis can be achieved by combining theoretical calculations with static and dynamic magnetization experiments.« less

  16. Magnetic droplet soliton nucleation in oblique fields

    NASA Astrophysics Data System (ADS)

    Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid

    2018-05-01

    We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.

  17. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoncello, F.; Giovannini, L.; Bang, Wonbae

    In this paper, we theoretically and experimentally investigate magnetization reversal and associated spin-wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three permalloy macrospins making up the vertex have an elliptical cross section and a uniform thickness. We study the dc magnetization curve and the frequency versus field curves (dispersions) of those spin-wave modes that produce the largest response. We also investigate each macrospin reversal from a dynamic perspective, by performing micromagnetic simulations of the reversal processes, and revealing their relationships to the soft-mode profile calculated at the equilibrium state immediately before reversal. The theoretical results aremore » compared with the measured magnetization curves and ferromagnetic resonance spectra. Finally, the agreement achieved suggests that a much deeper understanding of magnetization reversal and accompanying hysteresis can be achieved by combining theoretical calculations with static and dynamic magnetization experiments.« less

  18. Underwater MASW to evaluate stiffness of water-bottom sediments

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.; Sonnichsen, G.V.; Hunter, J.A.; Good, R.L.; Burns, R.A.; Christian, H.

    2005-01-01

    The multichannel analysis of surface waves (MASW) is initially intended as a land survey method to investigate the near-surface materials for their elastic properties. The acquired data are first analyzed for dispersion characteristics and, from these the shear-wave velocity is estimated using an inversion technique. Land applications show the potential of the MASW method to map 2D bedrock surface, zones of low strength, Poisson's ratio, voids, as well as to generate shear-wave profiles for various othe geotechnical problems. An overview is given of several underwater applications of the MASW method to characterize stiffness distribution of water-bottom sediments. The first application details the survey under shallow-water (1-6 m) in the Fraser River (Canada). The second application is an innovative experimental marine seismic survey in the North Atlantic Ocean near oil fields in Grand Bank offshore Newfoundland.

  19. Soliton solution for the spin current in a ferromagnetic nanowire.

    PubMed

    Li, Zai-Dong; Li, Qiu-Yan; Li, Lu; Liu, W M

    2007-08-01

    We investigate the interaction of a periodic solution and a one-soliton solution for the spin-polarized current in a uniaxial ferromagnetic nanowire. The amplitude and wave number of the periodic solution for the spin current give different contributions to the width, velocity, and amplitude of the soliton. Moreover, we found that the soliton can be trapped only in space with proper conditions. Finally, we analyze the modulation instability and discuss dark solitary wave propagation for a spin current on the background of a periodic solution. In some special cases, the solution can be expressed as the linear combination of the periodic and soliton solutions.

  20. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  1. Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.

    PubMed

    Gündoğan, Mustafa; Ledingham, Patrick M; Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues

    2015-06-12

    We demonstrate the first solid-state spin-wave optical quantum memory with on-demand read-out. Using the full atomic frequency comb scheme in a Pr(3+):Y2SiO5 crystal, we store weak coherent pulses at the single-photon level with a signal-to-noise ratio >10. Narrow-band spectral filtering based on spectral hole burning in a second Pr(3+):Y2SiO5 crystal is used to filter out the excess noise created by control pulses to reach an unconditional noise level of (2.0±0.3)×10(-3) photons per pulse. We also report spin-wave storage of photonic time-bin qubits with conditional fidelities higher than achievable by a measure and prepare strategy, demonstrating that the spin-wave memory operates in the quantum regime. This makes our device the first demonstration of a quantum memory for time-bin qubits, with on-demand read-out of the stored quantum information. These results represent an important step for the use of solid-state quantum memories in scalable quantum networks.

  2. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies.

    PubMed

    Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J

    2018-05-01

    Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  3. Higher arterial stiffness is associated with lower cognitive performance in patients with hypertension.

    PubMed

    Muela, Henrique C S; Costa-Hong, Valeria A; Yassuda, Mônica S; Moraes, Natália C; Memória, Claudia M; Machado, Michel F; Bor-Seng-Shu, Edson; Nogueira, Ricardo C; Mansur, Alfredo J; Massaro, Ayrton R; Nitrini, Ricardo; Macedo, Thiago A; Bortolotto, Luiz A

    2018-01-01

    Cognitive impairment and elevated arterial stiffness have been described in patients with arterial hypertension, but their association has not been well studied. We evaluated the correlation of arterial stiffness and different cognitive domains in patients with hypertension compared with those with normotension. We evaluated 211 patients (69 with normotension and 142 with hypertension). Patients were age matched and distributed according to their blood pressure: normotension, hypertension stage 1, and hypertension stage 2. Cognitive function was assessed using the Mini-Mental State Examination, Montreal Cognitive Assessment, and a battery of neuropsychological evaluations that assessed six main cognitive domains. Pulse wave velocity was measured using a Complior device, and carotid properties were assessed by radiofrequency ultrasound. Central arterial pressure and augmentation index were obtained using applanation tonometry. The hypertension stage 2 group had higher arterial stiffness and worse performance either by Mini-Mental State Examination (26.8±2.1 vs 27.3±2.1 vs 28.0±2.0, P=.003) or the Montreal Cognitive Assessment test (23.4±3.5 vs 24.9±2.9 vs 25.6±3.0, P<.001). On multivariable regression analysis, augmentation index, intima-media thickness, and pulse wave velocity were the variables mainly associated with lower cognitive performance at different cognitive domains. Cognitive impairment in different domains was associated with higher arterial stiffness. ©2017 Wiley Periodicals, Inc.

