NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-09-01
It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of opposite- and equal-spin correlation, especially in the core region. In the case of the HFS constants of alkali atoms, LYP exaggerates opposite-spin correlation effects thus invoking too strong in-out correlation effects, an exaggerated spin-polarization pattern in the core shells of the atoms, and, consequently, too large HFS constants. Any correlation functional that provides a balanced account of opposite- and equal-spin correlation leads to improved HFS constants, which is proven by comparing results obtained with the LYP and the PW91 correlation functional. It is suggested that specific response properties are calculated with the PW91 rather than the LYP correlation functional.
Rotational Invariance of the 2d Spin - Spin Correlation Function
NASA Astrophysics Data System (ADS)
Pinson, Haru
2012-09-01
At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).
Magnetized liquid 3He at finite temperature: A variational calculation approach
NASA Astrophysics Data System (ADS)
Bordbar, Gholam Hossein; Mohammadi Sabet, Mohammad Taghi
2016-08-01
Using the spin-dependent (SD) and spin-independent (SI) correlation functions, we have investigated the properties of liquid 3He in the presence of magnetic field at finite temperature. Our calculations have been done using the variational method based on cluster expansion of the energy functional. Our results show that the low field magnetic susceptibility obeys Curie law at high temperatures. This behavior is in a good agreement with the experimental data as well as the molecular field theory results in which the spin dependency has been introduced in correlation function. Reduced susceptibility as a function of temperature as well as reduced temperature has been also investigated, and again we have seen that the spin-dependent correlation function leads to a good agreement with the experimental data. The Landau parameter, F0a, has been calculated, and for this parameter, a value about - 0.75 has been found in the case of spin-spin correlation. In the case of spin-independent correlation function, this value is about - 0.7. Therefore, inclusion of spin dependency in the correlation function leads to a more compatible value of F0a with experimental data. The magnetization and susceptibility of liquid 3He have also been investigated as a function of magnetic field. Our results show a downward curvature in magnetization of system with spin-dependent correlation for all densities and relevant temperatures. A metamagnetic behavior has been observed as a maximum in susceptibility versus magnetic field, when the spin-spin correlation has been considered. This maximum occurs at 45T ≤ B ≤ 100T for all densities and temperatures. This behavior has not been observed in the case of spin-independent correlation function.
Excitations in a spin-polarized two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kreil, Dominik; Hobbiger, Raphael; Drachta, Jürgen T.; Böhm, Helga M.
2015-11-01
A remarkably long-lived spin plasmon may exist in two-dimensional electron liquids with imbalanced spin-up and spin-down population. The predictions for this interesting mode by Agarwal et al. [Phys. Rev. B 90, 155409 (2014), 10.1103/PhysRevB.90.155409] are based on the random phase approximation. Here, we show how to account for spin-dependent correlations from known ground-state pair correlation functions and study the consequences on the various spin-dependent longitudinal response functions. The spin-plasmon dispersion relation and its critical wave vector for Landau damping by minority spins turn out to be significantly lower. We further demonstrate that spin-dependent effective interactions imply a rich structure in the excitation spectrum of the partially spin-polarized system. Most notably, we find a "magnetic antiresonance," where the imaginary part of both, the spin-spin as well as the density-spin response function vanish. The resulting minimum in the double-differential cross section is awaiting experimental confirmation.
Correlations and Werner states in finite spin linear arrays
NASA Astrophysics Data System (ADS)
Wells, P. R.; Chaves, C. M.; d'Albuquerque e Castro, J.; Koiller, Belita
2013-10-01
Pairwise quantum correlations in the ground state of an N-spins antiferromagnetic Heisenberg chain are investigated. By varying the exchange coupling between two neighboring sites, it is possible to reversibly drive spins from entangled to disentangled states. For even N, the two-spin density matrix is written in the form of a Werner state, allowing identification of its single parameter with the usual spin-spin correlation function. The N = 4 chain is identified as a promising system for practical demonstrations of non-classical correlations and the realization of Werner states in familiar condensed matter systems. Fabrication and measurement ingredients are within current capabilities.
NASA Astrophysics Data System (ADS)
Demissie, Taye B.
2017-11-01
The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.
Tunneling measurement of quantum spin oscillations
NASA Astrophysics Data System (ADS)
Bulaevskii, L. N.; Hruška, M.; Ortiz, G.
2003-09-01
We consider the problem of tunneling between two leads via a localized spin 1/2 or any other microscopic system (e.g., a quantum dot) which can be modeled by a two-level Hamiltonian. We assume that a constant magnetic field B0 acts on the spin, that electrons in the leads are in a voltage driven thermal equilibrium, and that the tunneling electrons are coupled to the spin through exchange and spin-orbit interactions. Using the nonequilibrium Keldysh formalism we find the dependence of the spin-spin and current-current correlation functions on the applied voltage between leads V, temperature T, B0, and on the degree and orientation mα of spin polarization of the electrons in the right (α=R) and left (α=L) leads. We show the following (a) The spin-spin correlation function exhibits a peak at the Larmor frequency, ωL, corresponding to the effective magnetic field B acting upon the spin as determined by B0 and the exchange field induced by tunneling of spin-polarized electrons. (b) If the mα’s are not parallel to B the second-order derivative of the average tunneling current I(V) with respect to V is proportional to the spectral density of the spin-spin correlation function, i.e., exhibits a peak at the voltage V=ħωL/e. (c) In the same situation when V>B the current-current correlation function exhibits a peak at the same frequency. (d) The signal-to-noise (shot-noise) ratio R for this peak reaches a maximum value of order unity, R⩽4, at large V when the spin is decoupled from the environment and the electrons in both leads are fully polarized in the direction perpendicular to B. (e) R≪1 if the electrons are weakly polarized, or if they are polarized in a direction close to B0, or if the spin interacts with the environment stronger than with the tunneling electrons. Our results of a full quantum-mechanical treatment of the tunneling-via-spin model when V≫B are in agreement with those previously obtained in the quasiclassical approach. We discuss also the experimental results observed using scanning tunneling microscopy dynamic probes of the localized spin.
Charge and Spin Dynamics of the Hubbard Chains
NASA Technical Reports Server (NTRS)
Park, Youngho; Liang, Shoudan
1999-01-01
We calculate the local correlation functions of charge and spin for the one-chain and two-chain Hubbard model using density matrix renormalization group method and the recursion technique. Keeping only finite number of states we get good accuracy for the low energy excitations. We study the charge and spin gaps, bandwidths and weights of the spectra for various values of the on-site Coulomb interaction U and the electron filling. In the low energy part, the local correlation functions are different for the charge and spin. The bandwidths are proportional to t for the charge and J for the spin respectively.
Quantum Monte Carlo study of spin correlations in the one-dimensional Hubbard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandvik, A.W.; Scalapino, D.J.; Singh, C.
1993-07-15
The one-dimensional Hubbard model is studied at and close to half-filling using a generalization of Handscomb's quantum Monte Carlo method. Results for spin-correlation functions and susceptibilities are presented for systems of up to 128 sites. The spin-correlation function at low temperature is well described by a recently introduced formula relating the correlation function of a finite periodic system to the corresponding [ital T]=0 correlation function of the infinite system. For the [ital T][r arrow]0 divergence of the [ital q]=2[ital k][sub [ital F
Lieb-Robinson bounds for spin-boson lattice models and trapped ions.
Jünemann, J; Cadarso, A; Pérez-García, D; Bermudez, A; García-Ripoll, J J
2013-12-06
We derive a Lieb-Robinson bound for the propagation of spin correlations in a model of spins interacting through a bosonic lattice field, which satisfies a Lieb-Robinson bound in the absence of spin-boson couplings. We apply these bounds to a system of trapped ions and find that the propagation of spin correlations, as mediated by the phonons of the ion crystal, can be faster than the regimes currently explored in experiments. We propose a scheme to test the bounds by measuring retarded correlation functions via the crystal fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, L.F.
Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less
Fractional Wigner Crystal in the Helical Luttinger Liquid.
Traverso Ziani, N; Crépin, F; Trauzettel, B
2015-11-13
The properties of the strongly interacting edge states of two dimensional topological insulators in the presence of two-particle backscattering are investigated. We find an anomalous behavior of the density-density correlation functions, which show oscillations that are neither of Friedel nor of Wigner type: they, instead, represent a Wigner crystal of fermions of fractional charge e/2, with e the electron charge. By studying the Fermi operator, we demonstrate that the state characterized by such fractional oscillations still bears the signatures of spin-momentum locking. Finally, we compare the spin-spin correlation functions and the density-density correlation functions to argue that the fractional Wigner crystal is characterized by a nontrivial spin texture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, D.; Clougherty, D.P.; MacLaren, J.M.
1991-10-01
The influence of local-spin-dependent correlation effects on the predicted stable ground-state phase of iron is reexamined with use of general-potential linearized augmented-plane-wave calculations. Differences in the form of the Vosko-Wilk-Nusair (VWN) local-spin-density functional used in previous studies are noted, since in previous studies significant additional approximations were made with respect to those of Vosko, Wilk, and Nusan (Can. J. Phys. 58, 1200 (1980)) and of MacLaren, Clougherty, and Albers (Phys. Rev. B 42, 3205 (1990)). While the results of previous linear muffin-tin orbital calculations using the VWN functional predict a bcc ferromagnetic ground state, the present calculations show that themore » VWN spin-correlation effects fail to stabilize a bcc ground state. Considerable sensitivity to the form of the spin interpolation is found.« less
Locv Calculations for Polarized Liquid 3He with the Spin-Dependent Correlation
NASA Astrophysics Data System (ADS)
Bordbar, G. H.; Karimi, M. J.
We have used the lowest order constrained variational (LOCV) method to calculate some ground-state properties of polarized liquid 3 He at zero temperature with the spin-dependent correlation function employing the Lennard-Jones and Aziz pair potentials. We have seen that the total energy of polarized liquid 3He increases with increasing polarization. For all polarizations, it is shown that the total energy in the spin-dependent case is lower than the spin-independent case. We have seen that the difference between the energies of spin-dependent and spin-independent cases decreases by increasing the polarization. We have shown that the main contribution of the potential energy comes from the spin-triplet state.
Hard-spin mean-field theory: A systematic derivation and exact correlations in one dimension
Kabakcioglu
2000-04-01
Hard-spin mean-field theory is an improved mean-field approach which has proven to give accurate results, especially for frustrated spin systems, with relatively little computational effort. In this work, the previous phenomenological derivation is supplanted by a systematic and generic derivation that opens the possibility for systematic improvements, especially for the calculation of long-range correlation functions. A first level of improvement suffices to recover the exact long-range values of the correlation functions in one dimension.
NASA Astrophysics Data System (ADS)
Bordbar, G. H.; Hosseini, S.; Poostforush, A.
2017-05-01
Correlations in quantum fluids such as liquid 3He continue to be of high interest to scientists. Based on this prospect, the present work is devoted to study the effects of spin-spin correlation function on the thermodynamic properties of polarized liquid 3He such as pressure, velocity of sound, adiabatic index and adiabatic compressibility along different isentropic paths, using the Lennard-Jones potential and employing the variational approach based on cluster expansion of the energy functional. The inclusion of this correlation improves our previous calculations and leads to good agreements with experimental results.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji
2011-04-21
Spin-orbit and spin-spin contributions to the zero-field splitting (ZFS) tensors (D tensors) of spin-triplet phenyl-, naphthyl-, and anthryl-nitrenes in their ground state are investigated by quantum chemical calculations, focusing on the effects of the ring size and substituted position of nitrene on the D tensor. A hybrid CASSCF/MRMP2 approach to the spin-orbit term of the D tensor (D(SO) tensor), which was recently proposed by us, has shown that the spin-orbit contribution to the entire D value, termed the ZFS parameter or fine-structure constant, is about 10% in all the arylnitrenes under study and less depends on the size and connectivity of the aryl groups. Order of the absolute values for D(SO) can be explained by the perturbation on the energy level and spatial distributions of π-SOMO through the orbital interaction between SOMO of the nitrene moiety and frontier orbitals of the aryl scaffolds. Spin-spin contribution to the D tensor (D(SS) tensor) has been calculated in terms of the McWeeny-Mizuno equation with the DFT/EPR-II spin densities. The D(SS) value calculated with the RO-B3LYP spin density agrees well with the D(Exptl) -D(SO) reference value in phenylnitrene, but agreement with the reference value gradually becomes worse as the D value decreases. Exchange-correlation functional dependence on the D(SS) tensor has been explored with standard 23 exchange-correlation functionals in both RO- and U-DFT methodologies, and the RO-HCTH/407 method gives the best agreement with the D(Exptl) -D(SO) reference value. Significant exchange-correlation functional dependence is observed in spin-delocalized systems such as 9-anthrylnitrene (6). By employing the hybrid CASSCF/MRMP2 approach and the McWeeny-Mizuno equation combined with the RO-HCTH/407/EPR-II//U-HCTH/407/6-31G* spin densities for D(SO) and D(SS), respectively, a quantitative agreement with the experiment is achieved with errors less than 10% in all the arylnitrenes under study. Guidelines to the putative approaches to D(SS) tensor calculations are given.
Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional
NASA Astrophysics Data System (ADS)
Cheng, Ya; Wang, Xianlong; Zhang, Jie; Yang, Kaishuai; Zhang, Chuanguo; Zeng, Zhi; Lin, Haiqin
2018-04-01
Pressure-induced spin crossover behaviors of Fe-bearing MgO were widely investigated by using an LDA + U functional for describing the strongly correlated Fe–O bonding. Moreover, the simulated spin crossover pressures depend on the applied U values, which are sensitive to environments and parameters. In this work, the spin crossover pressures of (Mg1‑x ,Fe x )O are investigated by using the hybrid functional with a uniform parameter. Our results indicate that the spin crossover pressures increase with increasing iron concentration. For example, the spin crossover pressure of (Mg0.03125,Fe0.96875)O and FeO was 56 GPa and 127 GPa, respectively. The calculated crossover pressures agreed well with the experimental observations. Therefore, the hybrid functional should be an effective method for describing the pressure-induced spin crossover behaviors in transition metal oxides.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
Invariant functionals in higher-spin theory
NASA Astrophysics Data System (ADS)
Vasiliev, M. A.
2017-03-01
A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
Transverse spin correlation function of the one-dimensional spin- {1}/{2} XY model
NASA Astrophysics Data System (ADS)
Tonegawa, Takashi
1981-12-01
The transverse spin pair correlation function pxn=< SxmSxm+ n>=< SxmSxm+ n> is calculated exactly in the thermodynamic limit of the system described by the one-dimensional, isotropic, spin- {1}/{2}, XY Hamiltonian H=-2J limit∑l=1N(S xlS xl+1+S ylS yl+1) . It is found that at absolute zero temperature ( T = 0), the correlation function ρ xn for n ≥ 0 is given by ρ x2p= {1}/{4}{2}/{π}2plimitΠj=1p-1{4j 2}/{4j 2-1 }2p-2jif n=2p , ρ x2p+1=± {1}/{4}{2}/{π}2p+1limitΠj=1p{4j 2}/{4j 2-1 }2p+2jif n=2p+1 , where the plus sign applies when J is positive and the minus sign applies when J is negative. From these the asymptotic behavior as n → ∞ of |ϱ xn| at T = 0 is derived to be |ρ xn| ˜ {a}/{n} with a = 0.147088⋯. For finite temperatures, ρ xn is calculated numerically. By using the results for ϱ xn, the transverse inverse correlation length and the wavenumber dependent transverse spin pair correlation function are also calculated exactly.
NASA Astrophysics Data System (ADS)
Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph
2016-08-01
Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.
The build up of the correlation between halo spin and the large-scale structure
NASA Astrophysics Data System (ADS)
Wang, Peng; Kang, Xi
2018-01-01
Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.
Magnetic order at a single-crystal surface in the diffuse-scattering theory
NASA Astrophysics Data System (ADS)
Zasada, I.
2003-06-01
A theoretical description of incoherent spin-dependent multiple scattering of electrons at a magnetically disordered single-crystal surface is reported. A formalism in which the spin operators specify the magnetic state of a surface atom is used for the description of magnetic order at the surface. The theory is based upon the concepts used in multiple scattering spin-dependent diffuse LEED theory (DSPLEED) theory. In the present considerations, this theory is extended to the case of magnetic materials by using the time-independent Dirac equation with an effective magnetic field. Thus, an expression for incoherent spin-dependent intensity for magnetic material is obtained. It depends on the Fourier transform on the surface lattice of the spin-pair correlation function and, as a consequence, on the magnetic properties of the surface. The equations for the description of magnetization and various correlation functions in the frame of effective field theory are derived and the results of the numerical calculations are presented for the particular case of Ni(1 0 0) surface. The spin-orbit induced and exchange asymmetries are calculated. It is found that the magnetic DSPLEED is sensitive to the properties of the surface characterized by the spin-pair correlation functions. Thus, it is demonstrated that the magnetic DSPLEED can be an effective method in the investigation of critical behaviour of magnetic surfaces.
Quenched dynamics and spin-charge separation in an interacting topological lattice
NASA Astrophysics Data System (ADS)
Barbiero, L.; Santos, L.; Goldman, N.
2018-05-01
We analyze the static and dynamical properties of a one-dimensional topological lattice, the fermionic Su-Schrieffer-Heeger model, in the presence of on-site interactions. Based on a study of charge and spin correlation functions, we elucidate the nature of the topological edge modes, which, depending on the sign of the interactions, either display particles of opposite spin on opposite edges, or a pair and a holon. This study of correlation functions also highlights the strong entanglement that exists between the opposite edges of the system. This last feature has remarkable consequences upon subjecting the system to a quench, where an instantaneous edge-to-edge signal appears in the correlation functions characterizing the edge modes. Besides, other correlation functions are shown to propagate in the bulk according to the light cone imposed by the Lieb-Robinson bound. Our study reveals how one-dimensional lattices exhibiting entangled topological edge modes allow for a nontrivial correlation spreading, while providing an accessible platform to detect spin-charge separation using state-of-the-art experimental techniques.
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
Towards spinning Mellin amplitudes
NASA Astrophysics Data System (ADS)
Chen, Heng-Yu; Kuo, En-Jui; Kyono, Hideki
2018-06-01
We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.
Quantum dust magnetosonic waves with spin and exchange correlation effects
NASA Astrophysics Data System (ADS)
Maroof, R.; Mushtaq, A.; Qamar, A.
2016-01-01
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).
Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions
NASA Astrophysics Data System (ADS)
Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael
2017-04-01
Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.
Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators
NASA Astrophysics Data System (ADS)
Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian
2017-08-01
Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adelnia, Fatemeh; Lascialfari, Alessandro; Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia
2015-05-07
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ringmore » and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.« less
Self-consistent electronic structure of disordered Fe/sub 0. 65/Ni/sub 0. 35/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.D.; Pinski, F.J.; Stocks, G.M.
1985-04-15
We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the verymore » structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality.« less
Self-consistent electronic structure of disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.D.; Pinski, F.J.; Stocks, G.M.
1984-01-01
We present the results of the first ab-initio calculation of the electronic structure of a disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/ alloy. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin-polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko-Wilk-Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder; whereas, the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared tomore » the very structured majority spin density of states. This difference is due to a subtle balance between exchange-splitting and charge neutrality. 15 references, 2 figures.« less
Spin-Controlled Conductivity in a Thiophene-Functionalized Iron-Bis(dicarbollide)
NASA Astrophysics Data System (ADS)
Beach, Benjamin; Sauriol, Dustin; Derosa, Pedro
2016-04-01
The relationship between spin state and conductivity is studied for a thiophene-functionalized iron(III)-bis(dicarbollide) with one or two thiophenes at each end of the cage. Iron has a high ground state spin that can be adjusted by external electromagnetic fields to produce different magnetic states. The hypothesis explored here is that changes in the spin state of these Fe-containing molecules can lead to significant changes in molecular conductivity. Two examples of the possible application of such spin-dependent conductivity are its use as a molecular switch, the basic building block in digital logic, or as a memory bit. The molecules were first optimized using the Becke-3 Lee-Yang-Parr functional (B3LYP) with the 6-31G(d) basis set. A relaxed molecular geometry at each spin state was then placed between gold electrodes to conduct spin-polarized electron transport calculations with the density functional theory/non-equilibrium Green's functions formalism. The revised Perdew-Burke-Ernzerhf solids exchange-correlation functional (PBES) with double zeta polarized basis set was used. The result of these calculations show that the conductivity increases with the spin state. The cage structure is shown to exhibit fully delocalized molecular orbitals (MOs) appropriate for high conductivity and thus, in this system, the conductivity depends on the position of the MOs relative to the Fermi level. Minority spins are responsible for the conductivity of the doublet spin state while majority spins dominate for the quartet and sextet spin states as they are found closer to the Fermi level when they are occupied. Energy calculations predict a difference in energy between the more and the less conductive spin states (sextet and doublet respectively) that is 15-20 times greater than the thermal energy, which would imply stability at room temperature; however, the energy difference is sufficiently small that transitions between spin states can be induced.
Comparing T-odd and T-even spin sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teryaev, O.V.
2015-04-10
Sum rules for T-even and T-odd structure functions and parton distributions are considered. The case of spin-dependent distributions related to energy-momentum tensor (EMT) is specifically addressed. The Burkardt sum rule for T-odd Sivers functions may be related to EMT provided the imaginary prescription for gluonic pole correlator is incorporated. The momentum sum rule for deuteron tensor spin structure function allows one to probe indirectly the gravity couplings to quarks and gluons.
Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions
NASA Astrophysics Data System (ADS)
Werth, A.; Kopietz, P.; Tsyplyatyev, O.
2018-05-01
We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.
Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; ...
2016-06-07
The Magneli phase Ti 4O 7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation.more » Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less
Gluon and Wilson loop TMDs for hadrons of spin ≤ 1
NASA Astrophysics Data System (ADS)
Boer, Daniël; Cotogno, Sabrina; van Daal, Tom; Mulders, Piet J.; Signori, Andrea; Zhou, Ya-Jin
2016-10-01
In this paper we consider the parametrizations of gluon transverse momentum dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs). These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic matrix elements of nonlocal combinations of gluon fields. The nonlocality is bridged by gauge links, which have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. For gluons, the specific correlator with one future and one past pointing gauge link is, in the limit of small x, related to a correlator of a single Wilson loop. We present the parametrization of Wilson loop correlators in terms of Wilson loop TMDs and discuss the relation between these functions and the small- x `dipole' gluon TMDs. This analysis shows which gluon TMDs are leading or suppressed in the small- x limit. We discuss hadronic targets that are unpolarized, vector polarized (relevant for spin-1 /2 and spin-1 hadrons), and tensor polarized (relevant for spin-1 hadrons). The latter are of interest for studies with a future Electron-Ion Collider with polarized deuterons.
Effective model with strong Kitaev interactions for α -RuCl3
NASA Astrophysics Data System (ADS)
Suzuki, Takafumi; Suga, Sei-ichiro
2018-04-01
We use an exact numerical diagonalization method to calculate the dynamical spin structure factors of three ab initio models and one ab initio guided model for a honeycomb-lattice magnet α -RuCl3 . We also use thermal pure quantum states to calculate the temperature dependence of the heat capacity, the nearest-neighbor spin-spin correlation function, and the static spin structure factor. From the results obtained from these four effective models, we find that, even when the magnetic order is stabilized at low temperature, the intensity at the Γ point in the dynamical spin structure factors increases with increasing nearest-neighbor spin correlation. In addition, we find that the four models fail to explain heat-capacity measurements whereas two of the four models succeed in explaining inelastic-neutron-scattering experiments. In the four models, when temperature decreases, the heat capacity shows a prominent peak at a high temperature where the nearest-neighbor spin-spin correlation function increases. However, the peak temperature in heat capacity is too low in comparison with that observed experimentally. To address these discrepancies, we propose an effective model that includes strong ferromagnetic Kitaev coupling, and we show that this model quantitatively reproduces both inelastic-neutron-scattering experiments and heat-capacity measurements. To further examine the adequacy of the proposed model, we calculate the field dependence of the polarized terahertz spectra, which reproduces the experimental results: the spin-gapped excitation survives up to an onset field where the magnetic order disappears and the response in the high-field region is almost linear. Based on these numerical results, we argue that the low-energy magnetic excitation in α -RuCl3 is mainly characterized by interactions such as off-diagonal interactions and weak Heisenberg interactions between nearest-neighbor pairs, rather than by the strong Kitaev interactions.
Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence
Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao
2014-01-01
Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
Quantum Critical Point revisited by the Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
Strong spin-orbit effects in transition metal oxides with tetrahedral coordination
NASA Astrophysics Data System (ADS)
Forte, Filomena; Guerra, Delia; Autieri, Carmine; Romano, Alfonso; Noce, Canio; Avella, Adolfo
2018-05-01
To prove that spin-orbit coupling can play a relevant role in determining the magnetic structure of transition metal oxides with tetrahedral coordination, we investigate the d1 Mott insulator KOsO4, combining density functional theory calculations and the exact diagonalization approach. We find that the interplay between crystal field, strong spin-orbit coupling, electronic correlations and structural distortions brings the system towards an antiferromagnetic phase, characterized by a non-vanishing orbital angular momentum and anisotropy among the in-plane and the out-of-plane antiferromagnetic correlations. We also show that, due to the peculiar interplay between spin-orbit coupling, Hund's coupling and hopping connectivity the system is on the verge of developing short range ferromagnetic correlations marked by strong directionality.
Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder
NASA Astrophysics Data System (ADS)
Peschke, Matthias; Rausch, Roman; Potthoff, Michael
2018-03-01
The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.
NASA Astrophysics Data System (ADS)
Loh, Y. L.; Yao, D. X.; Carlson, E. W.
2008-04-01
A new class of two-dimensional magnetic materials Cu9X2(cpa)6ṡxH2O ( cpa=2 -carboxypentonic acid; X=F,Cl,Br ) was recently fabricated in which Cu sites form a triangular kagome lattice (TKL). As the simplest model of geometric frustration in such a system, we study the thermodynamics of Ising spins on the TKL using exact analytic method as well as Monte Carlo simulations. We present the free energy, internal energy, specific heat, entropy, sublattice magnetizations, and susceptibility. We describe the rich phase diagram of the model as a function of coupling constants, temperature, and applied magnetic field. For frustrated interactions in the absence of applied field, the ground state is a spin liquid phase with residual entropy per spin s0/kB=(1)/(9)ln72≈0.4752… . In weak applied field, the system maps to the dimer model on a honeycomb lattice, with residual entropy 0.0359 per spin and quasi-long-range order with power-law spin-spin correlations that should be detectable by neutron scattering. The power-law correlations become exponential at finite temperatures, but the correlation length may still be long.
Local-spin-density calculations for iron: Effect of spin interpolation on ground-state properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLaren, J.M.; Clougherty, D.P.; Albers, R.C.
1990-08-15
Scalar-relativistic self-consistent linear muffin-tin orbital (LMTO) calculations for bcc and fcc Fe have been performed with several different local approximations to the exchange and correlation energy density and potential. Overall, in contrast to the conclusions of previous studies, we find that the local-spin-density approximation to exchange and correlation can provide an adequate description of bulk Fe {ital provided} that a proper parametrization of the correlation energy density and potential of the homogeneous electron gas over both spin and density is used. Lattice constants, found from the position of the minimum of the total energy as a function of Wigner-Seitz radius,more » agree to within 1% (for {ital s},{ital p},{ital d} LMTO's only) and within 1--2% (for {ital s},{ital p},{ital d},{ital f} LMTO's) of the experimental lattice constants for all forms used for the local correlation. The best agreement, however, was obtained using a local correlation potential derived from the Vosko-Wilk-Nusair form for the spin dependence of the correlation energy density. The calculation performed with this correlation potential was also the only calculation to correctly predict a bcc ferromagnetic ground state.« less
Spin Bose-metal phase in a spin- (1)/(2) model with ring exchange on a two-leg triangular strip
NASA Astrophysics Data System (ADS)
Sheng, D. N.; Motrunich, Olexei I.; Fisher, Matthew P. A.
2009-05-01
Recent experiments on triangular lattice organic Mott insulators have found evidence for a two-dimensional (2D) spin liquid in close proximity to the metal-insulator transition. A Gutzwiller wave function study of the triangular lattice Heisenberg model with a four-spin ring exchange term appropriate in this regime has found that the projected spinon Fermi sea state has a low variational energy. This wave function, together with a slave particle-gauge theory analysis, suggests that this putative spin liquid possesses spin correlations that are singular along surfaces in momentum space, i.e., “Bose surfaces.” Signatures of this state, which we will refer to as a “spin Bose metal” (SBM), are expected to manifest in quasi-one-dimensional (quasi-1D) ladder systems: the discrete transverse momenta cut through the 2D Bose surface leading to a distinct pattern of 1D gapless modes. Here, we search for a quasi-1D descendant of the triangular lattice SBM state by exploring the Heisenberg plus ring model on a two-leg triangular strip (zigzag chain). Using density matrix renormalization group (DMRG) supplemented by variational wave functions and a bosonization analysis, we map out the full phase diagram. In the absence of ring exchange the model is equivalent to the J1-J2 Heisenberg chain, and we find the expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange reveals a new gapless phase over a large swath of the phase diagram. Spin and dimer correlations possess singular wave vectors at particular “Bose points” (remnants of the 2D Bose surface) and allow us to identify this phase as the hoped for quasi-1D descendant of the triangular lattice SBM state. We use bosonization to derive a low-energy effective theory for the zigzag spin Bose metal and find three gapless modes and one Luttinger parameter controlling all power law correlations. Potential instabilities out of the zigzag SBM give rise to other interesting phases such as a period-3 valence bond solid or a period-4 chirality order, which we discover in the DMRG. Another interesting instability is into a spin Bose-metal phase with partial ferromagnetism (spin polarization of one spinon band), which we also find numerically using the DMRG.
Fictitious spin-12 operators and correlations in quadrupole nuclear spin system
NASA Astrophysics Data System (ADS)
Furman, G. B.; Goren, S. D.; Meerovich, V. M.; Sokolovsky, V. L.
The Hamiltonian and the spin operators for a spin 3/2 are represented in the basis formed by the Kronecker productions of the 2×2 Pauli matrices. This reformulation allows us to represent a spin 3/2 as a system of two coupled fictitious spins 1/2. Correlations between these fictitious spins are studied using well-developed methods. We investigate the temperature and field dependences of correlations, such as mutual information, classical correlations, entanglement, and geometric and quantum discords in the fictitious spin-1/2 system describing a nuclear spin 3/2 which is placed in magnetic and inhomogeneous electric fields. It is shown that the correlations between the fictitious spins demonstrate properties which differ from those of real two-spin systems. In contrast to real systems all the correlations between the fictitious spins do not vanish with increasing external magnetic field; at a high magnetic field the correlations tend to their limiting values. Classical correlations, quantum and geometric discords reveal a pronounced asymmetry relative to the measurements on subsystems (fictitious spins) even in a uniform magnetic field and at symmetrical EFG, η=0. The correlations depend also on the distribution of external charges, on the parameter of symmetry η. At η≠0 quantum and geometric discords have finite values in a zero magnetic field. The proposed approach may be useful in analysis of properties of particles with larger angular momentum, can provide the way to discover new physical phenomenon of quantum correlations, and can be a useful tool for similar definitions of other physical quantities of complex systems.
Giner, Emmanuel; Tenti, Lorenzo; Angeli, Celestino; Malrieu, Jean-Paul
2016-09-28
The impact of the antisymmetrization is often addressed as a local property of the many-electron wave function, namely that the wave function should vanish when two electrons with parallel spins are in the same position in space. In this paper, we emphasize that this presentation is unduly restrictive: we illustrate the strong non-local character of the antisymmetrization principle, together with the fact that it is a matter of spin symmetry rather than spin parallelism. To this aim, we focus our attention on the simplest representation of various states of two-electron systems, both in atomic (helium atom) and molecular (H 2 and the π system of the ethylene molecule) cases. We discuss the non-local property of the nodal structure of some two-electron wave functions, both using analytical derivations and graphical representations of cuttings of the nodal hypersurfaces. The attention is then focussed on the impact of the antisymmetrization on the maxima of the two-body density, and we show that it introduces strong correlation effects (radial and/or angular) with a non-local character. These correlation effects are analyzed in terms of inflation and depletion zones, which are easily identifiable, thanks to the nodes of the orbitals composing the wave function. Also, we show that the correlation effects induced by the antisymmetrization occur also for anti-parallel spins since all M s components of a given spin state have the same N-body densities. Finally, we illustrate that these correlation effects occur also for the singlet states, but they have strictly opposite impacts: the inflation zones in the triplet become depletion zones in the singlet and vice versa.
