Sample records for spinal cord consistent

  1. Psychometric Validation of the World Health Organization Disability Assessment Schedule 2.0-Twelve-Item Version in Persons with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Smedema, Susan Miller; Ruiz, Derek; Mohr, Michael J.

    2017-01-01

    Purpose: To evaluate the factorial and concurrent validity and internal consistency reliability of the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) 12-item version in persons with spinal cord injuries. Method: Two hundred forty-seven adults with spinal cord injuries completed an online survey consisting of the WHODAS…

  2. Cellular Scaling Rules for Primate Spinal Cords

    PubMed Central

    Burish, Mark J.; Peebles, J. Klint; Baldwin, Mary K.; Tavares, Luciano; Kaas, Jon H.; Herculano-Houzel, Suzana

    2010-01-01

    The spinal cord can be considered a major sensorimotor interface between the body and the brain. How does the spinal cord scale with body and brain mass, and how are its numbers of neurons related to the number of neurons in the brain across species of different body and brain sizes? Here we determine the cellular composition of the spinal cord in eight primate species and find that its number of neurons varies as a linear function of cord length, and accompanies body mass raised to an exponent close to 1/3. This relationship suggests that the extension, mass and number of neurons that compose the spinal cord are related to body length, rather than to body mass or surface. Moreover, we show that although brain mass increases linearly with cord mass, the number of neurons in the brain increases with the number of neurons in the spinal cord raised to the power of 1.7. This faster addition of neurons to the brain than to the spinal cord is consistent with current views on how larger brains add complexity to the processing of environmental and somatic information. PMID:20926855

  3. Microsurgical resection of intramedullary spinal cord hemangioblastoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Spinal cord hemangioblastomas account for about 10% of spinal cord tumors. They usually arise from the dorsolateral pia mater and are characterized by their significant vascularity. The principles and techniques of safe resection are different than those employed for the more commonly occurring intramedullary glial tumors (e.g. ependymoma, astrocytoma) and consist of circumferential detachment of the tumor margin from the surrounding normal pia. This video demonstrates the microsurgical techniques of resection of a thoracic spinal cord hemangioblastoma. The video can be found here: http://youtu.be/yT5KLi4VyAo.

  4. Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T.

    PubMed

    San Emeterio Nateras, Oscar; Yu, Fang; Muir, Eric R; Bazan, Carlos; Franklin, Crystal G; Li, Wei; Li, Jinqi; Lancaster, Jack L; Duong, Timothy Q

    2016-04-01

    To apply resting-state functional magnetic resonance (MR) imaging to map functional connectivity of the human spinal cord. Studies were performed in nine self-declared healthy volunteers with informed consent and institutional review board approval. Resting-state functional MR imaging was performed to map functional connectivity of the human cervical spinal cord from C1 to C4 at 1 × 1 × 3-mm resolution with a 3.0-T clinical MR imaging unit. Independent component analysis (ICA) was performed to derive resting-state functional MR imaging z-score maps rendered on two-dimensional and three-dimensional images. Seed-based analysis was performed for cross validation with ICA networks by using Pearson correlation. Reproducibility analysis of resting-state functional MR imaging maps from four repeated trials in a single participant yielded a mean z score of 6 ± 1 (P < .0001). The centroid coordinates across the four trials deviated by 2 in-plane voxels ± 2 mm (standard deviation) and up to one adjacent image section ± 3 mm. ICA of group resting-state functional MR imaging data revealed prominent functional connectivity patterns within the spinal cord gray matter. There were statistically significant (z score > 3, P < .001) bilateral, unilateral, and intersegmental correlations in the ventral horns, dorsal horns, and central spinal cord gray matter. Three-dimensional surface rendering provided visualization of these components along the length of the spinal cord. Seed-based analysis showed that many ICA components exhibited strong and significant (P < .05) correlations, corroborating the ICA results. Resting-state functional MR imaging connectivity networks are qualitatively consistent with known neuroanatomic and functional structures in the spinal cord. Resting-state functional MR imaging of the human cervical spinal cord with a 3.0-T clinical MR imaging unit and standard MR imaging protocols and hardware reveals prominent functional connectivity patterns within the spinal cord gray matter, consistent with known functional and anatomic layouts of the spinal cord.

  5. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists

    PubMed Central

    Priori, Alberto; Ciocca, Matteo; Parazzini, Marta; Vergari, Maurizio; Ferrucci, Roberta

    2014-01-01

    Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists. PMID:24907311

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medin, Paul M., E-mail: Paul.medin@utsouthwestern.ed; Boike, Thomas P.

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat hasmore » demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.« less

  7. White matter organization in cervical spinal cord relates differently to age and control of grip force in healthy subjects.

    PubMed

    Lindberg, Påvel G; Feydy, Antoine; Maier, Marc A

    2010-03-17

    Diffusion tensor imaging (DTI) can be used to elucidate relations between CNS structure and function. We hypothesized that the degree of spinal white matter organization relates to the accuracy of control of grip force. Healthy subjects of different age were studied using DTI and visuomotor tracking of precision grip force. The latter is a prime component of manual dexterity. A regional analysis of spinal white matter [fractional anisotropy (FA)] across multiple cervical levels (C2-C3, C4-C5, and C6-C7) and in different regions of interest (left and right lateral or medial spinal cord) was performed. FA was highest at the C2-C3 level, higher on the right than the left side, and higher in the lateral than in the medial spinal cord (p < 0.001). FA of whole cervical spinal cord (C2-C7) was lower in subjects with high tracking error (r = -0.56, p = 0.004) and decreased with age (r = -0.63, p = 0.001). A multiple regression analysis revealed an independent contribution of each predictor (semipartial correlations: age, r = -0.55, p < 0.001; tracking error, r = -0.49, p = 0.003). The closest relation between FA and tracking error was found at the C6-C7 level in the lateral spinal cord, in which the corticospinal tract innervates spinal circuitry controlling hand and digit muscles. FA of the medial spinal cord correlated consistently with age across all cervical levels, whereas FA of the lateral spinal cord did not. The results suggest (1) a functionally relevant specialization of lateral spinal cord white matter and (2) an increased sensitivity to age-related decline in medial spinal cord white matter in healthy subjects.

  8. Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model.

    PubMed

    Yang, Jae Hyuk; Suh, Seung Woo; Modi, Hitesh N; Ramani, Easwar T; Hong, Jae Young; Hwang, Jin Ho; Jung, Woon Yong

    2013-05-01

    Spinal cord injury can occur following surgical procedures for correction of scoliosis and kyphosis, as these procedures produce lengthening of the vertebral column. The objective of this study was to cause spinal cord injury by vertebral column distraction and evaluate the histological changes in the spinal cord in relationship to the pattern of recovery from the spinal cord injury. Global osteotomy of all three spinal columns was performed on the ninth thoracic vertebra of sixteen pigs. The osteotomized vertebra was distracted until transcranial electrical stimulation-motor evoked potential (TES-MEP) signals disappeared or decreased by >80% compared with the baseline amplitude; this was defined as spinal cord injury. The distraction distance at which spinal cord injury occurred was measured, the distraction was released, and the TES-MEP recovery pattern was observed. A wake-up test was performed, two days of observations were made, and histological changes were evaluated in relationship to the recovery pattern. Spinal cord injury developed at a distraction distance of 20.2 ± 4.7 mm, equivalent to 3.6% of the thoracolumbar spinal length, and the distraction distance was correlated with the thoracolumbar spinal length (r = 0.632, p = 0.009). No animals exhibited complete recovery according to TES-MEP testing, eleven exhibited incomplete recovery, and five exhibited no recovery. During the two days of observation, all eleven animals with incomplete recovery showed positive responses to sensory and motor tests, whereas none of the five animals with no recovery had positive responses. On histological evaluation, three animals that exhibited no recovery all showed complete severance of nerve fibers (axotomy), whereas six animals that exhibited incomplete recovery all showed partial white-matter injury. Parallel distraction of approximately 3.6% of the thoracolumbar length after global osteotomy resulted in spinal cord injury and histological evidence of spinal cord damage. The pattern of recovery from the spinal cord injury after release of the distraction was consistent with the degree of axonal damage. Axotomy was observed in animals that exhibited no recovery on TES-MEP, and only hemorrhagic changes in the white matter were observed in animals that exhibited incomplete recovery.

  9. Dynamic Detection of Spinal Cord Position During Postural Changes Using Near-Infrared Reflectometry.

    PubMed

    Wolf, Erich W

    2015-08-01

    Motion of the spinal cord relative to a spinal cord stimulator epidural electrode array can cause suboptimal stimulation: either noxious, inefficient, or insufficient. Adaptive stimulation attempts to mitigate these effects by modulating stimulation parameters in a position-dependent fashion. Near-infrared (NIR) reflectometry is demonstrated to provide real-time direct measurement of spinal cord position at the site of stimulation, which can facilitate closed-loop adaptive stimulation during static and dynamic motion states. A miniature sensor array consisting of an NIR light emitting diode flanked by phototransistors potted in epoxy was placed in the dorsal epidural space of a human cadaver at the T8 level via laminotomy. Turgor of the subarachnoid space was maintained by intrathecal infusion of saline. NIR reflectance was measured as the cadaver was rotated about its longitudinal axis on a gantry. NIR reflectance was correlated with gantry position and velocity. NIR reflectometry suggests gravitational force is the primary determinant of cord position in static, ordinal positions. Under dynamic motion conditions, there was statistically significant cross-correlation between reflectometry data and the tangential velocity squared, suggesting that centripetal force was the primary determinant of cord position as the gantry was rotated. Reflectometry data strongly correlated with a simple geometric model of anticipated spinal cord precession within the spinal canal. Spinal cord position during dynamic motion has been shown to differ from static predictions due to additional influences such as centripetal force. These findings underscore limitations in extrapolating spinal cord position from surrogates such as body position or body acceleration at sites remote from the stimulating electrodes. NIR reflectometry offers a real-time direct measure of spinal cord position in both static and dynamic motion states, which may facilitate closed-loop adaptive stimulation applications. © 2015 International Neuromodulation Society.

  10. Pathology of radiation injury to the canine spinal cord.

    PubMed

    Powers, B E; Beck, E R; Gillette, E L; Gould, D H; LeCouter, R A

    1992-01-01

    The histopathologic response of the canine spinal cord to fractionated doses of radiation was investigated. Forty-two dogs received 0, 44, 52, 60, or 68 Gy in 4 Gy fractions to the thoracic spinal cord. Dogs were evaluated for neurologic signs and were observed for 1 or 2 years after irradiation. Six major lesion types were observed; five in the irradiated spinal cord and one in irradiated dorsal root ganglia. The three most severe spinal cord lesions were white matter necrosis, massive hemorrhage, and segmental parenchymal atrophy which had an ED50 of 56.9 Gy (51.3-63.3 Gy 95% CI) in 4 Gy fractions. These lesions were consistently associated with abnormal neurologic signs. Radiation damage to the vasculature was the most likely cause of these three lesions. The two less severe spinal cord lesions were focal fiber loss, which had an ED50 of 49.5 Gy (44.8-53.6 Gy 95% CI) in 4 gy fractions and scattered white matter vacuolation that occurred at all doses. These less severe lesions were not consistently associated with neurologic signs and indicated the presence of residual damage that may occur after lower doses of radiation. Radiation damage to glial cells, axons, and/or vasculature were possible causes of these lesions. In the irradiated dorsal root ganglia, affected sensory neurons contained large intracytoplasmic vacuoles, and there was loss of neurons and satellite cells. Such alterations could affect sensory function. The dog is a good model for spinal cord irradiation studies as tolerance doses for lesions causing clinical signs are close to the estimated tolerance doses for humans, and studies involving volume and long-term observation can be done.

  11. Comparison of Motor-Evoked Potentials Versus Somatosensory-Evoked Potentials as Early Indicators of Neural Compromise in Rat Model of Spinal Cord Compression.

    PubMed

    Morris, Susan H; Howard, Jason J; El-Hawary, Ron

    2017-03-15

    Randomized controlled study comparing the efficacy of intraoperative somatosensory-evoked potentials (SSEPs) versus transcranial motor-evoked potentials (TcMEPs) as early indicators of neural compromise and predictors of postoperative function in a rat model of spinal cord compression. To compare the relative efficacy of SSEPs and TcMEPs to detect spinal cord compromise and predict postoperative functional deficit after spinal cord compression. There is controversy regarding the efficacy of SSEPs versus TcMEPs to detect intraoperative spinal cord compromise and predict functional outcomes. Previous trials provide some guidance as to the role of each modality in spinal cord monitoring but randomized controlled trials, which are not feasible in humans, are lacking. Twenty-four adult male Wistar rats were evenly divided into three experimental groups and one control group. The experimental groups were determined according to the length of time that 100% TcMEP signal loss was maintained: 0, 5, or 15 minutes. All animals had standardized preoperative functional testing. Spinal cord compromise was initiated utilizing a validated protocol, which involved compression via a balloon catheter introduced into the thoracic sublaminar space. Both SSEPs and TcMEPs were recorded during cord compression for each experimental group. Functional behavioral testing using two validated methods (tilt and modified Tarlov) was repeated 24 hours after termination of spinal cord compression. Post hoc, animals were redistributed into two functional subgroups, noncompromised and compromised, for statistical analysis. TcMEPs consistently detected spinal cord compromise either in advance of or at the same time as SSEPs; however, the delay in SSEP response was not significant for cases when compromised postoperative function resulted. Both SSEP and TcMEP amplitude recovery correlated well with postoperative functional scores. TcMEPs are more sensitive to spinal cord compromise than SSEPs, but the recovery profiles of both SSEP and TcMEP amplitudes are good predictors of postoperative function. 2.

  12. Sexuality and sexual life in women with spinal cord injury: a controlled study.

    PubMed

    Kreuter, Margareta; Siösteen, Agneta; Biering-Sørensen, Fin

    2008-01-01

    To describe sexual life in women with spinal cord injury. Controlled cross-sectional, questionnaire. Women, 18-65 years, treated at spinal cord centres in Sweden, Denmark, Norway, Finland and Iceland. 545 women (57%) completed the questionnaires. The age-matched control group consisted of 507 women. The 104-item Spinal Cord Injury Women Questionnaire, was designed to assess different dimensions of sexuality. 80% of the women with spinal cord injury had engaged in sex after the injury. Reasons for not wanting or not having the courage to be intimate and sexual were physical problems, low sexual desire, low self-esteem and feelings of being unattractive. The motivations of both the women with spinal cord injury and controls to engage in sexual activity were intimacy-based rather than primarily sexual. Being in the right mood both before and during sex to become receptive to sexual stimulation was important. For women who are able to overcome the physical restrictions and mental obstacles due to injury, it is possible to regain an active and positive sexual life together with a partner. Sexual information and counselling should be available both during initial rehabilitation and later when the women have returned to their homes.

  13. Real-time PCR quantification of gene expression in embryonic mouse tissue.

    PubMed

    Villalon, Eric; Schulz, David J; Waters, Samuel T

    2014-01-01

    The Gbx family of transcription factors consists of two closely related proteins GBX1 and GBX2. A defining feature of the GBX family is a highly conserved 60 amino acid DNA-binding domain, which differs by just two amino acids. Gbx1 and Gbx2 are co-expressed in several areas of the developing central nervous system including the forebrain, anterior hindbrain, and spinal cord, suggesting the potential for genetic redundancy. However, there is a spatiotemporal difference in expression of Gbx1 and Gbx2 in the forebrain and spinal cord. Gbx2 has been shown to play a critical role in positioning the midbrain/hindbrain boundary and developing anterior hindbrain, whereas gene-targeting experiments in mice have revealed an essential function for Gbx1 in the spinal cord for normal locomotion. To determine if Gbx2 could potentially compensate for a loss of Gbx1 in the developing spinal cord, we performed real-time PCR to examine levels of Gbx2 expression in Gbx1(-/-) spinal cord at embryonic day (E) 13.5, a developmental stage when Gbx2 is rapidly downregulated. We demonstrate that Gbx2 expression is elevated in the spinal cord of Gbx1(-/-) embryos.

  14. Anaplastic astrocytoma in the spinal cord of an African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Gibson, C J; Parry, N M A; Jakowski, R M; Eshar, D

    2008-11-01

    A 2-year-old, female hedgehog presented with an 8-month history of progressive, ascending paresis/paralysis and was tentatively diagnosed with wobbly hedgehog syndrome. She died awaiting further diagnostic tests, and the owners consented to postmortem examination. Grossly, the bladder was large and flaccid and the cervical and lumbar spinal cord were regionally enlarged, light grey, and friable with multifocal hemorrhages. The thoracic spinal cord was grossly normal. Microscopically all regions of the spinal cord had similar changes, although the cervical and lumbar sections were most severely affected. These regions were completely effaced by a moderately cellular infiltration of highly pleomorphic polygonal to spindle shaped cells, mineralization, and necrosis, which were most consistent with anaplastic astrocytoma. The thoracic spinal cord white matter was similarly infiltrated by the neoplastic cells, with perivascular extension into the otherwise normal grey matter. A diagnosis of anaplastic astrocytoma was confirmed using immunohistochemical stains that were positive for glial fibrillary acidic protein and S100.

  15. Subarachnoid Hemorrhage due to Spinal Cord Schwannoma Presenting Findings Mimicking Meningitis.

    PubMed

    Zhang, Hong-Mei; Zhang, Yin-Xi; Zhang, Qing; Song, Shui-Jiang; Liu, Zhi-Rong

    2016-08-01

    Subarachnoid hemorrhage (SAH) of spinal origin is uncommon in clinical practice, and spinal schwannomas associated with SAH are even more rarely reported. We report an unusual case of spinal SAH mimicking meningitis with normal brain computed tomography (CT)/magnetic resonance imaging (MRI) and negative CT angiography. Cerebrospinal fluid examination results were consistent with the manifestation of SAH. Spinal MRI performed subsequently showed an intradural extramedullary mass. The patient received surgery and was finally diagnosed with spinal cord schwannoma. A retrospective chart review of the patient was performed. We describe a case of SAH due to spinal cord schwannoma. Our case highlights the importance of careful history taking and complete evaluation. We emphasize that spinal causes should always be ruled out in patients with angionegative SAH and that schwannoma should be considered in the differential diagnosis of SAH etiologies even though rare. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Patient-focused goal planning process and outcome after spinal cord injury rehabilitation: quantitative and qualitative audit.

    PubMed

    Byrnes, Michelle; Beilby, Janet; Ray, Patricia; McLennan, Renee; Ker, John; Schug, Stephan

    2012-12-01

    To evaluate the process and outcome of a multidisciplinary inpatient goal planning rehabilitation programme on physical, social and psychological functioning for patients with spinal cord injury. Clinical audit: quantitative and qualitative analyses. Specialist spinal injury unit, Perth, Australia. Consecutive series of 100 newly injured spinal cord injury inpatients. MAIN MEASURE(S): The Needs Assessment Checklist (NAC), patient-focused goal planning questionnaire and goal planning progress form. The clinical audit of 100 spinal cord injured patients revealed that 547 goal planning meetings were held with 8531 goals stipulated in total. Seventy-five per cent of the goals set at the first goal planning meeting were achieved by the second meeting and the rate of goal achievements at subsequent goal planning meetings dropped to 56%. Based on quantitative analysis of physical, social and psychological functioning, the 100 spinal cord injury patients improved significantly from baseline to discharge. Furthermore, qualitative analysis revealed benefits consistently reported by spinal cord injury patients of the goal planning rehabilitation programme in improvements to their physical, social and psychological adjustment to injury. The findings of this clinical audit underpin the need for patient-focused goal planning rehabilitation programmes which are tailored to the individual's needs and involve a comprehensive multidisciplinary team.

  17. Functional magnetic resonance imaging of the human spinal cord during vibration stimulation of different dermatomes.

    PubMed

    Lawrence, Jane M; Stroman, Patrick W; Kollias, Spyros S

    2008-03-01

    We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements.

  18. Psychometric properties of Persian version of the Caregiver Burden Scale in Iranian caregivers of patients with spinal cord injury.

    PubMed

    Farajzadeh, Ata; Akbarfahimi, Malahat; Maroufizadeh, Saman; Rostami, Hamid Reza; Kohan, Amir Hassan

    2018-02-01

    To investigate the psychometric properties of the Persian version of Caregiver Burden Scale (CBS) in caregivers of patients with spinal cord injury. This is a cross-sectional study. After a forward-backward translation, the CBS was administered to 110 caregivers of patients with spinal cord injury (men = 60, women = 50). Factor structure was evaluated by confirmatory factor analysis. The Internal consistency and test-retest reliability of the CBS were examined using Cronbach's α and the intraclass correlation coefficient, respectively. Construct validity was assessed by examining the relationship among CBS and the World Health Organization Quality of Life, and the Beck Depression Inventory. The results of confirmatory factor analysis provided support for a five-factor model of CBS. All subscales of CBS revealed acceptable internal consistency (0.698-0.755), except for environment subscale (0.559). The CBS showed adequate test-retest reliability for its subscales (0.745-0.900). All subscales of CBS significantly correlated with both Beck Depression Inventory and World Health Organization Quality of Life, confirming construct validity. The Persian version of the CBS is a valid and reliable measure for assessing burden of care in caregivers of patients with spinal cord injury. Implications for Rehabilitation Spinal cord injury leads to depression, high levels of stress and diminished quality of life due to the high physical, emotional, and social burdens in caregivers. Persian version of the Caregiver Burden Scale is a valid and reliable tool for assessing burden in Iranian caregivers of patients with spinal cord injury.

  19. Morphology of the caudal spinal cord in Rana (Ranidae) and Xenopus (Pipidae) tadpoles.

    PubMed

    Nishikawa, K; Wassersug, R

    1988-03-08

    Using a variety of neuroanatomical and histological techniques, we compare the spinal cord and peripheral nerve distribution in the tails of larvae from Xenopus laevis and three species of Rana. The relatively large, postsacral spinal cord of Xenopus contains abundant motoneurons and their axons. Spinal nerves exit from the spinal cord in a regular array, one nerve per myotome, from the cervical region to near the end of the tail. Somata of motoneurons innervating caudal myotomes are found along the entire length of the tail. In contrast, the caudal cord of Rana is reduced to a filum terminale consisting of little more than an ependymal tube; spinal nerves to all caudal myotomes leave the cord in the sacral region and reach their motor targets via a cauda equina and caudal plexus. Motoneuron cell bodies innervating caudal myotomes are found only in the sacral region. The Rana larval pattern is similar to that of adult frogs and mammals, whereas the Xenopus larval pattern is more like that of salamanders and reptiles. These gross neuroanatomical differences are not due to differences in the size or developmental stage of the tadpoles, but instead are associated with differences in the swimming behavior of the larvae. The presence of motoneurons in the caudal spinal cord of Xenopus may provide local intermyotomal control within the tail; the elongated topography of the cord appears to permit finer, rostral-to-caudal regulation of neuromuscular activity. The Rana spinal cord, on the other hand--with motoneurons clustered anteriorly--may produce concurrent firing of adjacent ipsilateral myotomes, but at the expense of fine intermyotomal regulation. The fact that nerves in the tail of Xenopus enter and exit from the spinal cord locally, as opposed to far anteriorly as in Rana, means that for tadpoles of the same size, reflex arc lengths are many times shorter in Xenopus.

  20. Revisiting the segmental organization of the human spinal cord.

    PubMed

    Leijnse, J N; D'Herde, K

    2016-09-01

    In classic anatomic atlases, the spinal cord is standardly represented in its anatomical form with symmetrically emerging anterior and posterior roots, which at the level of the intervertebral foramen combine into the spinal nerves. The parts of the cord delimited by the boundaries of the roots are called segments or myelomeres. Associated with their regular repetitive appearance is the notion that the cord is segmentally organized. This segmental view is reinforced by clinical practice. Spinal cord roots innervate specific body parts. The level of cord trauma is diagnosed by the de-innervation symptoms of these parts. However, systemically, the case for a segmentally organized cord is not so clear. To date, developmental and genetic research points to a regionally rather than a segmentally organized cord. In the present study, to what degree the fila radicularia are segmentally implanted along the cord was investigated. The research hypothesis was that if the fila radicularia were non-segmentally implanted at the cord surface, it would be unlikely that the internal neuron stratum would be segmented. The visual segmented aspect of the myelomeres would then be the consequence of the necessary bundling of axons towards the vertebral foramen as the only exits of the vertebral canal, rather than of an underlying segment organization of the cord itself. To investigate the research hypothesis, the fila radicularia in the cervical-upper thoracic part of five spinal cords were detached from their spinal nerves and dissected in detail. The principal research question was if the fila radicularia are separated from their spinal nerves and dissected from their connective tissues up to the cord, would it be possible to reconstruct the original spinal segments from the morphology and interspaces of the fila? The dissections revealed that the anterior fila radicularia emerge from the cord at regular regionally modulated interspaces without systematic segmental delineations. The posterior fila radicularia are somewhat more segmentally implanted, but the pattern is individually inconsistent. The posterior and anterior roots have notable morphological differences, and hypotheses are presented to help explain these. The macroscopic observations are consistent with a regionally but not a segmentally organized cord. This conclusion was visually summarized in photographs of spinal cords with ipsilateral intact roots and contralateral individually dissected fila radicularia. It was suggested that this dual view of the spinal cord be added to the standard anatomic textbooks to counterbalance the current possibly biased view of a segmented cord. © 2016 Anatomical Society.

  1. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs.