  4. Supersonic Shear Wave Elastography of Response to Anti-cancer Therapy in a Xenograft Tumor Model.

    PubMed

    Chamming's, Foucauld; Le-Frère-Belda, Marie-Aude; Latorre-Ossa, Heldmuth; Fitoussi, Victor; Redheuil, Alban; Assayag, Franck; Pidial, Laetitia; Gennisson, Jean-Luc; Tanter, Mickael; Cuénod, Charles-André; Fournier, Laure S

    2016-04-01

    Our objective was to determine if supersonic shear wave elastography (SSWE) can detect changes in stiffness of a breast cancer model under therapy. A human invasive carcinoma was implanted in 22 mice. Eleven were treated with an anti-angiogenic therapy and 11 with glucose for 24 d. Tumor volume and stiffness were assessed during 2 wk before treatment and 0, 7, 12, 20 and 24 d after the start of therapy using SSWE. Pathology was assessed after 12 and 24 d of treatment. We found that response to therapy was associated with early softening of treated tumors only, resulting in a significant difference from non-treated tumors after 12 d of treatment (p = 0.03). On pathology, large areas of necrosis were observed at 12 d in treated tumors. Although treatment was still effective, treated tumors subsequently stiffened during a second phase of the treatment (days 12-24), with a small amount of necrosis observed on pathology on day 24. In conclusion, SSWE was able to measure changes in the stiffness of tumors in response to anti-cancer treatment. However, stiffness changes associated with good response to treatment may change over time, and increased stiffness may also reflect therapy efficacy. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Shear wave elastography diagnosis of the diffuse sclerosing variant of papillary thyroid carcinoma: A case report.

    PubMed

    Xue, Nianyu; Xu, Youfeng; Huang, Pintong; Zhang, Shengmin; Wang, Hongwei; Yu, Fei

    2016-08-01

    The present study aimed to report the shear wave elastography (SWE) findings in a patient with the diffuse sclerosing variant of papillary thyroid carcinoma (DSVPTC). Since patients with DSVPTC may present with typical clinicopathological features and initially appear to have Hashimoto's thyroiditis, a thorough clinical evaluation and an early diagnosis are important. A 20-year-old female patient presented with a 1-month history of a neck mass and sore throat. Conventional ultrasound and SWE were performed using an AIXPLORER system with 14-5 MHz linear transducer. The patient had undergone total thyroidectomy and bilateral neck lymph node dissection, and an intraoperative pathology consultation to confirm the malignancy of lymph node metastasis. Pathological diagnosis was DSVPTC in both lobes, with lymph node metastases in the bilateral neck. The clinical presentation and serological findings were all indicative of Hashimoto's thyroiditis. Thyroid ultrasonography revealed diffuse enlargement of the both lobes, heterogenous echogenicity without mass formation, diffuse scattered microcalcifications and poor vascularization. SWE revealed stiff values of the thyroid: The mean stiffness was 99.7 kpa, the minimum stiffness was 59.1 kpa and the maximum stiffness was 180.1 kpa. The maximum stiffness of the DSVPTC (180.1 kpa) was higher compared with the diagnostic criteria of malignant thyroid nodules (65 kPa). SWE may be considered as a novel and valuable method to diagnose DSVPC.

  6. Shear wave elastography diagnosis of the diffuse sclerosing variant of papillary thyroid carcinoma: A case report

    PubMed Central

    Xue, Nianyu; Xu, Youfeng; Huang, Pintong; Zhang, Shengmin; Wang, Hongwei; Yu, Fei

    2016-01-01

    The present study aimed to report the shear wave elastography (SWE) findings in a patient with the diffuse sclerosing variant of papillary thyroid carcinoma (DSVPTC). Since patients with DSVPTC may present with typical clinicopathological features and initially appear to have Hashimoto's thyroiditis, a thorough clinical evaluation and an early diagnosis are important. A 20-year-old female patient presented with a 1-month history of a neck mass and sore throat. Conventional ultrasound and SWE were performed using an AIXPLORER system with 14-5 MHz linear transducer. The patient had undergone total thyroidectomy and bilateral neck lymph node dissection, and an intraoperative pathology consultation to confirm the malignancy of lymph node metastasis. Pathological diagnosis was DSVPTC in both lobes, with lymph node metastases in the bilateral neck. The clinical presentation and serological findings were all indicative of Hashimoto's thyroiditis. Thyroid ultrasonography revealed diffuse enlargement of the both lobes, heterogenous echogenicity without mass formation, diffuse scattered microcalcifications and poor vascularization. SWE revealed stiff values of the thyroid: The mean stiffness was 99.7 kpa, the minimum stiffness was 59.1 kpa and the maximum stiffness was 180.1 kpa. The maximum stiffness of the DSVPTC (180.1 kpa) was higher compared with the diagnostic criteria of malignant thyroid nodules (65 kPa). SWE may be considered as a novel and valuable method to diagnose DSVPC. PMID:27446574