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
NASA Astrophysics Data System (ADS)
Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun
2017-01-01
We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.
Spin-resolved correlations in the warm-dense homogeneous electron gas
NASA Astrophysics Data System (ADS)
Arora, Priya; Kumar, Krishan; Moudgil, R. K.
2017-04-01
We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function gσσ'(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy Eint and exchange-correlation free energy Fxc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g↑↓(0). Our results of Eint and Fxc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of Eint from the RPIMC data for high densities ( 8% at rs = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of Eint with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons. Supplementary material in the form of one zip file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70532-y
NASA Astrophysics Data System (ADS)
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
2017-11-09
to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a long-term effort...devices, our goal is to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a... correlate the change in transport with the atomic structure of hydrogen-doped graphene, we subsequently use the STM to investigate the graphene
NASA Astrophysics Data System (ADS)
Wojdeł, Jacek C.; Moreira, Ibério de P. R.; Illas, Francesc
2009-01-01
This paper presents a detailed theoretical analysis of the electronic structure of the CsFe[Cr(CN)6] prussian blue analog with emphasis on the structural origin of the experimentally observed spin crossover transition in this material. Periodic density functional calculations using generalized gradient approximation (GGA)+U and nonlocal hybrid exchange-correlation potentials show that, for the experimental low temperature crystal structure, the t2g6eg0 low spin configuration of FeII is the most stable and CrIII (S =3/2, t2g3eg0) remains the same in all cases. This is also found to be the case for the low spin GGA+U fully relaxed structure with the optimized unit cell. A completely different situation emerges when calculations are carried out using the experimental high temperature structure. Here, GGA+U and hybrid density functional theory calculations consistently predict that the t2g4eg2 FeII high spin configuration is the ground state. However, the two spin configurations appear to be nearly degenerate when calculations are carried out for the geometries arising from a GGA+U full relaxation of the atomic structure carried out at experimental high temperature lattice constant. A detailed analysis of the energy difference between the two spin configurations as a function of the lattice constant strongly suggests that the observed spin crossover transition has a structural origin with non-negligible entropic contributions of the high spin state.
Macrorealism from entropic Leggett-Garg inequalities
NASA Astrophysics Data System (ADS)
Devi, A. R. Usha; Karthik, H. S.; Sudha; Rajagopal, A. K.
2013-05-01
We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.61.662 61, 662 (1988)] by a pair of spin-s particles forming a composite spin singlet state.
Spin noise spectroscopy beyond thermal equilibrium and linear response.
Glasenapp, P; Sinitsyn, N A; Yang, Luyi; Rickel, D G; Roy, D; Greilich, A; Bayer, M; Crooker, S A
2014-10-10
Per the fluctuation-dissipation theorem, the information obtained from spin fluctuation studies in thermal equilibrium is necessarily constrained by the system's linear response functions. However, by including weak radio frequency magnetic fields, we demonstrate that intrinsic and random spin fluctuations even in strictly unpolarized ensembles can reveal underlying patterns of correlation and coupling beyond linear response, and can be used to study nonequilibrium and even multiphoton coherent spin phenomena. We demonstrate this capability in a classical vapor of (41)K alkali atoms, where spin fluctuations alone directly reveal Rabi splittings, the formation of Mollow triplets and Autler-Townes doublets, ac Zeeman shifts, and even nonlinear multiphoton coherences.
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
The spinning apparatus of webspinners – functional-morphology, morphometrics and spinning behaviour
Büsse, Sebastian; Hörnschemeyer, Thomas; Hohu, Kyle; McMillan, David; Edgerly, Janice S.
2015-01-01
Webspinners (Insecta: Embioptera) have a distinctly unique behaviour with related morphological characteristics. Producing silk with the basitarsomeres of their forelegs plays a crucial role in the lives of these insects – providing shelter and protection. The correlation between body size, morphology and morphometrics of the spinning apparatus and the spinning behaviour of Embioptera was investigated for seven species using state-of-the-art methodology for behavioural as well as for morphological approaches. Independent contrast analysis revealed correlations between morphometric characters and body size. Larger webspinners in this study have glands with greater reservoir volume, but in proportionally smaller tarsi relative to body size than in the smaller species. Furthermore, we present a detailed description and review of the spinning apparatus in Embioptera in comparison to other arthropods and substantiate the possible homology of the embiopteran silk glands to class III dermal silk glands of insects. PMID:25950122
Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal
2016-01-01
Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.
Asymptotic correlation functions and FFLO signature for the one-dimensional attractive Hubbard model
NASA Astrophysics Data System (ADS)
Cheng, Song; Jiang, Yuzhu; Yu, Yi-Cong; Batchelor, Murray T.; Guan, Xi-Wen
2018-04-01
We study the long-distance asymptotic behavior of various correlation functions for the one-dimensional (1D) attractive Hubbard model in a partially polarized phase through the Bethe ansatz and conformal field theory approaches. We particularly find the oscillating behavior of these correlation functions with spatial power-law decay, of which the pair (spin) correlation function oscillates with a frequency ΔkF (2 ΔkF). Here ΔkF = π (n↑ -n↓) is the mismatch in the Fermi surfaces of spin-up and spin-down particles. Consequently, the pair correlation function in momentum space has peaks at the mismatch k = ΔkF, which has been observed in recent numerical work on this model. These singular peaks in momentum space together with the spatial oscillation suggest an analog of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in the 1D Hubbard model. The parameter β representing the lattice effect becomes prominent in critical exponents which determine the power-law decay of all correlation functions. We point out that the backscattering of unpaired fermions and bound pairs within their own Fermi points gives a microscopic origin of the FFLO pairing in 1D.
NASA Astrophysics Data System (ADS)
Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich
2018-04-01
We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.
Transverse spin structure of the nucleon from lattice-QCD simulations.
Göckeler, M; Hägler, Ph; Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schäfer, A; Schierholz, G; Stüben, H; Zanotti, J M
2007-06-01
We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons. We find significant contributions from certain quark helicity flip generalized parton distributions, leading to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-Mulders function h(1/1), describing correlations of transverse quark spin and intrinsic transverse momentum of quarks, is large and negative for both up and down quarks.
Transverse single-spin asymmetries: Challenges and recent progress
Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; ...
2014-11-25
In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less
NASA Astrophysics Data System (ADS)
Jawalkar, Sucheta Shrikant
Measurements in the late 1980s at CERN revealed that quark spins account for a small fraction of the proton's spin. This so-called spin crisis spurred a number of new experiments to identify the proton's silent spin contributors, namely, the spin of the gluons, which hold the quarks together, and the orbital angular momentum of both quarks and gluons. One such experiment was eg1-dvcs at the Thomas Jefferson National Accelerator Facility in Newport News, Va., which ran in 2009 and collected approximately 19 billion electron triggers for hydrogen. I will present new measurements of the single and double-spin asymmetries ALU, AUL and ALL for pi+, pi - and pi0, measured as a function of Bjorken xB, squared momentum transfer Q2, hadron energy fraction z, and hadron transverse momentum Ph ⊥. These asymmetries, which are convolutions of transverse-momentum-dependent parton distributions and fragmentation functions, correlate with the transverse momentum, and therefore with the orbital motion, of the struck quark.
Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine.
Wu, Wei
2014-06-14
Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-½) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.
Spin-polarized density-matrix functional theory of the single-impurity Anderson model
NASA Astrophysics Data System (ADS)
Töws, W.; Pastor, G. M.
2012-12-01
Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Institute of Nanomaterial and Nanostructure, Changsha University of Science and Technology, Changsha 410114; Hu, J.
2015-07-20
Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.
Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices
NASA Astrophysics Data System (ADS)
Farnell, D. J. J.; Götze, O.; Richter, J.
2016-06-01
The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.
Spinon dynamics in quantum integrable antiferromagnets
NASA Astrophysics Data System (ADS)
Vlijm, R.; Caux, J.-S.
2016-05-01
The excitations of the Heisenberg antiferromagnetic spin chain in zero field are known as spinons. As pairwise-created fractionalized excitations, spinons are important in the understanding of inelastic neutron scattering experiments in (quasi-)one-dimensional materials. In the present paper, we consider the real space-time dynamics of spinons originating from a local spin flip on the antiferromagnetic ground state of the (an)isotropic Heisenberg spin-1/2 model and the Babujan-Takhtajan spin-1 model. By utilizing algebraic Bethe ansatz methods at finite system size to compute the expectation value of the local magnetization and spin-spin correlations, spinons are visualized as propagating domain walls in the antiferromagnetic spin ordering with anisotropy dependent behavior. The spin-spin correlation after the spin flip displays a light cone, satisfying the Lieb-Robinson bound for the propagation of correlations at the spinon velocity.
A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.
Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A
2018-03-01
Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.
The half-metallicity of Co2FeGe full Heusler alloy in (001) thin film: First principles study
NASA Astrophysics Data System (ADS)
Hyun, Jung-Min; Kim, Miyoung
2018-01-01
The electronic and magnetic properties of the Co2FeGe full Heusler alloy in (001) thin film are investigated using the first-principles electronic structure calculations within the density functional theory. We employ various exchange correlation functionals including the local density approximation (LDA), the generalized gradient approximation (GGA), and the additional + U corrections for strong on-site Coulomb interaction of transition metal 3d states, aiming to examine the correlation effect on the electronic structures which determine the spin gap and thus the half-metallicity. Our results reveal that the Co2FeGe thin film is metallic in both LDA and GGA, while the + U correction opens up the spin gap for spin minority channel in GGA+ U but not in LDA+U in contrast to its bulk alloy which is predicted to be half-metallic in both LDA+ U and GGA+ U approaches with total spin magnetic moment of 6 μ B . It is found that the surface states developed around the Fermi level and the enhanced 3d e g - t 2 g band splitting for the spin minority channel due to the correlation effect play critical roles to determine the emergence of the half-metallicity.
NASA Astrophysics Data System (ADS)
Farberovich, Oleg V.; Gritzaenko, Vyacheslav S.
2018-04-01
In this paper we present the results of theoretical calculation of entanglement within a spin structure of Gd3N@C80 under the influence of rectangular impulses. Research is conducted using general spin Hamiltonian within SSNQ (spin system of N-qubits). The calculations of entanglement with various impulses are performed using the time-dependent Landau-Lifshitz-Gilbert equation with spin-spin correlation function. We show that long rectangular impulse (t = 850 ps) can be used for sustaining entanglement value. This allows us to offer a new algorithm which can be used to solve the problem of decoherence in the logical scheme optimization.
Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems
Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; ...
2015-04-30
Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less
NASA Astrophysics Data System (ADS)
Fernandes, I. L.; Cabrera, G. G.
2018-05-01
Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the central dot and handled within a mean field approximation. Its interplay with the Fano effect is analyzed in the strong coupling regime. Non-vanishing spin currents are only obtained when the leads are ferromagnetic, the current being strongly dependent on the relative orientation of the lead polarizations. We calculate the conductance (spin and charge) by numerically differentiating the current, and a rich structure is obtained as a manifestation of quantum coherence and correlation effects. Increase of the Coulomb interaction produces localization of states at the side dot, largely suppressing Fano resonances. The interaction is also responsible for the negative values of the spin conductance in some regions of the voltage near resonances, effect which is the spin analog of the Esaki tunnel diode. We also analyze control of the currents via gate voltages applied to the dots, possibility which is interesting for practical operations.
General theory of feedback control of a nuclear spin ensemble in quantum dots
NASA Astrophysics Data System (ADS)
Yang, Wen; Sham, L. J.
2013-12-01
We present a microscopic theory of the nonequilibrium nuclear spin dynamics driven by the electron and/or hole under continuous-wave pumping in a quantum dot. We show the correlated dynamics of the nuclear spin ensemble and the electron and/or hole under optical excitation as a quantum feedback loop and investigate the dynamics of the many nuclear spins as a nonlinear collective motion. This gives rise to three observable effects: (i) hysteresis, (ii) locking (avoidance) of the pump absorption strength to (from) the natural resonance, and (iii) suppression (amplification) of the fluctuation of weakly polarized nuclear spins, leading to prolonged (shortened) electron-spin coherence time. A single nonlinear feedback function is constructed which determines the different outcomes of the three effects listed above depending on the feedback being negative or positive. The general theory also helps to put in perspective the wide range of existing theories on the problem of a single electron spin in a nuclear spin bath.
NASA Astrophysics Data System (ADS)
Manmana, Salvatore R.; Möller, Marcel; Gezzi, Riccardo; Hazzard, Kaden R. A.
2017-10-01
We compute physical properties across the phase diagram of the t -J⊥ chain with long-range dipolar interactions, which describe ultracold polar molecules on optical lattices. Our results obtained by the density-matrix renormalization group indicate that superconductivity is enhanced when the Ising component Jz of the spin-spin interaction and the charge component V are tuned to zero and even further by the long-range dipolar interactions. At low densities, a substantially larger spin gap is obtained. We provide evidence that long-range interactions lead to algebraically decaying correlation functions despite the presence of a gap. Although this has recently been observed in other long-range interacting spin and fermion models, the correlations in our case have the peculiar property of having a small and continuously varying exponent. We construct simple analytic models and arguments to understand the most salient features.
Gluon amplitudes as 2 d conformal correlators
NASA Astrophysics Data System (ADS)
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
One-dimensional Ising model with multispin interactions
NASA Astrophysics Data System (ADS)
Turban, Loïc
2016-09-01
We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.
Dynamical correlation functions of the quadratic coupling spin-Boson model
NASA Astrophysics Data System (ADS)
Zheng, Da-Chuan; Tong, Ning-Hua
2017-06-01
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α < {α }{{c}}, these functions show power law ω-dependence in the small frequency limit, with the powers 1+2s, 1+2s, and s, respectively. At the critical point α ={α }{{c}} of the boson-unstable quantum phase transition, the critical exponents y O of these correlation functions are obtained as {y}{{{σ }}x}={y}{{{σ }}z}=1-2s and {y}X=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of {C}{{{σ }}x}(ω ) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).
A variational Monte Carlo study of different spin configurations of electron-hole bilayer
NASA Astrophysics Data System (ADS)
Sharma, Rajesh O.; Saini, L. K.; Bahuguna, Bhagwati Prasad
2018-05-01
We report quantum Monte Carlo results for mass-asymmetric electron-hole bilayer (EHBL) system with different-different spin configurations. Particularly, we apply a variational Monte Carlo method to estimate the ground-state energy, condensate fraction and pair-correlations function at fixed density rs = 5 and interlayer distance d = 1 a.u. We find that spin-configuration of EHBL system, which consists of only up-electrons in one layer and down-holes in other i.e. ferromagnetic arrangement within layers and anti-ferromagnetic across the layers, is more stable than the other spin-configurations considered in this study.
Shimizu, Kaoru; Tokura, Yasuhiro
2015-12-01
This paper presents a theoretical framework for analyzing the quantum fluctuation properties of a quantum spin chain subject to a quantum phase transition. We can quantify the fluctuation properties by examining the correlation between the fluctuations of two neighboring spins subject to the quantum uncertainty. To do this, we first compute the reduced density matrix ρ of the spin pair from the ground state |Ψ⟩ of a spin chain, and then identify the quantum correlation part ρ(q) embedded in ρ. If the spin chain is translationally symmetric and characterized by a nearest-neighbor two-body spin interaction, we can determine uniquely the form of ρ(q) as W|Φ〉〈Φ| with the weight W ≤1, and quantify the fluctuation properties using the two-spin entangled state |Φ〉. We demonstrate the framework for a transverse-field quantum Ising spin chain and indicate its validity for more general spin chain models.
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.
Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.
Vaara, Juha; Hanni, Matti; Jokisaari, Jukka
2013-03-14
Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.
NASA Astrophysics Data System (ADS)
Sychrovský, Vladimír; Gräfenstein, Jürgen; Cremer, Dieter
2000-09-01
For the first time, a complete implementation of coupled perturbed density functional theory (CPDFT) for the calculation of NMR spin-spin coupling constants (SSCCs) with pure and hybrid DFT is presented. By applying this method to several hydrides, hydrocarbons, and molecules with multiple bonds, the performance of DFT for the calculation of SSCCs is analyzed in dependence of the XC functional used. The importance of electron correlation effects is demonstrated and it is shown that the hybrid functional B3LYP leads to the best accuracy of calculated SSCCs. Also, CPDFT is compared with sum-over-states (SOS) DFT where it turns out that the former method is superior to the latter because it explicitly considers the dependence of the Kohn-Sham operator on the perturbed orbitals in DFT when calculating SSCCs. The four different coupling mechanisms contributing to the SSCC are discussed in connection with the electronic structure of the molecule.
NASA Astrophysics Data System (ADS)
Hollett, Joshua W.; Pegoretti, Nicholas
2018-04-01
Separate, one-parameter, on-top density functionals are derived for the short-range dynamic correlation between opposite and parallel-spin electrons, in which the electron-electron cusp is represented by an exponential function. The combination of both functionals is referred to as the Opposite-spin exponential-cusp and Fermi-hole correction (OF) functional. The two parameters of the OF functional are set by fitting the ionization energies and electron affinities, of the atoms He to Ar, predicted by ROHF in combination with the OF functional to the experimental values. For ionization energies, the overall performance of ROHF-OF is better than completely renormalized coupled-cluster [CR-CC(2,3)] and better than, or as good as, conventional density functional methods. For electron affinities, the overall performance of ROHF-OF is less impressive. However, for both ionization energies and electron affinities of third row atoms, the mean absolute error of ROHF-OF is only 3 kJ mol-1.
Local quenches and quantum chaos from higher spin perturbations
NASA Astrophysics Data System (ADS)
David, Justin R.; Khetrapal, Surbhi; Kumar, S. Prem
2017-10-01
We study local quenches in 1+1 dimensional conformal field theories at large- c by operators carrying higher spin charge. Viewing such states as solutions in Chern-Simons theory, representing infalling massive particles with spin-three charge in the BTZ back-ground, we use the Wilson line prescription to compute the single-interval entanglement entropy (EE) and scrambling time following the quench. We find that the change in EE is finite (and real) only if the spin-three charge q is bounded by the energy of the perturbation E, as | q| /c < E 2 /c 2. We show that the Wilson line/EE correlator deep in the quenched regime and its expansion for small quench widths overlaps with the Regge limit for chaos of the out-of-time-ordered correlator. We further find that the scrambling time for the two-sided mutual information between two intervals in the thermofield double state increases with increasing spin-three charge, diverging when the bound is saturated. For larger values of the charge, the scrambling time is shorter than for pure gravity and controlled by the spin-three Lyapunov exponent 4 π/β. In a CFT with higher spin chemical potential, dual to a higher spin black hole, we find that the chemical potential must be bounded to ensure that the mutual information is a concave function of time and entanglement speed is less than the speed of light. In this case, a quench with zero higher spin charge yields the same Lyapunov exponent as pure Einstein gravity.
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Zhiwei; Halle, Bertil, E-mail: bertil.halle@bpc.lu.se
2016-07-21
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with amore » single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued (“imaginary”) part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.« less
Expanding the Bethe/Gauge dictionary
NASA Astrophysics Data System (ADS)
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei, E-mail: wei.wu@ucl.ac.uk
2014-06-14
Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-1/2 ) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by themore » long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.« less
Low Temperature Properties for Correlation Functions in Classical N-Vector Spin Models
NASA Astrophysics Data System (ADS)
Balaban, Tadeusz; O'Carroll, Michael
We obtain convergent multi-scale expansions for the one-and two-point correlation functions of the low temperature lattice classical N- vector spin model in d>= 3 dimensions, N>= 2. The Gibbs factor is taken as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J. Ignacio; Sierra, German; Instituto de Fisica Teorica, UAM-CSIC, Madrid
We generalize the matrix product states method using the chiral vertex operators of conformal field theory and apply it to study the ground states of the XXZ spin chain, the J{sub 1}-J{sub 2} model and random Heisenberg models. We compute the overlap with the exact wave functions, spin-spin correlators, and the Renyi entropy, showing that critical systems can be described by this method. For rotational invariant ansatzs we construct an inhomogenous extension of the Haldane-Shastry model with long-range exchange interactions.
Exact diagonalization library for quantum electron models
NASA Astrophysics Data System (ADS)
Iskakov, Sergei; Danilov, Michael
2018-04-01
We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.
Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex
NASA Astrophysics Data System (ADS)
Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo
2016-04-01
The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.
Baryonic and mesonic 3-point functions with open spin indices
NASA Astrophysics Data System (ADS)
Bali, Gunnar S.; Collins, Sara; Gläßle, Benjamin; Heybrock, Simon; Korcyl, Piotr; Löffler, Marius; Rödl, Rudolf; Schäfer, Andreas
2018-03-01
We have implemented a new way of computing three-point correlation functions. It is based on a factorization of the entire correlation function into two parts which are evaluated with open spin-(and to some extent flavor-) indices. This allows us to estimate the two contributions simultaneously for many different initial and final states and momenta, with little computational overhead. We explain this factorization as well as its efficient implementation in a new library which has been written to provide the necessary functionality on modern parallel architectures and on CPUs, including Intel's Xeon Phi series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less
Quantum simulation of interacting spin models with trapped ions
NASA Astrophysics Data System (ADS)
Islam, Kazi Rajibul
The quantum simulation of complex many body systems holds promise for understanding the origin of emergent properties of strongly correlated systems, such as high-Tc superconductors and spin liquids. Cold atomic systems provide an almost ideal platform for quantum simulation due to their excellent quantum coherence, initialization and readout properties, and their ability to support several forms of interactions. In this thesis, I present experiments on the quantum simulation of long range Ising models in the presence of transverse magnetic fields with a chain of up to sixteen ultracold 171Yb+ ions trapped in a linear radio frequency Paul trap. Two hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. We detect the spin states of the individual ions by observing state-dependent fluorescence with single site resolution, and can directly measure any possible spin correlation function. The spin-spin interactions are engineered by applying dipole forces from precisely tuned lasers whose beatnotes induce stimulated Raman transitions that couple virtually to collective phonon modes of the ion motion. The Ising couplings are controlled, both in sign and strength with respect to the effective transverse field, and adiabatically manipulated to study various aspects of this spin model, such as the emergence of a quantum phase transition in the ground state and spin frustration due to competing antiferromagnetic interactions. Spin frustration often gives rise to a massive degeneracy in the ground state, which can lead to entanglement in the spin system. We detect and characterize this frustration induced entanglement in a system of three spins, demonstrating the first direct experimental connection between frustration and entanglement. With larger numbers of spins we also vary the range of the antiferromagnetic couplings through appropriate laser tunings and observe that longer range interactions reduce the excitation energy and thereby frustrate the ground state order. This system can potentially be scaled up to study a wide range of fully connected spin networks with a few dozens of spins, where the underlying theory becomes intractable on a classical computer.
Symmetry protected topological Luttinger liquids and the phase transition between them
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2018-01-01
We show that a doped spin-1/2 ladder with antiferromagnetic intra-chain and ferromagnetic inter-chain coupling is a symmetry protected topologically non-trivial Luttinger liquid. Turning on a large easy-plane spin anisotropy drives the system to a topologically-trivial Luttinger liquid. Both phases have full spin gaps and exhibit power-law superconducting pair correlation. The Cooper pair symmetry is singletmore » $$d_{xy}$$ in the non-trivial phase and triplet $$S_z=0$$ in the trivial phase. The topologically non-trivial Luttinger liquid exhibits gapless spin excitations in the presence of a boundary, and it has no non-interacting or mean-field theory analog even when the fluctuating phase in the charge sector is pinned. As a function of the strength of spin anisotropy there is a topological phase transition upon which the spin gap closes. We speculate these Luttinger liquids are relevant to the superconductivity in metalized integer spin ladders or chains.« less
Johnson, Erin R; Contreras-García, Julia
2011-08-28
We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics
Xu, Zhijun; Stock, C.; Chi, Songxue; ...
2014-10-01
The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La 1.905Ba 0.095CuO 4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La 2-xSr xCuO 4 and YBa 2Cu 3O 6+x.
Spin-resolved electron waiting times in a quantum-dot spin valve
NASA Astrophysics Data System (ADS)
Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian
2018-04-01
We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.
Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi
2013-08-07
The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.
NMR spin-rotation relaxation and diffusion of methane
NASA Astrophysics Data System (ADS)
Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.
2018-05-01
The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.
Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2016-09-01
We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.
NASA Astrophysics Data System (ADS)
Rousseau, Alexandre; Parent, Jean-Michel; Quilliam, Jeffrey A.
2017-08-01
Sound velocity and attenuation measurements on the frustrated garnet material Gd3Ga5O12 (GGG) are presented as a function of field and temperature, with two different magnetic field orientations: [100 ] and [110 ] . We demonstrate that the phase diagram is highly anisotropic, with two distinct field-induced ordered phases for H ||[110 ] and only one for H ||[100 ] . Extensive lattice softening is found to occur at low fields, which can be associated with spin fluctuations. However, deep within the spin liquid phase a low-temperature stiffening of the lattice and reduced attenuation provide evidence for a spin gap which may be related to short-range antiferromagnetic correlations over minimal ten-spin loops.
Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation
NASA Astrophysics Data System (ADS)
Singamaneni, Srinivasa Rao; Stesmans, Andre; van Tol, Johan; Kosynkin, D. V.; Tour, James M.
2014-04-01
Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.
Cobaltites: Emergence of magnetism and metallicity from a non-magnetic, insulating state
NASA Astrophysics Data System (ADS)
Phelan, Daniel Patrick
In cobalt oxides, the energy splitting between different spin-states of Co3+ ions can be quite small, which means that more than one spin-state can simultaneously co-exist in the same compound and that transitions between different spin-state can occur. This makes understanding the magnetic coupling between cobalt sites rather complex. Such is the case for pure and hole-doped LaCoO3. In its ground state, LaCoO3 is a non-magnetic insulator. The lack of a magnetic moment, is due to the fact that the ground spin-state of Co3+ ions is a low-spin, S=0, state. However, since a spin-state that has a net spin is on the order of 100 K higher in energy than the ground spin-state, a magnetic moment appears as the temperature is increased, and the system behaves as a paramagnet above 100 K. The higher-energy spin-state is either an intermediate-spin (S=1) state of a high-spin (S=2) state - an issue that has been debated for quite some time. When holes are chemically doped into the system, as in La1- xSrxCoO3 (LSCO), the non-magnetic, insulating ground state evolves into a ferromagnetic, metallic state. This evolution is complicated because it occurs due to the convoluted effects of Co4+ ions being doped into the system and the fact that the ground spin-state of Co3+ ions changes as a function of the hole concentration. In this dissertation, the magnetic transitions in pure and hole-doped LaCoO3 are investigated by neutron scattering techniques. In the pure compound, it is shown that thermally excited spins have both fluctuating ferromagnetic and antiferro-magnetic spin-correlations, which is suggested to result from a dynamic orbital ordering of the occupied e. g orbitals of the intermediate-spin state. It is also shown that the thermally excited spin-state is split in energy by 0.6 meV. In the hole-doped compound, LSCO, it is shown that the evolution into a metallic ferromagnet occurs by the percolation of isotropic ferromagnetic droplets. It is also shown that incommensurate spin-correlations co-exist and compete with ferromagnetic spin correlations in LSCO, and it is argued that this competition is manifested in the thermodynamic properties. The role of the lattice upon the magnetic transitions in the hole-doped compounds is addressed by simultaneous analysis of magnetic Bragg peaks, the local atomic structure, and the average crystal structure from powder neutron diffraction patterns of La1- xCaxCoO3 and La 1-xBaxCoO3. It is suggested that the fraction of ions with intermediate spin-states at a fixed hole concentration depends on the radius of the A-site dopant.
Quantum Correlation in the XY Spin Model with Anisotropic Three-Site Interaction
NASA Astrophysics Data System (ADS)
Wang, Yao; Chai, Bing-Bing; Guo, Jin-Liang
2018-05-01
We investigate pairwise entanglement and quantum discord (QD) in the XY spin model with anisotropic three-site interaction at zero and finite temperatures. For both the nearest-neighbor spins and the next nearest-neighbor spins, special attention is paid to the dependence of entanglement and QD on the anisotropic parameter δ induced by the next nearest-neighbor spins. We show that the behavior of QD differs in many ways from entanglement under the influences of the anisotropic three-site interaction at finite temperatures. More important, comparing the effects of δ on the entanglement and QD, we find the anisotropic three-site interaction plays an important role in the quantum correlations at zero and finite temperatures. It is found that δ can strengthen the quantum correlation for both the nearest-neighbor spins and the next nearest-neighbor spins, especially for the nearest-neighbor spins at low temperature.
Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V
2013-08-21
This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.
Towards electrical spin injection into LaAlO3-SrTiO3.
Bibes, M; Reyren, N; Lesne, E; George, J-M; Deranlot, C; Collin, S; Barthélémy, A; Jaffrès, H
2012-10-28
Future spintronics devices will be built from elemental blocks allowing the electrical injection, propagation, manipulation and detection of spin-based information. Owing to their remarkable multi-functional and strongly correlated character, oxide materials already provide such building blocks for charge-based devices such as ferroelectric field-effect transistors (FETs), as well as for spin-based two-terminal devices such as magnetic tunnel junctions, with giant responses in both cases. Until now, the lack of suitable channel materials and the uncertainty of spin-injection conditions in these compounds had however prevented the exploration of similar giant responses in oxide-based lateral spin transport structures. In this paper, we discuss the potential of oxide-based spin FETs and report magnetotransport data that suggest electrical spin injection into the LaAlO(3)-SrTiO(3) interface system. In a local, three-terminal measurement scheme, we analyse the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or longitudinal magnetic fields (Hanle and 'inverted' Hanle effects). The spin accumulation signal appears to be much larger than expected, probably owing to amplification effects by resonant tunnelling through localized states in the LaAlO(3). We give perspectives on how to achieve direct spin injection with increased detection efficiency, as well on the implementation of efficient top gating schemes for spin manipulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Bhallamudi, Vidya P.
2015-10-05
Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.
Spin correlations and spin-wave excitations in Dirac-Weyl semimetals
NASA Astrophysics Data System (ADS)
Araki, Yasufumi; Nomura, Kentaro
We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.; ...
2017-09-13
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Quantum critical point revisited by dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
Quantum critical point revisited by dynamical mean-field theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-31
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less
Sire, Clément
2004-09-24
We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')
Gangopadhyay, Shruba; Pickett, Warren E.
2015-01-15
The double perovskite Ba 2NaOsO 6 (BNOO), an exotic example of a very high oxidation state (heptavalent) osmium d1 compound and also uncommon by being a ferromagnetic open d-shell (Mott) insulator without Jahn-Teller (JT) distortion, is modeled using a density functional theory based hybrid functional incorporating exact exchange for correlated electronic orbitals and including the large spin-orbit coupling (SOC). The experimentally observed narrow-gap ferromagnetic insulating ground state is obtained, but only when including spin-orbit coupling, making this a Dirac-Mott insulator. The calculated easy axis along [110] is in accord with experiment, providing additional support that this approach provides a realisticmore » method for studying this system. The predicted spin density for [110] spin orientation is nearly cubic (unlike for other directions), providing an explanation for the absence of JT distortion. An orbital moment of –0.4μ B strongly compensates the +0.5μ B spin moment on Os, leaving a strongly compensated moment more in line with experiment. Remarkably, the net moment lies primarily on the oxygen ions. An insulator-metal transition, by rotating the magnetization direction with an external field under moderate pressure, is predicted as one consequence of strong SOC, and metallization under moderate pressure is predicted. In conclusion, a comparison is made with the isostructural, isovalent insulator Ba 2LiOsO 6, which, however, orders antiferromagnetically.« less
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
Quantum correlation properties in Matrix Product States of finite-number spin rings
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min; He, Qi-Kai
2018-02-01
The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.
