Sample records for spinach leaf tissue

  1. Epidemiology and control of spinach downy mildew in coastal California

    USDA-ARS?s Scientific Manuscript database

    The most serious threat to global fresh market spinach production is spinach downy mildew, caused by the obligate biotrophic pathogen, Peronospora effusa. Downy mildew causes yellow chlorotic lesions on spinach leaf tissue, often accompanied by abundant sporulation on the undersides of leaves. Very ...

  2. Evidence for the presence of a [2Fe-2S] ferredoxin in bean sprouts.

    PubMed

    Hirasawa, M; Sung, J D; Malkin, R; Zilber, A; Droux, M; Knaff, D B

    1988-07-06

    An iron-sulfur protein with properties similar to those of ferredoxins found in the leaves of higher plants has been isolated from bean sprouts--a non-photosynthetic plant tissue. The bean sprout protein has a molecular mass of 12.5 kDa and appears to contain a single [2Fe-2S] cluster. The absorbance and circular dichroism spectra of the bean sprout protein resemble those of spinach leaf ferredoxin and the bean sprout protein can replace spinach ferredoxin as an electron donor for NADP+ reduction, nitrite reduction and thioredoxin reduction by spinach leaf enzymes. Although the reduced bean sprout protein (Em = -440 mV) is a slightly stronger reductant than spinach ferredoxin and appears to be less acidic than spinach ferredoxin, the two proteins are similar enough so that the bean sprout protein is recognized by an antibody raised against spinach ferredoxin.

  3. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  4. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    PubMed

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  5. Abscisic Acid Accumulation in Spinach Leaf Slices in the Presence of Penetrating and Nonpenetrating Solutes 1

    PubMed Central

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO3, 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage). PMID:16664022

  6. Abscisic Acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes.

    PubMed

    Creelman, R A; Zeevaart, J A

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation.When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO(3), 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage).

  7. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.

    PubMed

    Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X

    2003-04-01

    A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.

  8. Effect of route of introduction and host cultivar on the colonization, internalization, and movement of the human pathogen Escherichia coli O157:H7 in spinach.

    PubMed

    Mitra, R; Cuesta-Alonso, E; Wayadande, A; Talley, J; Gilliland, S; Fletcher, J

    2009-07-01

    Human pathogens can contaminate leafy produce in the field by various routes. We hypothesized that interactions between Escherichia coli O157:H7 and spinach are influenced by the route of introduction and the leaf microenvironment. E. coli O157:H7 labeled with green fluorescent protein was dropped onto spinach leaf surfaces, simulating bacteria-laden raindrops or sprinkler irrigation, and survived on the phylloplane for at least 14 days, with increasing titers and areas of colonization over time. The same strains placed into the rhizosphere by soil infiltration remained detectable on very few plants and in low numbers (10(2) to 10(6) CFU/g fresh tissue) that decreased over time. Stem puncture inoculations, simulating natural wounding, rarely resulted in colonization or multiplication. Bacteria forced into the leaf interior survived for at least 14 days in intercellular spaces but did not translocate or multiply. Three spinach cultivars with different leaf surface morphologies were compared for colonization by E. coli O157:H7 introduced by leaf drop or soil drench. After 2 weeks, cv. Bordeaux hosted very few bacteria. More bacteria were seen on cv. Space and were dispersed over an area of up to 0.3 mm2. The highest bacterial numbers were observed on cv. Tyee but were dispersed only up to 0.15 mm2, suggesting that cv. Tyee may provide protected niches or more nutrients or may promote stronger bacterial adherence. These findings suggest that the spinach phylloplane is a supportive niche for E. coli O157:H7, but no conclusive evidence was found for natural entry into the plant interior. The results are relevant for interventions aimed at minimizing produce contamination by human pathogens.

  9. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions.

    PubMed

    Haigler, Candace H; Singh, Bir; Zhang, Deshui; Hwang, Sangjoon; Wu, Chunfa; Cai, Wendy X; Hozain, Mohamed; Kang, Wonhee; Kiedaisch, Brett; Strauss, Richard E; Hequet, Eric F; Wyatt, Bobby G; Jividen, Gay M; Holaday, A Scott

    2007-04-01

    Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V (max) SPS activity in leaf and fiber. Lines with the highest V (max) SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of (14)C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO(2) concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okita, T.W.; Nakata, P.A.; Anderson, J.M.

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tubermore » subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.« less

  11. Protoplast Volume:Water Potential Relationship and Bound Water Fraction in Spinach Leaves 1

    PubMed Central

    Santakumari, Mane; Berkowitz, Gerald A.

    1989-01-01

    Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential. PMID:16666983

  12. Evaluation of cycloate followed by two-leaf stage phenmedipham application in fresh market spinach

    USDA-ARS?s Scientific Manuscript database

    Fresh market spinach has one primary herbicide, cycloate, which does not control all weeds. Previous studies demonstrated that cycloate PRE followed by (fb) phenmedipham at the four-leaf spinach stage is a safe and effective treatment. However, this treatment is not useful for the main growing seaso...

  13. Behavior of Escherichia coli O157:H7 on damaged leaves of spinach, lettuce, cilantro, and parsley stored at abusive temperatures.

    PubMed

    Khalil, Rowaida K; Frank, Joseph F

    2010-02-01

    Recent foodborne illness outbreaks associated with the consumption of leafy green produce indicates a need for additional information on the behavior of pathogenic bacteria on these products. Previous research indicates that pathogen growth and survival is enhanced by leaf damage. The objective of this study was to compare the behavior of Escherichia coli O157:H7 on damaged leaves of baby Romaine lettuce, spinach, cilantro, and parsley stored at three abusive temperatures (8, 12, and 15 degrees C). The damaged portions of leaves were inoculated with approximately 10(5) CFU E. coli O157:H7 per leaf. The pathogen grew on damaged spinach leaves held for 3 days at 8 and 12 degrees C (P < 0.05), with the population increasing by 1.18 and 2.08 log CFU per leaf, respectively. E. coli O157:H7 did not grow on damaged Romaine leaves at 8 or 12 degrees C, but growth was observed after 8 h of storage at 15 degrees C, with an increase of less than 1.0 log. Growth of E. coli O157:H7 on Romaine lettuce held at 8 or 12 degrees C was enhanced when inocula were suspended in 0.05% ascorbic acid, indicating the possibility of inhibition by oxidation reactions associated with tissue damage. Damaged cilantro and Italian parsley leaves held at 8 degrees C for 4 days did not support the growth of E. coli O157:H7. Behavior of the pathogen in leaf extracts differed from behavior on the damaged tissue. This study provides evidence that the damaged portion of a leafy green is a distinct growth niche that elicits different microbial responses in the various types of leafy greens.

  14. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  15. Effect of spinach cultivar and bacterial adherence factors on survival of Escherichia coli O157:H7 on spinach leaves.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Bauchan, Gary; Giron, Jorge A; Ravishankar, Sadhana

    2013-11-01

    Similar to phytopathogens, human bacterial pathogens have been shown to colonize the plant phylloplane. In addition to environmental factors, such as temperature, UV, relative humidity, etc., the plant cultivar and, specifically, the leaf blade morphological characteristics may affect the persistence of enteropathogens on leafy greens. This study was conducted to evaluate the effect of cultivar-dependent leaf topography and the role of strain phenotypic characteristics on Escherichia coli O157:H7 persistence on organic spinach. Spinach cultivars Emilia, Lazio, Space, and Waitiki were experimentally inoculated with the foodborne E. coli O157:H7 isolate EDL933 and its isogenic mutants deficient in cellulose, curli, or both curli and cellulose production. Leaves of 6-week-old plants were inoculated with 6.5 log CFU per leaf in a biosafety level 2 growth chamber. At 0, 1, 7, and 14 days, E. coli O157:H7 populations were determined by plating on selective medium and verified by laser scanning confocal microscopy. Leaf morphology (blade roughness and stoma density) was evaluated by low-temperature and variable-pressure scanning electron microscopy. E. coli O157:H7 persistence on spinach was significantly affected by cultivar and strain phenotypic characteristics, specifically, the expression of curli. Leaf blade roughness and stoma density influenced the persistence of E. coli O157:H7 on spinach. Cultivar Waitiki, which had the greatest leaf roughness, supported significantly higher E. coli O157:H7 populations than the other cultivars. These two morphological characteristics of spinach cultivars should be taken into consideration in developing intervention strategies to enhance the microbial safety of leafy greens.

  16. Enhancement of Antioxidant Quality of Green Leafy Vegetables upon Different Cooking Method

    PubMed Central

    Hossain, Afzal; Khatun, Mst. Afifa; Islam, Mahfuza; Huque, Roksana

    2017-01-01

    Antioxidant rich green leafy vegetables including garden spinach leaf, water spinach leaf, Indian spinach leaf, and green leaved amaranth were selected to evaluate the effects of water boiling and oil frying on their total phenolic content (TPC), total flavonoid content (TFC), reducing power (RP), and antioxidant capacity. The results revealed that there was a significant increase in TPC, TFC, and RP in all the selected vegetables indicating the effectiveness of the cooking process on the antioxidant potential of leafy vegetables. Both cooking processes enhanced significantly (P<0.05) the radical scavenging ability, especially the oil fried samples showed the highest values. There is a significant reduction in the vitamin C content in all the vegetables due to boiling and frying except in the Indian spinach leaf. However, the present findings suggest that boiling and frying can be used to enhance the antioxidant ability, by increasing the bioaccessibility of health-promoting constituents from the four vegetables investigated in this study. PMID:29043220

  17. Physical and mechanical properties of spinach for whole-surface online imaging inspection

    NASA Astrophysics Data System (ADS)

    Tang, Xiuying; Mo, Chang Y.; Chan, Diane E.; Peng, Yankun; Qin, Jianwei; Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin

    2011-06-01

    The physical and mechanical properties of baby spinach were investigated, including density, Young's modulus, fracture strength, and friction coefficient. The average apparent density of baby spinach leaves was 0.5666 g/mm3. The tensile tests were performed using parallel, perpendicular, and diagonal directions with respect to the midrib of each leaf. The test results showed that the mechanical properties of spinach are anisotropic. For the parallel, diagonal, and perpendicular test directions, the average values for the Young's modulus values were found to be 2.137MPa, 1.0841 MPa, and 0.3914 MPa, respectively, and the average fracture strength values were 0.2429 MPa, 0.1396 MPa, and 0.1113 MPa, respectively. The static and kinetic friction coefficient between the baby spinach and conveyor belt were researched, whose test results showed that the average coefficients of kinetic and maximum static friction between the adaxial (front side) spinach leaf surface and conveyor belt were 1.2737 and 1.3635, respectively, and between the abaxial (back side) spinach leaf surface and conveyor belt were 1.1780 and 1.2451 respectively. These works provide the basis for future development of a whole-surface online imaging inspection system that can be used by the commercial vegetable processing industry to reduce food safety risks.

  18. Effect of spinach cultivar and strain variation on survival of Escherichia coli O157:H7 on spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 outbreaks of infections associated with the consumption of fresh produce have increased in recent years. Bacterial cell surface appendages such as curli and the spinach leaf structure topography influence pathogen attachment and subsequent survival on spinach ...

  19. Association analysis and identification of SNP markers for Stemphylium leaf spot (Stemphylium botryosum f. sp. spinacia) resistance in spinach (Spinacia oleracea)

    USDA-ARS?s Scientific Manuscript database

    Stemphylium leaf spot, caused by Stemphylium botryosum f. sp. spinacia is an important disease in spinach. Use of genetic resistance is an efficient, economic and environment-friendly method to control this disease. The objective of this research was to conduct association analysis and identify SNP ...

  20. Effect of Light and Chilling Temperatures on Chilling-sensitive and Chilling-resistant Plants. Pretreatment of Cucumber and Spinach Thylakoids in Vivo and in Vitro.

    PubMed

    Garber, M P

    1977-05-01

    The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. "Marketer") and spinach (Spinacia oleracea L. "Bloomsdale") were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca(2+)-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light.

  1. Effect of Light and Chilling Temperatures on Chilling-sensitive and Chilling-resistant Plants. Pretreatment of Cucumber and Spinach Thylakoids in Vivo and in Vitro1

    PubMed Central

    Garber, Melvin P.

    1977-01-01

    The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. “Marketer”) and spinach (Spinacia oleracea L. “Bloomsdale”) were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light. PMID:16659980

  2. Summer (sub-arctic) versus winter (sub-tropical) production affects on spinach leaf bio-nutrients: Vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants

    USDA-ARS?s Scientific Manuscript database

    Comparison of spinach (Spinacia oleracea L.) cultivars Lazio and Samish grown during the summer solstice in the sub-arctic versus the winter solstice in the sub-tropics provided insight into interactions between plant environment (day length, light intensity, ambient temperatures), cultivar and leaf...

  3. Texture, composition and anatomy of spinach leaves in relation to nitrogen fertilization.

    PubMed

    Gutiérrez-Rodríguez, Eduardo; Lieth, Heiner J; Jernstedt, Judith A; Labavitch, John M; Suslow, Trevor V; Cantwell, Marita I

    2013-01-01

    The postharvest quality and shelf life of spinach are greatly influenced by cultural practices. Reduced spinach shelf life is a common quandary in the Salinas Valley, California, where current agronomic practices depend on high nitrogen (N) rates. This study aimed to describe the postharvest fracture properties of spinach leaves in relation to N fertilization, leaf age and spinach cultivar. Force-displacement curves, generated by a puncture test, showed a negative correlation between N fertilization and the toughness, stiffness and strength of spinach leaves (P > 0.05). Younger leaves (leaves 12 and 16) from all N treatments were tougher than older leaves (leaves 6 and 8) (P > 0.05). Leaves from the 50 and 75 ppm total N treatments irrespective of spinach cultivar had higher fracture properties and nutritional quality than leaves from other N treatments (P > 0.05). Total alcohol-insoluble residues (AIR) and pectins were present at higher concentrations in low-N grown plants. These plants also had smaller cells and intercellular spaces than high-N grown leaves (P > 0.05). Observed changes in physicochemical and mechanical properties of spinach leaves due to excess nitrogen fertilization were significantly associated with greater postharvest leaf fragility and lower nutritional quality. Copyright © 2012 Society of Chemical Industry.

  4. Application of anaerobic digested residues on safe food production.

    PubMed

    Shi, Ya-juan; Lu, Yong-long; Liang, Dan

    2002-01-01

    Experiments were conducted in pot culture and field plots to study the effects of Anaerobic Digested Residues (ADR) on nitrate accumulation in leaf vegetables, which is critical for the safety of food. The results showed that compared to chemical fertilizer, ADR could decrease the nitrate accumulation in rape and spinach. Furthermore, nitrate content in plant tissue was increased with the increase of percentage of chemical nitrogen in the mixture of chemical fertilizer and ADR. A comparison of spraying digested slurry with irrigation showed that spraying method could reduce the nitrate content of rape, however, a reverse result was found in spinach. The nitrate accumulation in rape affected by ADR was more apparent in high fertility soil than that in low fertility one. To regulate the nitrate accumulation in plant, it was more apparent in rape under greenhouse cultivation, while more apparent in spinach under open-air cultivation. The results demonstrated that the ADR was effective in the safe food production and it may convert the technology to be more profitable.

  5. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation

    NASA Technical Reports Server (NTRS)

    Toroser, D.; McMichael, R. Jr; Krause, K. P.; Kurreck, J.; Sonnewald, U.; Stitt, M.; Huber, S. C.; Davies, E. (Principal Investigator)

    1999-01-01

    Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.

  6. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency 1

    PubMed Central

    Schröppel-Meier, Gabriele; Kaiser, Werner M.

    1988-01-01

    Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves. PMID:16666232

  7. Interaction between Silver Nanoparticles and Spinach Leaf

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

    2013-12-01

    Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. CytoViva Hyperspectral Imaging System was also employed to map the distribution of nanoAg in the leaf profile. Significant sorption of nanoAg on spinach leaf should urge the precaution with potential widespread use of ENPs in agriculture.

  8. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration.

    PubMed

    Lester, Gene E; Makus, Donald J; Hodges, D Mark

    2010-03-10

    Current retail marketing conditions allow produce to receive artificial light 24 h per day during its displayed shelf life. Essential human-health vitamins [ascorbic acid (vit C), folate (vit B(9)), phylloquinone (vit K(1)), alpha-tocopherol (vit E), and the carotenoids lutein, violaxanthin, zeaxanthin, and beta-carotene (provit A)] also are essential for photosynthesis and are biosynthesized in plants by light conditions even under chilling temperatures. Spinach leaves, notably abundant in the aforementioned human-health compounds, were harvested from flat-leaf 'Lazio' and crinkle-leafed 'Samish' cultivars at peak whole-plant maturity as baby (top- and midcanopy) and larger (lower-canopy) leaves. Leaves were placed as a single layer in commercial, clear-polymer retail boxes and stored at 4 degrees C for up to 9 days under continuous light (26.9 micromol.m(2 ).s) or dark. Top-canopy, baby-leaf spinach generally had higher concentrations of all bioactive compounds, on a dry weight basis, with the exception of carotenoids, than bottom-canopy leaves. All leaves stored under continuous light generally had higher levels of all bioactive compounds, except beta-carotene and violaxanthin, and were more prone to wilting, especially the flat-leafed cultivar. All leaves stored under continuous darkness had declining or unchanged levels of the aforementioned bioactive compounds. Findings from this study revealed that spinach leaves exposed to simulated retail continuous light at 4 degrees C, in clear plastic containers, were overall more nutritionally dense (enriched) than leaves exposed to continuous darkness.

  9. Expression of holo and apo forms of spinach acyl carrier protein-I in leaves of transgenic tobacco plants.

    PubMed Central

    Post-Beittenmiller, M A; Schmid, K M; Ohlrogge, J B

    1989-01-01

    Acyl carrier protein (ACP) is a chloroplast-localized cofactor of fatty acid synthesis, desaturation, and acyl transfer. We have transformed tobacco with a chimeric gene consisting of the tobacco ribulose-1,5-bisphosphate carboxylase promoter and transit peptide and the sequence encoding the mature spinach ACP-I. Spinach ACP-I was expressed in the transformed plants at levels twofold to threefold higher than the endogenous tobacco ACPs as determined by protein immunoblots and assays of ACP in leaf extracts. In addition to these elevated levels of the holo form, there were high levels of apoACP-I, a form lacking the 4'-phosphopantetheine prosthetic group and not previously detected in vivo. The mature forms of both apoACP-I and holoACP-I were located in the chloroplasts, indicating that the transit peptide was cleaved and that attachment of the prosthetic group was not required for uptake into the plastid. There were also significant levels of spinach acyl-ACP-I, demonstrating that spinach ACP-I participated in tobacco fatty acid metabolism. Lipid analyses of the transformed plants indicated that the increased ACP levels caused no significant alterations in leaf lipid biosynthesis. PMID:2535529

  10. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform.

    PubMed

    Rolland, N; Droux, M; Lebrun, M; Douce, R

    1993-01-01

    The last enzymatic step for L-cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL, EC 4.2.99.8) which synthesizes L-cysteine from O-acetylserine and "sulfide." We have isolated and characterized a full-length cDNA (1432 bp) from a lambda gt11 library of spinach leaf encoding the complete precursor of the chloroplast isoform. The 1149-nucleotide open reading frame coding for O-acetylserine(thiol)lyase was in the direction opposite that of the lambda gt11 beta-galactosidase gene. The derived amino acid sequence indicates that the protein precursor consists of 383 amino acid residues including a N-terminal presequence peptide of 52 residues. The amino acid sequence of mature spinach chloroplast O-acetylserine(thiol)lyase shows 40 and 57% homology with its bacterial counterparts. Sequence comparison with several pyridoxal 5'-phosphate-containing proteins reveals the presence of a lysine residue assumed to be involved in cofactor binding. A synthetic cDNA was constructed, coding for the entire 331-amino-acid mature O-acetylserine(thiol)lyase and for an initiating methionine. A high level of expression of the active mature chloroplast isoform was achieved in an Escherichia coli strain carrying the T7 RNA polymerase system (F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, 1990, in Methods in Enzymology, D. V. Goeddel, Ed., Vol. 185, pp. 60-89, Academic Press, San Diego, CA). Addition of pyridoxine to the bacterial growth medium enhanced the enzyme activity due to the recombinant protein. The extent of production is 25-fold higher than in chloroplast from spinach leaves and the recombinant protein presents the relative molecular mass and immunological properties of the natural enzyme from spinach leaf chloroplast. This work, together with our previous biochemical studies, are in accordance with a prokaryotic type enzyme for L-cysteine biosynthesis in higher plant chloroplasts. Southern blot analysis indicated that O-acetylserine(thiol)lyase is encoded by multiple genes in the spinach leaf genomic DNA.

  11. Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea.

    PubMed

    Cruchaga, Saioa; Artola, Ekhiñe; Lasa, Berta; Ariz, Idoia; Irigoyen, Ignacio; Moran, Jose Fernando; Aparicio-Tejo, Pedro M

    2011-03-01

    The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts

    PubMed Central

    Crozier, Louise; Hedley, Pete E.; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C.; Toth, Ian; Jackson, Robert W.; Holden, Nicola J.

    2016-01-01

    Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai,’ to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant–microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai. PMID:27462311

  13. Ion Relations of Symplastic and Apoplastic Space in Leaves from Spinacia oleracea L. and Pisum sativum L. under Salinity 1

    PubMed Central

    Speer, Michael; Kaiser, Werner M.

    1991-01-01

    Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl−) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3−/Cl− uptake by roots. PMID:16668541

  14. Spinach and mustard greens response to soil type, sulfur addition and lithium level

    USDA-ARS?s Scientific Manuscript database

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  15. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system.

    PubMed

    Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka

    2011-09-01

    The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.

  16. Characterization of E coli biofim formations on baby spinach leaf surfaces using hyperspectral fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Cho, Hyunjeong; Baek, Insuck; Oh, Mirae; Kim, Sungyoun; Lee, Hoonsoo; Kim, Moon S.

    2017-05-01

    Bacterial biofilm formed by pathogens on fresh produce surfaces is a food safety concern because the complex extracellular matrix in the biofilm structure reduces the reduction and removal efficacies of washing and sanitizing processes such as chemical or irradiation treatments. Therefore, a rapid and nondestructive method to identify pathogenic biofilm on produce surfaces is needed to ensure safe consumption of fresh, raw produce. This research aimed to evaluate the feasibility of hyperspectral fluorescence imaging for detecting Escherichia.coli (ATCC 25922) biofilms on baby spinach leaf surfaces. Samples of baby spinach leaves were immersed and inoculated with five different levels (from 2.6x104 to 2.6x108 CFU/mL) of E.coli and stored at 4°C for 24 h and 48 h to induce biofilm formation. Following the two treatment days, individual leaves were gently washed to remove excess liquid inoculums from the leaf surfaces and imaged with a hyperspectral fluorescence imaging system equipped with UV-A (365 nm) and violet (405 nm) excitation sources to evaluate a spectral-image-based method for biofilm detection. The imaging results with the UV-A excitation showed that leaves even at early stages of biofilm formations could be differentiated from the control leaf surfaces. This preliminary investigation demonstrated the potential of fluorescence imaging techniques for detection of biofilms on leafy green surfaces.

  17. Biocontrol of Escherichia coli O157: H7 on fresh-cut leafy greens.

    PubMed

    Boyacioglu, Olcay; Sharma, Manan; Sulakvelidze, Alexander; Goktepe, Ipek

    2013-01-01

    The effect of a bacteriophage cocktail (EcoShield™) that is specific against Escherichia coli O157:H7 was evaluated against a nalidixic acid-resistant enterohemorrhagic E. coli O157:H7 RM4407 (EHEC) strain on leafy greens stored under either (1) ambient air or (2) modified atmosphere (MA; 5% O 2 /35% CO 2 /60% N 2 ). Pieces (~2 × 2 cm 2 ) of leafy greens (lettuce and spinach) inoculated with 4.5 log CFU/cm 2 EHEC were sprayed with EcoShield™ (6.5 log PFU/cm 2 ). Samples were stored at 4 or 10°C for up to 15 d. On spinach, the level of EHEC declined by 2.38 and 2.49 log CFU/cm 2 at 4 and 10°C, respectively, 30 min after phage application (p ≤ 0.05). EcoShield™ was also effective in reducing EHEC on the surface of green leaf lettuce stored at 4°C by 2.49 and 3.28 log units in 30 min and 2 h, respectively (p ≤ 0.05). At 4°C under atmospheric air, the phage cocktail significantly (p ≤ 0.05) lowered the EHEC counts in one day by 1.19, 3.21 and 3.25 log CFU/cm 2 on spinach, green leaf and romaine lettuce, respectively compared with control (no bacteriophage) treatments. When stored under MA at 4°C, phages reduced (p ≤ 0.05) EHEC populations by 2.18, 3.50 and 3.13 log CFU/cm 2 , on spinach, green leaf and romaine lettuce. At 10°C, EHEC reductions under atmospheric air storage were 1.99, 3.90 and 3.99 log CFU/cm 2 (p ≤ 0.05), while population reductions under MA were 3.08, 3.89 and 4.34 logs on spinach, green leaf and romaine lettuce, respectively, compared with controls (p ≤ 0.05). The results of this study showed that bacteriophages were effective in reducing the levels of E. coli O157:H7 on fresh leafy produce, and that the reduction was further improved when produce was stored under the MA conditions.

  18. Effects of plant maturity and bacterial inoculum level on the colonization and internalization of escherichia coli 0157:H7 in growing spinach leaves.

    USDA-ARS?s Scientific Manuscript database

    The incidence of foodborne outbreaks linked to fresh produce has increased in the United States. Particularly noteworthy, was the 2006 Escherichia coli O157:H7 outbreak associated with pre-packaged baby spinach. The study aimed to determine whether E. coli O157:H7 would be present in the aerial leaf...

  19. Purification of Peroxisomes and Mitochondria from Spinach Leaf by Percoll Gradient Centrifugation 1

    PubMed Central

    Schwitzguebel, Jean-Paul; Siegenthaler, Paul-André

    1984-01-01

    A procedure was developed to purify simultaneously peroxisomes and mitochondria from spinach (Spinacia oleracea L.) leaf under isoosmotic and low viscosity conditions. This method involved differential centrifugation and density gradient centrifugation on four layers of Percoll. Chlorophyll-free preparations of highly intact and active organelles were obtained and cross-contamination was negligible. Both organelles were stable for several hours, even if they remained in Percoll. Purified mitochondria were able to carry out the oxidation of different substrates with excellent respiratory control and ADP:O ratios. The method described in the present work was also suitable to purify mitochondria and peroxisomes from potato (Solanum tuberosum L.) tubers. PMID:16663685

  20. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology 1

    PubMed Central

    Edwards, Gerald E.; Black, Clanton C.

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571

  1. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology.

    PubMed

    Edwards, G E; Black, C C

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.

  2. Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach.

    PubMed

    Coumar, M Vassanda; Parihar, R S; Dwivedi, A K; Saha, J K; Rajendiran, S; Dotaniya, M L; Kundu, S

    2016-01-01

    Introduction of heavy metals in the environment by various anthropogenic activities has become a potential treat to life. Among the heavy metals, cadmium (Cd) shows relatively high soil mobility and has high phyto-mammalian toxicity. Integration of soil remediation and ecosystem services, such as carbon sequestration in soils through organic amendments, may provide an attractive land management option for contaminated sites. The application of biochar in agriculture has recently received much attention globally due to its associated multiple benefits, particularly, long-term carbon storage in soil. However, the application of biochar from softwood crop residue for heavy metal immobilization, as an alternative to direct field application, has not received much attention. Hence, a pot experiment was conducted to study the effect of pigeon pea biochar on cadmium mobility in a soil-plant system in cadmium-spiked sandy loam soil. The biochar was prepared from pigeon pea stalk through a slow pyrolysis method at 300 °C. The experiment was designed with three levels of Cd (0, 5, and 10 mg Cd kg(-1) soil) and three levels of biochar (0, 2.5, and 5 g kg(-1) soil) using spinach as a test crop. The results indicate that with increasing levels of applied cadmium at 5 and 10 mg kg(-1) soil, the dry matter yield (DMY) of spinach leaf decreased by 9.84 and 18.29 %, respectively. However, application of biochar (at 2.5 and 5 g kg(-1) soil) significantly increased the dry matter yield of spinach leaf by 5.07 and 15.02 %, respectively, and root by 14.0 and 24.0 %, respectively, over the control. Organic carbon content in the post-harvest soil increased to 34.9 and 60.5 % due to the application of biochar 2.5 and 5 g kg(-1) soil, respectively. Further, there was a reduction in the diethylene triamine pentaacetic acid (DTPA)-extractable cadmium in the soil and in transfer coefficient values (soil to plant), as well as its concentrations in spinach leaf and root, indicating that cadmium mobility was decreased due to biochar application. This study shows that pigeon pea biochar has the potential to increase spinach yield and reduce cadmium mobility in contaminated sandy soil.

  3. Distinctive Responses of Ribulose-1,5-Bisphosphate Carboxylase and Carbonic Anhydrase in Wheat Leaves to Nitrogen Nutrition and their Possible Relationships to CO2-Transfer Resistance 1

    PubMed Central

    Makino, Amane; Sakashita, Hiroshi; Hidema, Jun; Mae, Tadahiko; Ojima, Kunihiko; Osmond, Barry

    1992-01-01

    The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport. PMID:16653191

  4. The effect of cerium (III) on the chlorophyll formation in spinach.

    PubMed

    Fashui, Hong; Ling, Wang; Xiangxuan, Meng; Zheng, Wei; Guiwen, Zhao

    2002-12-01

    The effect of Ce(3+) on the chlorophyll (chl) of spinach was studied in pot culture experiments. The results showed that Ce(3+) could obviously stimulate the growth of spinach and increase its chlorophyll contents and photosynthetic rate. It could also improve the PSII formation and enhance its electron transport rate of PSII as well. By inductively coupled plasma-mass spectroscopy and atom absorption spectroscopy methods, it was revealed that the rare-earth-element (REE) distribution pattern in the Ce(3+)-treated spinach was leaf > root > shoot in Ce(3+) contents. The spinach leaves easily absorbed REEs. The Ce(3+) contents of chloroplast and chlorophyll of the Ce(3+)-treated spinach were higher than that of any other rare earth and were much higher than that of the control; it was also suggested that Ce(3+) could enter the chloroplast and bind easily to chlorophyll and might replace magnesium to form Ce-chlorophyll. By ultraviolet-visible, Fourier transform infrared, and extended X-ray absorption fine structure (EXAFS) methods, Ce(3+)-coordinated nitrogen of porphyrin rings with eight coordination numbers and average length of the Ce-N bond of 0.251 nm.

  5. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, S.D.; Oosterhuis, D.M.

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leafmore » water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.« less

  6. Induction of Hexose-Phosphate Translocator Activity in Spinach Chloroplasts.

    PubMed Central

    Quick, W. P.; Scheibe, R.; Neuhaus, H. E.

    1995-01-01

    Many environmental and experimental conditions lead to accumulation of carbohydrates in photosynthetic tissues. This situation is typically associated with major changes in the mRNA and protein complement of the cell, including metabolic repression of photosynthetic gene expression, which can be induced by feeding carbohydrates directly to leaves. In this study we examined the carbohydrate transport properties of chloroplasts isolated from spinach (Spinacia oleracea L.) leaves fed with glucose for several days. These chloroplasts contain large quantities of starch, can perform photosynthetic 3-phosphoglycerate reduction, and surprisingly also have the ability to perform starch synthesis from exogenous glucose-6-phosphate (Glc-6-P) both in the light and in darkness, similarly to heterotrophic plastids. Glucose-1-phosphate does not act as an exogenous precursor for starch synthesis. Light, ATP, and 3-phosphoglyceric acid stimulate Glc-6-P-dependent starch synthesis. Short-term uptake experiments indicate that a novel Glc-6-P-translocator capacity is present in the envelope membrane, exhibiting an apparent Km of 0.54 mM and a Vmax of 2.9 [mu]mol Glc-6-P mg-1 chlorophyll h-1. Similar results were obtained with chloroplasts isolated from glucose-fed potato leaves and from water-stressed spinach leaves. The generally held view that sugar phosphates transported by chloroplasts are confined to triose phosphates is not supported by these results. A physiological role for a Glc-6-P translocator in green plastids is presented with reference to the source/sink function of the leaf. PMID:12228584

  7. Proximate composition and mineral content of two edible species of Cnidoscolus (tree spinach).

    PubMed

    Kuti, J O; Kuti, H O

    1999-01-01

    Proximate composition and mineral content of raw and cooked leaves of two edible tree spinach species (Cnidoscolus chayamansa and C. aconitifolius), known locally as 'chaya', were determined and compared with that of a traditional green vegetable, spinach (Spinicia oleraceae). Results of the study indicated that the edible leafy parts of the two chaya species contained significantly (p<0.05) greater amounts of crude protein, crude fiber, Ca, K, Fe, ascorbic acid and beta-carotene than the spinach leaf. However, no significant (p>0.05) differences were found in nutritional composition and mineral content between the chaya species, except minor differences in the relative composition of fatty acids, protein and amino acids. Cooking of chaya leaves slightly reduced nutritional composition of both chaya species. Cooking is essential prior to consumption to inactivate the toxic hydrocyanic glycosides present in chaya leaves. Based on the results of this study, the edible chaya leaves may be good dietary sources of minerals (Ca, K and Fe) and vitamins (ascorbic acid and beta-carotene).

  8. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on themore » reaction.« less

  9. Comparison of Survival of Campylobacter jejuni in the Phyllosphere with That in the Rhizosphere of Spinach and Radish Plants

    PubMed Central

    Brandl, Maria T.; Haxo, Aileen F.; Bates, Anna H.; Mandrell, Robert E.

    2004-01-01

    Campylobacter jejuni has been isolated previously from market produce and has caused gastroenteritis outbreaks linked to produce. We have tested the ability of this human pathogen to utilize organic compounds that are present in leaf and root exudates and to survive in the plant environment under various conditions. Carbon utilization profiles revealed that C. jejuni can utilize many organic acids and amino acids available on leaves and roots. Despite the presence of suitable substrates in the phyllosphere and the rhizosphere, C. jejuni was unable to grow on lettuce and spinach leaves and on spinach and radish roots of plants incubated at 33°C, a temperature that is conducive to its growth in vitro. However, C. jejuni was cultured from radish roots and from the spinach rhizosphere for at least 23 and 28 days, respectively, at 10°C. This enteric pathogen also persisted in the rhizosphere of spinach for prolonged periods of time at 16°C, a temperature at which many cool-season crops are grown. The decline rate constants of C. jejuni populations in the spinach and radish rhizosphere were 10- and 6-fold lower, respectively, than on healthy spinach leaves at 10°C. The enhanced survival of C. jejuni in soil and in the rhizosphere may be a significant factor in its contamination cycle in the environment and may be associated with the sporadic C. jejuni incidence and campylobacteriosis outbreaks linked to produce. PMID:14766604

  10. Identification of heavy metals on vegetables at the banks of Kaligarang river using neutron analysis activation method

    NASA Astrophysics Data System (ADS)

    Yulianti, D.; Marwoto, P.; Fianti

    2018-03-01

    This research aims to determine the type, concentration, and distribution of heavy metals in vegetables on the banks river Kaligarang using Neutron Analysis Activation (NAA) Method. The result is then compared to its predefined threshold. Vegetable samples included papaya leaf, cassava leaf, spinach, and water spinach. This research was conducted by taking a snippet of sediment and vegetation from 4 locations of Kaligarang river. These snippets are then prepared for further irradiated in the reactor for radioactive samples emiting γ-ray. The level of γ-ray energy determines the contained elements of sample that would be matched to Neutron Activation Table. The results showed that vegetablesat Kaligarang are containing Cr-50, Co-59, Zn-64, Fe-58, and Mn-25, and well distributed at all research locations. Furthermore, the level of the detected metal elements is less than the predefined threshold.

  11. Surface Structures Involved in Plant Stomata and Leaf Colonization by Shiga-Toxigenic Escherichia Coli O157:H7

    PubMed Central

    Saldaña, Zeus; Sánchez, Ethel; Xicohtencatl-Cortes, Juan; Puente, Jose Luis; Girón, Jorge A.

    2011-01-01

    Shiga-toxigenic Escherichia coli (STEC) O157:H7 uses a myriad of surface adhesive appendages including pili, flagella, and the type 3 secretion system (T3SS) to adhere to and inflict damage to the human gut mucosa. Consumption of contaminated ground beef, milk, juices, water, or leafy greens has been associated with outbreaks of diarrheal disease in humans due to STEC. The aim of this study was to investigate which of the known STEC O157:H7 adherence factors mediate colonization of baby spinach leaves and where the bacteria reside within tainted leaves. We found that STEC O157:H7 colonizes baby spinach leaves through the coordinated production of curli, the E. coli common pilus, hemorrhagic coli type 4 pilus, flagella, and T3SS. Electron microscopy analysis of tainted leaves revealed STEC bacteria in the internal cavity of the stomata, in intercellular spaces, and within vascular tissue (xylem and phloem), where the bacteria were protected from the bactericidal effect of gentamicin, sodium hypochlorite or ozonated water treatments. We confirmed that the T3S escN mutant showed a reduced number of bacteria within the stomata suggesting that T3S is required for the successful colonization of leaves. In agreement, non-pathogenic E. coli K-12 strain DH5α transformed with a plasmid carrying the locus of enterocyte effacement (LEE) pathogenicity island, harboring the T3SS and effector genes, internalized into stomata more efficiently than without the LEE. This study highlights a role for pili, flagella, and T3SS in the interaction of STEC with spinach leaves. Colonization of plant stomata and internal tissues may constitute a strategy by which STEC survives in a nutrient-rich microenvironment protected from external foes and may be a potential source for human infection. PMID:21887151

  12. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics

    NASA Astrophysics Data System (ADS)

    Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  13. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.

    PubMed

    Wong, Min Hao; Giraldo, Juan P; Kwak, Seon-Yeong; Koman, Volodymyr B; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors-single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal-embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm -1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  14. Decrease of Nitrate Reductase Activity in Spinach Leaves during a Light-Dark Transition 1

    PubMed Central

    Riens, Burgi; Heldt, Hans Walter

    1992-01-01

    In leaves of spinach plants (Spinacia oleracea L.) performing CO2 and NO3− assimilation, at the time of sudden darkening, which eliminates photosystem I-dependent nitrite reduction, only a minor temporary increase of the leaf nitrite content is observed. Because nitrate reduction does not depend on redox equivalents generated by photosystem I activity, a continuation of nitrate reduction after darkening would result in a large accumulation of nitrite in the leaves within a very short time, which is not observed. Measurements of the extractable nitrate reductase activity from spinach leaves assayed under standard conditions showed that in these leaves the nitrate reductase activity decreased during darkening to 15% of the control value with a half-time of only 2 minutes. Apparently, in these leaves nitrate reductase is very rapidly inactivated at sudden darkness avoiding an accumulation of the toxic nitrite in the cells. PMID:16668679

  15. Inhibition of Escherichia coli O157:H7 and Salmonella enterica on spinach and identification of antimicrobial substances produced by a commercial Lactic Acid Bacteria food safety intervention.

    PubMed

    Cálix-Lara, Thelma F; Rajendran, Mahitha; Talcott, Stephen T; Smith, Stephen B; Miller, Rhonda K; Castillo, Alejandro; Sturino, Joseph M; Taylor, T Matthew

    2014-04-01

    The microbiological safety of fresh produce is of concern for the U.S. food supply. Members of the Lactic Acid Bacteria (LAB) have been reported to antagonize pathogens by competing for nutrients and by secretion of substances with antimicrobial activity, including organic acids, peroxides, and antimicrobial polypeptides. The objectives of this research were to: (i) determine the capacity of a commercial LAB food antimicrobial to inhibit Escherichia coli O157:H7 and Salmonella enterica on spinach leaf surfaces, and (ii) identify antimicrobial substances produced in vitro by the LAB comprising the food antimicrobial. Pathogens were inoculated on freshly harvested spinach, followed by application of the LAB antimicrobial. Treated spinach was aerobically incubated up to 12 days at 7 °C and surviving pathogens enumerated via selective/differential plating. l-Lactic acid and a bacteriocin-like inhibitory substance (BLIS) were detected and quantified from cell-free fermentates obtained from LAB-inoculated liquid microbiological medium. Application of 8.0 log10 CFU/g LAB produced significant (p < 0.05) reductions in E. coli O157:H7 and Salmonella populations on spinach of 1.6 and 1.9 log10 CFU/g, respectively. It was concluded the LAB antimicrobial inhibited foodborne pathogens on spinach during refrigerated storage, likely the result of the production of metabolites with antimicrobial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Pre-harvest nitrogen and azoxystrobin application enhances raw product quality and post-harvest shelf-life of baby spinach (Spinacia oleracea L.).

    PubMed

    Conversa, Giulia; Bonasia, Anna; Lazzizera, Corrado; Elia, Antonio

    2014-12-01

    Baby spinach was cultivated under spring or winter conditions to investigate the effect of azoxystrobin and, only in the winter cycle, of nitrogen fertilisation (0, 80 and 120 kg ha(-1) of N) on yield and product morphological traits at harvest and on the physical, visual, bio-physiological, nutritional and anti-nutritional characteristics change during cold storage. The yield was 37% higher in spring than in the overwinter cycle. Spring grown plant had leaves of lighter colour, lower in dry matter content, higher in ascorbic acid, nitrate, and total phenol content. They had higher weight loss during storage than the winter product. Fresh weight was favoured by azoxystrobin only in the non-fertilised plants. During storage azoxystrobin reduced leaf dehydration, contrasted weight loss and the increase in phenols in leaves from fertilised plants. N supply positively affected yield, and greenness of raw and stored leaves. N fertilisation lowered weight loss due to respiration and showed a protective effect on membrane integrity during storage. Azoxystrobin proved effective in reducing nitrate leaf content. Azoxystrobin, especially in fertilised crop, is useful in improving the physiological quality, the safety, and the nutritional quality of baby spinach. A rate of 80 kg ha(-1) can be suggested as optimum N fertilisation. © 2014 Society of Chemical Industry.

  17. Classification of fecal contamination on leafy greens by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Jun, Won; Kim, Moon S.; Chao, Kaunglin; Kang, Sukwon; Chan, Diane E.; Lefcourt, Alan

    2010-04-01

    This paper reported the development of hyperspectral fluorescence imaging system using ultraviolet-A excitation (320-400 nm) for detection of bovine fecal contaminants on the abaxial and adaxial surfaces of romaine lettuce and baby spinach leaves. Six spots of fecal contamination were applied to each of 40 lettuce and 40 spinach leaves. In this study, the wavebands at 666 nm and 680 nm were selected by the correlation analysis. The two-band ratio, 666 nm / 680 nm, of fluorescence intensity was used to differentiate the contaminated spots from uncontaminated leaf area. The proposed method could accurately detect all of the contaminated spots.

  18. Spinacia oleracea L. leaf stomata harboring Cryptosporidium parvum oocysts: A potential threat for food safety

    USDA-ARS?s Scientific Manuscript database

    Scientific literature documents the prevalence of Cryptosporidium oocysts in irrigation waters and on fresh produce. In the present study spinach leaves were experimentally exposed to Cryptosporidium oocysts which were subsequently irrigated with clean water daily for 5 days. As determined by confoc...

  19. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Sharma, Vijay K

    2014-03-03

    Contamination of fresh produce could represent a public health concern because no terminal kill step is applied during harvest or at the processing facility to kill pathogens. In addition, once contaminated, pathogens may internalize into produce and be protected from disinfectants during the postharvest processing step. The objective of the current study was to determine the potential internalization of Escherichia coli O157:H7 into spinach roots and subsequent transfer to the edible parts. Because curli are involved in biofilm formation, we investigated whether their presence influence the internalization of E. coli O157:H7 into spinach. Further, the effect of the spinach cultivar on E. coli O157:H7 internalization was evaluated. Spinach plants were grown in contaminated soil as well as hydroponically to prevent mechanical wounding of the roots and inadvertent transfer of pathogens from the contamination source to the non-exposed plant surfaces. Results showed that E. coli O157:H7 could internalize into hydroponically grown intact spinach plants through the root system and move to the stem and leaf level. The incidence of internalization was significantly higher in hydroponically grown plants when roots were exposed to 7 log CFU/mL compared to those exposed to 5 log CFU/mL. The effect of cultivar on E. coli O157:H7 internalization was not significant (P>0.05) for the analyzed spinach varieties, internalization incidences showing almost equal distribution between Space and Waitiki, 49.06% and 50.94% respectively. Wounding of the root system in hydroponically grown spinach increased the incidence of E. coli O157:H7 internalization and translocation to the edible portions of the plant. Experimental contamination of the plants grown in soil resulted in a greater number of internalization events then in those grown hydroponically, suggesting that E. coli O157:H7 internalization is dependent on root damage, which is more likely to occur when plants are grown in soil. Curli expression by E. coli O157:H7 had no significant effect on its root uptake by spinach plants. Published by Elsevier B.V.

  20. Correlating Arsenic-Induced Morphological Change in Spinach Leaves With Leaf Spectral Characteristics

    USDA-ARS?s Scientific Manuscript database

    Arsenic (As) is a widely spread soil contaminant which can be accumulated into plant parts. The presence of As in edible portions of plants allows for potentially dangerous ingestion by humans and animals. The ability to detect As in plants is an important tool to minimize such risks. Remote sens...

  1. [Determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry].

    PubMed

    Lin, Li; Chen, Guang; Chen, Yuhong

    2011-07-01

    A method was established for the determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP/ MS). Alkaline extraction and IC-ICP/MS were applied as the sample pre-treatment method and the detection technique respectively, for iodate and iodide determination. Moreover, high-temperature pyrolysis absorption was adopted as the pre-treatment method for total iodine analysis, which finally converted all the iodine species into iodide and measured the iodide by IC-ICP/MS. The recoveries of iodine for alkaline extraction and high-temperature pyrolysis absorption were 89.6%-97.5% and 95.2%-111.2%, respectively. The results were satisfactory. The detection limit of iodine was 0.010 mg/kg. The iodine and its speciation contents in several kinds of plant samples such as seaweeds, kelp, cabbage, tea leaf and spinach were investigated. It was shown that the iodine in seaweeds mainly existed as organic iodine; while the ones in kelp, cabbage, tea leaf and spinach mainly existed as inorganic iodine.

  2. Functional Metagenomics of Escherichia coli O157:H7 Interactions with Spinach Indigenous Microorganisms during Biofilm Formation

    PubMed Central

    Carter, Michelle Q.; Xue, Kai; Brandl, Maria T.; Liu, Feifei; Wu, Liyou; Louie, Jacqueline W.; Mandrell, Robert E.; Zhou, Jizhong

    2012-01-01

    The increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157) with spinach leaf indigenous microorganisms during co-colonization and establishment of a mixed biofilm on a stainless steel surface. Stainless steel surface was selected to mimic the surface of produce-processing equipment, where retention of foodborne pathogens such as EcO157 could serve as a potential source for transmission. We observed a positive effect of spinach-associated microbes on the initial attachment of EcO157, but an antagonistic effect on the EcO157 population at the later stage of biofilm formation. Metagenomic analyses of the biofilm community with the GeoChip revealed an extremely diverse community (gene richness, 23409; Shannon-Weiner index H, 9.55). Presence of EcO157 in the mixed biofilm resulted in a significant decrease in the community α-diversity (t test, P<0.05), indicating a putative competition between the pathogen and indigenous spinach microbes. The decrease in the β-diversity of the EcO157-inoculated biofilm at 48 h (ANOVA, P<0.05) suggested a convergent shift in functional composition in response to EcO157 invasion. The success of EcO157 in the mixed biofilm is likely associated with its metabolic potential in utilizing spinach nutrients: the generation time of EcO157 in spinach lysates at 28°C is ∼ 38 min, which is comparable to that in rich broth. The significant decrease in the abundance of many genes involved in carbon, nitrogen, and phosphorus cycling in the EcO157-inoculated biofilms (t test, P<0.05) further support our conclusion that competition for essential macronutrients is likely the primary interaction between the EcO157 and indigenous spinach-biofilm species. PMID:22957052

  3. Betaine aldehyde dehydrogenase isozymes of spinach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase inmore » salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.« less

  4. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein.

    PubMed

    Bachmann, M; Huber, J L; Liao, P C; Gage, D A; Huber, S C

    1996-06-03

    The inhibitor protein (IP) that inactivates spinach leaf NADH:nitrate reductase (NR) has been identified for the first time as a member of the eukaryotic 14-3-3 protein family based on three lines of evidence. First, the sequence of an eight amino acid tryptic peptide, obtained from immunopurified IP, matched that of a highly conserved region of the 14-3-3 proteins. Second, an authentic member of the 14-3-3 family, recombinant Arabidopsis GF14omega, caused inactivation of phospho-NR in a magnesium-dependent manner identical to IP. Third, an anti-GF14 monoclonal antibody cross-reacted with IP and anti-IP monoclonal antibodies cross-reacted with GF14omega.

  5. Selection of Leafy Green Vegetable Varieties for a Pick-and-Eat Diet Supplement on ISS

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Wheeler, Raymond M.; Stutte, Gary W.; Richards, Jeffrey T.; Spencer, LaShelle E.; Hummerick, Mary E.; Douglas, Grace L.; Sirmons, Takiyah

    2015-01-01

    Several varieties of leafy vegetables were evaluated with the goal of selecting those with the best growth, nutrition, and organoleptic acceptability for ISS. Candidate species were narrowed to commercially available cultivars with desirable growth attributes for space (e.g., short stature and rapid growth). Seeds were germinated in controlled environment chambers under conditions similar to what might be found in the Veggie plant growth chamber on ISS. Eight varieties of leafy greens were grown: 'Tyee' spinach, 'Flamingo' spinach, 'Outredgeous' Red Romaine lettuce, 'Waldmann's Dark Green' leaf lettuce, 'Bull's Blood' beet, 'Rhubarb' Swiss chard, 'Tokyo Bekana' Chinese cabbage, and Mizuna. Plants were harvested at maturity and biometric data on plant height, diameter, chlorophyll content, and fresh mass were obtained. Tissue was ground and extractions were performed to determine the tissue elemental content of Potassium (K), Magnesium (Mg), Calcium (Ca) and Iron (Fe). Following the biometric/elemental evaluation, four of the eight varieties were tested further for levels of anthocyanins, antioxidant (ORAC-fluorescein) capacity, lutein, zeaxanthin, and Vitamin K. For sensory evaluation, 'Outredgeous' lettuce, Swiss chard, Chinese cabbage, and Mizuna plants were grown, harvested when mature, packaged under refrigerated conditions, and sent to the JSC Space Food Systems Laboratory. Tasters evaluated overall acceptability, appearance, color intensity, bitterness, flavor, texture, crispness and tenderness. All varieties received acceptable scores with overall ratings greater than 6 on a 9-point hedonic scale. Chinese cabbage was the highest rated, followed by Mizuna, 'Outredgeous' lettuce, and Swiss chard. Based on our results, the selected varieties of Chinese cabbage, lettuce, Swiss chard and Mizuna seem suitable for a pick-and-eat scenario on ISS with a ranking based on all factors analyzed to help establish priority.