  7. Feasibility Assessment of Shear Wave Elastography to Rotator Cuff Muscle

    PubMed Central

    Itoigawa, Yoshiaki; Sperling, John W.; Steinmann, Scott P.; Chen, Qingshan; Song, Pengfei; Chen, Shigao; Itoi, Eiji; Hatta, Taku; An, Kai-Nan

    2017-01-01

    Introduction Pre -surgical measurement of supraspinatus muscle extensibility would be important for rotator cuff repair. The purpose of the present study was to explore the potential feasibility of a shear wave ultrasound electrograph (SWE) based method, combined with B-mode ultrasound, to non-invasively measure in vivo stiffness of supraspinatus muscle, and thus obtaining the key information on supraspinatus muscle extensibility. Materials and Methods Our investigation consisted of 2 steps. First, we evaluated orientation of the supraspinatus muscle fiber on cadaveric shoulders without rotator cuff tear in order to optimize the ultrasound probe positions for SWE imaging. Second, we investigated the feasibility of quantifying the normal supraspinatus muscle stiffness by SWE in vivo. Results The supraspinatus muscle was divided into four anatomical regions, namely anterior superficial (AS), posterior superficial (PS), anterior deep (AD) and posterior deep (PD) regions. SWE was evaluated at each of these regions. SWE stiffness on AD, AS, PD, and PS were measured as 40.0±12.4, 34.0±9.9, 32.7±12.7, 39.1±15.7 kPa, respectively. Conclusions SWE combined with B-Mode ultrasound image may be a feasible method to quantify local tissue stiffness of the rotator cuff muscles. PMID:25557287

  8. Spin configurations on a decorated square lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mert, Gülistan; Mert, H. Şevki

    Spin configurations on a decorated square lattice are investigated using Bertaut’s microscopic method. We have obtained collinear and non-collinear (canted) modes for the given wave vectors in the ground state. We have found ferromagnetic and antiferromagnetic commensurate spin configurations. We have found canted incommensurate spin configurations.

  9. Synchronous Measuring Techniques in Parallel to MRE: Study of Pressure, Pre-Tension, and Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Brinker, Spencer Thomas

    The contents of this dissertation include investigations in Magnetic Resonance Elastography (MRE) using a preclinical 9.4 Tesla small animal Magnetic Resonance Imaging (MRI) system along with synthetic materials that mimic the mechanical properties of soft human tissue. MRE is used for studying the mechanical behavior of soft tissue particularly applicable to medical applications. Wave motion induced by a mechanical driver is measured with MRI to acquire internal displacement fields over time and space within a material media. Complex shear modulus of the media is calculated from the response of mechanical wave transmission through the material. Changes in soft tissue stiffness is associated with disease progression and thus, is why assessing tissue mechanical properties with MRE has powerful diagnostic potential due to the noninvasive procedure of MRI. The experiments performed in this dissertation used elastic phantoms and specimens to observe the influence of pre-stress on MRE derived mechanical properties while additional mechanical measurements from other related material testing methods were synchronously collected alongside MRI scanning. An organ simulating phantom was used to explore changes in MRE stiffness in response to gas and liquid cyclic pressure loading. MRE stiffness increased with pressure and hysteresis was observed in cyclic pressure loading. The results suggest MRE is applicable to pressure related disease assessment. In addition, an interconnected porosity pressure phantom was constructed for future porous media investigations. A custom system was also built to demonstrate concurrent tensile testing during MRE for investigating homogeneous soft material media undergoing pre-tension. Stiffness increased with uniaxial tensile stress and strain. The tension and stiffness relationship explored can be related to the stress analysis of voluntary muscle. The results also offer prospective experimental strategies for community wide standards on MRE calibration methods. Lastly, a novel platform was developed for synchronous acquisition of Scanning Laser Doppler Vibrometry (SLDV) and MRE for examining surface wave dynamics related to internal media wave propagation in soft material experiencing sinusoidal mechanical excitation. The results indicate that optical displacement measurements of media on the surface are similar in nature to internal displacement measured from MRE. It is concluded that optical and MRI based elastography yield similar values of complex shear modulus.

  10. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.

  11. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  12. Stress-wave velocity of wood-based panels: effect of moisture, product type, and material direction

    Treesearch

    Guangping Han; Qinglin Wu; Xiping Wang

    2006-01-01

    The effect of moisture on longitudinal stress-wave velocity (SWV), bending stiffness. and bending strength of commercial oriented strandboard, plywood. particleboard. and southern pine lumber was evaluated. It was shown that the stress-wave verocity decreased in general with increases in panel moisture content (MC). At a given MC level. SWV varied with panel type and...