    PubMed

    Lim, Ji Hey; Byeon, Ye Eun; Ryu, Hak Hyun; Jeong, Yun Hyeok; Lee, Young Won; Kim, Wan Hee; Kang, Kyung Sun; Kweon, Oh Kyeong

    2007-09-01

    This study was to determine the effects of allogenic umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) and recombinant methionyl human granulocyte colony-stimulating factor (rmhGCSF) on a canine spinal cord injury model after balloon compression at the first lumbar vertebra. Twenty-five adult mongrel dogs were assigned to five groups according to treatment after a spinal cord injury: no treatment (CN); saline treatment (CP); rmhGCSF treatment (G); UCB-MSCs treatment (UCB-MSC); co-treatment (UCBG). The UCBMSCs isolated from cord blood of canine fetuses were prepared as 10(6) cells/150 microl saline. The UCB-MSCs were directly injected into the injured site of the spinal cord and rmhGCSF was administered subcutaneously 1 week after the induction of spinal cord injury. The Olby score, magnetic resonance imaging, somatosensory evoked potentials and histopathological examinations were used to evaluate the functional recovery after transplantation. The Olby scores of all groups were zero at the 0-week evaluation. At 2 week after the transplantation, the Olby scores in the groups with the UCB-MSC and UCBG were significantly higher than in the CN and CP groups. However, there were no significant differences between the UCB-MSC and UCBG groups, and between the CN and CP groups. These comparisons remained stable at 4 and 8 week after transplantation. There was significant improvement in the nerve conduction velocity based on the somatosensory evoked potentials. In addition, a distinct structural consistency of the nerve cell bodies was noted in the lesion of the spinal cord of the UCB-MSC and UCBG groups. These results suggest that transplantation of the UCB-MSCs resulted in recovery of nerve function in dogs with a spinal cord injury and may be considered as a therapeutic modality for spinal cord injury.

  2. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs

    PubMed Central

    Lim, Ji-Hey; Byeon, Ye-Eun; Ryu, Hak-Hyun; Jeong, Yun-Hyeok; Lee, Young-Won; Kim, Wan Hee

    2007-01-01

    This study was to determine the effects of allogenic umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) and recombinant methionyl human granulocyte colony-stimulating factor (rmhGCSF) on a canine spinal cord injury model after balloon compression at the first lumbar vertebra. Twenty-five adult mongrel dogs were assigned to five groups according to treatment after a spinal cord injury: no treatment (CN); saline treatment (CP); rmhGCSF treatment (G); UCB-MSCs treatment (UCB-MSC); co-treatment (UCBG). The UCB-MSCs isolated from cord blood of canine fetuses were prepared as 106 cells/150 µl saline. The UCB-MSCs were directly injected into the injured site of the spinal cord and rmhGCSF was administered subcutaneously 1 week after the induction of spinal cord injury. The Olby score, magnetic resonance imaging, somatosensory evoked potentials and histopathological examinations were used to evaluate the functional recovery after transplantation. The Olby scores of all groups were zero at the 0-week evaluation. At 2 week after the transplantation, the Olby scores in the groups with the UCB-MSC and UCBG were significantly higher than in the CN and CP groups. However, there were no significant differences between the UCB-MSC and UCBG groups, and between the CN and CP groups. These comparisons remained stable at 4 and 8 week after transplantation. There was significant improvement in the nerve conduction velocity based on the somatosensory evoked potentials. In addition, a distinct structural consistency of the nerve cell bodies was noted in the lesion of the spinal cord of the UCB-MSC and UCBG groups. These results suggest that transplantation of the UCB-MSCs resulted in recovery of nerve function in dogs with a spinal cord injury and may be considered as a therapeutic modality for spinal cord injury. PMID:17679775

  3. Self-Awareness of the Male Sexual Response after Spinal Cord Injury

    ERIC Educational Resources Information Center

    Cardoso, Fernando Luiz; Savall, Ana Carolina R.; Mendes, Aline K.

    2009-01-01

    The aim of this study was to assess the impact of spinal cord injury on men's sexual motivation, through the sexual desire self-assessment, and the sexual arousal and orgasm physiological responses. This research consisted of a descriptive, nonprobabilistic and comparative study, designed to outline the target population characteristics to compare…

  4. Release of neuropeptide FF (FLFQPQRF-NH2) from rat spinal cord.

    PubMed

    Zhu, J; Jhamandas, K; Yang, H Y

    1992-10-02

    Neuropeptide FF (FLFQPQRF-NH2), originally isolated from bovine brain, is an FMRF-NH2-like peptide with morphine-modulating activity. Neuropeptide FF (NPFF) is highly localized in the dorsal spinal cords where there are also specific NPFF binding sites. Furthermore, there have been studies indicating that NPFF may participate in the regulation of pain threshold in the spinal cord. However, whether NPFF can be released from the spinal cord is not known. The present experiments, using an in vitro superfusion of an isolated whole rat spinal cord, demonstrated that high concentrations of KCl or substance P caused a release of NPFF immunoreactive material (IR) from the spinal cord into the perfusion medium in a calcium-dependent manner. Substance P (1-11) also produced a detectable release of NPFF-IR in vivo although the response was quite variable. The released NPFF-IR was analyzed by an HPLC study and found to consist of NPFF and other minor immunoreactive peptides. Further studies with substance P-related peptides showed that the in vitro release of NPFF-IR could also be induced by substance P (1-7) but not by [pGlu5,Me-Phe8,Sar9]-substance P (5-11) or substance K. These results suggest that the specific substance P receptor (SP-N), which is recognized by both substance P (1-11) and substance P (1-7) rather than the tachykinin receptor, is involved in NPFF secretion from the spinal cord. In view of the role of substance P (1-11) and substance P (1-7) in sensory transmission, the results of this study further support the role of NPFF in the modulation of antinociception in the spinal cord.

  5. Involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters in neonatal rat spinal cord.

    PubMed Central

    Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M

    1994-01-01

    1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7529113

  6. Expression of the repulsive guidance molecule RGM and it receptor Neogenin after spinal cord injury in sea lamprey

    PubMed Central

    Shifman, Michael I.; Yumul, Rae Eden; Laramore, Cindy; Selzer, Michael E.

    2009-01-01

    The sea lamprey recovers normal-appearing locomotion after spinal cord transection and its spinal axons regenerate selectively in their correct paths. However, among identified reticulospinal neurons some are consistently bad regenerators and only about 50% of severed reticulospinal axons regenerate through the site of injury. We previously suggested (Shifman and Selzer, 2000) that selective chemorepulsion might explain why some neurons are bad regenerators and others not. To explore the role of additional chemorepulsive axonal guidance molecules during regeneration, we examined the expression of the repulsive guidance molecule (RGM) and its receptor neogenin by in situ hybridization and quantitative PCR. RGM mRNA was expressed in the spinal cord, primarily in neurons of the lateral gray matter and in dorsal cells. Following spinal cord transection, RGM message was downregulated in neurons close (within 10 mm) to the transection at 2 and 4 weeks, although it was upregulated in reactive microglia at 2 weeks post-transection. Neogenin mRNA expression was unchanged in the brainstem after spinal cord transection, and among the identified reticulospinal neurons, was detected only in “bad regenerators, Neurons that are known to regenerate well never expressed neogenin. The downregulation of RGM expression in neurons near the transection may increase the probability that regenerating axons will regenerate through the site of injury and entered caudal spinal cord. PMID:19268666

  7. Significance of fixation of the vertebral column for spinal cord injury experiments.

    PubMed

    Liu, Fei; Luo, Zhuo-Jin; You, Si-Wei; Jiao, Xi-Ying; Meng, Xiao-Mei; Shi, Ming; Wang, Chun-Ting; Ju, Gong

    2003-08-01

    Thoracic spinal cord transections were performed in adult rats. The animals were divided into two groups, with or without internal fixation of the involved vertebral column. Histologic and immunohistochemical studies were performed to compare the effect of internal fixation of the vertebral column. To find out the aspects and extent of beneficial effects of vertebral column fixation for spinal cord repair. Vertebral column fixation is a routine procedure in clinical spinal cord surgery. Paradoxically, most, if not all, animal spinal cord experiments seem to have ignored the importance of vertebral column fixation. During trunk movements, the vertebral column flexes to different directions, accompanied by bending of the spinal cord. Following spinal cord lesions, with frequent bending of the cord there will be repeated bleeding, inflammation, and other pathologic processes at the lesion site. Thus, the healing process will be hampered. The severity of the damages that will be brought about by bending of the cord is, to a certain degree, unpredictable. There will be rather big individual variations in injury and repair among the same type of experiments, rendering quantification and conclusion difficult. Adult Sprague-Dawley rats were used. The thoracic spinal cord was transected. Strong stainless steel wires were used for internal fixation of the vertebral column. The histology of the horizontal sections of the spinal cord segment, which included the lesion site, was examined at the 14th postoperative day. The volumes of the secondary degeneration and meningeal scar, the gap between the borders of the proximal and distal stumps of the transected spinal cord, the thickness of the meningeal scar, the astrocytic reaction, and the abundance of regenerating nerve fibers at the lesion site were compared between the vertebral column fixed and nonfixed groups. Whenever possible, the results were evaluated quantitatively. In all these aspects, the internally fixed group was consistently far better than the unfixed group. The quantitative analyses were as follows (fixed/unfixed): 1)volume of secondary degeneration: 1.07 +/- 0.20/1.81 +/- 0.43 mm3 (P < 0.01); 2) volume of meningeal scar: 2.38 +/- 0.55/4.34 +/- 1.40 mm3 (P < 0.05); 3) distance between cord stumps: 1.38 +/- 0.34/2.35 +/- 0.79 mm (P < 0.05); 4) the mean thinnest dimension of the meningeal scar: 0.90 +/- 0.43/1.98 +/- 0.85 mm (P < 0.05). Vertebral column fixation is a crucial procedure for spinal cord animal experiments.

  8. The experience of attempting to return to work following spinal cord injury: a systematic review of the qualitative literature.

    PubMed

    Hilton, Gillean; Unsworth, Carolyn; Murphy, Gregory

    2018-07-01

    This review sought to answer the question "What are the barriers and facilitators influencing people's experience of return to work following spinal cord injury?" Studies that met the selection criteria were identified, presented and critically appraised using National Institute for Health and Care Excellence guidelines. Thematic synthesis was completed with studies possessing strong methodological rigor. Synthesis and interpretation involved three stages; coding of primary data; development of descriptive themes reflective of the primary data; and establishment of analytical themes to answer the review question. Data from nine papers were included in the thematic synthesis. Several descriptive themes and three analytical themes were drawn from the data to answer the research question. Analytical themes included: a matrix of personal and environmental factors exists requiring complex navigation in order to create possibilities and opportunities for postinjury employment; the process of seeking or gaining employment shares a reciprocal relationship with the temporal nature of adjustment to spinal cord injury; and there is an intrinsic need for occupational engagement through paid employment. Returning to or gaining employment after spinal cord injury is a fundamentally difficult experience for people. Multiple strategies are required to support the navigation of the process. There is, however, a need in people with spinal cord injury, to be a worker, and with that comes the inherent benefits of being employed. Implications for rehabilitation Returning to work should be a significant focus of spinal cord injury rehabilitation. Employment is both possible and health promoting following spinal cord injury. Multiple strategies are required to support people to navigate the return to work process. It is important to be cognizant of the individual motivations for being a worker and the complexity of the adjustment process. Spinal cord injury centers can provide a consistent and supportive framework and culture of positivity about employment after spinal cord injury.

  9. Spinal cord ischemia following thoracotomy without epidural anesthesia.

    PubMed

    Raz, Aeyal; Avramovich, Aharon; Saraf-Lavi, Efrat; Saute, Milton; Eidelman, Leonid A

    2006-06-01

    Paraplegia is an uncommon yet devastating complication following thoracotomy, usually caused by compression or ischemia of the spinal cord. Ischemia without compression may be a result of global ischemia, vascular injury and other causes. Epidural anesthesia has been implicated as a major cause. This report highlights the fact that perioperative cord ischemia and paraplegia may be unrelated to epidural intervention. A 71-yr-old woman was admitted for a left upper lobectomy for resection of a non-small cell carcinoma of the lung. The patient refused epidural catheter placement and underwent a left T5-6 thoracotomy under general anesthesia. During surgery, she was hemodynamically stable and good oxygen saturation was maintained. Several hours following surgery the patient complained of loss of sensation in her legs. Neurological examination disclosed a complete motor and sensory block at the T5-6 level. Magnetic resonance imaging (MRI) revealed spinal cord ischemia. The patient received iv steroid treatment, but remained paraplegic. Five months following the surgery there was only partial improvement in her motor symptoms. A follow-up MRI study was consistent with a diagnosis of spinal cord ischemia. In this case of paraplegia following thoracic surgery for lung resection, epidural anesthesia/analgesia was not used. The MRI demonstrated evidence of spinal cord ischemia, and no evidence of cord compression. This case highlights that etiologies other than epidural intervention, such as injury to the spinal segmental arteries during thoracotomy, should be considered as potential causes of cord ischemia and resultant paraplegia in this surgical population.

  10. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.

  11. Cholinergic mechanisms in spinal locomotion—potential target for rehabilitation approaches

    PubMed Central

    Jordan, Larry M.; McVagh, J. R.; Noga, B. R.; Cabaj, A. M.; Majczyński, H.; Sławińska, Urszula; Provencher, J.; Leblond, H.; Rossignol, Serge

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a “hyper-cholinergic” state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments. PMID:25414645

  12. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level.

    PubMed

    Nacka-Aleksić, Mirjana; Djikić, Jasmina; Pilipović, Ivan; Stojić-Vukanić, Zorica; Kosec, Duško; Bufan, Biljana; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2015-10-01

    Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia

    PubMed Central

    Laird, A S; Carrive, P; Waite, P M E

    2006-01-01

    In patients with high spinal cord injuries autonomic dysfunction can be dangerous, leading to medical complications such as postural hypotension, autonomic dysreflexia and temperature disturbance. While animal models have been developed to study autonomic dysreflexia, associated temperature changes have not been documented. Our aim here was to use radiotelemetry and infrared thermography in rodents to record the development of cardiovascular and skin temperature changes following complete T4 transection. In adult male Wistar rats (n = 5), responses were assessed prior to spinal cord injury (intact) and for 6 weeks following injury. Statistical analysis by a repeated-measure ANOVA revealed that following spinal cord injury (SCI), rats exhibited decreased mean arterial pressure (MAP, average decrease of 26 mmHg; P < 0.035) and elevated heart rate (HR, average increase of 65 bpm, P < 0.035) at rest. The basal core body temperature following SCI was also significantly lower than intact levels (−0.9°C; P < 0.0035). Associated with this decreased basal core temperature following SCI was an increased skin temperature of the mid-tail and hindpaw (+5.6 and +4.0°C, respectively; P < 0.0003) consistent with decreased cutaneous vasoconstrictor tone. Autonomic dysreflexia, in response to a 1 min colorectal distension (25 mmHg), was fully developed by 4 weeks after spinal cord transection, producing increases in MAP greater than 25 mmHg (P < 0.0003). In contrast to the tachycardia seen in intact animals in response to colorectal distension, SCI animals exhibited bradycardia (P < 0.0023). During episodes of autonomic dysreflexia mid-tail surface temperature decreased (approx. −1.7°C, P < 0.012), consistent with cutaneous vasoconstriction. This is the first study to compare cardiovascular dysfunction with temperature changes following spinal cord transection in rats. PMID:16973703

  14. Real-time monitoring of spinal cord blood flow with a novel sensor mounted on a cerebrospinal fluid drainage catheter in an animal model.

    PubMed

    Hayatsu, Yukihiro; Kawamoto, Shunsuke; Matsunaga, Tadao; Haga, Yoichi; Saiki, Yoshikatsu

    2014-10-01

    The aim of our study was to develop a novel monitoring system for spinal cord blood flow (SCBF) to test the efficacy of the SCBF sensor in an animal model. The sensor system consisted of 2 optical fibers, a pedestal for fiber fixation, and a mirror for the laser reflection and was incorporated into a cerebrospinal fluid drainage catheter. In vivo studies were performed in a swine model (n=10) to measure SCBF during spinal cord ischemia induced by clamping the descending thoracic aorta and supra-aortic neck vessels, when necessary. A temporary low cardiac output model was also created by inflow clamping of the inferior vena cava to analyze the quantitative changes in SCBF during this maneuver. The developed SCBF monitoring catheter placed intrathecally could detect SCBF in all the swine. The SCBF after aortic crossclamping at the fourth intercostal level exhibited diverse changes reproducibly among the swine, with a >25% reduction in SCBF in 5 pigs, an increase in 3, and no significant changes in 2. Consistent reductions were recorded during inferior vena cava occlusion. The mean SCBF decreased by 32% after inferior vena cava occlusion when the cardiac output had decreased by 27%. We have developed a novel SCBF sensor that could detect real-time changes in spinal cord perfusion in a swine model. The device holds promise to detect imminent ischemia or ensure acceptable blood perfusion in the spinal cord and could further enhance our understanding of spinal cord circulation. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. A validity study of the Spanish-World Health Organization Quality of Life short version instrument in persons with traumatic spinal cord injury.

    PubMed

    Salvador-De La Barrera, Sebastián; Mora-Boga, Rubén; Ferreiro-Velasco, Mª Elena; Seoane-Pillado, Teresa; Montoto-Marqués, Antonio; Rodríguez-Sotillo, Antonio; Pertega Díaz, Sonia

    2018-05-23

    This was a psychometric study. To determine the validity of the Spanish version of the World Health Organization Quality of Life instrument (WHOQOL-BREF) for its use in persons with traumatic spinal cord injury and, as secondary objectives, to correlate the results with variables such as functional status, psychological well-being, and social support. Spinal Cord Injury Unit, Complejo Hospitalario Universitario de A Coruña, Galicia (Spain). Fifty-four people with spinal cord injury were enrolled in this study. Relevant variables were analyzed based on the scores reported by each participant in the Spanish versions of the WHOQOL-BREF questionnaire, the Spinal Cord Independence Measure, the Hospital Anxiety and Depression Scale (HADS), and the Duke-UNC Functional and Social Support Questionnaire. Both parametric and non-parametric tests were used to compare various variables. The instrument's internal consistency and test-retest reliability were also confirmed. The mean scores of each domain of the WHOQOL-BREF were lower, but nonsignificant, among people who need help to perform activities of daily living. The correlation between the scores obtained in the "Psychological" domain and the items of the HADS scale was significant. Significant differences were also observed when comparing the results of the "Social relationships" and "Environment" domains among people with low scores in the Duke questionnaire. Both an adequate consistency (Cronbach's α: 0.887) and test-retest reliability were demonstrated. The Spanish version of the WHOQOL-BREF questionnaire is useful and reliable to evaluate the quality of life of persons with spinal cord injuries in our population of Spanish-speaking people.

  16. Health behavior in persons with spinal cord injury: development and initial validation of an outcome measure.

    PubMed

    Pruitt, S D; Wahlgren, D R; Epping-Jordan, J E; Rossi, A L

    1998-10-01

    To describe the development and initial psychometric properties of a new outcome measure for health behaviors that delay or prevent secondary impairments associated with spinal cord injury (SCI). Persons with SCI were surveyed during routine annual physical evaluations. Veterans Affairs Medical Center Spinal Cord Injury Unit, which specializes in primary care for persons with SCI. Forty-nine persons with SCI, aged 19-73 years, 1-50 years post-SCI. The newly developed Spinal Cord Injury Lifestyle Scale (SCILS). Internal consistency is high (alpha = 0.81). Correlations between clinicians' ratings of participants' health behavior and the new SCILS provide preliminary support for construct validity. The SCILS is a brief, self-report measure of health-related behavior in persons with SCI. It is a promising new outcome measure to evaluate the effectiveness of clinical and educational efforts for health maintenance and prevention of secondary impairments associated with SCI.

  17. [Posttraumatic syringomyelia in 2 patients with thoracic spinal cord lesions].

    PubMed

    Bollen, A E; Hoving, E W; Kuks, J B

    2000-04-29

    Two patients, men aged 42 and 40 years, developed new neurological symptoms 3 months and 22 years, respectively, after a traumatic high thoracic spinal cord injury. The MRI scan showed a cavity in the central part of the spinal cord, on which the diagnosis of 'posttraumatic syringomyelia' could be based. In one of the patients a syringo-subarachnoidal shunt was created, the other was treated conservatively because of a severe concomitant thoracic kyphosis. Posttraumatic syringomyelia is a potentially life-threathening late complication of spinal cord injury and is characterized by development of new neurological symptoms after a variable time interval. The most typical symptom of non-traumatic syringomyelia, viz. diminution of vital sensitivity without loss of gnostic sensitivity, is not necessarily present in posttraumatic syringomyelia. Surgical treatment of posttraumatic syringomyelia is advocated if there is progressive neurological deterioration, and consists of drainage of the syrinx.

  18. Multifocal Spinal Cord Nephroblastoma in a Dog.

    PubMed

    Henker, L C; Bianchi, R M; Vargas, T P; de Oliveira, E C; Driemeier, D; Pavarini, S P

    2018-01-01

    A 1-year-old male American pit bull terrier was presented with a history of proprioceptive deficits and mild lameness of the right hindlimb, which progressed after 5 months to paraparesis, culminating in tetraparesis after 2 weeks. Necropsy findings were limited to the spinal cord and consisted of multiple, intradural, extramedullary, slightly red masses which produced segmental areas of medullary swelling located in the cervical intumescence, thoracolumbar column, sacral segment and cauda equina. Histological evaluation revealed a tumour, composed of epithelial, stromal and blastemal cells, with structures resembling tubules, acini and embryonic glomeruli. Immunohistochemical labelling for vimentin, cytokeratin and S100 was positive for the stromal, epithelial and blastemal cells, respectively. A final diagnosis of multifocal spinal cord nephroblastoma was established. This is the first report of such a tumour showing concomitant involvement of the cervicothoracic, thoracolumbar, sacral and cauda equina areas of the spinal cord. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spinal cord electrophysiology II: extracellular suction electrode fabrication.

    PubMed

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-02-20

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively.

  20. Spinal Cord Electrophysiology II: Extracellular Suction Electrode Fabrication

    PubMed Central

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-01-01

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively. PMID:21372792

  1. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... the spinal cord. These attachments cause an abnormal stretching of the spinal cord. The course of the ... the spinal cord. These attachments cause an abnormal stretching of the spinal cord. The course of the ...

  2. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. The Connor-Davidson Resilience Scale as a Positive Psychology Measure for People with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Fujikawa, Mayu; Lee, Eun-Jeong; Chan, Fong; Catalano, Denise; Hunter, Celeste; Bengtson, Kevin; Rahimi, Maryam

    2013-01-01

    The main objective of this study is to evaluate the measurement structure of the Connor-Davidson Resilience Scale (CD-RISC) as a positive psychology measure for people with spinal cord injuries (SCIs) using confirmatory factor analysis. The participants consisted of 274 Canadians with SCI living in the community. The result indicated that the…

  4. Hodgkin Lymphoma revealed by epidural spinal cord compression.

    PubMed

    Ghedira, Khalil; Matar, Nidhal; Bouali, Sofiene; Zehani, Alia; Boubaker, Adnen; Jemel, Hafedh

    2018-01-30

    Hodgkin Lymphoma is rarely diagnosed as spinal cord compression syndrome. Caused by an epidural mass, this complication is often encountered in a late stage of the disease. We report the case of a 40-year-old man presenting with symptoms of low thoracic spinal cord compression due to an epidural tumor on the MRI. Emergent surgery was undertaken on this patient, consisting in laminectomy and tumor resection. After surgery, pain relief and mild neurological improvement were noticed. The histological study revealed a Hodgkin Lymphoma and the patient was referred to chemotherapy and radiotherapy. Though chemotherapy is the gold standard treatment for Hodgkin Lymphoma, surgical spinal decompression may be required in epidural involvement of the disease. Diagnosis may be suspected in the presence of lymphadenopathy and general health decay.

  5. Primary Malignant Lymphoma in a Spinal Cord Presenting as an Epidural Mass with Myelopathy: A Case Report

    PubMed Central

    Cho, Jae-Hoon; Cho, Dae-Chul; Sung, Joo-Kyung

    2012-01-01

    We report the case of a 47-year-old man who presented with progressive paraparesis and sphincter changes over 2 weeks. Magnetic resonance imaging revealed a spinal epidural mass from T9 to L2. We performed a decompressive laminectomy and mass removal. The histopathology was consistent with a small lymphocytic lymphoma. No metastatic lesion was noted in the chest and abdomen-pelvic computerized tomography (CT) and positron emission tomography computerized tomography (PET-CT) scan. The final diagnosis was primary spinal lymphoma, so we performed chemotherapy combined with radiotherapy. At one year follow-up, he had no neurological deficit and no recurrence on neurologic and radiologic exams. Primary spinal cord lymphomas should be considered in the differential diagnosis of spinal cord tumors. Early surgical management is mandatory to achieve a recovery of neurologic function, especially if the patient has a neurological deficit. PMID:25983828

  6. Involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters in neonatal rat spinal cord.

    PubMed

    Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M

    1994-09-01

    1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors. 6. Effects of individual peptidase inhibitors on the enzymatic degradation of SP and NKA by synaptic membrane fractions were examined. Thiorphan, actinonin and captopril inhibited SP degradation, while thiorphan and actinonin, but not captopril, inhibited NKA degradation. The potency of the inhibition of each peptidase inhibitor was lower than that of the mixture.7. The present results suggest that enzymatic degradation is involved in the inactivation of tachykinin neurotransmitters in the spinal cord of the neonatal rat.

  7. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review

    PubMed Central

    Fisahn, Christian; Aach, Mirko; Jansen, Oliver; Moisi, Marc; Mayadev, Angeli; Pagarigan, Krystle T.; Dettori, Joseph R.; Schildhauer, Thomas A.