  6. Retail display conditions of continuous light and dark on the disposition of vitamins in baby-leaf spinach

    USDA-ARS?s Scientific Manuscript database

    Human-health benefits from the consumption of fruits and vegetables are due to the many bioactive compounds in these foods. Many of these compounds are heavily influenced by genetics (i.e. cultivar) and the environment, especially the many pigments and vitamins that can degrade during processing an...

  7. Coupling Spore Traps and Quantitative PCR Assays for Detection of the Downy Mildew Pathogens of Spinach (Peronospora effusa) and Beet (P. schachtii)

    PubMed Central

    Klosterman, Steven J.; Anchieta, Amy; McRoberts, Neil; Koike, Steven T.; Subbarao, Krishna V.; Voglmayr, Hermann; Choi, Young-Joon; Thines, Marco; Martin, Frank N.

    2016-01-01

    Downy mildew of spinach (Spinacia oleracea), caused by Peronospora effusa, is a production constraint on production worldwide, including in California, where the majority of U.S. spinach is grown. The aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay for detection of airborne inoculum of P. effusa in California. Among oomycete ribosomal DNA (rDNA) sequences examined for assay development, the highest nucleotide sequence identity was observed between rDNA sequences of P. effusa and P. schachtii, the cause of downy mildew on sugar beet and Swiss chard in the leaf beet group (Beta vulgaris subsp. vulgaris). Single-nucleotide polymorphisms were detected between P. effusa and P. schachtii in the 18S rDNA regions for design of P. effusa- and P. schachtii-specific TaqMan probes and reverse primers. An allele-specific probe and primer amplification method was applied to determine the frequency of both P. effusa and P. schachtii rDNA target sequences in pooled DNA samples, enabling quantification of rDNA of P. effusa from impaction spore trap samples collected from spinach production fields. The rDNA copy numbers of P. effusa were, on average, ≈3,300-fold higher from trap samples collected near an infected field compared with those levels recorded at a site without a nearby spinach field. In combination with disease-conducive weather forecasting, application of the assays may be helpful to time fungicide applications for disease management. PMID:24964150

  8. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    NASA Technical Reports Server (NTRS)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  9. Chloroplast Growth and Replication in Germinating Spinach Cotyledons following Massive γ-Irradiation of the Seed

    PubMed Central

    Rose, Ray; Possingham, John

    1976-01-01

    Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis. Images PMID:16659421

  10. Antibacterial activity of oregano oil against antibiotic resistant Salmonella enterica on organic leafy greens at varying exposure times and storage temperatures

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the effectiveness of oregano oil on four organic leafy greens (iceberg and romaine lettuces and mature and baby spinaches) inoculated with Salmonella Newport as a function of treatment exposure times as well as storage temperatures. Leaf samples were wash...

  11. Escherichia coli O157:H7 biofilm formation and internalization on lettuce and spinach leaf surfaces reduces efficacy of irradiation and sodium hypochlorite washes

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 contamination of leafy green vegetables is an ongoing concern for consumers. Biofilm-associated and internalized pathogens are relatively resistant to chemical treatments, but little is known about the response of these protected pathogens to irradiation. Leaves of Romaine l...

  12. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: Effects of cultivar, leaf size, and storage duration

    USDA-ARS?s Scientific Manuscript database

    Human-health benefits derived from consumption of fruits and vegetables are due to the many bioactive compounds found in produce. The concentrations of these bioactive compounds are heavily influenced by genetics (i.e. cultivar) and environment, especially the many pigments and vitamins that can ch...

  13. Infrared sensor-based aerosol sanitization system for controlling Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on fresh produce.

    PubMed

    Kim, Sang-Oh; Ha, Jae-Won; Park, Ki-Hwan; Chung, Myung-Sub; Kang, Dong-Hyun

    2014-06-01

    An economical aerosol sanitization system was developed based on sensor technology for minimizing sanitizer usage, while maintaining bactericidal efficacy. Aerosol intensity in a system chamber was controlled by a position-sensitive device and its infrared value range. The effectiveness of the infrared sensor-based aerosolization (ISA) system to inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on spinach leaf surfaces was compared with conventional aerosolization (full-time aerosol treated), and the amount of sanitizer consumed was determined after operation. Three pathogens artificially inoculated onto spinach leaf surfaces were treated with aerosolized peracetic acid (400 ppm) for 15, 30, 45, and 60 min at room temperature (22 ± 2°C). Using the ISA system, inactivation levels of the three pathogens were equal or better than treatment with conventional full-time aerosolization. However, the amount of sanitizer consumed was reduced by ca. 40% using the ISA system. The results of this study suggest that an aerosol sanitization system combined with infrared sensor technology could be used for transportation and storage of fresh produce efficiently and economically as a practical commercial intervention.

  14. Methionine biosynthesis in higher plants. II. Purification and characterization of cystathionine beta-lyase from spinach chloroplasts.

    PubMed

    Droux, M; Ravanel, S; Douce, R

    1995-01-10

    Cystathionine beta-lyase, the second enzyme of the transsulfuration pathway leading to homocysteine synthesis was purified over 16,000-fold from spinach (Spinacia oleracea L.) leaf chloroplasts (soluble fraction). Enzyme activity was followed along the purification scheme by either a colorimetric method for the determination of cysteine or by fluorescence detection of the bimane derivative of L-homocysteine after reverse-phase HPLC. Cystathionine beta-lyase has a molecular mass of 170,000 +/- 5000 Da and consists of four identical subunits of 44,000 Da. The enzyme exhibits an absorption spectrum in the visible range with a maximum at 418 nm due to pyridoxal 5'-phosphate. The chloroplastic enzyme catalyzes alpha,beta-cleavage of the thioether L-cystathionine and the dithioacetal L-djenkolate with apparent Km values of 0.15 and 0.34 mM, respectively, and apparent Vm values corresponding to a specific activity of 13 Units mg-1. However, no activity was detected toward the disulfide L-cysteine. With either L-cystathionine and L-djenkolate as substrate, maximal activity was obtained between pH 8.3 and pH 9.0. Besides the chloroplastic enzyme form, anion exchange chromatography of a total spinach leaf extract allowed the detection of a second pool of cystathionine beta-lyase activity that is associated with the cytosolic compartment and eluted at a lower salt concentration than the chloroplastic isoform. Kinetics of inactivation of cystathionine beta-lyase by the L-alpha-(2-aminoethoxyvinyl) glycine (AVG), an analogue of L-cystathionine, are consistent with the existence of an intermediate reversible enzyme inhibitor complex (apparent inhibition constant Kappi of 110 microM) preceding the irreversible formation of a final inactivated state of the enzyme (kd = 4.8 x 10(-3) s-1). Pyridoxal 5'-phosphate free in solution binds AVG with an apparent dissociation constant Kapp in the order of 350 microM. The comparison between the Kapp (free pyridoxal 5'-phosphate) and Kappi (enzyme inactivation) values indicate that the prosthetic group of spinach chloroplast cystathionine beta-lyase is freely accessible to the inhibitor compound AVG.

  15. Role of Ascorbate in Detoxifying Ozone in the Apoplast of Spinach (Spinacia oleracea L.) Leaves.

    PubMed Central

    Luwe, MWF.; Takahama, U.; Heber, U.

    1993-01-01

    Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h. PMID:12231749

  16. Extraction and characterization of mixed phase KNO2-KNO3 nanocrystals derived from flat-leaf green spinach

    NASA Astrophysics Data System (ADS)

    Hazarika, S.; Mohanta, D.

    2013-01-01

    Naturally available green spinach, which is a rich source of potassium, was used as the key ingredient to extract mixed-phase ferroelectric crystals of nitrite and nitrate derivatives (KNO2 + KNO3). The KNO3 phase was found to be dominant for higher pH values, as revealed by the x-ray diffraction patterns. The characteristic optical absorption spectra exhibited intra-band π-π* electronic transitions, whereas Fourier transform infrared spectra exhibited characteristic N-O stretching vibrations. Differential scanning calorimetry revealed a broad endothermic peak at ˜121.8 °C, highlighting a transition from phase II to I via phase III of KNO3. Obtaining nanoscale ferroelectrics via the adoption of green synthesis is economically viable for large-scale production and possible application in ferroelectric elements/devices.

  17. Transfer of the fungicide vinclozolin from treated to untreated plants via volatilization.

    PubMed

    Baumeister, M; Steep, M; Dieckmann, S; Melzer, O; Klöppel, H; Jürling, H; Bender, L

    2002-07-01

    Head lettuce plantlets (Lactuca sativa L. var. capitata) were potted, treated with vinclozolin at the six-leaf stage according to application standards and allowed to dry for 24 h. The potted plantlets were then placed in either growth chambers with controlled temperature (20 and 25 degrees C, respectively) or in a greenhouse (approximately 12 degrees C), together with untreated spinach (Spinacia oleracea L.) and standardized grass cultures (Lolium multiflorum Lam. ssp.) While the treated lettuce pots remained in the respective growing compartments until the end of the experiments, spinach and grass were exposed to the compartment air for 24 h and their shoot material was analyzed for vinclozolin by GC-ECD and GC-high resolution mass spectrometry. Exposure and analysis of untreated spinach and grass were carried out at two- or three-day intervals during the course of the experiments. Also, air samples were taken from the compartments at intervals and analyzed for vinclozolin. Maximum vinclozolin concentration in the growth chamber air was about 330 ng m(-3) while vinclozolin contamination of the untreated plants ranged from 50 to 200 microg kg(-1) FW (fresh weight). In the greenhouse atmospheric vinclozolin concentration reached approximately 15 ngm(-3) and maximum contamination of spinach and grass were 30-40 microg kg(-1) FW. Our data clearly show that unintended contamination of plants growing in the vicinity of vinclozolin-treated plants can occur even if the fungicide layer is completely dry. Implications for safety testing and food plants are discussed.

  18. Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation.

    PubMed

    Carter, Michelle Qiu; Louie, Jacqueline W; Feng, Doris; Zhong, Wayne; Brandl, Maria T

    2016-08-01

    Several species of enteric pathogens produce curli fimbriae, which may affect their interaction with surfaces and other microbes in nonhost environments. Here we used two Escherichia coli O157:H7 outbreak strains with distinct genotypes to understand the role of curli in surface attachment and biofilm formation in several systems relevant to fresh produce production and processing. Curli significantly enhanced the initial attachment of E. coli O157:H7 to spinach leaves and stainless steel surfaces by 5-fold. Curli was also required for E. coli O157:H7 biofilm formation on stainless steel and enhanced biofilm production on glass by 19-27 fold in LB no-salt broth. However, this contribution was not observed when cells were grown in sterile spinach lysates. Furthermore, both strains of E. coli O157:H7 produced minimal biofilms on polypropylene in LB no-salt broth but considerable amounts in spinach lysates. Under the latter conditions, curli appeared to slightly increase biofilm production. Importantly, curli played an essential role in the formation of mixed biofilm by E. coli O157:H7 and plant-associated microorganisms in spinach leaf washes, as revealed by confocal microscopy. Little or no E. coli O157:H7 biofilms were detected at 4 °C, supporting the importance of temperature control in postharvest and produce processing environments. Published by Elsevier Ltd.

  19. Compartmentation Studies on Spinach Leaf Peroxisomes 1

    PubMed Central

    Heupel, Ralf; Markgraf, Therese; Robinson, David G.; Heldt, Hans Walter

    1991-01-01

    In concurrence with earlier results, the following enzymes showed latency in intact spinach (Spinacia oleracea L.) leaf peroxisomes: malate dehydrogenase (89%), hydroxypyruvate reductase (85%), serine glyoxylate aminotransferase (75%), glutamate glyoxylate aminotransferase (41%), and catalase (70%). In contrast, glycolate oxidase was not latent. Aging of peroxisomes for several hours resulted in a reduction in latency accompanied by a partial solubilization of the above mentioned enzymes. The extent of enzyme solubilization was different, being highest with glutamate glyoxylate aminotransferase and lowest with malate dehydrogenase. Osmotic shock resulted in only a partial reduction of enzyme latency. Electron microscopy revealed that the osmotically shocked peroxisomes remained compact, with smaller particle size and pleomorphic morphology but without a continuous boundary membrane. Neither in intact nor in osmotically shocked peroxisomes was a lag phase observed in the formation of glycerate upon the addition of glycolate, serine, malate, and NAD. Apparently, the intermediates, glyoxylate, hydroxypyruvate, and NADH, were confined within the peroxisomal matrix in such a way that they did not readily leak out into the surrounding medium. We conclude that the observed compartmentation of peroxisomal metabolism is not due to the peroxisomal boundary membrane as a permeability barrier, but is a function of the structural arrangement of enzymes in the peroxisomal matrix allowing metabolite channeling. ImagesFigure 3 PMID:16668283

  20. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    NASA Technical Reports Server (NTRS)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  1. Interaction of Escherichia coli with growing salad spinach plants.

    PubMed

    Warriner, Keith; Ibrahim, Faozia; Dickinson, Matthew; Wright, Charles; Waites, William M

    2003-10-01

    In this study, the interaction of a bioluminescence-labeled Escherichia coli strain with growing spinach plants was assessed. Through bioluminescence profiles, the direct visualization of E. coli growing around the roots of developing seedlings was accomplished. Subsequent in situ glucuronidase (GUS) staining of seedlings confirmed that E. coli had become internalized within root tissue and, to a limited extent, within hypocotyls. When inoculated seeds were sown in soil microcosms and cultivated for 42 days, E. coli was recovered from the external surfaces of spinach roots and leaves as well as from surface-sterilized roots. When 20-day-old spinach seedlings (from uninoculated seeds) were transferred to soil inoculated with E. coli, the bacterium became established on the plant surface, but internalization into the inner root tissue was restricted. However, for seedlings transferred to a hydroponic system containing 10(2) or 10(3) CFU of E. coli per ml of the circulating nutrient solution, the bacterium was recovered from surface-sterilized roots, indicating that it had been internalized. Differences between E. coli interactions in the soil and those in the hydroponic system may be attributed to greater accessibility of the roots in the latter model. Alternatively, the presence of a competitive microflora in soil may have restricted root colonization by E. coli. The implications of this study's findings with regard to the microbiological safety of minimally processed vegetables are discussed.

  2. Spinacia oleracea L. Leaf Stomata Harboring Cryptosporidium parvum Oocysts: a Potential Threat to Food Safety ▿ †

    PubMed Central

    Macarisin, Dumitru; Bauchan, Gary; Fayer, Ronald

    2010-01-01

    Cryptosporidium parvum is a cosmopolitan microscopic protozoan parasite that causes severe diarrheal disease (cryptosporidiosis) in mammals, including humans and livestock. There is growing evidence of Cryptosporidium persistence in fresh produce that may result in food-borne infection, including sporadic cases as well as outbreaks. However, drinking and recreational waters are still considered the major sources of Cryptosporidium infection in humans, which has resulted in prioritization of studies of parasite etiology in aquatic environments, while the mechanisms of transmission and parasite persistence on edible plants remain poorly understood. Using laser scanning confocal microscopy together with fluorescein-labeled monoclonal antibodies, C. parvum oocysts were found to strongly adhere to spinach plants after contact with contaminated water, to infiltrate through the stomatal openings in spinach leaves, and to persist at the mesophyll level. These findings and the fact that this pathogenic parasite resists washing and disinfection raise concerns regarding food safety. PMID:19933348

  3. Resource partitioning to male and female flowers of Spinacia oleracea L. in relation to whole-plant monocarpic senescence

    PubMed Central

    Sklensky, Diane E.; Davies, Peter J.

    2011-01-01

    Male plants of spinach (Spinacea oleracea L.) senesce following flowering. It has been suggested that nutrient drain by male flowers is insufficient to trigger senescence. The partitioning of radiolabelled photosynthate between vegetative and reproductive tissue was compared in male (staminate) versus female (pistillate) plants. After the start of flowering staminate plants senesce 3 weeks earlier than pistillate plants. Soon after the start of flowering, staminate plants allocated several times as much photosynthate to flowering structures as did pistillate plants. The buds of staminate flowers with developing pollen had the greatest draw of photosynthate. When the staminate plants begin to show senescence 68% of fixed C was allocated to the staminate reproductive structures. In the pistillate plants, export to the developing fruits and young flowers remained near 10% until mid-reproductive development, when it increased to 40%, declining to 27% as the plants started to senesce. These differences were also present on a sink-mass corrected basis. Flowers on staminate spinach plants develop faster than pistillate flowers and have a greater draw of photosynthate than do pistillate flowers and fruits, although for a shorter period. Pistillate plants also produce more leaf area within the inflorescence to sustain the developing fruits. The 14C in the staminate flowers declined due to respiration, especially during pollen maturation; no such loss occurred in pistillate reproductive structures. The partitioning to the reproductive structures correlates with the greater production of floral versus vegetative tissue in staminate plants and their more rapid senescence. As at senescence the leaves still had adequate carbohydrate, the resources are clearly phloem-transported compounds other than carbohydrates. The extent of the resource redistribution to reproductive structures and away from the development of new vegetative sinks, starting very early in the reproductive phase, is sufficient to account for the triggering of senescence in the rest of the plant. PMID:21565983

  4. Purification and characterization of O-acetylserine (thiol) lyase from spinach chloroplasts.

    PubMed

    Droux, M; Martin, J; Sajus, P; Douce, R

    1992-06-01

    O-Acetylserine (thiol) lyase, the last enzyme in the cysteine biosynthetic pathway, was purified to homogeneity from spinach leaf chloroplasts. The enzyme has a molecular mass of 68,000 and consists of two identical subunits of Mr 35,000. The absorption spectrum obtained at pH 7.5 exhibited a peak at 407 nm due to pyridoxal phosphate, and addition of O-acetylserine induced a considerable modification of the spectrum. The pyridoxal phosphate content was found to be 1.1 per subunit of 35,000, and the chromophore was displaced from the enzyme by O-acetylserine, leading to a progressive inactivation of the holoenzyme. Upon gel filtration chromatography on Superdex 200, part of the chloroplastic O-acetylserine (thiol) lyase eluted in association with serine acetyltransferase at a position corresponding to a molecular mass of 310,000 (such a complex called cysteine synthase has been characterized in bacteria). The activity of O-acetylserine (thiol) lyase was optimum between pH 7.5 and 8.5. The apparent Km for O-acetylserine was 1.3 mM and for sulfide was 0.25 mM. The calculated activation energy was 12.6 kcal/mol at 10 mM O-acetylserine. The overall amino-acid composition of spinach chloroplast O-acetylserine (thiol) lyase was different than that determined for the same enzyme (cytosolic?) obtained from a crude extract of spinach leaves. A polyclonal antibody prepared against the chloroplastic O-acetylserine (thiol) lyase exhibited a very low cross-reactivity with a preparation of mitochondrial matrix and cytosolic proteins suggesting that the chloroplastic isoform was distinct from the mitochondrial and cytosolic counterparts.

  5. Risk assessment of vegetables irrigated with arsenic-contaminated water.

    PubMed

    Bhatti, S M; Anderson, C W N; Stewart, R B; Robinson, B H

    2013-10-01

    Arsenic (As) contaminated water is used in South Asian countries to irrigate food crops, but the subsequent uptake of As by vegetables and associated human health risk is poorly understood. We used a pot trial to determine the As uptake of four vegetable species (carrot, radish, spinach and tomato) with As irrigation levels ranging from 50 to 1000 μg L(-1) and two irrigation techniques, non-flooded (70% field capacity for all studied vegetables), and flooded (110% field capacity initially followed by aerobic till next irrigation) for carrot and spinach only. Only the 1000 μg As L(-1) treatment showed a significant increase of As concentration in the vegetables over all other treatments (P < 0.05). The distribution of As in vegetable tissues was species dependent; As was mainly found in the roots of tomato and spinach, but accumulated in the leaves and skin of root crops. There was a higher concentration of As in the vegetables grown under flood irrigation relative to non-flood irrigation. The trend of As bioaccumulation was spinach > tomato > radish > carrot. The As concentration in spinach leaves exceeded the Chinese maximum permissible concentration for inorganic As (0.05 μg g(-1) fresh weight) by a factor of 1.6 to 6.4 times. No other vegetables recorded an As concentration that exceeded this threshold. The USEPA parameters hazard quotient and cancer risk were calculated for adults and adolescents. A hazard quotient value greater than 1 and a cancer risk value above the highest target value of 10(-4) confirms potential risk to humans from ingestion of spinach leaves. In our study, spinach presents a direct risk to human health where flood irrigated with water containing an arsenic concentration greater than 50 μg As L(-1).

  6. Quantum Yields of CAM Plants Measured by Photosynthetic O2 Exchange 1

    PubMed Central

    Adams, William W.; Nishida, Kojiro; Osmond, C. Barry

    1986-01-01

    The quantum yield of photosynthetic O2 exchange was measured in eight species of leaf succulents representative of both malic enzyme type and phosphoenolpyruvate carboxykinase type CAM plants. Measurements were made at 25°C and CO2 saturation using a leaf disc O2 electrode system, either during or after deacidification. The mean quantum yield was 0.095 ± 0.012 (sd) moles O2 per mole quanta, which compared with 0.094 ± 0.006 (sd) moles O2 per mole quanta for spinach leaf discs measured under the same conditions. There were no consistent differences in quantum yield between decarboxylation types or during different phases of CAM metabolism. On the basis of current notions of compartmentation of CAM biochemistry, our observations are interpreted to indicate that CO2 refixation is energetically independent of gluconeogenesis during deacidification. PMID:16664793

  7. Response of spinach and komatsuna to biogas effluent made from source-separated kitchen garbage.

    PubMed

    Furukawa, Yuichiro; Hasegawa, Hiroshi

    2006-01-01

    Recycling of kitchen garbage is an urgent task for reducing public spending and environmental burdens by incineration and/or landfill. There is an interesting regional effort in Ogawa, Saitama prefecture, Japan, in which source-separated kitchen garbage is anaerobically fermented with a biogas plant and the resultant effluent is used as a quick-release organic fertilizer by surrounding farmers. However, scientific assessments of fertilizer values and risks in the use of the effluent were lacking. Thus, a field experiment was conducted from 2003 to 2004 in Tohoku National Agricultural Research Center to grow spinach (Spinacia oleracea L.) and komatsuna (Brassica rapa var. perviridis L. H. Bailey) for evaluating the fertilizer value of the kitchen garbage effluent (KGE), nitrate, coliform group (CG), Escherichia coli, fecal streptococci (FS), and Vibrio parahaemolyticus concentrations of KGE and in the soil and the plant leaves. A cattle manure effluent (CME) and chemical fertilizers (NPK) were used as controls. Total nitrogen (N) and ammonium N concentrations of the KGE were 1.47 and 1.46 g kg(-1), respectively. The bacteria tested were detected in both biogas effluents in the order of 2 to 3 log CFU g(-1), but there was little evidence that the biogas effluents increased these bacteria in the soil and the plant leaves. At the rate of 22 g N m(-2), yield, total N uptake, apparent N recovery rate, and leaf nitrate ion concentration at harvest of spinach and komatsuna in the KGE plot were mostly comparable to those in the NPK and CME plots. We conclude that the KGE is a quick-release N fertilizer comparable to chemical fertilizers and does not cause contamination of CG, E. coli, FS, or V. parahaemolyticus in the soil and spinach and komatsuna leaves.

  8. Photosynthate partitioning during flowering in relation to senescence of spinach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklensky, D.; Davies, P.J.

    1990-05-01

    Male spinach plants are frequently cited as a counter-example to the nutrient drain hypothesis. Photosynthate partitioning in both male and female plants was examined. Leaves just below the inflorescences in plants at various stages of flowering were labelled with {sup 14}CO{sub 2} and the photosynthate allowed to partition for three hours. The leaves, flowers and stems of the inflorescence, and the other above ground vegetative tissue were harvested. These parts were combusted in a sample oxidizer for the collection of the {sup 14}CO{sub 2}. Allocation to the male and female flowers at very early stages are similar. As the flowersmore » develop further, male flowers receive more photosynthate than do female flowers in early fruit production. Thus it is possible that nutrient drain to the flowers in male spinach plants is sufficient to account for senescence.« less

  9. Isolation and Oxidative Properties of Intact Mitochondria Isolated from Spinach Leaves 1

    PubMed Central

    Douce, Roland; Moore, Antony L.; Neuburger, Michel

    1977-01-01

    A procedure was described for preparing intact mitochondria from spinach (Spinacia oleracea L.) leaves. These mitochondria oxidized succinate, malate, pyruvate, α-ketoglutarate, and NADH with good respiratory control and ADP/O ratios comparable to those observed with mitochondria from other plant tissues. Glycine was oxidized by the preparations. This oxidation linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport and phosphorylation inhibitors. Cyanide completely inhibited the oxidation of NADH. The oxidation of succinate, malate, and glycine was only partially inhibited. Images PMID:16660151

  10. Selection of Leafy Green Vegetable Varieties for a Pick-and-Eat Diet Supplement on ISS

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Richards, Jeff; Spencer, LaShelle; Hummerick, Mary; Stutte, Gary; Wheeler, Raymond; Douglas, Grace; Sirmons, Takiyah

    2015-01-01

    Spinach, lettuce, chard, beet, mizuna, and Chinese cabbage were grown in plant chambers to assess their potential as candidate crops for space food production systems. The species and varieties were compared in terms of biomass yields, size, nutrient value, and taste factors, as determined by a taste panel. Although other species might be considered for future studies, Chinese cabbage ranked number one from the testing, chard second, mizuna third, and red-leaf lettuce fourth. Results from the testing and analyses will be presented.

  11. Nutrient value of leaf versus seed

    NASA Astrophysics Data System (ADS)

    Edelman, Marvin; Holt, Monica

    2016-07-01

    Major differences stand out between edible leaves and seeds in protein quality, vitamin and mineral concentrations and omega 6 / omega 3 fatty acid ratios. Data for seeds (wheat, rice, corn, soy, lentil, chick pea) are compared with corresponding data for edible green leaves (kale, spinach, broccoli, duckweed). An x/y representation of data for lysine and methionine content highlights the group differences between grains, pulses, leafy vegetables and animal foods. Leaves come out with flying colors in all these comparisons. The perspective ends with a discussion on “So why do we eat mainly seeds?”

  12. Diverse mechanisms of plant resistance to cauliflower mosaic virus revealed by leaf skeleton hybridization.

    PubMed

    Melcher, U; Brannan, C M; Gardner, C O; Essenberg, R C

    1992-01-01

    Plants not hosts for cauliflower mosaic virus (CaMV) may prevent systemic CaMV infection by interfering with dissemination of infection through the plant or by preventing viral replication and maturation. Leaf skeleton hybridization allows distinction between these two barriers. The technique assesses the spatial distribution of CaMV in an inoculated leaf by hybridization of a skeleton of the leaf with a CaMV DNA probe. Leaves or leaflets of soybean, cucumber, peanut, tomato, lettuce, spinach, pepper, onion, wheat, maize and barley, inoculated with CaMV DNA or CaMV virions were processed for leaf skeleton hybridization either immediately after inoculation or two weeks thereafter. Autoradiographic images of soybean and cucumber skeletons had many dark spots suggesting that CaMV DNA replication and local spread had occurred. Images of onion leaf skeletons prepared two weeks after inoculation with CaMV DNA had fewer spots. To test whether these spots resulted from CaMV replication, DNA was extracted from inoculated onion leaves and analyzed by electrophoresis, blotting and hybridization. Molecules recovered two weeks after inoculation resembled those inoculated, indicating absence of replication. For the other species, we found no evidence of local spread of CaMV infections. Thus, many plant species resist systemic CaMV infection by preventing replication or local spread of CaMV, while others solely prevent systemic movement of infection.

  13. Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption*

    PubMed Central

    Tang, Lin; Luo, Wei-jun; He, Zhen-li; Gurajala, Hanumanth Kumar; Hamid, Yasir; Khan, Kiran Yasmin; Yang, Xiao-e

    2018-01-01

    Vegetables are important constituents of the human diet. Heavy metals and nitrate are among the major contaminants of vegetables. Consumption of vegetables and fruits with accumulated heavy metals and nitrate has the potential to damage different body organs leading to unwanted effects. Breeding vegetables with low heavy metal and nitrate contaminants is a cost-effective approach. We investigated 38 water spinach genotypes for low Cd and nitrate co-accumulation. Four genotypes, i.e. JXDY, GZQL, XGDB, and B888, were found to have low co-accumulation of Cd (<0.71 mg/kg dry weight) and nitrate (<3100 mg/kg fresh weight) in the edible parts when grown in soils with moderate contamination of both Cd (1.10 mg/kg) and nitrate (235.2 mg/kg). These genotypes should be appropriate with minimized risk to humans who consume them. The Cd levels in the edible parts of water spinach were positively correlated with the concentration of Pb or Zn, but Cd, Pb, or Zn was negatively correlated with P concentration. These results indicate that these three heavy metals may be absorbed into the plant in similar proportions or in combination, minimizing the influx to aerial parts. Increasing P fertilizer application rates appears to prevent heavy metal and nitrate translocation to shoot tissues and the edible parts of water spinach on co-contaminated soils. PMID:29405042

  14. Spinach and carrots: vitamin A and health

    USDA-ARS?s Scientific Manuscript database

    Vitamin A is an essential nutrient for the promotion of general growth, maintenance of visual function, regulation of the differentiation of epithelial tissues and immune function, and embryonic development. Vitamin A can only be supplied naturally, either as preformed vitamin A from foods of animal...

  15. Nutrient Value of Leaf vs. Seed

    PubMed Central

    Edelman, Marvin; Colt, Monica

    2016-01-01

    Major differences stand out between edible leaves and seeds in protein quality, vitamin, and mineral concentrations and omega 6/omega 3 fatty acid ratios. Data for seeds (wheat, rice, corn, soy, lentil, chick pea) are compared with corresponding data for edible green leaves (kale, spinach, broccoli, duckweed). An x/y representation of data for lysine and methionine content highlights the group differences between grains, pulses, leafy vegetables, and animal foods. Leaves come out with flying colors in all these comparisons. The perspective ends with a discussion on “So why do we eat mainly seeds?” PMID:27493937

  16. Bioaccessibility of barium from barite contaminated soils based on gastric phase in vitro data and plant uptake.

    PubMed

    Abbasi, Sedigheh; Lamb, Dane T; Palanisami, Thavamani; Kader, Mohammed; Matanitobua, Vitukawalu; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    Barite contamination of soil commonly occurs from either barite mining or explorative drilling operations. This work reported in vitro data for barite contaminated soils using the physiologically based extraction test (PBET) methodology. The existence of barite in plant tissue and the possibility of 'biomineralised' zones was also investigated using Scanning Electron Microscopy. Soils with low barium (Ba) concentrations showed a higher proportion of Ba extractability than barite rich samples. Barium uptake to spinach from soil was different between short term spiking studies and field weathered soils. Furthermore, Ba crystals were not evident in spinach tissue or acid digest solutions grown in barium nitrate spiked soils despite high accumulation. Barite was found in the plant digest solutions from barite contaminated soils only. Results indicate that under the conservative assumptions made, a child would need to consume extreme quantities of soil over an extended period to cause chronic health problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site.

    PubMed

    Pichtel, J; Bradway, D J

    2008-03-01

    The ability of selected plants and amendments to treat Pb, Cd and Zn accumulations from a metalliferous waste disposal site was studied both in the greenhouse and field. Spinach (Spinacea oleracea), cabbage (Brassica oleracea), and a grass-legume mix (red fescue, Festuca rubra; ryegrass, Lolium perenne); and bean (Vicia faba) were grown in the greenhouse on blast furnace slag or baghouse dust amended with composted peat (CP). All plant species accumulated Pb, Cd and Zn to varying degrees. Total soil metal concentrations had a marked influence on plant uptake. Topdressing versus incorporating CP had a significant (p<0.05) effect on spinach and cabbage tissue metal concentrations. Soil Pb and Zn tended to shift towards less bioavailable forms after treatment with CP. Field plots were treated with CP, farmyard manure (FYM), or inorganic fertilizer. Dry matter production of spinach, cabbage and a grass-legume mix was greatest on either the CP or FYM treatments. Phytostabilization in combination with organic amendments may be the most appropriate technology to ensure stabilization of soil metals at this site.

  18. Effect of Fermented Spinach as Sources of Pre-Converted Nitrite on Color Development of Cured Pork Loin

    PubMed Central

    Hwang, Ko-Eun

    2017-01-01

    The effect of fermented spinach extracts on color development in cured meats was investigated in this study. The pH values of raw cured meats without addition of fermented spinach extract or nitrite (negative control) were higher (p<0.05) than those added with fermented spinach extract. The pH values of raw and cooked cured meats in treatment groups were decreased with increasing addition levels of fermented spinach extract. The lightness and yellowness values of raw cured meats formulated with fermented spinach extract were higher (p<0.05) than those of the control groups (both positive and negative controls). The redness values of cooked cured meats were increased with increasing fermented spinach extract levels, whereas the yellowness values of cooked cured meats were decreased with increasing levels of fermented spinach extract. The lowest volatile basic nitrogen (VBN) and thiobarbituric acid reactive substances (TBARS) values were observed in the positive control group with addition of nitrite. TBARS values of cured meats added with fermented spinach extract were decreased with increasing levels of fermented spinach extract and VBN values of curing meat with 30% fermented spinach extract was lower than the other treatments. Total viable bacterial counts in cured meats added with fermented spinach extract ranged from 0.34-1.01 Log CFU/g. E. coli and coliform bacteria were not observed in any of the cured meats treated with fermented spinach extracts or nitrite. Residual nitrite contents in treatment groups were increased with increasing levels of fermented spinach extract added. These results demonstrated that fermented spinach could be added to meat products to improve own curing characteristics. PMID:28316477

  19. Effect of Fermented Spinach as Sources of Pre-Converted Nitrite on Color Development of Cured Pork Loin.

    PubMed

    Kim, Tae-Kyung; Kim, Young-Boong; Jeon, Ki-Hong; Park, Jong-Dae; Sung, Jung-Min; Choi, Hyun-Wook; Hwang, Ko-Eun; Choi, Yun-Sang

    2017-01-01

    The effect of fermented spinach extracts on color development in cured meats was investigated in this study. The pH values of raw cured meats without addition of fermented spinach extract or nitrite (negative control) were higher ( p <0.05) than those added with fermented spinach extract. The pH values of raw and cooked cured meats in treatment groups were decreased with increasing addition levels of fermented spinach extract. The lightness and yellowness values of raw cured meats formulated with fermented spinach extract were higher ( p <0.05) than those of the control groups (both positive and negative controls). The redness values of cooked cured meats were increased with increasing fermented spinach extract levels, whereas the yellowness values of cooked cured meats were decreased with increasing levels of fermented spinach extract. The lowest volatile basic nitrogen (VBN) and thiobarbituric acid reactive substances (TBARS) values were observed in the positive control group with addition of nitrite. TBARS values of cured meats added with fermented spinach extract were decreased with increasing levels of fermented spinach extract and VBN values of curing meat with 30% fermented spinach extract was lower than the other treatments. Total viable bacterial counts in cured meats added with fermented spinach extract ranged from 0.34-1.01 Log CFU/g. E. coli and coliform bacteria were not observed in any of the cured meats treated with fermented spinach extracts or nitrite. Residual nitrite contents in treatment groups were increased with increasing levels of fermented spinach extract added. These results demonstrated that fermented spinach could be added to meat products to improve own curing characteristics.

  20. SpinachDB: A Well-Characterized Genomic Database for Gene Family Classification and SNP Information of Spinach.

    PubMed

    Yang, Xue-Dong; Tan, Hua-Wei; Zhu, Wei-Min

    2016-01-01

    Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools.

  1. Suppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats

    PubMed Central

    Liu, Yi-Qun; Jia, Zheng; Han, Feng; Inakuma, Takahiro; Miyashita, Tatsuya; Sugiyama, Kimio; Sun, Li-Cui; Xiang, Xue-Song; Huang, Zhen-Wu

    2014-01-01

    Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25C) was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S) was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation. PMID:25250392

  2. Suppression effects of betaine-enriched spinach on hyperhomocysteinemia induced by guanidinoacetic acid and choline deficiency in rats.

    PubMed

    Liu, Yi-Qun; Jia, Zheng; Han, Feng; Inakuma, Takahiro; Miyashita, Tatsuya; Sugiyama, Kimio; Sun, Li-Cui; Xiang, Xue-Song; Huang, Zhen-Wu

    2014-01-01

    Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25 C) was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S) was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation.

  3. Chloroplast Osmotic Adjustment and Water Stress Effects on Photosynthesis 1

    PubMed Central

    Gupta, Ashima Sen; Berkowitz, Gerald A.

    1988-01-01

    Previous studies have suggested that chloroplast stromal volume reduction may mediate the inhibition of photosynthesis under water stress. In this study, the effects of spinach (Spinacia oleracea, var `Winter Bloomsdale') plant water deficits on chloroplast photosynthetic capacity, solute concentrations in chloroplasts, and chloroplast volume were studied. In situ (gas exchange) and in vitro measurements indicated that chloroplast photosynthetic capacity was maintained during initial leaf water potential (Ψw) and relative water content (RWC) decline. During the latter part of the stress period, photosynthesis dropped precipitously. Chloroplast stromal volume apparently remained constant during the initial period of decline in RWC, but as leaf Ψw reached −1.2 megapascals, stromal volume began to decline. The apparent maintenance of stromal volume over the initial RWC decline during a stress cycle suggested that chloroplasts are capable of osmotic adjustment in response to leaf water deficits. This hypothesis was confirmed by measuring chloroplast solute levels, which increased during stress. The results of these experiments suggest that stromal volume reduction in situ may be associated with loss of photosynthetic capacity and that one mechanism of photosynthetic acclimation to low Ψw may involve stromal volume maintenance. PMID:16666266

  4. Antibacterial Activities of Hibiscus sabdariffa Extracts and Chemical Sanitizers Directly on Green Leaves Contaminated with Foodborne Pathogens.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Torres-Vitela, Ma Refugio; Villarruel-López, Angélica; Acevedo-Sandoval, Otilio A; Gordillo-Martínez, Alberto J; Godínez-Oviedo, Angélica; Castro-Rosas, Javier

    2018-02-01

    Leafy greens have been associated with foodborne disease outbreaks in different countries. To decrease microbial contamination of leafy greens, chemical agents are commonly used; however, a number of studies have shown these agents to have limited antimicrobial effect against pathogenic bacteria on vegetables. The objective of this study was to compare the antibacterial effect of Hibiscus sabdariffa calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, acetic acid, and colloidal silver against foodborne bacteria on leafy greens. Thirteen foodborne bacteria were used in the study: Listeria monocytogenes, Shigella flexneri, Salmonella serotypes Typhimurium Typhi, and Montevideo, Staphylococcus aureus, Escherichia coli O157:H7, five E. coli pathotypes (Shiga toxin-producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. Each foodborne bacterium was separately inoculated on romaine lettuce, spinach, and coriander leaves. Separately, contaminated leafy greens were immersed in four hibiscus extracts and in sanitizers for 5 min. Next, green leaves were washed with sterile tap water. Separately, each green leaf was placed in a bag that contained 0.1% sterile peptone water and was rubbed for 2 min. Counts were done by plate count using appropriate dilutions (in sterile peptone water) of the bacterial suspensions spread on Trypticase soy agar plates and incubated at 35 ± 2°C for 48 h. Statistically significant differences ( P < 0.05) were calculated with an analysis of variance and Duncan's test. All 13 foodborne bacteria attached to leafy greens. Roselle calyx extracts caused a significantly greater reduction ( P < 0.05) in concentration of all foodborne bacteria on contaminated romaine lettuce, spinach, and coriander than did the sodium hypochlorite, colloidal silver, and acetic acid. Dry roselle calyx extracts may potentially be a useful addition to disinfection procedures for romaine lettuce, spinach, and coriander.

  5. Liquid extraction surface analysis (LESA) of food surfaces employing chip-based nano-electrospray mass spectrometry.

    PubMed

    Eikel, Daniel; Henion, Jack

    2011-08-30

    An automated surface-sampling technique called liquid extraction surface analysis (LESA), coupled with infusion nano-electrospray high-resolution mass spectrometry and tandem mass spectrometry (MS/MS), is described and applied to the qualitative determination of surface chemical residues resulting from the artificial spraying of selected fresh fruits and vegetables with representative pesticides. Each of the targeted pesticides was readily detected with both high-resolution and full-scan collision-induced dissociation (CID) mass spectra. In the case of simazine and sevin, a mass resolution of 100,000 was insufficient to distinguish the isobaric protonated molecules for these compounds. When the surface of a spinach leaf was analyzed by LESA, trace levels of diazinon were readily detected on the spinach purchased directly from a supermarket before they were sprayed with the five-pesticide mixture. A 30 s rinse under hot running tap water appeared to quantitatively remove all remaining residues of this pesticide. Diazinon was readily detected by LESA analysis on the skin of the artificially sprayed spinach. Finally, incurred pyrimethanil at a level of 169 ppb in a batch slurry of homogenized apples was analyzed by LESA and this pesticide was readily detected by both high-resolution mass spectrometry and full-scan CID mass spectrometry, thus showing that pesticides may also be detected in whole fruit homogenized samples. This report shows that representative pesticides on fruit and vegetable surfaces present at levels 20-fold below generally allowed EPA tolerance levels are readily detected and confirmed by the title technologies making LESA-MS as interesting screening method for food safety purposes. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing.

    PubMed

    Shi, Ainong; Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs.

  7. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    PubMed Central

    Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs. PMID:29190770

  8. Frequency of Verticillium Species in Commercial Spinach Fields and Transmission of V. dahliae from Spinach to Subsequent Lettuce Crops.

    PubMed

    Short, D P G; Gurung, S; Koike, S T; Klosterman, S J; Subbarao, K V

    2015-01-01

    Verticillium wilt caused by V. dahliae is a devastating disease of lettuce in California (CA). The disease is currently restricted to a small geographic area in central coastal CA, even though cropping patterns in other coastal lettuce production regions in the state are similar. Infested spinach seed has been implicated in the introduction of V. dahliae into lettuce fields but direct evidence linking this inoculum to wilt epidemics in lettuce is lacking. In this study, 100 commercial spinach fields in four coastal CA counties were surveyed to evaluate the frequency of Verticillium species recovered from spinach seedlings and the area under spinach production in each county was assessed. Regardless of the county, V. isaacii was the most frequently isolated species from spinach followed by V. dahliae and, less frequently, V. klebahnii. The frequency of recovery of Verticillium species was unrelated to the occurrence of Verticillium wilt on lettuce in the four counties but was related to the area under spinach production in individual counties. The transmission of V. dahliae from infested spinach seeds to lettuce was investigated in microplots. Verticillium wilt developed on lettuce following two or three plantings of Verticillium-infested spinach, in independent experiments. The pathogen recovered from the infected lettuce from microplots was confirmed as V. dahliae by polymerase chain reaction assays. In a greenhouse study, transmission of a green fluorescence protein-tagged mutant strain of V. dahliae from spinach to lettuce roots was demonstrated, after two cycles of incorporation of infected spinach residue into the soil. This study presents conclusive evidence that V. dahliae introduced via spinach seed can cause Verticillium wilt in lettuce.

  9. Simplified methods for screening cowpea cultivars for manganese leaf-tissue tolerance. [Vigna unguiculata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wissemeier, A.H.; Horst, W.J.

    In cowpea (Vigna unguiculata (L.) Walp.) dark brown speckles on old leaves are typical symptoms of Mn toxicity and indicate Mn sensitivity of leaf tissue. Induction and subsequent quantification of brown Mn speckles in leaf tissues were used to screen cowpea cultivars for Mn leaf-tissue tolerance using three different techniques: (i) leaf cuttings cultured for 22 days in solution culture with 20 {mu}M MnSO{sub 4}, (ii) leaf rings mounted on leaves of intact plants and filled with 500 {mu}M MnSO{sub 4} for 5 days, and (iii) leaf disks floated for 3 days on 500 {mu}M MnSO{sub 4}. Density of brownmore » speckles differed considerably among the six cultivars tested, and was not related to the Mn concentrations of the leaf tissues. There were close relationships between genotypic Mn-toxicity symptom expression and depression of dry matter production of the cultivars at high Mn supply in a long-term sand culture experiment. The floating leaf-disk method is particularly suited for screening large numbers of cowpea cultivars for Mn leaf-tissue tolerance because it requires only 3 days. The ranking of the cultivars for Mn tolerance was highly correlated to Mn tolerance of intact plants.« less

  10. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca.

    PubMed

    Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G

    2008-10-01

    Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.

  11. Storage effects on genomic DNA in rolled and mature coca leaves.

    PubMed

    Johnson, Emanuel L; Kim, Soo-Hyung; Emche, Stephen D

    2003-08-01

    Rolled and mature leaf tissue was harvested from Erythroxylum coca var. coca Lam. (coca) to determine a method for storage that would maintain DNA with high quality and content up to 50 days. Harvesting coca leaf tissue under Andean field conditions often requires storage from 3 to 10 days before extraction where tissue integrity is lost. All samples of rolled and mature coca leaf tissue were harvested and separately stored fresh in RNAlater for 50 days at 4 degrees, -20 degrees, and 23 degrees C, while similar samples were air-dried for 72 h at 23 degrees C or oven-dried for 72 h at 40 degrees C after storage, before extraction. Triplicate samples of each tissue type were extracted for DNA at 10-day intervals and showed that DNA integrity and content were preserved in leaf tissue stored at 4 degrees and -20 degrees C for 50 days. Rolled and mature leaf tissue stored at 4 degrees, -20 degrees, and 23 degrees C showed insignificant degradation of DNA after 10 days, and by day 50, only leaf tissue stored at 4 degrees and -20 degrees C had not significantly degraded. All air- and oven-dried leaf tissue extracts showed degradation upon drying (day 0) and continuous degradation up to day 50, despite storage conditions. Amplified fragment length polymorphism analysis of DNA from rolled and mature leaf tissue of coca stored at 4 degrees and -20 degrees C for 0, 10, and 50 days showed that DNA integrity and content were preserved. We recommend that freshly harvested rolled or mature coca leaf tissue be stored at 4 degrees, -20 degrees, and 23 degrees C for 10 days after harvest, and if a longer storage is required, then store at 4 degrees or -20 degrees C.

  12. Association analysis for oxalate concentration in spinach

    USDA-ARS?s Scientific Manuscript database

    Screening and breeding low-oxalate germplasm is a major objective in spinach breeding. This research aims to conduct association analysis and identify SNP markers associated with oxalate concentration in spinach germplasm. A total of 310 spinach genotypes including 300 USDA germplasm accessions and ...

  13. Persistence of poultry associated Salmonella spp. on spinach plants

    USDA-ARS?s Scientific Manuscript database

    Introduction: Pre-harvest spinach contamination can occur via irrigation water and can influence the persistence of Salmonella on spinach leaves. Salmonella persistence on spinach plants should be evaluated as nearby poultry farms can be a critical source of contaminated water run-off. Purpose: The...

  14. Spinach downy mildew – Threat, prevention and control

    USDA-ARS?s Scientific Manuscript database

    Downy mildew disease is a widespread and destructive disease of spinach in California and elsewhere where spinach is grown, and is caused by Peronospora effusa, an obligate, plant pathogenic oomycete. As in the case with most other crops damaged by downy mildews, spinach downy mildew culminates in ...

  15. Colonization of spinach (Spinacia oleracea L.) by GFP-tagged verticillium dahliae.

    USDA-ARS?s Scientific Manuscript database

    The soilborne fungus, Verticillium dahliae, causes wilt in a wide range of hosts, including spinach (Spinacia oleracea L.). The interaction between a green fluorescent protein (GFP)-tagged V. dahliae strain and spinach was studied by confocal laser scanning microscopy. The roots of spinach seedlings...

  16. Cadmium content of plants as affected by soil cadmium concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With themore » same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.« less

  17. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures

    USDA-ARS?s Scientific Manuscript database

    Fresh produce, such as spinach, harbors large, diverse bacterial populations, including spoilage and potentially pathogenic bacteria. This study examined the effects of produce washing in chlorinated water and subsequent storage on the microbiota of spinach. Baby spinach leaves from a commercial fre...

  18. Genetic diversity and association mapping of mineral element concentrations in spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Spinach is one of the healthiest vegetables in the human diet due to its high concentrations of nutrients and mineral elements. Breeding new spinach cultivars with high nutritional value is one of the main goals in spinach breeding programs worldwide, and identification of single nucleotide polymorp...

  19. Photosynthesis Is Not Involved in the Mechanism of Action of Acifluorfen in Cucumber (Cucumis sativus L.)

    PubMed Central

    Duke, Stephen O.; Kenyon, William H.

    1986-01-01

    The possible role of photosynthesis in the mechanism of action of the herbicide acifluorfen (2-chloro-4-(trifluoromethyl)phenoxy-2-nitrobenzoate; AF) was examined. The sensitivity to AF of cotyledons of cucumber (Cucumis sativus L.) which had been grown under far red light (FR) and white light were compared. FR grown tissues which were photosynthetically imcompetent were hypersensitive to AF under white light and had approximately the same relative response to AF under blue and red light as green, white-light-grown tissues. Ultrastructural damage was apparent in FR-grown, AF-treated tissues within an hour after exposure to white light, with cytoplasmic and plastidic disorganization occurring simultaneously. In cucumber cotyledon tissue which had been greening for various time periods, there was no correlation between photosynthetic capacity and herbicidal efficacy of AF. PSII inhibitors (atrazine and DCMU) and the photophosphorylation inhibitor, tentoxin, had no effect on AF activity. Atrazine did not reduce AF activity at any concentration or light intensity tested, indicating that there is no second, photosynthetic-dependent mechanism of action operating at low AF concentrations or low fluence rates. Carbon dioxide-dependent O2 evolution of intact chloroplasts of spinach (Spinacia oleracea L.) had an AF I50 of 125 micromolar compared to 1000 micromolar for cucumber, whereas AF was much more herbicidally active in tissues of cucumber than of spinach. Differences in activity could not be accounted for by differences in uptake of AF. Our results indicate that there is no photosynthetic involvement in the mechanism of action of AF in cucumber. Images Fig. 2 PMID:16664919

  20. Fluorescent Staining of Tea Pathogenic Fungi in Tea Leaves Using Fluorescein-labeled Lectin

    NASA Astrophysics Data System (ADS)

    Yamada, Kengo; Yoshida, Katsuyuki; Sonoda, Ryoichi

    Fluorochrome-labeled lectin, fluorescein conjugated wheat germ agglutinin (F-WGA) was applied to stain tea pathogenic fungi in tea leaf tissue. Infected leaves were fixed and decolorized with a mixture of ethanol and acetic acid, and cleared with 10% KOH for whole mount before staining with F-WGA. Hyphae of Pestalotiopsis longiseta, Pseudocercospora ocellata, Botrytis cinerea and Colletotrichum theae-sinensis fluoresced brightly in whole mount and sectioned samples of infected leaf tissue. In browned tissue, hyphae did not fluoresce frequently in whole mount sample. Autofluorescence of leaf tissue was strong in browned tissue of sections, it was removed by 10% KOH treatment before staining. Penetration hyphae of C. theae-sinensis in cell wall of trichome and hyphae in basal part of trichome did not fluoresced frequently. In whole mount samples of tea leaf infected with Exobasidium vexans and E. reticulatum, hymenia appeared on leaf surface fluoresced, but hyphae in leaf tissue did not fluoresce. In sectioned samples, hyphae fluoresced brightly when sections were treated with 10% KOH before staining.