  13. Dirac electron in a chiral space-time crystal created by counterpropagating circularly polarized plane electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Borzdov, G. N.

    2017-10-01

    The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions describing electron states with different energies and mean values of momentum and spin operators. The inversion of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building blocks of the relations describing the electron properties. These properties are illustrated in graphical form over a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also treated.

  14. Field-induced spin density wave and spiral phases in a layered antiferromagnet

    DOE PAGES

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; ...

    2015-07-28

    Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba 3Mn 2O 8 using single crystal neutron diffraction. We find that for magnetic fields between μ 0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ 0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less

  15. Novel Feshbach resonances in a ^40K spin-mixture

    NASA Astrophysics Data System (ADS)

    Walraven, J. T. M.; Ludewig, A.; Tiecke, T. G.

    2010-03-01

    We present experimental results on novel s-wave Feshbach resonances in ^40K spin-mixtures. Using an extended version of the Asymptotic Bound-state Model (ABM) [1] we predict Feshbach resonances with more promising characteristics than the commonly used resonances in the (|F,mF>) |9/2,-9/2>+|9/2,-7/2> and |9/2,-9/2>+|9/2,-5/2> spin mixtures. We report on an s-wave resonance in the |9/2,-5/2>+|9/2,-3/2> mixture. We have experimentally observed the corresponding loss-feature at B0˜178 G with a width of ˜10G. This resonance is promising due to its large predicted width and the absence of an overlapping p-wave resonance. We present our recent results on measurements of the resonance width and the stability of the system around this and other observed s-wave and p-wave resonances. [4pt] [1] T.G. Tiecke, et al., Phys. Rev. Lett. 104, 053202 (2010).

  16. Multigap superconductivity in the charge density wave superconductor LaPt2Si2

    NASA Astrophysics Data System (ADS)

    Das, Debarchan; Gupta, Ritu; Bhattacharyya, A.; Biswas, P. K.; Adroja, D. T.; Hossain, Z.

    2018-05-01

    The superconducting gap structure of a charge density wave (CDW) superconductor LaPt2Si2 (Tc=1.6 K) having a quasi-two-dimensional crystal structure has been investigated using muon spin rotation/relaxation (μ SR ) measurements in transverse field (TF), zero field (ZF), and longitudinal field (LF) geometries. Rigorous analysis of TF-μ SR spectra in the superconducting state corroborates that the temperature dependence of the effective penetration depth, λL, derived from muon spin depolarization, fits to a two gap s wave model (i.e., s +s wave) suggesting that the Fermi surface contains two gaps of different magnitude rather than an isotropic gap expected for a conventional s wave superconductor. On the other hand, ZF μ SR data do not show any significant change in muon spin relaxation rate above and below the superconducting transition temperature indicating the fact that time-reversal symmetry is preserved in the superconducting state of this material.

  17. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Luyi

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstrationmore » and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s -1.« less

  18. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  19. Detection of Aortic Wall Inclusion Using Regional Pulse Wave Propagation and Velocity In Silico

    PubMed Central

    Shahmirzadi, Danial; Konofagou, Elisa E.

    2012-01-01

    Monitoring of the regional stiffening of the arterial wall may prove important in the diagnosis of various vascular pathologies. The pulse wave velocity (PWV) along the aortic wall has been shown to be dependent on the wall stiffness and has played a fundamental role in a range of diagnostic methods. Conventional clinical methods involve a global examination of the pulse traveling between two remote sites, e.g. femoral and carotid arteries, to provide an average PWV estimate. However, the majority of vascular diseases entail regional vascular changes and therefore may not be detected by a global PWV estimate. In this paper, a fluid-structure interaction study of straight-geometry aortas was carried out to examine the effects of regional stiffness changes on PWV. Five homogeneous aortas with increasing wall stiffness as well as two aortas with soft and hard inclusions were considered. In each case, spatio-temporal maps of the wall motion were used to analyze the regional pulse wave propagation. On the homogeneous aortas, increasing PWVs were found to increase with the wall moduli (R2 = 0.9988), indicating the reliability of the model to accurately represent the wave propagation. On the inhomogeneous aortas, formation of reflected and standing waves was observed at the site of the hard and soft inclusions, respectively. Neither the hard nor the soft inclusion had a significant effect on the velocity of the traveling pulse beyond the inclusion site, which supported the hypothesis that a global measurement of the average PWV could fail to detect regional abnormalities. PMID:24235978