    2016-01-01

    Study Design Systematic review. Clinical Questions (1) When used as an assistive device, do wearable exoskeletons improve lower extremity function or gait compared with knee-ankle-foot orthoses (KAFOs) in patients with complete or incomplete spinal cord injury? (2) When used as a rehabilitation device, do wearable exoskeletons improve lower extremity function or gait compared with other rehabilitation strategies in patients with complete or incomplete spinal cord injury? (3) When used as an assistive or rehabilitation device, are wearable exoskeletons safe compared with KAFO for assistance or other rehabilitation strategies for rehabilitation in patients with complete or incomplete spinal cord injury? Methods PubMed, Cochrane, and Embase databases and reference lists of key articles were searched from database inception to May 2, 2016, to identify studies evaluating the effectiveness of wearable exoskeletons used as assistive or rehabilitative devices in patients with incomplete or complete spinal cord injury. Results No comparison studies were found evaluating exoskeletons as an assistive device. Nine comparison studies (11 publications) evaluated the use of exoskeletons as a rehabilitative device. The 10-meter walk test velocity and Spinal Cord Independence Measure scores showed no difference in change from baseline among patients undergoing exoskeleton training compared with various comparator therapies. The remaining primary outcome measures of 6-minute walk test distance and Walking Index for Spinal Cord Injury I and II and Functional Independence Measure–Locomotor scores showed mixed results, with some studies indicating no difference in change from baseline between exoskeleton training and comparator therapies, some indicating benefit of exoskeleton over comparator therapies, and some indicating benefit of comparator therapies over exoskeleton. Conclusion There is no data to compare locomotion assistance with exoskeleton versus conventional KAFOs. There is no consistent benefit from rehabilitation using an exoskeleton versus a variety of conventional methods in patients with chronic spinal cord injury. Trials comparing later-generation exoskeletons are needed. PMID:27853668

  8. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling

    PubMed Central

    Pearcey, Gregory E. P.; Noble, Steven A.; Munro, Bridget; Zehr, E. Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints. PMID:29326570

  9. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.

    PubMed

    Pearcey, Gregory E P; Noble, Steven A; Munro, Bridget; Zehr, E Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation ( CONTROL + STIM ), sprints with sensory stimulation ( SPRINT + STIM ) and sprints without stimulation ( SPRINT ). Seven participants also performed a fourth session ( CONTROL ), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM , participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM , participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints.

  10. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection.

    PubMed

    Zhang, Qiang; Shao, Yang; Zhao, Changsong; Cai, Juan; Sun, Sheng

    2014-12-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection.

  11. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection

    PubMed Central

    ZHANG, QIANG; SHAO, YANG; ZHAO, CHANGSONG; CAI, JUAN; SUN, SHENG

    2014-01-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection. PMID:25371724

  12. Two cases of sarcoidosis presenting as longitudinally extensive transverse myelitis.

    PubMed

    Scott, Amanda Mary; Yinh, Janeth; McAlindon, Timothy; Kalish, Robert

    2018-05-17

    Neurosarcoidosis is uncommon with an incidence of approximately 5 to 15%. Central nervous system involvement can be divided into brain and spinal cord neurosarcoidosis. Spinal cord sarcoidosis is extremely rare, occurring in less than 1% of all sarcoidosis cases. Its manifestations may include cauda equina syndrome, radiculopathy, syringomyelia, cord atrophy, arachnoiditis, and myelopathy or transverse myelitis. We highlight two cases of spinal cord sarcoidosis, each presenting with longitudinally extensive transverse myelitis, that demonstrate the dilemmas that physicians face with regard to diagnosis and treatment. Given its rarity and the diversity of possible manifestations, establishing the diagnosis of spinal cord sarcoidosis is often very difficult. Extensive evaluation must be conducted to rule out primary neurologic, primary rheumatologic, infectious, and neoplastic diseases. MRI often demonstrates hyperintensity on T2-weighted images and enhancement following gadolinium administration. CSF analysis most consistently shows a lymphocytic pleocytosis and elevated proteins. While these less invasive investigations may be helpful, the gold standard for diagnosis is biopsy of neurologic or non-neurologic tissue confirming the presence of non-caseating granulomas. Evidence-based guidelines for the treatment of transverse myelitis secondary to sarcoidosis are lacking due to its rarity; therefore, therapy is based on expert and anecdotal experience and usually consists of high doses of steroids in combination with various immunosuppressive agents. The use of infliximab in particular appears promising, but there is a need for further investigation into the ideal treatment regimen.

  13. Changes in Body Temperature in Incomplete Spinal Cord Injury by Digital Infrared Thermographic Imaging

    PubMed Central

    Song, Yun-Gyu; Won, Yu Hui; Park, Sung-Hee; Ko, Myoung-Hwan

    2015-01-01

    Objective To investigate changes in the core temperature and body surface temperature in patients with incomplete spinal cord injuries (SCI). In incomplete SCI, the temperature change is difficult to see compared with complete spinal cord injuries. The goal of this study was to better understand thermal regulation in patients with incomplete SCI. Methods Fifty-six SCI patients were enrolled, and the control group consisted of 20 healthy persons. The spinal cord injuries were classified according to International Standards for Neurological Classification of Spinal Cord Injury. The patients were classified into two groups: upper (neurological injury level T6 or above) and lower (neurological injury level T7 or below) SCIs. Body core temperature was measured using an oral thermometer, and body surface temperature was measured using digital infrared thermographic imaging. Results Twenty-nine patients had upper spinal cord injuries, 27 patients had lower SCIs, and 20 persons served as the normal healthy persons. Comparing the skin temperatures of the three groups, the temperatures at the lower abdomen, anterior thigh and anterior tibia in the patients with upper SCIs were lower than those of the normal healthy persons and the patients with lower SCIs. No significant temperature differences were observed between the normal healthy persons and the patients with lower SCIs. Conclusion In our study, we found thermal dysregulation in patients with incomplete SCI. In particular, body surface temperature regulation was worse in upper SCIs than in lower injuries. Moreover, cord injury severity affected body surface temperature regulation in SCI patients. PMID:26605167

  14. Complete segmental resection of the spine, including the spinal cord, for telangiectatic osteosarcoma: a report of 2 cases.

    PubMed

    Murakami, Hideki; Tomita, Katsuro; Kawahara, Norio; Oda, Makoto; Yahata, Tetsutaro; Yamaguchi, Takehiko

    2006-02-15

    Two case reports of telangiectatic osteosarcoma treated with complete segmental resection of the spine, including the spinal cord. To report the en bloc tumor excision, including the spinal cord, for telangiectatic osteosarcoma, and discuss the indication of cord transection and influence after cutting the spinal cord. To our knowledge, there are no previous reports describing telangiectatic osteosarcoma of the spine and the subsequent en bloc excision of the spine, including the spinal cord. The clinical and radiographic presentations of 2 cases with telangiectatic osteosarcoma are presented. Because these 2 cases already had complete paralysis for at least 1 month, it was suspected that there was no possibility of recovering spinal cord function. Complete segmental spinal resection (total en bloc spondylectomy) was performed. At that level, the spinal cord was also cut and resected. En bloc excision of the tumor with a wide margin was achieved in both cases. In the resected specimen, the nerve cells in the spinal cord had lapsed into degenerative necrosis. The pathologic findings showed that there was no hope for recovery of spinal cord function. En bloc spinal resection, including the spinal cord, is an operation allowed when there is no hope for recovery of spinal cord function. This surgery should be accepted as an option in spine tumor surgeries.

  15. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to relieve... on the patient's spinal cord and an external transmitter for transmitting the stimulating pulses...

  16. Periconal arterial anastomotic circle and posterior lumbosacral watershed zone of the spinal cord.

    PubMed

    Gailloud, Philippe; Gregg, Lydia; Galan, Peter; Becker, Daniel; Pardo, Carlos

    2015-11-01

    The existence of spinal cord watershed territories was suggested in the 1950s. Segmental infarcts within the junctional territories of adjacent radiculomedullary contributors and isolated spinal gray matter ischemia constitute two well-recognized types of watershed injury. This report describes the existence of another watershed territory related to the particular configuration of the spinal vasculature in the region of the conus medullaris. The anatomical bases underlying the concept of a posterior lumbosacral watershed zone are demonstrated with angiographic images obtained in a 16-year-old child. The clinical importance of this watershed zone is illustrated with MRI and angiographic data of three patients with a conus medullaris infarction. In all three cases of spinal ischemia an intersegmental artery providing a significant radiculomedullary contribution for the lower cord was compromised by a compressive mechanism responsible for decreased spinal cord perfusion (diaphragmatic crus syndrome in two cases, disk herniation in one). The ischemic injury, located at the junction of the anterior and posterior spinal artery territories along the dorsal aspect of the conus medullaris, was consistent with a watershed mechanism. This zone is at risk because of the caudocranial direction of flow within the most caudal segment of the posterior spinal arterial network which, from a functional standpoint, depends on the anterior spinal artery. The posterior thoracolumbar watershed zone of the spinal cord represents an area at increased risk of ischemic injury, particularly in the context of partial flow impairment related to arterial compression mechanisms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: a functional magnetic resonance imaging study.

    PubMed

    Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W

    2014-10-01

    The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Intraoperative monitoring of somatosensory-evoked potential in the spinal cord rectification operation by means of wavelet analysis

    NASA Astrophysics Data System (ADS)

    Liu, W.; Du, M. H.; Chan, Francis H. Y.; Lam, F. K.; Luk, D. K.; Hu, Y.; Fung, Kan S. M.; Qiu, W.

    1998-09-01

    Recently there has been a considerable interest in the use of a somatosensory evoked potential (SEP) for monitoring the functional integrity of the spinal cord during surgery such as spinal scoliosis. This paper describes a monitoring system and signal processing algorithms, which consists of 50 Hz mains filtering and a wavelet signal analyzer. Our system allows fast detection of changes in SEP peak latency, amplitude and signal waveform, which are the main parameters of interest during intra-operative procedures.

  19. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-12-1-0587 TITLE: Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord...3. DATES COVERED (From - To) 30Sep2014 - 29Sep2015 4. TITLE AND SUBTITLE Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on...ABSTRACT Essentially all spinal cord injured patients receive stretching therapies beginning within the first few weeks post-injury. Despite this fact

  20. Identification of spinal 5-HT sub 3 receptors and their role in the modulation of nociceptive responses in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaum, S.R.

    1988-01-01

    The project consisted of two related studies: (1) the characterization of serotonin binding sites in crude and purified synaptic membranes prepared from the rat spinal cord, and (2) the association of serotonin binding sites with functional 5-HT receptor responses in the modulation of nociceptive information at the level of the spinal cord. The first series of experiments involved the preparation of membranes from the dorsal and ventral halves of the rat spinal cord and the demonstration of specific ({sup 3}H)serotonin binding to these membranes. High affinity binding sites which conformed to the 5-HT{sub 3} subtype were identified in dorsal, butmore » not ventral spinal cord synaptic membranes. These experiments also confirmed the presence of high affinity ({sup 3}H)5-HT binding sites in dorsal spinal cord synaptic membranes of the 5-HT{sub 1} subtype. The second group of studies demonstrated the ability of selective 5-HT{sub 3} antagonists to inhibit the antinociceptive response to intrathecally administered 5-HT, as measured by a change in tail flick and hot plate latencies. Intrathecal pretreatment with the selective 5-HT{sub 3} antagonists ICS 205-930 or MDL 72222 abolished the antinociceptive effects of 5-HT. Furthermore, the selective 5-HT{sub 3} agonist 2-methyl-5-HT mimicked the antinociceptive effects of 5-HT.« less

  1. Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish

    PubMed Central

    Montgomery, Jacob E.; Wiggin, Timothy D.; Rivera-Perez, Luis M.; Lillesaar, Christina; Masino, Mark A.

    2015-01-01

    Zebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5-HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is expressed transiently in embryos, which brings the source of 5-HT in the ISNs of larvae and adults into question. Because the pet1 and tph2 promoters drive transgene expression in the spinal cord, we hypothesized that tph2 is expressed in spinal cords of zebrafish larvae. We confirmed this hypothesis through in situ hybridization. Next, we used 5-HT antibody labeling and transgenic markers of tph2-expressing neurons to identify a transient population of ISNs in embryos that was distinct from ISNs that appeared later in development. The existence of separate ISN populations may not have been recognized previously due to their shared location in the ventral spinal cord. Finally, we used transgenic markers and immunohistochemical labeling to identify the transient ISN population as GABAergic Kolmer-Agduhr double-prime (KA″) neurons. Altogether, this study revealed a novel developmental paradigm in which KA″ neurons are transiently serotonergic before the appearance of a stable population of tph2-expressing ISNs. PMID:26437856

  2. A novel approach for assigning levels to monkey and human lumbosacral spinal cord based on ventral horn morphology

    PubMed Central

    Gross, Cassandra; Ellison, Brian; Buchman, Aron S.; Terasawa, Ei

    2017-01-01

    Proper identification of spinal cord levels is crucial for clinical-pathological and imaging studies in humans, but can be a challenge given technical limitations. We have previously demonstrated in non-primate models that the contours of the spinal ventral horn are determined by the position of motoneuron pools. These positions are preserved within and among individuals and can be used to identify lumbosacral spinal levels. Here we tested the hypothesis that this approach can be extended to identify monkey and human spinal levels. In 7 rhesus monkeys, we retrogradely labeled motoneuron pools that represent rostral, middle and caudal landmarks of the lumbosacral enlargement. We then aligned the lumbosacral enlargements among animals using absolute length, segmental level or a relative scale based upon rostral and caudal landmarks. Inter-animal matching of labeled motoneurons across the lumbosacral enlargement was most precise when using internal landmarks. We then reconstructed 3 human lumbosacral spinal cords, and aligned these based upon homologous internal landmarks. Changes in shape of the ventral horn were consistent among human subjects using this relative scale, despite marked differences in absolute length or age. These data suggest that the relative position of spinal motoneuron pools is conserved across species, including primates. Therefore, in clinical-pathological or imaging studies in humans, one can assign spinal cord levels to even single sections by matching ventral horn shape to standardized series. PMID:28542213

  3. A Combination Tissue Engineering Strategy for Schwann Cell-Induced Spinal Cord Repair

    DTIC Science & Technology

    2016-10-01

    block copolymer consisting of polyethylene oxide (PEO) and polypropylene oxide (PPO). It has thermoreversible gelation properties when used at...high; Zeus Inc., Orangeburg, SC) were placed on top of the aligned and random fibrous PVDF-TrFE disks in 96-well polypropylene plates to prevent them...2011. Preparation of spinal cord injured tissue for light and electron microscopy including preparation for immunostaining. In: Lane LE , Dunnett BS

  4. Plasticity in reflex pathways to the lower urinary tract following spinal cord injury

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2013-01-01

    The lower urinary tract has two main functions, storage and periodic expulsion of urine, that are regulated by a complex neural control system in the brain and lumbosacral spinal cord. This neural system coordinates the activity of two functional units in the lower urinary tract: (1) a reservoir (the urinary bladder) and (2) an outlet (consisting of bladder neck, urethra and striated muscles of the external urethra sphincter). During urine storage the outlet is closed and the bladder is quiescent to maintain a low intravesical pressure. During micturition the outlet relaxes and the bladder contracts to promote efficient release of urine. This reciprocal relationship between bladder and outlet is generated by reflex circuits some of which are under voluntary control. Experimental studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through a coordination center (the pontine micturition center) located in the rostral brainstem. This reflex pathway is in turn modulated by higher centers in the cerebral cortex that are involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary control of voiding as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. However the bladder does not empty efficiently because coordination between the bladder and urethral outlet is lost. Studies in animals indicate that dysfunction of the lower urinary tract after spinal cord injury is dependent in part on plasticity of bladder afferent pathways as well as reorganization of synaptic connections in the spinal cord. Reflex plasticity is associated with changes in the properties of ion channels and electrical excitability of afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and/or the peripheral target organs. PMID:21596038

  5. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2018-05-16

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  6. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    PubMed Central

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  7. Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning

    PubMed Central

    Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-01-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6–C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain–spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations. PMID:26125597

  8. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.

    PubMed

    Vahdat, Shahabeddin; Lungu, Ovidiu; Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-06-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.

  9. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion.

    PubMed

    Sławińska, Urszula; Miazga, Krzysztof; Cabaj, Anna M; Leszczyńska, Anna N; Majczyński, Henryk; Nagy, James I; Jordan, Larry M

    2013-09-01

    In rodent models of spinal cord injury, there is increasing evidence that activation of the locomotor central pattern generator (CPG) below the site of injury with 5-hydroxytryptamine (5-HT) agonists improves locomotor recovery and restores coordination. A promising means of replacing 5-HT control of locomotion is to graft brainstem 5-HT neurons into the spinal cord below the level of the spinal cord injury. However, it is not known whether this approach improves limb coordination because recovery of coordinated stepping has not been documented in detail in previous studies employing this transplantation strategy. Here, adult rats with complete spinal cord transections at the T9/10 level were grafted with E14 fetal neurons from the medulla at the T10/11 vertebra level one month after injury. The B1, B2 and B3 fetal anlagen of brainstem 5-HT neurons, a grouping that included the presumed precursors of recently described 5-HT locomotor command neurons, were used in these grafts. EMG and video recordings of treadmill locomotion evoked by tail stimulation showed full recovery of inter- and intralimb coordination in the grafted rats. We showed, using systemically applied antagonists, that 5-HT₂ and 5-HT₇ receptors mediate the improved locomotion after grafting, but through actions on different populations of spinal locomotor neurons. Specifically, 5-HT₂ receptors control CPG activation as well as motoneuron output, while 5-HT₇ receptors contribute primarily to activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Optical monitoring of spinal cord hemodynamics, a feasibility study

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Kwon, Brian K.; Streijger, Femke; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Cripton, Peter A.; Macnab, Andrew

    2017-02-01

    Background: After an acute traumatic spinal cord injury (SCI), the spinal cord is subjected to ischemia, hypoxia, and increased hydrostatic pressure which exacerbate further secondary damage and neuronal deficit. The purpose of this pilot study was to explore the use of near infrared spectroscopy (NIRS) for non-invasive and real-time monitoring of these changes within the injured spinal cord in an animal model. NIRS is a non-invasive optical technique that utilizes light in the near infrared spectrum to monitor changes in the concentration of tissue chromophores from which alterations in tissues oxygenation and perfusion can be inferred in real time. Methods: A custom-made miniaturized NIRS sensor was developed to monitor spinal cord hemodynamics and oxygenation noninvasively and in real time simultaneously with invasive, intraparenchymal monitoring in a pig model of SCI. The spinal cord around the T10 injury site was instrumented with intraparenchymal probes inserted directly into the spinal cord to measure oxygen pressure, blood flow, and hydrostatic pressure, and the same region of the spinal cord was monitored with the custom-designed extradural NIRS probe. We investigated how well the extradural NIRS probe detected intraparenchymal changes adjacent to the injury site after alterations in systemic blood pressure, global hypoxia, and traumatic injury generated by a weight-drop contusion. Results: The NIRS sensor successfully identified periods of systemic hypoxia, re-ventilation and changes in spinal cord perfusion and oxygenation during alterations of mean arterial pressure and following spinal cord injury. Conclusion: This pilot study indicates that extradural NIRS monitoring of the spinal cord is feasible as a non-invasive optical method to identify changes in spinal cord hemodynamics and oxygenation in real time. Further development of this technique would allow clinicians to monitor real-time physiologic changes within the injured spinal cord during the acute post-injury period.

  11. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID:23087647

  12. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  13. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  14. Spinal Cord Infarction in Clinical Neurology: A Review of Characteristics and Long-Term Prognosis in Comparison to Cerebral Infarction.

    PubMed

    Romi, Fredrik; Naess, Halvor

    2016-01-01

    Spinal cord stroke is rare accounting for 0.3-1% of all strokes and is classified into upper (cervical) and lower (thoracolumbar) strokes. Patients present with severe deficits but later often show good functional improvement. On admission, younger age, male gender, hypertension, diabetes mellitus and elevated blood glucose indicate more severe spinal cord strokes. Treatment of these risk factors is essential in the acute phase. Biphasic spinal cord strokes are seen in one-fifth of the patients. These present with acute or transient sensory spinal cord deficits often preceded by radiating pain between the shoulders, and should be considered and treated as imminent spinal cord strokes. Spinal cord infarction patients are younger and more often women compared to cerebral infarction patients. Traditional cerebrovascular risk factors are less relevant in spinal cord infarction. Spinal cord infarction patients are more likely to be discharged home and show better improvement after initial treatment compared to cerebral infarction patients. On long-term follow-up, spinal cord infarction patients have lower mortality and higher emotional well-being scores than cerebral infarction patients. Despite more chronic pain, the frequency of re-employment is higher among spinal cord infarction patients compared to cerebral infarction patients who are more often afflicted with cognitive function deficits. © 2016 S. Karger AG, Basel.

  15. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study

    NASA Astrophysics Data System (ADS)

    Fernandes, Sofia R.; Salvador, Ricardo; Wenger, Cornelia; de Carvalho, Mamede; Miranda, Pedro C.

    2018-06-01

    Objective. Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. Approach. A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. Main results. The average E-field magnitude was predicted to be above 0.15 V m-1 in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m-1). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. Significance. Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.

  16. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation.

    PubMed

    Wang, Liping; Yao, Ying; He, Rong; Meng, Yan; Li, Na; Zhang, Dan; Xu, Jiajun; Chen, Ouyang; Cui, Jin; Bian, Jinjun; Zhang, Yan; Chen, Guozhong; Deng, Xiaoming

    2017-02-01

    Methane is reported to have antioxidant, anti-inflammatory and anti-apoptotic properties. We investigated the potential neuroprotective effects of methane-rich saline (MS) on spinal cord ischemia-reperfusion injury and determined that its therapeutic benefits are associated with the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Rats received 9min of spinal cord ischemia induced by occlusion of the descending thoracic aorta plus systemic hypotension followed by a single MS treatment (10ml/kg, ip) and 72h reperfusion. MS treatment attenuated motor sensory deficits and produced high concentrations of methane in spinal cords during reperfusion, which increased Nrf2 expression and transcriptional activity in neurons, microglia and astrocytes in the ventral, intermediate and dorsal gray matter of lumbar segments. Heme oxygenase-1, superoxide dismutase, catalase and glutathione were upregulated; and glutathione disulfide, superoxide, hydrogen peroxide, malondialdehyde, 8-hydroxy-2-deoxyguanosine and 3-nitrotyrosine were downregulated in MS-treated spinal cords. MS treatment reduced neuronal apoptosis in gray matter zones, which was consistent with the suppression of cytochrome c release to the cytosol from the mitochondria and the activation of caspase-9 and -3. Throughout the gray matter, the activation of microglia and astrocytes was inhibited; the nuclear accumulation of phosphorylated nuclear factor-kappa B p65 was reduced; and tumor necrosis factor α, interleukin 1β, chemokine (C-X-C motif) ligand 1, intercellular adhesion molecule 1 and myeloperoxidase were decreased. MS treatment attenuated blood-spinal cord barrier dysfunction by preventing the expression and activity of matrix metallopeptidase-9 and disrupting tight junction proteins. Consecutive intrathecal injection of specific siRNAs targeting Nrf2 at 24-h intervals 3 days before ischemia reduced the beneficial effects of MS. Our data indicate that MS treatment prevents IR-induced spinal cord damage via antioxidant, anti-inflammatory and anti-apoptotic activities that involve the activation of Nrf2 signaling. Thus, methane may serve as a novel promising therapeutic agent for treating ischemic spinal cord injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A multidisciplinary cognitive behavioural programme for coping with chronic neuropathic pain following spinal cord injury: the protocol of the CONECSI trial

    PubMed Central

    2010-01-01

    Background Most people with a spinal cord injury rate neuropathic pain as one of the most difficult problems to manage and there are no medical treatments that provide satisfactory pain relief in most people. Furthermore, psychosocial factors have been considered in the maintenance and aggravation of neuropathic spinal cord injury pain. Psychological interventions to support people with spinal cord injury to deal with neuropathic pain, however, are sparse. The primary aim of the CONECSI (COping with NEuropathiC Spinal cord Injury pain) trial is to evaluate the effects of a multidisciplinary cognitive behavioural treatment programme on pain intensity and pain-related disability, and secondary on mood, participation in activities, and life satisfaction. Methods/Design CONECSI is a multicentre randomised controlled trial. A sample of 60 persons with chronic neuropathic spinal cord injury pain will be recruited from four rehabilitation centres and randomised to an intervention group or a waiting list control group. The control group will be invited for the programme six months after the intervention group. Main inclusion criteria are: having chronic (> 6 months) neuropathic spinal cord injury pain as the worst pain complaint and rating the pain intensity in the last week as 40 or more on a 0-100 scale. The intervention consists of educational, cognitive, and behavioural elements and encompasses 11 sessions over a 3-month period. Each meeting will be supervised by a local psychologist and physical therapist. Measurements will be perfomed before starting the programme/entering the control group, and at 3, 6, 9, and 12 months. Primary outcomes are pain intensity and pain-related disability (Chronic Pain Grade questionnaire). Secondary outcomes are mood (Hospital Anxiety and Depression Scale), participation in activities (Utrecht Activities List), and life satisfaction (Life Satisfaction Questionnaire). Pain coping and pain cognitions will be assessed with three questionnaires (Coping Strategy Questionnaire, Pain Coping Inventory, and Pain Cognition List). Discussion The CONECSI trial will reveal the effects of a multidisciplinary cognitive behavioural programme for people with chronic neuropathic spinal cord injury pain. This intervention is expected to contribute to the rehabilitation treatment possibilities for this population. Trial Registration Dutch Trial Register NTR1580. PMID:20961406

  18. Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    PubMed Central

    Budde, Matthew D.; Skinner, Nathan P.; Muftuler, L. Tugan; Schmit, Brian D.; Kurpad, Shekar N.