  1. Response of Carbon Dioxide Fixation to Water Stress

    PubMed Central

    Plaut, Z.; Bravdo, B.

    1973-01-01

    Application of water stress to isolated spinach (Spinacia oleracea) chloroplasts by redutcion of the osmotic potentials of CO2 fixation media below −6 to −8 bars resulted in decreased rates of fixation regardless of solute composition. A decrease in CO2 fixation rate of isolated chloroplasts was also found when leaves were dehydrated in air prior to chloroplast isolation. An inverse response of CO2 fixation to osmotic potential of the fixation medium was found with chloroplasts isolated from dehydrated leaves—namely, fixation rate was inhibited at −8 bars, compared with −16 or −24 bars. Low leaf water potentials were found to inhibit CO2 fixation of intact leaf discs to almost the same degree as they did CO2 fixation by chloroplasts isolated from those leaves. CO2 fixation by intact leaves was decreased by 50 and 80% when water potentials were reduced from −7.1 to −9.6 and from −7.1 to −17.6 bars, respectively. Transpiration was decreased by only 40 and 60%, under the same conditions. However, correction for the increase in leaf temperature indicated transpiration decreases of 57 and 80%, similar to the relative decreases in CO2 fixation. Despite the 4-fold increase in leaf resistance to CO2 diffusion in the gas phase when the water potential of leaves was reduced from −6.5 to −14.0 bars, an additional increase of about 50% in mesophyll resistance was obtained. CO2 concentration at compensation also increased when leaf water potential was reduced. PMID:16658493

  2. Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants

    USDA-ARS?s Scientific Manuscript database

    Repeat irrigation of spinach plants with water containing Salmonella was used to determine Salmonella persistence on spinach leaves. Spinach plants were irrigated four times (biweekly) with water containing ca. 2.1 log CFU Salmonella per 100 ml water (the maximum generic E. coli MPN recommended by...

  3. A comparative study of the antacid effect of raw spinach juice and spinach extract in an artificial stomach model.

    PubMed

    Panda, Vandana Sanjeev; Shinde, Priyanka Mangesh

    2016-12-01

    BackgroundSpinacia oleracea known as spinach is a green-leafy vegetable consumed by people across the globe. It is reported to possess potent medicinal properties by virtue of its numerous antioxidant phytoconstituents, together termed as the natural antioxidant mixture (NAO). The present study compares the antacid effect of raw spinach juice with an antioxidant-rich methanolic extract of spinach (NAOE) in an artificial stomach model. MethodsThe pH of NAOE at various concentrations (50, 100 and 200 mg/mL) and its neutralizing effect on artificial gastric acid was determined and compared with that of raw spinach juice, water, the active control sodium bicarbonate (SB) and a marketed antacid preparation ENO. A modified model of Vatier's artificial stomach was used to determine the duration of consistent neutralization of artificial gastric acid for the test compounds. The neutralizing capacity of test compounds was determined in vitro using the classical titration method of Fordtran. Results NAOE (50, 100 and 200 mg/mL), spinach juice, SB and ENO showed significantly better acid-neutralizing effect, consistent duration of neutralization and higher antacid capacity when compared with water. Highest antacid activity was demonstrated by ENO and SB followed by spinach juice and NAOE200. Spinach juice exhibited an effect comparable to NAOE (200 mg/mL). ConclusionsThus, it may be concluded that spinach displays significant antacid activity be it in the raw juice form or as an extract in methanol.

  4. [Interspecific relationship and Si, N nutrition of rice in rice-water spinach intercropping system.

    PubMed

    Ning, Chuan Chuan; Yang, Rong Shuang; Cai, Mao Xia; Wang, Jian Wu; Luo, Shi Ming; Cai, Kun Zheng

    2017-02-01

    Intercropping is a sound eco-agriculture model, but aquatic crops (e.g., rice) intercropping is seldom researched. In the present study, rice and water spinach were chosen as the research objects, a field trial was conducted to explore the yields, interspecific relationship and Si, N nutrition of rice under rice-water spinach intercropping for four seasons during two consecutive years (2014-2015). The experiment had five treatments: rice monoculture, water spinach monoculture, and rice-water spinach intercropping ratios of 2:2, 3:2, 4:2, respectively. The results showed that rice-water spinach intercropping significantly increased rice yield, and the increase rates of 2:2, 3:2 and 4:2 intercropping per unit area were 77.5%-120.6%, 64.9%-80.9%, 37.7%-56.0%, respectively. However, intercropping resulted in reduction of water spinach yield. Intercropping significantly increased total yield of rice and water spinach from land equivalent ratios (LER) analysis. The values of LER were more than 1.0, and the ratio of 3:2 intercropping had the best effect. As for the competitive index, rice was more competitive than water spinach in intercropping system, especially in early season. Compared with rice monoculture, rice-water spinach intercropping significantly increased the absorption of Si and N in rice leaves, and Si content of rice leaves during ripening stage, but didn't increase its N content and even slightly reduced it during ripening stage. Intercropping had no significant effect on available Si, ammonium N and nitrate N content in soil. Compared with rice monoculture and intercropping, water spinach monoculture had always the highest available Si, ammonium N and nitrate N contents in soil through the experiment period. The results suggested that rice-spinach intercropping could promote rice to absorb silicon and nitrogen and increase the competitive ability of rice.

  5. Carbon Dioxide Metabolism in Leaf Epidermal Tissue 1

    PubMed Central

    Willmer, C. M.; Pallas, J. E.; Black, C. C.

    1973-01-01

    A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism. Images PMID:16658581

  6. Endophytic Ability of Different Isolates of Entomopathogenic Fungi Beauveria bassiana (Balsamo) Vuillemin in Stem and Leaf Tissues of Maize (Zea mays L.).

    PubMed

    Renuka, S; Ramanujam, B; Poornesha, B

    2016-06-01

    The present study was conducted to examine the ability of six promising indigenous isolates of Beauveria bassiana (NBAII-Bb-5a, 7, 14, 19, 23 and 45) as an endophyte in maize stem and leaf tissues. Maize seedlings (var. Nithyashree) were inoculated with conidial suspensions and were examined for endophytic establishment in leaf and stems at different intervals during 15-90 days after treatment. All six isolates showed colonization in stem and leaf tissues with varying abilities of colonization and persistence. The mean percent colonization ranged from 7.41 to 20.37 % in older stem tissues and 3.70 to 21.29 % in young stem tissues and in leaf, it ranged from 6.46 to 27.78 % in older leaf tissues and 11.11 to 26.85 % in young leaf tissues. Among six isolates tested, Bb-23 isolate recorded the maximum mean colonization in older stem (20.37 %), older leaf (27.78 %) and in young stem (21.29 %). Bb-5a isolate showed maximum mean colonization in young leaf tissues (26.85 %). Persistence of inoculated fungal isolates decreased with increase in age of the plant. No physical symptoms of damage were observed in any of the B. bassiana treated plants. No colonization of B. bassiana was observed in the untreated control maize plants. The results obtained in plating and PCR techniques were similar with regard to the confirmation of endophytic establishment of B. bassiana. This study indicated the possibility of using B. bassiana as an endophyte in maize for management of maize stem borer, Chilo partellus.

  7. Agronomic viability of New Zealand spinach and kale intercropping.

    PubMed

    Cecílio, Arthur B; Bianco, Matheus S; Tardivo, Caroline F; Pugina, Gabriel C M

    2017-01-01

    The intercropping is a production system that aims to provide increased yield with less environmental impact, due to greater efficiency in the use of natural resources and inputs involved in the production process. An experiment was carried out to evaluate the agronomic viability of kale and New Zealand spinach intercropping as a function of the spinach transplanting time. (0, 14, 28, 42, 56, 70, 84 and 98 days after transplanting of the kale). The total yield (TY) and yield per harvest (YH) of the kale in intercropping did not differ from those obtained in monoculture. The spinach TY was influenced by the transplanting time, the earlier the transplanting, the higher the TY. The spinach YH was not influenced by the transplanting time, but rather by the cultivation system. In intercropping, the spinach YH was 13.5% lower than in monoculture. The intercropping was agronomically feasible, since the land use efficiency index, which was not influenced by the transplanting time, had an average value of 1.71, indicating that the intercropping produced 71% more kale and spinach than the same area in monoculture. Competitiveness coefficient, aggressiveness and yield loss values showed that kale is the dominating species and spinach is the dominated.

  8. Bioavailability of iron from spinach using an in vitro/human Caco-2 cell bioassay model

    NASA Technical Reports Server (NTRS)

    Rutzke, Corinne J.; Glahn, Raymond P.; Rutzke, Michael A.; Welch, Ross M.; Langhans, Robert W.; Albright, Louis D.; Combs, Gerald F Jr; Wheeler, Raymond M.

    2004-01-01

    Spinach (Spinacia oleracea) cv Whitney was tested for iron bioavailabilty using an in vitro human intestinal cell culture ferritin bioassay technique previously developed. Spinach was cultured in a growth chamber for 33 days, harvested, and freeze-dried. Total iron in the samples was an average of 71 micrograms/g dry weight. Spinach was digested in vitro (pepsin and 0.1 M HCl followed by pancreatin and 0.1 M NaHCO3) with and without the addition of supplemental ascorbic acid. Caco-2 cell cultures were used to determine iron bioavailability from the spinach mixtures. Production of the iron-binding protein ferritin in the Caco-2 cells showed the supplemental ascorbic acid doubled bioavailability of iron from spinach. The data show fresh spinach is a poor source of iron, and emphasize the importance of evaluation of whole meals rather than single food items. The data support the usefulness of the in vitro/Caco-2 cell ferritin bioassay model for prescreening of space flight diets for bioavailable iron.

  9. Using a Specific RNA-Protein Interaction To Quench the Fluorescent RNA Spinach.

    PubMed

    Roszyk, Laura; Kollenda, Sebastian; Hennig, Sven

    2017-12-15

    RNAs are involved in interaction networks with other biomolecules and are crucial for proper cell function. Yet their biochemical analysis remains challenging. For Förster Resonance Energy Transfer (FRET), a common tool to study such interaction networks, two interacting molecules have to be fluorescently labeled. "Spinach" is a genetically encodable RNA aptamer that starts to fluoresce upon binding of an organic molecule. Therefore, it is a biological fluorophore tag for RNAs. However, spinach has never been used in a FRET assembly before. Here, we describe how spinach is quenched when close to acceptors. We used RNA-DNA hybridization to bring quenchers or red organic dyes in close proximity to spinach. Furthermore, we investigate RNA-protein interactions quantitatively on the example of Pseudomonas aeruginosa phage coat protein 7 (PP7) and its interacting pp7-RNA. We utilize spinach quenching as a fully genetically encodable system even under lysate conditions. Therefore, this work represents a direct method to analyze RNA-protein interactions by quenching the spinach aptamer.

  10. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance.

    PubMed

    Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N

    2011-03-01

    Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.

  11. ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf.

    PubMed

    Renosto, F; Patel, H C; Martin, R L; Thomassian, C; Zimmerman, G; Segel, I H

    1993-12-01

    Two forms of ATP sulfurylase were purified from spinach leaf. The major (chloroplast) form accounts for 85 to 90% of the total leaf activity (0.03 +/- 0.01 adenosine-5'-phosphosulfate (APS) synthesis units x gram fresh weight-1). Both enzyme forms appear to be tetramers composed of 49- to 50-kDa subunits with the minor (cytosolic) form being slightly larger than the chloroplast form. The specific activities (units x milligram protein-1) of the chloroplast form at pH 8.0, 30 degrees C, were as follows: APS synthesis, 16; molybdolysis, 229; ATP synthesis, 267; selenolysis, 4.1; fluorophosphate activation, 11. Kinetic constants for the physiological reaction were as follows: KmA = 0.046 mM, K(ia) = 0.85 mM, KmB = 0.25 mM, KmQ = 0.37 microM, K(iq) = 64-85 nM, and KmP = 10 microM, where A = MgATP, B = SO4(2-), P = total PPi at 5 mM Mg2+, and Q = APS. The kinetic constants for molybdolysis were similar to those of the APS synthesis reaction. The kinetic constants of the minor (cytosol) form were similar to those of the major form with two exceptions: (a) The molybdolysis activity was 120 units x milligram protein-1, yielding a Vmax (ATP synthesis)/Vmax (molybdolysis) ratio close to 2 (compared to about unity for the chloroplast form) and (b) KmA was greater (0.24 and 0.15 mM for APS synthesis and molybdolysis, respectively). Initial velocity measurements (made over an extended range of MgATP and SO4(2-) concentrations), product inhibition studies (by initial velocity methods and by reaction progress curve analyses), dead end inhibition studies (with monovalent and divalent oxyanions), and kcat/Km comparisons (for SO4(2-) and MoO4(2-) support a random AB-ordered PQ kinetic mechanism in which MgATP and SO4(2-) bind in a highly synergistic manner. Equilibrium binding studies indicated the presence of one APS site per subunit. HPLC elution profiles of chymotryptic and tryptic peptides were essentially the same for both enzyme forms. The N-terminal sequence of residues 5-20 of the cytosol enzyme was identical to residues 1-16 of the chloroplast enzyme.

  12. High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves

    PubMed Central

    Burch, Adrien Y.; Do, Paulina T.; Sbodio, Adrian; Suslow, Trevor V.

    2016-01-01

    ABSTRACT To better characterize the bacterial community members capable of biosurfactant production on leaves, we distinguished culturable biosurfactant-producing bacteria from nonproducers and used community sequencing to compare the composition of these distinct cultured populations with that from DNA directly recovered from leaves. Communities on spinach, romaine, and head lettuce leaves were compared with communities from adjacent samples of soil and irrigation source water. Soil communities were poorly described by culturing, with recovery of cultured representatives from only 21% of the prevalent operational taxonomic units (OTUs) (>0.2% reads) identified. The dominant biosurfactant producers cultured from soil included bacilli and pseudomonads. In contrast, the cultured communities from leaves are highly representative of the culture-independent communities, with over 85% of the prevalent OTUs recovered. The dominant taxa of surfactant producers from leaves were pseudomonads as well as members of the infrequently studied genus Chryseobacterium. The proportions of bacteria cultured from head lettuce and romaine leaves that produce biosurfactants were directly correlated with the culture-independent proportion of pseudomonads in a given sample, whereas spinach harbored a wider diversity of biosurfactant producers. A subset of the culturable bacteria in irrigation water also became enriched on romaine leaves that were irrigated overhead. Although our study was designed to identify surfactant producers on plants, we also provide evidence that most bacteria in some habitats, such as agronomic plant surfaces, are culturable, and these communities can be readily investigated and described by more classical culturing methods. IMPORTANCE The importance of biosurfactant production to the bacteria that live on waxy leaf surfaces as well as their ability to be accurately assessed using culture-based methodologies was determined by interrogating epiphytic populations by both culture-dependent and culture-independent methods. Biosurfactant production was much more frequently observed in cultured communities on leaves than in other nearby habitats, such as soil and water, suggesting that this trait is important to life on a leaf by altering either the leaf itself or the interaction of bacteria with water. While pseudomonads were the most common biosurfactant producers isolated, this habitat also selects for taxa, such as Chryseobacterium, for which this trait was previously unrecognized. The finding that most epiphytic bacterial taxa were culturable validates strategies using more classical culturing methodologies for their study in this habitat. PMID:27474719

  13. Distinct Transcriptional Profiles and Phenotypes Exhibited by Escherichia coli O157:H7 Isolates Related to the 2006 Spinach-Associated Outbreak

    PubMed Central

    Kyle, Jennifer L.; Huynh, Steven; Carter, Michelle Q.; Brandl, Maria T.; Mandrell, Robert E.

    2012-01-01

    In 2006, a large outbreak of Escherichia coli O157:H7 was linked to the consumption of ready-to-eat bagged baby spinach in the United States. The likely sources of preharvest spinach contamination were soil and water that became contaminated via cattle or feral pigs in the proximity of the spinach fields. In this study, we compared the transcriptional profiles of 12 E. coli O157:H7 isolates that possess the same two-enzyme pulsed-field gel electrophoresis (PFGE) profile and are related temporally or geographically to the above outbreak. These E. coli O157:H7 isolates included three clinical isolates, five isolates from separate bags of spinach, and single isolates from pasture soil, river water, cow feces, and a feral pig. The three clinical isolates and two spinach bag isolates grown in cultures to stationary phase showed decreased expression of many σS-regulated genes, including gadA, osmE, osmY, and katE, compared with the soil, water, cow, feral pig, and the other three spinach bag isolates. The decreased expression of these σS-regulated genes was correlated with the decreased resistance of the isolates to acid stress, osmotic stress, and oxidative stress but increases in scavenging ability. We also observed that intraisolate variability was much more pronounced among the clinical and spinach isolates than among the environmental isolates. Together, the transcriptional and phenotypic differences of the spinach outbreak isolates of E. coli O157:H7 support the hypothesis that some variants within the spinach bag retained characteristics of the preharvest isolates, whereas other variants with altered gene expression and phenotypes infected the human host. PMID:22081562

  14. Survival and transfer of murine norovirus 1, a surrogate for human noroviruses, during the production process of deep-frozen onions and spinach.

    PubMed

    Baert, Leen; Uyttendaele, Mieke; Vermeersch, Mattias; Van Coillie, Els; Debevere, Johan

    2008-08-01

    The reduction of murine norovirus 1 (MNV-1) on onions and spinach by washing was investigated as was the risk of contamination during the washing procedure. To decontaminate wash water, the industrial sanitizer peracetic acid (PAA) was added to the water, and the survival of MNV-1 was determined. In contrast to onions, spinach undergoes a heat treatment before freezing. Therefore, the resistance of MNV-1 to blanching of spinach was examined. MNV-1 genomic copies were detected with a real-time reverse transcription PCR assay in PAA-treated water and blanched spinach, and PFUs (representing infectious MNV-1 units) were determined with a plaque assay. A < or = 1-log reduction in MNV-1 PFUs was achieved by washing onion bulbs and spinach leaves. More than 3 log PFU of MNV-1 was transmitted to onion bulbs and spinach leaves when these vegetables were washed in water containing approximately 5 log PFU/ml. No decline of MNV-1 occurred in used industrial spinach wash water after 6 days at room temperature. A concentration of 20 ppm of PAA in demineralized water (pH 4.13) and in potable water (pH 7.70) resulted in reductions of 2.88 +/- 0.25 and 2.41 +/- 0.18 log PFU, respectively, after 5 min of exposure, but no decrease in number of genomic copies was observed. No reduction of MNV-1 PFUs was observed on frozen onions or spinach during storage for 6 months. Blanching spinach (80 degrees C for 1 min) resulted in at least 2.44-log reductions of infectious MNV-1, but many genomic copies were still present.

  15. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana.

    PubMed

    Munekage, Yuri Nakajima; Inoue, Shio; Yoneda, Yuki; Yokota, Akiho

    2015-06-01

    Plants develop palisade tissue consisting of cylindrical mesophyll cells located at the adaxial side of leaves in response to high light. To understand high light signalling in palisade tissue development, we investigated leaf autonomous and long-distance signal responses of palisade tissue development using Arabidopsis thaliana. Illumination of a developing leaf with high light induced cell height elongation, whereas illumination of mature leaves with high light increased cell density and suppressed cell width expansion in palisade tissue of new leaves. Examination using phototropin1 phototropin2 showed that blue light signalling mediated by phototropins was involved in cell height elongation of the leaf autonomous response rather than the cell density increase induced by long-distance signalling. Hydrogen peroxide treatment induced cylindrical palisade tissue cell formation in both a leaf autonomous and long-distance manner, suggesting involvement of oxidative signals. Although constitutive expression of transcription factors involved in systemic-acquired acclimation to excess light, ZAT10 and ZAT12, induced cylindrical palisade tissue cell formation, knockout of these genes did not affect cylindrical palisade tissue cell formation. We conclude that two distinct signalling pathways - leaf autonomous signalling mostly dependent on blue light signalling and long-distance signalling from mature leaves that sense high light and oxidative stress - control palisade tissue development in A. thaliana. © 2014 John Wiley & Sons Ltd.

  16. Regulation of leaf hydraulics: from molecular to whole plant levels.

    PubMed

    Prado, Karine; Maurel, Christophe

    2013-01-01

    The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (K leaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidly in response to physiological or environmental factors such as leaf hydration, light, temperature, or nutrient supply. Differences in venation pattern provide a basis for variations in K leaf during development and between species. On a short time (hour) scale, the hydraulic resistance of the vessels can be influenced by transpiration-induced cavitations, wall collapses, and changes in xylem sap composition. The extravascular compartment includes all living tissues (xylem parenchyma, bundle sheath, and mesophyll) that transport water from xylem vessels to substomatal chambers. Pharmacological inhibition and reverse genetics studies have shown that this compartment involves water channel proteins called aquaporins (AQPs) that facilitate water transport across cell membranes. In many plant species, AQPs are present in all leaf tissues with a preferential expression in the vascular bundles. The various mechanisms that allow adjustment of K leaf to specific environmental conditions include transcriptional regulation of AQPs and changes in their abundance, trafficking, and intrinsic activity. Finally, the hydraulics of inner leaf tissues can have a strong impact on the dynamic responses of leaf water potential and stomata, and as a consequence on plant carbon economy and leaf expansion growth. The manipulation of these functions could help optimize the entire plant performance and its adaptation to extreme conditions over short and long time scales.

  17. Distribution of Metabolites between Chloroplast and Cytoplasm during the Induction Phase of Photosynthesis in Leaf Protoplasts 1

    PubMed Central

    Robinson, Simon P.; Walker, David A.

    1980-01-01

    A method for rapid separation of the chloroplast and cytoplasmic fractions from isolated leaf protoplasts of wheat and spinach has been used to determine the distribution of 14C-labeled products during photosynthesis. In the dark, CO2 fixation was only 1 to 2% of that in the light and the products were mainly in the cytoplasmic fraction suggesting fixation by phosphoenolpyruvate carboxylase. Label appeared rapidly in the chloroplast fraction following illumination but the amount leveled off after 4 to 5 minutes reflecting the buildup of intermediates to steady state levels. There was only a slight lag before label appeared in the cytoplasmic fraction and it continued to increase at a constant rate reflecting synthesis of neutral products. In the light, the percentage of label in the chloroplast fraction decreased rapidly in the first minute of illumination and was only 10 to 20% in the steady-state. It is suggested that the chloroplast phosphate transporter promotes a rapid transfer of sugar phosphates from the chloroplast to the cytoplasm, even during the induction phase of photosynthesis. PMID:16661305

  18. Uptake of different species of iodine by water spinach and its effect to growth.

    PubMed

    Weng, Huan-Xin; Yan, Ai-Lan; Hong, Chun-Lai; Xie, Lin-Li; Qin, Ya-Chao; Cheng, Charles Q

    2008-08-01

    A hydroponic experiment has been carried out to study the influence of iodine species [iodide (I(-)), iodate (IO(-)(3)), and iodoacetic acid (CH(2)ICOO(-))] and concentrations on iodine uptake by water spinach. Results show that low levels of iodine in the nutrient solution can effectively stimulate the growth of biomass of water spinach. When iodine levels in the nutrient solution are from 0 to 1.0 mg/l, increases in iodine levels can linearly augment iodine uptake rate by the leafy vegetables from all three species of iodine, and the uptake effects are in the following order: CH(2)ICOO(-) >I(-)>IO(-)(3). In addition, linear correlation was observed between iodine content in the roots and shoots of water spinach, and their proportion is 1:1. By uptake of I(-), vitamin C (Vit C) content in water spinach increased, whereas uptake of IO(-)(3) and CH(2)ICOO(-) decreased water spinach Vit C content. Furthermore, through uptake of I(-) and IO(-)(3). The nitrate content in water spinach was increased by different degrees.

  19. Requirement of a Relatively High Threshold Level of Mg2+ for Cell Growth of a Rhizoplane Bacterium, Sphingomonas yanoikuyae EC-S001

    PubMed Central

    Hoo, Henny; Hashidoko, Yasuyuki; Islam, Md. Tofazzal; Tahara, Satoshi

    2004-01-01

    Mg2+ is one of the essential elements for bacterial cell growth. The presence of the magnesium cation (Mg2+) in various concentrations often affects cell growth restoration in plant-associating bacteria. This study attempted to determine whether Mg2+ levels in Sphingomonas yanoikuyae EC-S001 affected cell growth restoration in the host plant and what the threshold level is. S. yanoikuyae EC-S001, isolated from the rhizoplane of spinach seedlings grown from surface-sterilized seeds under aseptic conditions, displayed uniform dispersion and attachment throughout the rhizoplane and phylloplane of the host seedlings. S. yanoikuyae EC-S001 did not grow in potato-dextrose broth medium but grew well in an aqueous extract of spinach leaves. Chemical investigation of the growth factor in the spinach leaf extract led to identification of the active principle as the magnesium cation. A concentration of ca. 0.10 mM Mg2+ or more allowed S. yanoikuyae EC-S001 to grow in potato-dextrose broth medium. Some saprophytic and/or diazotrophic bacteria used in our experiment were found to have diverse threshold levels for their Mg2+ requirements. For example, Burkholderia cepacia EC-K014, originally isolated from the rhizoplane of a Melastoma sp., could grow even in Mg2+-free Hoagland's no. 2 medium with saccharose and glutamine (HSG medium) and requires a trace level of Mg2+ for its growth. In contrast, S. yanoikuyae EC-S001, together with Bacillus subtilis IFO12113, showed the most drastic restoring responses to subsequent addition of 0.98 mM Mg2+ to Mg2+-free HSG medium. Our studies concluded that Mg2+ is more than just the essential trace element needed for cell growth restoration in S. yanoikuyae EC-S001 and that certain nonculturable bacteria may require a higher concentration of Mg2+ or another specific essential element for their growth. PMID:15345402

  20. The use of a single multielement standard for trace analysis in biological materials by external beam PIXE

    NASA Astrophysics Data System (ADS)

    Biswas, S. K.; Khaliquzzaman, M.; Islam, M. M.; Khan, A. H.

    1984-04-01

    The validity of the use of a single multielement standard for mass calibration in thick-target external beam PIXE analysis of biological materials has been investigated. In this study, the NBS orchard leaf, SRM 1571, was used as the basic standard for trace element analysis in other biological materials. Using the present procedure, the concentrations of K, Ca, Mn, Fe, Ni, Cu, Zn, Br, Rb and Sr were determined in several NBS reference materials such as bovine liver, spinach, rice flour, etc., generally in 20 μC irradiations with 2.0 MeV protons. The analytical results are compared with certified values of the NBS as well as with other measurements and the sources of errors are discussed.

  1. The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Penel, Claude; Greppin, Hubert; Morre, Dorothy M.

    2002-01-01

    The plasma membrane-associated NADH oxidase (NOX) of spinach leaf disks is characterized by oscillations in activity with a regular period length of ca. 24 min. Within a single population of plants exposed to light at the same time, NOX activities of all plants function synchronously. Exposure of plants transferred from darkness to blue light (495 nm, 2 min, 50 micromoles m-2 s-1) resulted in a complex response pattern but with a new maximum in the rate of NOX activity 36 (24+12) min after illumination and then with maxima in the rate of NOX activity every 24 min thereafter. Transient maxima in NOX activity were observed as well after 9.3 + /- 1.4 and 20.7 +/- 2.1 min. The blue light response differed from the response to red (650 nm, 10 min, 50 micromoles m-2 s-1) or white light where activity maxima were initiated 12 min after the light exposure followed by maxima every 24 min thereafter. Green or yellow light was ineffective. The light response was independent of the time in the 24-min NOX cycle when the light was given. The net effects of blue and red light were ultimately the same with a new maximum in the rate of NOX activity at 12+24=36 min (and every 24 min thereafter), but the mechanisms appear to be distinct.

  2. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    PubMed Central

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined increases in phenolics (quercetin and kaempferol) and GS hydrolysis product concentrations rather than by individual products alone. PMID:25084454

  3. Comparative Study of Betacyanin Profile and Antimicrobial Activity of Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius).

    PubMed

    Yong, Yi Yi; Dykes, Gary; Lee, Sui Mae; Choo, Wee Sim

    2017-03-01

    Betacyanins are reddish to violet pigments that can be found in red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). This study investigated the impact of sub-fractionation (solvent partitioning) on betacyanin content in both plants. Characterization of betacyanins and evaluation of their antimicrobial activities were also carried out. Betanin was found in both plants. In addition, isobetanin, phyllocactin and hylocerenin were found in red pitahaya whereas amaranthine and decarboxy-amaranthine were found in red spinach. Sub-fractionated red pitahaya and red spinach had 23.5 and 121.5 % more betacyanin content, respectively, than those without sub-fractionation. Sub-fractionation increased the betanin and decarboxy-amaranthine content in red pitahaya and red spinach, respectively. The betacyanin fraction from red spinach (minimum inhibitory concentration [MIC] values: 0.78-3.13 mg/mL) demonstrated a better antimicrobial activity profile than that of red pitahaya (MIC values: 3.13-6.25 mg/mL) against nine Gram-positive bacterial strains. Similarly, the red spinach fraction (MIC values: 1.56-3.13 mg/mL) was more active than the red pitahaya fraction (MIC values: 3.13-6.25 mg/mL) against five Gram-negative bacterial strains. This could be because of a higher amount of betacyanin, particularly amaranthine in the red spinach.

  4. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures.

    PubMed

    Gu, Ganyu; Ottesen, Andrea; Bolten, Samantha; Ramachandran, Padmini; Reed, Elizabeth; Rideout, Steve; Luo, Yaguang; Patel, Jitendra; Brown, Eric; Nou, Xiangwu

    2018-08-01

    Fresh produce, like spinach, harbors diverse bacterial populations, including spoilage and potentially pathogenic bacteria. This study examined the effects of produce washing in chlorinated water and subsequent storage on the microbiota of spinach. Baby spinach leaves from a commercial fresh-cut produce processor were assessed before and after washing in chlorinated water, and then after one week's storage at 4, 10, and 15 °C. Microbial communities on spinach were analyzed by non-selective plating, qPCR, and 16S rDNA amplicon sequencing. Bacterial populations on spinach, averaging 6.12 ± 0.61 log CFU/g, were reduced by 1.33 ± 0.57 log after washing. However, populations increased by 1.77-3.24 log after storage, with larger increases occurring at higher temperature (15 > 10 > 4 °C). The predominant phylum identified on unwashed spinach leaves was Proteobacteria; dominant genera were Pseudomonas and Sphingomonas. Bacterial communities shifted significantly after chlorine washing and storage. Several Proteobacteria species, such as Stenotrophomonas sp. and Erwinia sp., were relatively tolerant of chlorine treatment, while species of Flavobacterium and Pedobacter (phylum Bacteroidetes) grew rapidly during storage, especially at abusive temperatures. Cupriavidus sp. and Ralstonia sp. showed significant increases after washing. After storage, microbial communities on spinach appeared to shift back toward the pre-washing distributions. Copyright © 2018. Published by Elsevier Ltd.

  5. Effects of high temperature frying of Spinach leaves in sunflower oil on carotenoids, chlorophylls and tocopherol composition

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Nisar, Parveen

    2017-03-01

    Spinach is one of the highly consumed vegetable, with significant nutritional and beneficial properties. This study revealed for the first time, the effects of high temperature frying on the carotenoids, chlorophylls and tocopherol contents of spinach leaves. Spinach leaves were thermally processed in the sunflower oil for 15, 30, 45 and 60 min at 250 °C. HPLC-DAD results revealed a total of eight carotenoids, four chlorophylls and α-tocopherol in the spinach leaves. Lutein, neoxanthin, violaxanthin and β-carotene-5,6-epoxide were the major carotenoids, while chlorophyll a and b' were present in higher amounts. Frying of spinach leaves increased significantly the amount of α-tocopherol, β-carotene-5,6-epoxide, luteoxanthin, lutein and its Z-isomers and chlorophyll b' isomer. There was a dose dependent decrease in the amounts of neoxanthin, violaxanthin, chlorophyll b, b' and chlorophyll a with increase of frying time. The increase of frying time increased the total phenolic contents in spinach leaves and fried sunflower oil samples. Chemical characteristics such as peroxide values, free fatty acids, conjugated dienes, conjugated trienes and radical scavenging activity were significantly affected by frying, while spinach leaves increased the stability of the frying oil. This study can be used to improve the quality of fried vegetable leaves or their products at high temperature frying in food industries for increasing consumer acceptability.

  6. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial.

    PubMed

    Bondonno, Catherine P; Yang, Xingbin; Croft, Kevin D; Considine, Michael J; Ward, Natalie C; Rich, Lisa; Puddey, Ian B; Swinny, Ewald; Mubarak, Aidilla; Hodgson, Jonathan M

    2012-01-01

    Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; P<0.01) and higher nitrite (control, 35 nmol/L, 27, 46; apple, 69 nmol/L, 53, 90; spinach, 99 nmol/L, 76, 129; apple+spinach, 80 nmol/L, 61, 104; P<0.01). Compared to control, all treatments resulted in higher flow-mediated dilatation (P<0.05) and lower pulse pressure (P<0.05), and apple and spinach resulted in lower systolic blood pressure (P<0.05). No significant effect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower blood pressure acutely, outcomes that may benefit cardiovascular health. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Generic Escherichia coli Contamination of Spinach at the Preharvest Stage: Effects of Farm Management and Environmental Factors

    PubMed Central

    Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Jun, Mikyoung; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Ivanek, Renata

    2013-01-01

    The objective of this study was to determine the effects of farm management and environmental factors on preharvest spinach contamination with generic Escherichia coli as an indicator of fecal contamination. A repeated cross-sectional study was conducted by visiting spinach farms up to four times per growing season over a period of 2 years (2010 to 2011). Spinach samples (n = 955) were collected from 12 spinach farms in Colorado and Texas as representative states of the Western and Southwestern United States, respectively. During each farm visit, farmers were surveyed about farm-related management and environmental factors using a questionnaire. Associations between the prevalence of generic E. coli in spinach and farm-related factors were assessed by using a multivariable logistic regression model including random effects for farm and farm visit. Overall, 6.6% of spinach samples were positive for generic E. coli. Significant risk factors for spinach contamination with generic E. coli were the proximity (within 10 miles) of a poultry farm, the use of pond water for irrigation, a >66-day period since the planting of spinach, farming on fields previously used for grazing, the production of hay before spinach planting, and the farm location in the Southwestern United States. Contamination with generic E. coli was significantly reduced with an irrigation lapse time of >5 days as well as by several factors related to field workers, including the use of portable toilets, training to use portable toilets, and the use of hand-washing stations. To our knowledge, this is the first report of an association between field workers' personal hygiene and produce contamination with generic E. coli at the preharvest level. Collectively, our findings support that practice of good personal hygiene and other good farm management practices may reduce produce contamination with generic E. coli at the preharvest level. PMID:23666336

  8. Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation.

    PubMed

    Lim, Sanghyun; Chisholm, Kenneth; Coffin, Robert H; Peters, Rick D; Al-Mughrabi, Khalil I; Wang-Pruski, Gefu; Pinto, Devanand M

    2012-04-06

    Foliar diseases, such as late blight, result in serious threats to potato production. As such, potato leaf tissue becomes an important substrate to study biological processes, such as plant defense responses to infection. Nonetheless, the potato leaf proteome remains poorly characterized. Here, we report protein profiling of potato leaf tissues using a modified differential centrifugation approach to separate the leaf tissues into cell wall and cytoplasmic fractions. This method helps to increase the number of identified proteins, including targeted putative cell wall proteins. The method allowed for the identification of 1484 nonredundant potato leaf proteins, of which 364 and 447 were reproducibly identified proteins in the cell wall and cytoplasmic fractions, respectively. Reproducibly identified proteins corresponded to over 70% of proteins identified in each replicate. A diverse range of proteins was identified based on their theoretical pI values, molecular masses, functional classification, and biological processes. Such a protein extraction method is effective for the establishment of a highly qualified proteome profile.

  9. Lettuce and spinach breeding

    USDA-ARS?s Scientific Manuscript database

    Lettuce and spinach production is beset by numerous biotic an abiotic challenges. This report to the California Leafy Greens Research Program annual meeting provides an update by the ‘Genetic Enhancement of Lettuce, Spinach, Melon, and Related Species’ project at Salinas on the genetics and breeding...

  10. Comparison of exposure to trace elements through vegetable consumption between a mining area and an agricultural area in central Chile.

    PubMed

    Aguilar, Marcelo; Mondaca, Pedro; Ginocchio, Rosanna; Vidal, Kooichi; Sauvé, Sébastien; Neaman, Alexander

    2018-05-03

    Human exposure to trace elements has been a large concern due to the potential health issues. Accordingly, this study aimed to compare the concentrations of arsenic, copper, and zinc in the edible parts of vegetables grown in a mining-agricultural area and in an exclusively agricultural area and to compare the potential human health risks of consuming vegetables from both areas. The consumption habits of the studied population were extracted from the 2010 National Alimentary Survey of Chile. In most cases, the concentrations of trace elements in the edible tissues of vegetables (lettuce, spinach, garlic, onion, carrot, potato, sweet corn, and tomato) were higher in the mining-agricultural area than those in the control area. This difference was most pronounced for leafy vegetables, with arsenic being the trace element of concern. Specifically, the arsenic concentrations in the edible tissues of lettuce and spinach were 8.2- and 5.4-fold higher, respectively, in the mining-agricultural area than in the control area. Lettuce was the vegetable of concern due to its relatively high consumption and relatively high concentration of trace elements. Nevertheless, there was no health risk associated with vegetable consumption in either the mining area or the control area because none of the HQ values surpassed 1.0.

  11. Kinetic thermal degradation of vitamin C during microwave drying of okra and spinach.

    PubMed

    Dadali, Gökçe; Ozbek, Belma

    2009-01-01

    In this present study, the effect of microwave output power and sample amount on vitamin C loss in okra (Hibiscus esculenta L.) and spinach (Spinacia oleracea L.) were investigated using the microwave drying technique. The procedure is based on the reaction between l-ascorbic acid (vitamin C) and 2,6-dichloroindophenol. The proposed method was applied successfully to both okra and spinach for the determination of ascorbic acid (vitamin C) content. It was observed that as the microwave output power increased or as the sample amount decreased, the vitamin C in okra and spinach decreased as well. The activation energy for degradation of vitamin C for both okra and spinach was calculated using an exponential expression based on the Arrhenius equation.

  12. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq).

    PubMed

    Qian, Wei; Fan, Guiyan; Liu, Dandan; Zhang, Helong; Wang, Xiaowu; Wu, Jian; Xu, Zhaosheng

    2017-04-04

    Cultivated spinach (Spinacia oleracea L.) is one of the most widely cultivated types of leafy vegetable in the world, and it has a high nutritional value. Spinach is also an ideal plant for investigating the mechanism of sex determination because it is a dioecious species with separate male and female plants. Some reports on the sex labeling and localization of spinach in the study of molecular markers have surfaced. However, there have only been two reports completed on the genetic map of spinach. The lack of rich and reliable molecular markers and the shortage of high-density linkage maps are important constraints in spinach research work. In this study, a high-density genetic map of spinach based on the Specific-locus Amplified Fragment Sequencing (SLAF-seq) technique was constructed; the sex-determining gene was also finely mapped. Through bio-information analysis, 50.75 Gb of data in total was obtained, including 207.58 million paired-end reads. Finally, 145,456 high-quality SLAF markers were obtained, with 27,800 polymorphic markers and 4080 SLAF markers were finally mapped onto the genetic map after linkage analysis. The map spanned 1,125.97 cM with an average distance of 0.31 cM between the adjacent marker loci. It was divided into 6 linkage groups corresponding to the number of spinach chromosomes. Besides, the combination of Bulked Segregation Analysis (BSA) with SLAF-seq technology(super-BSA) was employed to generate the linkage markers with the sex-determining gene. Combined with the high-density genetic map of spinach, the sex-determining gene X/Y was located at the position of the linkage group (LG) 4 (66.98 cM-69.72 cM and 75.48 cM-92.96 cM), which may be the ideal region for the sex-determining gene. A high-density genetic map of spinach based on the SLAF-seq technique was constructed with a backcross (BC 1 ) population (which is the highest density genetic map of spinach reported at present). At the same time, the sex-determining gene X/Y was mapped to LG4 with super-BSA. This map will offer a suitable basis for further study of spinach, such as gene mapping, map-based cloning of Specific genes, quantitative trait locus (QTL) mapping and marker-assisted selection (MAS). It will also provide an efficient reference for studies on the mechanism of sex determination in other dioecious plants.

  13. A qPCR assay for detection and quantification of Verticillium dahliae in spinach seed.

    USDA-ARS?s Scientific Manuscript database

    The fungus Verticillium dahliae is the causal agent of Verticillium wilt of lettuce and other specialty crops in the Salinas Valley of California. Spinach, another major specialty crop in California, is not affected by Verticillium wilt in commercial production. However, spinach seed infected with ...

  14. Development of a qPCR assay for quantification of verticillium dahliae in spinach seed.

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, is an important disease of lettuce and other specialty crops in the Salinas Valley of California. Although spinach is not affected by Verticillium wilt in commercial production, spinach seed infected with V. dahliae from locatio...

  15. Microbiological quality of spinach irrigated with reclaimed wastewater and roof-harvest water

    USDA-ARS?s Scientific Manuscript database

    Aims: The effect of reclaimed wastewater (RCW) and roof-harvest rainwater (RHW) on microbiological quality of irrigated spinach was investigated. Methods and Results: Spinach grown in controlled environment chamber was irrigated by RCW, RHW, or creek water (CW; control water) for four weeks, and th...

  16. Season-long dynamics of spinach downy mildew determined by spore trapping and disease

    USDA-ARS?s Scientific Manuscript database

    Peronospora effusa is an obligate oomycete pathogen, and the cause of downy mildew of spinach. Downy mildew threatens sustainable production of fresh market organic spinach in California, and routine fungicide sprays are often necessary for conventional production. In this study, airborne P. effus...

  17. Effect of green spinach (Amaranthus tricolor L.) and tomato (Solanum lycopersicum) addition in physical, chemical, and sensory properties of marshmallow as an alternative prevention of iron deficiency anemia

    NASA Astrophysics Data System (ADS)

    Yudhistira, B.; Affandi, D. R.; Nusantari, P. N.

    2018-01-01

    Iron deficiency anemia is the most common nutritional disorder in the world. Consuming vegetable which contain iron, including spinach, is an alternative to fulfill iron requirement. Fe will be more easily absorbed in the presence of vitamin C. Tomato is one of vitamin C source that can be used. Spinach can be applied into confectionary products in the form of marshmallow. This research aimed to find out the physical, chemical and sensory properties of green spinach Marshmallow in addition of Tomato, the best formula, and define the category of nutrition contents based on Acuan Label Gizi (ALG). This study used a completely randomized design (CRD) with one factor that was different proportion of spinach:tomato (75%: 25%; 50%: 50%; 25%: 75%). The data were analyzed using One Way Anova with 5% significance level. The result of this study showed that the difference of spinach and tomato proportion affect tensile strength, moisture, ash content, Fe content, crude fiber, vitamin C, color and marshmallow’s flavor. Best marshmallow formulation of 25% spinach in addition of 75% tomato had Fe content of 1.159 mg/100g and vitamin C of 44 mg/100g.

  18. The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L.

    PubMed

    Kamlar, Marek; Rothova, Olga; Salajkova, Sarka; Tarkowska, Dana; Drasar, Pavel; Kocova, Marie; Harmatha, Juraj; Hola, Dana; Kohout, Ladislav; Macek, Tomas

    2015-05-01

    The aim of this study was to show whether/how the application of exogenous 24-epibrassinolide can affect the content of ecdysteroids in spinach leaves. Brassinosteroids and ecdysteroids, structurally related phytosterols, show effect on a range of processes in plants. Brassinosteroids increase biomass yield in some species, photosynthesis and resistance to stress, and ecdysteroids show effect on proteins responsible for binding of CO2 or water cleavage. The mutual interaction of these sterols in plants is unclear. The UPLC-(+)ESI-MS/MS analyses of extracts of treated and untreated spinach (Spinacia oleracea L.) leaves show that the application of exogenous 24-epibrassinolide does influence the ecdysteroid content in plant tissues. The response differs for the major ecdysteroids and also differs from that for the minor ones and is dependent on the developmental stage of the leaves within the same plant or the 24-epibrassinolide concentration applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Water Potential in Excised Leaf Tissue

    PubMed Central

    Nelsen, Charles E.; Safir, Gene R.; Hanson, Andrew D.

    1978-01-01

    Leaf water potential (Ψleaf) determinations were made on excised leaf samples using a commercial dew point hygrometer (Wescor Inc., Logan, Utah) and a thermocouple psychrometer operated in the isopiestic mode. With soybean leaves (Glycine max L.), there was good agreement between instruments; equilibration times were 2 to 3 hours. With cereals (Triticum aestivum L. and Hordeum vulgare L.), agreement between instruments was poor for moderately wilted leaves when 7-mm-diameter punches were used in the hygrometer and 20-mm slices were used in the psychrometer, because the Ψleaf values from the dew point hygrometer were too high. Agreement was improved by replacing the 7-mm punch samples in the hygrometer by 13-mm slices, which had a lower cut edge to volume ratio. Equilibration times for cereals were normally 6 to 8 hours. Spuriously high Ψleaf values obtained with 7-mm leaf punches may be associated with the ion release and reabsorption that occur upon tissue excision; such errors evidently depend both on the species and on tissue water status. PMID:16660227

  20. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less

  1. Regulation of leaf hydraulics: from molecular to whole plant levels

    PubMed Central

    Prado, Karine; Maurel, Christophe

    2013-01-01

    The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (Kleaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidly in response to physiological or environmental factors such as leaf hydration, light, temperature, or nutrient supply. Differences in venation pattern provide a basis for variations in Kleaf during development and between species. On a short time (hour) scale, the hydraulic resistance of the vessels can be influenced by transpiration-induced cavitations, wall collapses, and changes in xylem sap composition. The extravascular compartment includes all living tissues (xylem parenchyma, bundle sheath, and mesophyll) that transport water from xylem vessels to substomatal chambers. Pharmacological inhibition and reverse genetics studies have shown that this compartment involves water channel proteins called aquaporins (AQPs) that facilitate water transport across cell membranes. In many plant species, AQPs are present in all leaf tissues with a preferential expression in the vascular bundles. The various mechanisms that allow adjustment of Kleaf to specific environmental conditions include transcriptional regulation of AQPs and changes in their abundance, trafficking, and intrinsic activity. Finally, the hydraulics of inner leaf tissues can have a strong impact on the dynamic responses of leaf water potential and stomata, and as a consequence on plant carbon economy and leaf expansion growth. The manipulation of these functions could help optimize the entire plant performance and its adaptation to extreme conditions over short and long time scales. PMID:23874349

  2. Plasmolysis and vital staining reveal viable oospores of Peronospora effusa in spinach seed lots

    USDA-ARS?s Scientific Manuscript database

    Production of oospores by Peronospora effusa, the causal agent of downy mildew on spinach (Spinacia oleracea), was reported on spinach seed over three decades ago. In view of the rapid proliferation of new races of P. effusa worldwide, seed borne transmission has been suspected but methods to test ...

  3. Effects of substrate type on plant growth and nitrogen and nitrate concentration in spinach

    USDA-ARS?s Scientific Manuscript database

    The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat; black peat; and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were trans...

  4. Ultrasound enhanced sanitizer efficacy in reduction of Escherichia coli O157:H7 population on spinach leaves

    USDA-ARS?s Scientific Manuscript database

    The use of ultrasound to enhance the efficacy of selected sanitizers in reduction of Escherichia coli O157:H7 populations on spinach was investigated. Spot-inoculated spinach samples were treated with water, chlorine, acidified sodium chlorite (ASC), peroxyacetic acid (POAA), and acidic electrolyzed...

  5. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production1

    PubMed Central

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi

    2015-01-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788

  7. Identification of Key Root Volatiles Signaling Preference of Tomato Over Spinach by the Root Knot Nematode Meloidogyne incognita.

    PubMed

    Murungi, Lucy K; Kirwa, Hillary; Coyne, Danny; Teal, Peter E A; Beck, John J; Torto, Baldwyn

    2018-06-25

    The root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, is a serious pest of tomato (Solanum lycopersicum) and spinach (Spinacea oleracea) in sub-Saharan Africa. In East Africa these two crops are economically important and are commonly intercropped by smallholder farmers. The role of host plant volatiles in M. incognita interactions with these two commodities is currently unknown. Here, we investigate the olfactory basis of attraction of tomato and spinach roots by the infective second stage juveniles (J2s) of M. incognita. In olfactometer assays, J2s were attracted to root volatiles from both crops over moist sand (control), but in choice tests using the two host plants, volatiles of tomato roots were more attractive than those released by spinach. Root volatiles sampled by solid phase micro-extraction (SPME) fiber and analysed by gas chromatography/mass spectrometry (GC/MS) identified a total of eight components, of which five (2-isopropyl-3-methoxypyrazine, 2-(methoxy)-3-(1-methylpropyl)pyrazine, tridecane, and α- and β-cedrene) occurred in the root-emitted volatiles of both plants, with three (δ-3-carene, sabinene and methyl salicylate) being specific to tomato root volatiles. In a series of bioassays, methyl salicylate contributed strongly to the attractiveness of tomato, whereas 2-isopropyl-3-methoxypyrazine and tridecane contributed to the attractiveness of spinach. M. incognita J2s were also more attracted to natural spinach root volatiles when methyl salicylate was combined, than to spinach volatiles alone, indicating that the presence of methyl salicylate in tomato volatiles strongly contributes to its preference over spinach. Our results indicate that since both tomato and spinach roots are attractive to M. incognita, identifying cultivars of these two plant species that are chemically less attractive can be helpful in the management of root knot nematodes.