  20. Ingesting a small amount of beer reduces arterial stiffness in healthy humans.

    PubMed

    Nishiwaki, Masato; Kora, Naoki; Matsumoto, Naoyuki

    2017-08-01

    Epidemiological studies reveal a J-shaped association between alcohol consumption and arterial stiffness, with arterial stiffening lower among mild-to-moderate drinkers than heavy drinkers or nondrinkers. This study aimed to examine the effects of ingesting a small amount of beer, corresponding to the amount consumed per day by a mild drinker, on arterial stiffness. Eleven men (20-22 years) participated, in random order and on different days, in four separate trials. The participants each drank 200 or 350 mL of alcohol-free beer (AFB200 and AFB350) or beer (B200 and B350), and were monitored for 90 min postingestion. There were no significant changes in arterial stiffness among trials that ingested AF200 or AF350. However, among trials ingesting B200 and B350, breath alcohol concentrations increased significantly, while indexes of arterial stiffness decreased significantly for approximately 60 min: carotid-femoral pulse wave velocity (B200: -0.6 ± 0.2 m/sec; B350: -0.6 ± 0.2 m/sec); brachial-ankle pulse wave velocity (B200: -53 ± 18 cm/sec; B350: -57 ± 19 cm/sec); and cardio-ankle vascular index (B200: -0.4 ± 0.1 unit; B350: -0.3 ± 0.1 unit). Furthermore, AFB showed no effect on arterial stiffness, regardless of whether or not it contained sugar, and no significant difference in antioxidant capacity was found between AFB and B. This is the first study to demonstrate that acute ingestion of relatively small amounts of beer reduces arterial stiffness (for approximately 60 min). Our data also suggest that the reduction in arterial stiffness induced by ingestion of beer is largely attributable to the effects of alcohol. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.

    2017-11-01

    We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.

  2. All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice

    NASA Astrophysics Data System (ADS)

    Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar

    2018-02-01

    Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.

  3. Modeling rapidly spinning, merging black holes with numerical relativity for the era of first gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Simulating eXtreme Collaboration; LIGO Scientific Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) began searching for gravitational waves in September 2015, with three times the sensitivity of the initial LIGO experiment. Merging black holes are among the most promising sources of gravitational waves for Advanced LIGO, but near the time of merger, the emitted waves can only be computed using numerical relativity. In this talk, I will present new numerical-relativity simulations of merging black holes, made using the Spectral Einstein Code [black-holes.org/SpEC.html], including cases with black-hole spins that are nearly as fast as possible. I will discuss how such simulations will be able to rapidly follow up gravitational-wave observations, improving our understanding of the waves' sources.

  4. Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: Implications for continuous gravitational wave searches

    NASA Astrophysics Data System (ADS)

    Mukherjee, Arunava; Messenger, Chris; Riles, Keith

    2018-02-01

    The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.

  5. Self-oscillation of standing spin wave in ring resonator with proportional-integral-derivative control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Urazuka, Y.; Chen, H.

    2014-05-07

    We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less

  6. Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kłos, J. W., E-mail: klos@amu.edu.pl; Krawczyk, M.; Dadoenkova, Yu. S.

    2014-05-07

    We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceivedmore » by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.« less

  7. Second order nonlinear equations of motion for spinning highly flexible line-elements. [for spacecraft solar sail

    NASA Technical Reports Server (NTRS)

    Salama, M.; Trubert, M.

    1979-01-01

    A formulation is given for the second order nonlinear equations of motion for spinning line-elements having little or no intrinsic structural stiffness. Such elements have been employed in recent studies of structural concepts for future large space structures such as the Heliogyro solar sailer. The derivation is based on Hamilton's variational principle and includes the effect of initial geometric imperfections (axial, curvature, and twist) on the line-element dynamics. For comparison with previous work, the nonlinear equations are reduced to a linearized form frequently found in the literature. The comparison has revealed several new spin-stiffening terms that have not been previously identified and/or retained. They combine geometric imperfections, rotary inertia, Coriolis, and gyroscopic terms.

  8. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    NASA Astrophysics Data System (ADS)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  9. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE PAGES

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...

    2017-11-15

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  10. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  11. Observation of the Rabi oscillation of light driven by an atomic spin wave.

    PubMed

    Chen, L Q; Zhang, Guo-Wan; Bian, Cheng-Ling; Yuan, Chun-Hua; Ou, Z Y; Zhang, Weiping

    2010-09-24

    Coherent conversion between a Raman pump field and its Stokes field is observed in a Raman process with a strong atomic spin wave initially prepared by another Raman process operated in the stimulated emission regime. The oscillatory behavior resembles the Rabi oscillation in atomic population in a two-level atomic system driven by a strong light field. The Rabi-like oscillation frequency is found to be related to the strength of the prebuilt atomic spin wave. High conversion efficiency of 40% from the Raman pump field to the Stokes field is recorded and it is independent of the input Raman pump field. This process can act as a photon frequency multiplexer and may find wide applications in quantum information science.

  12. Spin-waves in thin films with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Diep, H. T.; El Hog, Sahbi; Puszkarski, Henryk

    2018-05-01

    Using the Green's function method, we calculate the spin-wave (SW) spectrum in a thin film with quantum Heisenberg spins interacting with each other via an exchange interaction J and a Dzyaloshinskii-Moriya interaction of magnitude D. Due to the competition between J and D, the ground state is non collinear. We show that for large D, the first mode in the SW spectrum is proportional to the in plane wave-vector k at the limit k tending to zero. For small D, it is proportional to k2. We show that the surface modes may occur depending on the surface exchange interaction. We calculate the layer magnetizations at temperature T and the transition temperature as a function of the film thickness.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is asmore » low as 1.2%.« less

  14. Light-Enhanced Spin Fluctuations and d -Wave Superconductivity at a Phase Boundary

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Chen, Cheng-Chien; Moritz, B.; Devereaux, T. P.