    2017-01-01

    Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the results and optimizations describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection of acute axonal damage in the injured or diseased spinal cord will benefit the optimized filter-probe diffusion MRI protocol outlined here. PMID:29311786

  19. Recovery of locomotion in the cat following spinal cord lesions.

    PubMed

    Rossignol, S; Bouyer, L; Barthélemy, D; Langlet, C; Leblond, H

    2002-10-01

    In most species, locomotor function beneath the level of a spinal cord lesion can be restored even if the cord is completely transected. This suggests that there is, within the spinal cord, an autonomous network of neurons capable of generating a locomotor pattern independently of supraspinal inputs. Recent studies suggest that several physiological and neurochemical changes have to occur in the neuronal networks located caudally to the lesion to allow the expression of spinal locomotion. Some evidence of this plasticity will be addressed in this review. In addition, original data on the functional organisation of the lumbar spinal cord will also be presented. Recent works in our lab show that segmental responsiveness of the spinal cord of the cat to locally micro-injected drugs in different lumbar segments, in combination with complete lesions at various level of the spinal cord, suggest a rostro-caudal organisation of spinal locomotor control. Moreover, the integrity of midlumbar segments seems to be crucial for the expression of spinal locomotion. These data suggest that the regions of critical importance for locomotion can be confined to a restricted portion of the spinal cord. Later, these midlumbar segments could be targeted by electrical stimulation or grafts to improve recovery of function. Understanding the changes in spinal cord neurophysiology and neurochemistry after a lesion is of critical importance to the improvement of treatments for locomotor rehabilitation in spinal-cord-injured patients.

  20. Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation.

    PubMed

    Bartlett, Richard D; Choi, David; Phillips, James B

    2016-10-01

    Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering.

  1. Central nervous system (image)

    MedlinePlus

    ... receive nerve impulses from the spinal cord and cranial nerves. The spinal cord contains the nerves that carry messages between the brain and the body. Spinal cord injury can occur when there is damage to the cells within the spinal cord or ...

  2. [The metabolic profilings study of serum and spinal cord from acute spinal cord injury rats ¹H NMR spectroscopy].

    PubMed

    Hu, Hua-Hui; Huang, Xiao-Long; Quan, Ren-Fu; Yang, Zong-Bao; Xu, Jing-Jing

    2017-02-25

    To establish the rat model of acute spinal cord injury, followed by aprimary study on this model with ¹H NMR based on metabonomics and to explore the metabonomics and biomarkers of spinal cord injury rat. Twenty eight-week-old adult male SD rats of clean grade, with body weight of (200±10) g, were divided into sham operation group and model group in accordance with the law of random numbers, and every group had 10 rats. The rats of sham operation group were operated without damaging the spinal cord, and rats of model group were made an animal model of spinal cord incomplete injury according to the modified Allen's method. According to BBB score to observate the motor function of rats on the 1th, 5th, and 7th days after surgery. Postoperative spinal cord tissue was collected in order to pathologic observation at the 7th day, and the metabolic profilings of serum and spinal cord from spinal cord injury rats were studied by ¹H NMR spectroscopy. The hindlimb motion of rats did not obviously change in sham operation group, there was no significant difference at each time point;and rats of model group occurred flaccid paralysis of both lower extremities, there was a significant difference at each time; there was significant differences between two groups at each time. Pathological results showed the spinal cord structure was normal with uniform innervation in shame group, while in model group, the spinal cord structure was mussy, and the neurons were decreased, with inflammatory cells and necrotic tissue. Analysis of metabonomics showed that concentration of very low density fat protein (VLDL), low density fat protein (LDL), glutamine, citric acid, dimethylglycine (DMG) in the serum and glutathione, 3-OH-butyrate, N-Acetyl-L-aspartic acid (NAA), glycerophosphocholine (GPC), glutamic acid, and ascorbate in spinal cord had significant changes( P <0.05). There are significant differences in metabolic profile from serum and spinal cord sample between model group and sham operation group, it conduces to explain the changes of small molecular substances in serum and spinal cord tissue after spinal cord injury, this provides the research basis for targeted research on the role of metabolic markers in patients with acute spinal cord injury.

  3. Image analysis of open-door laminoplasty for cervical spondylotic myelopathy: comparing the influence of cord morphology and spine alignment.

    PubMed

    Lin, Bon-Jour; Lin, Meng-Chi; Lin, Chin; Lee, Meei-Shyuan; Feng, Shao-Wei; Ju, Da-Tong; Ma, Hsin-I; Liu, Ming-Ying; Hueng, Dueng-Yuan

    2015-10-01

    Previous studies have identified the factors affecting the surgical outcome of cervical spondylotic myelopathy (CSM) following laminoplasty. Nonetheless, the effect of these factors remains controversial. It is unknown about the association between pre-operative cervical spinal cord morphology and post-operative imaging result following laminoplasty. The goal of this study is to analyze the impact of pre-operative cervical spinal cord morphology on post-operative imaging in patients with CSM. Twenty-six patients with CSM undergoing open-door laminoplasty were classified according to pre-operative cervical spine bony alignment and cervical spinal cord morphology, and the results were evaluated in terms of post-operative spinal cord posterior drift, and post-operative expansion of the antero-posterior dura diameter. By the result of study, pre-operative spinal cord morphology was an effective classification in predicting surgical outcome - patients with anterior convexity type, description of cervical spinal cord morphology, had more spinal cord posterior migration than those with neutral or posterior convexity type after open-door laminoplasty. Otherwise, the interesting finding was that cervical spine Cobb's angle had an impact on post-operative spinal cord posterior drift in patients with neutral or posterior convexity type spinal cord morphology - the degree of kyphosis was inversely proportional to the distance of post-operative spinal cord posterior drift, but not in the anterior convexity type. These findings supported that pre-operative cervical spinal cord morphology may be used as screening for patients undergoing laminoplasty. Patients having neutral or posterior convexity type spinal cord morphology accompanied with kyphotic deformity were not suitable candidates for laminoplasty. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Spinal cord herniation following cervical meningioma excision: a rare clinical entity and review of literature.

    PubMed

    Aiyer, Siddharth N; Shetty, Ajoy Prasad; Kanna, Rishi; Maheswaran, Anupama; Rajasekaran, S

    2016-05-01

    Spinal cord herniation following surgery is an extremely uncommon clinical condition with very few reports in published literature. This condition usually occurs as a spontaneous idiopathic phenomenon often in the thoracic spine or following a scenario of post traumatic spinal cord/nerve root injury. Rarely has it been reported following spinal cord tumor surgery. To document a case of cervical spinal cord herniation as a late onset complication following spinal cord tumor surgery with an atypical presentation of monoparesis. Case report. We describe the clinical presentation, operative procedure, post operative outcome and review of literature of this rare clinical condition. A 57-year-old man presented with right upper limb monoparesis due to a spinal cord herniation 6 years after a cervical intradural meningioma excision. The patients underwent surgery to reduce the herniation and duroplasty with subsequent complete resolution of symptoms. Spinal cord herniation must be considered as differential diagnosis in scenarios of spinal cord tumor excision presenting with late onset neurological deficit. These cases may present as paraparesis, Brown-sequard syndrome and rarely as in our case as monoparesis.

  5. Characterization of DTI Indices in the Cervical, Thoracic, and Lumbar Spinal Cord in Healthy Humans

    PubMed Central

    Bosma, Rachael L.; Stroman, Patrick W.

    2012-01-01

    The aim of this study was to characterize in vivo measurements of diffusion along the length of the entire healthy spinal cord and to compare DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), between cord regions. The objective is to determine whether or not there are significant differences in DTI indices along the cord that must be considered for future applications of characterizing the effects of injury or disease. A cardiac gated, single-shot EPI sequence was used to acquire diffusion-weighted images of the cervical, thoracic, and lumbar regions of the spinal cord in nine neurologically intact subjects (19 to 22 years). For each cord section, FA versus MD values were plotted, and a k-means clustering method was applied to partition the data according to tissue properties. FA and MD values from both white matter (average FA = 0.69, average MD = 0.93 × 10−3 mm2/s) and grey matter (average FA = 0.44, average MD = 1.8 × 10−3 mm2/s) were relatively consistent along the length of the cord. PMID:22295179

  6. Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord

    PubMed Central

    Danner, Simon M.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-01-01

    In individuals with motor-complete spinal cord injury, epidural stimulation of the lumbosacral spinal cord at 2 Hz evokes unmodulated reflexes in the lower limbs, while stimulation at 22–60 Hz can generate rhythmic burstlike activity. Here we elaborated on an output pattern emerging at transitional stimulation frequencies with consecutively elicited reflexes alternating between large and small. We analyzed responses concomitantly elicited in thigh and leg muscle groups bilaterally by epidural stimulation in eight motor-complete spinal cord-injured individuals. Periodic amplitude modulation of at least 20 successive responses occurred in 31.4% of all available data sets with stimulation frequency set at 5–26 Hz, with highest prevalence at 16 Hz. It could be evoked in a single muscle group only but was more strongly expressed and consistent when occurring in pairs of antagonists or in the same muscle group bilaterally. Latencies and waveforms of the modulated reflexes corresponded to those of the unmodulated, monosynaptic responses to 2-Hz stimulation. We suggest that the cyclical changes of reflex excitability resulted from the interaction of facilitatory and inhibitory mechanisms emerging after specific delays and with distinct durations, including postactivation depression, recurrent inhibition and facilitation, as well as reafferent feedback activation. The emergence of large responses within the patterns at a rate of 5.5/s or 8/s may further suggest the entrainment of spinal mechanisms as involved in clonus. The study demonstrates that the human lumbosacral spinal cord can organize a simple form of rhythmicity through the repetitive activation of spinal reflex circuits. PMID:25904708

  7. Management of chronic spinal cord dysfunction.

    PubMed

    Abrams, Gary M; Ganguly, Karunesh

    2015-02-01

    Both acute and chronic spinal cord disorders present multisystem management problems to the clinician. This article highlights key issues associated with chronic spinal cord dysfunction. Advances in symptomatic management for chronic spinal cord dysfunction include use of botulinum toxin to manage detrusor hyperreflexia, pregabalin for management of neuropathic pain, and intensive locomotor training for improved walking ability in incomplete spinal cord injuries. The care of spinal cord dysfunction has advanced significantly over the past 2 decades. Management and treatment of neurologic and non-neurologic complications of chronic myelopathies ensure that each patient will be able to maximize their functional independence and quality of life.

  8. International spinal cord injury pulmonary function basic data set.

    PubMed

    Biering-Sørensen, F; Krassioukov, A; Alexander, M S; Donovan, W; Karlsson, A-K; Mueller, G; Perkash, I; Sheel, A William; Wecht, J; Schilero, G J

    2012-06-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population. International. The SCI Pulmonary Function Data Set was developed by an international working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Pulmonary Function Data Set contains questions on the pulmonary conditions diagnosed before spinal cord lesion,if available, to be obtained only once; smoking history; pulmonary complications and conditions after the spinal cord lesion, which may be collected at any time. These data include information on pneumonia, asthma, chronic obstructive pulmonary disease and sleep apnea. Current utilization of ventilator assistance including mechanical ventilation, diaphragmatic pacing, phrenic nerve stimulation and Bi-level positive airway pressure can be reported, as well as results from pulmonary function testing includes: forced vital capacity, forced expiratory volume in one second and peak expiratory flow. The complete instructions for data collection and the data sheet itself are freely available on the website of ISCoS (http://www.iscos.org.uk).

  9. [Research progress in the role of aquaproin-4 and inward rectifying potassium channel 4.1 in spinal cord edema].

    PubMed

    Chen, Tiege; Dang, Yuexiu; Wang, Ming; Zhang, Dongliang; Guo, Yongqiang; Zhang, Haihong

    2018-05-28

    Spinal edema is a very important pathophysiological basis for secondary spinal cord injury, which affects the repair and prognosis of spinal cord injury. Aquaporin-4 is widely distributed in various organs of the body, and is highly expressed in the brain and spinal cord. Inward rectifying potassium channel 4.1 is a protein found in astrocytes of central nervous system. It interacts with aquaporins in function. Aquaporin-4 and inward rectifying potassium channel 4.1 play an important role in the formation and elimination of spinal cord edema, inhibition of glial scar formation and promotion of excitotoxic agents exclusion. The distribution and function of aquaporin-4 and inward rectifying potassium channel 4.1 in the central nervous system and their expression after spinal cord injury have multiple effects on spinal edema. Studies of aquaporin-4 and inward rectifying potassium channel 4.1 in the spinal cord may provide new ideas for the elimination and treatment of spinal edema.

  10. [Heterotopic ossification spinal cord injury. Management through early diagnosis and therapy].

    PubMed

    Maier, D

    2005-02-01

    Heterotopic ossification is a frequent and potentially disastrous complication of acute spinal cord injury. Pathogenesis and etiology are not well described, initial clinical symptoms are uncharacteristic, specific laboratory findings do not exist. Between March 1997 and May 2000 all 290 patients admitted to our facility with acute spinal cord injury underwent standardized sonographic examinations of the soft tissue around the hip joint every three weeks, starting as early as two weeks after injury. In 12% of the patient population characteristic sonographic findings for heterotopic ossification were present while the regular x-ray examination was still unremarkable. Laboratory findings (alkaline phosphatase, C-reactive protein, anorganic phosphate) were unspecific. Clinical findings were present only in a few patients. All patients underwent radiotherapy consisting of the administration of 5 times 3 Gy to the area as soon as possible. Follow up demonstrated no progression of the heterotopic bone formation in these cases. In conclusion, regular ultrasound examination proved to be a secure, fast and reproducible method for the very early diagnosis of heterotopic ossification after acute spinal cord injury.

  11. A pediatric intramedullary spinal cord tumor with unusual solid-cystic and papillary features: a case report.

    PubMed

    Iwasaki, Takeshi; Kato, Masako; Horie, Yasushi; Kato, Shinsuke; Akatsuka, Keiichi; Watanabe, Takashi; Kuwamoto, Satoshi; Murakami, Ichiro; Hayashi, Kazuhiko

    2011-12-01

    Spinal cord tumors are rare in children. We report a novel case of pediatric intramedullary spinal cord tumor with unusual solid-cystic and papillary features. Clinically, the patient presented at the age of 3 years with motor deficit and urinary incontinence, and MRI demonstrated multilocular cystic lesions in the thoracic spine. Histologically the tumor consisted of solid, sheet-like components and branching papillary structures, and immunohistochemistry demonstrated positive reactivity for epithelial membrane antigen, cytokeratins (7, AE1/3, CAM5.2), E-cadherin and transthyretin, and negativity for GFAP, S-100 protein, synaptophysin and neurofilament. These histological and immunohistochemical findings appeared to be unique, and were not compatible with the features of classical ependymoma or choroid plexus papilloma. The clinical behavior, characterized by relatively rapid tumor regrowth after surgical resection and a relatively high MIB-1 labeling index, suggest that this tumor might have had moderate malignant potential. This pediatric case appears to be particularly informative with regard to the tumor biology or tumorigenesis of intramedullary spinal cord tumor with unusual solid-cystic and papillary features. © 2011 Japanese Society of Neuropathology.

  12. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish

    PubMed Central

    Mokalled, Mayssa H.; Patra, Chinmoy; Dickson, Amy L.; Endo, Toyokazu; Stainier, Didier Y. R.; Poss, Kenneth D.

    2016-01-01

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration, a relatively unexplored process. Here, we performed a genome-wide profiling screen for secreted factors that are upregulated during zebrafish spinal cord regeneration. We find that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupt spinal cord repair, while transgenic ctgfa overexpression and local human CTGF recombinant protein delivery accelerate bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. PMID:27811277

  13. Brain protection by methylprednisolone in rats with spinal cord injury.

    PubMed

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  14. Clinical and imaging features of spinal cord type of neuro Behçet disease: A case report and systematic review.

    PubMed

    Liu, Hui-Miao; Dong, Ci; Zhang, Yong-Zhi; Tian, Ya-Yun; Chen, Hong-Xu; Zhang, Sai; Li, Na; Gu, Ping

    2017-10-01

    To investigate the clinical and MRI characteristics of spinal cord nerve Behçet's disease. One patient with spinal cord nerve Behçet's disease was admitted to our hospital at October 20, 2015. Spinal cord nerve Behçet's disease. Retrospective analysis was performed on such case as well as 16 cases of spinal cord nerve Behçet's disease reported in China or abroad. Seventeen cases of spinal cord type of neuro Behçet's disease include 13 men and 4 women, with an average age of onset of 34.8 years old. The mean time from Behçet's disease symptoms to spinal cord involvement were 10.8 years. The initial symptom in one case was spinal cord injury, and another 4 cases had a recurrence course. The most common performance of spinal cord injury was sensory disturbance (82.4%), following by weakness (76.5%), sphincter or sexual dysfunction (58.8%), and pain in back, backside of neck or lower chest (29.4%). The number of cells was slightly increased or the protein level was increased in cerebrospinal fluid test. And the water channel protein antibody and oligoclonal band of serum levels were all negative. The spinal cord injury involved more than 3 vertebral bodies in 10 cases, and involved more than half of spinal cord in sagittal plane in 8 cases. In acute stage, shock therapy with large dose of glucocorticoid was generally applied both in China and abroad. The clinical features of spinal cord nerve Behçet's disease were various, making it easily misdiagnosed. Longitudinal extensive transverse myelitis performs as a characteristic manifestation.

  15. [APPLICATION OF THREE DIMENSIONAL PRINTING ON MANUFACTURING BIONIC SCAFFOLDS OF SPINAL CORD IN RATS].

    PubMed

    Chen, Yisheng; Wang, Jingjing; Chen, Xuyi; Chen, Chong; Tu, Yue; Zhang, Sai; Li, Xiaohong

    2015-03-01

    To fabricate the bionic scaffolds of rat spinal cord by combining three dimensional (3D) printer and 3D software, so as to lay the foundation of theory and technology for the manufacture of scaffolds by using biomaterials. Three female Sprague Dawley rats were scanned by 7.0T MRI to obtain the shape and position data of the cross section and gray matter of T8 to T10 spinal cord. Combined with data of position and shape of nerve conduction beam, the relevant data were obtained via Getdata software. Then the 3D graphics were made and converted to stereolithography (STL) format by using SolidWorks software. Photosensitive resin was used as the materials of spinal cord scaffolds. The bionic scaffolds were fabricated by 3D printer. MRI showed that the section shape of T8 to T10 segments of the spinal cord were approximately oval with a relatively long sagittal diameter of (2.20 ± 0.52) mm and short transverse diameter of (2.05 ± 0.24) mm, and the data of nerve conduction bundle were featured in the STL format. The spinal cord bionic scaffolds of the target segments made by 3D printer were similar to the spinal cord of rat in the morphology and size, and the position of pores simulated normal nerve conduction of rat spinal cord. Spinal cord scaffolds produced by 3D printer which have similar shape and size of normal rat spinal cord are more bionic, and the procedure is simple. This technology combined with biomaterials is also promising in spinal cord repairing after spinal cord injury.

  16. Spinal cord injury arising in anaesthesia practice.

    PubMed

    Hewson, D W; Bedforth, N M; Hardman, J G

    2018-01-01

    Spinal cord injury arising during anaesthetic practice is a rare event, but one that carries a significant burden in terms of morbidity and mortality. In this article, we will review the pathophysiology of spinal cord injury. We will then discuss injuries relating to patient position, spinal cord hypoperfusion and neuraxial techniques. The most serious causes of spinal cord injury - vertebral canal haematoma, spinal epidural abscess, meningitis and adhesive arachnoiditis - will be discussed in turn. For each condition, we draw attention to practical, evidence-based measures clinicians can undertake to reduce their incidence, or mitigate their severity. Finally, we will discuss transient neurological symptoms. Some cases of spinal cord injury during anaesthesia can be ascribed to anaesthesia itself, arising as a direct consequence of its conduct. The injury to a spinal nerve root by inaccurate and/or incautious needling during spinal anaesthesia is an obvious example. But in many cases, spinal cord injury during anaesthesia is not caused by, related to, or even associated with, the conduct of the anaesthetic. Surgical factors, whether direct (e.g. spinal nerve root damage due to incorrect pedicle screw placement) or indirect (e.g. cord ischaemia following aortic surgery) are responsible for a significant proportion of spinal cord injuries that occur concurrently with the delivery of regional or general anaesthesia. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  17. Measurement properties of the Spinal Cord Injury-Functional Index (SCI-FI) short forms.

    PubMed

    Heinemann, Allen W; Dijkers, Marcel P; Ni, Pengsheng; Tulsky, David S; Jette, Alan

    2014-07-01

    To evaluate the psychometric properties of the Spinal Cord Injury-Functional Index (SCI-FI) short forms (basic mobility, self-care, fine motor, ambulation, manual wheelchair, and power wheelchair) based on internal consistency; correlations between short forms banks, full item bank forms, and a 10-item computer adaptive test version; magnitude of ceiling and floor effects; and test information functions. Cross-sectional cohort study. Six rehabilitation hospitals in the United States. Individuals with traumatic spinal cord injury (N=855) recruited from 6 national Spinal Cord Injury Model Systems facilities. Not applicable. SCI-FI full item bank, 10-item computer adaptive test, and parallel short form scores. The SCI-FI short forms (with separate versions for individuals with paraplegia and tetraplegia) demonstrate very good internal consistency, group-level reliability, excellent correlations between short forms and scores based on the total item bank, and minimal ceiling and floor effects (except ceiling effects for persons with paraplegia on self-care, fine motor, and power wheelchair ability and floor effects for persons with tetraplegia on self-care, fine motor, and manual wheelchair ability). The test information functions are acceptable across the range of scores where most persons in the sample performed. Clinicians and researchers should consider the SCI-FI short forms when computer adaptive testing is not feasible. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  19. Reliable and fast volumetry of the lumbar spinal cord using cord image analyser (Cordial).

    PubMed

    Tsagkas, Charidimos; Altermatt, Anna; Bonati, Ulrike; Pezold, Simon; Reinhard, Julia; Amann, Michael; Cattin, Philippe; Wuerfel, Jens; Fischer, Dirk; Parmar, Katrin; Fischmann, Arne

    2018-04-30

    To validate the precision and accuracy of the semi-automated cord image analyser (Cordial) for lumbar spinal cord (SC) volumetry in 3D T1w MRI data of healthy controls (HC). 40 3D T1w images of 10 HC (w/m: 6/4; age range: 18-41 years) were acquired at one 3T-scanner in two MRI sessions (time interval 14.9±6.1 days). Each subject was scanned twice per session, allowing determination of test-retest reliability both in back-to-back (intra-session) and scan-rescan images (inter-session). Cordial was applied for lumbar cord segmentation twice per image by two raters, allowing for assessment of intra- and inter-rater reliability, and compared to a manual gold standard. While manually segmented volumes were larger (mean: 2028±245 mm 3 vs. Cordial: 1636±300 mm 3 , p<0.001), accuracy assessments between manually and semi-automatically segmented images showed a mean Dice-coefficient of 0.88±0.05. Calculation of within-subject coefficients of variation (COV) demonstrated high intra-session (1.22-1.86%), inter-session (1.26-1.84%), as well as intra-rater (1.73-1.83%) reproducibility. No significant difference was shown between intra- and inter-session reproducibility or between intra-rater reliabilities. Although inter-rater reproducibility (COV: 2.87%) was slightly lower compared to all other reproducibility measures, between rater consistency was very strong (intraclass correlation coefficient: 0.974). While under-estimating the lumbar SCV, Cordial still provides excellent inter- and intra-session reproducibility showing high potential for application in longitudinal trials. • Lumbar spinal cord segmentation using the semi-automated cord image analyser (Cordial) is feasible. • Lumbar spinal cord is 40-mm cord segment 60 mm above conus medullaris. • Cordial provides excellent inter- and intra-session reproducibility in lumbar spinal cord region. • Cordial shows high potential for application in longitudinal trials.

  20. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    PubMed

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  1. Electroencephalographic evoked pain response is suppressed by spinal cord stimulation in complex regional pain syndrome: a case report.

    PubMed

    Hylands-White, Nicholas; Duarte, Rui V; Beeson, Paul; Mayhew, Stephen D; Raphael, Jon H

    2016-12-01

    Pain is a subjective response that limits assessment. The purpose of this case report was to explore how the objectivity of the electroencephalographic response to thermal stimuli would be affected by concurrent spinal cord stimulation. A patient had been implanted with a spinal cord stimulator for the management of complex regional pain syndrome of both hands for 8 years. Following ethical approval and written informed consent we induced thermal stimuli using the Medoc PATHWAY Pain & Sensory Evaluation System on the right hand of the patient with the spinal cord stimulator switched off and with the spinal cord stimulator switched on. The patient reported a clinically significant reduction in thermal induced pain using the numerical rating scale (71.4 % reduction) with spinal cord stimulator switched on. Analysis of electroencephalogram recordings indicated the occurrence of contact heat evoked potentials (N2-P2) with spinal cord stimulator off, but not with spinal cord stimulator on. This case report suggests that thermal pain can be reduced in complex regional pain syndrome patients with the use of spinal cord stimulation and offers objective validation of the reported outcomes with this treatment.

  2. Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury

    DTIC Science & Technology

    2017-09-01

    oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short pulses of blue LED light resulting in a fluorescent...Award Number: W81XWH-16-1-0602 TITLE: Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation

  3. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    PubMed

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  4. Meningocele repair - series (image)

    MedlinePlus

    ... containing a portion of the spinal cord membrane (meninges), spinal fluid, and a portion of spinal cord ... The spinal cord is covered with the membranes (meninges) and the skin is closed over the protruding ...