  8. The relationships between leaf economics and hydraulic traits of woody plants depend on water availability.

    PubMed

    Yin, Qiulong; Wang, Lei; Lei, Maolin; Dang, Han; Quan, Jiaxin; Tian, Tingting; Chai, Yongfu; Yue, Ming

    2018-04-15

    Leaf economics and hydraulic traits are simultaneously involved in the process of trading water for CO 2 , but the relationships between these two suites of traits remain ambiguous. Recently, Li et al. (2015) reported that leaf economics and hydraulic traits were decoupled in five tropical-subtropical forests in China. We tested the hypothesis that the relationships between economics and hydraulic traits may depend on water availability. We analysed five leaf economics traits, four hydraulic traits and anatomical structures of 47 woody species on the Loess Plateau with poor water availability and compared those data with Li et al. (2015) obtained in tropical-subtropical regions with adequate water. The results showed that plants on the Loess Plateau tend to have higher leaf tissue density (TD), leaf nitrogen concentrations and venation density (VD) and lower stomatal guard cell length (SL) and maximum stomatal conductance to water vapour (g wmax ). VD showed positive correlations with leaf nitrogen concentrations, palisade tissue thickness (PT) and ratio of palisade tissue thickness to spongy tissue thickness (PT/ST). Principal component analysis (PCA) showed a result opposite from those of tropical-subtropical regions: leaf economics and hydraulic traits were coupled on the Loess Plateau. A stable correlation between these two suites of traits may be more cost-effective on the Loess Plateau, where water availability is poor. The correlation of leaf economics and hydraulic traits may be a type of adaptation mechanism in arid conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Errors in Measuring Water Potentials of Small Samples Resulting from Water Adsorption by Thermocouple Psychrometer Chambers 1

    PubMed Central

    Bennett, Jerry M.; Cortes, Peter M.

    1985-01-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios. PMID:16664367

  10. Errors in measuring water potentials of small samples resulting from water adsorption by thermocouple psychrometer chambers.

    PubMed

    Bennett, J M; Cortes, P M

    1985-09-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.

  11. Studies on the movements of ionic selectivity, compatible solutes, and intracellular ions caused in the leaves of spinach (Spinacia oleracea L.) plants cultured in a nutrient solution with seawater.

    PubMed

    Sun, Jin; Jia, Yongxia; Guo, Shirong; Chen, Lifang

    2010-01-01

    Analyses of ionic selectivity, compatible solutes, and intracellular ions in the leaves of spinach (Spinacia oleracea L.) plants cultured in the Hoagland's nutrient solution with or.without seawater (40%) were carried out using two cultivars--the Helan No.3 (seawater tolerant) and the Yuanye (seawater sensitive). When both cultivars were subjected to seawater stress, the leaves of the Helan No. 3 spinach preferred potassium (K+), calcium (Ca2+), magnesium (Mg2+), and sulfate (SO4(2-)) over sodium (Na+) and chlorine (Cl-) to keep high ratios of K/Na, Mg/Na, Ca/Na, and SO4(2-)/Cl- compared with the Yanye spinach. Moreover, those of the Helan No. 3 spinach under the seawater stress showed high efficiency of accumulation of compatible solutes (sugars and proline), low degradation of proteins, and suppression of free amino acids. However, the activities of plasma membrane H+ -ATPase and tonoplast H+ -ATPase in the leaves of spinach with the stress were enhanced. Taken together, the Helan No. 3 spinach under the seawater stress seems to acquire a high tolerance to the seawater salinity by inducing a high ion uptake, low concentration of Na+ and Cl-, efficient accumulation of compatible solutes, low decomposition of proteins, and suppression of free amino acids in the leaves.

  12. Thermal inactivation kinetics of hepatitis A virus in spinach.

    PubMed

    Bozkurt, Hayriye; Ye, Xiaofei; Harte, Federico; D'Souza, Doris H; Davidson, P Michael

    2015-01-16

    Leafy vegetables have been recognized as important vehicles for the transmission of foodborne viral pathogens. To control hepatitis A viral foodborne illness outbreaks associated with mildly heated (e.g., blanched) leafy vegetables such as spinach, generation of adequate thermal processes is important both for consumers and the food industry. Therefore, the objectives of this study were to determine the thermal inactivation behavior of hepatitis A virus (HAV) in spinach, and provide insights on HAV inactivation in spinach for future studies and industrial applications. The D-values calculated from the first-order model (50-72 °C) ranged from 34.40 ± 4.08 to 0.91 ± 0.12 min with a z-value of 13.92 ± 0.87 °C. The calculated activation energy value was 162 ± 11 kJ/mol. Using the information generated in the present study and the thermal parameters of industrial blanching conditions for spinach as a basis (100 °C for 120-180 s), the blanching of spinach in water at 100 °C for 120-180 s under atmospheric conditions will provide greater than 6 log reduction of HAV. The results of this study may be useful to the frozen food industry in designing blanching conditions for spinach to inactivate or control hepatitis A virus outbreaks. Copyright © 2014. Published by Elsevier B.V.

  13. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis) leaf blades.

    PubMed

    Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira

    2014-01-01

    Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. These mechanisms are discussed in regard to ecological and physiological significance in winter survival.

  14. Optimization of low-temperature blanching combined with calcium treatment to inactivate Escherichia coli O157:H7 on fresh-cut spinach.

    PubMed

    Kim, N H; Lee, N Y; Kim, S H; Lee, H J; Kim, Y; Ryu, J H; Rhee, M S

    2015-07-01

    To develop a mild blanching method with calcium salts to ensure microbiological safety and quality of fresh-cut spinach. The antimicrobial efficacy of eight calcium salts was evaluated on Escherichia coli O157:H7 at 45-65°C and calcium hydroxide (Ca(OH)2 ) showed the greatest synergistic antimicrobial effect with heat. Combinations of low temperature treatments (45, 55, 65°C), time (20, 40, 60 s) and Ca(OH)2 (0·25, 0·50, 0·75%) were applied for E. coli O157:H7 disinfection on fresh-cut spinach to develop a predictive model using a Box-Behnken experimental design. A suitable quadratic model was produced (R(2) = 0·98, P < 0·001) and the optimum condition (64·9°C with 0·52% Ca(OH)2 for 42·4 s) was drawn by reducing 6·6 log CFU g(-1) of E. coli O157:H7 on fresh-cut spinach. Blanching at 61·9°C with 0·52% Ca(OH)2 for 41·7 s can inactivate E. coli O157:H7 on spinach by 5·4 log CFU g(-1) . The new method was comparable to the CDC recommendation for safe spinach cooking (71·1°C, 15 s; 5·0 log CFU g(-1) reduction) with lower levels of weight loss of the spinach (P < 0·05). This study suggests an efficient spinach blanching method for E. coli O157:H7 disinfection. This blanching method will enhance microbiological safety of fresh-cut produce while minimizing the use of energy and chemicals. © 2015 The Society for Applied Microbiology.

  15. Osmotic Stress Induces Expression of Choline Monooxygenase in Sugar Beet and Amaranth1

    PubMed Central

    Russell, Brenda L.; Rathinasabapathi, Bala; Hanson, Andrew D.

    1998-01-01

    Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolerant crop. The deduced beet CMO amino acid sequence comprised a transit peptide and a 381-residue mature peptide that was 84% identical (97% similar) to that of spinach and that showed the same consensus motif for coordinating a Rieske-type [2Fe-2S] cluster. A mononuclear Fe-binding motif was also present. When water was withheld, leaf relative water content declined to 59% and the levels of CMO mRNA, protein, and enzyme activity rose 3- to 5-fold; rewatering reversed these changes. After gradual salinization (NaCl:CaCl2 = 5.7:1, mol/mol), CMO mRNA, protein, and enzyme levels in leaves increased 3- to 7-fold at 400 mm salt, and returned to uninduced levels when salt was removed. Beet roots also expressed CMO, most strongly when salinized. Salt-inducible CMO mRNA, protein, and enzyme activity were readily detected in leaves of Amaranthus caudatus L. (Amaranthaceae). These data show that CMO most probably has a mononuclear Fe center, is inducibly expressed in roots as well as in leaves of Chenopodiaceae, and is not unique to this family. PMID:9489025

  16. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  17. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein

    PubMed Central

    Warner, Katherine Deigan; Chen, Michael C.; Song, Wenjiao; Strack, Rita L.; Thorn, Andrea; Jaffrey, Samie R.; Ferré-D’Amaré, Adrian R.

    2014-01-01

    Green fluorescent protein (GFP) and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro evolved RNA mimic of GFP, which as genetically encoded fusions, makes possible live-cell, real-time imaging of biological RNAs, without resorting to large RNA-binding protein-GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we have solved its co-crystal structure bound to its cognate exogenous chromophore, revealing that Spinach activates the small molecule by immobilizing it between a base triple, a G-quadruplex, and an unpaired guanine. Mutational and NMR analyses indicate that the G-quadruplex is essential for Spinach fluorescence, is also present in other fluorogenic RNAs, and may represent a general strategy for RNAs to induce fluorescence of chromophores. The structure has guided the design of a miniaturized 'Baby Spinach', and provides the foundation for structure-driven design and tuning of fluorescent RNAs. PMID:25026079

  18. Effect of pest management system on 'Empire' apple leaf phyllosphere populations

    USDA-ARS?s Scientific Manuscript database

    The phyllosphere of plant tissues is varied and dynamic. Pest management, time of sampling, proximity to immigration sources, tissue and tissue status such as leaf/fruit age and location within the canopy, and other environmental and biological factors interact to influence the composition and abun...

  19. Water potential in excised leaf tissue: comparison of a commercial dew point hygrometer and a thermocouple psychrometer on soybean, wheat, and barley.

    PubMed

    Nelsen, C E; Safir, G R; Hanson, A D

    1978-01-01

    Leaf water potential (Psi(leaf)) determinations were made on excised leaf samples using a commercial dew point hygrometer (Wescor Inc., Logan, Utah) and a thermocouple psychrometer operated in the isopiestic mode. With soybean leaves (Glycine max L.), there was good agreement between instruments; equilibration times were 2 to 3 hours. With cereals (Triticum aestivum L. and Hordeum vulgare L.), agreement between instruments was poor for moderately wilted leaves when 7-mm-diameter punches were used in the hygrometer and 20-mm slices were used in the psychrometer, because the Psi(leaf) values from the dew point hygrometer were too high. Agreement was improved by replacing the 7-mm punch samples in the hygrometer by 13-mm slices, which had a lower cut edge to volume ratio. Equilibration times for cereals were normally 6 to 8 hours. Spuriously high Psi(leaf) values obtained with 7-mm leaf punches may be associated with the ion release and reabsorption that occur upon tissue excision; such errors evidently depend both on the species and on tissue water status.

  20. Leaf blade versus petiole nutrient tests as predictors of nitrogen, phosphorus, and potassium status of ‘Pinot noir’ grapevines

    USDA-ARS?s Scientific Manuscript database

    Grape growers rely on tissues tests of leaf blades or petioles for routine monitoring of vine nutritional health and for diagnosing potential nutrient deficiency or toxicity. There has been a long standing debate as to which tissue better reflects the nutrient status of vines. A comparison of leaf b...

  1. An Improved Method for the Extraction and Thin-Layer Chromatography of Chlorophyll A and B from Spinach

    ERIC Educational Resources Information Center

    Quach, Hao T.; Steeper, Robert L.; Griffin, William G.

    2004-01-01

    A simple and fast method, which resolves chlorophyll a and b from spinach leaves on analytical plates while minimizing the appearance of chlorophyll degradation products is shown. An improved mobile phase for the Thin-layer chromatographic analysis of spinach extract that allows for the complete resolution of the common plant pigments found in…

  2. Cold Plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli 0157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to investigate the efficacy of aerosolized hydrogen peroxide in inactivating bacteria and maintaining quality of grape tomato, baby spinach leaves and cantaloupe. Stem scar and smooth surfaces of tomatoes, spinach leaves, and cantaloupe rinds, inoculated with Escherich...

  3. Detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii) using spore traps and quantitative PCR assays

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of spinach, caused by Peronospora effusa, is a disease constraint on spinach production worldwide. The aim of this study was to develop a real-time quantitative PCR assay for detection of airborne inoculum of P. effusa in California. This type of assay may, in combination with disease-...

  4. Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (Peronospora schachtii)

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of spinach (Spinacia oleracea L.), caused by Peronospora effusa, is a disease constraint on production worldwide, including in California where the majority of United States spinach is grown. The aim of this study was to develop a real-time quantitative PCR (qPCR) assay for detection o...

  5. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.

    PubMed

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi; Wong, Limsoon; Chua, Nam-Hai; Jang, In-Cheol

    2015-12-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Colonization and Movement of Xanthomonas fragariae in Strawberry Tissues.

    PubMed

    Wang, Hehe; McTavish, Christine; Turechek, William W

    2018-06-01

    Xanthomonas fragariae causes angular leaf spot of strawberry, an important disease in strawberry growing regions worldwide. To better understand how X. fragariae multiplies and moves in strawberry plants, a green fluorescent protein (GFP)-labeled strain was constructed and used to monitor the pathogen's presence in leaf, petiole, and crown tissue with fluorescence microscopy following natural and wound inoculation in three strawberry cultivars. Taqman PCR was used to quantify bacterial densities in these same tissues regardless of the presence of GFP signal. Results showed X. fragariae colonized leaf mesophyll, the top 1 cm portion of the petiole adjacent to the leaf blade, and was occasionally found colonizing xylem vessels down to the middle of the petioles. The colonization of vascular bundles and the limited systemic movement that was observed appeared to be a passive process, of which the frequency increased with wounding and direct infiltration of bacteria into leaf veins. X. fragariae was able to directly enter petioles and colonize the space under the epidermis. Systemic movement of the bacteria into crown and other uninoculated tissues was not detected visually by GFP. However, X. fragariae was occasionally detected in these tissues by qPCR, but at quantities very near the qPCR detection limit. Petiole tissue harboring bacteria introduced either by direct entry through natural openings or wounds, or by systemic movement from infected foliar tissue, likely serves as a main source of initial inoculum in field plantings.

  7. Leaf conductance and carbon gain under salt-stressed conditions

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.

    2011-12-01

    Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.

  8. Comparison of Spinach Sex Chromosomes with Sugar Beet Autosomes Reveals Extensive Synteny and Low Recombination at the Male-Determining Locus.

    PubMed

    Takahata, Satoshi; Yago, Takumi; Iwabuchi, Keisuke; Hirakawa, Hideki; Suzuki, Yutaka; Onodera, Yasuyuki

    2016-01-01

    Spinach (Spinacia oleracea, 2n = 12) and sugar beet (Beta vulgaris, 2n = 18) are important crop members of the family Chenopodiaceae ss Sugar beet has a basic chromosome number of 9 and a cosexual breeding system, as do most members of the Chenopodiaceae ss. family. By contrast, spinach has a basic chromosome number of 6 and, although certain cultivars and genotypes produce monoecious plants, is considered to be a dioecious species. The loci determining male and monoecious sexual expression were mapped to different loci on the spinach sex chromosomes. In this study, a linkage map with 46 mapped protein-coding sequences was constructed for the spinach sex chromosomes. Comparison of the linkage map with a reference genome sequence of sugar beet revealed that the spinach sex chromosomes exhibited extensive synteny with sugar beet chromosomes 4 and 9. Tightly linked protein-coding genes linked to the male-determining locus in spinach corresponded to genes located in or around the putative pericentromeric and centromeric regions of sugar beet chromosomes 4 and 9, supporting the observation that recombination rates were low in the vicinity of the male-determining locus. The locus for monoecism was confined to a chromosomal segment corresponding to a region of approximately 1.7Mb on sugar beet chromosome 9, which may facilitate future positional cloning of the locus. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Concentrating biomass of fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) by ultrafiltration for source of organic acids and natural antioxidant

    NASA Astrophysics Data System (ADS)

    Aspiyanto, Susilowati, Agustine; Lotulung, Puspa D.; Maryati, Yati

    2017-11-01

    Organic acids and polyphenol from fermentation of green vegetables by Kombucha culture are novelty functional food to achieve prebiotic and natural antioxidant. Ultrafiltration (UF) mode was performed to concentrate biomass of fermented broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) at stirrer rotation speed of 200, 300 and 400 rpm, room temperature and trans membrane pressure 40 psia for 30 minutes. Based on total organic acids, experiment activity showed that the best treatment on biomass of fermented broccoli and spinach were reached at stirrer rotation speed of 400 rpm and 300 rpm, respectively. In this condition, fermented broccoli and spinach concentrates gave total acids 0.83 % and 0.81 %, total polyphenol 0.06 % and 0.11 %, reducing sugar 63.95 mg/mL and 20.54 mg/mL, total sugars 2.43 ug/mL and 2.28 ug/mL, total solids 6.42 % and 7.17 %, respectively. Compared with feed, the optimum condition on fermented spinach and broccoli concentrates increased total acids 13.33 % and 10 %, however decreased total polyphenol 34.1 % and 41 %. Identification on monomer from fermented spinach and broccoli at optimum condition on lactic acid were dominated by monomers with molecular weights (MWs) 252.19 and 252.36 Dalton (Da.), and monomer of polyphenol dominated by monomer with MWs 193.17 and 193.22 Da. and relative intensity 100 %. Fermented broccoli has potency as prebiotic, meanwhile fermented spinach has potency as anti oxidant.

  10. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2017-10-01

    A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Leaf-morphology-assisted selection for resistance to two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in carnations (Dianthus caryophyllus L).

    PubMed

    Seki, Kousuke

    2016-10-01

    The development of a cultivar resistant to the two-spotted spider mite has provided both ecological and economic benefits to the production of cut flowers. This study aimed to clarify the mechanism of resistance to mites using an inbred population of carnations. In the resistant and susceptible plants selected from an inbred population, a difference was recognised in the thickness of the abaxial palisade tissue by microscopic examination of the damaged leaf. Therefore, it was assumed that mites displayed feeding preferences within the internal leaf structure of the carnation leaf. The suitability of the host plant for mites was investigated using several cultivars selected using an index of the thickness from the abaxial leaf surface to the spongy tissue. The results suggested that the cultivar associated with a thicker abaxial tissue lowered the intrinsic rate of natural increase of the mites. The cultivars with a thicker abaxial tissue of over 120 µm showed slight damage in the field test. The ability of mites to feed on the spongy tissue during an early life stage from hatching to adult emergence was critical. It was possible to select a cultivar that is resistant to mites under a real cultivation environment by observing the internal structure of the leaf. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. 9 CFR 319.702 - Lard, leaf lard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... lard. (a) Lard is the fat rendered from clean and sound edible tissues from swine. The tissues may be... misbranding of the lard. The tissues shall be reasonably free from blood, and shall not include stomachs, livers, spleens, kidneys, and brains, or settlings and skimmings. “Leaf Lard” is lard prepared from fresh...

  13. 9 CFR 319.702 - Lard, leaf lard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... lard. (a) Lard is the fat rendered from clean and sound edible tissues from swine. The tissues may be... misbranding of the lard. The tissues shall be reasonably free from blood, and shall not include stomachs, livers, spleens, kidneys, and brains, or settlings and skimmings. “Leaf Lard” is lard prepared from fresh...

  14. 9 CFR 319.702 - Lard, leaf lard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... lard. (a) Lard is the fat rendered from clean and sound edible tissues from swine. The tissues may be... misbranding of the lard. The tissues shall be reasonably free from blood, and shall not include stomachs, livers, spleens, kidneys, and brains, or settlings and skimmings. “Leaf Lard” is lard prepared from fresh...

  15. 9 CFR 319.702 - Lard, leaf lard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... lard. (a) Lard is the fat rendered from clean and sound edible tissues from swine. The tissues may be... misbranding of the lard. The tissues shall be reasonably free from blood, and shall not include stomachs, livers, spleens, kidneys, and brains, or settlings and skimmings. “Leaf Lard” is lard prepared from fresh...

  16. 9 CFR 319.702 - Lard, leaf lard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... lard. (a) Lard is the fat rendered from clean and sound edible tissues from swine. The tissues may be... misbranding of the lard. The tissues shall be reasonably free from blood, and shall not include stomachs, livers, spleens, kidneys, and brains, or settlings and skimmings. “Leaf Lard” is lard prepared from fresh...

  17. Nitrate Reductase Activity and Polyribosomal Content of Corn (Zea mays L.) Having Low Leaf Water Potentials 1

    PubMed Central

    Morilla, Camila A.; Boyer, J. S.; Hageman, R. H.

    1973-01-01

    Desiccation of 8- to 13-day-old seedlings, achieved by withholding nutrient solution from the vermiculite root medium, caused a reduction in nitrate reductase activity of the leaf tissue. Activity declined when leaf water potentials decreased below −2 bars and was 25% of the control at a leaf water potential of −13 bars. Experiments were conducted to determine whether the decrease in nitrate reductase activity was due to reduced levels of nitrate in the tissue, direct inactivation of the enzyme by low leaf water potentials, or to changes in rates of synthesis or decay of the enzyme. Although tissue nitrate content decreased with the onset of desiccation, it did not continue to decline with tissue desiccation and loss of enzyme activity. Nitrate reductase activity recovered when the plants were rewatered with nitrate-free medium, suggesting that the nitrate in the plant was adequate for high nitrate reductase activity. The rate of decay of nitrate reductase activity from desiccated tissue was essentially identical to that of the control, in vivo or in vitro, regardless of the rapidity of desiccation of the tissue. Direct inactivation of the enzyme by the low water potentials was not detected. Polyribosomal content of the tissue declined with the decrease in water potential, prior to the decline in nitrate reductase activity. Changes in ribosomal profiles occurred during desiccation, regardless of whether the tissue had been excised or not and whether desiccation was rapid or slow. Reduction in polyribosomal content did not appear to be associated with changes in ribonuclease activity. Nitrate reductase activity and the polyribosomal content of the tissue recovered upon rewatering, following the recovery in water potential. The increase in polyribosomal content preceded the increase in nitrate reductase activity. Recovery of enzyme activity was prevented by cycloheximide. Based on these results, it appears that nitrate reductase activity was affected primarily by a decrease in the rate of enzyme synthesis at low leaf water potentials. PMID:16658419

  18. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method.

    PubMed

    Mozafar, A

    1996-02-01

    Excessive use of nitrogen fertilizers is known to increase the NO3 and reduce the vitamin C contents in fruits and vegetables. We investigated the concentration of these compounds in spinach leaves when plants were transferred to nitrogen-free media prior to their harvest. It was noted that a pre-harvest transfer of spinach to N-free media reduces the NO3 and increases the vitamin C content of the leaves by a substantial amount in a 2-3 day period. It is suggested that this technique may be suited to produce spinach or other leafy vegetables with low NO3 and high vitamin C contents under commercial hydroponic conditions.

  19. Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine.

    PubMed

    Watanabe, Sho; Ohtani, Yuta; Tatsukami, Yohei; Aoki, Wataru; Amemiya, Takashi; Sukekiyo, Yasunori; Kubokawa, Seiichi; Ueda, Mitsuyoshi

    2017-06-14

    Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of genetically modified foods are under strict regulation. Here, we developed a new approach to achieve folate biofortification in spinach (Spinacia oleracea) without genetic modification. We hydroponically cultivated spinach with the addition of three candidate compounds expected to fortify folate. As a result of liquid chromatography tandem mass spectrometry analysis, we found that the addition of phenylalanine increased the folate content up to 2.0-fold (306 μg in 100 g of fresh spinach), representing 76.5% of the recommended daily allowance for adults. By measuring the intermediates of folate biosynthesis, we revealed that phenylalanine activated folate biosynthesis in spinach by increasing the levels of pteridine and p-aminobenzoic acid. Our approach is a promising and practical approach to cultivate nutrient-enriched vegetables.

  20. Looking for a substituent of spinach (Spinacia oleracea) chloroplasts

    NASA Astrophysics Data System (ADS)

    Chang, Ying Ping; Yeoh, Loo Yew; Chee, Swee Yong; Lim, Tuck Meng

    2017-04-01

    Spinach's chloroplasts electron transport features are often adapted to build biofuel cells or biosensors for environment conservation. This approach may raise food security issues. The present study aimed to test on in vitro functional activity of chloroplasts from selected underutilized leaves of: Pandan (Pandanus amaryllifolius), oil palm (Elaeis guineensis) and water lettuce (Pistia stratiotes) in comparison with spinach (Spinacia oleracea). The leaves' electrical conductivity was measured to evaluate the initial cell permeability. We applied Hill's reaction to determine the photoreduction capacity of the chloroplasts. Initial electrical conductivity of leaves ranged from 11.5 to 18.5 µs/cm/g followed the order of water lettuce

  1. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris).

    PubMed

    Barney, Jacob N; Hay, Anthony G; Weston, Leslie A

    2005-02-01

    Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.

  2. Effects of different sewage sludge applications on heavy metal accumulation, growth and yield of spinach (Spinacia oleracea L.).

    PubMed

    Eid, Ebrahem M; El-Bebany, Ahmed F; Alrumman, Sulaiman A; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F

    2017-04-03

    In this study, we present the response of spinach to different amendment rates of sewage sludge (0, 10, 20, 30, 40 and 50 g kg -1 ) in a greenhouse pot experiment, where plant growth, biomass and heavy metal uptake were measured. The results showed that sewage sludge application increased soil electric conductivity (EC), organic matter, chromium and zinc concentrations and decreased soil pH. All heavy metal concentrations of the sewage sludge were below the permissible limits for land application of sewage sludge recommended by the Council of the European Communities. Biomass and all growth parameters (except the shoot/root ratio) of spinach showed a positive response to sewage sludge applications up to 40 g kg -1 compared to the control soil. Increasing the sewage sludge amendment rate caused an increase in all heavy metal concentrations (except lead) in spinach root and shoot. However, all heavy metal concentrations (except chromium and iron) were in the normal range and did not reach the phytotoxic levels. The spinach was characterized by a bioaccumulation factor <1.0 for all heavy metals. The translocation factor (TF) varied among the heavy metals as well as among the sewage sludge amendment rates. Spinach translocation mechanisms clearly restricted heavy metal transport to the edible parts (shoot) because the TFs for all heavy metals (except zinc) were <1.0. In conclusion, sewage sludge used in the present study can be considered for use as a fertilizer in spinach production systems in Saudi Arabia, and the results can serve as a management method for sewage sludge.

  3. Water potential in excised leaf tissue. Comparison of a commercial dew point hygrometer and a thermocouple psychrometer on soybean, wheat, and barley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelsen, C.E.; Safir, G.R.; Hanson, A.D.

    1978-01-01

    Leaf water potential (Psi/sub leaf/) determinations were made on excised leaf samples using a commercial dew point hygrometer (Wescor Inc., Logan, Utah) and a thermocouple psychrometer operated in the isopiestic mode. With soybean leaves (Glycine max L.), there was good agreement between instruments; equilibration times were 2 to 3 hours. With cereals (Triticum aestivum L. and Hordeum vulgare L.), agreement between instruments was poor for moderately wilted leaves when 7-mm-diameter punches were used in the hygrometer and 20-mm slices were used in the psychrometer, because the Psi/sub leaf/ values from the dew point hygrometer were too high. Agreement was improvedmore » by replacing the 7-mm punch samples in the hygrometer by 13-mm slices, which had a lower cut edge to volume ratio. Equilibration times for cereals were normally 6 to 8 hours. Spuriously high Psi/sub leaf/ values obtained with 7-mm leaf punches may be associated with the ion release and reabsorption that occur upon tissue excision; such errors evidently depend both on the species and on tissue water status.« less

  4. Exploratory Study into the Microbiological Quality of Spinach and Cabbage Purchased from Street Vendors and Retailers in Johannesburg, South Africa.

    PubMed

    Plessis, Erika M du; Govender, Sarasha; Pillay, Bala; Korsten, Lise

    2017-10-01

    Knowledge of the microbiological quality and prevalence of antibiotic resistance and virulence genes in bacterial isolates from leafy green vegetables supplied by formal suppliers (retailers) and informal suppliers (street vendors) in South Africa is limited. Because leafy vegetables have been implicated in foodborne disease outbreaks worldwide, 180 cabbage and spinach samples were collected from three major retailers and nine street vendors in Johannesburg, South Africa. Escherichia coli and coliforms were enumerated using Petrifilm plates. The prevalence of Listeria monocytogenes, Salmonella, and Shigella was determined using real-time PCR analysis. Identities of presumptive E. coli isolates from the fresh produce were confirmed using matrix-assisted laser desorption-ionization time of flight mass spectroscopy. Isolates were characterized using phenotypic (antibiotic resistance) and genotypic (phylogenetic and virulence gene) analysis. Hygiene indicator bacteria levels on spinach from formal and informal retailers exceeded the maximum level specified by the Department of Health guidelines for fresh fruit and vegetables. E. coli counts for street vendor spinach were higher (P < 0.0789) than those for retailer spinach. E. coli was present in only two cabbage samples, at 0.0035 CFU/g. L. monocytogenes and Salmonella were detected in 7.2 and 5% of the 180 samples, respectively, based on real-time PCR analysis; Shigella was not detected. Of the 29 spinach E. coli isolates, 37.9% were multidrug resistant. Virulence genes eae and stx 1 were present in 14 and 3% of the spinach E. coli isolates, respectively; the stx 2 gene was not detected. Eighty-six percent of these isolates belonged to phylogroup A, 3% belonged to group C, 7% belonged to group E, and 3% belonged to clade 1. The results from the current exploratory study on the microbiological quality of spinach bought from selected retailers highlight the need for continued surveillance on a larger scale, especially in the informal sector, to characterize the potential health risks to the consumer.

  5. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage.

    PubMed

    Patel, Jitendra; Sharma, Manan; Millner, Patricia; Calaway, Todd; Singh, Manpreet

    2011-04-01

    Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to these commodities during harvest with commercial equipment. Attachment of Escherichia coli O157:H7 on new or rusty spinach harvester blades immersed in spinach extract or 10% tryptic soy broth (TSB) was investigated. Bacteriophages specific for E. coli O157:H7 were evaluated to kill cells attached to blade. A cocktail of five nalidixic acid-resistant E. coli O157:H7 isolates was transferred to 25 mL of spinach extract or 10% TSB. A piece of sterilized spinach harvester blade (2×1") was placed in above spinach extract or 10% TSB and incubated at room (22 °C) or dynamic (30 °C day, 20 °C night) temperatures. E. coli O157:H7 populations attached to blade during incubation in spinach extract or 10% TSB were determined. When inoculated at 1 log CFU/mL, E. coli O157:H7 attachment to blades after 24 and 48 h incubation at dynamic temperature (6.09 and 6.37 log CFU/mL) was significantly higher than when incubated at 22 °C (4.84 and 5.68 log CFU/mL), respectively. After 48 h incubation, two blades were sprayed on each side with a cocktail of E. coli O157-specific bacteriophages before scraping the blade, and subsequent plating on Sorbitol MacConkey media-nalidixic acid. Application of bacteriophages reduced E. coli O157:H7 populations by 4.5 log CFU on blades after 2 h of phage treatment. Our study demonstrates that E. coli O157:H7 can attach to and proliferate on spinach harvester blades under static and dynamic temperature conditions, and bacteriophages are able to reduce E. coli O157:H7 populations adhered to blades. © Mary Ann Liebert, Inc.

  6. Red spinach (Amaranthus tricolor L.) ethanolic extract as prevention against atherosclerosis based on the level of Low-Density Lipoprotein and histopathological feature of aorta in male Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Pradana, Dimas Adhi; Pondawinata, Marizki; Widyarini, Sitarina

    2017-03-01

    This study aimed to determine the potential activity of standardized ethanolic extract of red spinach as prevention against atherosclerosis based on the level of Low-Density Lipoprotein (LDL) and histopathological feature of aorta in male Sprague-Dawley rats induced by high-fat, high-cholesterol diet. A total of 42 animals was divided into 6 groups: normal control group, negative control group, positive control group (0.9 mg/kgBW of simvastatin), first intervention group (200 mg/kgBW of red spinach extract), second intervention group (400 mg/kgBW of red spinach extract), and third intervention group (800 mg/kgBW of red spinach extract). From the first day up to the 66th day, all the groups, except the normal control group and negative control group, were administered simvastatin (positive control) and extract of amaranth (intervention). Then, from the eighth day until Day 66, induction of high-fat and high-cholesterol diet was given in two hours after the simvastatin and red spinach extract administration. The determination of LDL parameters was conducted on Day 0, Day 35, and Day 67. On the 67th day, the animals were dissected to examine the aortic histopathological parameters. The results showed that the ethanolic extract of red spinach with a dose of 200 mg/kgBW, 400 mg/kgBW, and 800 mg/kgBW statistically demonstrated a significant difference (p<0.05). The histopathological feature of the aorta in the treatment indicated the absence of fat in the blood vessel walls or even of foam cells supporting thereby the result of LDL level. This means there was a significant effect of ethanolic extract of red spinach on the prevention against atherosclerosis based on the level of Low-Density Lipoprotein and the histopathological feature of aorta in male Sprague-Dawley rats.

  7. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues.

    PubMed

    Bushnell, W R; Perkins-Veazie, P; Russo, V M; Collins, J; Seeland, T M

    2010-01-01

    To understand further the role of deoxynivalenol (DON) in development of Fusarium head blight (FHB), we investigated effects of the toxin on uninfected barley tissues. Leaf segments, 1 to 1.2 cm long, partially stripped of epidermis were floated with exposed mesophyll in contact with DON solutions. In initial experiments with the leaf segments incubated in light, DON at 30 to 90 ppm turned portions of stripped tissues white after 48 to 96 h. The bleaching effect was greatly enhanced by addition of 1 to 10 mM Ca(2+), so that DON at 10 to 30 ppm turned virtually all stripped tissues white within 48 h. Content of chlorophylls a and b and of total carotenoid pigment was reduced. Loss of electrolytes and uptake of Evans blue indicated that DON had a toxic effect, damaging plasmalemmas in treated tissues before chloroplasts began to lose pigment. When incubated in the dark, leaf segments also lost electrolytes, indicating DON was toxic although the tissues remained green. Thus, loss of chlorophyll in light was due to photobleaching and was a secondary effect of DON, not required for toxicity. In contrast to bleaching effects, some DON treatments that were not toxic kept tissues green without bleaching or other signs of injury, indicating senescence was delayed compared with slow yellowing of untreated leaf segments. Cycloheximide, which like DON, inhibits protein synthesis, also bleached some tissues and delayed senescence of others. Thus, the effects of DON probably relate to its ability to inhibit protein synthesis. With respect to FHB, the results suggest DON may have multiple roles in host cells of infected head tissues, including delayed senescence in early stages of infection and contributing to bleaching and death of cells in later stages.

  8. Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).

    PubMed

    Rees, Rainer; Robinson, Brett H; Menon, Manoj; Lehmann, Eberhard; Günthardt-Goerg, Madeleine S; Schulin, Rainer

    2011-12-15

    Poplars accumulate high B concentrations and are thus used for the phytomanagement of B contaminated soils. Here, we performed pot experiments in which Populus nigra × euramericana were grown on a substrate with B concentrations ranging from 13 to 280 mg kg(-1) as H(3)BO(3). Salix viminalis, Brassica juncea, and Lupinus albus were grown under some growing conditions for comparison. Poplar growth was unaffected at soil B treatment levels up to 93 mg kg(-1). Growth was progressively reduced at levels of 168 and 280 mg kg(-1). None of the other species survived at these substrate B levels. At leaf B concentrations <900 mg kg(-1) only <10% of the poplar leaf area showed signs of toxicity. Neutron radiography revealed that chlorotic leaf tissues had B concentrations of 1000-2000 mg kg(-1), while necrotic tissues had >2000 mg kg(-1). Average B concentrations of up to 3500 mg kg(-1) were found in leaves, while spots within leaves had concentrations >7000 mg kg(-1), showing that B accumulation in leaf tissue continued even after the onset of necrosis. The B accumulation ability of P. nigra × euramericana is associated with B hypertolerance in the living tissue and storage of B in dead leaf tissue.

  9. Characterization and Field Studies of a Cucumber Mosaic Virus Isolate from Spinach in the Winter Garden Area of Texas

    Treesearch

    A. Dan Wilson; R.S. Halliwell

    1985-01-01

    An isolate of cucumber mosaic virus (CMV) was identified from spinach in the Winter Garden area of Texas. The isolate was very closely related serologically to strain S of CMVand is designated the Texas spinach isolate of CMV-S. The virus infected 39 species of crop plants and wild hosts in 12 of 13 families tested. The green peach aphid efficiently transmitted the...

  10. Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration.

    PubMed

    Scoffoni, Christine; Albuquerque, Caetano; Brodersen, Craig R; Townes, Shatara V; John, Grace P; Bartlett, Megan K; Buckley, Thomas N; McElrone, Andrew J; Sack, Lawren

    2017-02-01

    Leaf hydraulic supply is crucial to maintaining open stomata for CO 2 capture and plant growth. During drought-induced dehydration, the leaf hydraulic conductance (K leaf ) declines, which contributes to stomatal closure and, eventually, to leaf death. Previous studies have tended to attribute the decline of K leaf to embolism in the leaf vein xylem. We visualized at high resolution and quantified experimentally the hydraulic vulnerability of xylem and outside-xylem pathways and modeled their respective influences on plant water transport. Evidence from all approaches indicated that the decline of K leaf during dehydration arose first and foremost due to the vulnerability of outside-xylem tissues. In vivo x-ray microcomputed tomography of dehydrating leaves of four diverse angiosperm species showed that, at the turgor loss point, only small fractions of leaf vein xylem conduits were embolized, and substantial xylem embolism arose only under severe dehydration. Experiments on an expanded set of eight angiosperm species showed that outside-xylem hydraulic vulnerability explained 75% to 100% of K leaf decline across the range of dehydration from mild water stress to beyond turgor loss point. Spatially explicit modeling of leaf water transport pointed to a role for reduced membrane conductivity consistent with published data for cells and tissues. Plant-scale modeling suggested that outside-xylem hydraulic vulnerability can protect the xylem from tensions that would induce embolism and disruption of water transport under mild to moderate soil and atmospheric droughts. These findings pinpoint outside-xylem tissues as a central locus for the control of leaf and plant water transport during progressive drought. © 2017 The author(s). All Rights Reserved.

  11. [Concentrations of mercury in ambient air in wastewater irrigated area of Tianjin City and its accumulation in leafy vegetables].

    PubMed

    Zheng, Shun-An; Han, Yun-Lei; Zheng, Xiang-Qun

    2014-11-01

    Gaseous Hg can evaporate and enter the plants through the stomata of plat leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to characterize atmospheric mercury (Hg) as well as its accumulation in 5 leafy vegetables (spinach, edible amaranth, rape, lettuce, allium tuberosum) from sewage-irrigated area of Tianjin City. Bio-monitoring sites were located in paddy (wastewater irrigation for 30 a), vegetables (wastewater irrigation for 15 a) and grass (control) fields. Results showed that after long-term wastewater irrigation, the mean values of mercury content in paddy and vegetation fields were significantly higher than the local background value and the national soil environment quality standard value for mercury in grade I, but were still lower than grade II. Soil mercury contents in the studied control grass field were between the local background value and the national soil environment quality standard grade I . Besides, the atmospheric environment of paddy and vegetation fields was subjected to serious mercury pollution. The mean values of mercury content in the atmosphere of paddy and vegetation fields were 71.3 ng x m(-3) and 39.2 ng x m(-3), respectively, which were markedly higher than the reference gaseous mercury value on the north sphere of the earth (1.5-2.0 ng x m(-3)). The mean value of ambient mercury in the control grass fields was 9.4 ng x m(-3). In addition, it was found that the mercury content in leafy vegetables had a good linear correlation with the ambient total gaseous mercury (the data was transformed into logarithms as the dataset did not show a normal distribution). The comparison among 5 vegetables showed that the accumulations of mercury in vegetables followed this order: spinach > edible amaranth > allium tuberosum > rape > lettuce. Median and mean values of mercury contents in spinach and edible amaranth were greater than the hygienic standard for the allowable limit of mercury in food. Spinach appeared to accumulate more mercury than the other four vegetables, in which the median and mean mercury content were both higher than 20 μg x kg(-1). The mercury concentrations in rape, lettuce and allium tuberosum were lower than the standard. Moreover, test results indicated that the Hg content in leafy vegetables was mainly the gaseous mercury through leaf adsorption but not the Hg particulates. This study clearly manifested that there should be a great concern on the pollution risk of both air-and soil borne mercury when cultivating leafy vegetables in long-term wastewater-irrigated area.

  12. Comparison of Photoacoustic Signals in Photosynthetic and Nonphotosynthetic Leaf Tissues of Variegated Pelargonium zonale

    NASA Astrophysics Data System (ADS)

    Veljović-Jovanović, S.; Vidović, M.; Morina, F.; Prokić, Lj.; Todorović, D. M.

    2016-09-01

    Green-white variegated leaves of Pelargonium zonale were studied using the photoacoustic method. Our aim was to characterize photosynthetically active green tissue and nonphotosynthetically active white tissue by the photoacoustic amplitude signals. We observed lower stomatal conductance and higher leaf temperature in white tissue than in green tissue. Besides these thermal differences, significantly higher absorbance in green tissue was based on chlorophyll and carotenoids which were absent in white tissue. However, optical properties of epidermal layers of both tissues were equal. The photoacoustic amplitude of white tissue was over four times higher compared to green tissue, which was correlated with lower stomatal conductance. In addition, at frequencies >700 Hz, the significant differences between the photoacoustic signals of green and white tissue were obtained. We identified the photoacoustic signal deriving from photosynthetic oxygen evolution in green tissue, using high intensity of red light modulated at 10 Hz. Moreover, the photoacoustic amplitude of green tissue increased progressively with time which corresponded to the period of induction of photosynthetic oxygen evolution. For the first time, very high frequencies (1 kHz to 5 kHz) were applied on leaf material.

  13. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach.

    PubMed

    Wu, K; Li, L; Gage, D A; Zeevaart, J A

    1996-02-01

    Spinach (Spinacia oleracea L.) is a long-day (LD) rosette plant in which stem growth under LD conditions is mediated by gibberellins (GAs). Major control points in spinach are the later steps of sequential oxidation and elimination of C-20 of C20-GAs. Degenerate oligonucleotide primers were used to obtain a polymerase chain reaction product from spinach genomic DNA that has a high homology with GA 20-oxidase cDNAs from Cucurbita maxima L. and Arabidopsis thaliana Heynh. This polymerase chain reaction product was used as a probe to isolate a full-length cDNA clone with an open reading frame encoding a putative 43-kD protein of 374 amino acid residues. When this cDNA clone was expressed in Escherichia coli, the fusion protein catalyzed the biosynthetic sequence GA53-->GA44-->GA19-->GA20 and GA19-->GA17. This establishes that in spinach a single protein catalyzes the oxidation and elimination of C-20. Transfer of spinach plants from short day (SD) to LD conditions caused an increase in the level of all GAs of the early-13-hydroxylation pathway, except GA53, with GA20, GA1, and GA8 showing the largest increases. Northern blot analysis indicated that the level of GA 20-oxidase mRNA was higher in plants in LD than in SD conditions, with highest level of expression in the shoot tips and elongating stems. This expression pattern of GA 20-oxidase is consistent with the different levels of GA20, GA1, and GA8 found in spinach plants grown in SD and LD conditions.

  14. Effects of a nitrate-rich meal on arterial stiffness and blood pressure in healthy volunteers.

    PubMed

    Liu, Alex H; Bondonno, Catherine P; Croft, Kevin D; Puddey, Ian B; Woodman, Richard J; Rich, Lisa; Ward, Natalie C; Vita, Joseph A; Hodgson, Jonathan M

    2013-11-30

    An increase in nitrate intake can augment circulating nitrite and nitric oxide. This may lead to lower blood pressure and improved vascular function. Green leafy vegetables, such as spinach, are rich sources of nitrate. We aimed to assess the acute effects of a nitrate-rich meal containing spinach on arterial stiffness and blood pressure in healthy men and women. Twenty-six participants aged 38-69years were recruited to a randomized controlled cross-over trial. The acute effects of two energy-matched (2000kJ) meals, administered in random order, were compared. The meals were either high nitrate (220mg of nitrate derived from spinach [spinach]) or low nitrate [control]. Outcome measurements were performed pre-meal and at specific time points up to 210min post meal. Spinach resulted in an eightfold increase in salivary nitrite and a sevenfold increase in salivary nitrate concentrations from pre-meal (P<0.001) to 120min post meal. Spinach compared with control resulted in higher large artery elasticity index (P<0.001), and lower pulse pressure (P<0.001) and systolic blood pressure (P<0.001). Post meal carotid-femoral pulse wave velocity (P=0.07), augmentation index (P=0.63), small artery elasticity index (P=0.98) and diastolic blood pressure (P=0.13) were not significantly altered by spinach relative to control. Therefore, consumption of a nitrate-rich meal can lower systolic blood pressure and pulse pressure and increase large artery compliance acutely in healthy men and women. If sustained, these effects could contribute to better cardiovascular health. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Treatment of munitions in soils using phytoslurries.

    PubMed

    Medina, Victor F; Larson, Steven L; Agwaramgbo, Lovell; Perez, Waleska

    2002-01-01

    Phytoremediation is an established technology for the treatment of explosives in water and soil. This study investigated the possibility of using slurried plants (or phytoslurries) to treat explosives (TNT and RDX). The degradation of TNT in solution using intact and slurried parrotfeather (Myriophyllum aquaticum), spinach (Spinicia oleracea), and mustard greens (Brassica juncea) was evaluated. Phytoslurries of parrotfeather and spinach removed the TNT faster than the intact plant. Conversely, the removal rate constants for slurried and intact mustard greens were about the same. A study using pressurized heating to destroy enzymatic activity in the phytoslurries was also conducted to compare removal from released plant chemicals to adsorptive removal. Aqueous phase removal of TNT by autoclaved spinach phytoslurry was compared with nonautoclaved spinach phytoslurry. The autoclaved phytoslurry did remove TNT, but not as completely as nonautoclaved slurry. This suggests that some removal is due to adsorption, but not all. Phytoslurries of mustard greens and parrotfeather had higher RDX removal rates compared with intact plant removal, but the rates for parrotfeather in either case were relatively low. Phytoslurries of spinach had relatively modest increases in RDX removal rates compared with intact plant. Studies were then conducted with phytoslurry/soil mixtures at two scales: 60 ml and 1.5 l. In both cases, phytoslurries of mustard greens and spinach removed TNT and RDX at higher levels than control slurries.

  16. Opposite Effects of the Spinach Food Matrix on Lutein Bioaccessibility and Intestinal Uptake Lead to Unchanged Bioavailability Compared to Pure Lutein.

    PubMed

    Margier, Marielle; Buffière, Caroline; Goupy, Pascale; Remond, Didier; Halimi, Charlotte; Caris-Veyrat, Catherine; Borel, Patrick; Reboul, Emmanuelle

    2018-06-01

    Food matrix is generally believed to alter carotenoid bioavailability, but its effect on xanthophylls is usually limited. This study thus aims to decipher the digestion-absorption process of lutein in the presence or not of a food matrix. Lutein transfer to gastric-like lipid droplets or artificial mixed micelles was assessed when lutein was added to test meals either as a pure molecule ((all-E)-lutein) or in canned spinach ((Z) + (all-E)-lutein). The obtained mixed micelles were delivered to Caco-2 cells to evaluate lutein uptake. Finally postprandial plasma lutein responses were compared in minipigs after the two test meals. Lutein transfer to gastric-like lipid droplets and to mixed micelles was higher when lutein was added in spinach than when it was added as pure lutein (+614% and +147%, respectively, p < 0.05). Conversely, lutein uptake was less effective when micellar lutein was from a meal containing spinach than from a meal containing its pure form (-55%, p < 0.05). In minipigs, postprandial lutein response was delayed with spinach but not significantly different after the two test meals. Opposite effects at the micellarization and intestinal cell uptake steps explain the lack of effect of spinach matrix on lutein bioavailability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spatial and Temporal Factors Associated with an Increased Prevalence of Listeria monocytogenes in Spinach Fields in New York State

    PubMed Central

    Weller, Daniel; Wiedmann, Martin

    2015-01-01

    While rain and irrigation events have been associated with an increased prevalence of foodborne pathogens in produce production environments, quantitative data are needed to determine the effects of various spatial and temporal factors on the risk of produce contamination following these events. This study was performed to quantify these effects and to determine the impact of rain and irrigation events on the detection frequency and diversity of Listeria species (including L. monocytogenes) and L. monocytogenes in produce fields. Two spinach fields, with high and low predicted risks of L. monocytogenes isolation, were sampled 24, 48, 72, and 144 to 192 h following irrigation and rain events. Predicted risk was a function of the field's proximity to water and roads. Factors were evaluated for their association with Listeria species and L. monocytogenes isolation by using generalized linear mixed models (GLMMs). In total, 1,492 (1,092 soil, 334 leaf, 14 fecal, and 52 water) samples were collected. According to the GLMM, the likelihood of Listeria species and L. monocytogenes isolation from soil samples was highest during the 24 h immediately following an event (odds ratios [ORs] of 7.7 and 25, respectively). Additionally, Listeria species and L. monocytogenes isolates associated with irrigation events showed significantly lower sigB allele type diversity than did isolates associated with precipitation events (P = <0.001), suggesting that irrigation water may be a point source of L. monocytogenes contamination. Small changes in management practices (e.g., not irrigating fields before harvest) may therefore reduce the risk of L. monocytogenes contamination of fresh produce. PMID:26116668

  18. Enzymatic Digestion for Improved Bacteria Separation from Leafy Green Vegetables.

    PubMed

    Wang, Danhui; Wang, Ziyuan; He, Fei; Kinchla, Amanda J; Nugen, Sam R

    2016-08-01

    An effective and rapid method for the separation of bacteria from food matrix remains a bottleneck for rapid bacteria detection for food safety. Bacteria can strongly attach to a food surface or internalize within the matrix, making their isolation extremely difficult. Traditional methods of separating bacteria from food routinely involve stomaching, blending, and shaking. However, these methods may not be efficient at removing all the bacteria from complex matrices. Here, we investigate the benefits of using enzyme digestion followed by immunomagnetic separation to isolate Salmonella from spinach and lettuce. Enzymatic digestion using pectinase and cellulase was able to break down the structure of the leafy green vegetables, resulting in the detachment and release of Salmonella from the leaves. Immunomagnetic separation of Salmonella from the liquefied sample allowed an additional separation step to achieve a more pure sample without leaf debris that may benefit additional downstream applications. We have investigated the optimal combination of pectinase and cellulase for the digestion of spinach and lettuce to improve sample detection yields. The concentrations of enzymes used to digest the leaves were confirmed to have no significant effect on the viability of the inoculated Salmonella. Results reported that the recovery of the Salmonella from the produce after enzyme digestion of the leaves was significantly higher (P < 0.05) than traditional sample preparation methods to separate bacteria (stomaching and manually shaking). The results demonstrate the potential for use of enzyme digestion prior to separation can improve the efficiency of bacteria separation and increase the likelihood of detecting pathogens in the final detection assay.