Topologically protected unidirectional edge spin waves
NASA Astrophysics Data System (ADS)
Wang, Xiang Rong; Wang, Xiansi; Su, Ying
Magnetic materials are highly correlated spin systems that do not respect the time-reversal symmetry. The low-energy excitations of magnetic materials are spin waves whose quanta are magnons. Like electronic materials that can be topologically nontrivial, a magnetic material can also be topologically nontrivial with topologically protected unidirectional edge states. These edge states should be superb channels of processing and manipulating spin waves because they are robust against perturbations and geometry changes, unlike the normal spin wave states that are very sensitive to the system changes and geometry. Therefore, the magnetic topological matter is of fundamental interest and technologically useful in magnonics. Here, we show that ferromagnetically interacting spins on a two-dimensional honeycomb lattice with nearest-neighbour interactions and governed by the Landau-Lifshitz-Gilbert equation, can be topologically nontrivial with gapped bulk spin waves and gapless edge spin waves. These edge spin waves are indeed very robust against defects under topological protection. Because of the unidirectional nature of these topologically protected edge spin waves, an interesting functional magnonic device called beam splitter can be made out of a domain wall in a strip. It is shown that an in-coming spin wave beam along one edge splits into two spin wave beams propagating along two opposite directions on the other edge after passing through a domain wall. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 16301816) and the Grant from NNSF of China (No. 11374249). X.S.W acknowledge support from UESTC.
Correlation between electron spin resonance spectra and oil yield in eastern oil shales
Choudhury, M.; Rheams, K.F.; Harrell, J.W.
1986-01-01
Organic free radical spin concentrations were measured in 60 raw oil shale samples from north Alabama and south Tennessee and compared with Fischer assays and uranium concentrations. No correlation was found between spin concentration and oil yield for the complete set of samples. However, for a 13 sample set taken from a single core hole, a linear correlation was obtained. No correlation between spin concentration and uranium concentration was found. ?? 1986.
Spin-orbital fluctuations in the paramagnetic Mott insulator (V1-xCrx)2O3
NASA Astrophysics Data System (ADS)
Leiner, Jonathan; Stone, Matthew; Lumsden, Mark; Bao, Wei; Broholm, Collin
2015-03-01
The phase diagram of rhombohedral V2O3 features several distinct strongly correlated phases as a function of doping, pressure and temperature. When doped with chromium for 180 K
Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
Li, Zhendong; Chan, Garnet Kin-Lic
2017-06-13
We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |Ψ MPS (N,M) ⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ 2 ) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |Ψ MPS (N,M) ⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |Ψ MPS (N,M) ⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |Ψ MPS (N,M) ⟩. Computing excited states is also simple by imposing orthogonality constraints, which are simple to implement with MPS. To illustrate the versatility of SP-MPS, we formulate algorithms for the optimization of ground and excited states, develop perturbation theory based on SP-MPS, and describe how to evaluate spin-independent and spin-dependent properties such as the reduced density matrices. We demonstrate the numerical performance of SP-MPS with applications to several models typical of strong correlation, including the Hubbard model, and [2Fe-2S] and [4Fe-4S] model complexes.
Complex-network description of thermal quantum states in the Ising spin chain
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.
2018-05-01
We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.
1976-01-01
A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.
Noninvasive measurement of dynamic correlation functions
NASA Astrophysics Data System (ADS)
Uhrich, Philipp; Castrignano, Salvatore; Uys, Hermann; Kastner, Michael
2017-08-01
The measurement of dynamic correlation functions of quantum systems is complicated by measurement backaction. To facilitate such measurements we introduce a protocol, based on weak ancilla-system couplings, that is applicable to arbitrary (pseudo)spin systems and arbitrary equilibrium or nonequilibrium initial states. Different choices of the coupling operator give access to the real and imaginary parts of the dynamic correlation function. This protocol reduces disturbances due to the early-time measurements to a minimum, and we quantify the deviation of the measured correlation functions from the theoretical, unitarily evolved ones. Implementations of the protocol in trapped ions and other experimental platforms are discussed. For spin-1 /2 models and single-site observables we prove that measurement backaction can be avoided altogether, allowing for the use of ancilla-free protocols.
Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex
Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo
2016-01-01
The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418
Electron spin polarization by isospin ordering in correlated two-layer quantum Hall systems.
Tiemann, L; Wegscheider, W; Hauser, M
2015-05-01
Enhancement of the electron spin polarization in a correlated two-layer, two-dimensional electron system at a total Landau level filling factor of 1 is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely spaced two-dimensional electron systems becomes maximized when interlayer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional quantum Hall states under electron density imbalances.
Theory of Intrinsic Spin Torque Due to Interface Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Kalitsov, Alan; Chshiev, Mairbek; Butler, William; Mryasov, Oleg
2014-03-01
The effect of intrinsic spin torque due to spin-orbit coupling (SOC) at the interface between thin ferromagnetic film and non-magnetic metal has attracted significant fundamental and applied research interest. We report quantum theory of SOC driven spin torque (SOT) within the Rashba model of SOC and two-band tight binding (TB) Hamiltonian including s-d exchange interactions (J). We employ the non-equilibrium Green Function formalism and find that SOT to the first order in SOC has symmetry consistent with the earlier quasi-classical diffusive theory. An obvious benefit of the proposed approach is the expression for the SOT given in terms of TB parameters which enables a physically transparent analysis of the dependencies of SOT on material specific parameters such as Rashba SOC constant, hopping integral, Fermi level and J. On the basis of analytical and numerical results we discuss trends in strength of SOT and its correlation with the Spin Hall conductivity. This work was supported in part by C-SPIN, STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.
NASA Astrophysics Data System (ADS)
Karľová, Katarína; Strečka, Jozef; Lyra, Marcelo L.
2018-03-01
The spin-1/2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation, which establishes a rigorous mapping equivalence with the effective spin-1/2 Ising zigzag ladder. The investigated model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding spin-1/2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the specific heat displays temperature dependencies with either one or two separate round maxima.
Frkanec, Ruza; Noethig-Laslo, Vesna; Vranesić, Branka; Mirosavljević, Krunoslav; Tomasić, Jelka
2003-04-01
The interaction of immunostimulating compounds, the peptidoglycan monomer (PGM) and structurally related adamantyltripeptides (AdTP1 and AdTP2), respectively, with phospholipids in liposomal bilayers were investigated by electron paramagnetic resonance spectroscopy. (1). The fatty acids bearing the nitroxide spin label at different positions along the acyl chain were used to investigate the interaction of tested compounds with negatively charged multilamellar liposomes. Electron spin resonance (ESR) spectra were studied at 290 and 310 K. The entrapment of the adamantyltripeptides affected the motional properties of all spin labelled lipids, while the entrapment of PGM had no effect. (2). Spin labelled PGM was prepared and the novel compound bearing the spin label attached via the amino group of diaminopimelic acid was chromatographically purified and chemically characterized. The rotational correlation time of the spin labelled molecule dissolved in buffer at pH 7.4 was studied as a function of temperature. The conformational change was observed above 300 K. The same effect was observed with the spin labelled PGM incorporated into liposomes. Such effect was not observed when the spin labelled PGM was studied at alkaline pH, probably due to the hydrolysis of PGM molecule. The study of possible interaction with liposomal membrane is relevant to the use of tested compounds incorporated into liposomes, as adjuvants in vivo.
Harmony of spinning conformal blocks
NASA Astrophysics Data System (ADS)
Schomerus, Volker; Sobko, Evgeny; Isachenkov, Mikhail
2017-03-01
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
Quadratic integrand double-hybrid made spin-component-scaled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika; Sancho-García, Juan C.
2016-03-28
We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.
Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
NASA Astrophysics Data System (ADS)
Zheng, Da-Chuan; Tong, Ning-Hua
2017-06-01
Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σ z for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω )\\propto {ω }s is found to be universal and independent of the bias ɛ and the coupling strength α (except at the quantum critical point α ={α }{{c}} and ɛ = 0). Our NRG data also show C(ω )\\propto {χ }2{ω }s for a wide range of parameters, including the biased strong coupling regime (\\varepsilon \
Structural Effects on the Spin Dynamics of Potential Molecular Qubits.
Atzori, Matteo; Benci, Stefano; Morra, Elena; Tesi, Lorenzo; Chiesa, Mario; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta
2018-01-16
Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1 / 2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 μs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.
NASA Astrophysics Data System (ADS)
Faúndez, J.; Jorge, T. N.; Craco, L.
2018-03-01
Using the tight-binding treatment for the spin-asymmetric Hubbard model we explore the effect of electronic interactions in the ferromagnetic, partially filled Lieb lattice. As a key result we demonstrate the formation of correlation satellites in the minority spin channel. In addition, we consider the role played by transverse-field spin fluctuations in metallic ferromagnets. We quantify the degree of electronic demagnetization, showing that the half-metallic state is rather robust to local spin flips. Not being restricted to the case of a partially filled Lieb lattice, our findings are expected to advance the general understanding of spin-selective electronic reconstruction in strongly correlated quantum ferromagnets.
Chaotic nature of the spin-glass phase
NASA Technical Reports Server (NTRS)
Bray, A. J.; Moore, M. A.
1987-01-01
The microscopic structure of the ordered phase of spin glasses is investigated theoretically in the framework of the T = 0 fixed-point model (McMillan, 1984; Fisher and Huse, 1986; and Bray and Moore, 1986). The sensitivity of the ground state to changes in the interaction strengths at T = 0 is explored, and it is found that for sufficiently large length scales the ground state is unstable against arbitrarily weak perturbations to the bonds. Explicit results are derived for d = 1, and the implications for d = 2 and d = 3 are considered in detail. It is concluded that there is no hidden order pattern for spin glasses at all T less than T(C), the ordered-phase spin correlations being chaotic functions of spin separation at fixed temperature or of temperature (for a given pair of spins) at scale lengths L greater than (T delta T) exp -1/zeta, where zeta = d(s)/2 - y, d(s) is the interfacial fractal dimension, and -y is the thermal eigenvalue at T = 0.
Physical realization of a quantum spin liquid based on a complex frustration mechanism
NASA Astrophysics Data System (ADS)
Reuther, Johannes; Balz, Christian; Lake, Bella
Unlike conventional magnets where the spins undergo magnetic long-range order in the ground state, in a quantum spin liquid they remain disordered down to the lowest temperatures without breaking local symmetries. Here, we investigate the novel, unexplored bilayer-kagome magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of isotropic antiferromagnetic and ferromagnetic interactions where the ferromagnetic couplings are the dominant ones. We show both experimentally and theoretically that this compound displays all the features expected of a quantum spin liquid. In particular, experiments rule out static magnetic order down to 19mK and reveal a diffuse spinon-like excitation spectrum. Numerically simulating this material using the pseudo fermion functional renormalization group (PFFRG) method, we theoretically confirm the non-magnetic ground state of the system and qualitatively reproduce the measured spin correlation profile. By tuning the model parameters away from those realized in Ca10Cr7O28 we further show that the spin-liquid phase is of remarkable stability.
NASA Astrophysics Data System (ADS)
Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng
2018-06-01
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].
NASA Astrophysics Data System (ADS)
Kopinga, K.; Delica, T.; Leschke, H.
1990-05-01
New results of a variant of the numerically exact quantum transfer matrix method have been compared with experimental data on the static properties of [C6H11NH3]CuBr3(CHAB), a ferromagnetic system with about 5% easy-plane anisotropy. Above T=3.5 K, the available data on the zero-field heat capacity, the excess heat capacity ΔC=C(B)-C(B=0), and the magnetization are described with an accuracy comparable to the experimental error. Calculations of the spin-spin correlation functions reveal that the good description of the experimental correlation length in CHAB by a classical spin model is largely accidental. The zero-field susceptibility, which can be deduced from these correlation functions, is in fair agreement with the reported experimental data between 4 and 100 K. The method also seems to yield accurate results for the chlorine isomorph, CHAC, a system with about 2% uniaxial anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in
Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less
David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A
2018-04-01
Low-frequency electron spin resonance studies were performed for 2 mM concentration of deuterated permeable and impermeable nitroxyl spin probes, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and 3-carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy in pure water and various concentrations of corn oil solution. The electron spin resonance parameters such as the line width, hyperfine coupling constant, g factor, rotational correlation time, permeability, and partition parameter were estimated. The broadening of line width was observed for nitroxyl radicals in corn oil mixture. The rotational correlation time increases with increasing concentration of corn oil, which indicates the less mobile nature of spin probe in corn oil mixture. The membrane permeability and partition parameter values were estimated as a function of corn oil concentration, which reveals that the nitroxyl radicals permeate equally into the aqueous phase and oil phase at the corn oil concentration of 50%. The electron spin resonance spectra demonstrate the permeable and impermeable nature of nitroxyl spin probes. From these results, the corn oil concentration was optimized as 50% for phantom studies. In this work, the corn oil and pure water mixture phantom models with various viscosities correspond to plasma membrane, and whole blood membrane with different hematocrit levels was studied for monitoring the biological characteristics and their interactions with permeable nitroxyl spin probe. These results will be useful for the development of electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities in biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.
Structure, strain, and control of ground state property in LaTiO3/LaAlO3 superlattice
NASA Astrophysics Data System (ADS)
Lee, Alex Taekyung; Han, Myung Joon
2014-03-01
We examined the ground state property of LaTiO3/LaAlO3 superlattice through density functional band calculations. Total energy calculations, including the structural distortions, U dependence, and the exchange correlation functional dependence, clearly showed that the spin and orbital ground state can be controlled systematically by the epitaxial strain. In the wide range of strain, the ferromagnetic-spin and antiferro-orbital order are stabilized, which is notably different from the previously reported ground state in the titanate systems. By applying +2.8% of tensile strains, we showed that the antiferromagnetic-spin and ferro-orbital ordered phase become stabilized.
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics
Veshtort, Mikhail; Griffin, Robert G.
2011-01-01
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method are in excellent agreement with the spin diffusion constants obtained through equations given by the relaxation theory of PDSD. The constants resulting from these two approaches were also in excellent agreement with the results of 2D rotary resonance recoupling proton-driven spin diffusion (R3-PDSD) experiments performed in three model compounds, where magnetization exchange occurred over distances up to 4.9 Å. With the methodology presented, highly accurate internuclear distances can be extracted from such data. Relayed transfer of magnetization between distant nuclei appears to be the main (and apparently resolvable) source of uncertainty in such measurements. The non-Markovian kinetic equation was applied to the analysis of the R2 spin dynamics. The conventional semi-phenomenological treatment of relxation in R2 has been shown to be equivalent to the assumption of the Lorentzian spectral density function in the relaxatoin theory of PDSD. As this assumption is a poor approximation in real physical systems, the conventional R2 treatment is likely to carry a significant model error that has not been recognized previously. The relaxation theory of PDSD appears to provide an accurate, parameter-free alternative. Predictions of this theory agreed well with the full quantum mechanical simulations of the R2 dynamics in the few simple model systems we considered. PMID:21992326
Infinite-range Heisenberg model and high-temperature superconductivity
NASA Astrophysics Data System (ADS)
Tahir-Kheli, Jamil; Goddard, William A., III
1993-11-01
A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.
Role of temperature on static correlational properties in a spin-polarized electron gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in; Kumar, Krishan
We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with themore » simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.« less
Influence of magnetism and correlation on the spectral properties of doped Mott insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yao; Moritz, Brian; Chen, Cheng-Chien
Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less
Influence of magnetism and correlation on the spectral properties of doped Mott insulators
Wang, Yao; Moritz, Brian; Chen, Cheng-Chien; ...
2018-03-01
Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less
Structural instability in polyacene: A projector quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Srinivasan, Bhargavi; Ramasesha, S.
1998-04-01
We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.
Numerically exploring the 1D-2D dimensional crossover on spin dynamics in the doped Hubbard model
Kung, Y. F.; Bazin, C.; Wohlfeld, K.; ...
2017-11-02
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less
Aging dynamics of quantum spin glasses of rotors
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu
2001-12-01
We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.
Dynamical potentials for nonequilibrium quantum many-body phases
NASA Astrophysics Data System (ADS)
Roy, Sthitadhi; Lazarides, Achilleas; Heyl, Markus; Moessner, Roderich
2018-05-01
Out of equilibrium phases of matter exhibiting order in individual eigenstates, such as many-body localized spin glasses and discrete time crystals, can be characterized by inherently dynamical quantities such as spatiotemporal correlation functions. In this paper, we introduce dynamical potentials which act as generating functions for such correlations and capture eigenstate phases and order. These potentials show formal similarities to their equilibrium counterparts, namely thermodynamic potentials. We provide three representative examples: a disordered XXZ chain showing many-body localization, a disordered Ising chain exhibiting spin-glass order, and its periodically-driven cousin exhibiting time-crystalline order.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2018-04-01
The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.
Nonperturbative stochastic method for driven spin-boson model
NASA Astrophysics Data System (ADS)
Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn
2013-01-01
We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.
Giménez-López, Maria Del Carmen; Clemente-León, Miguel; Giménez-Saiz, Carlos
2018-05-23
This paper reports firstly the syntheses, crystal structures, and thermal and magnetic properties of spin crossover salts of formulae [Fe(bpp)2]3[Cr(CN)6]2·13H2O (1) and [Fe(bpp)2][N(CN)2]2·H2O (2) (bpp = 2,6-bis(pyrazol-3-yl)pyridine) exhibiting hydrogen-bonded networks of low-spin [Fe(bpp)2]2+ complexes and [Cr(CN)6]3- or [N(CN)2]- anions, with solvent molecules located in the voids. Desolvation of 1 is accompanied by a complete low-spin (LS) to a high-spin (HS) transformation that becomes reversible after rehydration by exposing the sample to the humidity of air. The influence of the lattice water on the magnetic properties of spin-crossover [Fe(bpp)2]X2 complex salts has been documented. In most cases, it stabilises the LS state over the HS one. In other cases, it is rather the contrary. The second part of this paper is devoted to unravelling the reasons why the lattice solvent stabilises one form over the other through magneto-structural correlations of [Fe(bpp)2]2+ salts bearing anions with different charge/size ratios (Xn-). The [Fe(bpp)2]2+ stacking explaining these two different behaviours is correlated here with the composition of the second coordination sphere of the Fe centers and the ability of these anions to form hydrogen bonds and/or π-π stacking interactions between them or the bpp ligand.
Coherent manipulation of spin correlations in the Hubbard model
NASA Astrophysics Data System (ADS)
Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.
2018-05-01
We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.
Observation of spinon spin currents in one-dimensional spin liquid
NASA Astrophysics Data System (ADS)
Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji
To date, two types of spin current have been explored experimentally: conduction-electron spin current and spin-wave spin current. Here, we newly present spinon spin current in quantum spin liquid. An archetype of quantum spin liquid is realized in one-dimensional spin-1/2 chains with the spins coupled via antiferromagnetic interaction. Elementary excitation in such a system is known as a spinon. Theories have predicted that the correlation of spinons reaches over a long distance. This suggests that spin current may propagate via one-dimensional spinons even in spin liquid states. In this talk, we report the experimental observation that a spin liquid in a spin-1/2 quantum chain generates and conveys spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow via quantum fluctuation in spite of the absence of magnetic order, suggesting that a variety of quantum spin systems can be applied to spintronics. Spin Quantum Rectification Project, ERATO, JST, Japan; PRESTO, JST, Japan.
An efficient method for hybrid density functional calculation with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui
2018-03-01
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Electron Spin Relaxation Can Enhance the Performance of a Cryptochrome-Based Magnetic Compass Sensor
2016-08-19
quantumbiology,migratory birds, animal navigation, radical pairmechanism Supplementarymaterial for this article is available online Abstract The radical ...certain spin relaxationmechanisms can enhance its performance.We focus on the flavin–tryptophan radical pair in cryptochrome, currently the only...candidatemagnetoreceptor molecule. Correlation functions for fluctuations in the distance between the two radicals in Arabidopsis thaliana cryptochrome
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2017-02-01
The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived for the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.
Quantum spin chains with multiple dynamics
NASA Astrophysics Data System (ADS)
Chen, Xiao; Fradkin, Eduardo; Witczak-Krempa, William
2017-11-01
Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultracold atoms. We investigate such nontrivial quantum dynamics in a different setting: a spin-1 bilinear-biquadratic chain. It has a solvable entangled ground state, but a gapless excitation spectrum that is poorly understood. By using large-scale density matrix renormalization group simulations, we find that the lowest excitations have a dynamical exponent z that varies from 2 to 3.2 as we vary a coupling in the Hamiltonian. We find an additional gapless mode with a continuously varying exponent 2 ≤z <2.7 , which establishes the presence of multiple dynamics. In order to explain these striking properties, we construct a continuum wave function for the ground state, which correctly describes the correlations and entanglement properties. We also give a continuum parent Hamiltonian, but show that additional ingredients are needed to capture the excitations of the chain. By using an exact mapping to the nonequilibrium dynamics of a classical spin chain, we find that the large dynamical exponent is due to subdiffusive spin motion. Finally, we discuss the connections to other spin chains and to a family of quantum critical models in two dimensions.
NASA Astrophysics Data System (ADS)
Valkov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2017-05-01
The spin-fermion model, which is an effective low-energy realization of the three-band Emery model after passing to the Wannier representation for the px and py orbitals of the subsystem of oxygen ions, reduces to the generalized Kondo lattice model. A specific feature of this model is the existence of spin-correlated hoppings of the current carriers between distant cells. Numerical calculations of the spectrum of spin-electron excitations highlight the important role of the long-range spin-correlated hoppings.
NASA Astrophysics Data System (ADS)
Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis
1996-10-01
An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.
Spin relaxation in geometrically frustrated pyrochlores
NASA Astrophysics Data System (ADS)
Dunsiger, Sarah Ruth
This thesis describes muSR experiments which focus on systems where the magnetic ions occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores A2B2O7. The scientific interest in pyrochlores is based on the fact that they display novel magnetic behaviour at low temperatures due to geometrical frustration. The ground state of these systems is sensitively dependent on such factors as the range of the spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. For example, Y2Mo2O7 shows many features reminiscent of a conventional spin glass, even though this material has nominally zero chemical disorder. It is found that the muon spin polarisation obeys a time-field scaling relation which indicates that the spin-spin autocorrelation function has a power law form in time, in stark contrast with the exponential form often assumed for conventional magnets above their transition temperature. Gd2Ti2O7 shows long range order, but only at a temperature much lower than its Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime, it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour couplings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation function may be calculated as a power series in time. The muon spin relaxation rate decreases with magnetic field as the Zeeman energy becomes comparable with the exchange coupling between Gd spins. Thus, an independent measure of the exchange coupling or equivalently the Gd spin fluctuation rate is extracted. By contrast, Tb2Ti2O7 has been identified as a type of cooperative paramagnet. Short range correlations develop below 50 K. However, there is no long range ordering down to very low temperatures (0.075 K). The Tb3+ ion is subject to strong crystal electric field effects: point charge calculations indicate that this system is Ising like at low temperatures. Thus this system may be analogous to water ice, a system theoretically predicted to have finite entropy at zero temperature. It is possible to qualitatively explain the unusual changes in T1-1 as a function of applied magnetic field which are also observed using muSR.
What can we learn about dispersion from the conformer surface of n-pentane?
Martin, Jan M L
2013-04-11
In earlier work [Gruzman, D. ; Karton, A.; Martin, J. M. L. J. Phys. Chem. A 2009, 113, 11974], we showed that conformer energies in alkanes (and other systems) are highly dispersion-driven and that uncorrected DFT functionals fail badly at reproducing them, while simple empirical dispersion corrections tend to overcorrect. To gain greater insight into the nature of the phenomenon, we have mapped the torsional surface of n-pentane to 10-degree resolution at the CCSD(T)-F12 level near the basis set limit. The data obtained have been decomposed by order of perturbation theory, excitation level, and same-spin vs opposite-spin character. A large number of approximate electronic structure methods have been considered, as well as several empirical dispersion corrections. Our chief conclusions are as follows: (a) the effect of dispersion is dominated by same-spin correlation (or triplet-pair correlation, from a different perspective); (b) singlet-pair correlation is important for the surface, but qualitatively very dissimilar to the dispersion component; (c) single and double excitations beyond third order are essentially unimportant for this surface; (d) connected triple excitations do play a role but are statistically very similar to the MP2 singlet-pair correlation; (e) the form of the damping function is crucial for good performance of empirical dispersion corrections; (f) at least in the lower-energy regions, SCS-MP2 and especially MP2.5 perform very well; (g) novel spin-component scaled double hybrid functionals such as DSD-PBEP86-D2 acquit themselves very well for this problem.
Analysis of Hanle-effect signals observed in Si-channel spin accumulation devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp; Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552; Akushichi, Taiju
2014-05-07
We reexamined curve-fitting analysis for spin-accumulation signals observed in Si-channel spin-accumulation devices, employing widely-used Lorentz functions and a new formula developed from the spin diffusion equation. A Si-channel spin-accumulation device with a high quality ferromagnetic spin injector was fabricated, and its observed spin-accumulation signals were verified. Experimentally obtained Hanle-effect signals for spin accumulation were not able to be fitted by a single Lorentz function and were reproduced by the newly developed formula. Our developed formula can represent spin-accumulation signals and thus analyze Hanle-effect signals.
Spin and orbital exchange interactions from Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.
2016-02-01
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yu; Yin, Zhiping; Wang, Xiancheng
We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As
Li, Yu; Yin, Zhiping; Wang, Xiancheng; ...
2016-06-17
We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe_{1-x}Co_{x}As.
Li, Yu; Yin, Zhiping; Wang, Xiancheng; Tam, David W; Abernathy, D L; Podlesnyak, A; Zhang, Chenglin; Wang, Meng; Xing, Lingyi; Jin, Changqing; Haule, Kristjan; Kotliar, Gabriel; Maier, Thomas A; Dai, Pengcheng
2016-06-17
We use neutron scattering to study spin excitations in single crystals of LiFe_{0.88}Co_{0.12}As, which is located near the boundary of the superconducting phase of LiFe_{1-x}Co_{x}As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe_{0.88}Co_{0.12}As with a combined density functional theory and dynamical mean field theory calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the d_{xy} orbitals, while high-energy spin excitations arise from the d_{yz} and d_{xz} orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in the LiFeAs family cannot be described by an anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe_{1-x}Co_{x}As is consistent with the electron-hole Fermi surface nesting conditions for the d_{xy} orbital, the reduced superconductivity in LiFe_{0.88}Co_{0.12}As suggests that Fermi surface nesting conditions for the d_{yz} and d_{xz} orbitals are also important for superconductivity in iron pnictides.
NASA Astrophysics Data System (ADS)
Barone, Vincenzo; Ratcliffe, Philip G.
Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I. Schmidt. Sivers effect in semi-inclusive deeply inelastic scattering and Drell-Yan / J. C. Collins ... [et al.]. Helicity formalism and spin asymmetries in hadronic processes / M. Anselmino ... [et al.]. Including Cahn and Sivers effects into event generators / A. Kotzinian. Comparing extractions of Sivers functions / M. Anselmino ... [et al.]. Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects / D. Boer. "T-odd" effects in transverse spin and azimuthal asymmetries in SIDIS / L. P. Gamberg & G. R. Goldstein. T-odd effects in unpolarized Drell-Yan scattering / G. R. Goldstein & L. P. Gamberg. Alternative approaches to transversity: how convenient and feasible are they? / M. Radici. Relations between single and double transverse asymmetries / O. V. Teryaev. Cross sections, error bars and event distributions in simulated Drell-Yan azimuthal asymmetry measurements / A. Bianconi. Next-to-leading order QCD corrections for transversely polarized pp and p¯p collisions / A. Mukherjee, M. Stratmann & W. Vogelsang. Double transverse-spin asymmetries in Drell-Yan and J/[symbol] production from proton-antiproton collisions / M. Guzzi ... [et al.]. The quark-quark correlator: theory and phenomenology / E. Di Salvo. Chiral quark model spin filtering mechanism and hyperon polarization / S. M. Troshin & N. E. Tyurin -- Closing lecture. Where we've been ... and where we're going / G. Bunce.
Bonding in the first-row diatomic molecules within the local spin-density approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Painter, G.S.; Averill, F.W.
1982-08-15
The Hohenberg-Kohn-Sham density-functional equations in the local spin-density approximation (LSDA) have been solved with essentially no loss of accuracy for dimers of the first row of the Periodic Table with the use of a fully-self-consistent spin-polarized Gaussian-orbital approach. Spectroscopic constants (binding energies, equilibrium separations, and ground-state vibrational frequencies) have been derived from the calculated potential-energy curves. Intercomparison of results obtained using the exchange-correlation functionals of Slater (scaled exchange or X..cap alpha..), Gunnarsson and Lundqvist (GL), and Vosko, Wilk, and Nusair (VWN) permits assessment of the relative merits of each and serves to identify general shortcomings in the LSDA. Basic trendsmore » are similar for each functional, but the treatment of the spin dependence of the exchange-correlation energy in the GL and VWN functionals yields a variation of the binding energy across the series which is more systematic than that in the X..cap alpha.. approximation. Agreement between the present results and those of Dunlap, Connolly, and Sabin in the X..cap alpha.., approximation confirms the accuracy of the variational charge-density-fit procedure used in the latter work. The refinements in correlation treatment within the VWN functional are reflected in improvements in binding energies which are only slight for most dimers in the series. This behavior is attributed to the error remaining in the exchange channel within the LSDA and demonstrates the necessity for self-interaction corrections for more accurate binding-energy determinations. Within the current LSDA, absolute accuracies of the VWN functional for the first-row dimers are within 2.3 eV for binding energies, 0.07 a.u. for bond lengths, and approx.200 cm/sup -1/ for vibrational frequencies.« less
NASA Astrophysics Data System (ADS)
Bonezzi, Roberto; Boulanger, Nicolas; De Filippi, David; Sundell, Per
2017-11-01
We first prove that, in Vasiliev’s theory, the zero-form charges studied in Sezgin E and Sundell P 2011 (arXiv:1103.2360 [hep-th]) and Colombo N and Sundell P 20 (arXiv:1208.3880 [hep-th]) are twisted open Wilson lines in the noncommutative Z space. This is shown by mapping Vasiliev’s higher-spin model on noncommutative Yang-Mills theory. We then prove that, prior to Bose-symmetrising, the cyclically-symmetric higher-spin invariants given by the leading order of these n-point zero-form charges are equal to corresponding cyclically-invariant building blocks of n-point correlation functions of bilinear operators in free conformal field theories (CFT) in three dimensions. On the higher spin gravity side, our computation reproduces the results of Didenko V and Skvortsov E 2013 J. High Energy Phys. JHEP04(2013)158 using an alternative method amenable to the computation of subleading corrections obtained by perturbation theory in normal order. On the free CFT side, our proof involves the explicit computation of the separate cyclic building blocks of the correlation functions of n conserved currents in arbitrary dimension d>2 using polarization vectors, which is an original result. It is shown to agree, for d=3 , with the results obtained in Gelfond O A and Vasiliev M A 2013 Nucl. Phys. B 876 871-917 in various dimensions and where polarization spinors were used.
NASA Astrophysics Data System (ADS)
Zhou, Sen; Jiang, Kun; Chen, Hua; Wang, Ziqiang
2017-10-01
Analogs of the high-Tc cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5 d perovskite iridates Sr2 IrO4 exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d -wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating Jeff=1 /2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5 d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.
Longitudinal nuclear spin relaxation of ortho- and para-hydrogen dissolved in organic solvents.
Aroulanda, Christie; Starovoytova, Larisa; Canet, Daniel
2007-10-25
The longitudinal relaxation time of ortho-hydrogen (the spin isomer directly observable by NMR) has been measured in various organic solvents as a function of temperature. Experimental data are perfectly interpreted by postulating two mechanisms, namely intramolecular dipolar interaction and spin-rotation, with activation energies specific to these two mechanisms and to the solvent in which hydrogen is dissolved. This permits a clear separation of the two contributions at any temperature. Contrary to the self-diffusion coefficients at a given temperature, the rotational correlation times extracted from the dipolar relaxation contribution do not exhibit any definite trend with respect to solvent viscosity. Likewise, the spin-rotation correlation time obeys Hubbard's relation only in the case of hydrogen dissolved in acetone-d6, yielding in that case a spin-rotation constant in agreement with literature data. Concerning para-hydrogen, which is NMR-silent, the only feasible approach is to dissolve para-enriched hydrogen in these solvents and to follow the back-conversion of the para-isomer into the ortho-isomer. Experimentally, this conversion has been observed to be exponential, with a time constant assumed to be the relaxation time of the singlet state (the spin state of the para-isomer). A theory, based on intermolecular dipolar interactions, has been worked out for explaining the very large values of these relaxation times which appear to be solvent-dependent.