  5. Part 1: recognizing neonatal spinal cord injury.

    PubMed

    Brand, M Colleen

    2006-02-01

    Neonatal spinal cord injury can occur in utero, as well as after either a difficult delivery or a nontraumatic delivery. Spinal cord injury can also be related to invasive nursery procedures or underlying neonatal pathology. Early clinical signs of spinal cord injury that has occurred in utero or at delivery includes severe respiratory compromise and profound hypotonia. Knowledge of risk factors and awareness of symptoms is required for early recognition and appropriate treatment. This article reviews the embryological development of the spinal column highlighting mechanisms of injury and identifying underlying factors that increase the risk of spinal cord injury in newborns. Signs and symptoms of injury, cervical spine immobilization, and the differential diagnosis are discussed. Nursing implications, general prognosis, and research in spinal cord injury are provided.

  6. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report.

    PubMed

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Kurniawati, Tri; Lutfi, Andi Praja Wira Yudha

    2017-11-30

    Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating. Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.

  7. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; hide

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  8. A spinal thecal sac constriction model supports the theory that induced pressure gradients in the cord cause edema and cyst formation.

    PubMed

    Josephson, A; Greitz, D; Klason, T; Olson, L; Spenger, C

    2001-03-01

    Spinal cord cysts are a devastating condition that occur secondary to obstructions of the spinal canal, which may be caused by congenital malformations, trauma, spinal canal stenosis, tumors, meningitis, or arachnoiditis. A hypothesis that could explain how spinal cord cysts form in these situations has been presented recently. Therefore, a novel spinal thecal sac constriction model was implemented to test various aspects of this hypothesis. Thecal sac constriction was achieved by subjecting rats to an extradural silk ligature at the T8 spinal cord level. Rats with complete spinal cord transection served as a second model for comparison. The animals underwent high-resolution magnetic resonance imaging and histological analysis. Thecal sac constriction caused edema cranial and caudal to the ligation within 3 weeks, and cysts developed after 8 to 13 weeks. In contrast, cysts in rats with spinal cord transection were located predominantly in the cranial spinal cord. Histological sections of spinal cords confirmed the magnetic resonance imaging results. Magnetic resonance imaging provided the specific advantage of enabling characterization of events as they occurred repeatedly over time in the spinal cords of individual living animals. The spinal thecal sac constriction model proved useful for investigation of features of the cerebrospinal fluid pulse pressure theory. Edema and cyst distributions were in accordance with this theory. We conclude that induced intramedullary pressure gradients originating from the cerebrospinal fluid pulse pressure may underlie cyst formation in the vicinity of spinal canal obstructions and that cysts are preceded by edema.

  9. Survey of spinal cord injury-induced neurogenic bladder studies using the Web of Science.

    PubMed

    Zou, Benjing; Zhang, Yongli; Li, Yucheng; Wang, Zantao; Zhang, Ping; Zhang, Xiyin; Wang, Bingdong; Long, Zhixin; Wang, Feng; Song, Guo; Wang, Yan

    2012-08-15

    To identify global trends in research on spinal cord injury-induced neurogenic bladder, through a bibliometric analysis using the Web of Science. We performed a bibliometric analysis of studies on spinal cord injury-induced neurogenic bladder using the Web of Science. Data retrieval was performed using key words "spinal cord injury", "spinal injury", "neurogenic bladder", "neuropathic bladder", "neurogenic lower urinary tract dysfunction", "neurogenic voiding dysfunction", "neurogenic urination disorder" and "neurogenic vesicourethral dysfunction". (a) published peer-reviewed articles on spinal cord injury-induced neurogenic bladder indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: no limitation. (a) articles that required manual searching or telephone access; (b) Corrected papers and book chapters. (1) Annual publication output; (2) distribution according to journals; (3) distribution according to subject areas; (4) distribution according to country; (5) distribution according to institution; and (6) top cited publications. There were 646 research articles addressing spinal cord injury-induced neurogenic bladder in the Web of Science. Research on spinal cord injury-induced neurogenic bladder was found in the Science Citation Index-Expanded as of 1946. The United States, Ireland and Switzerland were the three major countries contributing to studies in spinal cord injury-induced neurogenic bladder in the 1970s. However, in the 1990s, the United States, the United Kingdom, the Netherlands, Germany and Japan published more papers on spinal cord injury-induced neurogenic bladder than Switzerland, and Ireland fell off the top ten countries list. In this century, the United States ranks first in spinal cord injury-induced neurogenic bladder studies, followed by France, the United Kingdom, Germany, Switzerland and Japan. Subject categories including urology, nephrology and clinical neurology, as well as rehabilitation, are represented in spinal cord injury-induced neurogenic bladder studies. From our analysis of the literature and research trends, we conclude that spinal cord injury-induced neurogenic bladder is a hot topic that will continue to generate considerable research interest in the future.

  10. The international spinal cord injury pain basic data set.

    PubMed

    Widerström-Noga, E; Biering-Sørensen, F; Bryce, T; Cardenas, D D; Finnerup, N B; Jensen, M P; Richards, J S; Siddall, P J

    2008-12-01

    To develop a basic pain data set (International Spinal Cord Injury Basic Pain Data Set, ISCIPDS:B) within the framework of the International spinal cord injury (SCI) data sets that would facilitate consistent collection and reporting of pain in the SCI population. International. The ISCIPDS:B was developed by a working group consisting of individuals with published evidence of expertise in SCI-related pain regarding taxonomy, psychophysics, psychology, epidemiology and assessment, and one representative of the Executive Committee of the International SCI Standards and Data Sets. The members were appointed by four major organizations with an interest in SCI-related pain (International Spinal Cord Society, ISCoS; American Spinal Injury Association, ASIA; American Pain Society, APS and International Association for the Study of Pain, IASP). The initial ISCIPDS:B was revised based on suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the ISCoS Scientific Committee, ASIA and APS Boards, and the Neuropathic Pain Special Interest Group of the IASP, individual reviewers and societies and the ISCoS Council. The final ISCIPDS:B contains core questions about clinically relevant information concerning SCI-related pain that can be collected by health-care professionals with expertise in SCI in various clinical settings. The questions concern pain severity, physical and emotional function and include a pain-intensity rating, a pain classification and questions related to the temporal pattern of pain for each specific pain problem. The impact of pain on physical, social and emotional function, and sleep is evaluated for each pain.

  11. Spinal decompression sickness: mechanical studies and a model.

    PubMed

    Hills, B A; James, P B

    1982-09-01

    Six experimental investigations of various mechanical aspects of the spinal cord are described relevant to its injury by gas deposited from solution by decompression. These show appreciable resistances to gas pockets dissipating by tracking along tissue boundaries or distending tissue, the back pressure often exceeding the probable blood perfusion pressure--particularly in the watershed zones. This leads to a simple mechanical model of spinal decompression sickness based on the vascular "waterfall" that is consistent with the pathology, the major quantitative aspects, and the symptomatology--especially the reversibility with recompression that is so difficult to explain by an embolic mechanism. The hypothesis is that autochthonous gas separating from solution in the spinal cord can reach sufficient local pressure to exceed the perfusion pressure and thus occlude blood flow.

  12. Combined Effects of Acrobatic Exercise and Magnetic Stimulation on the Functional Recovery after Spinal Cord Lesions

    PubMed Central

    Wieraszko, Andrzej

    2008-01-01

    Abstract The objective of the study was to determine whether physical exercise combined with epidural spinal cord magnetic stimulation could improve recovery after injury of the spinal cord. Spinal cord lesioning in mice resulted in reduced locomotor function and negatively affected the muscle strength tested in vitro. Acrobatic exercise attenuated the behavioral effects of spinal cord injury. The exposure to magnetic fields facilitated further this improvement. The progress in behavioral recovery was correlated with reduced muscle degeneration and enhanced muscle contraction. The acrobatic exercise combined with stimulation with magnetic fields significantly facilitates behavioral recovery and muscle physiology in mice following spinal cord injury. PMID:18986227

  13. U.S. Army Battlefield Exercise and Combat Related Spinal Cord Injury Research: Neuroprotection and Repair After Spinal Cord Injury. Addendum

    DTIC Science & Technology

    2009-03-01

    antibody that recognizes O4 is in red GFAP in green and the nuclei were revealed with DAPI (blue) Out of the 66 compounds we identified the myosin ...The results with these inhibitors have been consistent thru multiple experiments and they work at low concentrations. Figure 5: Myosin light...624 ı BioTechniques ı www.biotechniques.com Vol. 41 ı No. 5 ı 2006 Research Reports 3. Cheng, L. and V. Lemmon. 2004. Pathological missense

  14. Exploration of Spinal Cord Aging-Related Proteins Using a Proteomics Approach.

    PubMed

    Kamiya, Koshiro; Furuya, Takeo; Hashimoto, Masayuki; Mannoji, Chikato; Inada, Taigo; Ota, Mitsutoshi; Maki, Satoshi; Ijima, Yasushi; Saito, Junya; Kitamura, Mitsuhiro; Ohtori, Seiji; Orita, Sumihisa; Inage, Kazuhide; Yamazaki, Masashi; Koda, Masao

    2017-01-01

    How aging affects the spinal cord at a molecular level is unclear. The aim of this study was to explore spinal cord aging-related proteins that may be involved in pathological mechanisms of age-related changes in the spinal cord. Spinal cords of 2-year-old and 8-week-old female Sprague-Dawley rats were dissected from the animals. Protein samples were subjected to 2-dimentional polyacrylamide gel electrophoresis followed by mass spectrometry. Screened proteins were further investigated with immunohistochemistry and Western blotting. Among the screened proteins, we selected α-crystallin B-subunit (αB-crystallin) and peripherin for further investigation because these proteins were previously reported to be related to central nervous system pathologies. Immunohistochemistry and Western blotting revealed significant upregulation of αB-crystallin and peripherin expression in aged rat spinal cord. Further exploration is needed to elucidate the precise mechanism and potential role of these upregulated proteins in spinal cord aging processes.

  15. Spinal Cord Lesions in Congenital Toxoplasmosis Demonstrated with Neuroimaging, Including Their Successful Treatment in an Adult.

    PubMed

    Burrowes, Delilah; Boyer, Kenneth; Swisher, Charles N; Noble, A Gwendolyn; Sautter, Mari; Heydemann, Peter; Rabiah, Peter; Lee, Daniel; McLeod, Rima

    2012-03-01

    Neuroimaging studies for persons in the National Collaborative Chicago-Based Congenital Toxoplasmosis Study (NCCCTS) with symptoms and signs referable to the spinal cord were reviewed. Three infants had symptomatic spinal cord lesions, another infant a Chiari malformation, and another infant a symptomatic peri-spinal cord lipoma. One patient had an unusual history of prolonged spinal cord symptoms presenting in middle age. Neuroimaging was used to establish her diagnosis and response to treatment. This 43 year-old woman with congenital toxoplasmosis developed progressive leg spasticity, weakness, numbness, difficulty walking, and decreased visual acuity and color vision without documented re-activation of her chorioretinal disease. At 52 years of age, spinal cord lesions in locations correlating with her symptoms and optic atrophy were diagnosed with 3 Tesla MRI scan. Treatment with pyrimethamine and sulfadiazine decreased her neurologic symptoms, improved her neurologic examination, and resolved her enhancing spinal cord lesions seen on MRI.

  16. Are there endogenous stem cells in the spinal cord?

    PubMed

    Ferrucci, Michela; Ryskalin, Larisa; Busceti, Carla L; Gaglione, Anderson; Biagioni, Francesca; Fornai, Francesco

    2017-12-01

    Neural progenitor cells (NPC) represent the stem-like niche of the central nervous system that maintains a regenerative potential also in the adult life. Despite NPC in the brain are well documented, the presence of NPC in the spinal cord has been controversial for a long time. This is due to a scarce activity of NPC within spinal cord, which also makes difficult their identification. The present review recapitulates the main experimental studies, which provided evidence for the occurrence of NPC within spinal cord, with a special emphasis on spinal cord injury and amyotrophic lateral sclerosis. By using experimental models, here we analyse the site-specificity, the phenotype and the main triggers of spinal cord NPC. Moreover, data are reported on the effect of specific neurogenic stimuli on these spinal cord NPC in an effort to comprehend the endogenous neurogenic potential of this stem cell niche.

  17. Gap Junctions Contribute to the Regulation of Walking-Like Activity in the Adult Mudpuppy (Necturus Maculatus).

    PubMed

    Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo

    2016-01-01

    Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.

  18. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for pain relief. 882.5880 Section 882.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator...

  19. 76 FR 71623 - Agency Information Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review AGENCY: Veterans Benefits Administration... INFORMATION: Title: Spinal Cord Injury Patient Care Survey, VA Form 10-0515. OMB Control Number: OMB Control... 10-0515 will be used to determine spinal cord patients' satisfaction with VA rehabilitation and...

  20. DTI and pathological changes in a rabbit model of radiation injury to the spinal cord after 125I radioactive seed implantation

    PubMed Central

    Cao, Xia; Fang, Le; Cui, Chuan-yu; Gao, Shi; Wang, Tian-wei

    2018-01-01

    Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy. PMID:29623940

  1. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover.

    PubMed

    Norrsell, H; Eliasson, T; Mannheimer, C; Augustinsson, L E; Bergh, C H; Andersson, B; Waagstein, F; Friberg, P

    1997-12-01

    Spinal cord stimulation has been used in the treatment of intractable angina pectoris since the beginning of the 1980s. This study was designed to investigate whether the documented anti-ischaemic effects of spinal cord stimulation are mediated through a decrease in sympathetic activity. Ten patients with a spinal cord stimulator implanted as anti-anginal treatment were included in the study. Atrial pacing until the patient experienced moderate angina was performed and after 50 min rest the procedure was repeated during spinal cord stimulation. Total body and cardiac norepinephrine spillover was calculated and the former was found to have increased during pacing (47%, P = 0.02). When spinal cord stimulation was applied, total body norepinephrine spillover decreased at a comparable pacing rate (18%, P = 0.02). Cardiac norepinephrine spillover was not affected during the procedure. The results of this study indicate that the anti-ischaemic effect of spinal cord stimulation is not due to reduced cardiac sympathetic activity. However, spinal cord stimulation decreases overall sympathetic activity which may benefit the heart, possibly by reducing oxygen demand.

  2. The change tendency of PI3K/Akt pathway after spinal cord injury

    PubMed Central

    Zhang, Peixun; Zhang, Luping; Zhu, Lei; Chen, Fangmin; Zhou, Shuai; Tian, Ting; Zhang, Yuqiang; Jiang, Xiaorui; Li, Xuekun; Zhang, Chuansen; Xu, Lin; Huang, Fei

    2015-01-01

    Spinal cord injury (SCI) refers to the damage of spinal cord’s structure and function due to a variety of causes. At present, many scholars have confirmed that apoptosis is the main method of secondary injury in spinal cord injury. In view of understanding the function of PI3K/Akt pathway on spinal cord injury, this study observed the temporal variation of key molecules (PI3K, Akt, p-Akt) in the PI3K/Akt pathway after spinal cord injury by immunohistochemistry and Western-blot. The results showed that the expression of PI3K, Akt and p-Akt display a sharp increase one day after the spinal cord injury, and then it decreased gradually with the time passing by, but the absolute expression was certainly higher than the normal group. These results indicate that the PI3K/Akt signaling pathway is involved in the spinal cord injury and the mechanism may be related to apoptosis. PMID:26807170

  3. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    PubMed Central

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  4. Twiddler's syndrome in spinal cord stimulation.

    PubMed

    Al-Mahfoudh, Rafid; Chan, Yuen; Chong, Hsu Pheen; Farah, Jibril Osman

    2016-01-01

    The aims are to present a case series of Twiddler's syndrome in spinal cord stimulators with analysis of the possible mechanism of this syndrome and discuss how this phenomenon can be prevented. Data were collected retrospectively between 2007 and 2013 for all patients presenting with failure of spinal cord stimulators. The diagnostic criterion for Twiddler's syndrome is radiological evidence of twisting of wires in the presence of failure of spinal cord stimulation. Our unit implants on average 110 spinal cord stimulators a year. Over the 5-year study period, all consecutive cases of spinal cord stimulation failure were studied. Three patients with Twiddler's syndrome were identified. Presentation ranged from 4 to 228 weeks after implantation. Imaging revealed repeated rotations and twisting of the wires of the spinal cord stimulators leading to hardware failure. To the best of our knowledge this is the first reported series of Twiddler's syndrome with implantable pulse generators (IPGs) for spinal cord stimulation. Hardware failure is not uncommon in spinal cord stimulation. Awareness and identification of Twiddler's syndrome may help prevent its occurrence and further revisions. This may be achieved by implanting the IPG in the lumbar region subcutaneously above the belt line. Psychological intervention may have a preventative role for those who are deemed at high risk of Twiddler's syndrome from initial psychological screening.

  5. Characteristics of spinal cord stroke in clinical neurology.

    PubMed

    Romi, Fredrik; Naess, Halvor

    2011-01-01

    Spinal cord stroke accounts for about 0.3% of all strokes in our department. Thirty-two patients (15 males, 17 females; mean age 63.3 years) treated in the period 1995-2010 were included. Patients underwent thorough investigation including the use of different stroke scales (National Institute of Health Stroke Scale, Barthel Index and modified Rankin Scale). Twenty-eight patients had infarctions, 3 had hemorrhages, and 1 had arterio-venous fistula. Twenty-eight spinal cord strokes were spontaneous, 2 were secondary to aorta aneurysms, and 2 post surgery. Biphasic ictus was seen in 17% of all spontaneous infarctions. Younger age, male gender, hypertension, diabetes mellitus, and higher blood glucose on admission regardless of diabetes mellitus, were risk factors associated with more severe spinal cord stroke. Treatment and prevention of these risk factors should be essential in spinal cord stroke. We recommend a clinical classification into upper (cervical) and lower (thoracic or medullary conus) spinal cord strokes. Patients with upper strokes in this study had more severe strokes initially, but they had a better prognosis. Therefore it is important to identify this patient group.Acute sensory spinal cord deficit symptoms, common initial symptoms in biphasic spinal cord strokes, should be considered as possible spinal cord stroke, especially when preceded by radiating pain between the shoulders. Copyright © 2011 S. Karger AG, Basel.

  6. Cervical Spinal Cord Dimensions and Clinical Outcomes in Adults with Klippel-Feil Syndrome: A Comparison with Matched Controls

    PubMed Central

    Cho, Woojin; Lee, Dong-Ho; Auerbach, Joshua D.; Sehn, Jennifer K.; Nabb, Colin E.; Riew, K. Daniel

    2014-01-01

    Study Design Retrospective case–control study. Objectives To confirm the fact that spinal cord dimensions are smaller in adults with Klippel-Feil syndrome (KFS) than in pediatric patients with KFS and to compare the clinical characteristics and outcomes of neurologic complications in patients with KFS with matched controls. Methods We performed an independent 1:2 case–control retrospective radiographic and chart review of a consecutive series of adults with KFS who underwent surgical intervention. The control group consisted of consecutive non-KFS surgical patients. Patients were matched in 1:2 case–control manner. Their charts were reviewed and the clinical characteristics were compared. Axial T2-weighted magnetic resonance imaging (MRI) was used to measure the anteroposterior and mediolateral axial spinal cord and spinal canal at the operative levels and measurements were compared. Results A total of 22 patients with KFS and 44 controls were identified. The KFS group had a tendency of more myeloradiculopathy, and the control group had a tendency toward more radiculopathy. Both tendencies, however, were not significantly different. MRIs of 10 patients from the KFS group and 22 controls were available. There was no difference in the area of both spinal cord and canal at the operative levels. Conclusion Contrary to the finding in previous reports on pediatric patients, there were no differences between KFS and well-matched control groups in terms of age of onset, presentation, revision rate, complication rate, surgical outcome, and cross-sectional spinal cord and canal dimensions at the operative level. PMID:25396101

  7. Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution.

    PubMed

    Khan, T; Myklebust, J; Swiontek, T; Sayers, S; Dauzvardis, M

    1994-12-01

    This study investigated the spontaneous injury potentials measured after contusion or transection injury to the cat spinal cord. In addition, the distribution of electrical field potentials on the surface and within the spinal cord were measured following applied electrical fields after transection and contusion injuries. After transection of the spinal cord, the injury potentials were -19.8 +/- 2.6 mV; after contusion of the spinal cord, the injury potentials were -9.5 +/- 2.2 mV. These potentials returned to control values within 2.5-4h after injury. The electrical field distribution measured on the dorsal surface, as well as within the spinal cord, after the application of a 10 microA current, showed little difference between contusion and transection injuries. Scalar potential fields were measured using two configurations of stimulating electrodes: dorsal to dorsal (D-D), in which both electrodes were placed epidurally on the dorsal surface of the spinal cord, and ventral to dorsal (V-D), in which one electrode was placed dorsally and one ventrally. As reported in normal uninjured cats, the total current in the midsagittal plane for the D-D configuration was largely confined to the dorsal portion of the spinal cord; with the V-D configuration, the current distribution was uniform throughout the spinal cord. In the injured spinal cord, the equipotential lines midway between the stimulating electrodes have a wider separation than in the uninjured spinal cord. Because the magnitude of the electrical field E is equal to the current density J multiplied by the resistivity r, this suggests that either the current density is reduced or that the resistivity is reduced.

  8. Gastrointestinal symptoms in spinal cord injury: relationships with level of injury and psychologic factors.

    PubMed

    Ng, Clinton; Prott, Gillian; Rutkowski, Susan; Li, Yueming; Hansen, Ross; Kellow, John; Malcolm, Allison

    2005-08-01

    Previous surveys of gastrointestinal symptoms after spinal cord injury have not used validated questionnaires and have not focused on the full spectrum of such symptoms and their relationship to factors, such as level of spinal cord injury and psychologic dysfunction. This study was designed to detail the spectrum and prevalence of gastrointestinal symptoms in spinal cord injury and to determine clinical and psychologic factors associated with such symptoms. Established spinal cord injury patients (>12 months) randomly selected from a spinal cord injury database completed the following three questionnaires: 1) Rome II Integrative Questionnaire, 2) Hospital Anxiety and Depression Scale, and 3) Burwood Bowel Dysfunction after spinal cord injury. A total of 110 patients participated. The prevalence of abdominal bloating and constipation were 22 and 46 percent, respectively. Bloating was associated with cervical (odds ratio = 9.5) and lumbar (odds ratio = 12.1) level but not with thoracic level of injury. Constipation was associated with a higher level of injury (cervical odds ratio = 5.6 vs. lumbar) but not with psychologic factors. In contrast, abdominal pain (33 percent) and fecal incontinence (41 percent) were associated with higher levels of anxiety (odds ratio = 6.8, and odds ratio = 2.4) but not with the level of injury. There is a high prevalence and wide spectrum of gastrointestinal symptoms in spinal cord injury. Abdominal bloating and constipation are primarily related to specific spinal cord levels of injury, whereas abdominal pain and fecal incontinence are primarily associated with higher levels of anxiety. Based on our findings, further physiologic and psychologic research studies in spinal cord injury patients should lead to more rational management strategies for the common gastrointestinal symptoms in spinal cord injury.

  9. Topologically preserving straightening of spinal cord MRI.

    PubMed

    De Leener, Benjamin; Mangeat, Gabriel; Dupont, Sara; Martin, Allan R; Callot, Virginie; Stikov, Nikola; Fehlings, Michael G; Cohen-Adad, Julien

    2017-10-01

    To propose a robust and accurate method for straightening magnetic resonance (MR) images of the spinal cord, based on spinal cord segmentation, that preserves spinal cord topology and that works for any MRI contrast, in a context of spinal cord template-based analysis. The spinal cord curvature was computed using an iterative Non-Uniform Rational B-Spline (NURBS) approximation. Forward and inverse deformation fields for straightening were computed by solving analytically the straightening equations for each image voxel. Computational speed-up was accomplished by solving all voxel equation systems as one single system. Straightening accuracy (mean and maximum distance from straight line), computational time, and robustness to spinal cord length was evaluated using the proposed and the standard straightening method (label-based spline deformation) on 3T T 2 - and T 1 -weighted images from 57 healthy subjects and 33 patients with spinal cord compression due to degenerative cervical myelopathy (DCM). The proposed algorithm was more accurate, more robust, and faster than the standard method (mean distance = 0.80 vs. 0.83 mm, maximum distance = 1.49 vs. 1.78 mm, time = 71 vs. 174 sec for the healthy population and mean distance = 0.65 vs. 0.68 mm, maximum distance = 1.28 vs. 1.55 mm, time = 32 vs. 60 sec for the DCM population). A novel image straightening method that enables template-based analysis of quantitative spinal cord MRI data is introduced. This algorithm works for any MRI contrast and was validated on healthy and patient populations. The presented method is implemented in the Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1209-1219. © 2017 International Society for Magnetic Resonance in Medicine.

  10. 46-year-old man with a spinal cord mass.

    PubMed

    Sanders, Mary Ann; Vitaz, Todd; Rosenblum, Marc; Plaga, Alexis R; Parker, Joseph C; Parker, John R

    2011-01-01

    Medulloblastoma accounts for only 1% of all adult CNS tumors. Likewise, recurrence of adult medulloblastoma greater than 20 years after initial diagnosis is extremely rare.We describe a case of adult medulloblastoma with late relapse of disease. The patient was 24 years old when first diagnosed and was treated with total tumor resection and craniospinal radiation. At the age of 45, an enhancing 1.3 cm intradural extramedullary spinal cord lesion at T5 was discovered on MRI. This was presumed to be recurrent medulloblastoma in the form of drop metastasis and the patient was treated with spinal radiation. Several months following treatment, at the age of 46, a follow-up MRI demonstrated an enhancing 1.4 cm intradural extramedullary spinal cord lesion at T7. The lesion was resected and histopathologic examination was most consistent with medulloblastoma, late drop metastasis. Although rare, adult medulloblastoma recurring 20 years after initial diagnosis should always be considered in the main differential diagnosis when working up CNS lesions at or outside the primary tumor site.