    2018-06-01

    Time-domain techniques have shown the potential of photomanipulating existing orders and inducing new states of matter in strongly correlated materials. Using time-resolved exact diagonalization, we perform numerical studies of pump dynamics in a Mott-Peierls system with competing charge and spin density waves. A light-enhanced d -wave superconductivity is observed when the system resides near a quantum phase boundary. By examining the evolution of spin, charge, and superconducting susceptibilities, we show that a subdominant state in equilibrium can be stabilized by photomanipulating the charge order to allow superconductivity to appear and dominate. This work provides an interpretation of light-induced superconductivity from the perspective of order competition and offers a promising approach for designing novel emergent states out of equilibrium.

  15. Spin wave steering in three-dimensional magnonic networks

    NASA Astrophysics Data System (ADS)

    Beginin, E. N.; Sadovnikov, A. V.; Sharaevskaya, A. Yu.; Stognij, A. I.; Nikitov, S. A.

    2018-03-01

    We report the concept of three-dimensional (3D) magnonic structures which are especially promising for controlling and manipulating magnon currents. The approach for fabrication of 3D magnonic crystals (MCs) and 3D magnonic networks is presented. A meander type ferromagnetic film grown at the top of the initially structured substrate can be a candidate for such 3D crystals. Using the finite element method, transfer matrix method, and micromagnetic simulations, we study spin-wave propagation in both isolated and coupled 3D MCs and reconstruct spin-wave dispersion and transmission response to elucidate the mechanism of magnonic bandgap formation. Our results show the possibility of the utilization of proposed structures for fabrication of a 3D magnonic network.

  16. Magnetic Interaction in the Geometrically Frustrated Triangular LatticeAntiferromagnet CuFeO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Feng; Fernandez-Baca, Jaime A; Fishman, Randy Scott

    2007-01-01

    The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J1, J2, J3, with J2=J1 0:44 and J3=J1 0:57), as well as out-of-plane coupling (Jz, with Jz=J1 0:29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy deeps in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.

  17. Searching for gravitational waves from compact binaries with precessing spins

    NASA Astrophysics Data System (ADS)

    Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra

    2016-07-01

    Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.

  18. Numerical relativity simulations of precessing binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang

    2018-03-01

    We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.

  19. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    NASA Astrophysics Data System (ADS)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  20. Magnetic nano-oscillator driven by pure spin current.

    PubMed

    Demidov, Vladislav E; Urazhdin, Sergei; Ulrichs, Henning; Tiberkevich, Vasyl; Slavin, Andrei; Baither, Dietmar; Schmitz, Guido; Demokritov, Sergej O

    2012-12-01

    With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.

  1. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque

    PubMed Central

    Collet, M.; de Milly, X.; d'Allivy Kelly, O.; Naletov, V. V.; Bernard, R.; Bortolotti, P.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Cros, V.; Anane, A.; de Loubens, G.; Klein, O.

    2016-01-01

    In recent years, spin–orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin–orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin–orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current. PMID:26815737

  2. Ultrasound elastographic techniques in focal liver lesions

    PubMed Central

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-01-01

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses. PMID:26973405

  3. Ultrasound elastographic techniques in focal liver lesions.

    PubMed

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-03-07

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses.

  4. Dynamic response characteristics of steel portal frames having semi-rigid joints under sinusoidal wave excitation

    NASA Astrophysics Data System (ADS)

    Bhatti, Abdul Qadir

    2017-12-01

    To demonstrate the characteristics of the nonlinear response of steel frames, an elastic dynamic response analysis of the semi-rigid frame is performed under the harmonic wave. The semi-rigid contact is represented by the alternating spring which is given stiffness by a three-parameter energy model which approaches the hysterical curve by hardening model. The properties of spectra and hysteric curves are presented. This study shows that (1) the greater the acceleration input capacitance the smaller the instant connection capability and the smaller is the response. (2) However, by allowing an extreme increase in capacitance input acceleration, response spectra can be increased as the contact stiffness results near zero.

  5. Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.

    PubMed

    Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A

    2017-05-19

    We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.

  6. Theory of Tunneling Spectroscopy in a Mn12 Single-Electron Transistor by Density-Functional Theory Methods

    NASA Astrophysics Data System (ADS)

    Michalak, Ł.; Canali, C. M.; Pederson, M. R.; Paulsson, M.; Benza, V. G.

    2010-01-01

    We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.

  7. Theory of tunneling spectroscopy in a Mn12 single-electron transistor by density-functional theory methods.

    PubMed

    Michalak, Ł; Canali, C M; Pederson, M R; Paulsson, M; Benza, V G

    2010-01-08

    We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.