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
Elucidation of spin echo small angle neutron scattering correlation functions through model studies.
Shew, Chwen-Yang; Chen, Wei-Ren
2012-02-14
Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics
Nuclear scissors modes and hidden angular momenta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V.; Schuck, P.
The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theorymore » allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.« less
Ji, G F; Zhang, J S; Ma, Long; Fan, P; Wang, P S; Dai, J; Tan, G T; Song, Y; Zhang, C L; Dai, Pengcheng; Normand, B; Yu, Weiqiang
2013-09-06
We present a high-pressure NMR study of the overdoped iron pnictide superconductor NaFe0.94Co0.06As. The low-energy antiferromagnetic spin fluctuations in the normal state, manifest as the Curie-Weiss upturn in the spin-lattice relaxation rate 1/(75)T1T, first increase strongly with pressure but fall again at P>Popt=2.2 GPa. Neither long-ranged magnetic order nor a structural phase transition is encountered up to 2.5 GPa. The superconducting transition temperature Tc shows a pressure dependence identical to the spin fluctuations. Our observations demonstrate that magnetic correlations and superconductivity are optimized simultaneously as a function of the electronic structure, thereby supporting very strongly a magnetic origin of superconductivity.
ESR studies on the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3: Anomalous response below T=8 K
NASA Astrophysics Data System (ADS)
Padmalekha, K. G.; Blankenhorn, M.; Ivek, T.; Bogani, L.; Schlueter, J. A.; Dressel, M.
2015-03-01
The organic conductor κ-(BEDT-TTF)2Cu2(CN)3 seems to form a quantum spin liquid, although at low temperatures unusual properties are seen in the charge, spin and lattice degrees of freedom. Here we report results of X-band ESR studies of κ-(BEDT-TTF)2Cu2(CN)3 single crystals as a function of temperature and angle. We find indications of two anisotropic relaxation mechanisms at low temperatures and compare them to the spin-liquid behavior observed in other strongly correlated systems. In addition, we can recognize charge inhomogeneities in the copper ions of the anion layer. This disorder might be linked to the dielectric response measured in this compound.
Spin excitations in optimally P-doped BaFe 2 ( As 0.7 P 0.3 ) 2 superconductor
Hu, Ding; Yin, Zhiping; Zhang, Wenliang; ...
2016-09-02
We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe 2(As 0:7P 0:3) 2 superconductor (T c = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe 2As 2 stem from antiferromagnetic (AF) ordering wave vector QAF = ( 1; 0) and peaks near zone boundary at ( 1; 1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe 2(As 0:7P 0:3) 2 form a resonance in the superconducting state and high-energy spin excitations nowmore » peaks around 220 meV near ( 1; 1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe 2(As 0:7P 0:3) 2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.« less
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Yarmohammadi, Mohsen
2018-04-01
The spin-dependent electrical conductivity of counterparts of graphene, transition-metal dichalcogenides (TMDs) and group-IV nanosheets, have investigated by a magnetic exchange field (MEF)-induction to gain the electronic transport properties of charge carriers. We have implemented a k.p Hamiltonian model through the Kubo-Greenwood formalism in order to address the dynamical behavior of correlated Dirac fermions. Tuning the MEF enables one to control the effective mass of carriers in group-IV and TMDs, differently. We have found the Dirac-like points in a new quantum anomalous Hall (QAH) state at strong MEFs for both structures. For both cases, a broad peak in electrical conductivity originated from the scattering rate and entropy is observed. Spin degeneracy at some critical MEFs is another remarkable point. We have found that in the limit of zero or uniform MEFs with respect to the spin-orbit interaction, the large resulting electrical conductivity depends on the spin sub-bands in group-IV and MLDs. Featuring spin-dependent electronic transport properties, one can provide a new scenario for future possible applications.
Statistical mechanics of the cluster Ising model
NASA Astrophysics Data System (ADS)
Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko
2011-08-01
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
Quantum Dynamics of Solitons in Strongly Interacting Systems on Optical Lattices
NASA Astrophysics Data System (ADS)
Rubbo, Chester; Balakrishnan, Radha; Reinhardt, William; Satija, Indubala; Rey, Ana; Manmana, Salvatore
2012-06-01
We present results of the quantum dynamics of solitons in XXZ spin-1/2 systems which in general can be derived from a system of spinless fermions or hard-core bosons (HCB) with nearest neighbor interaction on a lattice. A mean-field treatment using spin-coherent states revealed analytic solutions of both bright and dark solitons [1]. We take these solutions and apply a full quantum evolution using the adaptive time-dependent density matrix renormalization group method (adaptive t-DMRG), which takes into account the effect of strong correlations. We use local spin observables, correlations functions, and entanglement entropies as measures for the stability of these soliton solutions over the simulation times. [4pt] [1] R. Balakrishnan, I.I. Satija, and C.W. Clark, Phys. Rev. Lett. 103, 230403 (2009).
NASA Astrophysics Data System (ADS)
Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiang-Gang
We study this model using the cluster update algorithm for tensor product states (TPSs). We find that the ground state energies at finite sizes and in the thermodynamic limit are in good agreement with the exact diagonalization study. At the largest bond dimension available D = 9 and through finite size scaling of the magnetization order near the transition point, we accurately determine the critical point J2c1 = 0 . 53 (1) J1 and the critical exponents β = 0 . 50 (4) . In the intermediate region we find a paramagnetic ground state without any static valence bond solid (VBS) order, supported by an exponentially decaying spin-spin correlation while a power law decaying dimer-dimer correlation. By fitting a universal scaling function for the spin-spin correlation we find the critical exponents ν = 0 . 68 (3) and ηs = 0 . 34 (6) , which is very close to the observed critical exponents for deconfined quantum critical point (DQCP) in other systems. Thus our numerical results strongly suggest a Landau forbidden phase transition from Neel order to VBS order at J2c1 = 0 . 53 (1) J1 . This project is supported by the EU Strep project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM; and the Institute for Quantum Information and Matter.
Environment overwhelms both nature and nurture in a model spin glass
NASA Astrophysics Data System (ADS)
Middleton, A. Alan; Yang, Jie
We are interested in exploring what information determines the particular history of the glassy long term dynamics in a disordered material. We study the effect of initial configurations and the realization of stochastic dynamics on the long time evolution of configurations in a two-dimensional Ising spin glass model. The evolution of nearest neighbor correlations is computed using patchwork dynamics, a coarse-grained numerical heuristic for temporal evolution. The dependence of the nearest neighbor spin correlations at long time on both initial spin configurations and noise histories are studied through cross-correlations of long-time configurations and the spin correlations are found to be independent of both. We investigate how effectively rigid bond clusters coarsen. Scaling laws are used to study the convergence of configurations and the distribution of sizes of nearly rigid clusters. The implications of the computational results on simulations and phenomenological models of spin glasses are discussed. We acknowledge NSF support under DMR-1410937 (CMMT program).
Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates
Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.; ...
2017-08-01
Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less
Thermoelectronic transport through spin-crossover single molecule Fe[(H2Bpz2)2bipy
NASA Astrophysics Data System (ADS)
Liu, N.; Zhu, L.; Yao, K. L.
2018-04-01
By means of density functional theory combined with the method of Keldysh nonequilibrium Green’s function, the thermal transport properties of high- and low-spin states of mononuclear FeII molecules with spin-crossover characteristics are studied. It is found that the high-spin molecular junction has a larger current than the low-spin one, producing thermally-induced switching effect. Furthermore, for high spin state molecule, the spin-up thermo-current is strongly blocked, thus achieving a pure thermo spin current. The enhanced Seebeck coefficient and the figure of merit value of high-spin state indicate that it is an ideal candidate for thermoelectric applications.
Correlation Analysis between Spin, Velocity Shear, and Vorticity of Baryonic and Dark Matter Halos
NASA Astrophysics Data System (ADS)
Liu, Li-li
2017-04-01
Based on the cosmological hydrodynamic simulations, we investigate the correlations between the spin, velocity shear and vorticity in dark matter halos, as well as the relationship between the baryonic matter and the dark matter. We find that (1) the difference between the vorticity of baryonic matter and that of dark matter is evident on the scales of < 0.2 h-1 Mpc; (2) the vorticity of baryonic matter exhibits a stronger correlation with the tensor of velocity shear than the vorticity of dark matter does; and (3) the spinning direction of small-mass dark matter halos tends to be parallel to the direction of their host filaments, while the spinning direction of massive dark matter halos tends to be perpendicular to the direction of their host filaments, and the intensity of this kind correlation depends on the size of simulation box, and the simulation accuracy. These factors may cause the relationship between the the spins of dark matter halos and those of galaxies to be complicated, and affect the correlation between the galaxy spins and the nearby large-scale structures.
Boosting spin-caloritronic effects by attractive correlations in molecular junctions.
Weymann, Ireneusz
2016-01-25
In nanoscopic systems quantum confinement and interference can lead to an enhancement of thermoelectric properties as compared to conventional bulk materials. For nanostructures, such as molecules or quantum dots coupled to external leads, the thermoelectric figure of merit can reach or even exceed unity. Moreover, in the presence of external magnetic field or when the leads are ferromagnetic, an applied temperature gradient can generate a spin voltage and an associated spin current flow in the system, which makes such nanostructures particularly interesting for future thermoelectric applications. In this study, by using the numerical renormalization group method, we examine the spin-dependent thermoelectric transport properties of a molecular junction involving an orbital level with attractive Coulomb correlations coupled to ferromagnetic leads. We analyze how attractive correlations affect the spin-resolved transport properties of the system and find a nontrivial dependence of the conductance and tunnel magnetoresistance on the strength and sign of those correlations. We also demonstrate that attractive correlations can lead to an enhancement of the spin thermopower and the figure of merit, which can be controlled by a gate voltage.
High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking
Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.
2017-01-01
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald
2012-01-01
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Pozsgay, B; Mestyán, M; Werner, M A; Kormos, M; Zaránd, G; Takács, G
2014-09-12
We study the nonequilibrium time evolution of the spin-1/2 anisotropic Heisenberg (XXZ) spin chain, with a choice of dimer product and Néel states as initial states. We investigate numerically various short-ranged spin correlators in the long-time limit and find that they deviate significantly from predictions based on the generalized Gibbs ensemble (GGE) hypotheses. By computing the asymptotic spin correlators within the recently proposed quench-action formalism [Phys. Rev. Lett. 110, 257203 (2013)], however, we find excellent agreement with the numerical data. We, therefore, conclude that the GGE cannot give a complete description even of local observables, while the quench-action formalism correctly captures the steady state in this case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Y. F.; Bazin, C.; Wohlfeld, K.
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less
Defect-induced magnetism in graphene nanoflakes
NASA Astrophysics Data System (ADS)
Martinez-Guerra, E.; Cifuentas-Quintal, M. E.; de Coss, R.
2009-03-01
The interaction between electron spin and the magnetic moments of vacancies in graphene could open new opportunities for spintronic and quantum computation. In that direction, we have studied the magnetic properties of graphene nanoflakes (C6n2H6n) with vacancies within the framework of density functional theory, using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. In particular, we have calculated the magnetic moment of graphene nanoflakes of different diameters with a simple vacancy. We have found that the total spin-polarization of the graphene nanoflakes with a simple vacancy decreases as the diameter increases. In particular, we show that the vacancy induces the appereance of a midgap state at Fermi level. Thus, the spin degeneracy is broken, being only one of the spin channels of the midgap state occupied, the other being empty. This feature could be exploited for future spintronic applications. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 83604.
Spin relaxation 1/f noise in graphene
NASA Astrophysics Data System (ADS)
Omar, S.; Guimarães, M. H. D.; Kaverzin, A.; van Wees, B. J.; Vera-Marun, I. J.
2017-02-01
We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measured spin-dependent noise: contact polarization noise from the ferromagnetic electrodes, which can be filtered out using the cross-correlation method, and the noise originated from the spin relaxation processes. The noise magnitude for spin and charge transport differs by three orders of magnitude, implying different scattering mechanisms for the 1/f fluctuations in the charge and spin transport processes. A modulation of the spin-dependent noise magnitude by changing the spin relaxation length and time indicates that the spin-flip processes dominate the spin-dependent noise.
Spin Hall effect originated from fractal surface
NASA Astrophysics Data System (ADS)
Hajzadeh, I.; Mohseni, S. M.; Movahed, S. M. S.; Jafari, G. R.
2018-05-01
The spin Hall effect (SHE) has shown promising impact in the field of spintronics and magnonics from fundamental and practical points of view. This effect originates from several mechanisms of spin scatterers based on spin–orbit coupling (SOC) and also can be manipulated through the surface roughness. Here, the effect of correlated surface roughness on the SHE in metallic thin films with small SOC is investigated theoretically. Toward this, the self-affine fractal surface in the framework of the Born approximation is exploited. The surface roughness is described by the k-correlation model and is characterized by the roughness exponent H , the in-plane correlation length ξ and the rms roughness amplitude δ. It is found that the spin Hall angle in metallic thin film increases by two orders of magnitude when H decreases from H = 1 to H = 0. In addition, the source of SHE for surface roughness with Gaussian profile distribution function is found to be mainly the side jump scattering while that with a non-Gaussian profile suggests both of the side jump and skew scatterings are present. Our achievements address how details of the surface roughness profile can adjust the SHE in non-heavy metals.
NASA Astrophysics Data System (ADS)
Rosenkranz, S.; Phelan, D.; Louca, D.; Lee, S. H.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.
2006-03-01
The cobalt perovskites La1-xSrxCoO3 show intriguing spin, lattice, and orbital properties similar to the ones observed in colossal magnetoresistive manganites. The x=0 parent compound is a non-magnetic insulator at low temperatures, but shows evidence of a spin-state transition of the cobalt ions above 50K from a low-spin to an intermediate or high-spin configuration. Using high resolution, inelastic neutron scattering, we observe a distinct low energy excitation at 0.6meV coincident with the thermally induced spin state transition observed in susceptibility measurements. The thermal activation of this excited spin state also leads to short-range, dynamic ferro- and antiferromagnetic correlations. These observations are consistent with the activation of a zero-field split intermediate spin state as well as the presence of dynamic orbital ordering of these excited states. Work supported by US DOE BES-DMS W-31-109-ENG-38 and NSF DMR-0454672
Combined Molecular and Spin Dynamics Simulation of Lattice Vacancies in BCC Iron
NASA Astrophysics Data System (ADS)
Mudrick, Mark; Perera, Dilina; Eisenbach, Markus; Landau, David P.
Using an atomistic model that treats translational and spin degrees of freedom equally, combined molecular and spin dynamics simulations have been performed to study dynamic properties of BCC iron at varying levels of defect impurity. Atomic interactions are described by an empirical many-body potential, and spin interactions with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Equations of motion are solved numerically using the second-order Suzuki-Trotter decomposition for the time evolution operator. We analyze the spatial and temporal correlation functions for atomic displacements and magnetic order to obtain the effect of vacancy defects on the phonon and magnon excitations. We show that vacancy clusters in the material cause splitting of the characteristic transverse spin-wave excitations, indicating the production of additional excitation modes. Additionally, we investigate the coupling of the atomic and magnetic modes. These modes become more distinct with increasing vacancy cluster size. This material is based upon work supported by the U.S. Department of Energy Office of Science Graduate Student Research (SCGSR) program.
Interactions in higher-spin gravity: a holographic perspective
NASA Astrophysics Data System (ADS)
Sleight, Charlotte
2017-09-01
This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdSd+1 and the quartic self-interaction of the scalar on AdS4 for the type A minimal bosonic higher-spin theory from the three- and four- point correlation functions of single-trace operators in the free scalar O(N) vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Simplified parent-child formalism for spin-0 and spin-1/2 parents
NASA Astrophysics Data System (ADS)
Butcher, J. B.; Jones, H. F.; Milani, P.
1980-06-01
We develop further the parent-child relation, that is the calculation of the cross-sections and correlations of observed particles, typically charged leptons, arising from the decay of long-lived primarily produced “parent” particles. In the high-momentum regime, when the momenta of parent and child are closely aligned, we show how, for spinless parents, the relation can be simplified by the introduction of “fragmentation” functions derived from the invariant inclusive decay distributions. We extend the formalism to the case of spin-1/2 parents and advocate its application to charm production and decay at the quark level.
NASA Astrophysics Data System (ADS)
Ferdous, Naheed; Ertekin, Elif
2016-07-01
The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO3 and the wide band gap semiconductor TiO2, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO3, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO3, the interface is found to be rectifying with a Schottky barrier of ≈1.3-1.6 eV, in good agreement with experiment. In the minority spin, SrRuO3 exhibits a Schottky barrier alignment with TiO2 and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO3 recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.
Structural, electronic and magnetic properties of metal thiophosphate InPS4
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Nayak, Vikas; Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2017-05-01
The non-centrosymmetric crystal, InPS4, has been investigated by means of density functional theory (DFT). In this paper we have calculated the structural parameters, electronic band structures, density of states plot and magnetic properties using full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation has been solved employing the generalised gradient approximation due to Perdew-Burke-Ernzerhof. The calculations are performed both without spin as well as spin polarized. The results show that InPS4 is an indirect band gap semiconductor with (N-Г) energy gap of 2.32eV (without spin) and 1.86eV in spin up and down channels.The obtained lattice parameters and energy gap agree well with the experimental results. Our reported magnetic moment results show that the property of InPS4is nonmagnetic.
Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-05-01
The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.
Broadband 19F TOCSY using BURBOP-based spin lock
NASA Astrophysics Data System (ADS)
Marchione, Alexander A.; Diaz, Elizabeth L.
2018-01-01
A train of BURBOP universal rotation pulses has been used to generate a spin lock sufficient to observe TOCSY correlations over a 46 kHz 19F spectral window (i.e. 122 ppm on a 9.4 T spectrometer). This spin lock requires lower RF field (γB1 = 15 kHz), and was employed over a wider spectral window, than previously reported DIPSI-2 spin locks. The BURBOP-based spin lock was effected for 80-160 ms periods with a 2% duty cycle without evidence of harm to the RF coil of the probehead. Spectral separation and full set of correlations were obtained for a mixture of perfluorocarbons.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.; Kuz'menkov, L. S.
2017-11-01
A consideration of waves propagating parallel to the external magnetic field is presented. The dielectric permeability tensor is derived from the quantum kinetic equations with non-trivial equilibrium spin-distribution functions in the linear approximation on the amplitude of wave perturbations. It is possible to consider the equilibrium spin-distribution functions with nonzero z-projection proportional to the difference of the Fermi steps of electrons with the chosen spin direction, while x- and y-projections are equal to zero. It is called the trivial equilibrium spin-distribution functions. In the general case, x- and y-projections of the spin-distribution functions are nonzero which is called the non-trivial regime. A corresponding equilibrium solution is found in Andreev [Phys. Plasmas 23, 062103 (2016)]. The contribution of the nontrivial part of the spin-distribution function appears in the dielectric permeability tensor in the additive form. It is explicitly found here. A corresponding modification in the dispersion equation for the transverse waves is derived. The contribution of the nontrivial part of the spin-distribution function in the spectrum of transverse waves is calculated numerically. It is found that the term caused by the nontrivial part of the spin-distribution function can be comparable with the classic terms for the relatively small wave vectors and frequencies above the cyclotron frequency. In a majority of regimes, the extra spin caused term dominates over the spin term found earlier, except the small frequency regime, where their contributions in the whistler spectrum are comparable. A decrease of the left-hand circularly polarized wave frequency, an increase of the high-frequency right-hand circularly polarized wave frequency, and a decrease of frequency changing by an increase of frequency at the growth of the wave vector for the whistler are found. A considerable decrease of the spin wave frequency is found either. It results in an increase of module of the negative group velocity of the spin wave. The found dispersion equations are used for obtaining of an effective quantum hydrodynamics reproducing these results. This generalization requires the introduction of the corresponding equation of state for the thermal part of the spin current in the spin evolution equation.
The 3D structure of QCD and the roots of the Standard Model
NASA Astrophysics Data System (ADS)
Mulders, P. J.
2016-03-01
For many phenomenological applications involving hadrons in high energy processes the hadronic structure can be taken care of by parton distribution functions (PDFs), in which only the collinear momenta of quarks and gluons are important. In principle the transverse structure, however, provides interesting new phenomenology. Taking into account transverse momenta of partons one works with transverse momentum dependent PDFs (TMDs), These allow all spin-spin correlations and also spin-orbit correlations that have a time reversal odd character and lead to new observables. In many theoretical developments the link to the collinear treatment is used. In this talk I will speculate on a novel view of the 3-dimensional (3D) structure of QCD, which fits in a broader study looking at the roots of the Standard Model of particle physics.
NASA Astrophysics Data System (ADS)
Kaczmarczyk, Jan; Spałek, Jozef
2009-06-01
Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid composed of quasiparticles in a narrow band with the spin-dependent masses and an effective field, both introduced earlier and induced by strong electronic correlations. Each of these novel characteristics is calculated in a self-consistent manner. We analyze the bound states as a function of Cooper-pair momentum |Q| in applied magnetic field in the strongly Pauli limiting case (i.e., when the orbital effects of applied magnetic field are disregarded). The spin-direction dependence of the effective mass makes the quasiparticles comprising Cooper-pair spin distinguishable in the quantum-mechanical sense, whereas the condensed gas of pairs may still be regarded as composed of identical entities. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) condensed phase of moving pairs is by far more robust in the applied field for the case with spin-dependent masses than in the situation with equal masses of quasiparticles. Relative stability of the Bardeen-Cooper-Schrieffer vs FFLO phase is analyzed in detail on temperature-applied field plane. Although our calculations are carried out for a model situation, we can conclude that the spin-dependent masses should play an important role in stabilizing high-field low-temperature unconventional superconducting phases (FFLO, for instance) in systems such as CeCoIn5 , organic metals, and possibly others.
Spin current and spin transfer torque in ferromagnet/superconductor spin valves
NASA Astrophysics Data System (ADS)
Moen, Evan; Valls, Oriol T.
2018-05-01
Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.
Spin correlations and new physics in τ -lepton decays at the LHC
Hayreter, Alper; Valencia, German
2015-07-31
We use spin correlations to constrain anomalous τ -lepton couplings at the LHC including its anomalous magnetic moment, electric dipole moment and weak dipole moments. Single spin correlations are ideal to probe interference terms between the SM and new dipole-type couplings as they are not suppressed by the τ -lepton mass. Double spin asymmetries give rise to T -odd correlations useful to probe CP violation purely within the new physics amplitudes, as their appearance from interference with the SM is suppressed by m τ. We compare our constraints to those obtained earlier on the basis of deviations from the Drell-Yanmore » cross-section.« less
NASA Astrophysics Data System (ADS)
Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.
2018-04-01
An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.
NASA Astrophysics Data System (ADS)
Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar
2018-05-01
In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .
Quantum correlation of high dimensional system in a dephasing environment
NASA Astrophysics Data System (ADS)
Ji, Yinghua; Ke, Qiang; Hu, Juju
2018-05-01
For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.
A new DFT functional based on spin-states and SN2 barriers
NASA Astrophysics Data System (ADS)
Swart, M.; Solà, M.; Bickelhaupt, F. M.
2012-12-01
We recently reported a study into what causes the dramatic differences between OPBE and PBE for reaction barriers, spin-state energies, hydrogen-bonding and π-π stacking energies.1 It was achieved by smoothly switching from OPBE to PBE at a predefined point P of the reduced density gradient s. By letting the point P run as function of the reduced density gradient s, with values from s=0.1 to s=10, we could determine which part of the exchange functional determines its behavior for the different interactions. Based on the thus obtained results, we created a new exchange functional that showed the good results of OPBE for reaction barriers and spin-state energies, and combined it with the good (H-bonds) and reasonable (π-stacking) results of PBE for weak interactions. In other words, it combined the best of OPBE with the best of PBE. Encouraged by these good results, we have further improved the new exchange functional and fine-tuned its parameters.2 Similar to the switched functional from ref. 1, our new SSB functional2 works well for SN2 barriers (see e.g. ref. 3), spin states and H-bonding interactions. Moreover, by including Grimme's dispersion corrections4,5 (to give our final SSB-D functional) it also works well for π-π stacking interactions.2 In summary, we have constructed a new GGA exchange functional that when combined with the sPBE correlation functional6 gives the correct spin ground-state of iron complexes, and small deviations for SN2 barriers (2.7 kcalṡmol-1), geometries (0.005 Å), Hbond distances (0.012 Å), weak interactions (S22 set, 0.5 kcalṡmol-1), and transition-metal ligand distances (0.008 Å).
Wiecki, P.; Ogloblichev, V.; Pandey, Abhishek; ...
2015-06-15
In nonsuperconducting, metallic paramagnetic SrCo 2As 2, inelastic neutron scattering measurements have revealed strong stripe-type q=(π,0) antiferromagnetic (AFM) spin correlations. Using nuclear magnetic resonance (NMR) measurements on 59Co and 75As nuclei, we demonstrate that stronger ferromagnetic (FM) spin correlations coexist in SrCo 2As 2. Our NMR data are consistent with density functional theory (DFT) calculations which show enhancements at both q=(π,0) and the in-plane FM q=0 wave vectors in static magnetic susceptibility χ(q). We suggest that the strong FM fluctuations prevent superconductivity in SrCo 2As 2, despite the presence of stripe-type AFM fluctuations. Since DFT calculations have consistently revealed similarmore » enhancements of the χ(q) at both q=(π,0) and q=0 in the iron-based superconductors and parent compounds, our observation of FM correlations in SrCo 2As 2 calls for detailed studies of FM correlations in the iron-based superconductors.« less
Miao, H.; Lorenzana, J.; Seibold, G.; ...
2017-11-07
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; ...
2017-10-06
We report inelastic neutron scattering measurements of low-energy ( ℏ ω ≲ 10 meV) magnetic excitations in the “11” system Fe 1+y Te 1-x Se x. The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above T c ~ 15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2Dmore » cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.« less
NASA Astrophysics Data System (ADS)
Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; Winn, B. L.; Granroth, G. E.; Zhao, Yang; Gu, Genda; Zaliznyak, Igor; Tranquada, J. M.; Birgeneau, R. J.; Xu, Guangyong
2017-10-01
We report inelastic neutron scattering measurements of low-energy (ℏ ω ≲10 meV) magnetic excitations in the "11" system Fe1 +yTe1 -xSex . The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above Tc˜15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2D cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Lorenzana, J.; Seibold, G.
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Yuji; Roy, Beas; Ran, Sheng
2014-03-20
The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magneticmore » susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng
We report inelastic neutron scattering measurements of low-energy ( ℏ ω ≲ 10 meV) magnetic excitations in the “11” system Fe 1+y Te 1-x Se x. The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above T c ~ 15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2Dmore » cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.« less
Rigorous decoupling between edge states in frustrated spin chains and ladders
NASA Astrophysics Data System (ADS)
Chepiga, Natalia; Mila, Frédéric
2018-05-01
We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun
2015-01-14
Ab initio calculations combining density-functional theory and nonequilibrium Green’s function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the highmore » bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.« less
A general explanation on the correlation of dark matter halo spin with the large-scale environment
NASA Astrophysics Data System (ADS)
Wang, Peng; Kang, Xi
2017-06-01
Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
NASA Astrophysics Data System (ADS)
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.
2016-01-01
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; ...
2016-02-05
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blendsmore » exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. In conclusion, magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.« less
Spin-correlated doublet pairs as intermediate states in charge separation processes
NASA Astrophysics Data System (ADS)
Kraffert, Felix; Behrends, Jan
2017-10-01
Spin-correlated charge-carrier pairs play a crucial role as intermediate states in charge separation both in natural photosynthesis as well as in solar cells. Using transient electron paramagnetic resonance (trEPR) spectroscopy in combination with spectral simulations, we study spin-correlated polaron pairs in polymer:fullerene blends as organic solar cells materials. The semi-analytical simulations presented here are based on the well-established theoretical description of spin-correlated radical pairs in biological systems, however, explicitly considering the disordered nature of polymer:fullerene blends. The large degree of disorder leads to the fact that many different relative orientations between both polarons forming the spin-correlated pairs have to be taken into account. This has important implications for the spectra, which differ significantly from those of spin-correlated radical pairs with a fixed relative orientation. We systematically study the influence of exchange and dipolar couplings on the trEPR spectra and compare the simulation results to measured X- and Q-band trEPR spectra. Our results demonstrate that assuming dipolar couplings alone does not allow us to reproduce the experimental spectra. Due to the rather delocalised nature of polarons in conjugated organic semiconductors, a significant isotropic exchange coupling needs to be included to achieve good agreement between experiments and simulations.
NASA Astrophysics Data System (ADS)
Silaev, M. A.
2018-06-01
We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.
2018-02-01
It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.
Variational model for one-dimensional quantum magnets
NASA Astrophysics Data System (ADS)
Kudasov, Yu. B.; Kozabaranov, R. V.
2018-04-01
A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.
Predicted NMR properties of noble gas hydride cations RgH +
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Sadlej, Joanna
2008-12-01
The NMR shielding constants and, for the first time, the spin-spin coupling constants of Rg and H in RgH + compounds for Rg = Ne, Ar, Kr, Xe have been investigated by non-relativistic Hartree-Fock (HF) and relativistic Dirac-Hartree-Fock (DHF) methods. Electron-correlation effects have been furthermore calculated using SOPPA and CCSD at the non-relativistic level. The correlation effects are large on both parameters and opposite to the relativistic effects. The results indicate that both the relativistic and correlation effects need to be taken into account in a quantitative computations, especially in the case of the spin-spin coupling constants.
The extraction of the spin structure function, g2 (and g1) at low Bjorken x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndukum, Luwani Z.
2015-08-01
The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate the spin structure of the proton. The experiment measured inclusive double polarization electron asymmetries using a polarized electron beam, scattered off a solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The scattered electrons were detected by a novel, non-magnetic arraymore » of detectors observing a four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a function of x and W in four Q square bins. A full understanding of the low x region is necessary to get clean results for SANE and extend our understanding of the kinematic region at low x.« less
Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian
2016-09-28
We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.
Relaxation-optimized transfer of spin order in Ising spin chains
NASA Astrophysics Data System (ADS)
Stefanatos, Dionisis; Glaser, Steffen J.; Khaneja, Navin
2005-12-01
In this paper, we present relaxation optimized methods for the transfer of bilinear spin correlations along Ising spin chains. These relaxation optimized methods can be used as a building block for the transfer of polarization between distant spins on a spin chain, a problem that is ubiquitous in multidimensional nuclear magnetic resonance spectroscopy of proteins. Compared to standard techniques, significant reduction in relaxation losses is achieved by these optimized methods when transverse relaxation rates are much larger than the longitudinal relaxation rates and comparable to couplings between spins. We derive an upper bound on the efficiency of the transfer of the spin order along a chain of spins in the presence of relaxation and show that this bound can be approached by the relaxation optimized pulse sequences presented in the paper.
Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite
Han, Tian-Heng; Norman, M. R.; Wen, J. -J.; ...
2016-08-18
Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu 3(OD) 6Cl 2 (herbertsmithite) reveals in this paper antiferromagnetic correlations between impurity spins for energy transfers h(with stroke)ω < 0.8 meV (~ J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit belowmore » the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. Finally, the ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.« less
On the dynamics of the Ising model of cooperative phenomena
Montroll, Elliott W.
1981-01-01
A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955
NASA Astrophysics Data System (ADS)
Xu, Wei-Ping; Zhang, Yu-Ying; Wang, Qiang; Nie, Yi-Hang
2016-11-01
We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spin-orbital interaction (RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green’s function method in the linear response regime. Under the appropriate configuration of magnetic flux phase and RSOI phase, the spin figure of merit can be enhanced and is even larger than the charge figure of merit. In particular, the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs. For some specific configuration of the two phases, the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero, which is useful in realizing the thermal spin battery and inducing a pure spin current in the device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274208 and 11447170).
Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study
NASA Astrophysics Data System (ADS)
Chandra, V. Ravi; Sahoo, Jyotisman
2018-04-01
We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .
Energy as a witness of multipartite entanglement in chains of arbitrary spins
NASA Astrophysics Data System (ADS)
Troiani, F.; Siloi, I.