  11. Clinical, magnetic resonance imaging, and histopathologic findings in 6 dogs with surgically resected extraparenchymal spinal cord hematomas.

    PubMed

    Hague, D W; Joslyn, S; Bush, W W; Glass, E N; Durham, A C

    2015-01-01

    Extraparenchymal spinal cord hematoma has been described in veterinary medicine in association with neoplasia, intervertebral disk disease, and snake envenomation. There are rare reports of spontaneous extraparenchymal spinal cord hematoma formation with no known cause in human medicine. Multiple cases of spontaneous extraparenchymal spinal cord hematoma have not been described previously in veterinary medicine. To describe the signalment, clinical findings, magnetic resonance imaging (MRI) features, and surgical outcomes in histopathologically confirmed extraparenchymal spinal cord hematomas in dogs with no identified underlying etiology. Six dogs had MRI of the spinal cord, decompressive spinal surgery, and histopathologic confirmation of extraparenchymal spinal cord hematoma not associated with an underlying cause. Multi-institutional retrospective study. Six patients had spontaneous extraparenchymal spinal cord hematoma formation. MRI showed normal signal within the spinal cord parenchyma in all patients. All hematomas had T2-weighted hyperintensity and the majority (5/6) had no contrast enhancement. All dogs underwent surgical decompression and most patients (5/6) returned to normal or near normal neurologic function postoperatively. Follow-up of the patients (ranging between 921 and 1,446 days) showed no progression of neurologic clinical signs or any conditions associated with increased bleeding tendency. Before surgery and histopathology confirming extraparenchymal hematoma, the primary differential in most cases was neoplasia, based on the MRI findings. This retrospective study reminds clinicians of the importance of the combination of advanced imaging combined with histopathologic diagnosis. The prognosis for spontaneous spinal cord extraparenchymal hematoma with surgical decompression appears to be favorable in most cases. Copyright © 2015 by the American College of Veterinary Internal Medicine.

  12. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse.

    PubMed

    Sengul, Gulgun; Puchalski, Ralph B; Watson, Charles

    2012-05-01

    Interpretation of the new wealth of gene expression and molecular mechanisms in the developing mouse spinal cord requires an accurate anatomical base on which data can be mapped. Therefore, we have assembled a spinal cord atlas of the P4 mouse to facilitate direct comparison with the adult specimens and to contribute to studies of the development of the mouse spinal cord. This study presents the anatomy of the spinal cord of the P4 C57Bl/6J mouse using Nissl and acetyl cholinesterase-stained sections. It includes a detailed map of the laminar organization of selected spinal cord segments and a description of named cell groups of the spinal cord such as the central cervical (CeCv), lateral spinal nucleus, lateral cervical, and dorsal nuclei. The motor neuron groups have also been identified according to the muscle groups they are likely to supply. General features of Rexed's laminae of the P4 spinal cord showed similarities to that of the adult (P56). However, certain differences were observed with regard to the extent of laminae and location of certain cell groups, such as the dorsal nucleus having a more dispersed structure and a more ventral and medial position or the CeCv being located in the medial part of lamina 5 in contrast to the adult where it is located in lamina 7. Motor neuron pools appeared to be more tightly packed in the P4 spinal cord. The dorsal horn was relatively larger and there was more white matter in the P56 spinal cord. Copyright © 2012 Wiley Periodicals, Inc.

  13. Management of subaxial cervical facet dislocation through anterior approach monitored by spinal cord evoked potential.

    PubMed

    Du, Wei; Wang, Cheng; Tan, Jiangwei; Shen, Binghua; Ni, Shuqin; Zheng, Yanping

    2014-01-01

    Retrospective case series. To discuss the clinical efficacy of anterior cervical surgery of decompression, reduction, stabilization, and fusion in treating subaxial cervical facet dislocation without spinal cord injury or with mild spinal cord injury monitored by spinal cord evoked potential. The optimal treatment of lower cervical facet dislocation has been controversial. Because of the risk of iatrogenic damage of neurological function, it is challenging for surgeons to manage the lower cervical facet dislocation without or with mild spinal cord injury. To avoid the risks, more secure strategy need to be designed. A retrospective study was performed on 17 cases of subaxial cervical facet dislocation without spinal cord injury or with mild spinal cord injury treated by anterior cervical surgery under spinal cord evoked potential monitor from January 2008 to June 2012. There were 12 males, 5 females, with a mean age of 40.1 years (from 21 to 73 yr). Dislocation sites: 1 in C3-C4, 2 in C4-C5, 6 in C5-C6, 8 in C6-C7; 10 cases with unilateral cervical facet dislocation, 7 cases with bilateral dislocation. Thirteen patients were preoperatively classified as grade D and 4 as E according to Frankel standard. All patients were followed up for average of 16 months. All operations were completed successfully. Postoperative radiographs showed that the sequence and curvature of the cervical spine were well recovered. And, evidence of intervertebral fusion was observed at 3 months in all cases. No redislocation or symptoms of spinal cord injury occurred. Thirteen cases with mild spinal cord injury recovered at 1 month after operation. Anterior cervical surgery of decompression, reduction, stabilization, and fusion monitored by spinal cord evoked potential is an effective and safe method for treatment of subaxial cervical facet dislocation without or with mild spinal cord injury. 4.

  14. General Information about Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Cord Tumors Treatment Overview (PDQ®)–Patient Version General Information About Childhood Brain and Spinal Cord Tumors Go ... types of brain and spinal cord tumors. The information from tests and procedures done to detect (find) ...

  15. The beneficial effects of treadmill step training on activity-dependent synaptic and cellular plasticity markers after complete spinal cord injury.

    PubMed

    Ilha, Jocemar; Centenaro, Lígia A; Broetto Cunha, Núbia; de Souza, Daniela F; Jaeger, Mariane; do Nascimento, Patrícia S; Kolling, Janaína; Ben, Juliana; Marcuzzo, Simone; Wyse, Angela T S; Gottfried, Carmem; Achaval, Matilde

    2011-06-01

    Several studies have shown that treadmill training improves neurological outcomes and promotes plasticity in lumbar spinal cord of spinal animals. The morphological and biochemical mechanisms underlying these phenomena remain unclear. The purpose of this study was to provide evidence of activity-dependent plasticity in spinal cord segment (L5) below a complete spinal cord transection (SCT) at T8-9 in rats in which the lower spinal cord segments have been fully separated from supraspinal control and that subsequently underwent treadmill step training. Five days after SCT, spinal animals started a step-training program on a treadmill with partial body weight support and manual step help. Hindlimb movements were evaluated over time and scored on the basis of the open-field BBB scale and were significantly improved at post-injury weeks 8 and 10 in trained spinal animals. Treadmill training also showed normalization of withdrawal reflex in trained spinal animals, which was significantly different from the untrained animals at post-injury weeks 8 and 10. Additionally, compared to controls, spinal rats had alpha motoneuronal soma size atrophy and reduced synaptophysin protein expression and Na(+), K(+)-ATPase activity in lumbar spinal cord. Step-trained rats had motoneuronal soma size, synaptophysin expression and Na(+), K(+)-ATPase activity similar to control animals. These findings suggest that treadmill step training can promote activity-dependent neural plasticity in lumbar spinal cord, which may lead to neurological improvements without supraspinal descending control after complete spinal cord injury.

  16. Functional MR imaging of the spinal cord in cervical spinal cord injury patients by acupuncture at LI 4 (Hegu) and LI 11(Quchi).

    PubMed

    Chen, Y X; Kong, K M; Wang, W D; Xie, C H; Wu, R H

    2007-01-01

    To investigate the cervical spinal cord mapping on acupuncture at LI 4 (Hegu) and LI 11 (Quchi) by using 'Signal Enhancement by Extravascular water Protons' (SEEP)-fMRI, and to establish the response of using acupuncture in the cervical spinal cord. This research may provide some laboratory evidences from the acupuncture treatment on the cervical spinal cord of injuried patients. Seven healthy volunteers (healthy group) and three cervical spinal cord injury patients (injury group) were underwent low-frequency electrical stimulation at LI 4 and LI 11. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. The signals from the cervical spinal cord activated was measured both in sagittal and transverse imaging planes and then analyzed by AFNI (Analysis of Functional Neuroimages) system. It was found that in the sagittal view, two groups had an fMRI response in the cervical spinal cord after given acupuncture treatments at LI 4 and LI 11. The localizations of the segmental fMRI activation were focused at C6 and C2 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured from the four of seven healthy volunteers and from two of three cervical spinal cord injury patients. They were located at C6/7 segments. The cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. The signal amplitude varied mainly between 6.8%17.8%. However, the difference found between the two groups had no statistical meaning. The fMRI technique had detected an activation focused at C6 and C2 cervical spinal cord levels by use of acupuncture at LI 4 and LI 11 on a 1.5T GE clinical system. This proved that the meridians and points are found to be in existence. The fMRI can be used as a harmless research method to discuss the mechanisms of acupuncture as well as study the mechanisms of spinal cord diseases. It can be used to direct or monitor the related therapy on the spinal cord injury patients.

  17. SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, H; Altinok, A; Kucukmorkoc, E

    2014-06-01

    Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of themore » planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is superior to 7 field IMRT technique in terms of both spinal cord sparing and better conformity and gradient indexes.« less

  18. What Are the Key Statistics about Brain and Spinal Cord Cancers?

    MedlinePlus

    ... Brain and Spinal Cord Tumors in Adults Key Statistics for Brain and Spinal Cord Tumors The American ... Cord Tumors . Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Written by References ...

  19. The spinal cord: a review of functional neuroanatomy.

    PubMed

    Bican, Orhan; Minagar, Alireza; Pruitt, Amy A

    2013-02-01

    The spinal cord controls the voluntary muscles of the trunk and limbs and receives sensory input from these areas. It extends from the medulla oblongata to the lower border of the first lumbar vertebra. A basic knowledge of spinal cord anatomy is essential for interpretation of clinical signs and symptoms and for understanding of pathologic processes involving the spinal cord. In this article, anatomic structures are correlated with relevant clinical signs and symptoms and a step-wise approach to spinal cord diagnosis is outlined. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Involvement of the Spinal Cord in Mitochondrial Disorders.

    PubMed

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2018-01-01

    This review aims at summarising and discussing the current status concerning the clinical presentation, pathogenesis, diagnosis, and treatment of spinal cord affection in mitochondrial disorders (MIDs). A literature search using the database Pubmed was carried out by application of appropriate search terms and their combinations. Involvement of the spinal cord in MIDs is more frequent than anticipated. It occurs in specific and non-specific MIDs. Among the specific MIDs it has been most frequently described in LBSL, LS, MERRF, KSS, IOSCA, MIRAS, and PCH and only rarely in MELAS, CPEO, and LHON. Clinically, spinal cord involvement manifests as monoparesis, paraparesis, quadruparesis, sensory disturbances, hypotonia, spasticity, urinary or defecation dysfunction, spinal column deformities, or as transverse syndrome. Diagnosing spinal cord involvement in MIDs requires a thoroughly taken history, clinical exam, and imaging studies. Additionally, transcranial magnetic stimulation, somato-sensory-evoked potentials, and cerebro-spinal fluid can be supportive. Treatment is generally not at variance compared to the underlying MID but occasionally surgical stabilisation of the spinal column may be necessary. It is concluded that spinal cord involvement in MIDs is more frequent than anticipated but may be missed if cerebral manifestations prevail. Spinal cord involvement in MIDs may strongly determine the mobility of these patients.

  1. Update on traumatic acute spinal cord injury. Part 2.

    PubMed

    Mourelo Fariña, M; Salvador de la Barrera, S; Montoto Marqués, A; Ferreiro Velasco, M E; Galeiras Vázquez, R

    The aim of treatment in acute traumatic spinal cord injury is to preserve residual neurologic function, avoid secondary injury, and restore spinal alignment and stability. In this second part of the review, we describe the management of spinal cord injury focusing on issues related to short-term respiratory management, where the preservation of diaphragmatic function is a priority, with prediction of the duration of mechanical ventilation and the need for tracheostomy. Surgical assessment of spinal injuries based on updated criteria is discussed, taking into account that although the type of intervention depends on the surgical team, nowadays treatment should afford early spinal decompression and stabilization. Within a comprehensive strategy in spinal cord injury, it is essential to identify and properly treat patient anxiety and pain associated to spinal cord injury, as well as to prevent and ensure the early diagnosis of complications secondary to spinal cord injury (thromboembolic disease, gastrointestinal and urinary disorders, pressure ulcers). Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  2. Desmoplastic ganglioglioma of the spinal cord in a western European hedgehog (Erinaceus europaeus).

    PubMed

    Ulrich, Reiner; Stan, Alexandru C; Fehr, Michael; Mallig, Carolin; Puff, Christina

    2010-11-01

    Gangliogliomas are composed of neoplastic glial and neuronal cells and are extremely rare tumors of the central nervous system of domestic animals. The present report describes the clinical presentation and the pathomorphological and immunophenotypical characteristics of a desmoplastic ganglioglioma in the spinal cord of a 3-year-old male western European hedgehog (Erinaceus europaeus). Clinically, the hedgehog exhibited a skin wound and therapy-resistant paresis of the left hind limb. Necropsy showed dilatation of the urinary bladder. Histologic examination of the thoracic spinal cord revealed a focally extensive infiltrative mass, which consisted of multiple nodules of smaller bipolar or oligopolar glial cells and variably sized polygonal, ganglionic, neuron-like cells embedded in variable amounts of microcystic neuropilic matrix. An area of spindle-shaped cells arranged in interwoven fascicles and surrounded by a prominent network of reticulin fibers was interpreted as desmoplastic leptomeningeal stroma. Immunohistochemistry revealed a moderate number of glial fibrillary acidic protein and S-100-positive cells and processes. In addition, the ganglionic neuron-like cells expressed neurofilament, microtubule-associated protein-2, and neuron-specific enolase. In summary, this spinal cord tumor was composed of astroglial and neuronal cellular elements, justifying the diagnosis of a desmoplastic ganglioglioma.

  3. Imaging spinal cord atrophy in progressive myelopathies: HTLV-I-associated neurological disease (HAM/TSP) and multiple sclerosis (MS).

    PubMed

    Azodi, Shila; Nair, Govind; Enose-Akahata, Yoshimi; Charlip, Emily; Vellucci, Ashley; Cortese, Irene; Dwyer, Jenifer; Billioux, B Jeanne; Thomas, Chevaz; Ohayon, Joan; Reich, Daniel S; Jacobson, Steven

    2017-11-01

    Previous work measures spinal cord thinning in chronic progressive myelopathies, including human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and multiple sclerosis (MS). Quantitative measurements of spinal cord atrophy are important in fully characterizing these and other spinal cord diseases. We aimed to investigate patterns of spinal cord atrophy and correlations with clinical markers. Spinal cord cross-sectional area was measured in individuals (24 healthy controls [HCs], 17 asymptomatic carriers of HTLV-1 (AC), 47 HAM/TSP, 74 relapsing-remitting MS [RRMS], 17 secondary progressive MS [SPMS], and 40 primary progressive MS [PPMS]) from C1 to T10. Clinical disability scores, viral markers, and immunological parameters were obtained for patients and correlated with representative spinal cord cross-sectional area regions at the C2 to C3, C4 to C5, and T4 to T9 levels. In 2 HAM/TSP patients, spinal cord cross-sectional area was measured over 3 years. All spinal cord regions are thinner in HAM/TSP (56 mm 2 [standard deviation, 10], 59 [10], 23 [5]) than in HC (76 [7], 83 [8], 38 [4]) and AC (71 [7], 78 [9], 36 [7]). SPMS (62 [9], 66 [9], 32 [6]) and PPMS (65 [11], 68 [10], 35 [7]) have thinner cervical cords than HC and RRMS (73 [9], 77 [10], 37 [6]). Clinical disability scores (Expanded Disability Status Scale [p = 0.009] and Instituto de Pesquisas de Cananeia [p = 0.03]) and CD8 + T-cell frequency (p = 0.04) correlate with T4 to T9 spinal cord cross-sectional area in HAM/TSP. Higher cerebrospinal fluid HTLV-1 proviral load (p = 0.01) was associated with thinner spinal cord cross-sectional area. Both HAM/TSP patients followed longitudinally showed thoracic thinning followed by cervical thinning. Group average spinal cord cross-sectional area in HAM/TSP and progressive MS show spinal cord atrophy. We further hypothesize in HAM/TSP that is possible that neuroglial loss from a thoracic inflammatory process results in anterograde and retrograde degeneration of axons, leading to the temporal progression of thoracic to cervical atrophy described here. Ann Neurol 2017;82:719-728. © 2017 American Neurological Association.

  4. Migration of luque rods through a laminectomy defect causing spinal cord compression.

    PubMed

    Quint, D J; Salton, G

    1993-01-01

    Internal fixation of traumatic spinal injuries has been associated with spinal canal stenosis, spinal cord compression, and nerve root impingement. We present a case of spinal cord/cauda equina compression due to migration of intact, anchored thoracolumbar Luque rods into the spinal canal through a laminectomy defect, leading to neurologic complications 10 years after the original operation.

  5. Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients.

    PubMed

    Delic, Vedad; Kurien, Crupa; Cruz, Josean; Zivkovic, Sandra; Barretta, Jennifer; Thomson, Avery; Hennessey, Daniel; Joseph, Jaheem; Ehrhart, Jared; Willing, Alison E; Bradshaw, Patrick; Garbuzova-Davis, Svitlana

    2018-08-01

    Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by progressive motor neuron degeneration in the brain and spinal cord leading to muscle atrophy, paralysis, and death. Mitochondrial dysfunction is a major contributor to motor neuron degeneration associated with ALS progression. Mitochondrial abnormalities have been determined in spinal cords of animal disease models and ALS patients. However, molecular mechanisms leading to mitochondrial dysfunction in sporadic ALS (sALS) patients remain unclear. Also, segmental or regional variation in mitochondrial activity in the spinal cord has not been extensively examined in ALS. In our study, the activity of mitochondrial electron transport chain complex IV was examined in post-mortem gray and white matter of the cervical and lumbar spinal cords from male and female sALS patients and controls. Mitochondrial distribution and density in spinal cord motor neurons, lateral funiculus, and capillaries in gray and white matter were analyzed by immunohistochemistry. Results showed that complex IV activity was significantly decreased only in gray matter in both cervical and lumbar spinal cords from ALS patients. In ALS cervical and lumbar spinal cords, significantly increased mitochondrial density and altered distribution were observed in motor neurons, lateral funiculus, and cervical white matter capillaries. Discrete decreased complex IV activity in addition to changes in mitochondria distribution and density determined in the spinal cord in sALS patients are novel findings. These explicit mitochondrial defects in the spinal cord may contribute to ALS pathogenesis and should be considered in development of therapeutic approaches for this disease. © 2018 Wiley Periodicals, Inc.

  6. Functional MR imaging of the cervical spinal cord by use of electrical stimulation at LI4 (Hegu).

    PubMed

    Wang, W D; Kong, K M; Xiao, Y Y; Wang, X J; Liang, B; Qi, W L; Wu, R H

    2006-01-01

    The purpose is to investigate the cervical spinal cord mapping on electrical stimulation at LI4 (Hegu) by using 'signal enhancement by extravascular water protons' (SEEP)-fMRI, and to establish the response of acupoint-stimulation in spinal cord. Three healthy volunteers were underwent low-frequency electrical stimulation at LI4. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. Cord activation was measured both in the sagittal and transverse imaging planes and then analyzed by AFNI (analysis of functional neuroimages) system. In the sagittal view, two subjects had an fMRI response in the cervical spinal cord upon electrical stimulation at LI4. The localizations of the segmental fMRI activation are both at C6 through T1 and C2/3 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured in the last subjects locating at C6/7 segment, the cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. It is concluded that the fMRI technique can be used for detecting with activity in the human cervical spinal cord by a single-shot fast spin-echo sequence on a 1.5 T GE clinical system. Investigating the acupoint-stimulation response in the spinal cord using the spinal fMRI will be helpful for the further discussion on the mechanisms of acupuncture to spinal cord diseases.

  7. Long-Term Extensive Ectopic Hair Growth on the Spinal Cord of Mice from Transplanted Whisker Follicles.

    PubMed

    Cao, Wenluo; Li, Lingna; Mii, Sumiyuki; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We have previously demonstrated that hair follicles contain nestin-expressing pluripotent stem cells that can effect nerve and spinal cord repair upon transplantation. In the present study, isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice were histocultured on Gelfoam for 3 weeks for the purpose of transplantation to the spinal cord to heal an induced injury. The hair shaft was cut off from Gelfoam-histocultured whisker follicles, and the remaining part of the whisker follicles containing GFP-nestin expressing pluripotent stem cells were transplanted into the injured spinal cord of nude mice, along with the Gelfoam. After 90 days, the mice were sacrificed and the spinal cord lesion was observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the hair follicle stem cells were involved in healing the spinal cord. Unexpectedly, the transplanted whisker follicles sprouted out remarkably long hair shafts in the spinal cord during the 90 days after transplantation of Gelfoam whisker histocultures to the injured spine. The pigmented hair fibers, grown from the transplanted whisker histocultures, curved and enclosed the spinal cord. The unanticipated results demonstrate the great potential of hair growth after transplantation of Gelfoam hair follicle histocultures, even at an ectopic site.

  8. Changes in Afferent Activity After Spinal Cord Injury

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2010-01-01

    Aims To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. Methods Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. Results Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordination centers (periaqueductal gray and pontine micturition center) located in the rostral brain stem. This reflex pathway, which is activated by small myelinated (Aδ) bladder afferent nerves, is in turn modulated by higher centers in the cerebral cortex involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary voiding, as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. The recovery of bladder function after spinal cord injury is dependent in part on the plasticity of bladder afferent pathways and the unmasking of reflexes triggered by unmyelinated, capsaicin-sensitive, C-fiber bladder afferent neurons. Plasticity is associated with morphologic, chemical, and electrical changes in bladder afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and the peripheral target organs. Conclusions Spinal cord injury at sites remote from the lumbosacral spinal cord can indirectly influence properties of bladder afferent neurons by altering the function and chemical environment in the bladder or the spinal cord. PMID:20025033

  9. Spinal cord stimulation for refractory angina in a patient implanted with a cardioverter defibrillator.

    PubMed

    Ferrero, Paolo; Grimaldi, Roberto; Massa, Riccardo; Chiribiri, Amedeo; De Luca, Anna; Castellano, Maddalena; Cardano, Paola; Trevi, Gian Paolo

    2007-01-01

    Spinal cord stimulation is currently used to treat refractory angina. Some concerns may arise about the possible interaction concerning the spinal cord stimulator in patients already implanted with a pacemaker or a cardioverter defibrillator. We are going to describe the successful implantation of a spinal cord stimulator in a patient previously implanted with a cardioverter defibrillator.

  10. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    PubMed Central

    Chen, Nan-Fu; Sung, Chun-Sung; Wen, Zhi-Hong; Chen, Chun-Hong; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Tsui, Kuan-Hao; Chen, Wu-Fu

    2018-01-01

    Platelet-rich plasma (PRP) is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), and epithelial growth factor (EGF). The complex mechanisms underlying spinal cord injury (SCI) diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS) injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t.) PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration) exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an autologous, biocompatible, nontoxic material that does not result in a major immune response. In addition, based on its safety and ease of preparation, we hypothesize that PRP is a promising therapeutic agent for SCI. PMID:29740270

  11. Spinal cord stress injury assessment (SCOSIA): clinical applications of mechanical modeling of the spinal cord and brainstem

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Choi, Jae; Wilson, William; Berry, Joel; Henderson, Fraser C., Sr.

    2009-02-01

    Abnormal stretch and strain is a major cause of injury to the spinal cord and brainstem. Such forces can develop from age-related degeneration, congenital malformations, occupational exposure, or trauma such as sporting accidents, whiplash and blast injury. While current imaging technologies provide excellent morphology and anatomy of the spinal cord, there is no validated diagnostic tool to assess mechanical stresses exerted upon the spinal cord and brainstem. Furthermore, there is no current means to correlate these stress patterns with known spinal cord injuries and other clinical metrics such as neurological impairment. We have therefore developed the spinal cord stress injury assessment (SCOSIA) system, which uses imaging and finite element analysis to predict stretch injury. This system was tested on a small cohort of neurosurgery patients. Initial results show that the calculated stress values decreased following surgery, and that this decrease was accompanied by a significant decrease in neurological symptoms. Regression analysis identified modest correlations between stress values and clinical metrics. The strongest correlations were seen with the Brainstem Disability Index (BDI) and the Karnofsky Performance Score (KPS), whereas the weakest correlations were seen with the American Spinal Injury Association (ASIA) scale. SCOSIA therefore shows encouraging initial results and may have wide applicability to trauma and degenerative disease involving the spinal cord and brainstem.