  19. Potential application of gasification to recycle food waste and rehabilitate acidic soil from secondary forests on degraded land in Southeast Asia.

    PubMed

    Yang, Zhanyu; Koh, Shun Kai; Ng, Wei Cheng; Lim, Reuben C J; Tan, Hugh T W; Tong, Yen Wah; Dai, Yanjun; Chong, Clive; Wang, Chi-Hwa

    2016-05-01

    Gasification is recognized as a green technology as it can harness energy from biomass in the form of syngas without causing severe environmental impacts, yet producing valuable solid residues that can be utilized in other applications. In this study, the feasibility of co-gasification of woody biomass and food waste in different proportions was investigated using a fixed-bed downdraft gasifier. Subsequently, the capability of biochar derived from gasification of woody biomass in the rehabilitation of soil from tropical secondary forests on degraded land (adinandra belukar) was also explored through a water spinach cultivation study using soil-biochar mixtures of different ratios. Gasification of a 60:40 wood waste-food waste mixture (w/w) produced syngas with the highest lower heating value (LHV) 5.29 MJ/m(3)-approximately 0.4-4.0% higher than gasification of 70:30 or 80:20 mixtures, or pure wood waste. Meanwhile, water spinach cultivated in a 2:1 soil-biochar mixture exhibited the best growth performance in terms of height (a 4-fold increment), weight (a 10-fold increment) and leaf surface area (a 5-fold increment) after 8 weeks of cultivation, owing to the high porosity, surface area, nutrient content and alkalinity of biochar. It is concluded that gasification may be an alternative technology to food waste disposal through co-gasification with woody biomass, and that gasification derived biochar is suitable for use as an amendment for the nutrient-poor, acidic soil of adinandra belukar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ecdysteroid-containing food supplements from Cyanotis arachnoidea on the European market: evidence for spinach product counterfeiting

    NASA Astrophysics Data System (ADS)

    Hunyadi, Attila; Herke, Ibolya; Lengyel, Katalin; Báthori, Mária; Kele, Zoltán; Simon, András; Tóth, Gábor; Szendrei, Kálmán

    2016-12-01

    Phytoecdysteroids like 20-hydroxyecdysone (“ecdysterone”) can exert a mild, non-hormonal anabolic/adaptogenic activity in mammals, and as such, are frequently used in food supplements. Spinach is well-known for its relatively low ecdysteroid content. Cyanotis arachnoidea, a plant native in China, is among the richest sources of phytoecdysteroids, and extracts of this plant are marketed in tons per year amounts via the internet at highly competitive prices. Here we report the investigation of a series of food supplements produced in Germany and claimed to contain spinach extracts. Twelve ecdysteroids including two new compounds were isolated and utilized as marker compounds. A comparative analysis of the products with Cyanotis and spinach extracts provides evidence that they were manufactured from Cyanotis extracts instead of spinach as stated. Based on the chromatographic fingerprints, 20-hydroxyecdysone 2- and 3-acetate are suggested as diagnostic markers for related quality control. This case appears to represent an unusual type of dietary supplement counterfeiting: undeclared extracts from alternative plants would supposedly ‘guarantee’ product efficacy.

  1. Irradiated ready-to-eat spinach leaves: How information influences awareness towards irradiation treatment and consumer's purchase intention

    NASA Astrophysics Data System (ADS)

    Finten, G.; Garrido, J. I.; Agüero, M. V.; Jagus, R. J.

    2017-01-01

    This article aims to clarify and supply further information on food irradiation acceptance, with particular focus on Argentina and irradiated ready-to-eat (RTE) spinach leaves through an open web-online survey. Results showed that half of respondents did not know food irradiation, but the other half demonstrated uncertainty despite they declared they had knowledge about it; thus, confirming little awareness towards this technology. Respondents who believed in the misleading myth about food irradiation represented 39%, while roughly the same number was doubtful. On the other hand, after supplying informative material, respondents were positively influenced and an increase in acceptance by 90% was found. Finally, 42% of respondents were willing to consume/purchase irradiated RTE spinach leaves, and 35% remained doubtful. Respondents who did not exclude to accept irradiated spinach could be considered potential consumers if intensive campaigns about the benefits of food irradiation were carried out by reliable actors. If the Argentinean RTE market grew, following the world consumption trend towards these products, irradiated spinach leaves could be successfully introduced by making better efforts to inform consumers about food irradiation.

  2. Leaf hydraulics II: vascularized tissues.

    PubMed

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-07

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements. © 2013 Published by Elsevier Ltd. All rights reserved.

  3. Co-localization of glyceraldehyde-3-phosphate dehydrogenase with ferredoxin-NADP reductase in pea leaf chloroplasts

    PubMed Central

    Negi, Surendra S.; Carol, Andrew A.; Pandya, Shivangi; Braun, Werner; Anderson, Louise E.

    2008-01-01

    In immunogold double-labeling of pea leaf thin sections with antibodies raised against ferredoxin-NADP reductase (EC 1.18.1.2, FNR) and antibodies directed against the A or B subunits of the NADP-linked glyceraldehyde-3-P dehydrogenase (GAPD) (EC 1.2.1.13), many small and large gold particles were found together over the chloroplasts. Nearest neighbor analysis of the distribution of the gold particles indicates that FNR and the NADP-linked GAPD are co-localized, in situ. This suggests that FNR might carry FADH2 or NADPH from the thylakoid membrane to GAPD, or that ferredoxin might carry electrons to FNR co-localized with GAPD in the stroma. Crystal structures of the spinach enzymes are available. When they are docked computationally, the proteins appear, as modeled, to be able to form at least two different complexes. One involves a single GAPD monomer and an FNR monomer (or dimer). The amino acid residues located at the putative interface are highly conserved on the chloroplastic forms of both enzymes. The other potential complex involves the GAPD A2B2 tetramer and an FNR monomer (or dimer). The interface residues are conserved in this model as well. Ferredoxin is able to interact with FNR in either complex. PMID:17945509

  4. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    PubMed

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation.

    PubMed

    Mohanpuria, Prashant; Kumar, Vinay; Joshi, Robin; Gulati, Ashu; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2009-10-01

    To study caffeine biosynthesis and degradation, here we monitored caffeine synthase gene expression and caffeine and allantoin content in various tissues of four Camellia sinensis (L.) O. Kuntze cultivars during non-dormant (ND) and dormant (D) growth phases. Caffeine synthase expression as well as caffeine content was found to be higher in commercially utilized tissues like apical bud, 1st leaf, 2nd leaf, young stem, and was lower in old leaf during ND compared to D growth phase. Among fruit parts, fruit coats have higher caffeine synthase expression, caffeine content, and allantoin content. On contrary, allantoin content was found lower in the commercially utilized tissues and higher in old leaf. Results suggested that caffeine synthesis and degradation in tea appears to be under developmental and seasonal regulation.

  6. Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply

    NASA Technical Reports Server (NTRS)

    Subbarao, G. V.; Wheeler, R. M.; Levine, L. H.; Stutte, G. W.; Sager, J. C. (Principal Investigator)

    2001-01-01

    Exposure of plants to sodium (Na) and salinity may increase glycine betaine accumulation in tissues. To study this, red-beet cvs. Scarlet Supreme and Ruby Queen, were grown for 42 days in a growth chamber using a re-circulating nutrient film technique with 0.25 mmol/L K and either 4.75 mmol/L (control) or 54.75 mmol/L (saline) Na (as NaCl). Plants were harvested at weekly intervals and measurements were taken on leaf water relations, leaf photosynthetic rates, chlorophyll fluorescence, chlorophyll levels, glycine betaine levels, and tissue elemental composition. Glycine betaine accumulation increased under salinity and this accumulation correlated with higher tissue levels of Na in both cultivars. Na accounted for 80 to 90% of the total cation uptake under the saline treatment. At final harvest (42 days), K concentrations in laminae ranged from approximately 65-95 micromoles g-1 dry matter (DM), whereas Na in shoot tissue ranged from approximately 3000-4000 micromoles g-1. Leaf sap osmotic potential at full turgor [psi(s100)] increased as lamina Na content increased. Glycine betaine levels of leaf laminae showed a linear relationship with leaf sap [psi(s100)]. Chlorophyll levels, leaf photosynthetic rates, and chlorophyll fluorescence were not affected by Na levels. These results suggest that the metabolic tolerance to high levels of tissue Na in red-beet could be due to its ability to synthesize and regulate glycine betaine production, and to control partitioning of Na and glycine betaine between the vacuole and the cytoplasm.

  7. A novel chlorophyll solar cell

    NASA Astrophysics Data System (ADS)

    Ludlow, J. C.

    The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.

  8. Photocurrent generation by dye-sensitized solar cells using natural pigments.

    PubMed

    Armendáriz-Mireles, Eddie Nahúm; Rocha-Rangel, Enrique; Caballero-Rico, Frida; Ramírez-de-León, José Alberto; Vázquez, Manuel

    2017-01-01

    The development of photovoltaic panels has improved the conversion of solar radiation into electrical energy. This paper deals with the electrical and thermal characteristics (voltage, current, and temperature) of photovoltaic solar cells sensitized with natural pigments (dye-sensitized solar cell, DSSC) based on a titanium dioxide semiconductor. Several natural pigments (blackberry, beets, eggplant skin, spinach, flame tree flower, papaya leaf, and grass extracts) were evaluated to determine their sensitizing effect on titanium dioxide. The results showed the great potential of natural pigments for use in solar cells. The best results were obtained with the blackberry pigment, reaching a value of 7.1 mA current, open-circuit voltage (V oc ) of 0.72 V in 2 cm 2 , and fill factor (ff) of 0.51 in the DSSC. This performance is well above than that currently offers by actual cells. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  9. Rapid and simple procedure for homogenizing leaf tissues suitable for mini-midi-scale DNA extraction in rice.

    PubMed

    Yi, Gihwan; Choi, Jun-Ho; Lee, Jong-Hee; Jeong, Unggi; Nam, Min-Hee; Yun, Doh-Won; Eun, Moo-Young

    2005-01-01

    We describe a rapid and simple procedure for homogenizing leaf samples suitable for mini/midi-scale DNA preparation in rice. The methods used tungsten carbide beads and general vortexer for homogenizing leaf samples. In general, two samples can be ground completely within 11.3+/-1.5 sec at one time. Up to 20 samples can be ground at a time using a vortexer attachment. The yields of the DNA ranged from 2.2 to 7.6 microg from 25-150 mg of young fresh leaf tissue. The quality and quantity of DNA was compatible for most of PCR work and RFLP analysis.

  10. Observations on anatomical aspects of the fruit, leaf and stem tissues of four Citrullus spp.

    USDA-ARS?s Scientific Manuscript database

    Morphological characteristics of the fruit, stem and leaf tissues of four species of Citrullus (L.) Schrad. were examined using standard histological methods. Plant materials included the cultivated watermelon (C. lanatus (Thunb.) Matsum. & Nakai) and three of its related species; C. colocynthis (...

  11. Leaf tissue assay for lepidopteran pests of Bt cotton

    USDA-ARS?s Scientific Manuscript database

    Laboratory measurements of susceptibility to Bt toxins can be a poor indicator of the ability of an insect to survive on transgenic crops. We investigated the potential of using cotton leaf tissue for evaluating heliothine susceptibilities to two dual-gene Bt cottons. A preliminary study was conduct...

  12. 21 CFR 139.135 - Enriched vegetable macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... macaroni product containing the prescribed amount of spinach and made in units not conforming in shape and size to the requirements for macaroni, spaghetti, or vermicelli is “Enriched spinach macaroni product...

  13. 21 CFR 139.135 - Enriched vegetable macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... macaroni product containing the prescribed amount of spinach and made in units not conforming in shape and size to the requirements for macaroni, spaghetti, or vermicelli is “Enriched spinach macaroni product...

  14. RNA signal amplifier circuit with integrated fluorescence output.

    PubMed

    Akter, Farhima; Yokobayashi, Yohei

    2015-05-15

    We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.

  15. Growing and processing conditions lead to changes in the carotenoid profile of spinach.

    PubMed

    Heymann, Thomas; Westphal, Lore; Wessjohann, Ludger; Glomb, Marcus A

    2014-05-28

    This study aimed to evaluate the influence of different light regimens during spinach cultivation on the isomeric composition of β-carotene. Irradiation with a halogen lamp, which has a wavelength spectrum close to that of daylight, was used to mimic field-grown conditions. The additional use of optical filters was established as a model system for greenhouse cultivation. Field-grown model systems led to a preferential increase of 9-cis-β-carotene, whereas 13-cis-β-carotene was just formed at the beginning of irradiation. Additionally 9,13-di-cis-β-carotene decreased significantly in the presence of energy-rich light. Isomerization of β-carotene was strongly suppressed during irradiation in greenhouse-grown model systems and led to significant differences. These results were verified in biological samples. Authentic field-grown spinach (Spinacia oleracea L.) showed among changes of other isomers a significantly higher level of 9-cis-isomers (7.52 ± 0.14%) and a significantly lower level of 9,13-di-cis-isomers (0.25 ± 0.03%) compared to authentic greenhouse-grown spinach (6.49 ± 0.11 and 0.76 ± 0.05%). Almost all analyzed commercial spinach samples (fresh and frozen) were identified as common field-grown cultivation. Further investigations resulted in a clear differentiation of frozen commercial samples from fresh spinach, caused by significantly higher levels of 13-cis- and 15-cis-β-carotene as a result of industrial blanching processes.

  16. Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain.

    PubMed

    Castro-Ibáñez, I; Gil, M I; Tudela, J A; Ivanek, R; Allende, A

    2015-08-01

    There is a timely need to evaluate the effect agricultural factors and meteorological conditions on fresh produce contamination. This study evaluated those risk factors and described, for the first time, the distribution of indicator microorganisms (Escherichia coli, Enterococcus, coliforms, and Enterobacteriaceae) and the prevalence of foodborne pathogens (Enterohaemorrhagic E. coli, Listeria monocytogenes and Salmonella spp.) in baby spinach grown in the Southeast of Spain. A longitudinal study was conducted on three farms (2011-2013). Results obtained for E. coli highlighted soil and irrigation water as important factors affecting the microbial safety of baby spinach. Significant differences in the proportion of E. coli positive samples were found between treated (46.1%) and untreated (100%) irrigation water. However, the microbial quality of irrigation water didn't affect E. coli prevalence in produce. All E. coli positive spinach samples were detected at the highest observed temperature range suggesting that ambient temperature affects the probability and extent of spinach contamination. Salmonella spp. was detected by RT-PCR in manure, soil, irrigation water and baby spinach but only two of them (manure and irrigation water) were confirmed by isolation in culture media. Salmonella RT-PCR positive samples showed higher levels of E. coli than Salmonella negative samples. This preliminary finding supports recent identification of E. coli as a suitable parameter for the hygiene criterion at the primary production of leafy greens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Impact of epidermal leaf mining by the aspen leaf miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen.

    Treesearch

    Diane L. Wagner; Linda DeFoliart; Patricia Doak; Jenny Schneiderheinze

    2008-01-01

    The aspen leaf miner, Phyllocnistis populiella, feeds on the contents of epidermal cells on both top (adaxial) and bottom (abaxial) surfaces of quaking aspen leaves, leaving the photosynthetic tissue of the mesophyll intact. This type of feeding is taxonomically restricted to a small subset of leaf mining insects but can cause widespread plant...

  18. Three-dimensional radiation transfer modeling in a dicotyledon leaf

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.

    1996-11-01

    The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

  19. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    PubMed

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  20. Ion-exchange chromatography separates activities synthesizing and degrading fructose 2,6-bisphosphate from C3 and C4 leaves but not from rat liver

    NASA Technical Reports Server (NTRS)

    Macdonald, F. D.; Chou, Q.; Buchanan, B. B.

    1987-01-01

    Fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase were separated on the basis of charge from leaves of C3 (spinach, lettuce, and pea) and C4 (sorghum and amaranthus) plants but not from rat liver--a tissue known to contain a bifunctional enzyme with both activities. [2-32P]Fructose 2,6-bisphosphate binding experiments also suggest that the major forms of these activities reside on different proteins in leaves.

  1. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2013-07-01

    The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress more than spinach at all nutrient levels and 1.5× recommended NPK lowered the sensitivity maximally to enhanced UV-B with respect to photosynthesis, biomass and yield. PCA score has also confirmed the lower sensitivity of amaranthus compared with spinach with respect to the measured physiological and biochemical parameters.

  2. Intra-plant variation in cyanogenesis and the continuum of foliar plant defense traits in the rainforest tree Ryparosa kurrangii (Achariaceae).

    PubMed

    Webber, Bruce L; Woodrow, Ian E

    2008-06-01

    At the intra-plant level, temporal and spatial variations in plant defense traits can be influenced by resource requirements, defensive priorities and storage opportunities. Across a leaf age gradient, cyanogenic glycoside concentrations in the rainforest understory tree Ryparosa kurrangii B.L. Webber were higher in young expanding leaves than in mature leaves (2.58 and 1.38 mg g(-1), respectively). Moreover, cyanogens, as an effective chemical defense against generalist herbivores, contributed to a defense continuum protecting foliar tissue during leaf development. Chemical (cyanogens and phenolic compounds) and phenological (delayed greening) defense traits protected young leaves, whereas mature leaves were largely protected by physical defense mechanisms (lamina toughness; explained primarily by leaf mass per area). Cyanogen concentration was considerably higher in floral tissue than in foliar tissue and decreased in floral tissue during development. Across contrasting tropical seasons, foliar cyanogenic concentration varied significantly, being highest in the late wet season and lowest during the pre-wet season, the latter coinciding with fruiting and leaf flushing. Cyanogens in R. kurrangii appear to be differentially allocated in a way that maximizes plant fitness but may also act as a store of reduced nitrogen that is remobilized during flowering and leaf flushing.

  3. Effect of gamma radiation on the reduction of Salmonella strains, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli and sensory evaluation of minimally processed spinach (Tetragonia expansa).

    PubMed

    Rezende, Ana Carolina B; Igarashi, Maria Crystina; Destro, Maria Teresa; Franco, Bernadette D G M; Landgraf, Mariza

    2014-10-01

    This study evaluated the effects of irradiation on the reduction of Shiga toxin-producing Escherichia coli (STEC), Salmonella strains, and Listeria monocytogenes, as well as on the sensory characteristics of minimally processed spinach. Spinach samples were inoculated with a cocktail of three strains each of STEC, Salmonella strains, and L. monocytogenes, separately, and were exposed to gamma radiation doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. Samples that were exposed to 0.0, 1.0, and 1.5 kGy and kept under refrigeration (4°C) for 12 days were submitted to sensory analysis. D10 -values ranged from 0.19 to 0.20 kGy for Salmonella and from 0.20 to 0.21 for L. monocytogenes; for STEC, the value was 0.17 kGy. Spinach showed good acceptability, even after exposure to 1.5 kGy. Because gamma radiation reduced the selected pathogens without causing significant changes in the quality of spinach leaves, it may be a useful method to improve safety in the fresh produce industry.

  4. Changes in quality, liking, and purchase intent of irradiated fresh-cut spinach during storage.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B

    2011-08-01

    The use of ionizing radiation to enhance microbial safety of fresh spinach at a maximum dose of 4 kGy has been approved by the U.S. Food and Drug Administration (FDA). However, whether spinach can tolerate those high doses of radiation is unclear. Therefore, this study was conducted to investigate the effects of irradiation and storage on quality, liking, and purchase intent of fresh-cut spinach. The oxygen radical absorbance capacity values and total phenolic content were not consistently affected by irradiation. However, the ascorbic acid content of irradiated sample decreased rapidly during storage, resulting in these samples being lower in ascorbic acid content than controls after 7 and 14 d of storage at 4 °C. Sensory evaluation by a 50-member panel revealed that purchase intent and ratings for liking of appearance, aroma, texture, flavor, and overall were not affected by irradiation at doses up to 2 kGy. Therefore, irradiation at doses up to 2 kGy may be used to enhance microbial safety without affecting consumer acceptance or overall antioxidant values of irradiated spinach. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  5. Monitoring of nitrites and nitrates levels in leafy vegetables (spinach and lettuce): a contribution to risk assessment.

    PubMed

    Iammarino, Marco; Di Taranto, Aurelia; Cristino, Marianna

    2014-03-15

    Nitrites and nitrates are compounds considered harmful to humans and the major part of the daily intake of nitrates in foodstuffs is related to vegetable consumption. In this work, 150 leafy vegetables samples (75 spinach and 75 lettuce) were analysed in order to assess the levels of nitrites and nitrates. The analyses were carried out by a validated ion chromatography method and the samples with nitrate concentrations higher than legal limits and/or with quantifiable concentrations of nitrites were confirmed by an alternative ion chromatography method. Nitrate levels higher than legal limits were detected both in spinach (four samples) and in lettuce (five samples). Nitrite residues were registered both at low concentrations--lower than 28.5 mg kg⁻¹ (12 spinach samples)--and at high concentrations, up to 197.5 mg kg⁻¹ (three spinach and one lettuce sample). Considering the non-negligible percentage of 'not-compliant' samples for nitrates (6.0%), control is needed. Moreover, it is possible to suggest the introduction in the Communities Regulations of a 'maximum admissible level' for nitrites in leafy vegetables. © 2013 Society of Chemical Industry.

  6. Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia.

    PubMed

    Mitchell, Patrick J; Veneklaas, Erik J; Lambers, Hans; Burgess, Stephen S O

    2008-12-01

    We measured leaf water relations and leaf structural traits of 20 species from three communities growing along a topographical gradient. Our aim was to assess variation in seasonal responses in leaf water status and leaf tissue physiology between sites and among species in response to summer water deficit. Species from a ridge-top heath community showed the greatest reductions in pre-dawn leaf water potentials (Psi(leaf)) and stomatal conductance during summer; species from a valley-floor woodland and a midslope mallee community showed less reductions in these parameters. Heath species also displayed greater seasonal reduction in turgor-loss point (Psi(TLP)) than species from woodland or mallee communities. In general, species that had larger reductions in Psi(leaf) during summer showed significant shifts in either their osmotic potential at full turgor (Psi(pi 100); osmotic adjustment) or in tissue elasticity (epsilon(max)). Psi(pi 100) and epsilon(max) were negatively correlated, during both spring and summer, suggesting a trade-off between these different mechanisms to cope with water stress. Specific leaf area varied greatly among species, and was significantly correlated with seasonal changes in Psi(TLP) and pre-dawn Psi(leaf). These correlations suggest that leaf structure is a prerequisite for cellular mechanisms to be effective in adjusting to water deficit.

  7. Healthy Weight: Russell Morgan's Low-Cal Dinner Delights

    MedlinePlus

    ... green beans, one-half medium-size steamed sweet potato. Spinach salad with sliced tomatoes, cucumbers and carrots, ... 1 cup steamed cauliflower, one 6 oz baked potato. Spinach and tomato salad, topped with 1 calorie ...

  8. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Quantifying the Reduction in Potential Health Risks by Determining the Sensitivity of Poliovirus Type 1 Chat Strain and Rotavirus SA-11 to Electron Beam Irradiation of Iceberg Lettuce and Spinach

    PubMed Central

    Espinosa, Ana Cecilia; Jesudhasan, Palmy; Arredondo, René; Cepeda, Martha; Mazari-Hiriart, Marisa; Mena, Kristi D.

    2012-01-01

    Fresh produce, such as lettuce and spinach, serves as a route of food-borne illnesses. The U.S. FDA has approved the use of ionizing irradiation up to 4 kGy as a pathogen kill step for fresh-cut lettuce and spinach. The focus of this study was to determine the inactivation of poliovirus and rotavirus on lettuce and spinach when exposed to various doses of high-energy electron beam (E-beam) irradiation and to calculate the theoretical reduction in infection risks that can be achieved under different contamination scenarios and E-beam dose applications. The D10 value (dose required to reduce virus titers by 90%) (standard error) of rotavirus on spinach and lettuce was 1.29 (± 0.64) kGy and 1.03 (± 0.05) kGy, respectively. The D10 value (standard error) of poliovirus on spinach and lettuce was 2.35 (± 0.20) kGy and 2.32 (± 0.08) kGy, respectively. Risk assessment of data showed that if a serving (∼14 g) of lettuce was contaminated with 10 PFU/g of poliovirus, E-beam irradiation at 3 kGy will reduce the risk of infection from >2 in 10 persons to approximately 6 in 100 persons. Similarly, if a serving size (∼0.8 g) of spinach is contaminated with 10 PFU/g of rotavirus, E-beam irradiation at 3 kGy will reduce infection risks from >3 in 10 persons to approximately 5 in 100 persons. The results highlight the value of employing E-beam irradiation to reduce public health risks but also the critical importance of adhering to good agricultural practices that limit enteric virus contamination at the farm and in packing houses. PMID:22179244

  10. Multiresidue pesticide analysis in ginseng and spinach by nontargeted and targeted screening procedures.

    PubMed

    Hayward, Douglas G; Wong, Jon W; Zhang, Kai; Chang, James; Shi, Feng; Banerjee, Kaushik; Yang, Paul

    2011-01-01

    Five different mass spectrometers interfaced to GC or LC were evaluated for their application to targeted and nontargeted screening of pesticides in two foods, spinach and ginseng. The five MS systems were capillary GC/MS/MS, GC-high resolution time-of-flight (GC/HR-TOF)-MS, TOF-MS interfaced with a comprehensive multidimensional GC (GCxGC/TOF-MS), an MS/MS ion trap hybrid mass (qTrap) system interfaced with an ultra-performance liquid chromatograph (UPLC-qTrap), and UPLC interfaced to an orbital trap high resolution mass spectrometer (UPLC/Orbitrap HR-MS). Each MS system was tested with spinach and ginseng extracts prepared through a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure. Each matrix was fortified at 10 and 50 ng/g for spinach or 25 and 100 ng/g for ginseng with subsets of 486 pesticides, isomers, and metabolites representing most pesticide classes. HR-TOF-MS was effective in a targeted search for characteristic accurate mass ions and identified 97% of 170 pesticides in ginseng at 25 ng/g. A targeted screen of either ginseng or spinach found 94-95% of pesticides fortified for analysis at 10 ng/g with GC/MS/MS or LC/MS/MS using multiple reaction monitoring (MRM) procedures. Orbitrap-MS successfully found 89% of 177 fortified pesticides in spinach at 25 ng/g using a targeted search of accurate mass pseudomolecular ions in the positive electrospray ionization mode. A comprehensive GCxGC/TOF-MS system provided separation and identification of 342 pesticides and metabolites in a single 32 min acquisition with standards. Only 67 or 81% of the pesticides were identified in ginseng and spinach matrixes at 25 ng/g or 10 ng/g, respectively. MS/MS or qTrap-MS operated in the MRM mode produced the lowest false-negative rates, at 10 ng/g. Improvements to instrumentation, methods, and software are needed for efficient use of nontargeted screens in parallel with triple quadrupole MS.

  11. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure.

    PubMed

    Ferri, Roberta; Hashim, Dana; Smith, Donald R; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G

    2015-06-15

    For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables to minimize metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Expression and purification of spinach nitrite reductase in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellissimo, D.; Privalle, L.

    1991-03-11

    The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth weremore » also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.« less

  13. Effect of chemical sanitizer combined with modified atmosphere packaging on inhibiting Escherichia coli O157:H7 in commercial spinach.

    PubMed

    Lee, Sun-Young; Baek, Seung-Youb

    2008-06-01

    Escherichia coli O157:H7 contaminated spinach has recently caused several outbreaks of human illness in the USA and Canada. However, to date, there has been no study demonstrating an effective way to eliminate E. coli O157:H7 in spinach. Therefore, this study was conducted to investigate the effect of chemical sanitizers alone or in combination with packaging methods such as vacuum and modified atmosphere packaging (MAP) on inactivating E. coli O157:H7 in spinach during storage time. Spinach inoculated with E. coli O157:H7 was packaged in four different methods (air, vacuum, N(2) gas, and CO(2) gas packaging) following treatment with water, 100 ppm chlorine dioxide, or 100 ppm sodium hypochlorite for 5 min at room temperature and stored at 7+/-2 degrees C. Treatment with water did not significantly reduce levels of E. coli O157:H7 in spinach. However, treatment with chlorine dioxide and sodium hypochlorite significantly decreased levels of E. coli O157:H7 by 2.6 and 1.1 log(10)CFU/g, respectively. Levels of E. coli O157:H7 in samples packaged in air following treatments grew during storage time, whereas levels were maintained in samples packaged in other packaging methods (vacuum, N(2) gas, and CO(2) gas packaging). Therefore there were significant differences (about 3-4 log) of E. coli O157:H7 populations between samples packed in air and other packaging methods following treatment with chemical sanitizers after 7 days storage. These results suggest that the combination of treatment with chlorine dioxide and packaging methods such as vacuum and MAP may be useful for improving the microbial safety of spinach against E. coli O157:H7 during storage.

  14. Metal contamination of home gardens soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure

    PubMed Central

    Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.

    2015-01-01

    Background For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity duration in Brescia province. Total soil metal concentration and extractability were measured by X-ray fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thoroughly washing vegetables to minimize metal exposure. PMID:25777956

  15. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  16. 40 CFR 180.587 - Famoxadone; tolerance for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., liver 0.05 Spinach 50 Tomato 1.0 Vegetable, cucurbit, group 9 0.30 Vegetable, fruiting, group 8, except tomato 4.0 Vegetable, leafy, except Brassica, group 4, except spinach 25 1 There are no U.S...

  17. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng

    2014-08-21

    Spinach is an in vitro–selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence. Spinach is thus an RNA analog of GFP and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2-Å and 2.4-Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially preformed binding site for the fluorophore. The fluorophore bindsmore » in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers.« less

  18. A G-Quadruplex-Containing RNA Activates Fluorescence in a GFP-Like Fluorophore

    PubMed Central

    Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng; Shelke, Sandip A.; Evans, Molly E.; Koldobskaya, Yelena; Rice, Phoebe A.; Piccirilli, Joseph A.

    2014-01-01

    Spinach is an in vitro selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence.Spinach is thus an RNA analog of GFP, and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2 and 2.4 Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially pre-formed binding site for the fluorophore.The fluorophore binds in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers. PMID:24952597

  19. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.« less

  20. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE PAGES

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.; ...

    2014-04-15

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.« less

  1. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    PubMed

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Net primary production and phenology on a southern Appalachian watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, F.P. Jr.; Monk, C.D.

    1977-01-01

    Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by venier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Caryamore » glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha/sup -1/yr/sup -1/ and included 47.9 percent leaves, 33.2 percent wood, 7.8 percent bark, 4.8 percent reproductive tissues, 4.2 percent loss to consumers, and 2.1 percent twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering occurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.« less

  3. Net primary production and phenology on a southern Appalachian watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, F.P. Jr.; Monk, C.D.

    1977-10-01

    Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by vernier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Caryamore » glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha/sup -1/ yr/sup -1/ and included 47.9% leaves, 33.2% wood, 7.8% bark, 4.8% reproductive tissues, 4.2% loss to consumers, and 2.1% twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering ocurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.« less

  4. 40 CFR 180.613 - Flonicamid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 12 0.60 Hop, dried cones 7.0 Okra 0.40 Potato, granules/flakes 0.40 Radish, tops 16 Spinach 9.0..., fruiting, group 8 0.40 Vegetable, leafy, except brassica, group 4, except spinach 4.0 Vegetable, root...

  5. Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration1[CC-BY

    PubMed Central

    Townes, Shatara V.; Bartlett, Megan K.; Buckley, Thomas N.; McElrone, Andrew J.; Sack, Lawren

    2017-01-01

    Leaf hydraulic supply is crucial to maintaining open stomata for CO2 capture and plant growth. During drought-induced dehydration, the leaf hydraulic conductance (Kleaf) declines, which contributes to stomatal closure and, eventually, to leaf death. Previous studies have tended to attribute the decline of Kleaf to embolism in the leaf vein xylem. We visualized at high resolution and quantified experimentally the hydraulic vulnerability of xylem and outside-xylem pathways and modeled their respective influences on plant water transport. Evidence from all approaches indicated that the decline of Kleaf during dehydration arose first and foremost due to the vulnerability of outside-xylem tissues. In vivo x-ray microcomputed tomography of dehydrating leaves of four diverse angiosperm species showed that, at the turgor loss point, only small fractions of leaf vein xylem conduits were embolized, and substantial xylem embolism arose only under severe dehydration. Experiments on an expanded set of eight angiosperm species showed that outside-xylem hydraulic vulnerability explained 75% to 100% of Kleaf decline across the range of dehydration from mild water stress to beyond turgor loss point. Spatially explicit modeling of leaf water transport pointed to a role for reduced membrane conductivity consistent with published data for cells and tissues. Plant-scale modeling suggested that outside-xylem hydraulic vulnerability can protect the xylem from tensions that would induce embolism and disruption of water transport under mild to moderate soil and atmospheric droughts. These findings pinpoint outside-xylem tissues as a central locus for the control of leaf and plant water transport during progressive drought. PMID:28049739

  6. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    PubMed Central

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S.; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G.

    2011-01-01

    Background SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. Conclusion/Significance The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications. PMID:21339815

  7. Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.

    PubMed

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G

    2011-02-14

    SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.

  8. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-02-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast.

  9. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed Central

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-01-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast. PMID:12232109

  10. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids.

    PubMed

    Schütt, B S; Brummel, M; Schuch, R; Spener, F

    1998-06-01

    To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinacia oleracea L.) leaves, rape (Brassica napus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction.

  11. Lettuce and spinach breeding

    USDA-ARS?s Scientific Manuscript database

    Lettuce and spinach production is beset by numerous biotic an abiotic challenges, thus the leafy-vegetable industry of California requires continued development of improved, adapted cultivars to meet new disease and insect problems, changes in the market, and changes in growing procedures. The lettu...

  12. Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants.

    PubMed

    Břendová, Kateřina; Zemanová, Veronika; Pavlíková, Daniela; Tlustoš, Pavel

    2016-10-01

    In the present study, the content of risk elements and content of free amino acids were studied in spinach (Spinacia oleracea L.) and mustard (Sinapis alba L.) subsequently grown on uncontaminated and contaminated soils (5 mg Cd/kg, 1000 mg Pb/kg and 400 mg Zn/kg) with the addition of activated carbon (from coconut shells) or biochar (derived from local wood residues planted for phytoextaction) in different seasons (spring, summer and autumn). The results showed that activated carbon and biochar increased biomass production on contaminated site. Application of amendments decreased Cd and Zn uptake by spinach plants. Mustard significantly increased Pb accumulation in the biomass as well in subsequently grown autumn spinach. Glutamic acid and glutamine were major free amino acids in leaves of all plants (15-34% and 3-45%) from total content. Application of activated carbon and biochar increased content of glutamic acid in all plants on uncontaminated and contaminated soils. Activated carbon and biochar treatments also induced an increase of aspartic acid in spinach plants. Biochar produced from biomass originated from phytoextraction technologies promoted higher spinach biomass yield comparing unamended control and showed a tendency to reduce accumulation of cadmium and zinc and thus it is promising soil amendment. Copyright © 2016. Published by Elsevier Ltd.

  13. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi. IV. Purification and Properties of Plastocyanin.

    PubMed

    Gorman, D S; Levine, R P

    1966-12-01

    The copper protein plastocyanin has been found to be an essential component of the photosynthetic electron transport chain of Chlamydomonas reinhardi, and in this paper we describe a method for its isolation and purification from the wild-type strain. In addition, we describe some of its properties and compare them with those reported for spinach plastocyanin.The plastocyanin was extracted from acetone powders prepared from intact cells, and it was purified by ion exchange chromatography on DEAE cellulose and gel filtration on Sephadex G-75. The yield of the purified protein ranged from plastocyanin equivalent to 2.0 to 2.5 mug atoms copper per 1000 mumoles chlorophyll. In general the absorption spectrum of plastocyanin from C. reinhardi resembled that of the plastocyanin from spinach. Some spectral differences were found in the ultraviolet region where, in contrast to spinach plastocyanin, that of C. reinhardi had a greater absorbance (relative to peaks in the visible) and less evidence for phenylalanine fine structure. The normal oxidation-reduction potential of C. reinhardi plastocyanin was found to be + 0.37 volts, the same as reported for spinach plastocyanin. The molecular weight of C. reinhardi plastocyanin has been estimated to be 13,000 +/- 2000. In contrast, the value for spinach plastocyanin has been found to be 21,000.

  14. D-ribulose-5-phosphate 3-epimerase: Cloning and heterologous expression of the spinach gene, and purification and characterization of the recombinant enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.R.; Hartman, F.C.; Lu, T.Y.S.

    The authors have achieved, to their knowledge, the first high-level heterologous expression of the gene encoding D-ribulose-5-phosphate 3-epimerase from any source, thereby permitting isolation and characterization of the epimerase as found in photosynthetic organisms. The extremely labile recombinant spinach (Spinacia oleracea L.) enzyme was stabilized by DL-{alpha}-glycerophosphate or ethanol and destabilized by D-ribulose-5-phosphate or 2-mercaptoethanol. Despite this lability, the unprecedentedly high specific activity of the purified material indicates that the structural integrity of the enzyme is maintained throughout isolation. Ethylenediaminetetraacetate and divalent metal cations did not affect epimerase activity, thereby excluding a requirement for the latter in catalysis. As deducedmore » from the sequence of the cloned spinach gene and the electrophoretic mobility under denaturing conditions of the purified recombinant enzyme, its 25-kD subunit size was about the same as that of the corresponding epimerases of yeast and mammals. However, in contrast to these other species, the recombinant spinach enzyme was octameric rather than dimeric, as assessed by gel filtration and polyacrylamide gel electrophoresis under nondenaturing conditions. Western-blot analyses with antibodies to the purified recombinant enzyme confirmed that the epimerase extracted from spinach leaves is also octameric.« less

  15. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory

    PubMed Central

    Nabity, Paul D.; Zavala, Jorge A.; DeLucia, Evan H.

    2009-01-01

    Background Herbivory reduces leaf area, disrupts the function of leaves, and ultimately alters yield and productivity. Herbivore damage to foliage typically is assessed in the field by measuring the amount of leaf tissue removed and disrupted. This approach assumes the remaining tissues are unaltered, and plant photosynthesis and water balance function normally. However, recent application of thermal and fluorescent imaging technologies revealed that alterations to photosynthesis and transpiration propagate into remaining undamaged leaf tissue. Scope and Conclusions This review briefly examines the indirect effects of herbivory on photosynthesis, measured by gas exchange or chlorophyll fluorescence, and identifies four mechanisms contributing to the indirect suppression of photosynthesis in remaining leaf tissues: severed vasculature, altered sink demand, defence-induced autotoxicity, and defence-induced down-regulation of photosynthesis. We review the chlorophyll fluorescence and thermal imaging techniques used to gather layers of spatial data and discuss methods for compiling these layers to achieve greater insight into mechanisms contributing to the indirect suppression of photosynthesis. We also elaborate on a few herbivore-induced gene-regulating mechanisms which modulate photosynthesis and discuss the difficult nature of measuring spatial heterogeneity when combining fluorescence imaging and gas exchange technology. Although few studies have characterized herbivore-induced indirect effects on photosynthesis at the leaf level, an emerging literature suggests that the loss of photosynthetic capacity following herbivory may be greater than direct loss of photosynthetic tissues. Depending on the damage guild, ignoring the indirect suppression of photosynthesis by arthropods and other organisms may lead to an underestimate of their physiological and ecological impacts. PMID:18660492

  16. Carbon and nitrogen dynamics of the intertidal seagrass, Zostera japonica, on the southern coast of the Korean peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hyeob; Kim, Seung Hyeon; Kim, Young Kyun; Lee, Kun-Seop

    2016-12-01

    Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.

  17. The bionomics of the cottonwood leaf beetle, Chrysomela scripta Fab., on tissue culture hybrid poplars

    Treesearch

    T.R. Burkot; D.M. Benjamin

    1977-01-01

    Tissue culture methods are applied to poplars of the Aigeiros group in attempts to overcome premature decline thought to be associated with viral infections. Hybrid selections from such cultures outplanted in 1975 at the F. G. Wilson Nursery in Boscobel, Wisconsin subsequently were severely infested by the Cottonwood Leaf Beetle, Chrysomela scripta Fab. Beetle...

  18. A model using marginal efficiency of investment to analyse carbon and nitrogen interactions in forested ecosystems

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Williams, M.

    2014-12-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. Here we explore the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants using a new, simple model of ecosystem C-N cycling and interactions (ACONITE). ACONITE builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C:N, N fixation, and plant C use efficiency) based on the optimization of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state and transient ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C:N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C:N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C:N, while a more recently reported non-linear relationship simulated leaf C:N that compared better to the global trait database than the linear relationship. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C:N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.

  19. Multistate Outbreak of Escherichia coli O157:H7 Infections Associated with Consumption of Fresh Spinach: United States, 2006.

    PubMed

    Sharapov, Umid M; Wendel, Arthur M; Davis, Jeffrey P; Keene, William E; Farrar, Jeffrey; Sodha, Samir; Hyytia-Trees, Eija; Leeper, Molly; Gerner-Smidt, Peter; Griffin, Patricia M; Braden, Chris

    2016-12-01

    During September to October, 2006, state and local health departments and the Centers for Disease Control and Prevention investigated a large, multistate outbreak of Escherichia coli O157:H7 infections. Case patients were interviewed regarding specific foods consumed and other possible exposures. E. coli O157:H7 strains isolated from human and food specimens were subtyped using pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analyses (MLVA). Two hundred twenty-five cases (191 confirmed and 34 probable) were identified in 27 states; 116 (56%) case patients were hospitalized, 39 (19%) developed hemolytic uremic syndrome, and 5 (2%) died. Among 176 case patients from whom E. coli O157:H7 with the outbreak genotype (MLVA outbreak strain) was isolated and who provided details regarding spinach exposure, 161 (91%) reported fresh spinach consumption during the 10 days before illness began. Among 116 patients who provided spinach brand information, 106 (91%) consumed bagged brand A. E. coli O157:H7 strains were isolated from 13 bags of brand A spinach collected from patients' homes; isolates from 12 bags had the same MLVA pattern. Comprehensive epidemiologic and laboratory investigations associated this large multistate outbreak of E. coli O157:H7 infections with consumption of fresh bagged spinach. MLVA, as a supplement to pulsed-field gel electrophoresis genotyping of case patient isolates, was important to discern outbreak-related cases. This outbreak resulted in enhanced federal and industry guidance to improve the safety of leafy green vegetables and launched an independent collaborative approach to produce safety research in 2007.

  20. Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals.

    PubMed

    genannt Bonsmann, S Storcksdieck; Walczyk, T; Renggli, S; Hurrell, R F

    2008-03-01

    To evaluate the influence of oxalic acid (OA) on nonhaem iron absorption in humans. Two randomized crossover stable iron isotope absorption studies. Zurich, Switzerland. Sixteen apparently healthy women (18-45 years, <60 kg body weight), recruited by poster advertizing from the staff and student populations of the ETH, University and University Hospital of Zurich, Switzerland. Thirteen subjects completed both studies. Iron absorption was measured based on erythrocyte incorporation of (57)Fe or (58)Fe 14 days after the administration of labelled meals. In study I, test meals consisted of two wheat bread rolls (100 g) and either 150 g spinach with a native OA content of 1.27 g (reference meal) or 150 g kale with a native OA content of 0.01 g. In study II, 150 g kale given with a potassium oxalate drink to obtain a total OA content of 1.27 g was compared to the spinach meal. After normalization for the spinach reference meal absorption, geometric mean iron absorption from wheat bread rolls with kale (10.7%) did not differ significantly from wheat rolls with kale plus 1.26 g OA added as potassium oxalate (11.5%, P=0.86). Spinach was significantly higher in calcium and polyphenols than kale and absorption from the spinach meal was 24% lower compared to the kale meal without added OA, but the difference did not reach statistical significance (P>0.16). Potassium oxalate did not influence iron absorption in humans from a kale meal and our findings strongly suggest that OA in fruits and vegetables is of minor relevance in iron nutrition.

  1. Development and Survival of Spodoptera exigua (Lepidoptera: Noctuidae) on Alternate Crops in Cotton Cropping Pattern, With Implications to Integrated Pest Management.

    PubMed

    Saeed, Qamar; Ahmad, Faheem; Saeed, Shafqat

    2017-06-01

    Spodoptera exigua (Hübner) is a polyphagous pest that shifts its population to different hosts during its life cycle to receive nutritive advantages. Therefore, demographic evaluation of alternate hosts is important for effective pest management. Here, we have evaluated castor (Ricinus communis L.), cauliflower (Brassica oleracea L.), cotton (Gossypium hirsutum L.), okra (Abelmoschus esculentus L.), and spinach (Spinacia oleracea L.) for growth, survival, and population development of S. exigua. Development of early populations of S. exigua is best supported on castor where earlier instars had least mortalities (10%) compared with spinach (36%), although later instars and pupae had significantly higher mortalities (20.8%) on it. Spinach and okra, on the other hand, promote larval survivals in later instars. Little or no differences in stadia lengths were observed during early development of larvae and, interestingly, the longevity of female moths increased significantly when reared on castor, cauliflower, and spinach (12.3, 11.3, and 11.7 d, respectively), resulting into significantly higher fecundity. The survival curves of all five populations have clearly demonstrated a steep early decline in larval numbers when reared on okra and only 60% larvae could survive. These findings conclude that S. exigua when fed on spinach was greatly disadvantaged in terms of growth and development; hence, the pest's field population can be opportunistically controlled by spraying adjacent spinach fields. In addition, the results highlight the vulnerable stages in pest's life cycle in the field where we can apply integrated control strategies for its effective management. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Yang, Linzhang

    Different nitrogen (N) treatments of four common green-leafy vegetable varieties with different leaf color: lettuce ( Lactuca sativa L. var. crispa L.) with yellow green leaves, pakchoi ( Brassica chinensis L.) var. aijiaohuang in Chinese (AJH) with middle green leaves, spinach ( Spinacia oleracea L.) with green leaves and pakchoi ( B. chinensis L.) var. shanghaiqing in Chinese (SHQ) with dark green leaves, were carried out to achieve a wide range of chlorophyll content. The relationship of vegetable leaf hyperspectral response to its chlorophyll content was examined in this study. Almost all reported successful leaf chlorophyll indices in the literature were evaluated for their ability to predict the chlorophyll content in vegetable leaves. Some new indices based on the first derivative curve were also developed, and compared with the chlorophyll indices published. The results showed that most of the indices showed a strong relation with leaf chlorophyll content. In general, modified indices with the blue or near red edge wavelength performed better than their simple counterpart without modification, ratio indices performed a little better than normalized indices when chlorophyll expressed on area basis and reversed when chlorophyll expressed on fresh weight basis. A normalized derivative difference ratio (BND: (D722-D700)/(D722+D700) calibrated by Maire et al. [Maire, G., Francois, C., Dufrene, E., 2004. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89 (1), 1-28]) gave the best results among all published indices in this study (RMSE=22.1 mg m -2), then the mSR-like indices with the RMSE between 22.6 and 23.0 mg m -2. The new indices EBAR (ratio of the area of red and blue, ∑ dRE/∑ dB), EBFN (normalized difference of the amplitude of red and blue, (dRE-dB)/(dRE+dB)) and EBAN (normalized difference of the area of red and blue, (∑ dRE-∑ dB)/(∑ dRE+∑ dB)) calculated with the derivatives also showed a good performance with the RMSE of 23.3, 24.15 and 24.33 mg m -2, respectively. The study suggests that spectral reflectance measurements hold promise for the assessment of chlorophyll content at the leaf level for green-leafy vegetables. Further investigation is needed to evaluate the effectiveness of such techniques on other vegetable varieties or at the canopy level.

  3. Solar energy from spinach and toothpaste: fabrication of a solar cell in schools

    NASA Astrophysics Data System (ADS)

    Siemsen, F.; Bunk, A.; Fischer, K.; Korneck, F.; Engel, H.; Roux, D.

    1998-01-01

    We will show how pupils can make a solar cell with spinach, toothpaste and a few other items found in any school laboratory. This device is called a Graetzel cell, and could trigger off a revolution in photovoltaic technology.

  4. Isolation and Characterization of Phosphatidyl Choline from Spinach Leaves.

    ERIC Educational Resources Information Center

    Devor, Kenneth A.

    1979-01-01

    This inexpensive but informative experiment for undergraduate biochemistry students involves isolating phosphatidyl choline from spinach leaves. Emphasis is on introducing students to techniques of lipid extraction, separation of lipids, identification using thin layer chromatography, and identification of fatty acids. Three periods of three hours…

  5. Detection of latent infections of Peronospora effusa in spinach

    USDA-ARS?s Scientific Manuscript database

    Downy mildew, caused by Peronospora effusa, is the most serious disease of spinach in central coastal California. The disease is managed in conventional production fields by a combination of host resistance and calendar-based fungicide applications, in which fungicides are applied to prevent downy ...

  6. Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm Phoenix canariensis1[OPEN

    PubMed Central

    Bartuce, Allison; Free, Heather C.A.; Smith, Bronwen G.

    2017-01-01

    The cell walls of leaf base tissues of the Canary Island date palm (Phoenix canariensis) contain lignins with the most complex compositions described to date. The lignin composition varies by tissue region and is derived from traditional monolignols (ML) along with an unprecedented range of ML conjugates: ML-acetate, ML-benzoate, ML-p-hydroxybenzoate, ML-vanillate, ML-p-coumarate, and ML-ferulate. The specific functions of such complex lignin compositions are unknown. However, the distribution of the ML conjugates varies depending on the tissue region, indicating that they may play specific roles in the cell walls of these tissues and/or in the plant’s defense system. PMID:28894022

  7. Spatiotemporal patterns in the airborne dispersal of spinach downy mildew

    USDA-ARS?s Scientific Manuscript database

    Downy mildew, caused by the biotrophic oomycete pathogen, Peronospora effusa, is the most devastating disease of spinach that threatens sustainable production. The disease results in yellow lesions that render leaves unmarketable as the high value fresh produce. In this study, the levels of D...