2012-09-01
We develop a general approach for deriving the energy minima of biseparable states in chains of arbitrary spins s, and we report numerical results for spin values s≤5/2 (with N≤8). The minima provide a set of threshold values for exchange energy that allow us to detect different degrees of multipartite entanglement in one-dimensional spin systems. We finally demonstrate that the Heisenberg exchange Hamiltonian of N spins has a nondegenerate N-partite entangled ground state, and it can thus witness such correlations in all finite spin chains.
How should spin-weighted spherical functions be defined?
NASA Astrophysics Data System (ADS)
Boyle, Michael
2016-09-01
Spin-weighted spherical functions provide a useful tool for analyzing tensor-valued functions on the sphere. A tensor field can be decomposed into complex-valued functions by taking contractions with tangent vectors on the sphere and the normal to the sphere. These component functions are usually presented as functions on the sphere itself, but this requires an implicit choice of distinguished tangent vectors with which to contract. Thus, we may more accurately say that spin-weighted spherical functions are functions of both a point on the sphere and a choice of frame in the tangent space at that point. The distinction becomes extremely important when transforming the coordinates in which these functions are expressed, because the implicit choice of frame will also transform. Here, it is proposed that spin-weighted spherical functions should be treated as functions on the spin or rotation groups, which simultaneously tracks the point on the sphere and the choice of tangent frame by rotating elements of an orthonormal basis. In practice, the functions simply take a quaternion argument and produce a complex value. This approach more cleanly reflects the geometry involved, and allows for a more elegant description of the behavior of spin-weighted functions. In this form, the spin-weighted spherical harmonics have simple expressions as elements of the Wigner 𝔇 representations, and transformations under rotation are simple. Two variants of the angular-momentum operator are defined directly in terms of the spin group; one is the standard angular-momentum operator L, while the other is shown to be related to the spin-raising operator ð.
NASA Astrophysics Data System (ADS)
El-Kelany, Kh. E.; Ravoux, C.; Desmarais, J. K.; Cortona, P.; Pan, Y.; Tse, J. S.; Erba, A.
2018-06-01
Lanthanide sesquioxides are strongly correlated materials characterized by highly localized unpaired electrons in the f band. Theoretical descriptions based on standard density functional theory (DFT) formulations are known to be unable to correctly describe their peculiar electronic and magnetic features. In this study, electronic and magnetic properties of the first four lanthanide sesquioxides in the series are characterized through a reliable description of spin localization as ensured by hybrid functionals of the DFT, which include a fraction of nonlocal Fock exchange. Because of the high localization of the f electrons, multiple metastable electronic configurations are possible for their ground state depending on the specific partial occupation of the f orbitals: the most stable configuration is here found and characterized for all systems. Magnetic ordering is explicitly investigated, and the higher stability of an antiferromagnetic configuration with respect to the ferromagnetic one is predicted. The critical role of the fraction of exchange on the description of their electronic properties (notably, on spin localization and on the electronic band gap) is addressed. In particular, a recently proposed theoretical approach based on a self-consistent definition—through the material dielectric response—of the optimal fraction of exchange in hybrid functionals is applied to these strongly correlated materials.
Collective dynamics in atomistic models with coupled translational and spin degrees of freedom
Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; ...
2017-01-26
When using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. Furthermore, by calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. A comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnonsmore » leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.« less
The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2
NASA Astrophysics Data System (ADS)
Zhang, Xin; Mu, Sai; Liu, Yang; Luo, Jian; Zhang, Jian; N'Diaye, Alpha T.; Enders, Axel; Dowben, Peter A.
2018-05-01
The unoccupied electronic structure of the spin crossover molecule cobalt (II) N-(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, [Co(dpzca)2] was investigated, using X-ray absorption spectroscopy (XAS) and compared with magnetometry (SQUID) measurements. The temperature dependence of the XAS and molecular magnetic susceptibility χmT are in general agreement for [Co(dpzca)2], and consistent with density functional theory (DFT). This agreement of magnetic susceptibility and X-ray absorption spectroscopy provides strong evidence that the changes in magnetic moment can be ascribed to changes in electronic structure. Calculations show the choice of Coulomb correlation energy U has a profound effect on the electronic structure of the low spin state, but has little influence on the electronic structure of the high spin state. In the temperature dependence of the XAS, there is also evidence of an X-ray induced excited state trapping for [Co(dpzca)2] at 15 K.
Magnetic-field control of electric polarization in coupled spin chains with three-site interactions
NASA Astrophysics Data System (ADS)
Sznajd, Jozef
2018-06-01
The linear perturbation renormalization group (LPRG) is used to study coupled X Y chains with Dzyaloshinskii-Moriya (DM) and three-spin interactions in a magnetic field. Starting with a minimal model exhibiting the magnetoelectric effect, a spin-1/2 X Y chain with nearest, next-nearest (J2x) , and DM (D1y) interactions in a magnetic field, the recursion relations for all effective interactions generated by the LPRG transformation are found. The evaluation of these relations allows us to analyze, among others, the influence of J2x,D1y , three-spin (SixSi+1 ySi+2 z-SiySi+1 xSi+2 z ), and interchain interactions on the thermodynamic properties. The field and temperature dependences of the polarization, specific heat, and correlation functions are found. It is shown that an interchain coupling triggers a phase transition indicated by the divergence of the renormalized coupling parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cable, J.W.
The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recentmore » neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs.« less
Xu, Lu T; Dunning, Thom H
2015-06-09
The ground state, X1Σg+, of N2 is a textbook example of a molecule with a triple bond consisting of one σ and two π bonds. This assignment, which is usually rationalized using molecular orbital (MO) theory, implicitly assumes that the spins of the three pairs of electrons involved in the bonds are singlet-coupled (perfect pairing). However, for a six-electron singlet state, there are five distinct ways to couple the electron spins. The generalized valence bond (GVB) wave function lifts this restriction, including all of the five spin functions for the six electrons involved in the bond. For N2, we find that the perfect pairing spin function is indeed dominant at Re but that it becomes progressively less so from N2 to P2 and As2. Although the perfect pairing spin function is still the most important spin function in P2, the importance of a quasi-atomic spin function, which singlet couples the spins of the electrons in the σ orbitals while high spin coupling those of the electrons in the π orbitals on each center, has significantly increased relative to N2 and, in As2, the perfect pairing and quasi-atomic spin couplings are on essentially the same footing. This change in the spin coupling of the electrons in the bonding orbitals down the periodic table may contribute to the rather dramatic decrease in the strengths of the Pn2 bonds from N2 to As2 as well as in the increase in their chemical reactivity and should be taken into account in more detailed analyses of the bond energies in these species. We also compare the spin coupling in N2 with that in C2, where the quasi-atomic spin coupling dominants around Re.
Spin dependence of ferroelectric polarization in the double exchange model for manganites
NASA Astrophysics Data System (ADS)
Solovyev, I. V.; Nikolaev, S. A.
2014-11-01
The double exchange (DE) model is systematically applied for studying the coupling between ferroelectric (FE) and magnetic orders in several prototypical types of multiferroic manganites. The model itself was constructed for the magnetically active Mn 3 d bands in the basis of Wannier functions and includes the effect of screened onsite Coulomb interactions in the Hartree-Fock approximation. All model parameters were derived from the first-principles electronic-structure calculations. The essence of our approach for the FE polarization is to use the Berry-phase theory, formulated in terms of occupied Wannier functions, and to evaluate the asymmetric spin-dependent change of these functions in the framework of the DE model. This enables us to quantify the effect of the magnetic symmetry breaking and derive several useful expressions for the electronic polarization P , depending on the relative directions of spins. The spin dependence of P in the DE model is given by the isotropic correlation functions ei.ej between directions of neighboring spins. Despite formal similarity with the magnetostriction mechanism, the magnetoelectric coupling in the proposed DE theory is not related to the magnetically driven FE atomic displacements and can exist even in compounds with the centrosymmetric crystal structure, if the spatial distribution of ei.ej does not respect the inversion symmetry. The proposed theory is applied to the solution of three major problems: (i) the magnetic-state dependence of P in hexagonal manganites, using YMnO3 as an example; (ii) the microscopic relationship between canted ferromagnetism and P in monoclinic BiMnO3; (iii) the origin of FE activity in orthorhombic manganites. Particularly, we will show that for an arbitrary noncollinear magnetic structure, propagating along the orthorhombic b axis and antiferromagnetically coupled along the c axis, the polarization is induced by an inhomogeneous distribution of spins and can be obtained by scaling the one of the E-type antiferromagnetic (AFM) phase with the prefactor depending only on the relative directions of spins and being the measure of this spin inhomogeneity. This picture works equally well for the twofold (HoMnO3) and fourfold (TbMnO3) periodic manganites. The basic difference is that, even despite some spin canting of the relativistic origin and deviation from the collinear E-type AFM alignment, the twofold periodic magnetic structure remains strongly inhomogeneous, which leads to large P . On the contrary, the fourfold periodic magnetic structure can be viewed as a moderately distorted homogeneous spin spiral, which corresponds to much weaker P .
Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction
NASA Astrophysics Data System (ADS)
Radhakrishnan, Chandrashekar; Ermakov, Igor; Byrnes, Tim
2017-07-01
The quantum coherence of one-dimensional planar spin models with Dzyaloshinsky-Moriya interaction is investigated. The anisotropic XY model, the isotropic XX model, and the transverse field model are studied in the large N limit using two qubit reduced density matrices and two point correlation functions. From our investigations we find that the coherence as measured using Jensen-Shannon divergence can be used to detect quantum phase transitions and quantum critical points. The derivative of coherence shows nonanalytic behavior at critical points, leading to the conclusion that these transitions are of second order. Further, we show that the presence of Dzyaloshinsky-Moriya coupling suppresses the phase transition due to residual ferromagnetism, which is caused by spin canting.
Spin-one bilinear-biquadratic model on a star lattice
NASA Astrophysics Data System (ADS)
Lee, Hyun-Yong; Kawashima, Naoki
2018-05-01
We study the ground-state phase diagram of the S =1 bilinear-biquadratic model (BLBQ) on the star lattice with the state-of-art tensor network algorithms. The system has four phases: the ferromagnetic, antiferromagnetic, ferroquadrupolar, and spin-liquid phases. The phases and their phase boundaries are determined by examining various local observables, correlation functions, and transfer matrices exhaustively. The spin-liquid phase, which is the first quantum disordered phase found in the two-dimensional BLBQ model, is gapped and devoid of any conventional long-range order. It is also characterized by fixed-parity virtual bonds in the tensor network formalism, analogous to the Haldane phase, while the parity varies depending on the location of the bond.
Floquet spin states in graphene under ac-driven spin-orbit interaction
NASA Astrophysics Data System (ADS)
López, A.; Sun, Z. Z.; Schliemann, J.
2012-05-01
We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.
Two-spinor description of massive particles and relativistic spin projection operators
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Podoinitsyn, M. A.
2018-04-01
On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.
Probing equilibrium by nonequilibrium dynamics: Aging in Co/Cr superlattices
NASA Astrophysics Data System (ADS)
Binek, Christian
2013-03-01
Magnetic aging phenomena are investigated in a structurally ordered Co/Cr superlattice through measurements of magnetization relaxation, magnetic susceptibility, and hysteresis at various temperatures above and below the onset of collective magnetic order. We take advantage of the fact that controlled growth of magnetic multilayer thin films via molecular beam epitaxy allows tailoring the intra and inter-layer exchange interaction and thus enables tuning of magnetic properties including the spin-fluctuation spectra. Tailored nanoscale periodicity in Co/Cr multilayers creates mesoscopic spatial magnetic correlations with slow relaxation dynamics when quenching the system into a nonequilibrium state. Magnetization relaxation in weakly correlated spin systems depends on the microscopic spin-flip time of about 10 ns and is therefore a fast process. The spin correlations in our Co/Cr superlattice bring the magnetization dynamics to experimentally better accessible time scales of seconds or hours. In contrast to spin-glasses, where slow dynamics due to disorder and frustration is a well-known phenomenon, we tune and increase relaxation times in ordered structures. This is achieved by increasing spin-spin correlation between mesoscopically correlated regions rather than individual atomic spins, a concept with some similarity to block spin renormalization. Magnetization transients are measured after exposing the Co/Cr heterostructure to a magnetic set field for various waiting times. Scaling analysis reveals an asymptotic power-law behavior in accordance with a full aging scenario. The temperature dependence of the relaxation exponent shows pronounced anomalies at the equilibrium phase transitions of the antiferromagnetic superstructure and the ferromagnetic to paramagnetic transition of the Co layers. The latter leaves only weak fingerprints in the equilibrium magnetic behavior but gives rise to a prominent change in nonequilibrium properties. Our findings suggest that scaling analysis of nonequilibrium data can serve as a probe for weak equilibrium phase transitions. Financial support by NRI, and NSF through EPSCoR, and MRSEC 0820521 is greatly acknowledged.
Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur
2018-01-01
Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429
NASA Astrophysics Data System (ADS)
Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis
2018-03-01
The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.
Ground-state phase diagram of an anisotropic spin-1/2 model on the triangular lattice
NASA Astrophysics Data System (ADS)
Luo, Qiang; Hu, Shijie; Xi, Bin; Zhao, Jize; Wang, Xiaoqun
2017-04-01
Motivated by a recent experiment on the rare-earth material YbMgGaO4 [Y. Li et al., Phys. Rev. Lett. 115, 167203 (2015), 10.1103/PhysRevLett.115.167203], which found that the ground state of YbMgGaO4 is a quantum spin liquid, we study the ground-state phase diagram of an anisotropic spin-1 /2 model that was proposed to describe YbMgGaO4. Using the density matrix renormalization-group method in combination with the exact-diagonalization method, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram, there is a 120∘ phase and two distinct stripe phases. The transitions from the two stripe phases to the 120∘ phase are of the first order. However, the transition between the two stripe phases is not of the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may also be important to model the material YbMgGaO4. These findings will stimulate further experimental and theoretical works in understanding the quantum spin-liquid ground state in YbMgGaO4.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.
Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y
2017-03-06
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet
Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.
2017-01-01
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakumari, V.; Premkumar, S.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com
The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of {sup 14}N- labeled nitroxyl radicals in 1 mM concentration ofmore » ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.« less
NASA Astrophysics Data System (ADS)
Meenakumari, V.; Jawahar, A.; Premkumar, S.; Benial, A. Milton Franklin
2016-05-01
The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of 14N- labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il
2016-01-14
We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling ofmore » the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water. Discussion of the regime for which such an approach is valid is given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.
Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less
J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.
Atreya, Hanudatta S; Garcia, Erwin; Shen, Yang; Szyperski, Thomas
2007-01-24
G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.
Anisotropic exchange interaction induced by a single photon in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.
2005-12-01
We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.
Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Sheng, D. N.; Weng, Zheng-Yu
2018-03-01
We examine the pairing structure of holes injected into two distinct spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, phase fluctuations can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.
NASA Astrophysics Data System (ADS)
Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei
2017-05-01
The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.
NASA Astrophysics Data System (ADS)
Huzak, M.; Deleuze, M. S.; Hajgató, B.
2011-09-01
An analysis using the formalism of crystalline orbitals for extended systems with periodicity in one dimension demonstrates that any antiferromagnetic and half-metallic spin-polarization of the edge states in n-acenes, and more generally in zigzag graphene nanoislands and nanoribbons of finite width, would imply a spin contamination ⟨S2⟩ that increases proportionally to system size, in sharp and clear contradiction with the implications of Lieb's theorem for compensated bipartite lattices and the expected value for a singlet (S = 0) electronic ground state. Verifications on naphthalene, larger n-acenes (n = 3-10) and rectangular nanographene islands of increasing size, as well as a comparison using unrestricted Hartree-Fock theory along with basis sets of improving quality against various many-body treatments demonstrate altogether that antiferromagnetism and half-metallicity in extended graphene nanoribbons will be quenched by an exact treatment of electron correlation, at the confines of non-relativistic many-body quantum mechanics. Indeed, for singlet states, symmetry-breakings in spin-densities are necessarily the outcome of a too approximate treatment of static and dynamic electron correlation in single-determinantal approaches, such as unrestricted Hartree-Fock or Density Functional Theory. In this context, such as the size-extensive spin-contamination to which it relates, half-metallicity is thus nothing else than a methodological artefact.
Huzak, M; Deleuze, M S; Hajgató, B
2011-09-14
An analysis using the formalism of crystalline orbitals for extended systems with periodicity in one dimension demonstrates that any antiferromagnetic and half-metallic spin-polarization of the edge states in n-acenes, and more generally in zigzag graphene nanoislands and nanoribbons of finite width, would imply a spin contamination
Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.
Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P
2017-06-27
The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2012-05-24
A measurement of spin correlation in tt¯ production is reported using data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 2.1 fb⁻¹. Candidate events are selected in the dilepton topology with large missing transverse energy and at least two jets. The difference in azimuthal angle between the two charged leptons in the laboratory frame is used to extract the correlation between the top and antitop quark spins. In the helicity basis the measured degree of correlation corresponds to A helicity=0.40 +0.09 -0.08, in agreement with the next-to-leading-order standard model prediction. The hypothesis of zeromore » spin correlation is excluded at 5.1 standard deviations.« less
Identification of three duplicated Spin genes in medaka (Oryzias latipes).
Wang, Xiao-Lei; Mei, Jie; Sun, Min; Hong, Yun-Han; Gui, Jian-Fang
2005-05-09
Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them.
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
NASA Astrophysics Data System (ADS)
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G
2016-08-12
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
NASA Astrophysics Data System (ADS)
Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.
2016-08-01
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
Spin-dependent transport through an interacting quantum dot.
Zhang, Ping; Xue, Qi-Kun; Wang, Yupeng; Xie, X C
2002-12-31
We study the nonequilibrium spin transport through a quantum dot coupled to the magnetic electrodes. A formula for the spin-dependent current is obtained and is applied to discuss the linear conductance and magnetoresistance in the interacting regime. We show that the Kondo resonance and the correlation-induced spin splitting of the dot levels may be systematically controlled by internal magnetization in the electrodes. As a result, when the electrodes are in parallel magnetic configuration, the linear conductance is characterized by two spin-resolved peaks. Furthermore, the presence of the spin-flip process in the dot splits the Kondo resonance into three peaks.
NASA Astrophysics Data System (ADS)
Wang, Yaping
One of the primary goals of the spin physics program at STAR is to constrain the polarized gluon distribution function, Δg(x), by measuring the longitudinal double-spin asymmetry (ALL) of various final-state channels. Using a jet in the mid-rapidity region |η| < 0.9 correlated with an azimuthally back-to-back π0 in the forward rapidity region 0.8 < η < 2.0 provides a new possibility to access the Δg(x) distribution at Bjorken-x down to 0.01. Compared to inclusive jet or inclusive π0 measurements, this channel also allows to constrain the initial parton kinematics. In these proceedings, we will present the status of the analysis of the π0-jet ALL in longitudinally polarized proton+proton collisions at s =510 GeV with 80 pb‑1 of data taken during the 2012 RHIC run. We also compare the projected ALL uncertainties to theoretical predictions of the ALL by next-to-leading order (NLO) model calculations with different polarized parton distribution functions.
Higher-order spin-noise spectroscopy of atomic spins in fluctuating external fields
Li, Fuxiang; Crooker, S. A.; Sinitsyn, N. A.
2016-03-09
Here, we discuss the effect of external noisy magnetic fields on mesoscopic spin fluctuations that can be probed in semiconductors and atomic vapors by means of optical spin-noise spectroscopy. We also show that conventional arguments of the law of large numbers do not apply to spin correlations induced by external fields, namely, the magnitude of the 4th-order spin cumulant grows as ~N 2 with the number N of observed spins, i.e., it is not suppressed in comparison to the 2nd-order cumulant. Moreover, this allows us to design a simple experiment to measure the 4th-order cumulant of spin fluctuations in anmore » atomic system near thermodynamic equilibrium and develop a quantitative theory that explains all observations.« less
NASA Astrophysics Data System (ADS)
Cruz, C.
The characterization of quantum information quantifiers has attracted a considerable attention of the scientific community, since they are a useful tool to verify the presence of quantum correlations in a quantum system. In this context, in the present work we show a theoretical study of some quantifiers, such as entanglement witness, entanglement of formation, Bell’s inequality violation and geometric quantum discord as a function of the diffractive properties of neutron scattering. We provide one path toward identifying the presence of quantum correlations and quantum nonlocality in a molecular magnet as a Heisenberg spin-1/2 dimer, by diffractive properties typically obtained via neutron scattering experiments.
Direction of spin axis and spin rate of the pitched baseball.
Jinji, Tsutomu; Sakurai, Shinji
2006-07-01
In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.
2003-03-01
We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.
A spin exchange model for singlet fission
NASA Astrophysics Data System (ADS)
Yago, Tomoaki; Wakasa, Masanobu
2018-03-01
Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.
Spin correlations and entanglement in partially magnetised ensembles of fermions
NASA Astrophysics Data System (ADS)
Thekkadath, G. S.; Jiang, Liang; Thywissen, J. H.
2016-11-01
We show that the singlet fraction p s and total magnetisation (or polarisation) m can bound the minimum concurrence in an ensemble of spins. We identify {p}{{s}}\\gt (1-{m}2)/2 as a sufficient and tight condition for bipartite entanglement. Our proof makes no assumptions about the state of the system or symmetry of the particles, and can therefore be used as a witness for spin entanglement between fermions. We discuss the implications for recent experiments in which spin correlations were observed, and the prospect to study entanglement dynamics in the demagnetisation of a cold Fermi gas.
Theoretical Study of Spin Crossover in 30 Iron Complexes.
Kepp, Kasper P
2016-03-21
Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems.
Spin Hall Effects in Metallic Antiferromagnets
Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...
2014-11-04
In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozirov, Farhod, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com; Stachów, Michał, E-mail: michal.stachow@gmail.com; Kupka, Teobald, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com
2014-04-14
A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd)more » with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)« less
Chakrabarty, Soubhik; Wasey, A H M Abdul; Thapa, Ranjit; Das, G P
2018-08-24
To realize a graphene based spintronic device, the prime challenge is to control the electronic structure of edges. In this work we find the origin of the spin filtering property in edge boron doped zigzag graphene nanoribbons (ZGNRs) and provide a guide to preparing a graphene based next-generation spin filter based device. Here, we unveil the role of orbitals (p-electron) to tune the electronic, magnetic and transport properties of edge B doped ZGNRs. When all the edge carbon atoms at one of the edges of ZGNRs are replaced by B (100% edge B doping), the system undergoes a semiconductor to metal transition. The role of passivation of the edge with single/double atomic hydrogen on the electronic properties and its relation with the p-electron is correlated in-depth. 50% edge B doped ZGNRs (50% of the edge C atoms at one of the edges are replaced by B) also show half-metallicity when the doped edge is left unpassivated. The half-metallic systems show 100% spin filtering efficiency for a wide range of bias voltages. Zero-bias transmission function of the other configurations shows asymmetric behavior for the up and down spin channels, thereby indicating their possible application potential in nano-spintronics.
Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature
NASA Astrophysics Data System (ADS)
Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi
2014-09-01
Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.
Charge and spin correlations in the monopole liquid
NASA Astrophysics Data System (ADS)
Slobinsky, D.; Baglietto, G.; Borzi, R. A.
2018-05-01
A monopole liquid is a spin system with a high density of magnetic charges but no magnetic-charge order. We study such a liquid over an Ising pyrochlore lattice, where a single topological charge or monopole sits in each tetrahedron. Restricting the study to the case with no magnetic field applied we show that, in spite of the liquidlike correlations between charges imposed by construction constraints, the spins are uncorrelated like in a perfect paramagnet. We calculate a massive residual entropy for this phase (ln(2 )/2 , a result which is exact in the thermodynamic limit), implying a free Ising-like variable per tetrahedron. After defining a simple model Hamiltonian for this system (the balanced monopole liquid) we study its thermodynamics. Surprisingly, this monopole liquid remains a perfect paramagnet at all temperatures. Thermal disorder can then be simply and quantitatively interpreted as single charge dilution, by the excitation of neutral sites and double monopoles. The addition of the usual nearest neighbors interactions favoring neutral `2in-2out' excitations as a perturbation maintains the same ground state but induces short-range (topological) order by thermal disorder. While it decreases charge-charge correlations, pair spin correlations—resembling those in spin ice—appear on increasing temperature. This helps us to see in another light the dipolarlike correlations present in spin ices at unexpectedly high temperatures. On the other side, favoring double excitations strengthens the charges short range order and its associated spin correlations. Finally, we discuss how the monopole liquid can be related to other systems and materials where different phases of monopole matter have been observed.
NASA Astrophysics Data System (ADS)
Zhang, X.; Wan, C. H.; Yuan, Z. H.; Fang, C.; Kong, W. J.; Wu, H.; Zhang, Q. T.; Tao, B. S.; Han, X. F.
2017-04-01
Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices.
NASA Astrophysics Data System (ADS)
Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.
2018-03-01
A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.
Suppression of spin and optical gaps in phosphorene quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Yingjie; Sheng, Weidong
2018-05-01
Electronic structure and optical properties of triangular phosphorene quantum dots have been investigated theoretically. Based on systematic configuration interaction calculations, the ground and excited states of the interacting many-electron system together with its optical absorption spectrum are obtained. For the nanodot with 60 phosphorus atoms in various dielectric environments, it is found that the spin gap of the correlated system surprisingly overlaps its optical gap over a large range of the effective dielectric constant. The overlapping of the spin and optical gaps can be attributed to the fact that the extra correlation energy in the spin singlet almost compensates the exchange energy in the spin triplet in the presence of strong long-range electron-electron interactions. Moreover, both the spin and optical gaps are shown to be greatly suppressed as the screening effect becomes strong. When the dielectric constant decreases below 2.65, it is seen that the spin gap becomes negative and the quantum dot undergoes a phase transition from nonmagnetic to ferromagnetic. Our results are compared with the previous experimental and theoretical works.
Polarized lepton-nucleon scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, E.
1994-12-01
The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of themore » lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.« less
Kondo length in bosonic lattices
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-08-21
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-01-01
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shownmore » that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.« less
Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.
Hanni, Matti; Lantto, Perttu; Vaara, Juha
2011-08-14
Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei
Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant rolesmore » in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.« less
Systematic approaches to layered materials with strong electron correlations
NASA Astrophysics Data System (ADS)
Chung, Chung-Hou
I present systematic large-N approaches to study the ground state magnetic orderings and charge transport of layered materials with strong electron correlations, including the organic material kappa-(BEDT-TTF)2X, and the antiferromagnetic insulators Cs2CuCl4 and SrCu2(BO3) 2. I model the electronic properties of the organic materials kappa-(BEDT-TTF) 2X with a fermionic SU(N) Hubbard-Heisenberg model on an anisotropic triangular lattice. The ground state phase diagram shows a metal-insulator transition and a depression of the density of states in the metallic phase which are consistent with the experiments. The magnetic properties of kappa-(BEDT-TTF) 2X are modeled by a bosonic Sp(N) quantum Heisenberg antiferromagnet on the same lattice. The phase diagram consists of five different phases as a function of the size of the spin and the degree of frustration: the Neel ordered phase, a (pi, pi) short-range-order (SRO) phase, an incommensurate (q, q) long-range-order (LRO) phase, a (q, q) SRO phase, and a decoupled chain phase. I apply the same Sp(N) approach on the same triangular lattice to model the magnetic properties of Cs2CuCl 4 both with and without a magnetic field. At zero field, I find the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The Sp(N) calculation of spin excitation spectrum shows a large upward quantum renormalization consistent with that seen in experiments. For fields perpendicular to the plane of spin rotation, I find that the spins form an incommensurate "cone" of polarization up to a saturation field where all spins are fully polarized. There is a large quantum renormalization of the zero-field incommensuration. The results are in apparent agreement with neutron scattering experiments. Finally, the magnetic properties of the insulator SrCu2(BO 3)2 is modeled by the Sp(N) quantum antiferromagnet on the Shastry-Sutherland lattice. In addition to the familiar Neel and dimer phases, I find a confining phase with plaquette order, and a topologically ordered phase with deconfined S = 1/2 spinons and helical spin correlations. The deconfined phase is contiguous to the dimer phase, and in a regime of couplings close to those appropriate for the material.
García de la Vega, J M; Omar, S; San Fabián, J
2017-04-01
Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.
Thermal contact through a two-temperature kinetic Ising chain
NASA Astrophysics Data System (ADS)
Bauer, M.; Cornu, F.
2018-05-01
We consider a model for thermal contact through a diathermal interface between two macroscopic bodies at different temperatures: an Ising spin chain with nearest neighbor interactions is endowed with a Glauber dynamics with different temperatures and kinetic parameters on alternating sites. The inhomogeneity of the kinetic parameter is a novelty with respect to the model of Racz and Zia (1994 Phys. Rev. E 49 139), and we exhibit its influence upon the stationary non equilibrium values of the two-spin correlations at any distance. By mapping to the dynamics of spin domain walls and using free fermion techniques, we determine the scaled generating function for the cumulants of the exchanged heat amounts per unit of time in the long time limit.
Disordered wires and quantum chaos in a momentum-space lattice
NASA Astrophysics Data System (ADS)
Meier, Eric; An, Fangzhao; Angonga, Jackson; Gadway, Bryce
2017-04-01
We present two topics: topological wires subjected to disorder and quantum chaos in a spin-J model. These studies are experimentally realized through the use of a momentum-space lattice, in which the dynamics of 87Rb atoms are recorded. In topological wires, a transition to a trivial phase is seen when disorder is applied to either the tunneling strengths or site energies. This transition is detected using both charge-pumping and Hamiltonian-quenching techniques. In the spin-J study we observe the effects of both linear and non-linear spin operations by measuring the linear entropy of the system as well as the out-of-time order correlation function. We further probe the chaotic signatures of the paradigmatic kicked top model.
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
NASA Astrophysics Data System (ADS)
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4
NASA Astrophysics Data System (ADS)
Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.
2018-04-01
Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.
SPIN CORRELATIONS OF THE FINAL LEPTONS IN THE TWO-PHOTON PROCESSES γγ → e+e-, μ+μ-, τ+τ-
NASA Astrophysics Data System (ADS)
Lyuboshitz, Valery V.; Lyuboshitz, Vladimir L.
2014-12-01
The spin structure of the process γγ → e+e- is theoretically investigated. It is shown that, if the primary photons are unpolarized, the final electron and positron are unpolarized as well but their spins are strongly correlated. For the final (e+e-) system, explicit expressions for the components of the correlation tensor are derived, and the relative fractions of singlet and triplet states are found. It is demonstrated that in the process γγ → e+e- one of the Bell-type incoherence inequalities for the correlation tensor components is always violated and, thus, spin correlations of the electron and positron in this process have the strongly pronounced quantum character. Analogous consideration can be wholly applied as well to the two-photon processes γγ → μ+μ- and γγ → τ+τ-, which become possible at considerably higher energies.
Khachatryan, Vardan
2016-05-06
The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb -1. We then compare the data with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Furthermore, by using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 ±0.08 (stat) +0.15more » -0.13 (syst), representing the most precise measurement of this quantity in the lepton+jets final state to date.« less
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Lomidze, D.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Dellacasa, G.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration
2016-07-01
The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The data are compared with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 ± 0.08(stat)0.13+0.15 (syst), representing the most precise measurement of this quantity in the muon+jets final state to date.
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
NASA Astrophysics Data System (ADS)
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
Spin transport across antiferromagnets induced by the spin Seebeck effect
NASA Astrophysics Data System (ADS)
Cramer, Joel; Ritzmann, Ulrike; Dong, Bo-Wen; Jaiswal, Samridh; Qiu, Zhiyong; Saitoh, Eiji; Nowak, Ulrich; Kläui, Mathias
2018-04-01
For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the transfer of angular momentum from a ferromagnet into an antiferromagnet due to the excitation of only one magnon branch in the antiferromagnet. As an experimental system, we ascertain the transport across an antiferromagnet in Y3Fe5O12 |Ir20Mn80|Pt heterostructures. We determine the spin transport signals for spin currents generated in the Y3Fe5O12 by the spin Seebeck effect and compare to measurements of the spin Hall magnetoresistance in the heterostructure stack. By means of temperature-dependent and thickness-dependent measurements, we deduce conclusions on the spin transport mechanism across Ir20Mn80 and furthermore correlate it to its paramagnetic-antiferromagnetic phase transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, C. T.; Shaw, J. M.; Nembach, H. T.