  12. Exploration of Spinal Cord Aging–Related Proteins Using a Proteomics Approach

    PubMed Central

    Kamiya, Koshiro; Furuya, Takeo; Hashimoto, Masayuki; Mannoji, Chikato; Inada, Taigo; Ota, Mitsutoshi; Maki, Satoshi; Ijima, Yasushi; Saito, Junya; Kitamura, Mitsuhiro; Ohtori, Seiji; Orita, Sumihisa; Inage, Kazuhide; Yamazaki, Masashi; Koda, Masao

    2017-01-01

    How aging affects the spinal cord at a molecular level is unclear. The aim of this study was to explore spinal cord aging–related proteins that may be involved in pathological mechanisms of age-related changes in the spinal cord. Spinal cords of 2-year-old and 8-week-old female Sprague-Dawley rats were dissected from the animals. Protein samples were subjected to 2-dimentional polyacrylamide gel electrophoresis followed by mass spectrometry. Screened proteins were further investigated with immunohistochemistry and Western blotting. Among the screened proteins, we selected α-crystallin B-subunit (αB-crystallin) and peripherin for further investigation because these proteins were previously reported to be related to central nervous system pathologies. Immunohistochemistry and Western blotting revealed significant upregulation of αB-crystallin and peripherin expression in aged rat spinal cord. Further exploration is needed to elucidate the precise mechanism and potential role of these upregulated proteins in spinal cord aging processes. PMID:28634429

  13. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord.

    PubMed

    Zhang, B; Gensel, J C

    2014-08-01

    The field of neuroimmunology is rapidly advancing. There is a growing appreciation for heterogeneity, both in inflammatory composition and region-specific inflammatory responses. This understanding underscores the importance of developing targeted immunomodulatory therapies for treating neurological disorders. Concerning neurotrauma, there is a dearth of publications directly comparing inflammatory responses in the brain and spinal cord after injury. The question therefore remains as to whether inflammatory cells responding to spinal cord vs. brain injury adopt similar functions and are therefore amenable to common therapies. In this review, we address this question while revisiting and modernizing the conclusions from publications that have directly compared inflammation across brain and spinal cord injuries. By examining molecular differences, anatomical variations, and inflammatory cell phenotypes between the injured brain and spinal cord, we provide insight into how neuroinflammation relates to neurotrauma and into fundamental differences between the brain and spinal cord. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Functional characterization of mouse spinal cord infiltrating CD8+ lymphocytes

    PubMed Central

    Deb, Chandra; Howe, Charles L

    2011-01-01

    Understanding the immunopathogenesis of neuroimmunological diseases of the CNS requires a robust method for isolating and characterizing the immune effector cells that infiltrate the spinal cord in animal models. We have developed a simple and rapid isolation method that produces high yields of spinal cord infiltrating leukocytes from a single demyelinated spinal cord and which maintains high surface expression of key immunophenotyping antigens. Using this method and the Theiler’s virus model of chronic demyelination, we report the presence of spinal cord infiltrating acute effector CD8+ lymphocytes that are CD45hiCD44loCD62L− and a population of spinal cord infiltrating target effector memory CD8+ lymphocytes that are CD45hiCD44hiCD62L−. These cells respond robustly to ex vivo stimulation by producing interferon γ but do not exhibit specificity for Theiler’s virus in a cytotoxicity assay. We conclude that target-derived lymphocytes in a mouse model of chronic spinal cord demyelination may have unique functional specificities. PMID:19596449

  15. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  16. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.

    PubMed

    Nori, Satoshi; Nakamura, Masaya; Okano, Hideyuki

    2017-01-01

    Spinal cord injury (SCI) typically damages the long axonal tracts of the spinal cord which results in permanent disability. However, regeneration of the injured spinal cord is approaching reality according to the advances in stem cell biology. Cell transplantation therapy holds potential to lead to recovery following SCI through some positive mechanisms. Grafted cells induce plasticity and regeneration in the injured spinal cord by promoting remyelination of damaged axons, reconstruction of neural circuits by synapse formation between host neurons and graft-derived neurons, and secreting neurotrophic factors to promote axonal elongation as well as reduce retrograde axonal degeneration. In this review, we will delineate (1) the microenvironment of the injured spinal cord that influence the plasticity and regeneration capacity after SCI, (2) a number of different kinds of cell transplantation therapies for SCI that has been extensively studied by researchers, and (3) potential mechanisms of grafted cell-induced regeneration and plasticity in the injured spinal cord. © 2017 Elsevier B.V. All rights reserved.

  17. Naturally Occurring Disk Herniation in Dogs: An Opportunity for Pre-Clinical Spinal Cord Injury Research

    PubMed Central

    Levine, Gwendolyn J.; Porter, Brian F.; Topp, Kimberly; Noble-Haeusslein, Linda J.

    2011-01-01

    Abstract Traumatic spinal cord injuries represent a significant source of morbidity in humans. Despite decades of research using experimental models of spinal cord injury to identify candidate therapeutics, there has been only limited progress toward translating beneficial findings to human spinal cord injury. Thoracolumbar intervertebral disk herniation is a naturally occurring disease that affects dogs and results in compressive/contusive spinal cord injury. Here we discuss aspects of this disease that are analogous to human spinal cord injury, including injury mechanisms, pathology, and metrics for determining outcomes. We address both the strengths and weaknesses of conducting pre-clinical research in these dogs, and include a review of studies that have utilized these animals to assess efficacy of candidate therapeutics. Finally, we consider a two-species approach to pre-clinical data acquisition, beginning with a reproducible model of spinal cord injury in the rodent as a tool for discovery with validation in pet dogs with intervertebral disk herniation. PMID:21438715

  18. Quantitative measurement of intervertebral disc signal using MRI.

    PubMed

    Niemeläinen, R; Videman, T; Dhillon, S S; Battié, M C

    2008-03-01

    To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx). A random sample of 30 subjects and intraclass correlation coefficients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. The repeatability of the spinal cord signal measurements was extremely high (>or=0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r=-0.30 to -0.40 versus r=-0.26 to -0.36). Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples.

  19. Magnetic resonance imaging tractography as a diagnostic tool in patients with spinal cord injury treated with human embryonic stem cells.

    PubMed

    Shroff, Geeta

    2017-02-01

    Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.

  20. Cervical spinal stenosis and sports-related cervical cord neurapraxia in children.

    PubMed

    Boockvar, J A; Durham, S R; Sun, P P

    2001-12-15

    Congenital spinal stenosis has been demonstrated to contribute to cervical cord neurapraxia after cervical spinal cord injury in adult athletes. A sagittal canal diameter <14 mm and/or a Torg ratio (sagittal diameter of the spinal canal: midcervical sagittal vertebral body diameter) of <0.8 are indicative of significant cervical spinal stenosis. Although sports-related cervical spine injuries are common in children, the role of congenital cervical stenosis in the etiology of these injuries remains unclear. The authors measured the sagittal canal diameter and the Torg ratio in children presenting with cervical cord neurapraxia resulting from sports-related cervical spinal cord injuries to determine the presence of congenital spinal stenosis. A total of 13 children (9 male, 4 female) presented with cervical cord neurapraxia after a sports-related cervical spinal cord injury. Age ranged from 7 to 15 years (mean +/- SD, 11.5 +/- 2.7 years). The sports involved were football (n = 4), wrestling (n = 2), hockey (n = 2), and soccer, gymnastics, baseball, kickball, and pogosticking (n = 1 each). Lateral cervical spine radiographs were used to determine the sagittal canal diameter and the Torg ratio at C4. The sagittal canal diameter (mean +/- SD, 17.58 +/- 1.63 mm) and the Torg ratio (mean +/- SD, 1.20 +/- 0.24) were normal in all of these children. Using the sagittal canal diameter and the Torg ratio as a measurement of congenital spinal stenosis, the authors did not find evidence of congenital cervical spinal stenosis in a group of children with sports-related cervical spinal cord neurapraxia. The occurrence of cervical cord neurapraxia in pediatric patients can be attributed to the mobility of the pediatric spine rather than to congenital cervical spinal stenosis.

  1. Recurrent ‘universal tumour’ of the spinal cord

    PubMed Central

    O'Grady, John; Kaliaperumal, Chandrasekaran; O'Sullivan, Michael

    2012-01-01

    Lipoma is popularly known as the ‘universal tumour’ because of its ubiquitous presence anywhere in the body. This is the first documented case of recurrent thoracic spinal cord intramedullary lipoma in a 44-year-old man, with a background of spinal dysraphism, which recurred 15 years after initial surgery. He was followed up every 2 years and currently presented with an 8-month history of progressive weakness in his lower limbs. An MRI of the spine confirmed recurrence of lipoma. He underwent redo laminectomy and partial resection and spinal cord decompression with duroplasty. Lipoma, although a low-grade tumour, can cause significant neurological deficits because of its location. Surgical exploration and removal of lipoma is recommended. However, to preserve the functionality of the spinal cord, one may resort to partial resection and aim for spinal cord decompression. The literature on spinal cord lipoma is reviewed and the aetiopathogenesis of this rare occurrence is described. PMID:22675149

  2. Presumptive Nocardia spp. infection in a dog treated with cyclosporin and ketoconazole.

    PubMed

    Paul, A E H; Mansfield, C S; Thompson, M

    2010-10-01

    A dog that had received 8 months of cyclosporin and ketoconazole therapy for treatment of atopic dermatitis subsequently developed severe neurological disease, that failed to respond to treatment with trimethoprim-sulphadiazine and clindamycin. HISTOPATHOLOGICAL FINDINGS: Histopathological examination of the pulmonary parenchyma and spinal cord revealed loose aggregates of Gram-positive, partially acid-fast, fine, beaded, filamentous bacteria, most consistent with Nocardia spp. A presumptive diagnosis was made of disseminated nocardiosis of the spinal cord and lungs. Nocardia spp. is an opportunistic actinomycete that may cause disseminated disease, particularly in immunocompromised animals. Cyclosporin is used in veterinary medicine to control immune-mediated and allergic disorders, with few reported adverse side effects. This case gives further evidence that involvement of the spinal cord in nocardiosis of the central nervous system (CNS) carries a poor prognosis, and opportunistic infection by Nocardia spp. may be a potential complication of immunosuppressive cyclosporin therapy in the dog.

  3. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    PubMed

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  4. Neuropeptide Y in human spinal cord.

    PubMed

    Allen, J M; Gibson, S J; Adrian, T E; Polak, J M; Bloom, S R

    1984-08-06

    The distribution of a newly described peptide, neuropeptide Y (NPY) within the human spinal cord has been determined using radioimmunoassay and immunocytochemistry. Higher concentrations were found in the lumbar (49.9 +/- 6.8 pmol/g) and sacral (47.0 +/- 10.6 pmol/g) regions than in the cervical (27.6 +/- 2.7 pmol/g) and thoracic spinal cord (33.8 +/- 5.3 pmol/g). Immunocytochemistry revealed numerous nerve fibers containing NPY in the spinal cord; these were particularly concentrated in the substantia gelatinosa of the dorsal horn. In the ventral spinal cord NPY-containing nerves were sparse becoming more abundant in lumbosacral segments.

  5. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord

    PubMed Central

    Gozal, Elizabeth A.; O'Neill, Brannan E.; Sawchuk, Michael A.; Zhu, Hong; Halder, Mallika; Chou, Ching-Chieh; Hochman, Shawn

    2014-01-01

    The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function. PMID:25426030

  6. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord.

    PubMed

    Gozal, Elizabeth A; O'Neill, Brannan E; Sawchuk, Michael A; Zhu, Hong; Halder, Mallika; Chou, Ching-Chieh; Hochman, Shawn

    2014-01-01

    The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na(+)-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na(+)-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function.

  7. Partial cure achieved in a patient with near-complete cervical spinal cord injury (95% injury) after 3 years of coordination dynamics therapy.

    PubMed

    Schalow, G

    2009-01-01

    This report describes a case of a now 20-year-old young lady with a severe spinal cord injury (SCI) at cervical 5/6 levels (ASIA A), in whom a repair of some spinal cord functions could be achieved within 3 years of optimal coordination dynamics therapy (CDT). Magnetic Resonance Imaging (MRI) showed a destruction of almost 95% of the cross-sectional area at the injury levels. The 5% (if at all) spared cord tissue most likely consisted of only sensory tracts, since no motor functions were preserved below the level of injury. A near-complete recovery of the important vegetative functions urinary bladder control, respiration, and vasomotor tone could be achieved. Her motor and sensory functions also improved to some extent, and she is off all medications. However, her motor recovery was limited and she is still wheel-chair-dependent. There is functional and structural (MRI) evidence that the human spinal cord regenerates upon CDT. The movement-based learning therapy included the training of supported crawling, up-righting, walking, running, jumping, balance training, and exercising on special CDT devices. The regeneration of the spinal cord started after more than one year of CDT, it was very limited but continuous, and gave rise to substantial functional recovery. The recovery induced by regeneration upon CDT was quantified in terms of transient increases of coordination dynamics values, the improvement of motor programs as assessed by surface electromyography (sEMG), the improvement of movement performances, and the increase of the spinal cord matter at the injury site, quantified by MRI. The similarity between the improvement at cellular and integrative (network) level during this regeneration and development is analyzed with respect to 'walking'. Comparing the effort, required to achieve substantial improvement in this case of severe cervical SCI (with 95% cord destruction; 5% spared tissue) with the effort required in the case of partial cervical SCI (50% destruction; 50% spared tissue), IT is noted that the 95% injury is 10 times more intractable. It is inferred that in severe SCI, the repair crucially depends on the percentage of the spared tissue (tracts fibres and neuronal networks) at the injury site. Improper handling of the patient therefore, as false transport or too late relief of spinal cord compression, may give rise to further mechanical damage of the cord tissue for which a later administered intensive cCDT cannot compensate for.

  8. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats.

    PubMed

    Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo

    2013-05-20

    Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.

  9. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    PubMed

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  10. From the motor cortex to the movement and back again.

    PubMed

    Teka, Wondimu W; Hamade, Khaldoun C; Barnett, William H; Kim, Taegyo; Markin, Sergey N; Rybak, Ilya A; Molkov, Yaroslav I

    2017-01-01

    The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.

  11. Living with Spinal Cord Injury

    MedlinePlus

    ... With Spinal Cord Injury A spinal cord injury (SCI) can result from trauma, such as a motor ... these injuries occur in men. A person with SCI typically has some paralysis and decreased or loss ...

  12. The excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spinal cord ischemia in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, J.X.; Xu, X.J.; Aldskogius, H.

    1991-08-01

    Protection by the NMDA receptor antagonist MK-801 against transient spinal cord ischemia-induced hypersensitivity was studied in rats. The spinal ischemia was initiated by vascular occlusion resulting from the interaction between the photosensitizing dye Erythrosin B and an argon laser beam. The hypersensitivity, termed allodynia, where the animals reacted by vocalization to nonnoxious mechanical stimuli in the flank area, was consistently observed during several days after induction of the ischemia. Pretreatment with MK-801 (0.1-0.5 mg/kg, iv) 10 min before laser irradiation dose dependently prevented the occurrence of allodynia. The neuroprotective effect of MK-801 was not reduced by maintaining normal body temperaturemore » during and after irradiation. There was a significant negative correlation between the delay in the administration of MK-801 after irradiation and the protective effect of the drug. Histological examination revealed slight morphological damage in the spinal cord in 38% of control rats after 1 min of laser irradiation without pretreatment with MK-801. No morphological abnormalities were observed in rats after pretreatment with MK-801 (0.5 mg/kg). The present results provide further evidence for the involvement of excitatory amino acids, through activation of the NMDA receptor, in the development of dysfunction following ischemic trauma to the spinal cord.« less

  13. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    PubMed

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  14. Spectrum of Spinal Cord, Spinal Root, and Brain MRI Abnormalities in Congenital Zika Syndrome with and without Arthrogryposis.

    PubMed

    Aragao, M F V V; Brainer-Lima, A M; Holanda, A C; van der Linden, V; Vasco Aragão, L; Silva Júnior, M L M; Sarteschi, C; Petribu, N C L; Valença, M M

    2017-05-01

    Arthrogryposis is among the malformations of congenital Zika syndrome. Similar to the brain, there might exist a spectrum of spinal cord abnormalities. The purpose of this study was to explore and describe in detail the MR imaging features found in the spinal cords, nerve roots, and brains of children with congenital Zika syndrome with and without arthrogryposis. Twelve infants with congenital Zika syndrome (4 with arthrogryposis and 8 without) who had undergone brain and spinal cord MR imaging were retrospectively selected. Qualitative and quantitative analyses were performed and compared between groups. At visual inspection, both groups showed reduced thoracic spinal cord thickness: 75% (6/8) of the group without arthrogryposis and 100% (4/4) of the arthrogryposis group. However, the latter had the entire spinal cord reduced and more severely reduced conus medullaris anterior roots (respectively, P = .002 and .007). Quantitative differences were found for conus medullaris base and cervical and lumbar intumescences diameters (respectively, P = .008, .048, .008), with more prominent reduction in arthrogryposis. Periventricular calcifications were more frequent in infants with arthrogryposis ( P = .018). Most infants had some degree of spinal cord thickness reduction, predominant in the thoracic segment (without arthrogryposis) or in the entire spinal cord (with arthrogryposis). The conus medullaris anterior roots were reduced in both groups (thinner in arthrogryposis). A prominent anterior median fissure of the spinal cord was absent in infants without arthrogryposis. Brain stem hypoplasia was present in all infants with arthrogryposis, periventricular calcifications, in the majority, and polymicrogyria was absent. © 2017 by American Journal of Neuroradiology.

  15. The current state-of-the-art of spinal cord imaging: Methods

    PubMed Central

    Stroman, P.W.; Wheeler-Kingshott, C.; Bacon, M.; Schwab, J.M.; Bosma, R.; Brooks, J.; Cadotte, D.; Carlstedt, T.; Ciccarelli, O.; Cohen-Adad, J.; Curt, A.; Evangelou, N.; Fehlings, M.G.; Filippi, M.; Kelley, B.J.; Kollias, S.; Mackay, A.; Porro, C.A.; Smith, S.; Strittmatter, S.M.; Summers, P.; Tracey, I.

    2015-01-01

    A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of “critical mass” of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research. PMID:23685159

  16. Spinal cord injury - Symptoms and causes

    MedlinePlus

    ... are the leading cause of spinal cord injuries, accounting for almost half of new spinal cord injuries ... address these problems if they affect you. Respiratory system. Your injury may make it more difficult to ...

  17. Spinal cord injury following operative shoulder intervention: A case report.

    PubMed

    Cleveland, Christine; Walker, Heather

    2015-07-01

    Cervical myelopathy is a spinal cord dysfunction that results from extrinsic compression of the spinal cord, its blood supply, or both. It is the most common cause of spinal cord dysfunction in patients greater than 55 years of age. A 57-year-old male with right shoulder septic arthritis underwent surgical debridement of his right shoulder and sustained a spinal cord injury intraoperatively. The most likely etiology is damage to the cervical spinal cord during difficult intubation requiring multiple attempts in this patient with underlying asymptomatic severe cervical stenosis. Although it is not feasible to perform imaging studies on all patients undergoing intubation for surgery, this patient's outcome would suggest consideration of inclusion of additional pre-surgical screening examination techniques, such as testing for a positive Hoffman's reflex, is appropriate to detect asymptomatic patients who may have underlying cervical stenosis.

  18. Osthole attenuates spinal cord ischemia-reperfusion injury through mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction in rats.

    PubMed

    Zhou, Yue-fei; Li, Liang; Feng, Feng; Yuan, Hua; Gao, Da-kuan; Fu, Luo-an; Fei, Zhou

    2013-12-01

    Osthole, the main bioactive compounds isolated from the traditional Chinese medical herb broad Cnidium monnieri (L.) cusson, has been shown to exert spectrum of pharmacologic activities. The aim of this study was to investigate the potential neuroprotective effects of osthole against spinal cord ischemia-reperfusion injury in rats. Osthole was administrated at the concentration of 0.1, 1, 10, 50, or 200 mg/kg (intraperitoneally) 1 h before spinal cord ischemia. The effects on spinal cord injury were measured by spinal cord water content, infarct volume, hematoxylin and eosin staining, and neurologic assessment. Mitochondria were purified from injured spinal cord tissue to determine mitochondrial function. We found that treatment with osthole (10 and 50 mg/kg) significantly decreased spinal cord water content and infarct volume, preserved normal motor neurons, and improved neurologic functions. These protective effects can be also observed even if the treatment was delayed to 4 h after reperfusion. Osthole treatment preserved mitochondrial membrane potential level, reduced reactive oxygen species production, increased adenosine triphosphate generation, and inhibited cytochrome c release in mitochondrial samples. Moreover, osthole increased mitochondria respiratory chain complex activities in spinal cord tissue, with no effect on mitochondrial DNA content and the expression of mitochondrial-specific transcription factors. All these findings demonstrate the neuroprotective effect of osthole in spinal cord ischemia-reperfusion injury model and suggest that oshtole-induced neuroprotection was mediated by mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. [Spanish validation of the International Spinal Cord Injury Pulmonary Function Basic Data Set questionnaire for the study of the repercussion of spinal cord injury in the respiratory system].

    PubMed

    Gómez Garrido, Alba; León Espitia, Ana María; Montesinos Magraner, Lluïsa; Ramirez Galceran, Lucrecia; Soler Canudes, Emilia; González Viejo, Miguel Angel

    2015-12-07

    The dysfunction of the respiratory system and the breathing complications in persons with injured spinal cord has an effect on the morbidity and the mortality of the disease. The objectives were: 1) to translate to Spanish and validate the questionnaire of international consensus: International Spinal Cord Injury Pulmonary Function Basic Data Set, and 2) to determine the influence of chronic spinal cord injury in the respiratory system in terms of respiratory functionalism. Translation to Spanish and validation of the questionnaire of international consensus intended for the study of the pulmonary function in spinal cord injury disease. We tested the reliability of that questionnaire. We conducted a descriptive transversal study to determine the degree of involvement of the respiratory system in spinal cord injury. A percentage of 91.9 did not have any respiratory pathology before spinal cord injury and 54.8% of patients smoked. A percentage of 27.4 of patients presented breathing complications one year after the injury. Results of the respiratory function tests were: FVC 67%, FEV1 72% and PEF 70%. Concordance and reliability were 98%. The Spanish version of the questionnaire of international consensus about the pulmonary function is a useful tool for the study of the respiratory involvement in spinal cord injury. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  20. Comparing patients with spinal cord infarction and cerebral infarction: clinical characteristics, and short-term outcome.

    PubMed

    Naess, Halvor; Romi, Fredrik

    2011-01-01

    To compare the clinical characteristics, and short-term outcome of spinal cord infarction and cerebral infarction. Risk factors, concomitant diseases, neurological deficits on admission, and short-term outcome were registered among 28 patients with spinal cord infarction and 1075 patients with cerebral infarction admitted to the Department of Neurology, Haukeland University Hospital, Bergen, Norway. Multivariate analyses were performed with location of stroke (cord or brain), neurological deficits on admission, and short-term outcome (both Barthel Index [BI] 1 week after symptom onset and discharge home or to other institution) as dependent variables. Multivariate analysis showed that patients with spinal cord infarction were younger, more often female, and less afflicted by hypertension and cardiac disease than patients with cerebral infarction. Functional score (BI) was lower among patients with spinal cord infarctions 1 week after onset of symptoms (P < 0.001). Odds ratio for being discharged home was 5.5 for patients with spinal cord infarction compared to cerebral infarction after adjusting for BI scored 1 week after onset (P = 0.019). Patients with spinal cord infarction have a risk factor profile that differs significantly from that of patients with cerebral infarction, although there are some parallels to cerebral infarction caused by atherosclerosis. Patients with spinal cord infarction were more likely to be discharged home when adjusting for early functional level on multivariate analysis.

  1. Comparing patients with spinal cord infarction and cerebral infarction: clinical characteristics, and short-term outcome

    PubMed Central

    Naess, Halvor; Romi, Fredrik

    2011-01-01

    Background: To compare the clinical characteristics, and short-term outcome of spinal cord infarction and cerebral infarction. Methods: Risk factors, concomitant diseases, neurological deficits on admission, and short-term outcome were registered among 28 patients with spinal cord infarction and 1075 patients with cerebral infarction admitted to the Department of Neurology, Haukeland University Hospital, Bergen, Norway. Multivariate analyses were performed with location of stroke (cord or brain), neurological deficits on admission, and short-term outcome (both Barthel Index [BI] 1 week after symptom onset and discharge home or to other institution) as dependent variables. Results: Multivariate analysis showed that patients with spinal cord infarction were younger, more often female, and less afflicted by hypertension and cardiac disease than patients with cerebral infarction. Functional score (BI) was lower among patients with spinal cord infarctions 1 week after onset of symptoms (P < 0.001). Odds ratio for being discharged home was 5.5 for patients with spinal cord infarction compared to cerebral infarction after adjusting for BI scored 1 week after onset (P = 0.019). Conclusion: Patients with spinal cord infarction have a risk factor profile that differs significantly from that of patients with cerebral infarction, although there are some parallels to cerebral infarction caused by atherosclerosis. Patients with spinal cord infarction were more likely to be discharged home when adjusting for early functional level on multivariate analysis. PMID:21915166

  2. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for bladder evacuation. 882.5850 Section 882.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal...

  3. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for bladder evacuation. 882.5850 Section 882.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal...

  4. The triple monoamine re-uptake inhibitor DOV 216,303 promotes functional recovery after spinal cord contusion injury in mice.