  8. Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madami, M., E-mail: marco.madami@fisica.unipg.it; Carlotti, G.; Gubbiotti, G.

    2015-05-07

    We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behaviormore » is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.« less

  9. Competing spin phases in geometrically frustrated magnetic molecules.

    PubMed

    Schröder, Christian; Nojiri, Hiroyuki; Schnack, Jürgen; Hage, Peter; Luban, Marshall; Kögerler, Paul

    2005-01-14

    We identify a class of zero-dimensional classical and quantum Heisenberg spin systems exhibiting anomalous behavior in an external magnetic field B similar to that found for the geometrically frustrated kagome lattice of classical spins. Our calculations for the isotropic Heisenberg model show the emergence of a pronounced minimum in the differential susceptibility dM/dB at B(sat)/3 as the temperature T is raised from 0 K for structures based on corner-sharing triangles, specifically the octahedron, cuboctahedron, and icosidodecahedron. As the first experimental evidence we note that the giant Keplerate magnetic molecule {Mo(72)Fe(30)} (Fe(3+) ions on the 30 vertices of an icosidodecahedron) exhibits this behavior. For low T when B approximately B(sat)/3 two competing families of spin configurations exist of which one behaves magnetically "stiff" leading to a reduction of dM/dB.

  10. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  11. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography.

    PubMed

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  12. Variable stiffness sandwich panels using electrostatic interlocking core

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-04-01

    Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.

  13. Tumor necrosis factor-alpha antagonists improve aortic stiffness in patients with inflammatory arthropathies: a controlled study.

    PubMed

    Angel, Kristin; Provan, Sella Aarrestad; Gulseth, Hanne Løvdahl; Mowinckel, Petter; Kvien, Tore Kristian; Atar, Dan

    2010-02-01

    The chronic inflammatory state of rheumatoid arthritis and other inflammatory arthropathies, such as ankylosing spondylitis and psoriatic arthritis, contributes to the accelerated atherosclerosis associated with these conditions. This study evaluates the effect of treatment with tumor necrosis factor (TNF)-alpha antagonists on arterial stiffness in patients with inflammatory arthropathies. A total of 60 patients with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and clinical indication for anti-TNF-alpha therapy were included. Thirty-five patients started with anti-TNF-alpha therapy and were compared with a nontreatment group of 25 patients. Aortic stiffness (aortic pulse wave velocity), augmentation index, and disease activity were assessed at baseline and after 3 months. Aortic pulse wave velocity (mean+/-SD) was reduced in the treatment group but not in the control group (-0.50+/-0.78 m/s versus 0.05+/-0.54 m/s, respectively; P=0.002). Concomitantly, C-reactive protein and the disease activity score were reduced in the treatment group (-9.3+/-20.2 mg/L [P<0.001] and -0.74+/-0.91 [P=0.004]). Augmentation index remained unchanged in both groups (0.1+/-7.1% versus -1.0+/-5.8%, respectively; P=0.53). In a multivariate linear regression model, only treatment with TNF-alpha antagonist and change in mean arterial pressure predicted alterations in aortic pulse wave velocity. In summary, anti-TNF-alpha therapy improved aortic stiffness in patients with inflammatory arthropathies. These findings support the idea that anti-inflammatory treatment has a favorable effect on cardiovascular risk in patients with inflammatory arthropathies.

  14. Preconditioning for the Navier-Stokes equations with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.

    1993-01-01

    The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.

  15. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Ronny X.; Luo, Jianwen; Balaram, Sandhya K.; Chaudhry, Farooq A.; Shahmirzadi, Danial; Konofagou, Elisa E.

    2013-07-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s-1, respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p < 0.001) compared to those of the other two groups. Also, the average r2 in the AAA subjects was significantly lower (p < 0.001) than that in the normal and hypertensive subjects. These preliminary results suggest that the regional PWV and the pulse wave propagation uniformity (r2) obtained using PWI, in addition to the PWI images and spatio-temporal maps that provide qualitative visualization of the pulse wave, may potentially provide valuable information for the clinical characterization of aneurysms and other vascular pathologies that regionally alter the arterial wall mechanics.

  16. Exploring the origins of the Dzyaloshinskii-Moriya interaction in MnSi

    DOE PAGES

    Dhital, C.; DeBeer-Schmitt, L.; Zhang, Q.; ...