2015-06-14
We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less
Suppression of Dyakonov-Perel Spin Relaxation in High-Mobility n-GaAs
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Poletaev, N. K.; Zakharchenya, B. P.; Stinaff, E. A.; Gammon, D.; Bracker, A. S.; Ware, M. E.
2004-11-01
We report a large and unexpected suppression of the free electron spin-relaxation in lightly doped n-GaAs bulk crystals. The spin-relaxation rate shows a weak mobility dependence and saturates at a level 30 times less than that predicted by the Dyakonov-Perel theory. The dynamics of the spin-orbit field differs substantially from the usual scheme: although all the experimental data can be self-consistently interpreted as a precessional spin-relaxation induced by a random spin-orbit field, the correlation time of this random field, surprisingly, is much shorter than, and is independent of, the momentum relaxation time determined from transport measurements.
Suppression of Dyakonov-Perel spin relaxation in high-mobility n-GaAs.
Dzhioev, R I; Kavokin, K V; Korenev, V L; Lazarev, M V; Poletaev, N K; Zakharchenya, B P; Stinaff, E A; Gammon, D; Bracker, A S; Ware, M E
2004-11-19
We report a large and unexpected suppression of the free electron spin-relaxation in lightly doped n-GaAs bulk crystals. The spin-relaxation rate shows a weak mobility dependence and saturates at a level 30 times less than that predicted by the Dyakonov-Perel theory. The dynamics of the spin-orbit field differs substantially from the usual scheme: although all the experimental data can be self-consistently interpreted as a precessional spin-relaxation induced by a random spin-orbit field, the correlation time of this random field, surprisingly, is much shorter than, and is independent of, the momentum relaxation time determined from transport measurements.
Spin-dependent Electron Correlations of a System with Broken Spin Symmetry
NASA Astrophysics Data System (ADS)
Yi, K. S.; Kim, J. I.; Kim, J. S.
2001-04-01
The spin-dependent local field corrections Gσ, σ'/ (q, ω) of a spin-polarized electron gas(SPEG) are examined within a genralized RPA. Numerical results of Gσ, σ/ (q, 0) for both the majority and minority spin electrons of SPEG show a complicated but interesting behavior as one varies the spin polarization ζ of the SPEG. A pronounced maximum in Gσ, σ/ (q, 0) is observed and the location of the peaks are found to depend strongly on the values of ζ. We also show some numerical results of the mixed susceptibilities χem and χme, which are finite and not identical in SPEG.
Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses
NASA Astrophysics Data System (ADS)
Arguin, L.-P.; Newman, C. M.; Stein, D. L.
2015-10-01
We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.
Strong photoassociation in a degenerate fermi gas
NASA Astrophysics Data System (ADS)
Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang
2016-05-01
Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.
NASA Astrophysics Data System (ADS)
Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.
2018-07-01
The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.
Spin Seebeck effect and thermal colossal magnetoresistance in Christmas-tree silicene nanoribbons
NASA Astrophysics Data System (ADS)
Gao, Xiu-Jin; Zhao, Peng; Chen, Gang
2018-05-01
Based on the density functional theory and nonequilibrium Green's function method, we investigate the electronic structures and thermal spin transport properties of Christmas-tree silicene nanoribbons (CSiNRs). The results show that CSiNRs have ferromagnetic ground state with high Curie temperature far above the room temperature. Obvious spin Seebeck effect with spin-up and spin-down currents flowing in opposite directions by a temperature gradient can be observed in these systems. Furthermore, a thermal colossal magnetoresistance up to 109% can be realized by tuning the external magnetic field. The results show that CSiNRs hold great potential in designing spin caloritronic devices.
NASA Astrophysics Data System (ADS)
Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun
2018-03-01
Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.
Dual descriptors within the framework of spin-polarized density functional theory.
Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P
2008-08-14
Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.
Communication: Two types of flat-planes conditions in density functional theory.
Yang, Xiaotian Derrick; Patel, Anand H G; Miranda-Quintana, Ramón Alain; Heidar-Zadeh, Farnaz; González-Espinoza, Cristina E; Ayers, Paul W
2016-07-21
Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, Nα and Nβ, has a derivative discontinuity on a line segment where the number of electrons, Nα + Nβ, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, Nα - Nβ, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare-we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested-but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.
NASA Astrophysics Data System (ADS)
Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.
Locally dense basis sets (
One-norm geometric quantum discord and critical point estimation in the XY spin chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com
2016-11-15
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparingmore » with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.« less
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Spatial reorientation experiments for NMR of solids and partially oriented liquids.
Martin, Rachel W; Kelly, John E; Collier, Kelsey A
2015-11-01
Motional reorientation experiments are extensions of Magic Angle Spinning (MAS) where the rotor axis is changed in order to average out, reintroduce, or scale anisotropic interactions (e.g. dipolar couplings, quadrupolar interactions or chemical shift anisotropies). This review focuses on Variable Angle Spinning (VAS), Switched Angle Spinning (SAS), and Dynamic Angle Spinning (DAS), all of which involve spinning at two or more different angles sequentially, either in successive experiments or during a multidimensional experiment. In all of these experiments, anisotropic terms in the Hamiltonian are scaled by changing the orientation of the spinning sample relative to the static magnetic field. These experiments vary in experimental complexity and instrumentation requirements. In VAS, many one-dimensional spectra are collected as a function of spinning angle. In SAS, dipolar couplings and/or chemical shift anisotropies are reintroduced by switching the sample between two different angles, often 0° or 90° and the magic angle, yielding a two-dimensional isotropic-anisotropic correlation spectrum. Dynamic Angle Spinning (DAS) is a related experiment that is used to simultaneously average out the first- and second-order quadrupolar interactions, which cannot be accomplished by spinning at any unique rotor angle in physical space. Although motional reorientation experiments generally require specialized instrumentation and data analysis schemes, some are accessible with only minor modification of standard MAS probes. In this review, the mechanics of each type of experiment are described, with representative examples. Current and historical probe and coil designs are discussed from the standpoint of how each one accomplishes the particular objectives of the experiment(s) it was designed to perform. Finally, applications to inorganic materials and liquid crystals, which present very different experimental challenges, are discussed. The review concludes with perspectives on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years. Copyright © 2015 Elsevier B.V. All rights reserved.
Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Liming; Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010; National ICT Australia, The University of Melbourne, Parkville 3010
Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicatemore » that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.« less
NASA Astrophysics Data System (ADS)
Lu, Yi; Haverkort, Maurits W.
2017-12-01
We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
NASA Astrophysics Data System (ADS)
Roy, Kuntal
2017-11-01
There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.
Gate-Driven Pure Spin Current in Graphene
NASA Astrophysics Data System (ADS)
Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng
2017-09-01
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei
NASA Astrophysics Data System (ADS)
Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.
2018-06-01
Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.
Spin-liquid ground state in the frustrated J 1 - J 2 zigzag chain system BaTb 2 O 4
Aczel, A. A.; Li, L.; Garlea, V. O.; ...
2015-07-13
We have investigated polycrystalline samples of the zigzag chain system BaTb 2O 4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals low-temperature, short-range, intrachain magnetic correlations between Tb 3+ ions. Muon spin relaxation measurements indicate that these correlations are dynamic, as the technique detects no signatures of static magnetism down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb 2O 4.
Sudden transition and sudden change from open spin environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn
2014-11-15
We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less
Schemes of detecting nuclear spin correlations by dynamical decoupling based quantum sensing
NASA Astrophysics Data System (ADS)
Ma, Wen-Long Ma; Liu, Ren-Bao
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical decoupling (DD) enhanced diamond quantum sensing has enabled NMR of single nuclear spins and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. Such schemes, however, cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear spin clusters. Here we show that the first limitation can be overcome by using wavefunction fingerprints of target nuclear spins, which is much more sensitive than the ''frequency fingerprints'' to weak hyperfine interaction between the targets and a sensor, while the second one can be overcome by a new design of two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies. Our schemes not only offer an approach to breaking the resolution limit set by ''frequency gradients'' in conventional MRI, but also provide a standard approach to correlation spectroscopy for single-molecule NMR.
Irreversible Markov chains in spin models: Topological excitations
NASA Astrophysics Data System (ADS)
Lei, Ze; Krauth, Werner
2018-01-01
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.
Magnetic field sensors using 13-spin cat states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stephanie; Karlen, Steven D.; Jones, Jonathan A.
2010-08-15
Measurement devices could benefit from entangled correlations to yield a measurement sensitivity approaching the physical Heisenberg limit. Building upon previous magnetometric work using pseudoentangled spin states in solution-state NMR, we present two conceptual advancements to better prepare and interpret the pseudoentanglement resource. We apply these to a 13-spin cat state to measure the local magnetic field with a 12.2 sensitivity increase over an equivalent number of isolated spins.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Götz, Andreas W., E-mail: agoetz@sdsc.edu; Autschbach, Jochen; Visscher, Lucas, E-mail: visscher@chem.vu.nl
2014-03-14
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects inmore » the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.« less
Rectifying full-counting statistics in a spin Seebeck engine
NASA Astrophysics Data System (ADS)
Tang, Gaomin; Chen, Xiaobin; Ren, Jie; Wang, Jian
2018-02-01
In terms of the nonequilibrium Green's function framework, we formulate the full-counting statistics of conjugate thermal spin transport in a spin Seebeck engine, which is made by a metal-ferromagnet insulator interface driven by a temperature bias. We obtain general expressions of scaled cumulant generating functions of both heat and spin currents that hold special fluctuation symmetry relations, and demonstrate intriguing properties, such as rectification and negative differential effects of high-order fluctuations of thermal excited spin current, maximum output spin power, and efficiency. The transport and noise depend on the strongly fluctuating electron density of states at the interface. The results are relevant for designing an efficient spin Seebeck engine and can broaden our view in nonequilibrium thermodynamics and the nonlinear phenomenon in quantum transport systems.
Sun, Min; Li, Zhi; Gui, Jian-Fang
2010-10-01
Spindlin (Spin) was thought as a maternal-effect factor associated with meiotic spindle. Its role for the oocyte-to-embryo transition was suggested in mouse, but its direct evidence for the function had been not obtained in other vertebrates. In this study, we used the CagSpin-specific antibody to investigate CagSpin expression pattern and distribution during oogenesis of gibel carp (Carassius auratus gibelio). First, the oocyte-specific expression pattern and dynamic distribution was revealed in nucleoli, nucleoplasm, and spindle from primary oocytes to mature eggs by immunofluorescence localization. In primary oocytes and growth stage oocytes, CagSpin accumulates in nucleoli in increasing numbers along with the oocyte growth, and its disassembly occurs in vitellogenic oocytes, which implicates that CagSpin may be a major component of a large number of nucleoli in fish growth oocytes. Then, co-localization of CagSpin and β-tubulin was revealed in meiotic spindle of mature egg, indicating that CagSpin is one spindle-associated factor. Moreover, microinjection of CagSpin-specific antibody into the fertilized eggs blocked the first cleavage, and found that the CagSpin depletion resulted in spindle assembly disturbance. Thereby, our study provided the first direct evidence for the critical oocyte-to-embryo transition function of Spin in vertebrates, and confirmed that Spin is one important maternal-effect factor that participates in oocyte growth, oocyte maturation, and oocyte-to-embryo transition.
NASA Astrophysics Data System (ADS)
Nomura, Takuji
2017-10-01
We study two-magnon excitations in resonant inelastic x-ray scattering (RIXS) at the transition-metal K edge. Instead of working with effective Heisenberg spin models, we work with a Hubbard-type model (d -p model) for a typical insulating cuprate La2CuO4 . For the antiferromagnetic ground state within the spin density wave (SDW) mean-field formalism, we calculate the dynamical correlation function within the random-phase approximation (RPA), and then obtain two-magnon excitation spectra by calculating the convolution of it. Coupling between the K -shell hole and the magnons in the intermediate state is calculated by means of diagrammatic perturbation expansion in the Coulomb interaction. The calculated momentum dependence of RIXS spectra agrees well with that of experiments. A notable difference from previous calculations based on the Heisenberg spin models is that RIXS spectra have a large two-magnon weight near the zone center, which may be confirmed by further careful high-resolution experiments.
Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension
NASA Astrophysics Data System (ADS)
Yin, Xiao; Radzihovsky, Leo
2016-12-01
We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.
Aspects of Higher Spin Symmetry and its Breaking
NASA Astrophysics Data System (ADS)
Zhiboedov, Alexander
This thesis explores different aspects of higher spin symmetry and its breaking in the context of Quantum Field Theory, AdS/CFT and String Theory. In chapter 2, we study the constraints imposed by the existence of a single higher spin conserved current on a three-dimensional conformal field theory (CFT). A single higher spin conserved current implies the existence of an infinite number of higher spin conserved currents. The correlation functions of the stress tensor and the conserved currents are then shown to be equal to those of a free field theory. Namely a theory of N free bosons or free fermions. This is an extension of the Coleman-Mandula theorem to CFT's, which do not have a conventional S-matrix. In chapter 3, we consider three-dimensional conformal field theories that have a higher spin symmetry that is slightly broken. The theories have a large N limit, in the sense that the operators separate into single-trace and multi-trace and obey the usual large N factorization properties. We assume that the only single trace operators are the higher spin currents plus an additional scalar. Using the slightly broken higher spin symmetry we constrain the three-point functions of the theories to leading order in N. We show that there are two families of solutions. One family can be realized as a theory of N fermions with an O( N) Chern-Simons gauge field, the other as a N bosons plus the Chern-Simons gauge field. In chapter 4, we consider several aspects of unitary higher-dimensional conformal field theories. We investigate the dimensions of spinning operators via the crossing equations in the light-cone limit. We find that, in a sense, CFTs become free at large spin and 1/s is a weak coupling parameter. The spectrum of CFTs enjoys additivity: if two twists tau 1, tau2 appear in the spectrum, there are operators whose twists are arbitrarily close to tau1 + tau2. We characterize how tau1 + tau2 is approached at large spin by solving the crossing equations analytically. Applications include the 3d Ising model, theories with a gravity dual, SCFTs, and patterns of higher spin symmetry breaking. In chapter 5, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an infinite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients (a-c)/c lesssim 1/Delta gap2 in terms of Deltagap, the dimension of the lightest single particle operator with spin J > 2. For inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.
Dynamical spin accumulation in large-spin magnetic molecules
NASA Astrophysics Data System (ADS)
Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej
2018-01-01
The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.
NASA Astrophysics Data System (ADS)
Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper
2017-12-01
Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
Establishing a relation between the mass and the spin of stellar-mass black holes.
Banerjee, Indrani; Mukhopadhyay, Banibrata
2013-08-09
Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate (M) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given M. However, slowly spinning BHs can turn out to be more massive than spinning BHs if M at their formation stage was higher compared to faster spinning BHs.
Tunnel magnetoresistance for coherent spin-flip processes on an interacting quantum dot.
Rudziński, W
2009-01-28
Spin-polarized electronic tunneling through a quantum dot coupled to ferromagnetic electrodes is investigated within a nonequilibrium Green function approach. An interplay between coherent intradot spin-flip transitions, tunneling processes and Coulomb correlations on the dot is studied for current-voltage characteristics of the tunneling junction in parallel and antiparallel magnetic configurations of the leads. It is found that due to the spin-flip processes electric current in the antiparallel configuration tends to the current characteristics in the parallel configuration, thus giving rise to suppression of the tunnel magnetoresistance (TMR) between the threshold bias voltages at which the dot energy level becomes active in tunneling. Also, the effect of a negative differential conductance in symmetrical junctions, splitting of the conductance peaks, significant modulation of TMR peaks around the threshold bias voltages as well as suppression of the diode-like behavior in asymmetrical junctions is discussed in the context of coherent intradot spin-flip transitions. It is also shown that TMR may be inverted at selected gate voltages, which qualitatively reproduces the TMR behavior predicted recently for temperatures in the Kondo regime, and observed experimentally beyond the Kondo regime for a semiconductor InAs quantum dot coupled to nickel electrodes.
Transverse spin correlations of the random transverse-field Ising model
NASA Astrophysics Data System (ADS)
Iglói, Ferenc; Kovács, István A.
2018-03-01
The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.
NASA Astrophysics Data System (ADS)
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Magnetic tunnel spin injectors for spintronics
NASA Astrophysics Data System (ADS)
Wang, Roger
Research in spin-based electronics, or "spintronics", has a universal goal to develop applications for electron spin in a broad range of electronics and strives to produce low power nanoscale devices. Spin injection into semiconductors is an important initial step in the development of spintronic devices, with the goal to create a highly spin polarized population of electrons inside a semiconductor at room temperature for study, characterization, and manipulation. This dissertation investigates magnetic tunnel spin injectors that aim to meet the spin injection requirements needed for potential spintronic devices. Magnetism and spin are inherently related, and chapter 1 provides an introduction on magnetic tunneling and spintronics. Chapter 2 then describes the fabrication of the spin injector structures studied in this dissertation, and also illustrates the optical spin detection technique that correlates the measured electroluminescence polarization from quantum wells to the electron spin polarization inside the semiconductor. Chapter 3 reports the spin injection from the magnetic tunnel transistor (MTT) spin injector, which is capable of producing highly spin polarized tunneling currents by spin selective scattering in its multilayer structure. The MTT achieves ˜10% lower bound injected spin polarization in GaAs at 1.4 K. Chapter 4 reports the spin injection from CoFe-MgO(100) tunnel spin injectors, where spin dependent tunneling through MgO(100) produces highly spin polarized tunneling currents. These structures achieve lower bound spin polarizations exceeding 50% at 100 K and 30% in GaAs at 290 K. The CoFe-MgO spin injectors also demonstrate excellent thermal stability, maintaining high injection efficiencies even after exposure to temperatures of up to 400 C. Bias voltage and temperature dependent studies on these structures indicate a significant dependence of the electroluminescence polarization on the spin and carrier recombination lifetimes inside the semiconductor. Chapter 5 investigates these spin and carrier lifetime effects on the electroluminescence polarization using time resolved optical techniques. These studies suggest that a peak in the carrier lifetime with temperature is responsible for the nonmonotonic temperature dependence observed in the electroluminescence polarization, and that the initially injected spin polarization from CoFe-MgO spin injectors is a nearly temperature independent ˜70% from 10 K up to room temperature.
Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong
2017-06-13
We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.
Strong Electron Correlation in Photoionization of Spin-Orbit Doublets
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Chernsheva, L. V.; Mnason, S. T.; Msezane, A. Z.; Radojevic, V.
2002-05-01
A new and explicitly many-body aspect of the "leveraging" of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, using a modified version of the Spin-Polarized Random-Phase-Approximation with Exchange methodology, a recently observed structure in the photoionization of Xe 3d(A. Kivimaki et al, Phys. Rev. A 63), 012716 (2000) has been explained both qualitatively and quantitatively. The structure is entirely due to this new spin-orbit activated interchannel coupling effect, which should be a general feature of inner-shell photoionization. This work was supported by NSF, NASA, DOE and ISTC.
Orphan Spins in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Demmel, F; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Green, M A; Rodriguez-Rivera, J A; Kim, J W; Zhang, L; Cheong, S-W
2017-12-22
CaFe_{2}O_{4} is an anisotropic S=5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe_{2}O_{4}.
Orphan Spins in the S =5/2 Antiferromagnet CaFe2O4
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Lee, N.; Demmel, F.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Green, M. A.; Rodriguez-Rivera, J. A.; Kim, J. W.; Zhang, L.; Cheong, S.-W.
2017-12-01
CaFe2O4 is an anisotropic S =5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe2 O4 .
Interaction quantum quenches in the one-dimensional Fermi-Hubbard model
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano
2016-05-01
We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.
Spreading of correlations in the XXZ chain at finite temperatures
NASA Astrophysics Data System (ADS)
Bonnes, Lars; Läuchli, Andreas
2014-03-01
In a quantum quench, for instance by abruptly changing the interaction parameter in a spin chain, correlations can spread across the system but have to obey a speed limit set by the Lieb-Robinson bound. This results into a causal structure where the propagation front resembles a light-cone. One can ask how fast a correlation front actually propagates and how its velocity depends on the nature of the quench. This question is addressed by performing global quenches in the XXZ chain initially prepared in a finite-temperature state using minimally entangled typical thermal states (METTS). We provide numerical evidence that the spreading velocity of the spin correlation functions for the quench into the gapless phase is solely determined by the value of the final interaction and the amount of excess energy of the system. This is quite surprising as the XXZ model is integrable and its dynamics is constrained by a large amount of conserved quantities. In particular, the spreading velocity seems to interpolate linearly from a universal value at T = ∞ to the spin wave velocity of the final Hamiltonian in the limit of zero excess energy for Δfinal > 0 .
Half-metallic superconducting triplet spin multivalves
NASA Astrophysics Data System (ADS)
Alidoust, Mohammad; Halterman, Klaus
2018-02-01
We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
2017-11-20
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
NASA Astrophysics Data System (ADS)
Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.
2005-11-01
Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.
Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale
NASA Astrophysics Data System (ADS)
Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.
2018-03-01
We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.
NASA Astrophysics Data System (ADS)
Betancourt, J.; Paudel, T. R.; Tsymbal, E. Y.; Velev, J. P.
2017-07-01
Two-dimensional electron gases (2DEGs) at oxide interfaces have been a topic of intensive research due to their high carrier mobility and strong confinement. Additionally, strong correlations in the oxide materials can give rise to new and interesting physics, such as magnetism and metal-insulator transitions at the interface. Using first-principles calculations based on density functional theory, we demonstrate the presence of a highly spin-polarized 2DEG at the interface between the Mott insulator GdTi O3 and a band insulator SrTi O3 . The strong correlations in the dopant cause ferromagnetic alignment of the interface Ti atoms and result in a fully spin-polarized 2DEG. The 2DEG consists of two types of carriers distinguished by their orbital character. The majority of the interface charge is strongly localized on the Ti dx y orbitals at the interface and a smaller fraction resides on the delocalized Ti dx z ,y z states.
Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
NASA Astrophysics Data System (ADS)
Koop, Cornelie; Wessel, Stefan
2017-10-01
We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.
NASA Astrophysics Data System (ADS)
Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.
2017-07-01
We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.
Single-spin observables and orbital structures in hadronic distributions
NASA Astrophysics Data System (ADS)
Sivers, Dennis
2006-11-01
Single-spin observables in scattering processes (either analyzing powers or polarizations) are highly constrained by rotational invariance and finite symmetries. For example, it is possible to demonstrate that all single-spin observables are odd under the finite transformation O=PAτ where P is parity and Aτ is a finite symmetry that can be designated “artificial time reversal”. The operators P, O and Aτ all have eigenvalues ±1 so that all single-spin observables can be classified into two distinct categories: (1) P-odd and Aτ-even, (2) P-even and Aτ-odd. Within the light-quark sector of the standard model, P-odd observables are generated from pointlike electroweak processes while Aτ-odd observables (neglecting quark mass parameters) come from dynamic spin-orbit correlations within hadrons or within larger composite systems, such as nuclei. The effects of Aτ-odd dynamics can be inserted into transverse-momentum dependent constituent distribution functions and, in this paper, we construct the contribution from an orbital quark to the Aτ-odd quark parton distribution ΔNGq/p↑front(x,kTN;μ2). Using this distribution, we examine the crucial role of initial- and final-state interactions in the observation of the scattering asymmetries in different hard-scattering processes. This construction provides a geometrical and dynamical interpretation of the Collins conjugation relation between single-spin asymmetries in semi-inclusive deep inelastic scattering and the asymmetries in Drell-Yan production. Finally, our construction allows us to display a significant difference between the calculation of a spin asymmetry generated by a hard-scattering mechanism involving color-singlet exchange (such as a photon) and a calculation of an asymmetry with a hard-scattering exchange involving gluons. This leads to an appreciation of the process-dependence inherent in measurements of single-spin observables.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.; Barnhart, B.
1974-01-01
The influence of different mathematical and aerodynamic models on computed spin motion was investigated along with the importance of some of the aerodynamic and nonaerodynamic quantities defined in these models. An analytical technique was used which included the aerodynamic forces and moments acting on a spinning aircraft due to steady rotational flow and the contribution of the rotary derivatives to the oscillatory component of the total angular rates. It was shown that (1) during experimental-analytical correlation studies, the flight-recorded control time histories must be faithfully duplicated since the spinning motion can be sensitive to a small change in the application of the spin entry controls; (2) an error in the assumed inertias, yawing moments at high angle of attack, and initial spin entry bank angle do not influence the developed spin significantly; (3) damping in pitch derivatives and the center of gravity location play a role in the spinning motion; and (4) the experimental spin investigations conducted in a constant atmospheric density environment duplicate the Froude number only at the initial full-scale spin altitude (since the full-scale airplane at high altitudes experiences large density changes during the spin.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less
NASA Astrophysics Data System (ADS)
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-01
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter rS is increased, we observe—at a fixed spin magnetic moment—the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing rS. We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical rSc at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing rS the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar
2015-12-28
The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum ismore » associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Lee, Wonjun; Lee, K. J.
Here, we present muon spin relaxation (μSR) measurements of the extended kagome systems YBaCo 4O 7+δ (δ = 0,0.1), comprising two interpenetrating kagome sublattice of Co(I) 3+ (S = 3/2) and a triangle sublattice of Co(II) 2+ (S = 2). The zero- and longitudinal-field μ SR spectra of the stoichiometric compound YBaCo 4O 7 unveil that the triangular subsystem orders at TN = 101 K. In contrast, the muon spin relaxation rate pertaining to the kagome subsystem shows persistent spin dynamics down to T = 20 K and then a sublinear decrease λ(T ) ~ T 0.66(5) on cooling towardsmore » T = 4 K. In addition, the introduction of interstitial oxygen (δ = 0.1) is found to drastically affect the magnetism. For the fast-cooling experiment (>10 K/min), YBaCo 4O 7.1 enters a regime characterized by persistent spin dynamics below 90 K. For the slow-cooling experiment (1 K/min), evidence is obtained for the phase separation into interstitial oxygen-poor and oxygen-rich regions with distinct correlation times. The observed temperature, cooling rate, and oxygen content dependencies of spin dynamics are discussed in terms of a broad range of spin-spin correlation times, relying on a different degree of frustration between the kagome and triangle sublattices as well as of oxygen migration.« less
NASA Astrophysics Data System (ADS)
Babadi, Mehrtash; Demler, Eugene; Knap, Michael
2015-10-01
We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1 /2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1 /N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014), 10.1103/PhysRevLett.113.147205].
Lee, S.; Lee, Wonjun; Lee, K. J.; ...
2018-03-15
Here, we present muon spin relaxation (μSR) measurements of the extended kagome systems YBaCo 4O 7+δ (δ = 0,0.1), comprising two interpenetrating kagome sublattice of Co(I) 3+ (S = 3/2) and a triangle sublattice of Co(II) 2+ (S = 2). The zero- and longitudinal-field μ SR spectra of the stoichiometric compound YBaCo 4O 7 unveil that the triangular subsystem orders at TN = 101 K. In contrast, the muon spin relaxation rate pertaining to the kagome subsystem shows persistent spin dynamics down to T = 20 K and then a sublinear decrease λ(T ) ~ T 0.66(5) on cooling towardsmore » T = 4 K. In addition, the introduction of interstitial oxygen (δ = 0.1) is found to drastically affect the magnetism. For the fast-cooling experiment (>10 K/min), YBaCo 4O 7.1 enters a regime characterized by persistent spin dynamics below 90 K. For the slow-cooling experiment (1 K/min), evidence is obtained for the phase separation into interstitial oxygen-poor and oxygen-rich regions with distinct correlation times. The observed temperature, cooling rate, and oxygen content dependencies of spin dynamics are discussed in terms of a broad range of spin-spin correlation times, relying on a different degree of frustration between the kagome and triangle sublattices as well as of oxygen migration.« less
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Luyi
2013-05-17
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstrationmore » and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s -1.« less
FAST TRACK COMMUNICATION Critical exponents of domain walls in the two-dimensional Potts model
NASA Astrophysics Data System (ADS)
Dubail, Jérôme; Lykke Jacobsen, Jesper; Saleur, Hubert
2010-12-01
We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e. connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{\\ell _1-\\ell _2,2\\ell _1}, valid for 0 <= Q <= 4, that describe the insertion of ell1 thin and ell2 thick domain walls.
An Exactly Solvable Spin Chain Related to Hahn Polynomials
NASA Astrophysics Data System (ADS)
Stoilova, Neli I.; van der Jeugt, Joris
2011-03-01
We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters (α,β) and (α+1,β-1). The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a q-extension of this model.
Non-equilibrium magnetic interactions in strongly correlated systems
NASA Astrophysics Data System (ADS)
Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.
2013-06-01
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.
NASA Astrophysics Data System (ADS)
Kantar, Ersin
2016-08-01
In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.
Thermally driven spin-Seebeck transport in chiral dsDNA-based molecular devices
NASA Astrophysics Data System (ADS)
Nian, L. L.; Zhang, Rong; Tang, F. R.; Tang, Jun; Bai, Long
2018-03-01
By employing the nonequilibrium Green's function technique, we study the thermal-induced spin-Seebeck transport through a chiral double-stranded DNA (dsDNA) connected to a normal-metal and a ferromagnetic lead. How the main parameters of the dsDNA-based system influence the spin-Seebeck transport is analyzed at length, and the thermally created charge (spin-related) current displays the rectification effect and the negative differential thermal conductance feature. More importantly, the spin current exhibits the rectification behavior of the spin-Seebeck effect; even the perfect spin-Seebeck effect can be obtained with the null charge current. Thus, the chiral dsDNA-based system can act as a spin(charge)-Seebeck diode, spin(charge)-Seebeck switch, and spin(charge)-Seebeck transistor. Our results provide new ways to design spin caloritronic devices based on dsDNA or other organic molecules.
Tunable spin splitting and spin lifetime in polar WSTe monolayer
NASA Astrophysics Data System (ADS)
Adhib Ulil Absor, Moh.; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo
2018-04-01
The established spin splitting with out-of-plane Zeeman spin polarizations in the monolayer (ML) of transition metal dichalcogenides (TMDs) is dictated by inversion symmetry breaking together with mirror symmetry in the surface plane. Here, by density functional theory calculations, we find that mirror symmetry breaking in the polar WSTe ML leads to large spin splitting exhibiting in-plane Rashba spin polarizations. We also find that the interplay between the out-of-plane Zeeman- and in-plane Rashba spin-polarized states sensitively affects the spin lifetime, which can be effectively controlled by in-plane strain. In addition, the tunability of spin splitting using an external electric field is also demonstrated. Our study clarifies that the use of in-plane strain and an external electric field is effective for tuning the spin splitting and spin lifetime of the polar WSTe ML; thus, it is useful for designing spintronic devices.
Spin filter and spin valve in ferromagnetic graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu, E-mail: kwungyusung@gmail.com; Dai, Gang; Research Center for Microsystems and Terahertz, China Academy of Engineering Physics, Mianyang 621999
2015-06-01
We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spinmore » filter can operate at higher temperature than the spin valve.« less
Thermal emergence of laser-induced spin dynamics for a Ni4 cluster
NASA Astrophysics Data System (ADS)
Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.
2018-05-01
We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.
Structure, strain, and the ground state of the LaTiO3/LaAlO3 superlattice
NASA Astrophysics Data System (ADS)
Lee, Alex Taekyung; Han, Myung Joon
2014-03-01
The first-principles density functional theory calculations have been performed to understand LaTiO3/LaAlO3 superlattice. By taking into account of the structural distortions, U dependence, and the exchange correlation functional dependence, we show that the ferromagnetic spin and antiferro-orbital ordering is stabilized in the wide range of strains, which is notably different from the previous reports on the titanate systems. The ground-state spin and orbital configurations critically depend on the structural properties. Our results suggest a possible strain control of the magnetic property in transition-metal oxide heterostructures.
Time-dependent spin-density-functional-theory description of He+-He collisions
NASA Astrophysics Data System (ADS)
Baxter, Matthew; Kirchner, Tom; Engel, Eberhard
2017-09-01
Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system are presented in the approximate impact energy range of 10-1000 keV/amu. Calculations were performed within the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models, one where electron translation factors in the orbitals used to calculate the potential are ignored and another where partial electron translation factors are included, are compared with available experimental data as well as a selection of previous theoretical calculations.