  8. Flavonoid content and antioxidant capacity of spinach genotypes determined by high-performance liquid chromatography/mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Flavonoids in different spinach genotypes were separated, identified, and quantified by a high-performance liquid chromatographic method with photodiode array and mass spectrometric detection. The antioxidant capacities of the genotypes were also measured using two antioxidant assays - oxygen radica...

  9. Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach.

    PubMed

    Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine

    2012-09-01

    Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively. © 2012 Blackwell Publishing Ltd.

  10. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  11. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation.

    PubMed

    Gols, Rieta; Roosjen, Mara; Dijkman, Herman; Dicke, Marcel

    2003-12-01

    Jasmonic acid (JA) and the octadecanoid pathway are involved in both induced direct and induced indirect plant responses. In this study, the herbivorous mite, Tetranychus urticae, and its predator, Phytoseiulus persimilis, were given a choice between Lima bean plants induced by JA or spider mites and uninduced control plants. Infestation densities resulting in the induction of predator attractants were much lower than thus far assumed, i.e., predatory mites were significantly attracted to plants that were infested for 2 days with only one or four spider mites per plant. Phytoseiulus persimilis showed a density-dependent response to volatiles from plants that were infested with different numbers of spider mites. Similarly, treating plants with increasing concentrations of JA also led to increased attraction of P. persimilis. Moreover, the duration of spider mite infestation was positively correlated with the proportion of predators that were attracted to mite-infested plants. A pretreatment of the plants with JA followed by a spider mite infestation enhanced the attraction of P. persimilis to plant volatiles compared to attraction to volatiles from plants that were only infested with spider mites and did not receive a pretreatment with JA. The herbivore, T. urticae preferred leaf tissue that previously had been infested with conspecifics to uninfested leaf tissue. In the case of choice tests with JA-induced and control leaf tissue, spider mites slightly preferred control leaf tissue. When spider mites were given a choice between leaf discs induced by JA and leaf discs damaged by spider mite feeding, they preferred the latter. The presence of herbivore induced chemicals and/or spider mite products enhanced settlement of the mites, whereas treatment with JA seemed to impede settlement.

  12. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    PubMed

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Purification and Characterization of a Glycerol-Resistant CF0-CF1 and CF1-ATPase from the Halotolerant Alga Dunaliella bardawil1

    PubMed Central

    Finel, Moshe; Pick, Uri; Selman-Reimer, Susanne; Selman, Bruce R.

    1984-01-01

    The isolation of the chloroplast ATP synthase complex (CF0-CF1) and of CF1 from Dunaliella bardawil is described. The subunit structure of the D. bardawil ATPase differs from that of the spinach in that the D. bardawil α subunit migrates ahead of the β subunit and ε-migrates ahead of subunit II of CF0 when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The CF1 isolated from D. bardawil resembles the CF1 isolated from Chladmydomonas reinhardi in that a reversible, Mg2+-dependent ATPase is induced by selected organic solvents. Glycerol stimulates cyclic photophosphorylation catalyzed by D. bardawil thylakoid membranes but inhibits photophosphorylation catalyzed by spinach thylakoid membranes. Glycerol (20%) also stimulates the rate of ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 proteoliposomes but inhibits the activity with the spinach enzyme. The ethanol-activated, Mg2+-ATPase of the D. bardawil CF1 is more resistant to glycerol inhibition than the octylglucoside-activated, Mg2+-ATPase of spinach CF1 or the ethanol-activated, Mg2+-dependent ATPase of the C. reinhardi CF1. Both cyclic photophosphorylation and ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 are more sensitive to high concentrations of NaCl than is the spinach complex. Images Fig. 5 PMID:16663507

  14. Impact of Sweet Potato Starch-Based Nanocomposite Films Activated With Thyme Essential Oil on the Shelf-Life of Baby Spinach Leaves

    PubMed Central

    Issa, Aseel; Ibrahim, Salam A.; Tahergorabi, Reza

    2017-01-01

    Salmonella Typhimurium (S. Typhi) and Escherichia coli (E. coli) have been responsible for an increasing number of outbreaks linked to fresh produce, such as baby spinach leaves, in the last two decades. More recently, antimicrobial biodegradable packaging systems have been attracting much attention in the food packaging industry as eco-friendly alternatives to conventional plastic packaging. The objective of this study was to evaluate the effect of antibacterial nanocomposite films on inoculated spinach leaves and on the sensory properties of these leaves during eight days of refrigerated storage. In this study, an antibacterial film comprised of sweet potato starch (SPS), montmorillonite (MMT) nanoclays and thyme essential oil (TEO) as a natural antimicrobial agent was developed. Our results showed that the incorporation of TEO in the film significantly (p < 0.05) reduced the population of E. coli and S. Typhi on fresh baby spinach leaves to below detectable levels within five days, whereas the control samples without essential oil maintained approximately 4.5 Log colony forming unit (CFU)/g. The sensory scores for spinach samples wrapped in films containing TEO were higher than those of the control. This study thus suggests that TEO has the potential to be directly incorporated into a SPS film to prepare antimicrobial nanocomposite films for food packaging applications. PMID:28587199

  15. Characterization of an Olive Flounder Bone Gelatin-Zinc Oxide Nanocomposite Film and Evaluation of Its Potential Application in Spinach Packaging.

    PubMed

    Beak, Songee; Kim, Hyeri; Song, Kyung Bin

    2017-11-01

    Olive flounder bone gelatin (OBG) was used for a film base material in this study. In addition, zinc oxide nanoparticles (ZnO) were incorporated into the OBG film to prepare a nanocomposite film and to impart antimicrobial activity to it. The tensile strength of the OBG film increased by 6.62 MPa, and water vapor permeability and water solubility decreased by 0.93 × 10 -9 g/m s Pa and 13.79%, respectively, by the addition of ZnO to the OBG film. In particular, the OBG-ZnO film exhibited antimicrobial activity against Listeria monocytogenes. To investigate the applicability of the OBG-ZnO packaging film, fresh spinach was wrapped in this film and stored for a week. The results indicated that the OBG-ZnO film showed antimicrobial activity against L. monocytogenes inoculated on spinach without affecting the quality of spinach, such as vitamin C content and color. Thus, the OBG-ZnO nanocomposite film can be applied as an efficient antimicrobial food packaging material. As a base material of edible films, gelatin was extracted from olive flounder bone, which is fish processing by-product. Olive flounder bone gelatin (OBG) nanocomposite films were prepared with zinc oxide nanoparticles (ZnO). For an application to antimicrobial packaging, spinach was wrapped with the OBG-ZnO nanocomposite film. © 2017 Institute of Food Technologists®.

  16. Gross alpha and beta activity and annual committed effective dose due to natural radionuclides in some water spinach (ipomoea aquatica Forssk) samples in Ho Chi Minh City, Vietnam.

    PubMed

    Le, Hao Cong; Nguyen, Thang Van; Huynh, Thu Nguyen Phong; Huynh, Phuong Truc

    2017-07-01

    The results of gross alpha and beta radioactivity measurement in water spinach samples from some districts in Ho Chi Minh City, Vietnam are presented in this paper. The measurements were performed using a low-background proportional counters LB4200 manufactured by Canberra Company, Inc. Mean concentrations of gross alpha and beta activity were found to be 1.50 ± 0.38 Bq kg -1 to 84.25 ± 8.67 Bq kg -1 . In order to keep the recommended dose level, a recommended maximum intake of water spinach was proposed to be 6 kg fresh per year. The total annual committed effective dose due to natural radionuclides in water spinach samples was then found in range from 0.07 mSv y -1 to 0.82 mSv y -1 . The dose from 26.32% of samples exceeds the exemption mean dose criterion of 0.3 mSv y -1 but complies with the upper dose principle of 1 mSv y -1 provided in UNSCEAR 2008 report. The estimated soil-to-plant transfer factors for gross alpha and beta for water spinach samples were also presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry.

    PubMed

    Ehlenfeldt, M K; Prior, R L

    2001-05-01

    Antioxidant capacity, as measured by oxygen radical absorbance capacity (ORAC), and total phenolic and total anthocyanin contents were evaluated in fruit tissues of 87 highbush blueberry (Vacciniumcorymbosum L.) and species-introgressed highbush blueberry cultivars. ORAC and phenolic levels were evaluated in leaf tissues of the same materials. Average values for ORAC, phenolics, and anthocyanins in fruit were 15.9 ORAC units, 1.79 mg/g (gallic acid equivalents), and 0.95 mg/g (cyanidin-3-glucoside equivalents), respectively. Cv. Rubel had the highest ORAC per gram of fresh weight values, at 31.1 units, and cv. Elliott had the highest values on the basis of ORAC per square centimeter of surface area. In leaf tissue, values for both ORAC and phenolics were significantly higher than in fruit tissue, with mean values of 490 ORAC units and 44.80 mg/g (gallic acid equivalents), respectively. Leaf ORAC had a low, but significant, correlation with fruit phenolics and anthocyanins, but not with fruit ORAC. An analysis of ORAC values versus calculated midparent values in 11 plants from the 87-cultivar group in which all parents were tested suggested that, across cultivars, ORAC inheritance is additive. An investigation of ORAC values in a family of 44 cv. Rubel x Duke seedlings showed negative epistasis for ORAC values, suggesting Rubel may have gene combinations contributing to ORAC that are broken up during hybridization.

  18. Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity.

    PubMed

    Louis, Bengyella; Waikhom, Sayanika Devi; Roy, Pranab; Bhardwaj, Pardeep Kumar; Singh, Mohendro Wakambam; Chandradev, Sharma K; Talukdar, Narayan Chandra

    2014-06-10

    Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development.

  19. Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity

    PubMed Central

    2014-01-01

    Background Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Results Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. Conclusion A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development. PMID:24917207

  20. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves.

    PubMed

    Zhang, Chen; Sanders, Johan P M; Xiao, Ting T; Bruins, Marieke E

    2015-01-01

    Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results.

  1. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy.

    PubMed

    Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W

    2010-07-01

    Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.

  2. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea)

    USDA-ARS?s Scientific Manuscript database

    Leafminer (Liriomyza spp.) is a major insect pest of many important agricultural crops, including spinach (Spinacia oleracea). Use of genetic resistance is an efficient, economic and environment-friendly method to control this pest. The objective of this research was to conduct association analysis ...

  3. Multispectral fluorescence imaging for detection of bovine feces on Romaine lettuce and baby spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral fluorescence imaging with ultraviolet-A excitation was used to evaluate the feasibility of two-waveband fluorescence algorithms for the detection of bovine fecal contaminants on the abaxial and adaxial surfaces of Romaine lettuce and baby spinach leaves. Correlation analysis was used t...

  4. Responses of spinach to salinity and nutrient deficiency in growth, physiology and nutritional value

    USDA-ARS?s Scientific Manuscript database

    Salinity and nutrient depleted soil are major constraints to crop production, especially for vegetable crops. The effects of salinity and nutrient deficiency on spinach were evaluated in sand cultures under greenhouse conditions. Plants were watered every day with Hoagland nutrition solution, depriv...

  5. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass

    PubMed Central

    Volder, Astrid; Gifford, Roger M.; Evans, John R.

    2015-01-01

    Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. ‘Holdfast’ was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10–60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue. PMID:26272874

  6. Identification of Stevioside Using Tissue Culture-Derived Stevia (Stevia rebaudiana) Leaves

    PubMed Central

    Karim, Md. Ziaul; Uesugi, Daisuke; Nakayama, Noriyuki; Hossain, M. Monzur; Ishihara, Kohji; Hamada, Hiroki

    2015-01-01

    Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for identification of stevioside from tissue culture-derived stevia leaf. Stevioside in the sample was identified using HPLC by measuring the retention time. The percentage of stevioside content in the leaf samples was found to be 9.6%. This identification method can be used for commercial production and industrialization of stevia through in vitro culture across the world. PMID:28008268

  7. Wasabi leaf extracts attenuate adipocyte hypertrophy through PPARγ and AMPK.

    PubMed

    Oowatari, Yasuo; Ogawa, Tetsuro; Katsube, Takuya; Iinuma, Kiyohisa; Yoshitomi, Hisae; Gao, Ming

    2016-08-01

    Hypertrophy of adipocytes in obese adipose tissues causes metabolic abnormality by adipocytokine dysregulation, which promotes type 2 diabetes mellitus, hypertension, and dyslipidemia. We investigated the effects of wasabi (Wasabia japonica Matsum) leaf extracts on metabolic abnormalities in SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP/ZF), which are a model of metabolic syndrome. Male SHRSP/ZF rats aged 7 weeks were divided into two groups: control and wasabi leaf extract (WLE) groups, which received water or oral treatment with 4 g/kg/day WLE for 6 weeks. WLE improved the body weight gain and high blood pressure in SHRSP/ZF rats, and the plasma triglyceride levels were significantly lower in the WLE group. Adipocyte hypertrophy was markedly prevented in adipose tissue. The expression of PPARγ and subsequent downstream genes was suppressed in the WLE group adipose tissues. Our data suggest that WLE inhibits adipose hypertrophy by suppressing PPARγ expression in adipose tissue and stimulating the AMPK activity by increased adiponectin.

  8. Reduction of Cr(VI) to Cr(III) by wetland plants: Potential for in situ heavy metal detoxification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, C.M.; Qian, J.H.; Hansen, D.

    1998-10-15

    Reduction of heavy metals in situ by plants may be a useful detoxification mechanism for phytoremediation. Using X-ray spectroscopy, the authors show that Eichhornia crassipes (water hyacinth), supplied with Cr(VI) in nutrient culture, accumulated nontoxic Cr(III) in root and shoot tissues. The reduction of Cr(VI) to Cr(III) appeared to occur in the fine lateral roots. The Cr(III) was subsequently translocated to leaf tissues. Extended X-ray absorption fine structure of Cr in leaf and petiole differed when compared to Cr in roots. In roots, Cr(III) was hydrated by water, but in petiole and more so in leaf, a portion of themore » Cr(III) may be bound to oxalate ligands. This suggests that E. crassipes detoxified Cr(VI) upon root uptake and transported a portion of the detoxified Cr to leaf tissues. Cr-rich crystalline structures were observed on the leaf surface. The chemical species of Cr in other plants, collected from wetlands that contained Cr(VI)-contaminated wastewater, was also found to be Cr(III). The authors propose that this plant-based reduction of Cr(VI) by E. crassipes has the potential to be used for the in situ detoxification of Cr(VI)-contaminated wastestreams.« less

  9. Step changes in leaf oil accumulation via iterative metabolic engineering.

    PubMed

    Vanhercke, Thomas; Divi, Uday K; El Tahchy, Anna; Liu, Qing; Mitchell, Madeline; Taylor, Matthew C; Eastmond, Peter J; Bryant, Fiona; Mechanicos, Anna; Blundell, Cheryl; Zhi, Yao; Belide, Srinivas; Shrestha, Pushkar; Zhou, Xue-Rong; Ral, Jean-Philippe; White, Rosemary G; Green, Allan; Singh, Surinder P; Petrie, James R

    2017-01-01

    Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Survival, dispersal, and potential soil-mediated suppression of Phytophthora ramorum in a California redwood-tanoak forest.

    PubMed

    Fichtner, E J; Lynch, S C; Rizzo, D M

    2009-05-01

    Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before transfer to the field in January 2005 and 2006. Sachets were placed under tanoak, bay laurel, and redwood at three vertical locations: leaf litter surface, litter-soil interface, and below the soil surface. Sachets were retrieved after 4, 8, 20, and 49 weeks. Pathogen survival was higher in rhododendron leaf tissue than in bay tissue, with >80% survival observed in rhododendron tissue after 49 weeks in the field. Chlamydospore production was determined by clearing infected tissue in KOH. Moist redwood-associated soils suppressed chlamydospore production. Rain events splashed inoculum as high as 30 cm from the soil surface, inciting aerial infection of bay laurel and tanoak. Leaf litter may provide an incomplete barrier to splash dispersal. This 2-year study illustrates annual P. ramorum survival in soil and the suppressive nature of redwood-associated soils to chlamydospore production. Infested soil may serve as primary inoculum for foliar infections by splash dispersal during rain events.

  11. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean.

    PubMed

    Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu

    2018-03-29

    Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.

  12. Red (anthocyanic) leaf margins do not correspond to increased phenolic content in New Zealand Veronica spp.

    PubMed Central

    Hughes, Nicole M.; Smith, William K.; Gould, Kevin S.

    2010-01-01

    Background and Aims Red or purple coloration of leaf margins is common in angiosperms, and is found in approx. 25 % of New Zealand Veronica species. However, the functional significance of margin coloration is unknown. We hypothesized that anthocyanins in leaf margins correspond with increased phenolic content in leaf margins and/or the leaf entire, signalling low palatability or leaf quality to edge-feeding insects. Methods Five species of Veronica with red leaf margins, and six species without, were examined in a common garden. Phenolic content in leaf margins and interior lamina regions of juvenile and fully expanded leaves was quantified using the Folin–Ciocalteu assay. Proportions of leaf margins eaten and average lengths of continuous bites were used as a proxy for palatability. Key Results Phenolic content was consistently higher in leaf margins compared with leaf interiors in all species; however, neither leaf margins nor more interior tissues differed significantly in phenolic content with respects to margin colour. Mean phenolic content was inversely correlated with the mean length of continuous bites, suggesting effective deterrence of grazing. However, there was no difference in herbivore consumption of red and green margins, and the plant species with the longest continuous grazing patterns were both red-margined. Conclusions Red margin coloration was not an accurate indicator of total phenolic content in leaf margins or interior lamina tissue in New Zealand Veronica. Red coloration was also ineffective in deterring herbivory on the leaf margin, though studies controlling for variations in leaf structure and biochemistry (e.g. intra-specific studies) are needed before more precise conclusions can be drawn. It is also recommended that future studies focus on the relationship between anthocyanin and specific defence compounds (rather than general phenolic pools), and evaluate possible alternative functions of red margins in leaves (e.g. antioxidants, osmotic adjustment). PMID:20145003

  13. Intraspecific Relationships among Wood Density, Leaf Structural Traits and Environment in Four Co-Occurring Species of Nothofagus in New Zealand

    PubMed Central

    Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.

    2013-01-01

    Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041

  14. Field performance of Populus expressing somaclonal variation in resistance to Septoria musiva

    Treesearch

    M. E. Ostry; K. T. Ward

    2003-01-01

    Over 1500 trees from two hybrid poplar clones regenerated from tissue culture and expressing somatic variation in leaf disease resistance in a laboratory leaf disk bioassay were field-tested for 5-11 years to examine their resistance to Septoria leaf spot and canker and to assess their growth characteristics compared with the source clones....

  15. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with the pathogen and then dip-treated in phosphate buffered saline (PBS) control, 3.0% hydrogen peroxide, a 0.1% ...

  16. Persistence and internalization of Salmonella on/in organic spinach sprout: exploring the contamination route

    USDA-ARS?s Scientific Manuscript database

    Purpose: The effects of contamination route, including seed and water, on the persistence and internalization of Salmonella in organic spinach cultivars- Lazio, Space, Emilia and Waitiki were studied. Methods: Seeds (1g) were contaminated with S. Newport using 10 ml of S. Newport-water suspension ov...

  17. CINNAMIC ACID HYDROXYLASE IN SPINACH,

    DTIC Science & Technology

    An acetone precipitate from an extract of spinach leaves catalysed the hydroxylation of trans- cinnamic acid to p-coumaric acid . The enzyme was...and addition of L-phenylalanine inhibited cinnamic acid hydroxylase activity. (Author)...Tetrahydrofolic acid and a reduced pyridine nucleotide coenzyme were necessary for maximum activity. Aminopterin was a potent inhibitor of the hydroxylating

  18. First report of Phytophthora root rot, caused by Phytophthora cryptogea, on spinach in California

    USDA-ARS?s Scientific Manuscript database

    In 2006 and 2007, commercially grown spinach (Spinacia oleracea) in California’s coastal Salinas Valley (Monterey County) was affected by an unreported root rot disease. Disease was limited to patches along the edges of fields. Affected plants were stunted with chlorotic older leaves. As disease pro...

  19. Short-term effects of composted cattle manure or cotton burr on growth, physiology and phytochemical of spinach

    USDA-ARS?s Scientific Manuscript database

    Compost is increasingly used in horticultural crop production as soil conditioner and fertilizer because of its contribution to agriculture sustainability. The short-term effects of compost on soil fertility and spinach (Spinacia oleracea L.) were evaluated in a greenhouse. Pots were filled with soi...

  20. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract against antibiotic resistant Salmonella enterica serovar Newport on organic leafy greens. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with S. Newport and dip-t...

  1. Adherence of curli producing Shiga-toxigenic Escherichia coli to baby spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Cellular appendages, such as curli fibers have been suggested to be involved in STEC persistence in fresh produce as these curli are critical in biofilm formation and adherence to animal cells. We determined the role of curli in attachment of STEC on spinach leaves. The curli expression by wild-ty...

  2. Effect of surface characteristics on retention and removal of Escherichia coli O157:H7 on surfaces of spinach

    USDA-ARS?s Scientific Manuscript database

    The topography and the spatial heterogeneity of produce surfaces may impact the attachment of microbial cells onto produce surfaces and affect disinfection efficacy. In this study, the effects of produce surface characteristics on the removal of bacteria were studied. Fresh spinach leaves were sp...

  3. Effect of Soil Amendments on Cd accumulation by Spinach from a Cd-Mineralized Soil

    USDA-ARS?s Scientific Manuscript database

    Cadmium mineralized soils occur in many nations. When these soils are non-calcareous, crops and especially leafy vegetables such as lettuce and spinach accumulate levels of Cd which exceed international standards. Lockwood loam from Monterey Co., CA, has been found to cause excessive Cd in leafy veg...

  4. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    PubMed

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Chao; Hong Fashui; Wu Kang

    Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd{sup 3+} treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200 kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gelmore » electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd{sup 3+}-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd{sup 3+}-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89 A, respectively.« less

  6. 24-epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach.

    PubMed

    Rothová, Olga; Holá, Dana; Kočová, Marie; Tůmová, Lenka; Hnilička, František; Hniličková, Helena; Kamlar, Marek; Macek, Tomáš

    2014-07-01

    The aim of the work was to examine the effect of brassinosteroid (24-epibrassinolide; 24E) and ecdysteroid (20-hydroxyecdysone; 20E) on various parts of primary photosynthetic processes in maize and spinach. Additionally, the effect of steroids on gaseous exchange, pigment content and biomass accumulation was studied. The efficiency of the photosynthetic whole electron-transport chain responded negatively to the 24E or 20E treatment in both species, but there were interspecific differences regarding Photosystem (PS) II response. A positive effect on its oxygen-evolving complex and a slightly better energetical connectivity between PSII units were observed in maize whereas the opposite was true for spinach. The size of the pool of the PSI end electron acceptors was usually diminished due to 24E or 20E treatment. The treatment of plants with 24E or 20E applied individually positively influenced the content of photosynthetic pigments in maize (not in spinach). On the other hand, it did not affect gaseous exchange in maize but resulted in its reduction in spinach. Plants treated with combination of both steroids mostly did not significantly differ from the control plants. We have demonstrated for the first time that 20E applied in low (10nM) concentration can affect various parts of photosynthetic processes similarly to 24E and that brassinosteroids regulate not only PSII but also other parts of the photosynthetic electron transport chain - but not necessarily in the same way. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effects of extraction and high-performance liquid chromatographic conditions on the determination of lutein in spinach.

    PubMed

    Simonovska, Breda; Vovk, Irena; Glavnik, Vesna; Cernelič, Katarina

    2013-02-08

    A major factor in the direct determination of lutein in spinach extracts proved to be obtaining reproducible and stable chromatography of lutein. This was achieved on a C30 column with the mobile phase acetone-0.1M triethylammonium acetate (TEAA) buffer (pH 7) 9:1 (v/v). Extraction of 10mg of lyophilized spinach with 10 mL of extraction solvent (ethanol, acetone, ethanol-ethyl acetate 1:1 (v/v), methanol-THF 1:1 (v/v)) for 15 min with magnetic stirring under nitrogen resulted in equal yields of lutein. The yields were enhanced by addition of 15% of 1M TEAA buffer pH 7 to all four extraction solvents. As confirmed by recovery experiments, no loss of lutein occurred during the extraction. The relative standard deviation from triplicate extractions was less than 5%. The addition of 15% TEAA pH 7 to acetone enhanced the extraction yield of lutein also from unlyophilized spinach. The content of lutein in different spinach samples ranged from 5 to 15 mg/100g of fresh weight. The first separation is reported of all the carotenoids and chlorophylls on a C18 core-shell column and the addition of 15% of 1M TEAA buffer pH 7 to acetone also enhanced the extraction yield of β-carotene compared to the yield produced by pure acetone. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook

    2015-07-01

    We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.

  9. Effect of Urtica dioica Leaf Alcoholic and Aqueous Extracts on the Number and the Diameter of the Islets in Diabetic Rats.

    PubMed

    Qujeq, Durdi; Tatar, Mohsen; Feizi, Farideh; Parsian, Hadi; Sohan Faraji, Alieh; Halalkhor, Sohrab

    2013-01-01

    Urtica dioica has been known as a plant that decreases blood glucose. Despite the importance of this plant in herbal medicine, relatively little research has been down on effects of this plant on islets yet. The objective of the current study was to evaluate the effect of dried Urtica dioica leaf alcoholic and aqueous extracts on the number and the diameter of the islets and histological parameters in streptozocin-induced diabetic rats. Six rats were used in each group. Group I: Normal rats were administered saline daily for 8 weeks. Group II: Diabetic rats were administered streptozotocin, 50 mg/kg of body weight; Group III: Diabetic rats were administered dried Urtica dioica leaf aqueous extracts for 8 weeks; Group IV: Diabetic rats were administered dried Urtica dioica leaf alcoholic extracts for 8 weeks. The animals, groups of diabetic and normal, were sacrificed by ether anaesthesia. Whole pancreas was dissected. The tissue samples were formalin fixed and paraffin embedded for microscopic examination. Histologic examination and grading were carried out on hematoxylin-eosin stained sections. The effects of administration of dried Urtica dioica leaf alcoholic and aqueous extracts to diabetic rats were determined by histopathologic examination. The pancreas from control rats showed normal pancreatic islets histoarchitecture. Our results also, indicate that the pancreas from diabetic rats show injury of pancreas tissue while the pancreas from diabetic rats treated with dried Urtica dioica leaf alcoholic and aqueous extracts show slight to moderate rearrangement of islets. According to our findings, dried Urtica dioica leaf alcoholic and aqueous extracts can cause a suitable repair of pancreatic tissue in streptozocin-induced diabetic experimental model.

  10. Effect of Urtica dioica Leaf Alcoholic and Aqueous Extracts on the Number and the Diameter of the Islets in Diabetic Rats

    PubMed Central

    Qujeq, Durdi; Tatar, Mohsen; Feizi, Farideh; Parsian, Hadi; Sohan Faraji, Alieh; Halalkhor, Sohrab

    2013-01-01

    Urtica dioica has been known as a plant that decreases blood glucose. Despite the importance of this plant in herbal medicine, relatively little research has been down on effects of this plant on islets yet. The objective of the current study was to evaluate the effect of dried Urtica dioica leaf alcoholic and aqueous extracts on the number and the diameter of the islets and histological parameters in streptozocin-induced diabetic rats. Six rats were used in each group. Group I: Normal rats were administered saline daily for 8 weeks. Group II: Diabetic rats were administered streptozotocin, 50 mg/kg of body weight; Group III: Diabetic rats were administered dried Urtica dioica leaf aqueous extracts for 8 weeks; Group IV: Diabetic rats were administered dried Urtica dioica leaf alcoholic extracts for 8 weeks. The animals, groups of diabetic and normal, were sacrificed by ether anaesthesia. Whole pancreas was dissected. The tissue samples were formalin fixed and paraffin embedded for microscopic examination. Histologic examination and grading were carried out on hematoxylin-eosin stained sections. The effects of administration of dried Urtica dioica leaf alcoholic and aqueous extracts to diabetic rats were determined by histopathologic examination. The pancreas from control rats showed normal pancreatic islets histoarchitecture. Our results also, indicate that the pancreas from diabetic rats show injury of pancreas tissue while the pancreas from diabetic rats treated with dried Urtica dioica leaf alcoholic and aqueous extracts show slight to moderate rearrangement of islets. According to our findings, dried Urtica dioica leaf alcoholic and aqueous extracts can cause a suitable repair of pancreatic tissue in streptozocin-induced diabetic experimental model. PMID:24551786

  11. The Distribution of Catalase Activity, Isozyme Protein, and Transcript in the Tissues of the Developing Maize Seedling 1

    PubMed Central

    Redinbaugh, Margaret G.; Sabre, Mara; Scandalios, John G.

    1990-01-01

    The catalase activity, CAT-2 and CAT-3 isozyme protein levels, and the steady-state mRNA levels for each of the three catalase genes were determined in the scutellum, root, epicotyl, and leaf of the developing maize (Zea mays L.) seedling. Catalase activity was highest in the scutellum, with 10-fold lower enzyme activity in the leaf and epicotyl. Very low levels of catalase activity were found in the root. The highest levels of CAT-2 protein were found in the scutellum, with about 10-fold lower levels in the green leaf. CAT-2 protein was present in trace amounts early in root development and no CAT-2 protein was detected in the epicotyl. Shortly after germination, CAT-3 protein was present at high levels in both the epicotyl and green leaf. With development, the amount of CAT-3 protein decreased slowly in the epicotyl and rapidly in the green leaf. Low levels of this isozyme were detected in the scutellum and root. The Cat1 transcript accumulated to low levels in all four tissues during the 14 day developmental period. High levels of the Cat2 transcript were found in the scutellum, with moderate levels of the mRNA in the green leaf. The Cat2 transcript levels were very low in the root and epicotyl. While the Cat3 mRNA level in the scutellum was low, high levels of the Cat3 transcript were detected in the root, epicotyl, and leaf. There was a positive correlation between the accumulation of a catalase isozyme and its transcript, indicating that the tissue specificity of maize catalase gene expression was regulated pretranslationally. Images Figure 3 Figure 4 PMID:16667285

  12. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    PubMed

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. Copyright © 2015. Published by Elsevier B.V.

  13. β-Carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children.

    PubMed

    Tang, Guangwen; Hu, Yuming; Yin, Shi-an; Wang, Yin; Dallal, Gerard E; Grusak, Michael A; Russell, Robert M

    2012-09-01

    Golden Rice (GR) has been genetically engineered to be rich in β-carotene for use as a source of vitamin A. The objective was to compare the vitamin A value of β-carotene in GR and in spinach with that of pure β-carotene in oil when consumed by children. Children (n = 68; age 6-8 y) were randomly assigned to consume GR or spinach (both grown in a nutrient solution containing 23 atom% ²H₂O) or [²H₈]β-carotene in an oil capsule. The GR and spinach β-carotene were enriched with deuterium (²H) with the highest abundance molecular mass (M) at M(β-C)+²H₁₀. [¹³C₁₀]Retinyl acetate in an oil capsule was administered as a reference dose. Serum samples collected from subjects were analyzed by using gas chromatography electron-capture negative chemical ionization mass spectrometry for the enrichments of labeled retinol: M(retinol)+4 (from [²H₈]β-carotene in oil), M(retinol)+5 (from GR or spinach [²H₁₀]β-carotene), and M(retinol)+10 (from [¹³C₁₀]retinyl acetate). Using the response to the dose of [¹³C₁₀]retinyl acetate (0.5 mg) as a reference, our results (with the use of AUC of molar enrichment at days 1, 3, 7, 14, and 21 after the labeled doses) showed that the conversions of pure β-carotene (0.5 mg), GR β-carotene (0.6 mg), and spinach β-carotene (1.4 mg) to retinol were 2.0, 2.3, and 7.5 to 1 by weight, respectively. The β-carotene in GR is as effective as pure β-carotene in oil and better than that in spinach at providing vitamin A to children. A bowl of ~100 to 150 g cooked GR (50 g dry weight) can provide ~60% of the Chinese Recommended Nutrient Intake of vitamin A for 6-8-y-old children.

  14. Topical Olive Leaf Extract Improves Healing of Oral Mucositis in Golden Hamsters.

    PubMed

    Showraki, Najmeh; Mardani, Maryam; Emamghoreishi, Masoumeh; Andishe-Tadbir, Azadeh; Aram, Alireza; Mehriar, Peiman; Omidi, Mahmoud; Sepehrimanesh, Masood; Koohi-Hosseinabadi, Omid; Tanideh, Nader

    2016-12-01

    Oral mucositis (OM) is a common side effect of anti-cancer drugs and needs significant attention for its prevention. This study aimed to evaluate the healing effects of olive leaf extract on 5-fluorouracil-induced OM in golden hamster. OM was induced in 63 male golden hamsters by the combination of 5-fluorouracil injections (days 0, 5 and 10) and the abrasion of the cheek pouch (days 3 and 4). On day 12, hamsters were received topical olive leaf extract ointment, base of ointment, or no treatment (control) for 5 days. Histopathology evaluations, blood examinations, and tissue malondialdehyde level measurement were performed 1, 3 and 5 days after treatments. Histopathology score and tissue malondialdehyde level were significantly lower in olive leaf extract treated group in comparison with control and base groups ( p = 0.000). Significant decreases in white blood cell, hemoglobin, hematocrit , and mean corpuscular volume and an increase in mean corpuscular hemoglobin concentration were observed in olive leaf extract treated group in comparison with control and base groups ( p < 0.05). Our findings demonstrated that daily application of olive leaf extract ointment had healing effect on 5-fluorouracil induced OM in hamsters. Moreover, the beneficial effect of olive leaf extract on OM might be due to its antioxidant and anti-inflammatory properties.

  15. Decontamination of green onions and baby spinach by vaporized ethyl pyruvate.

    PubMed

    Durak, M Zeki; Churey, John J; Gates, Matthew; Sacks, Gavin L; Worobo, Randy W

    2012-06-01

    Foodborne illnesses associated with fresh produce continue to be a major concern as consumer demand for healthier and nonthermally processed food increases. The objective of this study was to evaluate vaporized ethyl pyruvate (EP; CAS 617-35-6) as a safe alternative antimicrobial agent for the decontamination of Escherichia coli O157:H7 on green onions and spinach. Baby spinach leaves and green onions were inoculated with a five-strain cocktail of E. coli O157:H7 (pGFP) by the dipping method. Samples were treated with concentrations of 0, 42, 105, and 420 mg/liter vaporized EP in a 2.6-liter enclosed container. The efficacy of EP vapors for reducing E. coli O157:H7((GFP)) populations on green onions and baby spinach at 4 and 10°C was monitored for 7 and 5 days, respectively. The lowest EP concentration (42 mg/liter) resulted in a 1.7-log reduction of E. coli O157:H7((GFP)) on green onions after 7 days at 4°C and a 1.9-log reduction after 5 days at 10°C (P < 0.05). In baby spinach, the same concentration resulted in 0.9-log and 1.4-log reductions (P < 0.05) of E. coli O157:H7((GFP)) after 7 days at 4°C and 5 days at 10°C, respectively. On green onions, the highest concentration of EP (420 mg/liter) reduced the population of E. coli O157:H7((GFP)) by >4.7 log CFU/g after 7 days at 4°C and 5 days at 10°C. The same concentration was also effective for reducing E. coli O157:H7((GFP)) populations in baby spinach by 4.3 log CFU/g after 7 days at 4°C and by >6.5 log CFU/g after 3 days at 10°C. Although the successful EP treatments minimally affected the sensory attributes of green onions, the treatments resulted in significant changes in the sensory attributes of baby spinach samples stored at 4 and 10°C. These results indicate that EP is an effective antimicrobial that could be used to enhance the safety of fresh produce depending on the sensory characteristics of the product.

  16. Effects of transgenic Bt rice on growth, reproduction, and superoxide dismutase activity of Folsomia candida (Collembola: Isotomidae) in laboratory studies.

    PubMed

    Bai, Yaoyu; Yan, Ruihong; Ke, Xin; Ye, Gongyin; Huang, Fangneng; Luo, Yongming; Cheng, Jiaan

    2011-12-01

    Transgenic rice expressing Bacillus thuringiensis (Bt) CrylAb protein is expected to be commercialized in China in the near future. The use of Bt rice for controlling insect pests sparks intensive debates regarding its biosafety. Folsomia candida is an euedaphic species and is often used as a "standard" test organism in assessing effects of environmental pollutants on soil organisms. In this study, growth, development, reproduction, and superoxide dismutase activity (SOD) of F. candida were investigated in the laboratory for populations reared on leaf tissue or leaf-soil mixtures of two CrylAb rice lines and a non-Bt rice isoline. Two independent tests were performed: 1) a 35-d test using petri dishes containing yeast diet (positive control) or fresh rice leaf tissue, and 2) a 28-d test in soil-litter microcosms containing yeast or a mixture of soil and rice leaf tissue. Biological parameters measured in both tests were number of progeny production, population growth rate, and SOD activity. For the petri dish test, data measured also included insect body length and number of exuviation. There were no significant differences between the populations reared on Bt and non-Bt rice leaf tissue in all measured parameters in both tests and for both Bt rice lines, suggesting no significant effects of the CrylAb protein in Bt rice on F. candida in the laboratory studies. Results of this study should add additional biosafety proofs for use of Bt rice to manage rice pests in China.

  17. Staining paraffin embedded sections of scald of barley before paraffin removal.

    PubMed

    Xi, K; Burnett, P A

    1997-07-01

    Staining of paraffin embedded sections with periodic acid-Schiff reagent and fast green before paraffin removal resulted in differentiation of barley seed and leaf tissue from fungal structures of Rhynchosporium secalis. Crystal violet, toluidine blue O and antiline blue also successfully stained fungal structures of R. secalis in barley leaf tissues. Staining of embedded sections before paraffin removal allows simple processing of a series of sections, saves time and reduces solvent consumption.

  18. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs

    Treesearch

    Jill L. Bubier; Rose Smith; Sari Juutinen; Tim R. Moore; Rakesh Minocha; Stephanie Long; Subash Minocha

    2011-01-01

    Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We...

  19. Protoplast isolation and genetically true-to-type plant regeneration from leaf- and callus-derived protoplasts of Albizia julibrissin

    Treesearch

    Mohammad-Shafie Rahmani; Paula M. Pijut; Naghi Shabanian

    2016-01-01

    Protoplast isolation and subsequent plant regeneration of Albizia julibrissin was achieved from leaf and callus explants. Leaf tissue from 4 to 5-week-old in vitro seedlings was the best source for high-yield protoplast isolation. This approach produced 7.77 × 105 protoplasts (Pp) per gram fresh weight with 94 % viability;...

  20. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress

    PubMed Central

    Bhatt, Laxit; Joshi, Viraj

    2017-01-01

    Aim: The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). Materials and Methods: Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. Results: The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. Conclusion: These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX. PMID:28894627

  1. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach

    USDA-ARS?s Scientific Manuscript database

    The contamination of lettuce, spinach and basil with pathogenic E. coli has caused numerous illnesses over the past decade. E. coli O157:H7, E. coli O104:H4 and avian pathogenic E. coli (APECstx- and APECstx+) were inoculated on basil plants and in promix soiless substrate using drip and overhead ir...

  2. Development and evaluation of a TaqMan Real-Time PCR assay for Fusarium oxysporum f. sp. spinaciae

    USDA-ARS?s Scientific Manuscript database

    Fusarium oxysporum f. sp. spinaciae, causal agent of spinach Fusarium wilt, is an important soilborne pathogen in many areas of the world where spinach is grown. The pathogen is persistent in acid soils of maritime western Oregon and Washington, the only region of the USA suitable for commercial spi...

  3. Effect of a bacteriophage cocktail in combination with modified atmosphere packaging in controlling Listeria monocytogenes on fresh-cut spinach

    USDA-ARS?s Scientific Manuscript database

    A Listeria monocytogenes-specific bacteriophage cocktail (ListShield™) was evaluated for its activity against a nalidixic acid-resistant L. monocytogenes (Lm-NalR) isolate on fresh-cut spinach stored under modified atmosphere packaging (MAP) at various temperatures. Pieces (~2x2 cm2) of fresh spinac...

  4. Internalization of E. coli O157:H7 in spinach cultivated in soil and hydroponic media

    USDA-ARS?s Scientific Manuscript database

    Introduction: Internalization of E. coli O157:H7 into spinach plants through root uptake is a potential route of contamination. Previous studies that have investigated uptake of E. coli O157:H7 into leafy greens have expressed green fluorescent protein (gfp) from a plasmid, possibly limiting detecti...

  5. Real-time PCR and spore trap-based detection of the downy mildew pathogen, Peronospora effusa

    USDA-ARS?s Scientific Manuscript database

    Peronospora effusa is an obligate pathogen and the causal agent of downy mildew on spinach. The pathogen can be dispersed by splashing rain and wind, and may overwinter as oospores. Outbreaks of downy mildew on spinach are common in the cool climate of central coastal California, including the Sal...

  6. The effect of total organic carbon content and repeated irrigation on the persistence of E. coli O157:H7 on baby spinach

    USDA-ARS?s Scientific Manuscript database

    Introduction: Contaminated fresh-cut spinach and other leafy greens have caused foodborne illness in the United States. In response, growers are adopting recommendations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population of 126 Most Probable Nu...

  7. Frequency of Verticillium species in commercial spinach fields and transmission of V. dahliae from spinach to subsequent lettuce crops

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt, caused by Verticillium dahlia,e is a devastating disease of lettuce in California. The disease on lettuce is currently restricted to a small geographic area in the central coastal California, even though cropping patterns in other coastal lettuce production regions in the state ar...

  8. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    USDA-ARS?s Scientific Manuscript database

    Spinach (Spinacia oleracea L., 2n=2x=12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and mineral compounds. The objective of this research is to conduct genetic diversity and population structure analysis of w...

  9. Inactivation of Escherichia coli O157:H7 in vitro and on the surface of spinach leaves by biobased surfactants

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the effect of biosurfactants on the populations of Escherichia coli O157:H7 in suspension and on spinach leaves. Eight surfactants including four soybean oil-based biosurfactants, sodium dodecyl sulfate (SDS), polyoxyethylene sorbitan monooleate (Tween 80), sopho...

  10. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    PubMed

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  11. Prevention of pink-pigmented methylotrophic bacteria (Methylohacterium mesophilicum) contamination of plant tissue cultures.

    PubMed

    Chanprame, S; Todd, J J; Widholm, J M

    1996-12-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) have been found on the surfaces of leaves of most plants tested. We found PPFMs on the leaf surfaces of all 40 plants (38 species) tested and on soybean pods by pressing onto AMS medium with methanol as the sole carbon source. The abundance ranged from 0.5 colony forming unit (cfu) /cm(2) to 69.4 cfu/cm(2) on the leaf surfaces. PPFMs were found in homogenized leaf tissues of only 4 of the species after surface disinfestation with 1.05% sodium hypochlorite and were rarely found in cultures initiated from surface disinfested Datura innoxia leaves or inside surface disinfested soybean pods. Of 20 antibiotics tested for PPFM growth inhibition, rifampicin was the most effective and of seven others which also inhibited PPFM growth, cefotaxime should be the most useful due to the expected low plant cell toxicity. These antibiotics could be used in concert with common surface sterilization procedures to prevent the introduction or to eliminate PPFM bacteria in tissue cultures. Thus, while PPFMs are present on the surfaces of most plant tissues, surface disinfestation alone can effectively remove them so that uncontaminated tissue cultures can be initiated in most cases.

  12. Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice1[C][W][OA

    PubMed Central

    Itoh, Jun-Ichi; Hibara, Ken-Ichiro; Sato, Yutaka; Nagato, Yasuo

    2008-01-01

    Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner. PMID:18567825

  13. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    PubMed

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.

  14. Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves.

    PubMed

    Kawade, Kensuke; Tanimoto, Hirokazu; Horiguchi, Gorou; Tsukaya, Hirokazu

    2017-09-05

    The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling gradient in leaf development. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Possible Roles of Strigolactones during Leaf Senescence

    PubMed Central

    Yamada, Yusuke; Umehara, Mikihisa

    2015-01-01

    Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence. PMID:27135345

  16. Technetium-99 cycling in maple trees: characterization of changes in chemical form.

    PubMed

    Garten, C T; Lomax, R D

    1989-08-01

    Prior field studies near an old radioactive waste disposal site at Oak Ridge, TN, indicated that following root uptake, metabolism by deciduous trees rendered 99Tc less biogeochemically mobile than expected, based on chemistry of the pertechnetate (TcO-4) anion. Subsequently, the form of technetium (Tc) in maple tree (Acer sp.) sap, leaves, wood and forest leaf litter was characterized using one or more of the following methods: dialysis, physical fractionation, chemical extraction, gel permeation chromatography, enzymatic extraction, or thin layer chromatography (TLC) on silica gel. Chromatography (Sephadex G-25) of TcO-4 incubated in vitro with tree sap showed it to behave similar to TcO-4 anion. When labeled wood and leaf tissues were processed using a tissue homogenizer, 15% and 40%, respectively, of the Tc was solubilized into phosphate buffer. Most (65% to 80%) of the solubilized Tc passing a 0.45-micron filter also passed through an ultrafiltration membrane with a nominal molecular weight cutoff of 10,000 atomic mass units (amu). A majority (72% to 80%) of the Tc in wood could be chemically removed by successive extractions with ethanol, water and weak mineral acid. These same extractants removed only 23% to 31% of the Tc from maple leaves or forest floor leaf litter. Most of the Tc in leaves and leaf litter was removed only by strongly alkaline reagents typically used to release structural polysaccharides (hemicelluloses) from plant tissues. Chromatography (Sephadex G-25) of the ethanol-water extract from wood and the alkaline extract from leaves demonstrated that Tc in these extracts was not principally TcO-4 but was complexed with molecules greater than 1000 amu. Incubations of leaf and wood homogenates with protease approximately doubled the amount of Tc released from contaminated tissues. Ultrafiltration of protease-solubilized Tc from leaves and wood showed that 40% and 93%, respectively, of the Tc was less than 10,000 amu. TLC of the less than 10,000 amu fraction indicated the presence of TcO-4 in wood but not in leaves. In the leaf, TcO-4 is converted to less soluble forms apparently associated with structural components of leaf cell walls. This conversion explains why 99Tc is not easily leached by rainfall from tree foliage and why 99Tc appears to accumulate in forest floor leaf litter layers at the Oak Ridge study site.

  17. A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves.

    PubMed

    Wu, Hui-Wen; Deng, Shulin; Xu, Haiying; Mao, Hui-Zhu; Liu, Jun; Niu, Qi-Wen; Wang, Huan; Chua, Nam-Hai

    2018-06-04

    Dispersed H3K27 trimethylation (H3K27me3) of the AGAMOUS (AG) genomic locus is mediated by CURLY LEAF (CLF), a component of the Polycomb Repressive Complex (PRC) 2. Previous reports have shown that the AG second intron, which confers AG tissue-specific expression, harbors sequences targeted by several positive and negative regulators. Using RACE reverse transcription polymerase chain reaction, we found that the AG intron 2 encodes several noncoding RNAs. RNAi experiment showed that incRNA4 is needed for CLF repressive activity. AG-incRNA4RNAi lines showed increased leaf AG mRNA levels associated with a decrease of H3K27me3 levels; these plants displayed AG overexpression phenotypes. Genetic and biochemical analyses demonstrated that the AG-incRNA4 can associate with CLF to repress AG expression in leaf tissues through H3K27me3-mediated repression and to autoregulate its own expression level. The mechanism of AG-incRNA4-mediated repression may be relevant to investigations on tissue-specific expression of Arabidopsis MADS-box genes. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  18. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    PubMed

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth environments and consequently in food supplies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data

    USGS Publications Warehouse

    Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew

    2017-01-01

    Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and consequently in food supplies.

  20. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings

    PubMed Central

    Lamhamdi, Mostafa; El Galiou, Ouiam; Bakrim, Ahmed; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Aarab, Ahmed; Lafont, René

    2012-01-01

    Lead (Pb) is the most common heavy metal contaminant in the environment. Pb is not an essential element for plants, but they absorb it when it is present in their environment, especially in rural areas when the soil is polluted by automotive exhaust and in fields contaminated with fertilizers containing heavy metal impurities. To investigate lead effects on nutrient uptake and metabolism, two plant species, spinach (Spinacia oleracea) and wheat (Triticum aestivum), were grown under hydroponic conditions and stressed with lead nitrate, Pb(NO3)2, at three concentrations (1.5, 3, and 15 mM). Lead is accumulated in a dose-dependent manner in both plant species, which results in reduced growth and lower uptake of all mineral ions tested. Total amounts and concentrations of most mineral ions (Na, K, Ca, P, Mg, Fe, Cu and Zn) are reduced, although Mn concentrations are increased, as its uptake is reduced less relative to the whole plant’s growth. The deficiency of mineral nutrients correlates in a strong decrease in the contents of chlorophylls a and b and proline in both species, but these effects are less pronounced in spinach than in wheat. By contrast, the effects of lead on soluble proteins differ between species; they are reduced in wheat at all lead concentrations, whereas they are increased in spinach, where their value peaks at 3 mM Pb. The relative lead uptake by spinach and wheat, and the different susceptibility of these two species to lead treatment are discussed. PMID:23961216

  1. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests.

    PubMed

    Li, Le; McCormack, M Luke; Ma, Chengen; Kong, Deliang; Zhang, Qian; Chen, Xiaoyong; Zeng, Hui; Niinemets, Ülo; Guo, Dali

    2015-09-01

    Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence. © 2015 John Wiley & Sons Ltd/CNRS.

  2. The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1

    PubMed Central

    Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George

    2002-01-01

    Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354

  3. Herbivores alter plant-wind interactions by acting as a point mass on leaves and by removing leaf tissue.

    PubMed

    Kothari, Adit R; Burnett, Nicholas P

    2017-09-01

    In nature, plants regularly interact with herbivores and with wind. Herbivores can wound and alter the structure of plants, whereas wind can exert aerodynamic forces that cause the plants to flutter or sway. While herbivory has many negative consequences for plants, fluttering in wind can be beneficial for plants by facilitating gas exchange and loss of excess heat. Little is known about how herbivores affect plant motion in wind. We tested how the mass of an herbivore resting on a broad leaf of the tulip tree Liriodendron tulipifera , and the damage caused by herbivores, affected the motion of the leaf in wind. For this, we placed mimics of herbivores on the leaves, varying each herbivore's mass or position, and used high-speed video to measure how the herbivore mimics affected leaf movement and reconfiguration at two wind speeds inside a laboratory wind tunnel. In a similar setup, we tested how naturally occurring herbivore damage on the leaves affected leaf movement and reconfiguration. We found that the mass of an herbivore resting on a leaf can change that leaf's orientation relative to the wind and interfere with the ability of the leaf to reconfigure into a smaller, more streamlined shape. A large herbivore load slowed the leaf's fluttering frequency, while naturally occurring damage from herbivores increased the leaf's fluttering frequency. We conclude that herbivores can alter the physical interactions between wind and plants by two methods: (1) acting as a point mass on the plant while it is feeding and (2) removing tissue from the plant. Altering a plant's interaction with wind can have physical and physiological consequences for the plant. Thus, future studies of plants in nature should consider the effect of herbivory on plant-wind interactions, and vice versa.