    2017-12-19

    By using magnetization and small-angle neutron scattering (SANS) measurements, we have investigated the magnetic behavior of the Mn 1-xIr xSi system to explore the effect of increased carrier density and spin-orbit interaction on the magnetic properties of MnSi. We determine estimates of the spin wave stiffness and the Dzyalloshinski-Moriya (DM) interaction strength and compare with Mn 1-xCo xSi and Mn 1-xFe xSi. Despite the large differences in atomic mass and size of the substituted elements, Mn 1-xCo xSi and Mn 1-xIr xSi show nearly identical variations in their magnetic properties with substitution. We find a systematic dependence of the transitionmore » temperature, the ordered moment, the helix period, and the DM interaction strength with electron count for Mn 1-xIr xSi, Mn 1-xCo xSi, and Mn 1-xFe xSi, indicating that the magnetic behavior is primarily dependent upon the additional carrier density, rather than on the mass or size of the substituting species. This indicates that the variation in magnetic properties, including the DM interaction strength, is primarily controlled by the electronic structure, as Co and Ir are isovalent. Our work suggests that although the rigid band model of electronic structure, along with Moriya’s model of weak itinerant magnetism, describes this system surprisingly well, phenomenological models for the DM interaction strength are not adequate to describe this system.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhital, C.; DeBeer-Schmitt, L.; Zhang, Q.

    By using magnetization and small-angle neutron scattering (SANS) measurements, we have investigated the magnetic behavior of the Mn 1-xIr xSi system to explore the effect of increased carrier density and spin-orbit interaction on the magnetic properties of MnSi. We determine estimates of the spin wave stiffness and the Dzyalloshinski-Moriya (DM) interaction strength and compare with Mn 1-xCo xSi and Mn 1-xFe xSi. Despite the large differences in atomic mass and size of the substituted elements, Mn 1-xCo xSi and Mn 1-xIr xSi show nearly identical variations in their magnetic properties with substitution. We find a systematic dependence of the transitionmore » temperature, the ordered moment, the helix period, and the DM interaction strength with electron count for Mn 1-xIr xSi, Mn 1-xCo xSi, and Mn 1-xFe xSi, indicating that the magnetic behavior is primarily dependent upon the additional carrier density, rather than on the mass or size of the substituting species. This indicates that the variation in magnetic properties, including the DM interaction strength, is primarily controlled by the electronic structure, as Co and Ir are isovalent. Our work suggests that although the rigid band model of electronic structure, along with Moriya’s model of weak itinerant magnetism, describes this system surprisingly well, phenomenological models for the DM interaction strength are not adequate to describe this system.« less

  18. Mechanical Characterization of Tissue-Engineered Cartilage Using Microscopic Magnetic Resonance Elastography

    PubMed Central

    Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.

    2014-01-01

    Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395

  19. Pulse-wave propagation in straight-geometry vessels for stiffness estimation: theory, simulations, phantoms and in vitro findings.

    PubMed

    Shahmirzadi, Danial; Li, Ronny X; Konofagou, Elisa E

    2012-11-01

    Pulse wave imaging (PWI) is an ultrasound-based method for noninvasive characterization of arterial stiffness based on pulse wave propagation. Reliable numerical models of pulse wave propagation in normal and pathological aortas could serve as powerful tools for local pulse wave analysis and a guideline for PWI measurements in vivo. The objectives of this paper are to (1) apply a fluid-structure interaction (FSI) simulation of a straight-geometry aorta to confirm the Moens-Korteweg relationship between the pulse wave velocity (PWV) and the wall modulus, and (2) validate the simulation findings against phantom and in vitro results. PWI depicted and tracked the pulse wave propagation along the abdominal wall of canine aorta in vitro in sequential Radio-Frequency (RF) ultrasound frames and estimates the PWV in the imaged wall. The same system was also used to image multiple polyacrylamide phantoms, mimicking the canine measurements as well as modeling softer and stiffer walls. Finally, the model parameters from the canine and phantom studies were used to perform 3D two-way coupled FSI simulations of pulse wave propagation and estimate the PWV. The simulation results were found to correlate well with the corresponding Moens-Korteweg equation. A high linear correlation was also established between PWV² and E measurements using the combined simulation and experimental findings (R² =  0.98) confirming the relationship established by the aforementioned equation.

  20. Spin-wave-induced lateral temperature gradient in a YIG thin film/GGG system excited in an ESR cavity

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Ando, Yuichiro; Dushenko, Sergey; Shinjo, Teruya; Shiraishi, Masashi

    2018-05-01

    The lateral thermal gradient of an yttrium iron garnet (YIG) film under microwave application in the cavity of the electron spin resonance system (ESR) was measured at room temperature by fabricating a Cu/Sb thermocouple onto it. To date, thermal transport in YIG films caused by the Damon-Eshbach mode (DEM)—the unidirectional spin-wave heat conveyer effect—was demonstrated only by the excitation using coplanar waveguides. Here, we show that the effect exists even under YIG excitation using the ESR cavity—a tool often employed to realize spin pumping. The temperature difference observed around the ferromagnetic resonance field under 4 mW microwave power peaked at 13 mK. The observed thermoelectric signal indicates the imbalance of the population between the DEMs that propagate near the top and bottom surfaces of the YIG film. We attribute the DEM population imbalance to different magnetic dampings near the top and bottom YIG surfaces. Additionally, the spin wave dynamics of the system were investigated using the micromagnetic simulations. The micromagnetic simulations confirmed the existence of the DEM imbalance in the system with increased Gilbert damping at one of the YIG interfaces. The reported results are indispensable to the quantitative estimation of the electromotive force in the spin-charge conversion experiments using ESR cavities.

Top