Quantum magnetism in different AMO systems.
NASA Astrophysics Data System (ADS)
Rey, Ana Maria
One of the most important goals of modern quantum sciences is to learn how to control and entangle many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, since performing full state tomography does not scale favorably with the number of particles, as the size of quantum systems grow, it becomes extremely challenging to identify, and quantify the buildup of quantum correlations and coherence. In this talk I will report on a protocol that we have developed and experimentally demonstrated in a trapped ion quantum magnet in a Penning trap, which can perform quantum simulations of Ising spin models. In those experiments strong spin-spin interactions can be engineered through optical dipole forces that excite phonons of the crystals. The number of ions can be varied from tens to hundreds with high fidelity control. The protocol uses time reversal of the many-body dynamics, to measure out-of-time-order correlation functions (OTOCs). By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the build-up of up to 8-body correlations. We also use the protocol and comparisons to a full solution of the master equation to investigate the impact of spin-motion entanglement and decoherence in the quantum dynamics. Future applications of this protocol could enable studies of manybody localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems. Supported by NSF-PHY-1521080, JILA-NSF PFC-1125844, ARO and AFOSR-MURI.
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.
2016-05-01
We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
Control of electron spin decoherence in nuclear spin baths
NASA Astrophysics Data System (ADS)
Liu, Ren-Bao
2011-03-01
Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.
Relay entanglement and clusters of correlated spins
NASA Astrophysics Data System (ADS)
Doronin, S. I.; Zenchuk, A. I.
2018-06-01
Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.
Magnetic Spin Correlations in the One-dimensional Frustrated Spin-chain System Ca3Co2O6
NASA Astrophysics Data System (ADS)
Månsson, M.; Sugiyama, J.; Roessli, B.; Hitti, B.; Ikedo, Y.; Zivkovic, I.; Nozaki, H.; Harada, M.; Sassa, Y.; Andreica, D.; Goko, T.; Amato, A.; Ofer, O.; Ansaldo, E. J.; Brewer, J. H.; Chow, K. H.; Yi, H. T.; Cheong, S.-W.; Prsa, K.
In this work we present a combination of zero-field and high transverse-field muon spin rotation/relaxation (μ+SR) measurements. The current μ+SR Knight-shift measurements clearly shows that Ca3Co2O6 display strong spin correlations even at room-temperature. Further, several anomalies in the temperature dependent data are proposed to be connected to the onset of a quasi-one-dimensional (Q1D) ferrimagnetic order. Further, we suggest that in the low-temperature regime, the Q1D ferrimagnetic order co-exist within a long-range antiferromagnetic phase, which has been confirmed by our recent neutron scattering studies.
NASA Astrophysics Data System (ADS)
Kawakami, Takashi; Sano, Shinsuke; Saito, Toru; Sharma, Sandeep; Shoji, Mitsuo; Yamada, Satoru; Takano, Yu; Yamanaka, Shusuke; Okumura, Mitsutaka; Nakajima, Takahito; Yamaguchi, Kizashi
2017-09-01
Theoretical examinations of the ferromagnetic coupling in the m-phenylene-bis-methylene molecule and its oligomer were carried out. These systems are good candidates for exchange-coupled systems to investigate strong electronic correlations. We studied effective exchange integrals (J), which indicated magnetic coupling between interacting spins in these species. First, theoretical calculations based on a broken-symmetry single-reference procedure, i.e. the UHF, UMP2, UMP4, UCCSD(T) and UB3LYP methods, were carried out with a GAUSSIAN program code under an SR wave function. From these results, the J value by the UHF method was largely positive because of the strong ferromagnetic spin polarisation effect. The J value by the UCCSD(T) and UB3LYP methods improved an overestimation problem by correcting the dynamical electronic correlation. Next, magnetic coupling among these spins was studied using the CAS-based method of the symmetry-adapted multireference methods procedure. Thus, the UNO DMRG CASCI (UNO, unrestricted natural orbital; DMRG, density matrix renormalised group; CASCI, complete active space configuration interaction) method was mainly employed with a combination of ORCA and BLOCK program codes. DMRG CASCI calculations in valence electron counting, which included all orbitals to full valence CI, provided the most reliable result, and support the UB3LYP method for extended systems.
Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides
NASA Astrophysics Data System (ADS)
Yu, Rong; Si, Qimiao
2017-09-01
There is increasing recognition that the multiorbital nature of the 3 d electrons is important to the proper description of the electronic states in the normal state of the iron-based superconductors. Earlier studies of the pertinent multiorbital Hubbard models identified an orbital-selective Mott phase, which anchors the orbital-selective behavior seen in the overall phase diagram. An important characteristics of the models is that the orbitals are kinetically coupled, i.e., hybridized, to each other, which makes the orbital-selective Mott phase especially nontrivial. A U (1 ) slave-spin method was used to analyze the model with nonzero orbital-level splittings. Here we develop a Landau free-energy functional to shed further light on this issue. We put the microscopic analysis from the U (1 ) slave-spin approach in this perspective, and show that the intersite spin correlations are crucial to the renormalization of the bare hybridization amplitude towards zero and the concomitant realization of the orbital-selective Mott transition. Based on this insight, we discuss additional ways to study the orbital-selective Mott physics from a dynamical competition between the interorbital hybridization and collective spin correlations. Our results demonstrate the robustness of the orbital-selective Mott phase in the multiorbital models appropriate for the iron-based superconductors.
Seo, Dong-Kyun
2007-11-14
We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.
Spin injection and transport in semiconductor and metal nanostructures
NASA Astrophysics Data System (ADS)
Zhu, Lei
In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes directly to the realization of spin valve and spin transistor devices based on III-V semiconductors, and offers new opportunities to engineer the behavior of spintronic devices at the nanoscale.
Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei
2018-05-01
Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
NASA Astrophysics Data System (ADS)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel
2017-12-01
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magnetotransport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.
Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2016-11-01
In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high- T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T-x phase diagram correlates well with the available experimental data for cuprate HTSCs.
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are describedmore » using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.« less
An Exact Separation of the Spin-Free and Spin-Dependent Terms of the Dirac-Coulomb-Breit Hamiltonian
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1994-01-01
The Dirac Hamiltonian is transformed by extracting the operator (sigma x p)/2mc from the small component of the wave function and applying it to the operators of the original Hamiltonian. The resultant operators contain products of Paull matrices that can be rearranged to give spin-free and spin-dependent operators. These operators are the ones encountered in the Breit-Pauli Hamiltonian, as well as some of higher order in alpha(sup 2). However, since the transformation of the original Dirac Hamiltonian is exact, the new Hamiltonian can be used in variational calculations, with or without the spin-dependent terms. The new small component functions have the same symmetry properties as the large component. Use of only the spin-free terms of the new Hamiltonian permits the same factorization over spin variables as in nonrelativistic theory, and therefore all the post-Self-Consistent Field (SCF) machinery of nonrelativistic calculations can be applied. However, the single-particle functions are two-component orbitals having a large and small component, and the SCF methods must be modified accordingly. Numerical examples are presented, and comparisons are made with the spin-free second-order Douglas-Kroll transformed Hamiltonian of Hess.
A new spin on electron liquids: Phenomena in systems with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei
Conventional microelectronic devices are based on the ability to store and control the flow of electronic charge. Spin-based electronics promises a radical alternative, offering the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. Our research suggests that spin transport is fundamentally different from the transport of charge. The generalized Ohm's law that governs the flow of spins indicates that the generation of spin current by an electric field can be reversible and non-dissipative. Spin-orbit coupling and spin currents appear in many other seemingly unrelated areas of physics. Spin currents are as fundamental in theoretical physics as charge currents. In strongly correlated systems such as spin-chains, one can write down the Hamiltonian as a spin-current - spin-current interaction. The research presented here shows that the fractionalized excitations of one-dimensional spin chains are gapless and carry spin current. We present the most interesting example of such a chain, the Haldane-Shastry spin chain, which is exactly solvable in terms of real-space wavefunctions. Spin-orbit coupling can be found in high-energy physics, hidden under a different name: non-trivial fibrations. Particles moving in a space which is non-trivially related to an (iso)spin space acquire a gauge connection (the condensed-matter equivalent of a Berry phase) which can be either abelian or non-abelian. In most cases, the consequences of such gauge connection are far-reaching. We present a problem where particles move on an 8-dimensional manifold and posses an isospin space with is a 7-sphere S 7. The non-trivial isospin space gives the Hamiltonian SO (8) landau-level structure, and the system exhibits a higher-dimensional Quantum Hall Effect.
Localizable entanglement in antiferromagnetic spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, B.-Q.; Korepin, V.E.
2004-06-01
Antiferromagnetic spin chains play an important role in condensed matter and statistical mechanics. Recently XXX spin chain was discussed in relation to information theory. Here we consider localizable entanglement. It is how much entanglement can be localized on two spins by performing local measurements on other individual spins (in a system of many interacting spins). We consider the ground state of antiferromagnetic spin chain. We study localizable entanglement [represented by concurrence] between two spins. It is a function of the distance. We start with isotropic spin chain. Then we study effects of anisotropy and magnetic field. We conclude that anisotropymore » increases the localizable entanglement. We discovered high sensitivity to a magnetic field in cases of high symmetry. We also evaluated concurrence of these two spins before the measurement to illustrate that the measurement raises the concurrence.« less
1999-06-18
functional theory [8]. The Hamiltonian (Ĥ↑ and Ĥ↓ for spin ↑ and spin ↓ electrons, respectively) is given by: Ĥ↑(↓) = − 2 2 ∇ [ 1 m∗(r) ∇ ] + Ec(r)+ µ...the rapid vanishing of the mean spin of electrons in this state. At the same time, the electron spin polarization at higher energy levels dramat...electrons with spin −1/2 than with spin +1/2, so energy relaxation will lead to a predominant population of higher energy levels by electrons with spin
$$t\\bar{t}$$ Spin Correlations at D0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Yvonne
2013-01-01
The heaviest known elementary particle today, the top quark, has been discovered in 1995 by the CDF and D0 collaborations at the Tevatron collider at Fermilab. Its high mass and short lifetime, shorter than the timescale for hadronization, makes the top quark a special particle to study. Due to the short lifetime, the top quark's spin information is preserved in the decay products. In this article we discuss the studies of ttbar spin correlations at D0, testing the full chain from production to decay. In particular, we present a measurement using angular information and an analysis using a matrix-element basedmore » technique. The application of the matrix-element based technique to the ttbar dilepton and semileponic final state resulted in the first evidence for non-vanishing ttbar spin correlations.« less
Spin-orbital quantum liquid on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Corboz, Philippe
2013-03-01
The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2013-12-18
A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented in this paper. Instead of truncating the B97-type power series inhomogeneity correction factors (ICF) for the exchange, same-spin correlation, and opposite-spin correlation functionals uniformly, all 16 383 combinations of the linear parameters up to fourth order (m = 4) are considered. These functionals are individually fit to a training set and the resulting parameters are validated on a primary test set in order to identify the 3 optimal ICF expansions. Through this procedure, it is discovered that the functional that performs best onmore » the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters from range-separation and nonlocal correlation. The resulting density functional, ωB97X-V, is further assessed on a secondary test set, the parallel-displaced coronene dimer, as well as several geometry datasets. Finally and furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V are analyzed and documented in order to facilitate the use of the functional.« less
Modulation of pure spin currents with a ferromagnetic insulator
NASA Astrophysics Data System (ADS)
Villamor, Estitxu; Isasa, Miren; Vélez, Saül; Bedoya-Pinto, Amilcar; Vavassori, Paolo; Hueso, Luis E.; Bergeret, F. Sebastián; Casanova, Fèlix
2015-01-01
We propose and demonstrate spin manipulation by magnetically controlled modulation of pure spin currents in cobalt/copper lateral spin valves, fabricated on top of the magnetic insulator Y3F e5O12 (YIG). The direction of the YIG magnetization can be controlled by a small magnetic field. We observe a clear modulation of the nonlocal resistance as a function of the orientation of the YIG magnetization with respect to the polarization of the spin current. Such a modulation can only be explained by assuming a finite spin-mixing conductance at the Cu/YIG interface, as it follows from the solution of the spin-diffusion equation. These results open a path towards the development of spin logics.
NASA Technical Reports Server (NTRS)
Christodoulou, D. M.; Contopoulos, I.; Kazanas, D.; Steiner, J. F.; Papadopoulos, D. B.; Laycock, S. G. T.
2016-01-01
The spins of stellar-mass black holes (BHs) and the power outputs of their jets are measurable quantities. Unfortunately, the currently employed methods do not agree and the results are controversial. Two major issues concern the measurements of BH spin and beam (jet) power. The former issue can be resolved by future observations. But the latter issue can be resolved now, if we pay attention to what is expected from theoretical considerations. The question of whether a correlation has been found between the power outputs of few objects and the spins of their BHs is moot because BH beam power does not scale with the square of the spin of the BH. We show that the theoretical BH beam power is a strongly nonlinear function of spin that cannot be approximated by a quadratic relation, as is generally stated when the influence of the magnetic field is not accounted for in the Blandford & Znajek model. The BH beam power of ballistic jets should scale a lot more steeply with BH spin irrespective of the magnetic field assumed to thread the horizon and the spin range considered. This behavior may already be visible in the analyses of radio observations by Narayan & McClintock and Russell et al. In agreement with previous studies, we also find that the power output that originates in the inner regions of the surrounding accretion disks is higher than that from the BHs and it cannot be ignored in investigations of continuous compact jets from these systems.
Dirac points, spinons and spin liquid in twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Irkhin, V. Yu.; Skryabin, Yu. N.
2018-05-01
Twisted bilayer graphene is an excellent example of highly correlated system demonstrating a nearly flat electron band, the Mott transition and probably a spin liquid state. Besides the one-electron picture, analysis of Dirac points is performed in terms of spinon Fermi surface in the limit of strong correlations. Application of gauge field theory to describe deconfined spin liquid phase is treated. Topological quantum transitions, including those from small to large Fermi surface in the presence of van Hove singularities, are discussed.
Multipartite quantum correlations in the extended J1-J2 Heisenberg model
NASA Astrophysics Data System (ADS)
Batle, J.; Tarawneh, O.; Nagata, Koji; Nakamura, Tadao; Abdalla, S.; Farouk, Ahmed
2017-11-01
Multipartite entanglement and the maximum violation of Bell inequalities are studied in finite clusters of spins in an extended J1-J2 Heisenberg model at zero temperature. The ensuing highly frustrated states will unveil a rich structure for different values of the corresponding spin-spin interaction strengths. The interplay between nearest-neighbors, next-nearest neighbors and further couplings will be explored using multipartite correlations. The model is relevant to certain quantum annealing computation architectures where an all-to-all connectivity is considered.
Guguchia, Z.; Roessli, B.; Khasanov, R.; ...
2017-08-22
Here, we report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T so decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO 2 plane. Moreover, Tso is suppressed by Zn in the same manner as the superconducting transition temperature Tc for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent onmore » intertwining with superconducting correlations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guguchia, Z.; Roessli, B.; Khasanov, R.
Here, we report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T so decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO 2 plane. Moreover, Tso is suppressed by Zn in the same manner as the superconducting transition temperature Tc for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent onmore » intertwining with superconducting correlations.« less
NASA Astrophysics Data System (ADS)
Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.
2016-08-01
The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n-1/2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.
Mass-number and excitation-energy dependence of the spin cutoff parameter
Grimes, S. M.; Voinov, A. V.; Massey, T. N.
2016-07-12
Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less
Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices
NASA Astrophysics Data System (ADS)
Chen, Tong; Yan, Shenlang; Xu, Liang; Liu, Desheng; Li, Quan; Wang, Lingling; Long, Mengqiu
2017-07-01
Using the non-equilibrium Green's function formalism in combination with density functional theory, we performed ab initio calculations of spin-dependent electron transport in molecular devices consisting of a polyacetylene (CnHn+1) chain vertically attached to a carbon chain sandwiched between two semi-infinite zigzag-edged graphene nanoribbon electrodes. Spin-charge transport in the device could be modulated to different magnetic configurations by an external magnetic field. The results showed that single spin conduction could be obtained. Specifically, the proposed CnHn+1 devices exhibited several interesting effects, including (dual) spin filtering, spin negative differential resistance, odd-even oscillation, and magnetoresistance (MR). Marked spin polarization with a filtering efficiency of up to 100% over a large bias range was found, and the highest MR ratio for the CnHn+1 junctions reached 4.6 × 104. In addition, the physical mechanisms for these phenomena were also revealed.
Effects of structural spin-orbit coupling in two dimensional electron and hole liquids
NASA Astrophysics Data System (ADS)
Chesi, Stefano
The recent interest in spin-dependent phenomena in semiconductor heterostructures motivates our detailed study of the structural spin-orbit coupling present in clean two-dimensional electron and hole liquids. Interesting polarization effects are produced in a system out of equilibrium, as when a finite current flows in the sample. In particular, the consequences of a lateral confinement creating a quasi one-dimensional wire are studied in detail, partially motivated by a recent experimental investigation of the point-contact transmission for two-dimensional holes. We also address the role of the electron-electron interaction in the presence of spin-orbit coupling, which has received little attention in the literature. We discuss the formulation of the Hartree-Fock approximation in the particular case of linear Rashba spin-orbit. We establish the form of the mean-field phase diagram in the homogeneous case, which shows a complex interplay between paramagnetic and ferromagnetic states. The latter can be polarized in the plane or in a transverse direction, and are characterized by a complex spin structure and nontrivial occupation. The generality of the Hartree-Fock method allows a simple treatment of the Pauli spin susceptibility, and the application to different forms of spin-orbit coupling. Correlation corrections can be obtained in an analytic form for particular asymptotic regimes. For linear Rashba spin-orbit we identified the relevance of the large spin-orbit limit, dominated by many-body effects, and explicitly treated the high density limit, in which the system is asymptotically noninteracting. As a special case, we derive a new exact formula for the polarization dependence of the ring-diagram correlation energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Y., E-mail: yoshiaki.saito@toshiba.co.jp; Ishikawa, M.; Sugiyama, H.
2015-05-07
Correlation between the amplitude of the spin accumulation signals and the effective barrier height estimated from the slope of the log (RA) - t{sub MgO} plot (RA: resistance area product, t{sub MgO}: thickness of MgO tunnel barrier) in CoFe/MgO/n{sup +}-Si junctions was investigated. The amplitude of spin accumulation signals increases with increasing effective barrier heights. This increase of the amplitude of spin accumulation is originated from the increase of the spin polarization (P{sub Si}) in Si. The estimated absolute values of P{sub Si} using three-terminal Hanle signals are consistent with those estimated by four-terminal nonlocal-magnetoresistance (MR) and two-terminal local-MR. Tomore » demonstrate large spin accumulation in Si bulk band and enhance the local-MR through Si channel, these results indicate that the increase of the effective barrier height at ferromagnet/(tunnel barrier)/n{sup +}-Si junction electrode is important.« less
Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe 1.9Ni 0.1As 2
Song, Yu; Lu, Xingye; Abernathy, Douglas L.; ...
2015-11-06
In this study, we use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe 1.9Ni 0.1As 2 near optimal superconductivity (T c = 20K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below 60 meV in uniaxial-strained BaFe 1.9Ni 0.1As 2. Sincemore » this energy scale is considerably larger than the energy splitting of the d xz and d yz bands of uniaxial-strained Ba(Fe 1–xCox) 2As 2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations.« less
Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua
2017-10-11
By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.
NASA Astrophysics Data System (ADS)
Kruk, Danuta; Kowalewski, Jozef
2002-07-01
This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.
Robust thermal quantum correlation and quantum phase transition of spin system on fractal lattices
NASA Astrophysics Data System (ADS)
Xu, Yu-Liang; Zhang, Xin; Liu, Zhong-Qiang; Kong, Xiang-Mu; Ren, Ting-Qi
2014-06-01
We investigate the quantum correlation measured by quantum discord (QD) for thermalized ferromagnetic Heisenberg spin systems in one-dimensional chains and on fractal lattices using the decimation renormalization group approach. It is found that the QD between two non-nearest-neighbor end spins exhibits some interesting behaviors which depend on the anisotropic parameter Δ, the temperature T, and the size of system L. With increasing Δ continuously, the QD possesses a cuspate change at Δ = 0 which is a critical point of quantum phase transition (QPT). There presents the "regrowth" tendency of QD with increasing T at Δ < 0, in contrast to the "growth" of QD at Δ > 0. As the size of the system L becomes large, there still exists considerable thermal QD between long-distance end sites in spin chains and on the fractal lattices even at unentangled states, and the long-distance QD can spotlight the presence of QPT. The robustness of QD on the diamond-type hierarchical lattices is stronger than that in spin chains and Koch curves, which indicates that the fractal can affect the behaviors of quantum correlation.
Neutron polarization analysis study of the frustrated magnetic ground state of β-Mn1-xAlx
NASA Astrophysics Data System (ADS)
Stewart, J. R.; Andersen, K. H.; Cywinski, R.
2008-07-01
We have performed a neutron polarization analysis study of the short-range nuclear and magnetic correlations present in the dilute alloy, β-Mn1-xAlx with 0.03≤x≤0.16 , in order to study the evolution of the magnetic ground state of this system as it achieves static spin-glass order at concentrations x>0.09 . To this end we have developed a reverse-Monte Carlo algorithm which has enabled us to extract Warren-Cowley nuclear short-range order parameters and magnetic spin correlations. Using conventional neutron powder diffraction, we show that the nonmagnetic Al substituents preferentially occupy the magnetic site II Wyckoff positions in the β-Mn structure—resulting in a reduction of the magnetic topological frustration of the Mn atoms. These Al impurities are found to display strong anticlustering behavior. The magnetic spin correlations are predominantly antiferromagnetic, persisting over a short range which is similar for all the samples studied—above and below the spin-liquid-spin-glass boundary—while the observed static (disordered) moment is shown to increase with increasing Al concentration.
Bias Dependent Spin Relaxation in a [110]-InAs/AlSb Two Dimensional Electron System
NASA Astrophysics Data System (ADS)
Hicks, J.; Holabird, K.
2005-03-01
Manipulation of electron spin is a critical component of many proposed semiconductor spintronic devices. One promising approach utilizes the Rashba effect by which an applied electric field can be used to reduce the spin lifetime or rotate spin orientation through spin-orbit interaction. The large spin-orbit interaction needed for this technique to be effective typically leads to fast spin relaxation through precessional decay, which may severely limit device architectures and functionalities. An exception arises in [110]-oriented heterostructures where the crystal magnetic field associated with bulk inversion asymmetry lies along the growth direction and in which case spins oriented along the growth direction do not precess. These considerations have led to a recent proposal of a spin-FET that incorporates a [110]-oriented, gate-controlled InAs quantum well channel [1]. We report measurements of the electron spin lifetime as a function of applied electric field in a [110]-InAs 2DES. Measurements made using an ultrafast, mid-IR pump-probe technique indicate that the spin lifetime can be reduced from its maximum to minimum value over a range of less than 0.2V per quantum well at room temperature. This work is supported by DARPA, NSERC and the NSF grant ECS - 0322021. [1] K. C. Hall, W. H. Lau, K. Gundogdu, M. E. Flatte, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).
Higher spin gauge theory on fuzzy \\boldsymbol {S^4_N}
NASA Astrophysics Data System (ADS)
Sperling, Marcus; Steinacker, Harold C.
2018-02-01
We examine in detail the higher spin fields which arise on the basic fuzzy sphere S^4N in the semi-classical limit. The space of functions can be identified with functions on classical S 4 taking values in a higher spin algebra associated to \
Breakdown of single spin-fluid model in the heavily hole-doped superconductor CsFe2As2
NASA Astrophysics Data System (ADS)
Zhao, D.; Li, S. J.; Wang, N. Z.; Li, J.; Song, D. W.; Zheng, L. X.; Nie, L. P.; Luo, X. G.; Wu, T.; Chen, X. H.
2018-01-01
Although Fe-based superconductors are correlated electronic systems with multiorbital, previous nuclear magnetic resonance (NMR) measurement suggests that a single spin-fluid model is sufficient to describe its spin behavior. Here, we first observed the breakdown of single spin-fluid model in a heavily hole-doped Fe-based superconductor CsFe2As2 by site-selective NMR measurement. At high-temperature regime, both Knight shift and nuclear spin-lattice relaxation at 133Cs and 75As nuclei exhibit distinct temperature-dependent behavior, suggesting the breakdown of the single spin-fluid model in CsFe2As2 . This is ascribed to the coexistence of both localized and itinerant spin degree of freedom at 3 d orbitals, which is consistent with the orbital-selective Mott phase. With decreasing temperature, the single spin-fluid behavior is recovered below T*˜75 K due to a coherent state among 3 d orbitals. The Kondo liquid scenario is proposed to understand the low-temperature coherent state.
Generation and detection of dissipationless spin current in a MgO/Si bilayer
NASA Astrophysics Data System (ADS)
Lou, Paul C.; Kumar, Sandeep
2018-04-01
Spintronics is an analogue to electronics where the spin of the electron rather than its charge is functionally controlled for devices. The generation and detection of spin current without ferromagnetic or exotic/scarce materials are two of the biggest challenges for spintronics devices. In this study, we report a solution to the two problems of spin current generation and detection in Si. Using non-local measurement, we experimentally demonstrate the generation of helical dissipationless spin current using the spin-Hall effect. Contrary to the theoretical prediction, we observe the spin-Hall effect in both n-doped and p-doped Si. The helical spin current is attributed to the site-inversion asymmetry of the diamond cubic lattice of Si and structure inversion asymmetry in a MgO/Si bilayer. The spin to charge conversion in Si is insignificant due to weak spin-orbit coupling. For the efficient detection of spin current, we report spin to charge conversion at the MgO (1 nm)/Si (2 µm) (p-doped and n-doped) thin film interface due to Rashba spin-orbit coupling. We detected the spin current at a distance of >100 µm, which is an order of magnitude larger than the longest spin diffusion length measured using spin injection techniques. The existence of spin current in Si is verified from the coercivity reduction in a Co/Pd multilayer due to spin-orbit torque generated by spin current from Si.
Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola
2018-04-06
A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Global Dirac bispinor entanglement under Lorentz boosts
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo
2018-03-01
The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.
Driving spin transition at interface: Role of adsorption configurations
NASA Astrophysics Data System (ADS)
Zhang, Yachao
2018-01-01
A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.
Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve
NASA Astrophysics Data System (ADS)
Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus
2018-03-01
Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.
Electrical Spin Injection and Detection in Silicon Nanowires with Axial Doping Gradient.
Kountouriotis, Konstantinos; Barreda, Jorge L; Keiper, Timothy D; Zhang, Mei; Xiong, Peng
2018-06-19
The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nanospintronic devices with quasi-one-dimensional semiconductor channels.
Bolech, C J; Heidrich-Meisner, F; Langer, S; McCulloch, I P; Orso, G; Rigol, M
2012-09-14
We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions quickly approach stationary values due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature (London) 467, 567 (2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dan; Zhang, Xiaojiao; Ouyang, Fangping
2015-01-07
Using nonequilibrium Green's function in combination with the spin-polarized density functional theory, the spin-dependent transport properties of boron and nitrogen doped zigzag graphene nanoribbons (ZGNRs) heterojunctions with single or double edge-saturated hydrogen have been investigated. Our results show that the perfect spin-filtering effect (100%), rectifying behavior and negative differential resistance can be realized in the ZGNRs-based systems. And the corresponding physical analysis has been given.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less
Ising antiferromagnet on a finite triangular lattice with free boundary conditions
NASA Astrophysics Data System (ADS)
Kim, Seung-Yeon
2015-11-01
The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.
Simple and Accurate Method for Central Spin Problems
NASA Astrophysics Data System (ADS)
Lindoy, Lachlan P.; Manolopoulos, David E.
2018-06-01
We describe a simple quantum mechanical method that can be used to obtain accurate numerical results over long timescales for the spin correlation tensor of an electron spin that is hyperfine coupled to a large number of nuclear spins. This method does not suffer from the statistical errors that accompany a Monte Carlo sampling of the exact eigenstates of the central spin Hamiltonian obtained from the algebraic Bethe ansatz, or from the growth of the truncation error with time in the time-dependent density matrix renormalization group (TDMRG) approach. As a result, it can be applied to larger central spin problems than the algebraic Bethe ansatz, and for longer times than the TDMRG algorithm. It is therefore an ideal method to use to solve central spin problems, and we expect that it will also prove useful for a variety of related problems that arise in a number of different research fields.
Thermodynamic properties of the S =1 /2 twisted triangular spin tube
NASA Astrophysics Data System (ADS)
Ito, Takuya; Iino, Chihiro; Shibata, Naokazu
2018-05-01
Thermodynamic properties of the twisted three-leg spin tube under magnetic field are studied by the finite-T density-matrix renormalization group method. The specific heat, spin, and chiral susceptibilities of the infinite system are calculated for both the original and its low-energy effective models. The obtained results show that the presence of the chirality is observed as a clear peak in the specific heat at low temperature and the contribution of the chirality dominates the low-temperature part of the specific heat as the exchange coupling along the spin tube decreases. The peak structures in the specific heat, spin, and chiral susceptibilities are strongly modified near the quantum phase transition where the critical behaviors of the spin and chirality correlations change. These results confirm that the chirality plays a major role in characteristic low-energy behaviors of the frustrated spin systems.
NASA Astrophysics Data System (ADS)
Atsarkin, V. A.; Borisenko, I. V.; Demidov, V. V.; Shaikhulov, T. A.
2018-06-01
Temperature evolution of pure spin current has been studied in an epitaxial thin-film bilayer La2/3Sr1/3MnO3/Pt deposited on a NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the ferromagnetic La2/3Sr1/3MnO3 layer and detected in the Pt layer due to the inverse spin Hall effect. A considerable increase in the spin current magnitude has been observed upon cooling from the Curie point (350 K) down to 100 K. Using the obtained data, the temperature evolution of the mixed spin conductance g mix (T) has been extracted. It was found that the g mix (T) dependence correlates with magnetization in a thin area adjacent to the ferromagnetic-normal metal interface.
Symmetry-protected gapless Z2 spin liquids
NASA Astrophysics Data System (ADS)
Lu, Yuan-Ming
2018-03-01
Despite rapid progress in understanding gapped topological states, much less is known about gapless topological phases of matter, especially in strongly correlated electrons. In this work, we discuss a large class of robust gapless quantum spin liquids in frustrated magnets made of half-integer spins, which are described by gapless fermionic spinons coupled to dynamical Z2 gauge fields. Requiring U(1 ) spin conservation, time-reversal, and certain space-group symmetries, we show that certain spinon symmetry fractionalization class necessarily leads to a gapless spectrum. These gapless excitations are stable against any perturbations, as long as the required symmetries are preserved. Applying these gapless criteria to spin-1/2 systems on square, triangular, and kagome lattices, we show that all gapped symmetric Z2 spin liquids in Abrikosov-fermion representation can also be realized in Schwinger-boson representation. This leads to 64 gapped Z2 spin liquids on square lattice, and 8 gapped states on both kagome and triangular lattices.
Investigation of the fluidity of biological fluids with a PDDTBN spin probe
NASA Astrophysics Data System (ADS)
Severcan, Feride; Acar, Berrin; Gökalp, Saadet
1997-06-01
The aim of this study is to ascertain whether the electron spin resonance technique using perdeutero-di- t-butyl nitroxide (PDDTBN) as a spin probe is able to monitor relative fluidity changes occurring in body fluids, such as blood and parotid saliva, according to different physiological conditions. The present study reveals that the spin probe PDDTBN is able to monitor the fluidity changes in parotid saliva related to habitual smoking, and in whole blood related to the estradiol level. The rotational correlation time of the spin probe and the local viscosity values of the parotid saliva and blood have been reported.
Communication: Two types of flat-planes conditions in density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaotian Derrick; Patel, Anand H. G.; González-Espinoza, Cristina E.
Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, N{sub α} and N{sub β}, has a derivative discontinuity on a line segment where the number of electrons, N{sub α} + N{sub β}, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, N{sub α} – N{sub β}, is an integer, but does not have a discontinuity associated withmore » an integer number of electrons. Type 2 flat planes are rare—we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested—but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.« less
NASA Astrophysics Data System (ADS)
Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.