  4. Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.

    PubMed

    Stutz, Samantha S; Anderson, Jeremiah; Zulick, Rachael; Hanson, David T

    2017-05-17

    High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement.

    PubMed

    Houter, Nico C; Pons, Thijs L

    2012-05-01

    Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species' gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed.

  6. 77 FR 29588 - Notice of Decision To Issue Permits for the Importation of Fresh Celery, Arugula, and Spinach...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ..., arugula, and spinach from Colombia. Based on the findings of three pest risk analyses, which we made..., based on the findings of a pest risk analysis (PRA), can be safely imported subject to one or more of... or disseminating plant pests or noxious weeds via the importation of fresh celery, arugula, and...

  7. The effect of repeated irrigation with varying total organic carbon content on the persistence of E. coli O157:H7 on baby spinach

    USDA-ARS?s Scientific Manuscript database

    In response to U.S. foodborne illnesses caused by contaminated spinach, growers have adopted regulations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population mean of 126 Most Probable Number (MPN) generic E. coli per 100 ml irrigation water. These...

  8. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi.

    PubMed

    Gómez-Vidal, S; Lopez-Llorca, L V; Jansson, H -B; Salinas, J

    2006-01-01

    Light and scanning electron microscopy together with fungal isolation techniques were used to detect entomopathogenic fungi within young and adult date palm (Phoenix dactylifera) petioles and to assess fungal survival in leaf tissues. The entomopathogenic fungi Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium c.f. psalliotae survived inside leaf tissues at least 30 days after inoculation. Entomopathogenic fungi colonized inoculated petioles endophytically and were recovered up to 3cm from the inoculation site. Fungi were detected inside the parenchyma and sparsely within vascular tissue using microscopy techniques. Our results show that the entomopathogenic fungi used in this study survived and colonized date palm tissues in bioassays both under laboratory and field experimental conditions with no evidence of significant damage.

  9. L-Theanine Content and Related Gene Expression: Novel Insights into Theanine Biosynthesis and Hydrolysis among Different Tea Plant (Camellia sinensis L.) Tissues and Cultivars

    PubMed Central

    Liu, Zhi-Wei; Wu, Zhi-Jun; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2017-01-01

    L-Theanine content has tissues and cultivars specificity in tea plant (Camellia sinensis L.), the correlations of theanine metabolic related genes expression profiles with theanine contents were explored in this study. L-theanine contents in the bud and 1st leaf, 2nd leaf, 3rd leaf, old leaf, stem, and lateral root were determined by HPLC from three C. sinensis cultivars, namely ‘Huangjinya’, ‘Anjibaicha’, and ‘Yingshuang’, respectively. The theanine contents in leaves and root of ‘Huangjinya’ were the highest, followed by ‘Anjibaicha’, and ‘Yingshuang’. The theanine contents in the leaves reduced as the leaf mature gradually, and in stem were the least. Seventeen genes encoding enzymes involved in theanine metabolism were identified from GenBank and our tea transcriptome database, including CsTS1, CsTS2, CsGS1, CsGS2, CsGOGAT-Fe, CsGOGAT-NAD(P)H, CsGDH1, CsGDH2, CsALT, CsSAMDC, CsADC, CsCuAO, CsPAO, CsNiR, CsNR, CsGGT1, and CsGGT3. The transcript profiles of those seventeen genes in the different tissues of three tea plant cultivars were analyzed comparatively. Among the different cultivars, the transcript levels of most selected genes in ‘Huangjinya’ were significantly higher than that in the ‘Anjibaicha’ and ‘Yingshuang’. Among the different tissues, the transcript levels of CsTS2, CsGS1, and CsGDH2 almost showed positive correlation with the theanine contents, while the other genes showed negative correlation with the theanine contents in most cases. The theanine contents showed correlations with related genes expression levels among cultivars and tissues of tea plant, and were determined by the integrated effect of the metabolic related genes. PMID:28439281

  10. Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissue Revealed by RNA-Seq1[W][OA

    PubMed Central

    Kakumanu, Akshay; Ambavaram, Madana M.R.; Klumas, Curtis; Krishnan, Arjun; Batlang, Utlwang; Myers, Elijah; Grene, Ruth; Pereira, Andy

    2012-01-01

    Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an “unstressed” level, and at lower ABA levels, which was correlated with successful resistance to drought stress. PMID:22837360

  11. Becoming less tolerant with age: sugar maple, shade, and ontogeny.

    PubMed

    Sendall, Kerrie M; Lusk, Christopher H; Reich, Peter B

    2015-12-01

    Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance.

  12. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice.

    PubMed

    Ning, Jing; Zhang, Baocai; Wang, Nili; Zhou, Yihua; Xiong, Lizhong

    2011-12-01

    Mitogen-activated protein kinase kinase kinases (MAPKKKs), which function at the top level of mitogen-activated protein kinase cascades, are clustered into three groups. However, no Group C Raf-like MAPKKKs have yet been functionally identified. We report here the characterization of a rice (Oryza sativa) mutant, increased leaf angle1 (ila1), resulting from a T-DNA insertion in a Group C MAPKKK gene. The increased leaf angle in ila1 is caused by abnormal vascular bundle formation and cell wall composition in the leaf lamina joint, as distinct from the mechanism observed in brassinosteroid-related mutants. Phosphorylation assays revealed that ILA1 is a functional kinase with Ser/Thr kinase activity. ILA1 is predominantly resident in the nucleus and expressed in the vascular bundles of leaf lamina joints. Yeast two-hybrid screening identified six closely related ILA1 interacting proteins (IIPs) of unknown function. Using representative IIPs, the interaction of ILA1 and IIPs was confirmed in vivo. IIPs were localized in the nucleus and showed transactivation activity. Furthermore, ILA1 could phosphorylate IIP4, indicating that IIPs may be the downstream substrates of ILA1. Microarray analyses of leaf lamina joints provided additional evidence for alterations in mechanical strength in ila1. ILA1 is thus a key factor regulating mechanical tissue formation at the leaf lamina joint.

  13. Live-cell imaging of mammalian RNAs with Spinach2.

    PubMed

    Strack, Rita L; Jaffrey, Samie R

    2015-01-01

    The ability to monitor RNAs of interest in living cells is crucial to understanding the function, dynamics, and regulation of this important class of molecules. In recent years, numerous strategies have been developed with the goal of imaging individual RNAs of interest in living cells, each with their own advantages and limitations. This chapter provides an overview of current methods of live-cell RNA imaging, including a detailed discussion of genetically encoded strategies for labeling RNAs in mammalian cells. This chapter then focuses on the development and use of "RNA mimics of GFP" or Spinach technology for tagging mammalian RNAs and includes a detailed protocol for imaging 5S and CGG60 RNA with the recently described Spinach2 tag. © 2015 Elsevier Inc. All rights reserved.

  14. Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach

    NASA Astrophysics Data System (ADS)

    Xingmin, SHI; Jinren, LIU; Guimin, XU; Yueming, WU; Lingge, GAO; Xiaoyan, LI; Yang, YANG; Guanjun, ZHANG

    2018-04-01

    Dielectric barrier corona discharge was developed to generate low-temperature plasma (LTP) to treat apple and spinach samples contaminated with omethoate. Experimental results showed that, after 20 min exposure, the degradation rate of omethoate residue in apple and spinach was (94.55 ± 0.01)% and (95.55 ± 0.01)%, respectively. When the treatment time was shorter than 20 min, the contents of moisture, vitamin C and beta-carotene were not affected by LTP. Exploration of related mechanisms suggested that LTP might destroy unsaturated double bonds of omethoate and produce phosphate ion, eventually leading to omethoate destruction. It is concluded that appropriate dosage of LTP can effectively degrade omethoate residue in fruits and vegetables without affecting their quality.

  15. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content inmore » the spinach plants was increased when the magnetic nano particles was injected in the growing media.« less

  16. Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue containing single and pyramided Bt genes

    USDA-ARS?s Scientific Manuscript database

    Larval survival of Cry1F-susceptible (FL), -resistant (PR and Cry1F-RR), and -heterozygous (FL x PR and Cry1F-RS) populations of the fall armyworm, Spodoptera frugiperda (J.E. Smith) to purified Cry1F protein and corn leaf tissue of seven Bacillus thuringiensis (Bt) corn hybrids and five non-Bt corn...

  17. Assessing the growth of Escherichia coli O157:H7 and Salmonella in spinach, lettuce, parsley and chard extracts at different storage temperatures.

    PubMed

    Posada-Izquierdo, G; Del Rosal, S; Valero, A; Zurera, G; Sant'Ana, A S; Alvarenga, V O; Pérez-Rodríguez, F

    2016-06-01

    The objective of this work was to study the growth potential of Escherichia coli O157:H7 and Salmonella spp. in leafy vegetable extracts at different temperature conditions. Cocktails of five strains of E. coli O157:H7 and of Salmonella enterica were used. Inoculated aqueous vegetable extracts were incubated at 8, 10, 16 and 20°C during 21 days. Microbial growth was monitored using Bioscreen C(®) . In spinach extract, results showed that for E. coli O157:H7 and Salmonella significant differences (P < 0·05) for μabs (maximum absorbance rate) were obtained. For both pathogens, growth in chard was slightly lower. In contrast, iceberg lettuce and parsley showed the lowest values of μabs , below 0·008 h(-1) . The coefficients of variance (CoV) calculated for the different replicates evidenced that at low temperature (8°C) a more variable behaviour of both pathogens is expected (CoV > 180%). This study provides evidence that aqueous extracts from vegetable tissues can result in distinct growth niche producing different response in various types of vegetables. Finally, these results can be used as basis to establish risk rankings of pathogens and leafy vegetable matrices with relation to their potential growth. © 2016 The Society for Applied Microbiology.

  18. Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A.

    Treesearch

    Aicam Laacouri; Edward A. Nater; Randall K. Kolka

    2013-01-01

    A sequential extraction technique for compartmentalizing mercury (Hg) in leaves was developed based on a water extraction of Hg from the leaf surface followed by a solvent extraction of the cuticle. The bulk of leaf Hg was found in the tissue compartment (90-96%) with lesser amounts in the surface and cuticle compartments. Total leaf concentrations of Hg varied among...

  19. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy.

    PubMed

    Wang, Q C; Valkonen, J P T

    2008-12-01

    Sweet potato chlorotic stunt virus (SPCSV; Closteroviridae) and Sweet potato feathery mottle virus (SPFMV; Potyviridae) interact synergistically and cause severe diseases in co-infected sweetpotato plants (Ipomoea batatas). Sweetpotato is propagated vegetatively and virus-free planting materials are pivotal for sustainable production. Using cryotherapy, SPCSV and SPCSV were eliminated from all treated single-virus-infected and co-infected shoot tips irrespective of size (0.5-1.5mm including 2-4 leaf primordia). While shoot tip culture also eliminated SPCSV, elimination of SPFMV failed in 90-93% of the largest shoot tips (1.5mm) using this technique. Virus distribution to different leaf primordia and tissues within leaf primordia in the shoot apex and petioles was not altered by co-infection of the viruses in the fully virus-susceptible sweetpotato genotype used. SPFMV was immunolocalized to all types of tissues and up to the fourth-youngest leaf primordium. In contrast, SPCSV was detected only in the phloem and up to the fifth leaf primordium. Because only cells in the apical dome of the meristem and the two first leaf primordia survived cryotherapy, all data taken together could explain the results of virus elimination. The simple and efficient cryotherapy protocol developed for virus elimination can also be used for preparation of sweetpotato materials for long-term preservation.

  20. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India).

    PubMed

    Rana, Vivek; Maiti, Subodh Kumar

    2018-04-01

    Opencast bituminous coal mining invariably generates huge amount of metal-polluted waste rocks (stored as overburden (OB) dumps) and reclaimed by planting fast growing hardy tree species which accumulate metals in their tissues. In the present study, reclaimed OB dumps located in Jharia coal field (Jharkhand, India) were selected to assess the accumulation of selected metals (Pb, Zn, Mn, Cu and Co) in tissues (leaf, stem bark, stem wood, root bark and root wood) of two commonly planted tree species (Acacia auriculiformis A.Cunn. ex Benth. and Melia azedarach L.). In reclaimed mine soil (RMS), the concentrations of pseudo-total and available metals (DTPA-extractable) were found 182-498 and 196-1877% higher, respectively, than control soil (CS). The positive Spearman's correlation coefficients between pseudo-total concentration of Pb and Cu (r = 0.717; p < 0.05), Pb and Co (r = 0.650; p < 0.05), Zn and Mn (0.359), Cu and Co (r = 0.896; p < 0.01) suggested similar sources for Pb-Cu-Co and Mn-Zn. Among the five tree tissues considered, Pb selectively accumulated in root bark, stem bark and leaves; Zn and Mn in leaves; and Cu in root wood and stem wood. These results suggested metal accumulation to be "tissue-specific". The biological indices (BCF, TF leaf , TF stem bark and TF stem wood ) indicated variation in metal uptake potential of different tree tissues. The study indicated that A. auriculiformis could be employed for Mn phytoextraction (BCF, TF leaf , TF stem bark and TF stem wood  > 1). The applicability of both the trees in Cu phytostabilization (BCF > 1; TF leaf , TF stem bark and TF stem wood  < 1) was suggested. The study enhanced knowledge about the selection of tree species for the phytoremediation of coal mine OB dumps and specific tree tissues for monitoring metal pollution.

  1. Transcriptome and phenotypic difference of Escherichia coli O157:H7 isolates related to the 2006 spinach-associated outbreak reveals variants in the bag

    USDA-ARS?s Scientific Manuscript database

    Food-borne outbreaks of Escherichia coli O157:H7 illness linked to the consumption of ready-to-eat leafy vegetables, such as lettuce and spinach, are a mounting concern. Likely sources of pre-harvest contamination are soil and water that become contaminated via cattle and feral pigs in the proximit...

  2. Use of zero-valent iron biosand filters to reduce E. coli O157:H12 in irrigation water applied to spinach plants in a field setting

    USDA-ARS?s Scientific Manuscript database

    Introduction: Zero-valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Purpose: To evaluate the use of ZVI-filtration in decontaminating E. coli O157:H12 in irrigation water and on spinach plants in a small, field-scale...

  3. Appetite suppressing effect of Spinacia oleracea in rats: Involvement of the short term satiety signal cholecystokinin.

    PubMed

    Panda, Vandana; Shinde, Priyanka

    2017-06-01

    Spinacia oleracea (spinach) is a green leafy vegetable rich in antioxidant phyto-constituents such as flavonoids, polyphenols, carotenoids and vitamins. Fruits and vegetables rich in flavonoids are known to prevent weight gain by inducing satiety. The present study evaluates the appetite suppressing effect of a flavonoid rich extract of the spinach leaf (SOE) in rats. HPTLC of SOE was performed for detecting flavonoids. Rats were administered SOE (200 mg/kg and 400 mg/kg, p. o) and fluoxetine (6 mg/kg i. p) as a pre-meal for 14 days. Food intake and weight gain was observed daily during the treatment period. Serum levels of the short term satiety signals cholecystokinin (CCK) and glucose were measured on the 7th and 14thdays at different time points after start of meal to study the satiety inducing effect of SOE. HPTLC showed the presence of 14 flavonoids in SOE. SOE and fluoxetine treated rats showed a significant reduction in food intake and weight gain when compared with the normal control rats. On the 7th day of treatment, peak CCK levels were reached in 30 min after start of meal in fluoxetine treated rats and in 60 min in the remaining rats. On the 14th day, CCK peaking was observed in 30 min after start of meal in the fluoxetine as well as SOE 400 mg/kg treated rats. Peak glucose levels in all treatment groups were obtained in 60 min after start of feeding on both days of the study. It maybe concluded that SOE exhibited a promising appetite suppressing effect by inducing a quicker than normal release of CCK, thus eliciting an early onset of satiety in rats. This effect may be due to its high flavonoid content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures

    NASA Technical Reports Server (NTRS)

    Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.

    1995-01-01

    We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.

  5. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development.

    PubMed

    Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S

    2011-02-01

    Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.

  6. Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation.

    PubMed

    Dong, Niu; Montanez, Belen; Creelman, Robert A; Cornish, Katrina

    2006-02-01

    A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.

  7. Plasticity of vulnerability to leaf hydraulic dysfunction during acclimation to drought in grapevines: an osmotic-mediated process.

    PubMed

    Martorell, Sebastian; Medrano, Hipolito; Tomàs, Magdalena; Escalona, José M; Flexas, Jaume; Diaz-Espejo, Antonio

    2015-03-01

    Previous studies have reported correlation of leaf hydraulic vulnerability with pressure-volume parameters related to cell turgor. This link has been explained on the basis of the effects of turgor on connectivity among cells and tissue structural integrity, which affect leaf water transport. In this study, we tested the hypothesis that osmotic adjustment to water stress would shift the leaf vulnerability curve toward more negative water potential (Ψ leaf ) by increasing turgor at low Ψ leaf . We measured leaf hydraulic conductance (K leaf ), K leaf vulnerability [50 and 80% loss of K leaf (P50 and P80 ); |Ψ leaf | at 50 and 80% loss of K leaf , respectively), bulk leaf water relations, leaf gas exchange and sap flow in two Vitis vinifera cultivars (Tempranillo and Grenache), under two water treatments. We found that P50 , P80 and maximum K leaf decreased seasonally by more than 20% in both cultivars and watering treatments. However, K leaf at 2 MPa increased threefold, while osmotic potential at full turgor and turgor loss point decreased. Our results indicate that leaf resistance to hydraulic dysfunction is seasonally plastic, and this plasticity may be mediated by osmotic adjustment. © 2014 Scandinavian Plant Physiology Society.

  8. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Agarwal, Aditya Vikram; Asif, Mehar Hasan; Sangwan, Neelam Singh; Sangwan, Rajender Singh; Trivedi, Prabodh Kumar

    2015-01-01

    Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania. PMID:26688389

  9. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest

    PubMed Central

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-01-01

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169

  10. Short-term alteration of nitrogen supply prior to harvest affects quality in hydroponic-cultivated spinach (Spinacia oleracea).

    PubMed

    Lin, Xian Yong; Liu, Xiao Xia; Zhang, Ying Peng; Zhou, Yuan Qing; Hu, Yan; Chen, Qiu Hui; Zhang, Yong Song; Jin, Chong Wei

    2014-03-30

    Quality-associated problems, such as excessive in planta accumulation of oxalate, often arise in soillessly cultivated spinach (Spinacia oleracea). Maintaining a higher level of ammonium (NH₄⁺) compared to nitrate (NO₃⁻) during the growth period can effectively decrease the oxalate content in hydroponically cultivated vegetables. However, long-term exposure to high concentrations of NH₄⁺ induces toxicity in plants, and thus decreases the biomass production. Short-term application of NH₄⁺ before harvesting in soilless cultivation may provide an alternative strategy to decrease oxalate accumulation in spinach, and minimise the yield reduction caused by NH₄⁺ toxicity. The plants were pre-cultured in 8 mmol L⁻¹ NO₃⁻ nutrient solution. Next, 6 days before harvest, the plants were transferred to a nutrient solution containing 4 mmol L⁻¹ NO₃⁻ and 4 mmol L⁻¹ NH₄⁺. This new mix clearly reduced oxalate accumulation, increased levels of several antioxidant compounds, and enhanced antioxidant capacity in the edible parts of spinach plants, but it did not affect biomass production. However, when the 8 mmol L⁻¹ NO₃⁻ was shifted to either nitrogen-free, 4 mmol L⁻¹ NH₄⁺ or 8 mmol L⁻¹ NH₄⁺ treatments, although some of the quality indexes were improved, yields were significantly reduced. Short-term alteration of nitrogen supply prior to harvest significantly affects quality and biomass of spinach plants, and we strongly recommend to simultaneously use NO₃⁻ and NH₄⁺ in hydroponic cultivation, which improves vegetable quality without decreasing biomass production. © 2013 Society of Chemical Industry.

  11. Quantitative contamination assessment of Escherichia coli in baby spinach primary production in Spain: Effects of weather conditions and agricultural practices.

    PubMed

    Allende, Ana; Castro-Ibáñez, Irene; Lindqvist, Roland; Gil, María Isabel; Uyttendaele, Mieke; Jacxsens, Liesbeth

    2017-09-18

    A quantitative microbial contamination model of Escherichia coli during primary production of baby spinach was developed. The model included only systematic contamination routes (e.g. soil and irrigation water) and it was used to evaluate the potential impact of weather conditions, agricultural practices as well as bacterial fitness in soil on the E. coli levels present in the crop at harvest. The model can be used to estimate E. coli contamination of baby spinach via irrigation water, via soil splashing due to irrigation water or rain events, and also including the inactivation of E. coli on plants due to solar radiation during a variable time of culturing before harvest. Seasonality, solar radiation and rainfall were predicted to have an important impact on the E. coli contamination. Winter conditions increased E. coli prevalence and levels when compared to spring conditions. As regards agricultural practices, both water quality and irrigation system slightly influenced E. coli levels on baby spinach. The good microbiological quality of the irrigation water (average E. coli counts in positive water samples below 1 log/100mL) could have influenced the differences observed among the tested agricultural practices (water treatment and irrigation system). This quantitative microbial contamination model represents a preliminary framework that assesses the potential impact of different factors and intervention strategies affecting E. coli concentrations at field level. Taking into account that E. coli strains may serve as a surrogate organism for enteric bacterial pathogens, obtained results on E. coli levels on baby spinach may be indicative of the potential behaviour of these pathogens under defined conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of natural antimicrobials with modified atmosphere packaging on the growth kinetics of Listeria monocytogenes in ravioli at various temperatures

    PubMed Central

    Ro, Eun Young; Kim, Geun Su; Kwon, Do Young; Park, Young Min; Cho, Sang Woo; Lee, Sang Yun; Yeo, Ik Hyun

    2017-01-01

    Abstract The objective of this study was to investigate the antimicrobial effects of cultured sugar/vinegar (CSV) blend and nisin to control the risk of Listeria monocytogenes in ready to cook (RTC) ravioli. Ravioli dough was prepared with 0.1, 0.3, 0.5, 1% CSV blend and 0.1, 0.2, and 0.3% nisin. Inoculated spinach or artichoke raviolis with 2.0 ± 0.5 log cfu/g of L. monocytogenes were packed aerobically or using modified atmosphere packaging (MAP), and then stored at 4, 10, 17, and 24 °C for 60 days. Growth kinetic parameters of the observed data fit well to the Baranyi equation. Ravioli with spinach filling materials yielded a higher risk than that with artichoke. L. monocytogenes was able to survive in ravioli with artichoke, but did not grow. The addition of 1% CSV blend or 0.3% nisin in spinach ravioli with the combination of MAP effectively controlled the growth of L. monocytogenes at the temperature below 10 °C. The organoleptic quality of spinach ravioli was not also affected by the application of 1% CSV blend. Therefore, the CSV blend can be recommended to improve the microbial safety and quality of natural RTC ravioli at retail market. Practical applications The risk of ravioli was affected by the filling materials of ravioli at retail market. Addition of 1% cultured sugar/vinegar blend in dough substantially contributes to the extension of shelf‐life of MAP spinach raviolis. classification and regression tree analysis results indicate that refrigeration temperature is the main control factor to affect lag time and growth rate, while packaging method is critical for maximum population density. PMID:29456276

  13. Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system.

    PubMed

    Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas

    2017-03-01

    The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of Models Describing the Growth of Nalidixic Acid-Resistant E. coli O157:H7 in Blanched Spinach and Iceberg Lettuce as a Function of Temperature

    PubMed Central

    Kim, Juhui; Chung, Hyunjung; Cho, Joonil; Yoon, Kisun

    2013-01-01

    The aim of this study was to model the growth of nalidixic acid-resistant E. coli O157:H7 (E. coli O157:H7NR) in blanched spinach and to evaluate model performance with an independent set of data for interpolation (8.5, 13, 15 and 27 °C) and for extrapolation (broth and fresh-cut iceberg lettuce) using the ratio method and the acceptable prediction zone method. The lag time (LT), specific growth rate (SGR) and maximum population density (MPD) obtained from each primary model were modeled as a function of temperature (7, 10, 17, 24, 30, and 36 °C) using Davey, square root, and polynomial models, respectively. At 7 °C, the populations of E. coli O157:H7NR increased in tryptic soy broth with nalidixic acid (TSBN), blanched spinach and fresh-cut iceberg lettuce, while the populations of E. coli O157:H7 decreased in TSB after 118 h of LT, indicating the risk of nalidixic acid-resistant strain of E. coli O157:H7 contaminated in ready-to-eat produce at refrigerated temperature. When the LT and SGR models of blanched spinach was extended to iceberg lettuce, all relative errors (percentage of RE = 100%) were inside the acceptable prediction zone and had an acceptable Bf and Af values. Thus, it was concluded that developed secondary models for E. coli O157:H7NR in blanched spinach were suitable for use in making predictions for fresh cut iceberg lettuce, but not for static TSBN in this work. PMID:23839062

  15. Evaluation of Three Protein-Extraction Methods for Proteome Analysis of Maize Leaf Midrib, a Compound Tissue Rich in Sclerenchyma Cells.

    PubMed

    Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei

    2016-01-01

    Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells.

  16. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf.

    PubMed

    Hogewoning, Sander W; Harbinson, Jeremy

    2007-01-01

    The effect of chilling on photosystem II (PSII) efficiency was studied in the variegated leaves of Calathea makoyana, in order to gain insight into the causes of chilling-induced photoinhibition. Additionally, a relationship was revealed between (chilling) stress and variation in photosynthesis. Chilling treatments (5 degrees C and 10 degrees C) were performed for different durations (1-7 d) under a moderate irradiance (120 micromol m-2 s-1). The individual leaves were divided into a shaded zone and two illuminated, chilled zones. The leaf tip and sometimes the leaf base were not chilled. Measurements of the dark-adapted Fv/Fm were made on the different leaf zones at the end of the chilling treatment, and then for several days thereafter to monitor recovery. Chilling up to 7 d in the dark did not affect PSII efficiency and visual appearance, whereas chilling in the light caused severe photoinhibition, sometimes followed by leaf necrosis. Photoinhibition increased with the duration of the chilling period, whereas, remarkably, chilling temperature had no effect. In the unchilled leaf tip, photoinhibition also occurred, whereas in the unchilled leaf base it did not. Whatever the leaf zone, photoinhibition became permanent if the mean value dropped below 0.4, although chlorosis and necrosis were associated solely with chilled illuminated tissue. Starch accumulated in the unchilled leaf tip, in contrast to the adjacent chilled irradiated zone. This suggests that photoinhibition was due to a secondary effect in the unchilled leaf tip (sink limitation), whereas it was a direct effect of chilling and irradiance in the chilled illuminated zones. The PSII efficiency and its coefficient of variation showed a unique negative linearity across all leaf zones and different tissue types. The slope of this curve was steeper for chilled leaves than it was for healthy, non-stressed leaves, suggesting that the coefficient of variation may be an important tool for assessing stress in leaves.

  17. Climatic signals registered as Carbon isotopic values in Metasequoia leaf tissues: A statistical analysis

    NASA Astrophysics Data System (ADS)

    Yang, H.; Blais, B.; Perez, G.; Pagani, M.

    2006-12-01

    To examine climatic signals registered as carbon isotopic values in leaf tissues of C3 plants, we collected mature leaf tissues from sun and shade leaves of Metasequoia trees germinated from the 1947 batch of seeds from China and planted along a latitudinal gradient of the United States. Samples from 40 individual trees, along with fossilized material from the early Tertiary of the Canadian Arctic, were analyzed for C and concentration and isotopic values using EA-IRMS after the removal of free lipids. The generated datasets were then merged with climate data compiled from each tree site recorded as average values over the past thirty years (1971-2002, NOAA database). When the isotope data were cross plotted against each geographic and climatic indicator, Latitude, Mean Annual Temperature (MAT), Average Summer Mean Temperature (ASMT)(June-August), Mean Annual Precipitation (MAP), and Average Summer Mean Precipitation (ASMP) respectively correlation patterns were revealed. The best correlating trend was obtained between temperature parameters and C isotopic values, and this correlation is stronger in the northern leaf samples than the southern samples. We discovered a strong positive correlation between latitude and the offset of C isotopic values between shade and sun leaves. This investigation represents a comprehensive examination on climatic signals registered as C isotopic values on a single species that is marked by single genetic source. The results bear implications on paleoclimatic interpretations of C isotopic signals obtained from fossil plant tissues.

  18. [Relationship between leaf anatomical structure and heat resistance of 15 Rhododendron cultivars].

    PubMed

    Shen, Hui Fei; Zhao, Bing; Xu, Jing Jing

    2016-12-01

    In this study, 17 anatomical structure indexes of 15 Rhododendron cultivars were mea-sured by scanning electron microscope (SEM). Leaf anatomical structure indexes were screened via coefficient of variation, analysis of correlation and hierarchical cluster analysis, and comprehensive evaluation on heat resistance for each cultivar was conducted by the subordinate function. The results showed that the leaves of Rhododendron cultivars were typical bifacial leaf and the epidermal anticlinal walls showed slightly sinuate. The stomata only distributed in the lower epidermis and the shape was ruleless. The anatomical structure indexes all reached a significant level difference among 15 cultivars (P<0.01), except for lower epidermis thickness (P<0.05). Thickness of lamina corneum, stomatal density, stomatal width, the thickness palisade tissue and looseness of leaf spongy tissue were the main factors related to the hardness, while other indexes, such as stomatal length, stoma aperture, stomatal opening, length and thickness of upper epidermis, length and thickness of lower epidermis, thickness of spongy tissue, the ratio of the palisade tissue to spongy tissue, tightness of leaf palisade tissue, leaf thickness and media thickness didn't show much effect on heat resistance. There were some differences among 15 cultivars in heat resistance, and the order was Rhododendron 'Song Jiang Da Tao Hong' > Rhododendron 'Zhuang Yuan Hong' > Rhododendron 'Lv Se Guang Hui' > Rhododendron 'Fen Zhen Zhu' > Rhododendron 'Wai Guo Hong' > Rhododendron 'Lan Yin' > Rhododendron 'Bi Zhi' >Rhododendron 'Da He Zhi Chun' > Rhododendron 'Guo Qi Hong' > Rhododendron 'Yu Ling Long' > Rhododendron 'Hong Shan Hu' > Rhododendron 'Ning Bo Hong' > Rhododendron 'Tao Ban Zhu Sha' > Rhododendron 'Ai Ding Bao' > Rhododendron 'Liu Qiu Hong'. According to the heat hardiness, the cultivars could be divided into 4 groups: R. 'Song Jiang Da Tao Hong', R. 'Zhuang Yuan Hong' and R. 'Lv Se Guang Hui' with high heat resistance, R. 'Fen Zhen Zhu', R. 'Wai Guo Hong', R. 'Lan Yin', R. 'Bi Zhi', R. 'Da He Zhi Chun', R. 'Guo Qi Hong' and R. 'Yu Ling Long' with medium heat resistance, R. 'Hong Shan Hu', R. 'Ning Bo Hong', R. 'Tao Ban Zhu Sha' and R. 'Ai Ding Bao' with lower heat resistance, R. 'Liu Qiu Hong' without heat resistance. However, the accurate heat hardiness evaluation of Rhododendron still needs to consider other factors, including morphological structure, physiological and biochemical indicators and genetic factor of heat resistance, the harmfulness of Rhododendron, and the recovery state after being injured by high temperature.

  19. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes

    NASA Astrophysics Data System (ADS)

    Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang

    2017-04-01

    The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.

  20. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Phytohormones signaling and crosstalk regulating leaf angle in rice.

    PubMed

    Luo, Xiangyu; Zheng, Jingsheng; Huang, Rongyu; Huang, Yumin; Wang, Houcong; Jiang, Liangrong; Fang, Xuanjun

    2016-12-01

    Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.

  2. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging

    PubMed Central

    2010-01-01

    Background Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (ρw) images and spin-spin relaxation time (T2) maps. Results ρw images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. Conclusions The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress. PMID:20735815

  3. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging.

    PubMed

    Sardans, Jordi; Peñuelas, Josep; Lope-Piedrafita, Silvia

    2010-08-24

    Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (rhow) images and spin-spin relaxation time (T2) maps. Rhow images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress.

  4. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    PubMed

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  5. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    PubMed

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Mathematical modeling and numerical analysis of the growth of Non-O157 shiga toxin-producing Escherichia coli in spinach leaves

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to investigate the growth of non-O157 Shiga toxin-producing Escherichia coli (STEC) in spinach leaves and to develop kinetic models to describe the bacterial growth. Six serogroups of non-O157 STEC, including O26, O45, O103, O111, O121, and O145, were used in the growth stu...

  7. The Effect of Repeated Irrigation with Water Containing Varying Levels of Total Organic Carbon on the Persistence of Escherichia coli O157:H7 on Baby Spinach

    USDA-ARS?s Scientific Manuscript database

    The California lettuce and leafy greens industry has adopted the Leafy Greens Marketing Agreement (LGMA), which allows for 126 Most Probable Number (MPN) generic E. coli/100ml in irrigation water. Repeat irrigation of baby spinach plants with water containing E. coli O157:H7 and different levels of...

  8. Spinach RNA aptamer detects lead (II) with high selectivity†

    PubMed Central

    DasGupta, Saurja; Shelke, Sandip A.; Li, Nan-sheng

    2015-01-01

    Spinach RNA aptamer contains a G-quadruplex motif that serves as a platform for binding and fluorescence activation of a GFP-like fluorophore. Here we show that Pb2+ induces formation of Spinach’s G-quadruplex and activates fluorescence with high selectivity and sensitivity. This device establishes the first example of an RNA-based sensor that provides a simple and inexpensive tool for Pb2+ detection. PMID:25940073

  9. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; Buchanan, B. B.

    1989-01-01

    A chloroplast type of fructose-1,6-bisphosphatase, a central regulatory enzyme of photosynthetic carbon metabolism, has been partially purified from Chlamydomonas reinhardtii. Unlike its counterpart from spinach chloroplasts, the algal FBPase showed a strict requirement for a dithiol reductant irrespective of Mg2+ concentration. The enzymes from the two sources resembled each other immunologically, in subunit molecular mass and response to pH. In the presence of dithiothreitol, the pH optimum for both the algal and spinach enzymes shifted from 8.5 to a more physiologic value of 8.0 as the Mg2+ concentration was increased from 1 to 16 mM. At 1 mM Mg2+, a concentration estimated to be close to physiological, the Chlamydomonas FBPase was active only in the presence of reduced thioredoxin and was most active with Chlamydomonas thioredoxin f. Under these conditions, the enzyme showed a pH optimum of 8.0. The data suggest that the Chlamydomonas enzyme resembles its spinach counterpart in most respects, but it has a stricter requirement for reduction and less strict reductant specificity. A comparison of the properties of the FBPases from Chlamydomonas and spinach will be helpful for elucidating the mechanism of the reductive activation of this enzyme.

  10. Conversion of Monogalactosyldiacylglycerols to Triacylglycerols in Ozone-Fumigated Spinach Leaves

    PubMed Central

    Sakaki, Takeshi; Saito, Kazuki; Kawaguchi, Akihiko; Kondo, Noriaki; Yamada, Mitsuhiro

    1990-01-01

    Molecular species and fatty acid distribution of triacylglycerol (TG) accumulated in spinach (Spinacia oleracea L.) leaves fumigated with ozone (0.5 microliter per liter) were compared with those of monogalactosyldiacylglycerol (MGDG). Analysis of positional distribution of the fatty acids in MGDG and the accumulated TG by the enzymatic digestion method showed that hexadecatrienoate (16:3) was restricted to sn-2 position of the glycerol backbone in both MGDG and TG, whereas α-linolenate (18:3) was preferentially located at sn-1 position in MGDG, and sn-1 and/or sn-3 positions in TG, suggesting that 1,2-diacylglycerol moieties of MGDG are the direct precursor of TG in ozonefumigated leaves. Further analysis of TG molecular species by argentation chromatography and mass spectrometry showed that TG increased with ozone fumigation consisted of approximately an equal molar ratio of sn-1,3-18:3-2-16:3 and sn-1,2,3-18:3. Because the molecular species of MGDG in spinach leaves is composed of a similar molar ratio of sn-1-18:3-2-16:3 and sn-1,2-18:3, we concluded that MGDG was converted to 1,2-diacylglycerol and acylated with 18:3 to TG in ozone-fumigated spinach leaves. Images Figure 1 PMID:16667777

  11. Antioxidant assays – consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves

    PubMed Central

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-01-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays – by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied. PMID:24804054

  12. Antioxidant assays - consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves.

    PubMed

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-11-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays - by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied.

  13. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures.

    PubMed

    Xin, Junliang; Huang, Baifei; Yang, Zhongyi; Yuan, Jiangang; Dai, Hongwen; Qiu, Qiu

    2010-03-15

    A pot experiment was conducted to investigate the stability of Cd and/or Pb accumulation in shoot of Cd and Pb pollution-safe cultivars (PSCs), the hereditary pattern of shoot Cd accumulation, and the transfer potentials of Cd and Pb in water spinach (Ipomoea aquatica Forsk.). A typical Cd-PSC, a typical non-Cd-PSC (Cd accumulative cultivar), a hybrid from the former two cultivars, and two typical Cd+Pb-PSCs were grown in seven soils with different concentrations of Cd and Pb. The results showed that concentrations of Cd and Pb in shoot of the PSCs were always lower than the non-PSC and the highest Cd and Pb transfer factors were also always observed in the non-PSC, indicating the stability of the PSCs in Cd and Pb accumulation. Shoot Cd concentration seemed to be controlled by high Cd dominant gene(s) and thus crossbreeding might not minimize Cd accumulation in water spinach. Interaction between Cd and Pb in soils affected the accumulations of the metals in shoot of water spinach. Under middle Cd and Pb treatments, the presence of higher Pb promoted the accumulation of Cd. However, under high Pb treatment, accumulations of Cd and Pb were both restricted. (c) 2009 Elsevier B.V. All rights reserved.

  14. The evaluation of long-term effects of cinnamon bark and olive leaf on toxicity induced by streptozotocin administration to rats.

    PubMed

    Onderoglu, S; Sozer, S; Erbil, K M; Ortac, R; Lermioglu, F

    1999-11-01

    The effects of cinnamon bark and olive leaf have been investigated on streptozotocin-induced tissue injury, and some biochemical and haematological changes in rats. The effects on glycaemia were also evaluated. Long-term administration of olive leaf caused significant improvement in tissue injury induced by streptozotocin treatment; the effect of cinnamon bark was less extent. No effects on blood glucose levels were detected. However, significant decreases in some increased biochemical and haematological parameters of streptozotocin-treated rats were observed. Aspartate aminotransferase, urea and cholesterol levels were significantly decreased by treatment with both plant materials, and alanine aminotransferase by treatment with olive leaf. Cinnamon bark also caused a significant decrease in platelet counts. In addition, any visible toxicity, except decrease in body weight gain, attributable to the long-term use of plant materials was not established in normal rats. The data indicate that long-term use of olive leaf and cinnamon bark may provide benefit against diabetic conditions. Determination of underlying mechanism(s) of beneficial effects, toxicity to other systems and clinical assessments of related plant materials are major topics requiring further studies.

  15. A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence1[OPEN

    PubMed Central

    Leng, Yujia; Yang, Yaolong; Ren, Deyong; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Zhu, Li; Hu, Jiang; Gao, Zhenyu; Guo, Longbiao; Lin, Yongjun

    2017-01-01

    To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 (del1). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. PMID:28455404

  16. Reversible Deformation of Transfusion Tracheids in Taxus baccata Is Associated with a Reversible Decrease in Leaf Hydraulic Conductance1[OPEN

    PubMed Central

    Zhang, Yong-Jiang; Rockwell, Fulton E.; Wheeler, James K.; Holbrook, N. Michele

    2014-01-01

    Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to −1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than −3 MPa. Declines in Kleaf between −2 and −3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue. PMID:24948828

  17. A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence.

    PubMed

    Leng, Yujia; Yang, Yaolong; Ren, Deyong; Huang, Lichao; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Li, Xueyong; Zhu, Li; Hu, Jiang; Zhang, Guangheng; Gao, Zhenyu; Guo, Longbiao; Kong, Zhaosheng; Lin, Yongjun; Qian, Qian; Zeng, Dali

    2017-06-01

    To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 ( del1 ). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Olea europaea L. leaf extract and derivatives: antioxidant properties.

    PubMed

    Briante, Raffaella; Patumi, Maurizio; Terenziani, Stefano; Bismuto, Ettore; Febbraio, Ferdinando; Nucci, Roberto

    2002-08-14

    This paper reports a very simple and fast method to collect eluates with high amounts of hydroxytyrosol, biotransforming Olea europaea L. leaf extract by a thermophilic beta-glycosidase immobilized on chitosan. Some phenolic compounds in the leaf tissue and in the eluates obtained by biotransformation are identified. To propose the eluates as natural substances from a vegetal source, their antioxidant properties have been compared with those of the leaf extract from which they are originated. The eluates possess a higher concentration of simple phenols, characterized by a stronger antioxidant capacity, than those available in extra virgin olive oils and in many tablets of olive leaf extracts, commercially found as dietetic products and food integrators.

  19. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review.

    PubMed

    Heaton, J C; Jones, K

    2008-03-01

    Consumption of fruit and vegetable products is commonly viewed as a potential risk factor for infection with enteropathogens such as Salmonella and Escherichia coli O157, with recent outbreaks linked to lettuce, spinach and tomatoes. Routes of contamination are varied and include application of organic wastes to agricultural land as fertilizer, contamination of waters used for irrigation with faecal material, direct contamination by livestock, wild animals and birds and postharvest issues such as worker hygiene. The ability of pathogens to survive in the field environment has been well studied, leading to the implementation of guidelines such as the Safe Sludge Matrix, which aim to limit the likelihood of viable pathogens remaining at point-of-sale. The behaviour of enteropathogens in the phyllosphere is a growing field of research, and it is suggested that inclusion in phyllosphere biofilms or internalization within the plant augments the survival. Improved knowledge of plant-microbe interactions and the interaction between epiphytic and immigrant micro-organisms on the leaf surface will lead to novel methods to limit enteropathogen survival in the phyllosphere.

  20. The energetic and carbon economic origins of leaf thermoregulation.

    PubMed

    Michaletz, Sean T; Weiser, Michael D; McDowell, Nate G; Zhou, Jizhong; Kaspari, Michael; Helliker, Brent R; Enquist, Brian J

    2016-08-22

    Leaf thermoregulation has been documented in a handful of studies, but the generality and origins of this pattern are unclear. We suggest that leaf thermoregulation is widespread in both space and time, and originates from the optimization of leaf traits to maximize leaf carbon gain across and within variable environments. Here we use global data for leaf temperatures, traits and photosynthesis to evaluate predictions from a novel theory of thermoregulation that synthesizes energy budget and carbon economics theories. Our results reveal that variation in leaf temperatures and physiological performance are tightly linked to leaf traits and carbon economics. The theory, parameterized with global averaged leaf traits and microclimate, predicts a moderate level of leaf thermoregulation across a broad air temperature gradient. These predictions are supported by independent data for diverse taxa spanning a global air temperature range of ∼60 °C. Moreover, our theory predicts that net carbon assimilation can be maximized by means of a trade-off between leaf thermal stability and photosynthetic stability. This prediction is supported by globally distributed data for leaf thermal and photosynthetic traits. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate Earth system models.

  1. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    PubMed Central

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  2. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods.

    PubMed

    Herzog, Max; Konnerup, Dennis; Pedersen, Ole; Winkel, Anders; Colmer, Timothy David

    2018-05-01

    Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged in artificial floodwater with 0 or 50 mm NaCl for up to 16 d. Gas films were present >9 d on GF plants after which gas films were diminished. Tissue ion analysis (Na + , Cl - and K + ) showed that gas films caused some delay of Na + entry, as leaf Na + concentration was 36-42% higher in -GF leaves than +GF leaves on days 1-5. However, significant net uptakes of Na + and Cl - , and K + net loss, occurred despite the presence of gas films, indicating the likely presence of some leaf-to-floodwater contact, so that the gas layer must not have completely separated the leaf surfaces from the water. Natural loss and removal of gas films resulted in severe declines in growth, underwater photosynthesis, chlorophyll a and tissue porosity. Submergence was more detrimental to leaf P N and growth than the additional effect of 50 mm NaCl, as salt did not significantly affect underwater P N at 200 μm CO 2 nor growth. © 2016 John Wiley & Sons Ltd.

  3. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.

    PubMed

    Strycharz, S; Newman, L

    2009-02-01

    Phytoremediation of trichloroethylene (TCE) can be accomplished using fast-growing, deep-rooting trees. The most commonly used tree for phytoremediation of TCE has been the hybrid poplar. This study looks at native southeastern trees of the United States as alternatives to the use of hybrid poplar. The use of native trees for phytoremediation allows for simultaneous restoration of contaminated sites. A 2-mo, greenhouse-based study was conducted to determine if sycamore (Plantanus L.), eastern cottonwood (Populus deltoides), sweetgum (Liquidambar styraciflua L.), and willow (Salix sachalinensis) trees possess the ability to degrade TCE by assessing TCE metabolite formation in the plant tissue. In addition to the metabolic capabilities of each tree species, growth parameters were measured including change in height, water usage, total fresh weight of each tissue type, and calculated total leaf surface area. Willow trees had the greatest increase in height among all trees tested; however, at higher concentrations TCE inhibits growth. Sycamore trees had the highest overall leaf surface area and total biomass, which correlated with sycamore trees also having the highest average water usage over the course of the experiment. Carbon tubes used to sample transpiration gases from sycamore, sweetgum, and cottonwood trees did not contain detectable levels of TCE. Tenex sample collection tubes used to sample willow trees during TCE exposure showed average TCE concentrations of up to 0.354 ng TCE cm -2 leaf tissue. All exposed trees contained TCE in the root, stem, and leaf tissues. The concentration of TCE remaining in tissues at the conclusion of the experiment varied, with the highest levels found in the roots and the lowest levels found in the leaves. Metabolites were also observed in different tissue types of all trees tested. The highest concentrations of trichloroacetic acid were observed in the leaves of the sycamore trees and cottonwood trees. Based on the growth parameters tested and the ability to metabolize TCE, sycamore and native cottonwood species are the best candidates for phytoremediation from this study.

  4. Selection of candidate salad vegetables for controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Qin, L.; Guo, S.; Ai, W.; Tang, Y.

    Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol-1) and another which used various light intensities (100, 300, 500 and 700 μmol m-2 s-1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.

  5. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle.

    PubMed

    Siegner, Ralf; Heuser, Stefan; Holtzmann, Ursula; Söhle, Jörn; Schepky, Andreas; Raschke, Thomas; Stäb, Franz; Wenck, Horst; Winnefeld, Marc

    2010-08-05

    The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1/SREBP-1c signal. Importantly, our results demonstrated that a combination of lotus leaf extract solution and L-carnitine reduced triglyceride accumulation to a greater extent compared to incubation with either substance alone. Overall, our data demonstrate that a combination of lotus leaf extract and L-carnitine reduced triglyceride accumulation in human (pre)adipocytes by affecting different processes during the adipocyte life cycle. For this reason, this combination might represent a treatment option for obesity-related diseases.

  6. A novel approach to investigate the uptake and internalization of Escherichia coli O157:H7 in spinach cultivated in soil and hydroponic media

    USDA-ARS?s Scientific Manuscript database

    Internalization of E. coli O157:H7 into spinach plants through root uptake is a potential route of contamination. A Tn7-based plasmid vector was used to insert the green fluorescent protein (gfp) gene into the attTn7 site in the E. coli chromosome. Three gfp-labeled E. coli inocula, O157:H7 strains ...

  7. Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts.

    PubMed Central

    Schmidt, H; Heinz, E

    1990-01-01

    Envelope membranes isolated from chloroplasts of spinach (Spinacia oleracea) desaturate oleoyl groups in monogalactosyl diacylglycerol to linoleoyl groups. The desaturation requires NADPH in combination with ferredoxin and is not restricted to monogalactosyl diacylglycerol, since it is also observed in biosynthetic intermediates as, for example, in phosphatidic acid. This indicates a certain degree of unspecificity of the oleate desaturase in isolated envelope membranes. Lipid desaturation is another important function of chloroplast envelopes. PMID:11607123

  8. New poleroviruses associated with yellowing symptoms in different vegetable crops in Greece.

    PubMed

    Lotos, L; Maliogka, V I; Katis, N I

    2016-02-01

    Four poleroviral isolates from Greece, two from lettuce, one from spinach and one from watermelon showing yellowing symptoms, were molecularly characterized by analyzing the sequence of a large part of the genome spanning from the 3'-terminal part of the RdRp to the end of the CP gene. The sequences were analyzed for their similarity and phylogenetic relationships to other members of the genus Polerovirus as well as for evidence of recombination events. The results revealed the existence of two putatively new viruses: one from lettuce and one from spinach, provisionally named "lettuce yellows virus" and "spinach yellows virus", respectively. Also, a new recombinant virus infecting lettuce, herein named "lettuce mild yellows virus", and a watermelon isolate of pepo aphid-borne yellows virus (PABYV) were identified. Our study highlights the existence of high genetic diversity within the genus Polerovirus, which could be associated with the emergence of new viral diseases in various crops worldwide.

  9. Characterization of biomasses, concentrates, and permeates of dried powder of Kombucha fermentation of spinach (Amaranthus sp.) and broccoli (Brassica oleracea) with membrane microfiltration and freeze drying techniques for natural sources of folic acid

    NASA Astrophysics Data System (ADS)

    Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati

    2017-11-01

    Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic acid were also found at molecular weights of 147.21 Da. and 147.35 Da. for spinach and broccoli respectively. Thus, it has been shown that kombucha fermentation of spinach and broccoli, followed by membrane microfiltration and freeze drying process, could produce dried materials with high concentrations of folates that have the potential to be used as naturally derived sources of folic acid.

  10. Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain.