2015-12-01
It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.
2000-05-08
The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less
Anisotropy of magnetic interactions and spin filter behavior in hexagonal (Ga,Mn)As nanoribbons
NASA Astrophysics Data System (ADS)
Nie, Ya; Lan, Mu; Zhang, Xi; Xiang, Gang
2017-09-01
The electronic and magnetic properties of Mn doped hexagonal GaAs nanoribbons ((Ga,Mn)As NRs) have been investigated using spin-polarized density functional theory (DFT), and the spin-resolved transport behaviors of (Ga,Mn)As NRs have also been studied with non-equilibrium Green function theory. The calculations show that every Mn dopant brings 4 Bohr magneton (μB) magnetic moment and the ground states of (Ga,Mn)As NRs are ferromagnetic (FM). The investigation of magnetic anisotropies shows that magnetic interactions are dependent on both the distribution directions of Mn atoms and the edge effect of the NRs. The studies of electronic structures and transport properties show that incorporation of Mn atom turns GaAs NR from semiconducting to half-metallic, which significantly enhances the spin-up conductivity and strongly weakens the spin-down conductivity, resulting in non-monatomic variations of spin-dependent conductivities. The nearly 100% spin polarization shown in (Ga,Mn)As NR may be used for low dimensional spin filters, even with as large a bias as 0.9 V. Also, (Ga,Mn)As NR can be used to generate a relatively stable spin-polarized current in a wide bias interval.
A test for correction made to spin systematics for coupled band in doubly-odd nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vinod, E-mail: vinod2.k2@gmail.com
2015-12-15
Systematic Spin Assignments were generally made by using the argument that the energy of levels is a function of neutron number. In the present systematics, the excitation energy of the levels incorporated the effect of nuclear deformation and signature splitting. The nuclear deformation changes toward the mid-shell, therefore a smooth variation in the excitation energy of the levels is observed towards the mid-shell, that intended to make systematics as a function of neutron number towards the mid-shell. Another term “signature splitting” that push the energy of levels for odd- and even-spin sequences up and down, caused the different energy variationmore » pattern for odd- and even-spin sequences. The corrections made in the spin systematics were tested for the known spins of various isotopic chain. In addition, the inconsistency in spin assignments made by the spin systematics and other methods of the configuration πh{sub 11/2} ⊗ νh{sub 11/2} band belonging to {sup 112,114,116}Cs, {sup 126}Pr, and {sup 138}Pr, as an example, was resolved by the correctionmade in the present spin systematics.« less
Lifting SU(2) spin networks to projected spin networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Maiete; Livine, Etera R.
2010-09-15
Projected spin network states are the canonical basis of quantum states of geometry for the recent EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin networks and SU(2) spin network states.
Thermodynamic properties of Fermi gases in states with defined many-body spins
NASA Astrophysics Data System (ADS)
Yurovsky, Vladimir
2016-05-01
Zero-range interactions in cold spin- 1 / 2 Fermi gases can be described by single interaction strength, since collisions of atoms in the same spin state are forbidden by the Pauli principle. In a spin-independent trap potential (even in the presence of a homogeneous spin-dependent external field), the gas can persist in a state with the given many-body spin, since the spin operator commutes with the Hamiltonian. Spin and spatial degrees of freedom in such systems are separated, and the spin and spatial wavefunctions form non-Abelian irreducible representations of the symmetric group, unless the total spin is S = N / 2 for N atoms (see). Although the total wavefunction, being a linear combination of products of the spin and spatial functions, is permutation-antisymmetric, the non-Abelian permutation symmetry is disclosed in the matrix elements and, as demonstrated here, in thermodynamic properties. The effects include modification of the specific heat and compressibility of the gas.
Emergent Phenomena at Oxide Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H.Y.
2012-02-16
Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burstmore » of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.« less
Multi-scale modeling of spin transport in organic semiconductors
NASA Astrophysics Data System (ADS)
Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo
In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.
Matrix product states for su(2) invariant quantum spin chains
NASA Astrophysics Data System (ADS)
Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas
2016-08-01
A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.
New low-spin states of 122Xe observed via high-statistics β-decay of 122Cs
NASA Astrophysics Data System (ADS)
Jigmeddorj, B.; Garrett, P. E.; Andreoiu, C.; Ball, G. C.; Bruhn, T.; Cross, D. S.; Garnsworthy, A. B.; Hadinia, B.; Moukaddam, M.; Park, J.; Pore, J. L.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Rizwan, U.; Svensson, C. E.; Voss, P.; Wang, Z. M.; Wood, J. L.; Yates, S. W.
2018-05-01
Excited states of 122Xe were studied via the β+/EC decay of 122Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. Compton-suppressed HPGe detectors were used for measurements of γ-ray intensities, γγ coincidences, and γ-γ angular correlations. Two sets of data were collected to optimize the decays of the ground (21.2 s) and isomeric (3.7 min) states of 122Cs. The data collected have enabled the observation of about 505 new transitions and about 250 new levels, including 51 new low-spin states. Spin assignments have been made for 58 low-spin states based on the deduced β-decay feeding and γ-γ angular correlation analyses.
NASA Astrophysics Data System (ADS)
Laghaei, M.; Heidari Semiromi, E.
2018-03-01
Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.
Hierarchical spin-orbital polarization of a giant Rashba system
Bawden, Lewis; Riley, Jonathan M.; Kim, Choong H.; Sankar, Raman; Monkman, Eric J.; Shai, Daniel E.; Wei, Haofei I.; Lochocki, Edward B.; Wells, Justin W.; Meevasana, Worawat; Kim, Timur K.; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J.; Shen, Kyle M.; Chou, Fangcheng; King, Phil D. C.
2015-01-01
The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two “spin-split” branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector. PMID:26601268
NASA Astrophysics Data System (ADS)
Zhang, Wenxu; Peng, Bin; Han, Fangbin; Wang, Qiuru; Soh, Wee Tee; Ong, Chong Kim; Zhang, Wanli
2016-03-01
We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.
Hierarchical spin-orbital polarization of a giant Rashba system.
Bawden, Lewis; Riley, Jonathan M; Kim, Choong H; Sankar, Raman; Monkman, Eric J; Shai, Daniel E; Wei, Haofei I; Lochocki, Edward B; Wells, Justin W; Meevasana, Worawat; Kim, Timur K; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J; Shen, Kyle M; Chou, Fangcheng; King, Phil D C
2015-09-01
The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.
Pair correlations in low-lying T =0 states of odd-odd nuclei with six nucleons
NASA Astrophysics Data System (ADS)
Fu, G. J.; Zhao, Y. M.; Arima, A.
2018-02-01
In this paper, we study pair correlations in low-lying T =0 states for two typical cases of odd-odd N =Z nuclei. The first case is six nucleons in a single j =9 /2 shell, for which we study the S -broken-pair approximation, the isoscalar spin-1 pair condensation, and the isoscalar spin-aligned pair condensation, with schematic interactions. In the second case, we study pair approximations and correlation energies for 22Na, 34Cl, 46V, 62Ga, and 94Ag in multi-j shells with effective interactions. A few T =0 states are found to be well represented by isoscalar nucleon pairs. The isoscalar spin-aligned pairs play an important role for the yrast T =0 states with I ˜2 j and I ˜Imax in 22Na, 46V, and 94Ag. The overlap between the isoscalar J =1 pair wave function and the shell-model wave function is around 0.5 for the I =1 ,3 states of 34Cl and the I =1 state of 94Ag. The I =9 state of 62Ga is very well described by the isoscalar J =3 pair condensation. The broken-pair approximation (which is similar to the 2-quasiparticle excitation of the isovector pair condensation) is appropriate for quite few states, such as the I =1 -3 states of 34Cl and the I =5 state of 62Ga. The correlation energies are presented in this paper. It is noted that the picture based on nucleon-pair wave functions is not always in agreement with the picture based on correlation energies.
NASA Astrophysics Data System (ADS)
Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J. M.; Laureys, S.; Marinazzo, D.
2017-04-01
Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.
2017-02-01
These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable defined by the time integral of the field amplitude, and leads to a coupling between the two modes. For simplicity the center frequency was chosen to be resonant with the inter-mode transition frequency. Measuring the mean and variance of the population difference between the two modes for the output state of the interferometer for various choices of interferometer variables is shown to enable the mean values and covariance matrix for the spin operators for the input quantum state of the two mode system to be determined. The paper concludes with a discussion of several key experimental papers on spin squeezing.
Geometric representation of spin correlations and applications to ultracold systems
NASA Astrophysics Data System (ADS)
Mukherjee, Rick; Mirasola, Anthony E.; Hollingsworth, Jacob; White, Ian G.; Hazzard, Kaden R. A.
2018-04-01
We provide a one-to-one map between the spin correlations and certain three-dimensional shapes, analogous to the map between single spins and Bloch vectors, and demonstrate its utility. Much as one can reason geometrically about dynamics using a Bloch vector—e.g., a magnetic field causes it to precess and dissipation causes it to shrink—one can reason similarly about the shapes we use to visualize correlations. This visualization demonstrates its usefulness by unveiling the hidden structure in the correlations. For example, seemingly complex correlation dynamics can be described as simple motions of the shapes. We demonstrate the simplicity of the dynamics, which is obscured in conventional analyses, by analyzing several physical systems of relevance to cold atoms.
Spin Relaxation and Manipulation in Spin-orbit Qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-02-01
We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
NASA Astrophysics Data System (ADS)
Ma, Da-Shuai; Yu, Zhi-Ming; Pan, Hui; Yao, Yugui
2018-02-01
We study the electronic and scattering properties of graphene with moderate Rashba spin-orbit coupling (SOC). The Rashba SOC in graphene tends to distort the band structure and gives rise to a trigonally warped Fermi surface. For electrons at a pronouncedly warped Fermi surface, the spin direction exhibits a staircase profile as a function of the momentum, making an unusual spin texture. We also study the spin-resolved scattering on a Rashba barrier and find that the trigonal warping is essential for producing spin polarization of the transmitted current. Particularly, both the direction and strength of the spin polarization can be controlled by kinds of electric methods. Our work unveils that not only SOC but also the geometry of the Fermi surface is important for generating spin polarization.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.
Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi
2017-06-28
In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.
2005-01-24
geometry, the optical selection rules provide a direct correlation between the EL polarization and the spin polarization of the electrons just prior...Holland, Amsterdam, 1984d. 18M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi , Phys. Rev. B 44, 3115
Quantum correlations in chiral graphene nanoribbons.
Tan, Xiao-Dong; Koop, Cornelie; Liao, Xiao-Ping; Sun, Litao
2016-11-02
We compute the entanglement and the quantum discord (QD) between two edge spins in chiral graphene nanoribbons (CGNRs) thermalized with a reservoir at temperature T (canonical ensemble). We show that the entanglement only exists in inter-edge coupled spin pairs, and there is no entanglement between any two spins at the same ribbon edge. By contrast, almost all edge spin pairs can hold non-zero QD, which strongly depends on the ribbon width and the Coulomb repulsion among electrons. More intriguingly, the dominant entanglement always occurs in the pair of nearest abreast spins across the ribbon, and even at room temperature this type of entanglement is still very robust, especially for narrow CGNRs with the weak Coulomb repulsion. These remarkable properties make CGNRs very promising for possible applications in spin-quantum devices.
NASA Astrophysics Data System (ADS)
Martin, N.; Bonville, P.; Lhotel, E.; Guitteny, S.; Wildes, A.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.; Mirebeau, I.; Petit, S.
2017-10-01
We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr2Zr2O7 . Since Pr3 + is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr2Zr2O7 promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.
Recent research related to prediction of stall/spin characteristics of fighter aircraft
NASA Technical Reports Server (NTRS)
Nguyen, L. T.; Anglin, E. L.; Gilbert, W. P.
1976-01-01
The NASA Langley Research Center is currently engaged in a stall/spin research program to provide the fundamental information and design guidelines required to predict the stall/spin characteristics of fighter aircraft. The prediction methods under study include theoretical spin prediction techniques and piloted simulation studies. The paper discusses the overall status of theoretical techniques including: (1) input data requirements, (2) math model requirements, and (3) correlation between theoretical and experimental results. The Langley Differential Maneuvering Simulator (DMS) facility has been used to evaluate the spin susceptibility of several current fighters during typical air combat maneuvers and to develop and evaluate the effectiveness of automatic departure/spin prevention concepts. The evaluation procedure is described and some of the more significant results of the studies are presented.
Enhanced spin-ordering temperature in ultrathin FeTe films grown on a topological insulator
NASA Astrophysics Data System (ADS)
Singh, Udai Raj; Warmuth, Jonas; Kamlapure, Anand; Cornils, Lasse; Bremholm, Martin; Hofmann, Philip; Wiebe, Jens; Wiesendanger, Roland
2018-04-01
We studied the temperature dependence of the diagonal double-stripe spin order in 1 and 2 unit cell thick layers of FeTe grown on the topological insulator B i2T e3 via spin-polarized scanning tunneling microscopy. The spin order persists up to temperatures which are higher than the transition temperature reported for bulk F e1 +yTe with lowest possible excess Fe content y . The enhanced spin order stability is assigned to a strongly decreased y with respect to the lowest values achievable in bulk crystal growth, and effects due to the interface between the FeTe and the topological insulator. The result is relevant for understanding the recent observation of a coexistence of superconducting correlations and spin order in this system.
Summary of spin technology as related to light general-aviation airplanes
NASA Technical Reports Server (NTRS)
Bowman, J. S., Jr.
1971-01-01
A summary was made of all NASA (and NACA) research and experience related to the spin and recovery characteristics of light personal-owner-type general-aviation airplanes. Very little of the research deals with light general-aviation airplanes as such, but many of the airplanes and models tested before and during World War II were similar to present-day light general-aviation airplanes with regard to the factors that are important in spinning. The material is based mainly on the results of spin-tunnel tests of free-spinning dynamically scaled models of about 100 different airplane designs and, whenever possible, includes correlation with full-scale spin tests. The research results are discussed in terms of airplane design considerations and the proper use of controls for recovery.
NASA Astrophysics Data System (ADS)
Fotoohi, Somayeh; Haji-Nasiri, Saeed
2018-04-01
Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.
Friction spinning - Twist phenomena and the capability of influencing them
NASA Astrophysics Data System (ADS)
Lossen, Benjamin; Homberg, Werner
2016-10-01
The friction spinning process can be allocated to the incremental forming techniques. The process consists of process elements from both metal spinning and friction welding. The selective combination of process elements from these two processes results in the integration of friction sub-processes in a spinning process. This implies self-induced heat generation with the possibility of manufacturing functionally graded parts from tube and sheets. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and also the production of more complex geometries. Furthermore, the defined adjustment of part properties like strength, grain size/orientation and surface conditions can be achieved through the appropriate process parameter settings and consequently by setting a specific temperature profile in combination with the degree of deformation. The results presented from tube forming start with an investigation into the resulting twist phenomena in flange processing. In this way, the influence of the main parameters, such as rotation speed, feed rate, forming paths and tool friction surface, and their effects on temperature, forces and finally the twist behavior are analyzed. Following this, the significant correlations with the parameters and a new process strategy are set out in order to visualize the possibility of achieving a defined grain texture orientation.
Quasiclassical description of a superconductor with a spin density wave
NASA Astrophysics Data System (ADS)
Moor, A.; Volkov, A. F.; Efetov, K. B.
2011-04-01
We derive equations for the quasiclassical Green’s functions ǧ within a simple model of a two-band superconductor with a spin density wave (SDW). The elements of the matrix ǧ are the retarded, advanced, and Keldysh functions, each of which is an 8×8 matrix in the Gor’kov-Nambu, the spin, and the band space. In equilibrium, these equations are a generalization of the Eilenberger equation. On the basis of the derived equations, we analyze the Knight shift, the proximity, and the dc Josephson effects in the superconductors under consideration. The Knight shift is shown to depend on the orientation of the external magnetic field with respect to the direction of the vector of the magnetization of the SDW. The proximity effect is analyzed for an interface between a superconductor with the SDW and a normal metal. The function describing both superconducting and magnetic correlations is shown to penetrate the normal metal or a metal with the SDW due to the proximity effect. The dc Josephson current in an SSDW/N/SSDW junction is also calculated as a function of the phase difference φ. It is shown that in our model, the Josephson current does not depend on the mutual orientation of the magnetic moments in the superconductors SSDW and is proportional to sinφ. The dissipationless spin current jsp depends on the angle α between the magnetization vectors in the same way (jsp~sinα) and is not zero above the superconducting transition temperature.
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, X.; Huang, H. Z.; Huang, T.; Huang, B.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, C.; Li, X.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, Y.; Liu, H.; Liu, F.; Liu, P.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, X.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Tu, B.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, Y.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, N.; Xu, Y. F.; Xu, Q. H.; Xu, Z.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J.; Zhang, S.; Zhang, J.; Zhang, S.; Zhang, Z.; Zhang, Y.; Zhang, L.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, C.; Zhou, L.; Zhu, X.; Zhu, Z.; Zyzak, M.
2018-05-01
The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized p↑ + p collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons. This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The new dataset corresponds to 25 pb-1 integrated luminosity of p↑ + p collisions at √{ s } = 500 GeV, an increase of more than a factor of ten compared to our previous measurement at √{ s } = 200 GeV. Non-zero asymmetries sensitive to transversity are observed at a Q2 of several hundred GeV and are found to be consistent with the former measurement and a model calculation. We expect that these data will enable an extraction of transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers where subleading effects are suppressed.
Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eelbode, D., E-mail: David.Eelbode@ua.ac.be; Raeymaekers, T., E-mail: Tim.Raeymaekers@UGent.be; Van der Jeugt, J., E-mail: Joris.VanderJeugt@UGent.be
2015-10-15
In a series of recent papers, we have introduced higher spin Dirac operators, which are generalisations of the classical Dirac operator. Whereas the latter acts on spinor-valued functions, the former acts on functions taking values in arbitrary irreducible half-integer highest weight representations for the spin group. In this paper, we describe how the polynomial kernel spaces of such operators decompose in irreducible representations of the spin group. We will hereby make use of results from representation theory.
Chain and ladder models with two-body interactions and analytical ground states
NASA Astrophysics Data System (ADS)
Manna, Sourav; Nielsen, Anne E. B.
2018-05-01
We consider a family of spin-1 /2 models with few-body, SU(2)-invariant Hamiltonians and analytical ground states related to the one-dimensional (1D) Haldane-Shastry wave function. The spins are placed on the surface of a cylinder, and the standard 1D Haldane-Shastry model is obtained by placing the spins with equal spacing in a circle around the cylinder. Here, we show that another interesting family of models with two-body exchange interactions is obtained if we instead place the spins along one or two lines parallel to the cylinder axis, giving rise to chain and ladder models, respectively. We can change the scale along the cylinder axis without changing the radius of the cylinder. This gives us a parameter that controls the ratio between the circumference of the cylinder and all other length scales in the system. We use Monte Carlo simulations and analytical investigations to study how this ratio affects the properties of the models. If the ratio is large, we find that the two legs of the ladder decouple into two chains that are in a critical phase with Haldane-Shastry-like properties. If the ratio is small, the wave function reduces to a product of singlets. In between, we find that the behavior of the correlations and the Renyi entropy depends on the distance considered. For small distances the behavior is critical, and for long distances the correlations decay exponentially and the entropy shows an area law behavior. The distance up to which there is critical behavior gets larger as the ratio increases.
Magnetic End States in a Strongly Interacting One-Dimensional Topological Kondo Insulator
Lobos, Alejandro M.; Dobry, Ariel O.; Galitski, Victor
2015-05-22
Topological Kondo insulators are strongly correlated materials where itinerant electrons hybridize with localized spins, giving rise to a topologically nontrivial band structure. Here, we use nonperturbative bosonization and renormalization-group techniques to study theoretically a one-dimensional topological Kondo insulator, described as a Kondo-Heisenberg model, where the Heisenberg spin-1/2 chain is coupled to a Hubbard chain through a Kondo exchange interaction in the p-wave channel (i.e., a strongly correlated version of the prototypical Tamm-Schockley model).We derive and solve renormalization-group equations at two-loop order in the Kondo parameter, and find that, at half filling, the charge degrees of freedom in the Hubbard chainmore » acquire a Mott gap, even in the case of a noninteracting conduction band (Hubbard parameter U = 0). Furthermore, at low enough temperatures, the system maps onto a spin-1/2 ladder with local ferromagnetic interactions along the rungs, effectively locking the spin degrees of freedom into a spin-1 chain with frozen charge degrees of freedom. This structure behaves as a spin-1 Haldane chain, a prototypical interacting topological spin model, and features two magnetic spin-1/2 end states for chains with open boundary conditions. In conclusion, our analysis allows us to derive an insightful connection between topological Kondo insulators in one spatial dimension and the well-known physics of the Haldane chain, showing that the ground state of the former is qualitatively different from the predictions of the naive mean-field theory.« less
NASA Astrophysics Data System (ADS)
Vaz, Louis C.; Alexander, John M.
1983-07-01
Fission angular distributions have been studied for years and have been treated as classic examples of trasitions-state theory. Early work involving composite nuclei of relatively low excitation energy E ∗ (⪅35 MeV) and spin I (⪅25ħ) gave support to theory and delimited interesting properties of the transitions-state nuclei. More recent research on fusion fission and sequential fission after deeply inelastic reactions involves composite nuclei of much higher energies (⪅200 MeV) and spins (⪅100ħ). Extension of the basic ideas developed for low-spin nuclei requires detailed consideration of the role of these high spins and, in particular, the “spin window” for fussion. We have made empirical correlations of cross sections for evaporation residues and fission in order to get a description of this spin window. A systematic reanalysis has been made for fusion fission induced by H, He and heavier ions. Empirical correlations of K 20 (K 20 = {IeffT }/{h̷2}) are presented along with comparisons of Ieff to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermidiate spin zone (30⪅ I ⪅65), while strong shell and/or pairing effects are evident for excitations less than ⪅35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximation commonly made in the theory, and suggestions are made toward this end.
Charge and spin in low-dimensional cuprates
NASA Astrophysics Data System (ADS)
Maekawa, Sadamichi; Tohyama, Takami
2001-03-01
One of the central issues in the study of high-temperature superconducting cuprates which are composed of two-dimensional (2D) CuO2 planes is whether the 2D systems with strong electron correlation behave as a Fermi liquid or a non-Fermi-liquid-like one-dimensional (1D) system with electron correlation. In this article, we start with the detailed examination of the electronic structure in cuprates and study theoretically the spin and charge dynamics in 1D and 2D cuprates. The theoretical background of spin-charge separation in the 1D model systems including the Hubbard and t-J models is presented. The first direct observation of collective modes of spin and charge excitations in a 1D cuprate, which are called spinons and holons respectively, in angle-resolved photoemission spectroscopy (ARPES) experiments is reviewed in the light of the theoretical results based on the numerically exact-diagonalization method. The charge and spin dynamics in 1D insulating cuprates is also discussed in connection with the spin-charge separation. The arguments are extended to the 2D cuprates, and the unique aspects of the electronic properties of high-temperature superconductors are discussed. Special emphasis is placed on the d-wave-like excitations in insulating 2D cuprates observed in ARPES experiments. We explain how the excitations are caused by the spin-charge separation. The charge stripes observed in the underdoped cuprates are examined in connection with spin-charge separation in real space.
Symmetry properties of the electron density and following from it limits on the KS-DFT applications
NASA Astrophysics Data System (ADS)
Kaplan, Ilya G.
2018-03-01
At present, the Density Functional Theory (DFT) approach elaborated by Kohn with co-authors more than 50 years ago became the most widely used method for study molecules and solids. Using modern computation facilities, it can be applied to systems with million atoms. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this report, I will discuss two cases when the conventional DFT approaches, using only electron density ρ and its gradients, cannot be applied (I will not consider the Ψ-versions of DFT). The first case is quite evident. In the degenerated states, the electron density may not be defined, since electronic and nuclear motions cannot be separated, the vibronic interaction mixed them. The second case is related to the spin of the state. As it was rigorously proved by group theoretical methods at the theorem level, the electron density does not depend on the total spin S of the arbitrary N-electron state. It means that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, taking into account spin, shows that they modified only exchange functionals, the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin cannot be defined in the framework of the electron density formalism, which corresponds to the one-particle reduced density matrix. This is the main reason of the problems arising in the study by DFT of magnetic properties of the transition metals. The possible way of resolving these problems can be found in the two-particle reduced density matrix formulation of DFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yachao, E-mail: yczhang@nano.gznc.edu.cn
2014-12-07
A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (αmore » and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.« less
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivara-Minten, E.; Baglioni, P.; Kevan, L.
1988-05-05
Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen mixed micelles of dodecyltrimethylammonium chloride (DTAC) and sodium dodecyl sulfate (SDS) have been studied as a function of the mixed micelle composition. ESEM effects due to TMB/sup +/ interactions with deuterium in D/sub 2/O show a decrease of the TMB/sup +/-water interaction that depends on the SDS-DTAC mixed micelle composition and reaches a minimum for the equimolar mixed micelle. The efficiency of charge separation upon photoionization of TMB to produce TMB/sup +/ measured by ESR correlates with the degreemore » of water penetration into the micelle. ESEM effects due to interaction of x-doxylstearic acid nitroxide probes with deuterium in D/sub 2/O show that the decrease of water penetration is due to higher surface packing due to electrostatic attraction among the polar headgroups of the two surfactants.« less
Gapped pulses for frequency-swept MRI
NASA Astrophysics Data System (ADS)
Idiyatullin, Djaudat; Corum, Curt; Moeller, Steen; Garwood, Michael
2008-08-01
A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin-spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HS n pulses). This article describes the experimental steps needed to properly implement HS n pulses in SWIFT. In addition, properties of HS n pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the "gaps" needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HS n pulses, as well as the relative energy deposited by the SWIFT sequence.
NASA Astrophysics Data System (ADS)
Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.
2016-08-01
Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.
Partition functions with spin in AdS2 via quasinormal mode methods
Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng
2016-10-12
We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less
Einstein-Podolsky-Rosen correlations in a hybrid system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caban, Pawel; Rembielinski, Jakub; Witas, Piotr
2011-03-15
We calculate the relativistic correlation function for a hybrid system of a photon and a Dirac particle. Such a system can be produced in decay of another spin-(1/2) fermion. We show that the relativistic correlation function, which depends on particle momenta, may have local extrema for fermion velocity of the order 0.5c. This influences the degree of violation of the Clauser-Horne-Shimony-Holt inequality.
Noisy Spins and the Richardson-Gaudin Model
NASA Astrophysics Data System (ADS)
Rowlands, Daniel A.; Lamacraft, Austen
2018-03-01
We study a system of spins (qubits) coupled to a common noisy environment, each precessing at its own frequency. The correlated noise experienced by the spins implies long-lived correlations that relax only due to the differing frequencies. We use a mapping to a non-Hermitian integrable Richardson-Gaudin model to find the exact spectrum of the quantum master equation in the high-temperature limit and, hence, determine the decay rate. Our solution can be used to evaluate the effect of inhomogeneous splittings on a system of qubits coupled to a common bath.
Relativistic distribution function for particles with spin at local thermodynamical equilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becattini, F., E-mail: becattini@fi.infn.it; INFN Sezione di Firenze, Florence; Universität Frankfurt, Frankfurt am Main
2013-11-15
We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict theirmore » polarization in relativistic heavy ion collisions at the freeze-out. -- Highlights: •Single-particle distribution function in local thermodynamical equilibrium with spin. •Polarization of spin 1/2 particles in a fluid at local thermodynamical equilibrium. •Prediction of a new effect: a steady gradient of temperature induces a polarization. •Application to the calculation of polarization in relativistic heavy ion collisions.« less
NASA Astrophysics Data System (ADS)
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-11-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the anisotropic exchange models conventionally used for the analysis of this system and, with the results of the experimental XANES spectra, shows that our complex investigations provide a good description of the pattern of the spin levels and the spin structures of the nanomagnetic Ni7 qubit. The results are discussed in the view of the general problem of the solid-state spin qubits and the spin structure of the Ni cluster.
NASA Astrophysics Data System (ADS)
Lyuboshitz, Valery V.; Lyuboshitz, Vladimir L.
2017-12-01
The general consequences of T invariance for the direct and inverse binary reactions a + b → c + d, c + d → a + b with spin-1/2 particles a, b and unpolarized particles c, d are considered. Using the formalism of helicity amplitudes, the polarization effects are studied in the reaction p + 3 He → π+ + 4 He and in the inverse process π+ + 4 He → p + 3 He. It is shown that in the reaction π + + 4 He → p + 3 He the spins of the final proton and 3 He nucleus are strongly correlated. A structural expression through helicity amplitudes, corresponding to arbitrary emission angles, is obtained for the correlation tensor. It is established that in the reaction π + + 4 He → p + 3 He one of the “classical” incoherence inequalities of the Bell type for diagonal components of the correlation tensor is necessarily violated and, thus, the spin correlations of the final particles have the strongly pronounced quantum character.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zu, Feng-Xia; School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074; Gao, Guo-Ying
2015-12-21
We propose a magnetic molecular junction consisting of a single-molecule magnet Fe{sub 4} connected two graphene electrodes and investigate transport properties, using the nonequilibrium Green's function method in combination with spin-polarized density-functional theory. The results show that the device can be used as a nearly perfect spin filter with efficiency approaching 100%. Our calculations provide crucial microscopic information how the four iron cores of the chemical structure are responsible for the spin-resolved transmissions. Moreover, it is also found that the device behaves as a highly efficient spin valve, which is an excellent candidate for spintronics of molecular devices. The ideamore » of combining single-molecule magnets with graphene provides a direction in designing a new class of molecular spintronic devices.« less
Realization of spin wave switch for data processing
NASA Astrophysics Data System (ADS)
Balinskiy, M.; Chiang, H.; Khitun, A.
2018-05-01
In this work, experimental data on a spin wave switch based on spin wave interference is reported. The switch is a three terminal device where spin wave propagation between the source and the drain is modulated by the control spin wave signal. The prototype is a micrometer scale device based on Y3Fe2(FeO4)3 film. The output characteristics show the oscillation of the output spin wave signal as a function of the phase difference between the source and the drain spin wave signals. The On/Off ratio of the prototype exceeds 20 dB at room temperature. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. The advantages and shortcomings of spin wave switches are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, R.; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS; Yun, C.
2016-08-07
The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n{sup −1/2} function. A largermore » CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.« less
NASA Astrophysics Data System (ADS)
Caliskan, Serkan
2018-05-01
Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.
Field tuning the g factor in InAs nanowire double quantum dots.
Schroer, M D; Petersson, K D; Jung, M; Petta, J R
2011-10-21
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanov, A.; Bieler, C.R.; Reisler, H.
1995-09-14
Relative O({sup 3}P{sub j} = 2.1.0) spin-orbit populations correlated with specific NO[{sup 2}{Pi}{sub {Omega}} = {1/2}, 3/2; {nu} = 0; f; {Lambda} = {Pi}(A{prime}), {Pi}(A{double_prime})] product states were obtained following photolysis of NO{sub 2} at excess energies E{sup {+-}} = 390, 425, and 1054 cm{sup -1}. These fully quantum state-resolved measurements were carried out by recording spatial profiles of recoiling NO({sup 2}{Pi}{sub {Omega}}, J, {Lambda}) products using polarized radiation for photolysis and state-selective laser ionization detection. The relative O({sup 3}P{sub j}) populations correlated with each NO({sup 2}{Pi}{sub {Omega}}, J, {Lambda}) state show marked fluctuations at each excess energy as amore » function of rotational state and {Lambda}-doublet component. The relative populations also fluctuate as a function of excess energy. The O({sup 3}P{sub j}) spin-orbit population ratios, when averaged over all measurements, exhibit distributions that are colder than statistical, in agreement with previous results. In particular, we find that, on average, O({sup 3}P{sub 1}):O({sup 3}P{sub 2}) population ratios correlated with the ground NO({sup 2}{Pi}{sub {1/2}}) state are colder than the corresponding ratios correlated with the excited NO({sup 2}{Pi}{sub 3/2}) spin-orbit state. These results are in agreement with the state-specific calculations of Katigiri and Kato. 45 refs., 12 figs., 3 tabs.« less