    PubMed

    Andrade, Guilherme C; Silva, Luzimar C

    2017-07-01

    We investigated the morphological and anatomical effects of simulated acid rain on leaves of two species native to the Brazilian Atlantic Rainforest: Paubrasilia echinata and Libidibia ferrea var. leiostachya. Saplings were subjected to acid rain in a simulation chamber during 10 days for 15 min daily, using H 2 SO 4 solution pH 3.0 and, in the control, deionized water. At the end of the experiment, fragments from young and expanding leaves were anatomically analyzed. Although L. ferrea var. leiostachya leaves are more hydrophobic, rain droplets remained in contact with them for a longer time, as in the hydrophilic P. echinata leaves, droplets coalesce and rapidly run off. Visual symptomatology consisted in interveinal and marginal necrotic dots. Microscopic damage found included epicuticular wax flaking, turgor loss and epidermal cell shape alteration, hypertrophy of parenchymatous cells, and epidermal and mesophyll cell collapse. Formation of a wound tissue was observed in P. echinata, and it isolated the necrosis to the adaxial leaf surface. Acid rain increased thickness of all leaf tissues except spongy parenchyma in young leaves of L. ferrea var. leiostachya, and such thickness was maintained throughout leaf expansion. To our knowledge, this is the first report of acidity causing increase in leaf tissue thickness. This could represent the beginning of cell hypertrophy, which was seen in visually affected leaf regions. Paubrasilia echinata was more sensitive, showing earlier symptoms, but the anatomical damage in L. ferrea var. leiostachya was more severe, probably due to the higher time of contact with acid solution in this species.

  11. Leaf gas exchange performance and the lethal water potential of five European species during drought.

    PubMed

    Li, Shan; Feifel, Marion; Karimi, Zohreh; Schuldt, Bernhard; Choat, Brendan; Jansen, Steven

    2016-02-01

    Establishing physiological thresholds to drought-induced mortality in a range of plant species is crucial in understanding how plants respond to severe drought. Here, five common European tree species were selected (Acer campestre L., Acer pseudoplatanus L., Carpinus betulus L., Corylus avellana L. and Fraxinus excelsior L.) to study their hydraulic thresholds to mortality. Photosynthetic parameters during desiccation and the recovery of leaf gas exchange after rewatering were measured. Stem vulnerability curves and leaf pressure-volume curves were investigated to understand the hydraulic coordination of stem and leaf tissue traits. Stem and root samples from well-watered and severely drought-stressed plants of two species were observed using transmission electron microscopy to visualize mortality of cambial cells. The lethal water potential (ψlethal) correlated with stem P99 (i.e., the xylem water potential at 99% loss of hydraulic conductivity, PLC). However, several plants that were stressed beyond the water potential at 100% PLC showed complete recovery during the next spring, which suggests that the ψlethal values were underestimated. Moreover, we observed a 1 : 1 relationship between the xylem water potential at the onset of embolism and stomatal closure, confirming hydraulic coordination between leaf and stem tissues. Finally, ultrastructural changes in the cytoplasm of cambium tissue and mortality of cambial cells are proposed to provide an alternative approach to investigate the point of no return associated with plant death. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry.

    PubMed

    Chen, Sha; Fang, Linchuan; Xi, Huifen; Guan, Le; Fang, Jinbao; Liu, Yanling; Wu, Benhong; Li, Shaohua

    2012-04-29

    Flavonoid composition and concentration were investigated in 12 different tissues of 'Ti-1' lotus (Nelumbo nucifera) by high performance liquid chromatography equipped with photodiode array detection tandem electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS(n)). A total of 20 flavonoids belonging to six groups (myricetin, quercetin, kaempferol, isohamnetin, diosmetin derivatives) were separated and identified. Myricetin 3-O-galactoside, myricetin 3-O-glucuronide, isorhamnetin 3-O-glucuronide and free aglycone diometin (3',5,7-trihydroxy-4'-methoxyflavone) were first reported in lotus. Flavonoid composition varied largely with tissue type, and diverse compounds (5-15) were found in leaf and flower stalks, flower pistils, seed coats and embryos. Flower tissues including flower petals, stamens, pistils, and, especially, reproductive tissue fruit coats had more flavonoid compounds (15-17) than leaves (12), while no flavonoids were detectable in seed kernels. The flavonoid content of seed embryos was high, 730.95 mg 100g(-1) DW (dry weight). As regards the other tissues, mature leaf pulp (771.79 mg 100 g(-1) FW (fresh weight)) and young leaves (650.67 mg 100 g(-1) FW) had higher total flavonoid amount than flower stamens (359.45 mg 100 g(-1) FW) and flower petals (342.97 mg 100g(-1) FW), while leaf stalks, flower stalks and seed coats had much less total flavonoid (less than 40 mg 100 g(-1) FW). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis.

    PubMed

    Gurung, Bhusan; Bhardwaj, Pardeep K; Talukdar, Narayan C

    2016-11-01

    In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.

  14. Potassium uptake and redistribution in Cabernet Sauvignon and Syrah grape tissues and its relationship with grape quality parameters.

    PubMed

    Ramos, María Concepción; Romero, María Paz

    2017-08-01

    The present study investigated the potassium (K) levels in petiole and other grape tissues during ripening in Vitis vinifera Shiraz and Cabernet Sauvignon, grown in areas with differences in vigour, as well as with and without leaf thinning. Potassium levels in petiole, seeds, skin and flesh were related to grape pH, acidity, berry weight and total soluble solids. Differences in K levels in petiole were in accordance with the differences in soil K. Leaf thinning gave rise to higher K levels in petiole but, in grape tissues, the differences were not significant in all samplings, with greater differences at the end of the growing cycle. Potassium levels per berry in grape tissues increased from veraison to harvest, with K mainly accumulated in skins and, to a lesser extent, in flesh. Potassium levels in flesh positively correlated with pH and total soluble solids, whereas the correlation with titratable acidity was negative. Grape juice pH and total soluble solids positively correlated with K, whereas titratable acidity correlated negatively. Leaf thinning increased K levels in petiole, although differences in K levels in grape tissues were not significant. This suggests the need to consider the K berry concentration when aiming to optimise K fertilisation programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Succession after fire: variation in \\delta13C of organic tissues and respired CO2 in boreal forests

    NASA Astrophysics Data System (ADS)

    Fessenden, J. E.; Li, H.; Mack, M.; Schuur, T.; Warren, S.; Randerson, J. T.

    2001-12-01

    Isotope ratios of carbon dioxide and leaf organic matter were measured in 5 neighboring forests of varying ages: 7, 14, 45, 140, and 160 years. These forests are composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce 50 years after fire disturbance. Research on the carbon isotope ratios of leaf material and CO2 was conducted to look for influences from species composition, forest age, and time after most recent burn. Samples of organic \\delta13C in whole leaf tissue were collected from the dominant species of each forest. Concurrent aboveground NPP measurements allowed us to estimate total ecosystem \\delta13C by providing a method for weighting \\delta13C of individual species and plant tissues. \\delta13CO2 and [CO2] were measured on canopy CO2 to determine the isotopic ratio of ecosystem respiration. The atmospheric results indicated that the \\delta13C of ecosystem respiration changes with successional stage. Specifically, the aspen dominating forests showed 13C depleted values relative to the spruce dominated forests. Organic results showed more 13C-enriched values with increased forest age and vegetation functional type. Specifically, oldest trees within the coniferous species had the most 13C-enriched values in leaf tissues. These results suggest that increases in the disturbance regime of northern boreal forests will lead to a decrease in the \\delta13C of ecosystem carbon with consequences for the atmospheric \\delta13C budget.

  16. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis

    PubMed Central

    Sharma, Anupma; Wai, Ching Man; Ming, Ray

    2017-01-01

    Abstract Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. PMID:28922793

  17. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification.

    PubMed

    Hammond, Rosemarie W; Zhang, Shulu

    2016-10-01

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39°C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in infected leaf and seed tissues. The performance of the AmplifyRP(®) Acceler8™ RT-RPA diagnostic assay, utilizing a lateral flow strip contained within an amplicon detection chamber, was evaluated and the results were compared with a standard RT-PCR assay. The AmplifyRP(®) Acceler8™ assay was specific for TCDVd in leaf and seed tissues, its sensitivity was comparable to conventional RT-PCR in leaf tissues, and it does not require extensive sample purification, specialized equipment, or technical expertise. This is the first report utilizing an RT-RPA assay to detect viroids and the assay can be used both in the laboratory and in the field for TCDVd detection. Published by Elsevier B.V.

  18. Interpretation of the fluorescence signatures from vegetation

    NASA Astrophysics Data System (ADS)

    Buschmann, C.

    Vegetation emits fluorescence as part of the energy taken up by absorption %of solar radiation from UV to the visible. This fluorescence consists of light with low intensity (only few percents of the reflected light) emitted from the leaves. The fluorescence emission of a green leaf is characterized by four bands with maxima in the blue (440 nm), green (520 nm), red (690 nm) and far red (740 nm) spectral region. The intensity of fluorescence in the maxima of the emission spectrum varies depending on the following six basic parameters which must be taken into account for the interpretation of fluorescence signatures from vegetation: (a) content of the fluorophores (ferulic acid, chlorophyll a), (b) temperature of the leaf, (c) penetration of excitation light into the leaf, (d) emission of fluorescence from the leaf (re-absorption inside the leaf tissue), (e) photosynthetic activity of the leaf, (f) non-radiative decay (heat production) parallel to the fluorescence The ratios between the intensities of the maxima (F440/F690, F440/F520, F690/F740) are used as characteristic fluorescence parameter. The wide range of changes of these ratios caused by differences in the leaf tissue (aerial interspaces, variegated/homogeneous green leaves), various types of stress (UV, photoinhibition, sun exposure, heat, water deficiency, N-deficiency) and chemicals (inhibitors, fertilizers) can be explained by changes of the six basic parameters. It will be shown that the interpretation of the fluorescence signatures, in most cases, must be based on a complex consideration of more than one of the basic parameters.

  19. The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Chatterton, N. J.; Bugbee, B.

    1994-01-01

    We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 micromoles m-2 s-1) and using two CO2 concentrations, 360 and 1200 micromoles mol-1. Photosynthetically active radiation (400-700 nm) was attenuated slightly faster through canopies grown in 360 micromoles mol-1 than through canopies grown in 1200 micromoles mol-1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200 micromoles mol-1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p < 0.05) than for canopies grown in 360 micromoles mol-1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 degrees C over 5 d increased starch, fructan and glucose levels in canopies grown in 1200 micromoles mol-1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.

  20. Chemical and Physical Characterization of the Activation of Ribulosebiphosphate Carboxylase/Oxygenase

    DOE R&D Accomplishments Database

    Donnelly, M. I.; Ramakrishnan, V.; Hartman, F. C.

    1983-08-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere.

  1. Cadmium dynamics in the rhizosphere and Cd uptake of different plant species evaluated by a mechanistic model.

    PubMed

    Stritsis, Christos; Steingrobe, Bernd; Claassen, Norbert

    2014-01-01

    Maize, sunflower,flax, and spinach differed in the accumulation of Cd when grown on a Cd contaminated soil. This was mainly due to the different Cd net influx, In, that varied among species by a factor of up to 30. The objective of this study was to find possible reasons for the different Cd In by using a mechanistic model. After 14 days of Cd uptake the model calculated only a small Cd depletion at the root surface, e.g. from 0.22 mumol L(-1) down to 0.19 mumol L(-1) for maize and from 0.48 mumol L(-1) down to 0.35 mumol L(-1)for spinach. Even so the model always overestimated the Cd I(n), for spinach by a factor of 1.5 and for maize by a factor of 10. Only simulating a decrease of C(Li) or the root absorbing power, alpha, by 40% to 90% gave an agreement of calculated and measured I(n),. This may be interpreted as that about 40% in the case of spinach and 90% in the case of maize of the Cd in soil solution were not accessible for plant uptake. The high sensitivity to alpha also shows that not the Cd transport to the root but alpha was limiting the step for Cd uptake.

  2. D-Glucosone and L-sorbosone, putative intermediates of L-ascorbic acid biosynthesis in detached bean and spinach leaves. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Kazumi; Nick, J.A.; Loewus, F.A.

    D-(6-{sup 14}C)Glucosone that had been prepared enzymically from D-(6-{sup 14}C)glucose was used to compare relative efficiencies of these two sugars for L-ascorbic acid (AA) biosynthesis in detached bean (Phaseolus vulgaris L., cv California small white) apices and 4-week-old spinach (Spinacia oleracea L., cv Giant Noble) leaves. At tracer concentration, {sup 14}C from glucosone was utilized by spinach leaves for AA biosynthesis much more effectively than glucose. Carbon-14 from (6-{sup 14}C)glucose underwent considerable redistribution during AA formation, whereas {sup 14}C from (6-{sup 14}C)glucosone remained almost totally in carbon 6 of AA. In other experiments with spinach leaves, L-(U-{sup 14}C)sorbosone was foundmore » to be equivalent to (6-{sup 14}C)glucose as a source of {sup 14}C for AA. In the presence of 0.1% D-glucosone, conversion of (6-{sup 14}C) glucose into labeled AA was greatly repressed. In a comparable experiment with L-sorbosone replacing D-glucosone, the effect was much less. The experiments described here give substance to the proposal that D-glucosone and L-sorbosone are putative intermediates in the conversion of D-glucose to AA in higher plants.« less

  3. Performance test of nutrient control equipment for hydroponic plants

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  4. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Lin, Dasong; Hu, Fazhi

    2013-05-01

    A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.

  5. Antioxidant activity of fermented broccoli and spinach by Kombucha culture

    NASA Astrophysics Data System (ADS)

    Artanti, Nina; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi Narrij; Maryati, Yati

    2017-11-01

    Broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) are vegetables that known to have many benefit for health. Previous studies on the fermentation of those vegetables using kombucha cultured showed increase in bioactive components such as total polyphenol content. The current studies was performed to evaluate the antioxidant activity of fermented spinach and broccoli before (feed) and after treatment with filtration (retentate and permeate). Filtration was conducted using Stirred Ultrafiltration Cell (SUFC) with UF membrane 100,000 MWCO mode at fixed condition (stirred rotation 300 rpm, room temperature, pressure 40 psia). Antioxidant evaluation was conducted using 2,2-diphenyl-1-picril hydrazyl (DPPH) free radical scavenging activity assay. The results showed that all samples from fermented broccoli showed antioxidant activity (feed 15.82% inhibition and retentate 15.29% inhibition), with the best antioxidant activity was obtained from permeate (75.98% inhibition). Whereas from fermented spinach only permeate showed antioxidant activity (21.84% inhibition) and it significantly lower than broccoli permeate. The mass spectrum of LCMS analysis on broccoli samples showed the present of several mass spectrum with (M+H) range from 148.1 to 442.5 in feed, retentate and permeate. In those samples (M+H) 360.4 always has the highest relative intensity. These results suggest that fermented broccoli has potential for development as functional drink for the source of antioxidant and the permeate obtained from filtration treatment significantly increased the antioxidant activity.

  6. Identification and Chacterization of new strains of Enterobacter spp. causing Mulberry (Morus alba) wilt disease in China

    USDA-ARS?s Scientific Manuscript database

    A new mulberry wilt disease (MWD) was recently identified in Hangzhou, Zhejiang province, China. Typical symptoms of the disease are dark brown discolorations in vascular tissues, leaf wilt, defoliation, and tree decline. Unlike the bacterial wilt disease caused by Ralstonia solanacearum, the leaf w...

  7. Leaf, woody, and root biomass of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall

    2007-01-01

    Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...

  8. Theoretical and experimental errors for in situ measurements of plant water potential.

    PubMed

    Shackel, K A

    1984-07-01

    Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (-0.6 to -1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design.

  9. Theoretical and Experimental Errors for In Situ Measurements of Plant Water Potential 1

    PubMed Central

    Shackel, Kenneth A.

    1984-01-01

    Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (−0.6 to −1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design. PMID:16663701

  10. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    PubMed Central

    Stigter, Kyla A.; Plaxton, William C.

    2015-01-01

    Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters. PMID:27135351

  11. Recycling of Na in advanced life support: strategies based on crop production systems.

    PubMed

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  12. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  13. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    NASA Technical Reports Server (NTRS)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  14. Hevea Linamarase—A Nonspecific β-Glycosidase 1

    PubMed Central

    Selmar, Dirk; Lieberei, Reinhard; Biehl, Böle; Voigt, Jürgen

    1987-01-01

    In the leaf tissue of the cyanogenic plant Hevea brasiliensis, which contains large amounts of linamarin, there is no specific linamarase. In Hevea leaves only one β-glucosidase is detectable. It is responsible for the cleavage of all β-glucosides and β-galactosides occurring in Hevea leaf tissue, including the cyanogenic glucoside linamarin. Therefore, the enzyme is referred to as a β-glycosidase instead of the term β-glucosidase. This β-glycosidase has a broad substrate spectrum and occurs in multiple forms. These homo-oligomeric forms are interconvertible by dissociation-association processes. The monomer is a single protein of 64 kilodaltons. PMID:16665288

  15. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1995-09-01

    The goals of this effort were to confirm and expand data related to the behavior and impacts of munitions residues upon human food chain components. Plant species employed included corn (Zea mays), alfalfa (Medicago sativa). spinach (Spinacea oleraceae), and carrot (Daucus carota). Plants were grown from seed to maturity (70 to 120 days) in a low-fertility soil (Burbank) amended with either {sup 14}C-TNT or {sup 14}C-RDX at which time they were harvested and analyzed for munitions uptake, partitioning, and chemical form of the munition or munition-metabolite. All four of the plant species used in this study accumulated the {sup 14}C-TNT-more » and RDX-derived label. The carrot, alfalfa, and corn demonstrated a higher percentage of label retained in the roots (62, 73, and 83% respectively). The spinach contained less activity in its root (36%) but also contained the highest TNT specific activity observed (>4600 jig TNT equivalents/g dry wt.). The specific uptake values of RDX for the spinach and alfalfa were comparable to those previously reported for wheat and bean (314 to 590 {mu}g RDX-equivalents/g dry wt. respectively). An exception to this may be the carrot where the specific activity was found to exceed 4200 {mu}g RDX-equivalents/g dry wt. in the shoot. The total accumulation of TNT by the plants ranged from 1.24% for the spinach to 2.34% for the carrot. The RDX plants ranging from 15% for the spinach to 37% for the carrot. There was no identifiable TNT or amino dinitrotoluene (ADNT) isomers present in the plants however, the parent RDX compound was found at significant levels in the shoot of alfalfa (> 1 80 {mu}g/g) and corn (>18 {mu}g/g).« less

  16. Simulating the Transfer of Strontium-90 from Soil to Leafy Vegetables by Using Strontium-88.

    PubMed

    Kuke, Ding; Shujuan, Liu; Yingxue, He; Dong, Yan; Fengshou, Zhang; Shuifeng, Wang; Jinghua, Guo; Wei, Zhang; Xin, Wang; Xiaoyan, Jiang

    The transfer, from soil to Chinese cabbage and spinach, of radioactive strontium-90 released as a result of accidents in nuclear power stations was studied using a stable isotope of strontium, namely nuclide strontium-88 ( 88 Sr). The study led to an experimental model for assessing the hazard of radionuclide strontium-90 ( 90 Sr) entering the food chain and for predicting the risk to food safety. Chinese cabbage and spinach were grown in pots in a greenhouse and irrigated with deionized water containing known quantities of strontium. Based on the strontium content of that water, the plants were divided into five groups (treatments) and strontium content of the soil, and 30-day-old plants were determined by inductively coupled plasma atomic emission spectroscopy instrument (ICP-AES). Data on the strontium content of soil and plants enabled the development of a model using MATLAB, a mathematical software package, which included curve fitting and problem solving using regression equations and differential equations. Although strontium curves for leaves, stems, and roots of Chinese cabbage were not exactly the same, all showed a non-linear increase when compared with the increase in the content of strontium in soil. Strontium curves for leaves, stems, and roots of spinach were very similar and showed an initial increase followed by a decrease. Strontium concentrations in both Chinese cabbage and spinach were initially related to the concentrations of sodium and sulfur, the next two relevant nuclides being calcium and magnesium. The relationship between calcium and strontium in Chinese cabbage was different from that in spinach. By using 88 Sr to simulate the transfer of radionuclide 90 Sr from soil to a crop, the relevant data required to deal with accidental release of strontium can be obtained using a fitting curve and regression equations, thereby providing some experimental basis for evaluating the potential hazards posed by such accidents to the food chain.

  17. Thermal Inactivation of Listeria monocytogenes and Salmonella during Water and Steam Blanching of Vegetables.

    PubMed

    Ceylan, Erdogan; McMahon, Wendy; Garren, Donna M

    2017-09-01

    Thermal inactivation of Listeria monocytogenes and Salmonella was evaluated on peas, spinach, broccoli, potatoes, and carrots that were treated with hot water and steam. One gram-positive bacterium, L. monocytogenes, and one gram-negative bacterium, Salmonella, were selected as pertinent human pathogens for evaluation. Samples were inoculated with a composite of five strains each of L. monocytogenes and Salmonella to achieve approximately 10 8 to 10 9 CFU/g. Inoculated samples were treated with hot water at 85 and 87.8°C and with steam at 85 and 96.7°C for up to 3.5 min. A greater than 5-log reduction of L. monocytogenes and Salmonella was achieved on all products within 0.5 min by hot water blanching at 85 and 87.8°C. Steam blanching at 85°C reduced Salmonella populations by greater than 5 log on spinach and peas within 2 min and on carrots and broccoli within 3.5 min. Populations of Salmonella were reduced by more than 5 log within 1 min on carrot, spinach, and broccoli and within 2 min on peas by steam blanching at 96.7°C. Steam blanching at 85°C reduced L. monocytogenes populations by more than 5 log on carrots and spinach within 2 min and on broccoli and peas within 3.5 min. L. monocytogenes populations were reduced more than 5 log within 1 min on carrot, spinach, peas and broccoli by steam blanching at 96.7°C. Longer treatment times and higher temperatures were required for steam-blanched samples than for samples blanched with hot water. Results suggest that hot water and steam blanching practices commonly used by the frozen vegetable industry will achieve the desired 5-log lethality of L. monocytogenes and Salmonella and will enhance microbiological safety prior to freezing.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Hooker, Brian S.; Anderson, Daniel B.

    Optimization of Acidothermus cellulolyticus endoglucanase (E1) gene expression in transgenic potato (Solanum tuberosum L.) was examined in this study, where the E1 coding sequence was transcribed under control of a leaf specific promoter (tomato RbcS-3C) or the Mac promoter (a hybrid promoter of mannopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region). Average E1 activity in leaf extracts of potato transformants, in which E1 protein was targeted by a chloroplast signal peptide and an apoplast signal peptide were much higher than those by an E1 native signal peptide and a vacuole signal peptide. E1 protein accumulated up tomore » 2.6% of total leaf soluble protein, where E1 gene was under control of the RbcS-3C promoter, alfalfa mosaic virus 5-untranslated leader, and RbcS-2A signal peptide. E1 protein production, based on average E1 activity and E1 protein accumulation in leaf extracts, is higher in potato than those measured previously in transgenic tobacco bearing the same transgene constructs. Comparisons of E1 activity, protein accumulation, and relative mRNA levels showed that E1 expression under control of tomato RbcS-3C promoter was specifically localized in leaf tissues, while E1 gene was expressed in both leaf and tuber tissues under control of Mac promoter. This suggests dual-crop applications in which potato vines serve as enzyme production `bioreactors' while tubers are preserved for culinary applications.« less

  19. PHANTASTICA regulates leaf polarity and petiole identity in Medicago truncatula

    PubMed Central

    Ge, Liangfa; Chen, Rujin

    2014-01-01

    Establishment of proper polarities along the adaxial-abaxial, proximodistal, and medial-lateral axes is a critical step for the expansion of leaves from leaf primordia. It has been shown that the MYB domain protein, ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (collectively named ARP) plays an important role in this process. Loss of function of ARP leads to severe leaf polarity defects, such as abaxialized or needle-like leaves. In addition to its role in leaf polarity establishment, we have recently shown that the Medicago truncatula ARP gene, MtPHAN, also plays a role in leaf petiole identity regulation. We show that a mutation of MtPHAN results in petioles acquiring characteristics of the motor organ, pulvinus, including small epidermal cells with extensive cell surface modifications and altered vascular tissue development. Taken together, our results reveal a previously unidentified function of ARP in leaf development. PMID:24603499

  20. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea

    PubMed Central

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-01-01

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. PMID:25774486

  1. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea.

    PubMed

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-03-16

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.

  2. Spatial Imaging, Speciation, and Quantification of Selenium in theHyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, J.L.; Zhang, L.H.; Marcus, M.A.

    2006-09-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and {gamma}-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in additionmore » to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism.« less

  3. Abstracts of Plenary Lectures and Posters. International Symposium of the Structure and Function of Plant Lipids (7th) held in Davis, California on July 27-August 1, 1986,

    DTIC Science & Technology

    1986-08-01

    membranes of spinach chloroplasts, it has been shown by us that the naphthoate is prenylated by phytyl-PP to form 2-phytyl-1,4- napthocijinol which is...kinetics and mechanisms of phase transitions in aqueous dispersions of saturated monogalactosyldiacylglycerol from spinach leaves have been investigated by...521.6701, Hungary. Wheat seedlings grown in hydroponic cultures using media containing choline chloride exhibit an increased resistance to freezing

  4. A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Williams, M.

    2014-09-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System Modeling community. However, there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) based on the outcome of assessments of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C : N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.

  5. Histopathological investigations of the infection process and propagule development of Phytophthora ramorumon rhododendron leaves

    Treesearch

    Marko Riedel; Sabine Werres; Marianne Elliott; Katie McKeever; Simon Shamoun

    2012-01-01

    Studies on the relationship between rhododendron and Phytophthora ramorum include the influence of wounds on leaf infection and on the development of leaf necrosis (De Dobbelaere et al. 2010; Denman et al. 2005), the influence of the inoculum type (Widmer 2009), and tissue colonization by P. ramorum (Brown and Brasier 2007;...

  6. Somaclonal variation in hybrid poplars for resistance to Septoria leaf spot

    Treesearch

    M.E. Ostry; D. D. Skilling

    1987-01-01

    Tissue culture techniques have been used to obtain hybrid poplars with putative resistance to leaf spot caused by Septoria musiva from clones previously susceptible to the disease. Stem internode explants were used to obtain proliferating callus cultures. Adventitious bud formation and shoot proliferation were then induced. Elongated shoots were excised and rooted in a...

  7. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis.

    PubMed

    Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi

    2017-09-01

    Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Internalization of Escherichia coli O157:H7 gfp+ in rocket and Swiss chard baby leaves as affected by abiotic and biotic damage.

    PubMed

    Hartmann, R; Fricke, A; Stützel, H; Mansourian, S; Dekker, T; Wohanka, W; Alsanius, B

    2017-07-01

    Internalization of human pathogens in edible parts of vegetables eaten raw is a major concern, since once internalized they are protected from sanitizing treatments. In this study, we examined the invasion of gfp-labelled Escherichia coli O157:H7 into intact and biotically (infection with Xanthomonas campestris/Pseudomonas syringae) and abiotically (grating with silicon carbide) damaged leaves of wild rocket (Diplotaxis tenuifolia) and Swiss chard (Beta vulgaris subsp. cicla) using laser scanning confocal microscopy. Bacterial cells were found in internal locations of the tissue, irrespective of tissue health status. Contaminated leaf sections of biotically and abiotically damaged wild rocket leaves showed higher susceptibility to microbial invasion, while the pathogen was internalized in greater numbers into intact Swiss chard leaf sections when abiotically, but not biotically, damaged. The greatest differences were observed between the plant species; after surface sanitization, E. coli O157:H7 was still detected in wild rocket leaves, but not in Swiss chard leaves. Contamination of leafy vegetables with Escherichia coli O157:H7 is a growing problem, as reported outbreaks are increasing. However, establishment of this human pathogen in the phyllosphere is not completely understood. Using laser scanning confocal microscopy, we demonstrated that E. coli O157:H7gfp+ can invade plant tissue of Swiss chard and wild rocket leaves and that the bacterium is more sensitive to surface sanitization of Swiss chard leaves. Damage to leaf tissue promoted leaf invasion, but the nature of the damage (abiotic or biotic) and plant species had an impact. © 2017 The Society for Applied Microbiology.

  9. Induction of wound-periderm-like tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels

    PubMed Central

    Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz

    2015-01-01

    Background and Aims UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Methods Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d–1). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Key Results Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. Conclusions This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. PMID:26346722

  10. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  11. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    PubMed

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.

    PubMed

    Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C

    2007-01-01

    The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.

  13. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.

    PubMed

    He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen

    2013-10-01

    Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p<0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.

  14. Preservation of Plant Biomolecules and the Relevance to the Interpretation of Paleoenvironmental Signals: Tertiary Metasequoia Fossils as Examples

    NASA Astrophysics Data System (ADS)

    Yang, H.; Leng, Q.

    2004-12-01

    The degradation and preservation of biomolecules in plant tissues not only affects the inference on paleoecology of ancient plants but also bears significance in the interpretation of paleoenvironmental signals. Using a combined SEM and geochemical approach, we are able to show the source, liability, and preservation of structural biopolymers from morphologically well-preserved Metasequoia tissues from three Tertiary deposits. We detected a continuum of biomolecular preservation in this evolutionarily-conserved conifer. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was applied to solvent-extracted residues from both fossil leaf and wood remains in comparison with tissues from their living counterparts. The late Paleocene-early Eocene leaves from Ellesmere Island, Canadian Arctic Archipelago, exhibit the best quality of biochemical preservation and show pyrolysis products derived from labile biomolecules characterized by large amounts of polysaccharides. These labile biomolecules are the oldest record of these kinds so far characterized by the pyrolysis technology. The middle Eocene leaf tissues from Axel Heiberg Island, Canadian Arctic Archipelago, yielded slightly lesser amounts of polysaccharide moieties, but the lignin products are similar to those identified from the Ellesmere Island fossils. Compared with these Arctic materials, the Metasequoia leaves from Miocene Clarkia, Idaho, USA, show the lowest quality of molecular preservation, characterized by a dramatic reduction of polysaccharides. This continuum of relative quality of biomolecular preservation is further confirmed by SEM observations of transverse sections of these fossil leaves. The investigation revealed tissue-specific degradation, and our data support the in-situ polymerization hypothesis for the origin of long-chain homologous pairs of aliphatic n-alk-1-enes/n-alkanes as leaf alteration products. The preferential degradation and selective removal of polysaccharides may be significant in estimating plant paleo-productivity whereas the addition of aliphatic components to the leaf wax lipid pool may potentially contribute to the accuracy of compound specific isotope analysis using these lipid markers.

  15. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle

    PubMed Central

    2010-01-01

    Background The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. Methods For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Results Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1/SREBP-1c signal. Importantly, our results demonstrated that a combination of lotus leaf extract solution and L-carnitine reduced triglyceride accumulation to a greater extent compared to incubation with either substance alone. Conclusions Overall, our data demonstrate that a combination of lotus leaf extract and L-carnitine reduced triglyceride accumulation in human (pre)adipocytes by affecting different processes during the adipocyte life cycle. For this reason, this combination might represent a treatment option for obesity-related diseases. PMID:20687953

  16. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Lin, Dasong; Liang, Xuefeng; Shi, Xin

    2012-01-01

    The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was < or = 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain.

  17. Optimized, Fast-Throughput UHPLC-DAD Based Method for Carotenoid Quantification in Spinach, Serum, Chylomicrons, and Feces.

    PubMed

    Eriksen, Jane N; Madsen, Pia L; Dragsted, Lars O; Arrigoni, Eva

    2017-02-01

    An improved UHPLC-DAD-based method was developed and validated for quantification of major carotenoids present in spinach, serum, chylomicrons, and feces. Separation was achieved with gradient elution within 12.5 min for six dietary carotenoids and the internal standard, echinenone. The proposed method provides, for all standard components, resolution > 1.1, linearity covering the target range (R > 0.99), LOQ < 0.035 mg/L, and intraday and interday RSDs < 2 and 10%, respectively. Suitability of the method was tested on biological matrices. Method precision (RSD%) for carotenoid quantification in serum, chylomicrons, and feces was below 10% for intra- and interday analysis, except for lycopene. Method accuracy was consistent with mean recoveries ranging from 78.8 to 96.9% and from 57.2 to 96.9% for all carotenoids, except for lycopene, in serum and feces, respectively. Additionally, an interlaboratory validation study on spinach at two institutions showed no significant differences in lutein or β-carotene content, when evaluated on four occasions.

  18. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Consumption and utilization of experimentally altered corn by southern armyworm: Iron, nitrogen, and cyclic hydroxamates.

    PubMed

    Manuwoto, S; Scriber, J M

    1985-11-01

    The effects of differential leaf water, leaf nitrogen and cyclic hydroxamate (DIMBOA) concentrations in corn seedlings were analyzed for a polyphagous insect, the southern armyworm (Spodoptera eridania Cram.). Six different combinations of nutrients and allelochemicals [DIMBOA = 2,4-dihydroxy-7-methoxy(2H)-benzoxazin-3(4H)-one] were generated using two corn genotypes (WF9 and CI3IA) and three fertility regimes (complete nutrient, Fe-deficient, and N-deficient solutions) in the University Biotron. Poorest larval growth was observed in the low-nitrogen treatments (1.2% and 1.7% leaf N) and was the result of both low consumption rates and high metabolic costs (low efficiency of conversion of digested food, ECD). Fastest growth rates were observed forthe larvae fed leaves from the high-nitrogen treatments (4.6% and 4.4% leaf N). It is noteworthy that these treatments also contained the highest concentration of cyclic hydroxamates, which are generally believed to be the primary defensive chemicals mediating resistance against the European corn borer,Ostrinia nubilalis (Hubner). If these hydroxamates do have any deleterious or costly effects (perhaps accounting for a large portion of metabolic expenditures), the high digestibility of the leaf tissue and the increased consumption rates more than compensate, resulting in rapid growth (growth rate = consumption rate × approximate digestibility × efficiency of conversion of the digested food). These studies illustrate that variation in key nutrients and allelochemicals within a single plant species (Zea mays L.) may have significantly different effects upon various potential leaf-chewing caterpillars, such as these armyworms versus corn borers (which cannot handle the cyclic hydroxamates, even if provided with young nutritious leaf tissues).

  20. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    PubMed Central

    Cahon, Thomas; Caillon, Robin

    2018-01-01

    Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342

  1. Leaf maximum photosynthetic rate and venation are linked by hydraulics.

    PubMed

    Brodribb, Tim J; Feild, Taylor S; Jordan, Gregory J

    2007-08-01

    Leaf veins are almost ubiquitous across the range of terrestrial plant diversity, yet their influence on leaf photosynthetic performance remains uncertain. We show here that specific physical attributes of the vascular plumbing network are key limiters of the hydraulic and photosynthetic proficiency of any leaf. Following the logic that leaf veins evolved to bypass inefficient water transport through living mesophyll tissue, we examined the hydraulic pathway beyond the distal ends of the vein system as a possible limiter of water transport in leaves. We tested a mechanistic hypothesis that the length of this final traverse, as water moves from veins across the mesophyll to where it evaporates from the leaf, governs the hydraulic efficiency and photosynthetic carbon assimilation of any leaf. Sampling 43 species across the breadth of plant diversity from mosses to flowering plants, we found that the post-vein traverse as determined by characters such as vein density, leaf thickness, and cell shape, was strongly correlated with the hydraulic conductivity and maximum photosynthetic rate of foliage. The shape of this correlation provided clear support for the a priori hypothesis that vein positioning limits photosynthesis via its influence on leaf hydraulic efficiency.

  2. Endogenous electromagnetic fields in plant leaves: a new hypothesis for vascular pattern formation.

    PubMed

    Pietak, Alexis Mari

    2011-06-01

    Electromagnetic (EM) phenomena have long been implicated in biological development, but few detailed, practical mechanisms have been put forth to connect electromagnetism with morphogenetic processes. This work describes a new hypothesis for plant leaf veination, whereby an endogenous electric field forming as a result of a coherent Frohlich process, and corresponding to an EM resonant mode of the developing leaf structure, is capable of instigating leaf vascularisation. In order to test the feasibility of this hypothesis, a three-dimensional, EM finite-element model (FEM) of a leaf primordium was constructed to determine if suitable resonant modes were physically possible for geometric and physical parameters similar to those of developing leaf tissue. Using the FEM model, resonant EM modes with patterns of relevance to developing leaf vein modalities were detected. On account of the existence of shared geometric signatures in a leaf's vascular pattern and the electric field component of EM resonant modes supported by a developing leaf structure, further theoretical and experimental investigations are warranted. Significantly, this hypothesis is not limited to leaf vascular patterning, but may be applicable to a variety of morphogenetic phenomena in a number of living systems.

  3. Demonstration tests of irrigation water disinfection with chlorine dioxide in open field cultivation of baby spinach.

    PubMed

    López-Gálvez, Francisco; Gil, Maria I; Meireles, Ana; Truchado, Pilar; Allende, Ana

    2018-06-01

    Treatments for the disinfection of irrigation water have to be evaluated by demonstration tests carried out under commercial settings taking into account not only their antimicrobial activity but also the potential phytotoxic effects on the crop. The consequences of the treatment of irrigation water with chlorine dioxide (ClO 2 ) used for sprinkler irrigation of baby spinach in two commercial agricultural fields was assessed. Residual ClO 2 levels at the sprinklers in the treated field were always below 1 mg L -1 . ClO 2 treatment provoked limited but statistically significant reductions in culturable Escherichia coli counts (0.2-0.3 log reductions), but not in the viable E. coli counts in water, suggesting the presence of viable but non-culturable cells (VBNC). Although disinfected irrigation water did not have an impact on the microbial loads of Enterobacteriaceae nor on the quality characteristics of baby spinach, it caused the accumulation of chlorates (up to 0.99 mg kg -1 in plants) and the reduction of the photosynthetic efficiency of baby spinach. Low concentrations of ClO 2 are effective in reducing the culturable E. coli present in irrigation water but it might induce the VBNC state. Presence of disinfection by-products and their accumulation in the crop must be considered to adjust doses in order to avoid crop damage and chemical safety risks. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    PubMed

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Level 2 validation of a flow cytometric method for detection of Escherichia coli O157:H7 in raw spinach.

    PubMed

    Williams, Anna J; Cooper, Willie M; Summage-West, Christine V; Sims, Lillie M; Woodruff, Robert; Christman, Jessica; Moskal, Ted J; Ramsaroop, Shawn; Sutherland, John B; Alusta, Pierre; Wilkes, Jon G; Buzatu, Dan A

    2015-12-23

    The Bacteriological Analytical Manual (BAM) method currently used by the United States Food and Drug Administration (FDA) to detect Escherichia coli O157:H7 in spinach was systematically compared to a new flow cytometry based method. This Food and Drug Administration (FDA) level 2 external laboratory validation study was designed to determine the latter method's sensitivity and speed for analysis of this pathogen in raw spinach. Detection of target cell inoculations with a low cell count is critical, since enterohemorrhagic strains of E. coli require an infective dose of as few as 10 cells (Schmid-Hempel and Frank, 2007). Although, according to the FDA, the infectious dose is unknown (Food and Drug Administration, 1993). Therefore, the inoculation level into the spinach, a total of 2.0±2.6 viable E. coli O157 cells, was specified to yield between 25% and 75% detection by the new method, out of 20 samples (10 positives and 10 negatives). This criterion was met in that the new method detected 60% of the nominally positive samples; the corresponding sensitivity of the reference method was 50%. For both methods the most likely explanation for false negatives was that no viable cells were actually introduced into the sample. In this validation study, the flow cytometry method was equal to the BAM in sensitivity and far superior in speed. Published by Elsevier B.V.

  6. Cadmium and lead accumulations and agronomic quality of a newly bred pollution-safe cultivar (PSC) of water spinach.

    PubMed

    Huang, Ying-Ying; Mu, Yang-Xiu; He, Chun-Tao; Fu, Hui-Ling; Wang, Xue-Song; Gong, Fei-Yue; Yang, Zhong-Yi

    2018-04-01

    Breeding for pollution-safe cultivars (PSCs) can reduce pollutant accumulation in crops. However, the PSC breeding would face the risk of nutritional quality reduction, which is usually ignored in conventional breeding programs targeting to increase crop yield or nutritional quality. Thus, the doubt whether the risk would exist has to be clarified for supporting the PSC breeding. In the present study, a newly bred Cd/Pb-PSC of water spinach (Ipomoea aquatic Forsk.) and its parents (QLQ with low-Cd/Pb accumulation ability and T308 with high yield) of water spinach were employed to clarify the above-mentioned issue. Yields, and concentrations of Cd, Pb, nitrite, and organic and inorganic nutrients in shoots of the three experimental lines were determined. There were no significant differences in Cd/Pb concentration between the new PSC and QLQ, in nitrite content between the new PSC and its two parents and in yield between the new PSC and T308. It is decisively significant that shoot concentrations of organic and inorganic nutrients in the Cd/Pb-PSC were as high as those in one of its parents. It is affirmed that the breeding operations (crossing and consequently continuous selfing) for lowering Cd/Pb accumulation capacity of water spinach would not lower the nutritional values of the obtained Cd/Pb-PSCs from the breeding, which should be a pillar that supports the feasibility to minimize Cd/Pb pollution in vegetables using PSC-breeding method.

  7. Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture[OPEN

    PubMed Central

    Briggs, Sarah; Bradbury, Peter J.

    2017-01-01

    Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize. PMID:28698237

  8. Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants.

    PubMed

    Sarmast, Mostafa Khoshhal; Salehi, Hassan; Khosh-Khui, Morteza

    2014-12-01

    Plantlets under in vitro conditions transferred to ex vivo conditions are exposed to biotic and abiotic stresses. Furthermore, in vitro regenerated plants are typically frail and sometimes difficult to handle subsequently increasing their risk to damage and disease; hence acclimatization of these plantlets is the most important step in tissue culture techniques. An experiment was conducted under in vitro conditions to study the effects of shaking duration (twice daily at 6:00 a.m. and 9:00 p.m. for 2, 4, 8, and 16 min at 250 rpm for 14 days) on Sansevieria trifasciata L. as a model plant. Results showed that shaking improved handling, total plant height, and leaf characteristics of the model plant. Forty-eight hours after 14 days of shaking treatments with increasing shaking time, leaf length decreased but proline content of leaf increased. However, 6 months after starting the experiment different results were observed. In explants that received 16 min of shaking treatment, leaf length and area and photosynthesis rate were increased compared with control plantlets. Six months after starting the experiment, control plantlets had 12.5 % mortality; however, no mortality was observed in other treated explants. The results demonstrated that shaking improved the explants' root length and number and as a simple, cost-effective, and non-chemical novel approach may be substituted for other prevalent acclimatization techniques used for tissue culture regenerated plantlets. Further studies with sensitive plants are needed to establish this hypothesis.

  9. SU-E-T-331: Dosimetric Impact of Multileaf Collimator Leaf Width On Stereotactic Radiosurgery (SRS) RapidArc Treatment Plans for Single and Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Keeling, V; Ahmad, S

    Purpose: To determine the effects of multileaf collimator (MLC) leaf width on normal-brain-tissue doses and dose conformity of SRS RapidArc treatment plans for brain tumors. Methods: Ten patients with 24 intracranial tumors (seven with 1–2 and three with 4–6 lesions) were planned using RapidArc for both Varian Millennium 120 MLC (5 mm leaf width) and high definition (HD) MLC (2.5 mm leaf width). Between 2 and 8 arcs were used with two full coplanar arcs and the rest non-coplanar half arcs. 6 MV beams were used and plans were optimized with a high priority to the Normal Tissue Objective (tomore » achieve dose conformity and sharp dose fall-off) and normal brain tissue. Calculation was done using AAA on a 1 mm grid size. The prescription dose ranged from 14–22 Gy. Plans were normalized such that 99% of the target received the prescription dose. Identical beam geometries, optimizations, calculations, and normalizations were used for both plans. Paddick Conformity Index (PCI), V4, V8 and V12 Gy for normal brain tissue and Integral Dose were used for analysis. Results: In all cases, HD MLC plans performed better in sparing normal brain tissue, achieving a higher PCI with a lower Integral Dose. The average PCI for all 24 targets was 0.75±0.23 and 0.70±0.23 (p ≤0.0015) for HD MLC and Millennium MLC plans, respectively. The average ratio of normal brain doses for Millennium MLC to HD MLC plans was 1.30±0.16, 1.27±0.15, and 1.31±0.18 for the V4, V8, and V12, respectively. The differences in normal brain dose for all criteria were statistically significant with p-value < 0.02. On average Millennium MLC plans had a 16% higher integral dose than HD MLC plans. Conclusion: Significantly better dose conformity with reduced volume of normal brain tissue and integral dose was achieved with HD MLC plans compared to Millennium MLC plans.« less

  10. The mechanism of improved aeration due to gas films on leaves of submerged rice.

    PubMed

    Verboven, Pieter; Pedersen, Ole; Ho, Quang Tri; Nicolai, Bart M; Colmer, Timothy D

    2014-10-01

    Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a three-dimensional leaf anatomy model. The anatomy and dark respiration of leaves of rice (Oryza sativa L.) were measured and used to compute O2 fluxes and partial pressure of O2 (pO2 ) in the DBL, gas film and leaf when submerged. The effects of floodwater pO2 , DBL thickness, cuticle permeability, presence of gas film and stomatal opening were explored. Under O2 -limiting conditions of the bulk water (pO2  < 10 kPa), the gas film significantly increases the O2 flux into submerged leaves regardless of whether stomata are fully or partly open. With a gas film, tissue pO2 substantially increases, even for the slightest stomatal opening, but not when stomata are completely closed. The effect of gas films increases with decreasing cuticle permeability. O2 flux and tissue pO2 decrease with increasing DBL thickness. The present modelling analysis provides a mechanistic understanding of how leaf gas films facilitate O2 entry into submerged plants. © 2014 John Wiley & Sons Ltd.

  11. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.

    PubMed

    Ocheltree, T W; Nippert, J B; Prasad, P V V

    2014-01-01

    The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand. © 2013 John Wiley & Sons Ltd.

  12. Nutritional Ecology of Wood-Feeing Coleoptrea Lepidoptera and Hymenoptera

    Treesearch

    Haack Robert A.; Frank Slansky Jr.

    1987-01-01

    Woody tissues are produced by each of the approximately 44,000 species of trees, shrubs, and woody vines found worldwide (Hickin, 1975). Most woody tissues are tougher, drier, and nutritionally poorer than leaf tissue when considered as a sustrate for insect growth and development (Slansky and Scriber, 195). Nevertheless, many insects have evolved to live and feed in...

  13. Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose

    Treesearch

    Robert L. Heath; Allen S. Lefohn; Robert C. Musselman

    2009-01-01

    Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 hat (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant...

  14. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model

    PubMed Central

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-01-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J. The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. PMID:27702991

  15. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. © 2013 CSIRO. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    PubMed

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A Simple Method for Rapid Depletion of Rubisco from Soybean (Glycine max) Leaf for Proteomic Analysis of Lower Abundance Proteins

    USDA-ARS?s Scientific Manuscript database

    2-DE analysis of complex plant proteomes has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the low abundance proteins within leaf tissue is difficult when it is comprised of 30 – 50% of the CO2 fixation enzyme Rubisco. Resolution can be improved t...

  18. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    PubMed

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response?

    PubMed

    Tyree, Melvin T; Nardini, Andrea; Salleo, Sebastiano; Sack, Lawren; El Omari, Bouchra

    2005-02-01

    This paper examines the dependence of whole leaf hydraulic conductance to liquid water (K(L)) on irradiance when measured with a high pressure flowmeter (HPFM). During HPFM measurements, water is perfused into leaves faster than it evaporates hence water infiltrates leaf air spaces and must pass through stomates in the liquid state. Since stomates open and close under high versus low irradiance, respectively, the possibility exists that K(L) might change with irradiance if stomates close tightly enough to restrict water movement. However, the dependence of K(L) on irradiance could be due to a direct effect of irradiance on the hydraulic properties of other tissues in the leaf. In the present study, K(L) increased with irradiance for 6 of the 11 species tested. Whole leaf conductance to water vapour, g(L), was used as a proxy for stomatal aperture and the time-course of changes in K(L) and g(L) was studied during the transition from low to high irradiance and from high to low irradiance. Experiments showed that in some species K(L) changes were not paralleled by g(L) changes. Measurements were also done after perfusion of leaves with ABA which inhibited the g(L) response to irradiance. These leaves showed the same K(L) response to irradiance as control leaves. These experimental results and theoretical calculations suggest that the irradiance dependence of K(L) is more consistent with an effect on extravascular (and/or vascular) tissues rather than stomatal aperture. Irradiance-mediated stimulation of aquaporins or hydrogel effects in leaf tracheids may be involved.

  20. Leaf Tissue C:N and Soil N are Modified by Growing Season and Goose Grazing Phenology in a Sub-Arctic Coastal Wetland of Western Alaska

    NASA Astrophysics Data System (ADS)

    Choi, R. T.; Beard, K. H.; Leffler, A. J.; Schmutz, J. A.; Welker, J. M.

    2014-12-01

    Climate change in Arctic wetlands is resulting in a widening phenological mismatch between the onset of the growing season and the arrival and hatch date of migratory geese, the primary consumers in the system. During the past three decades, the growing season has advanced but geese have not advanced arrival or hatch date at the same rate. Geese now arrive into a system that has been growing longer than in the past with potential changes in forage quality because sedges have their highest nutrient density shortly following emergence. One potential concomitant result of this phenological gap is altered carbon to nitrogen ratio (C:N) of leaf tissue being returned to the ecosystem as feces that is more N-poor. Altering the C:N of these inputs can further influence C and N cycling in the system. We examine the influence of advanced growing season and different arrival times by black brant on leaf and soil C:N ratio and soil N-form. Our experiment consists of six blocks with nine study plots each. Half the plots are warmed to advance the growing season. Two plots each receive early, typical, late, and no grazing; one plot is a control that is not warmed and grazing is natural. Leaf tissue was collected to determine C and N concentration using an elemental analyzer. Anion and cation exchange membranes were used to monitor inorganic N forms in soil; samples were analyzed via fluorescence following extraction. Soil water collected from lysimeters was analyzed for organic N. Warming advanced plant growth between one and two weeks and resulted in higher C:N of leaf tissue Geese maintained 'grazing lawns', areas of exceptionally short vegetation, where plants had high N compared to non-grazed areas. Grazing early in the season promoted higher N content of leaves and soil while grazing late had little influence on N. The timing of the growing season and grazing both have important implications for C and N in this system.

Top