    PubMed

    Chu, Tak-Ho; Cummins, Karen; Stys, Peter K

    2018-05-14

    Serotonin, noradrenaline and dopamine are important neuromodulators for locomotion in the spinal cord. Disruption of descending axons after spinal cord injury resulted in reduction of excitatory and neuromodulatory inputs to spinal neurons for locomotion. Receptor agonists or reuptake inhibitors for these neuromodulators have been shown to be beneficial in incomplete spinal cord injury. In this study, we tested a triple re-uptake inhibitor, DOV 216,303, for its ability to affect motor function recovery after spinal cord injury in mice. We impacted C57 mouse spinal cord at the T11 vertebral level and administered vehicle or DOV 216,303 at 10 mg/kg, b.i.d via intraperitoneal injections for 7 days. We monitored motor function with the Basso Mouse Scale for locomotion for 4 weeks. Spinal cords were harvested and histological examinations were performed to assess tissue sparing and lesion severity. Results showed that DOV 216,303-treated mice recovered significantly better than vehicle treated mice starting at 14 days post injury until the end of the survival period. Lesion size of the DOV 216,303 treated mice was also smaller compared to that of vehicle treated mice. This study suggests DOV 216,303 as a potential therapeutic after spinal cord injury warrants further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Exercise Preconditioning Protects against Spinal Cord Injury in Rats by Upregulating Neuronal and Astroglial Heat Shock Protein 72

    PubMed Central

    Chang, Cheng-Kuei; Chou, Willy; Lin, Hung-Jung; Huang, Yi-Ching; Tang, Ling-Yu; Lin, Mao-Tsun; Chang, Ching-Ping

    2014-01-01

    The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI. PMID:25334068

  6. (18)F-FDG uptake of the spinal cord was decreased after conventional dose radiotherapy in esophageal cancer patients.

    PubMed

    Harata, Naoki; Yoshida, Katsuya; Oota, Sayako; Fujii, Hayahiko; Isogai, Jun; Yoshimura, Ryoichi

    2016-01-01

    We retrospectively investigated changes of (18)F-fluorodeocyglucose ((18)F-FDG) uptake in the spinal cord, inside and outside the radiation fields, in patients with esophageal cancer before and after conventional dose radiotherapy. A total of 17 consecutive patients with esophageal cancer (16 males, one female; age 50-83 years, mean 67.0 years), who underwent conventional dose radiotherapy and (18)F-FDG PET/CT before and 5.1 months (range 1.6-8.6 months) after the radiotherapy, were retrospectively evaluated. Sixteen patients had esophageal cancer and one patient had esophageal metastasis from thyroid cancer. Mean standardized uptake values (SUVmean) of the cervical, thoracic (inside and outside the radiation fields) and lumbar spinal cord were measured. SUVmean of the thoracic spinal cord inside the radiation field was decreased significantly after radiotherapy compared to those before radiotherapy (p < 0.001). SUVmean of the cervical spinal cord showed the same trend but it was not statistically significant (p = 0.051). SUVmean of the thoracic spinal cord outside the radiation field and the lumbar spinal cord did not differ significantly before and after the radiotherapy (p = 0.146 and p = 0.701, respectively). The results suggest that glucose metabolism of the spinal cord is decreased in esophageal cancer patients after conventional dose radiotherapy.

  7. The adaptation to pregnancy of spinal cord injured women.

    PubMed

    Craig, D I

    1990-01-01

    This study explored the experiences encountered by spinal cord injured women during pregnancy. The spinal cord injured women experienced complications associated with pregnancy: recurring urinary tract infections, an increase in incontinence, and autonomic dysreflexia. (The first two of these are not unique to spinal cord injury, but are common in all pregnancies.) They neither developed pressure areas nor experienced premature deliveries, major complications predicted by the literature. All felt they were victims of inadequate environmental design that hindered their mobility and inhibited their independence. Many of the psychosocial aspects studied proved to be common to pregnant women in general and not specific to the spinal cord injured population.

  8. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  9. NORADRENERGIC INNERVATION OF THE RAT SPINAL CORD CAUDAL TO A COMPLETE SPINAL CORD TRANSECTION: EFFECTS OF OLFACTORY ENSHEATHING GLIA

    PubMed Central

    Takeoka, Aya; Kubasak, Marc D.; Zhong, Hui; Kaplan, Jennifer; Roy, Roland R.; Phelps, Patricia E.

    2010-01-01

    Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons. PMID:20025875

  10. Changes in rat spinal cord gene expression after inflammatory hyperalgesia of the joint and manual therapy.

    PubMed

    Ruhlen, Rachel L; Singh, Vineet K; Pazdernik, Vanessa K; Towns, Lex C; Snider, Eric J; Sargentini, Neil J; Degenhardt, Brian F

    2014-10-01

    Mobilization of a joint affects local tissue directly but may also have other effects that are mediated through the central nervous system. To identify differential gene expression in the spinal cords of rats with or without inflammatory joint injury after manual therapy or no treatment. Rats were randomly assigned to 1 of 4 treatment groups: no injury and no touch (NI/NT), injury and no touch (I/NT), no injury and manual therapy (NI/MT), and injury and manual therapy (I/MT). We induced acute inflammatory joint injury in the rats by injecting carrageenan into an ankle. Rats in the no-injury groups did not receive carrageenan injection. One day after injury, rats received manual therapy to the knee of the injured limb. Rats in the no-touch groups were anesthetized without receiving manual therapy. Spinal cords were harvested 30 minutes after therapy or no touch, and spinal cord gene expression was analyzed by microarray for 3 comparisons: NI/NT vs I/NT, I/MT vs I/NT, and NI/NT vs NI/MT. Three rats were assigned to each group. Of 38,875 expressed sequence tags, 755 were differentially expressed in the NI/NT vs I/NT comparison. For the other comparisons, no expressed sequence tags were differentially expressed. Cluster analysis revealed that the differentially expressed sequence tags were over-represented in several categories, including ion homeostasis (enrichment score, 2.29), transmembrane (enrichment score, 1.55), and disulfide bond (enrichment score, 2.04). An inflammatory injury to the ankle of rats caused differential expression of genes in the spinal cord. Consistent with other studies, genes involved in ion transport were among those affected. However, manual therapy to the knees of injured limbs or to rats without injury did not alter gene expression in the spinal cord. Thus, evidence for central nervous system mediation of manual therapy was not observed. © 2014 The American Osteopathic Association.

  11. Scoping review of resources for integrating evidence-based supported employment into spinal cord injury rehabilitation.

    PubMed

    Cotner, Bridget A; Ottomanelli, Lisa; Keleher, Virginia; Dirk, Lynn

    2018-02-27

    Individual placement and support (IPS), an evidence-based supported employment (SE) program, has helped Veterans with spinal cord injury (SCI) receiving care in the Veterans Health Administration to obtain work. To facilitate integration of IPS into SCI rehabilitation, resources are needed. A scoping review was conducted to identify tools and resources suitable for providers of SCI care. Applying a modified version of Arksey and O'Malley's framework, a scoping review of literature on SE tools or resources was conducted. The original review focused on resources published between 2002 and 2015 and available in English. Prior to publication an updated review through 2017 was conducted. From 1822 tools and resources identified in the initial review, 24 met criteria for inclusion and were evaluated by an advisory panel of experts, who selected 16 tools that addressed five topics: IPS in SCI (n = 2) orientation to SCI (n = 3); IPS SE (n = 7), job accommodations (n = 2), and benefits planning (n = 2). The updated review yielded no tools or resources that met inclusion criteria. Despite few resources to guide implementation of IPS in SCI, 16 essential resources were identified that, combined into a toolkit, may facilitate translation of IPS in SCI from research to clinical care. Implications for rehabilitation The toolkit consists of 16 essential resources and is currently available online to all persons involved in spinal cord injury rehabilitation to educate them about this effective means of assisting persons with spinal cord injury to find employment and to facilitate translation of individual placement and support in spinal cord injury from research to clinical care. While expert-informed, the toolkit is being field tested with both clinical and vocational providers to facilitate the adoption of individual placement and support by spinal cord injury rehabilitation programs. The revised version will be made available online.

  12. Spinal cord repair in MS

    PubMed Central

    Ciccarelli, O.; Altmann, D. R.; McLean, M. A.; Wheeler-Kingshott, C. A.; Wimpey, K.; Miller, D. H.; Thompson, A. J.

    2010-01-01

    Objective: To investigate the mechanisms of spinal cord repair and their relative contribution to clinical recovery in patients with multiple sclerosis (MS) after a cervical cord relapse, using spinal cord 1H-magnetic resonance spectroscopy (MRS) and volumetric imaging. Methods: Fourteen patients with MS and 13 controls underwent spinal cord imaging at baseline and at 1, 3, and 6 months. N-acetyl-aspartate (NAA) concentration, which reflects axonal count and metabolism in mitochondria, and the cord cross-sectional area, which indicates axonal count, were measured in the affected cervical region. Mixed effect linear regression models investigated the temporal evolution of these measures and their association with clinical changes. Ordinal logistic regressions identified predictors of recovery. Results: Patients who recovered showed a sustained increase in NAA after 1 month. In the whole patient group, a greater increase of NAA after 1 month was associated with greater recovery. Patients showed a significant decline in cord area during follow-up, which did not correlate with clinical changes. A worse recovery was predicted by a longer disease duration at study entry. Conclusions: The partial recovery of N-acetyl-aspartate levels after the acute event, which is concurrent with a decline in cord cross-sectional area, may be driven by increased axonal mitochondrial metabolism. This possible repair mechanism is associated with clinical recovery, and is less efficient in patients with longer disease duration. These insights into the mechanisms of spinal cord repair highlight the need to extend spinal cord magnetic resonance spectroscopy to other spinal cord disorders, and explore therapies that enhance recovery by modulating mitochondrial activity. GLOSSARY CI = confidence interval; EDSS = Expanded Disability Status Scale; FOV = field of view; MR = magnetic resonance; MRS = magnetic resonance spectroscopy; MS = multiple sclerosis; NAA = N-acetyl-aspartate; SC = spinal cord; TE = echo time; TI = inversion time; TR = repetition time. PMID:20107138

  13. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord

    NASA Astrophysics Data System (ADS)

    Sharpe, Abigail N.; Jackson, Andrew

    2014-02-01

    Objective. Electrical stimulation of the spinal cord has potential applications following spinal cord injury for reanimating paralysed limbs and promoting neuroplastic changes that may facilitate motor rehabilitation. Here we systematically compare the efficacy, selectivity and frequency-dependence of different stimulation methods in the cervical enlargement of anaesthetized monkeys. Approach. Stimulating electrodes were positioned at multiple epidural and subdural sites on both dorsal and ventral surfaces, as well as at different depths within the spinal cord. Motor responses were recorded from arm, forearm and hand muscles. Main results. Stimulation efficacy increased from dorsal to ventral stimulation sites, with the exception of ventral epidural electrodes which had the highest recruitment thresholds. Compared to epidural and intraspinal methods, responses to subdural stimulation were more selective but also more similar between adjacent sites. Trains of stimuli delivered to ventral sites elicited consistent responses at all frequencies whereas from dorsal sites we observed a mixture of short-latency facilitation and long-latency suppression. Finally, paired stimuli delivered to dorsal surface and intraspinal sites exhibited symmetric facilitatory interactions at interstimulus intervals between 2-5 ms whereas on the ventral side interactions tended to be suppressive for near-simultaneous stimuli. Significance. We interpret these results in the context of differential activation of afferent and efferent roots and intraspinal circuit elements. In particular, we propose that distinct direct and indirect actions of spinal cord stimulation on motoneurons may be advantageous for different applications, and this should be taken into consideration when designing neuroprostheses for upper-limb function.

  14. Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response

    PubMed Central

    Yang, Yang; Laporte, Laura De; Zelivyanskaya, Marina L.; Whittlesey, Kevin J.; Anderson, Aileen J.; Cummings, Brian J.

    2009-01-01

    Bridges for treatment of the injured spinal cord must stabilize the injury site to prevent secondary damage and create a permissive environment that promotes regeneration. The host response to the bridge is central to creating a permissive environment, as the cell types that respond to the injury have the potential to secrete both stimulatory and inhibitory factors. We investigated multiple channel bridges for spinal cord regeneration and correlated the bridge structure to cell infiltration and axonal elongation. Poly(lactide-co-glycolide) bridges were fabricated by a gas foaming/particulate leaching process. Channels within the bridge had diameters of 150 or 250 μm, and the main body of the bridge was highly porous with a controllable pore size. Upon implantation in a rat spinal cord hemisection site, cells infiltrated into the bridge pores and channels, with the pore size influencing the rate of infiltration. The pores had significant cell infiltration, including fibroblasts, macrophages, S-100β-positive cells, and endothelial cells. The channels of the bridge were completely infiltrated with cells, which had aligned axially, and consisted primarily of fibroblasts, S-100β-positive cells, and endothelial cells. Reactive astrocytes were observed primarily outside of the bridge, and staining for chondroitin sulfate proteoglycans was decreased in the region surrounding the bridge relative to studies without bridges. Neurofilament staining revealed a preferential growth of the neural fibers within the bridge channels relative to the pores. Multiple channel bridges capable of supporting cellular infiltration, creating a permissive environment, and directing the growth of neural fibers have potential for promoting and directing spinal cord regeneration. PMID:19382871

  15. A pilot randomised trial of community-based care following discharge from hospital with a recent spinal cord injury in Bangladesh.

    PubMed

    Hossain, M S; Harvey, L A; Rahman, M A; Bowden, J L; Islam, M S; Taylor, V; Muldoon, S; Herbert, R D

    2017-06-01

    To explore the feasibility of conducting a full trial designed to determine the effectiveness of a model of community-based care for people with spinal cord injury in Bangladesh. A pilot randomised trial. Community, Bangladesh. Participants were 30 people with recent spinal cord injury who were wheelchair-dependent and soon to be discharged from hospital. Participants randomised to the intervention group received a package of care involving regular telephone contact and three home visits over two years. Participants randomised to the control group received usual care consisting of a telephone call and an optional home visit. Participants were assessed at baseline and two years after randomization. The primary outcome was mortality and secondary outcomes were measures of complications, depression, participation and quality of life. A total of 24 participants had a complete spinal cord injury and six participants had an incomplete spinal cord injury. Median (interquartile) age and time since injury at baseline were 31 years (24 to 36) and 7 months (4 to 13), respectively. Two participants, one in each group, died. Five participants had pressure ulcers at two years. There were no notable impediments to the conduct of the trial and no significant protocol violations. The phone calls and home visits were delivered according to the protocol 87% and 100% of the time, respectively. Follow-up data were 99% complete. This pilot trial demonstrates the feasibility of a full clinical trial of 410 participants, which has recently commenced. University of Sydney, Australia.

  16. Surgical and anesthetic considerations for the endovascular treatment of ruptured descending thoracic aortic aneurysms.

    PubMed

    Hogendoorn, Wouter; Schlösser, Felix J V; Muhs, Bart E; Popescu, Wanda M

    2014-02-01

    Ruptured descending thoracic aortic aneurysm (rDTAA) is a life-threatening disease. In the last decade, thoracic endovascular aortic repair (TEVAR) has evolved as a viable option and is now considered the preferred treatment for rDTAAs. New opportunities as well as new challenges are faced by both the surgeon and the anesthesiologist. This review describes the impact of current developments and new modalities for the surgical and anesthetic management of rDTAAs. A collaborative approach between the anesthesiologist and surgeon during critical moments such as induction, moment of aortic occlusion and placement of the aortic stent-graft is mandatory. Important issues to consider on preoperative imaging evaluation are correct sizing of the aortic stent-graft and localization of the artery of Adamkiewicz. Emergency TEVAR should preferentially be started under local anesthesia and could be switched to general anesthesia after stent placement. Patients should be kept in permissive hypotension preoperatively and during the intervention before stent-graft deployment and relative hypertension after deployment. The use of a proactive spinal cord protection protocol could decrease the risk of spinal cord ischemia and/or paraplegia and consists of permissive hypertension after stent deployment, cerebrospinal fluid drainage to maintain adequate spinal cord perfusion, relative hypothermia and possibly use of mannitol. In order to improve outcomes of TEVAR for rDTAA, a close communication between the anesthesiologist and the surgeon and a thorough understanding of the events during the procedure is mandatory. The use of a proactive spinal cord protection protocol may decrease the rates of devastating spinal cord ischemia.

  17. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses

    PubMed Central

    Mishra, Asht M.; Pal, Ajay; Gupta, Disha

    2017-01-01

    Key points Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord.The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone.Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal.Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Abstract Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. PMID:28752624

  18. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.

    PubMed

    Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B

    2017-11-15

    Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  19. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus.

    PubMed

    Cruce, W L; Newman, D B

    1981-05-10

    In order to study brainstem origins of spinal projections, ten Tegu lizards (Tupinambis nigropunctatus) received complete or partial hemisections of the spinal cord at the first or second cervical segment. Their brains were processed for conventional Nissl staining. The sections were surveyed for the presence or absence of retrograde chromatolysis. Based on analysis and comparison of results from lesions in the various spinal cord funiculi, the following conclusions were reached: The interstitial nucleus projects ipsilaterally to the spinal cord via the medial longitudinal fasciculus, as does the middle reticular field of the metencephalon. The red nucleus and dorsal vagal motor nucleus both project contralaterally to the spinal cord via the dorsal part of the lateral funiculus. The superior reticular field in the rostral metencephalon and the ventrolateral vestibular nucleus project ipsilaterally to the spinal cord via the ventral funiculus. The dorsolateral metencephalic nucleus and the ventral part of the inferior reticular nucleus of the myelencephalon both project ipsilaterally to the spinal cord via the dorsal part of the lateral funiculus. Several brainstem nuclei in Tupinambis project bilaterally to the spinal cord. The ventrolateral metencephalic nucleus, for example, projects ipsilaterally to the cord via the medial longitudinal fasciculus and contralaterally via the dorsal part of the lateral funiculus. The dorsal part of the inferior reticular nucleus projects bilaterally to the spinal cord via the dorsal part of the lateral funiculus. The nucleus solitarius complex projects contralaterally via the dorsal part of the lateral funiculus but ipsilaterally via the middle of the lateral funiculus. The inferior raphe nucleus projects bilaterally to the spinal cord via the middle part of the lateral funiculus. These data suggest that supraspinal projections in reptiles, especially reticulospinal systems, are more highly differentiated than previously thought. On the other hand, recent findings in cat, opossum, and monkey reveal that the organization of supraspinal pathways in the Tegu lizard bears a striking resemblance to that observed in mammals.

  20. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury.

    PubMed

    Curtis, Erik; Martin, Joel R; Gabel, Brandon; Sidhu, Nikki; Rzesiewicz, Teresa K; Mandeville, Ross; Van Gorp, Sebastiaan; Leerink, Marjolein; Tadokoro, Takahiro; Marsala, Silvia; Jamieson, Catriona; Marsala, Martin; Ciacci, Joseph D

    2018-06-01

    We tested the feasibility and safety of human-spinal-cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury (SCI). In this clinical trial, four subjects with T2-T12 SCI received treatment consisting of removal of spinal instrumentation, laminectomy, and durotomy, followed by six midline bilateral stereotactic injections of NSI-566 cells. All subjects tolerated the procedure well and there have been no serious adverse events to date (18-27 months post-grafting). In two subjects, one to two levels of neurological improvement were detected using ISNCSCI motor and sensory scores. Our results support the safety of NSI-566 transplantation into the SCI site and early signs of potential efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies. Despite these encouraging secondary data, we emphasize that this safety trial lacks statistical power or a control group needed to evaluate functional changes resulting from cell grafting. Copyright © 2018. Published by Elsevier Inc.

  1. Spinal cord aspergillus invasion--complication of an aspergilloma.

    PubMed

    Sheth, N K; Varkey, B; Wagner, D K

    1985-12-01

    Acute paraplegia developed in a 53-year-old man with pulmonary aspergilloma because of contiguous extension of Aspergillus infection to the epidural and subdural spaces and spinal cord. Histopathologic findings of the spinal cord showed Aspergillus hyphae penetrating the myelin sheath and myelomalacia, predominantly in the anterior and lateral columns. To the authors' knowledge, there have been no previous descriptions or illustrations of spinal cord involvement and the pathologic changes caused by Aspergillus infection.

  2. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    atrophy. Interestingly, there is a clinical phenomenon that stretching can lead to muscle fiber hypertrophy , but that doesn’t appear to be...specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have undertaken these studies because of an observation we...spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary: In this, the

  3. Discrimination of heterogenous mRNAs encoding strychnine-sensitive glycine receptors in Xenopus oocytes by antisense oligonucleotides.

    PubMed Central

    Akagi, H; Patton, D E; Miledi, R

    1989-01-01

    Three synthetic oligodeoxynucleotides complementary to different parts of an RNA encoding a glycine receptor subunit were used to discriminate heterogenous mRNAs coding for glycine receptors in adult and neonatal rat spinal cord. Injection of the three antisense oligonucleotides into Xenopus oocytes specifically inhibited the expression of glycine receptors by adult spinal cord mRNA. In contrast, the antisense oligonucleotides were much less potent in inhibiting the expression of glycine receptors encoded by neonatal spinal cord mRNA. Northern blot analysis revealed that the oligonucleotides hybridized mostly to an adult cord transcript of approximately 10 kilobases in size. This band was also present in neonatal spinal cord mRNA but its density was about one-fourth of the adult cord message. There was no intense band in the low molecular weight position (approximately 2 kilobases), the existence of which was expected from electrophysiological studies with size-fractionated mRNA of neonatal spinal cord. Our results suggest that in the rat spinal cord there are at least three different types of mRNAs encoding functional strychnine-sensitive glycine receptors. Images PMID:2479016

  4. Systemic hypothermia for the treatment of acute cervical spinal cord injury in sports.

    PubMed

    Dietrich, William Dalton; Cappuccino, Andrew; Cappuccino, Helen

    2011-01-01

    Spinal cord injury is a devastating condition that affects approximately 12,000 patients each year in the United States. Major causes for spinal cord injury include motor vehicle accidents, sports-related injuries, and direct trauma. Moderate hypothermia has gained attention as a potential therapy due to recent experimental and clinical studies and the use of modest systemic hypothermia (MSH) in high profile case of spinal cord injury in a National Football League (NFL) player. In experimental models of spinal cord injury, moderate hypothermia has been shown to improve functional recovery and reduce overall structural damage. In a recent Phase I clinical trial, systemic hypothermia has been shown to be safe and provide some encouraging results in terms of functional recovery. This review will summarize recent preclinical data, as well as clinical findings that support the continued investigations for the use of hypothermia in severe cervical spinal cord injury.

  5. Spinal Cord Ischemia Secondary to Hypovolemic Shock

    PubMed Central

    Kapoor, Siddhant; Koh, Roy KM; Yang, Eugene WR; Hee, Hwan-Tak

    2014-01-01

    A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressively with medical therapy to improve his spinal cord perfusion. The patient improved significantly, and after one week, he was able to regain most of his motor functions. Although not commonly reported, spinal cord ischemia post-surgery should be recognized early, especially in the presence of hypovolemic shock. MRI should be performed to exclude other potential causes of compression. Spinal cord ischemia needs to be managed aggressively with medical treatment to improve spinal cord perfusion. The prognosis depends on the severity of deficits, and is usually favorable. PMID:25558328

  6. Multichannel Detrended Fluctuation Analysis Reveals Synchronized Patterns of Spontaneous Spinal Activity in Anesthetized Cats

    PubMed Central

    Rodríguez, Erika E.; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A.; Jiménez, Ismael; Rudomín, Pablo

    2011-01-01

    The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA- mean = 1.040.09) or simultaneously from several lumbar segments (mDFA- mean = 1.010.06), where  = 0.5 indicates randomness while 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA- = 0.992 as compared to initial conditions mDFA- = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA- = 0.924). In contrast to the classical methods, such as correlation and coherence quantification that define a relation between two sets of data, the mDFA method properly reveals the synchronization of multiple groups of neurons in several segments of the spinal cord. This method is envisaged as a useful tool to characterize the structure of higher order ensembles of cord dorsum spontaneous potentials after spinal cord or peripheral nerve lesions. PMID:22046288

  7. A web-based neurological pain classifier tool utilizing Bayesian decision theory for pain classification in spinal cord injury patients

    NASA Astrophysics Data System (ADS)

    Verma, Sneha K.; Chun, Sophia; Liu, Brent J.

    2014-03-01

    Pain is a common complication after spinal cord injury with prevalence estimates ranging 77% to 81%, which highly affects a patient's lifestyle and well-being. In the current clinical setting paper-based forms are used to classify pain correctly, however, the accuracy of diagnoses and optimal management of pain largely depend on the expert reviewer, which in many cases is not possible because of very few experts in this field. The need for a clinical decision support system that can be used by expert and non-expert clinicians has been cited in literature, but such a system has not been developed. We have designed and developed a stand-alone tool for correctly classifying pain type in spinal cord injury (SCI) patients, using Bayesian decision theory. Various machine learning simulation methods are used to verify the algorithm using a pilot study data set, which consists of 48 patients data set. The data set consists of the paper-based forms, collected at Long Beach VA clinic with pain classification done by expert in the field. Using the WEKA as the machine learning tool we have tested on the 48 patient dataset that the hypothesis that attributes collected on the forms and the pain location marked by patients have very significant impact on the pain type classification. This tool will be integrated with an imaging informatics system to support a clinical study that will test the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning.

  8. MRI Atlas-Based Measurement of Spinal Cord Injury Predicts Outcome in Acute Flaccid Myelitis.

    PubMed

    McCoy, D B; Talbott, J F; Wilson, Michael; Mamlouk, M D; Cohen-Adad, J; Wilson, Mark; Narvid, J

    2017-02-01

    Recent advances in spinal cord imaging analysis have led to the development of a robust anatomic template and atlas incorporated into an open-source platform referred to as the Spinal Cord Toolbox. Using the Spinal Cord Toolbox, we sought to correlate measures of GM, WM, and cross-sectional area pathology on T2 MR imaging with motor disability in patients with acute flaccid myelitis. Spinal cord imaging for 9 patients with acute flaccid myelitis was analyzed by using the Spinal Cord Toolbox. A semiautomated pipeline using the Spinal Cord Toolbox measured lesion involvement in GM, WM, and total spinal cord cross-sectional area. Proportions of GM, WM, and cross-sectional area affected by T2 hyperintensity were calculated across 3 ROIs: 1) center axial section of lesion; 2) full lesion segment; and 3) full cord atlas volume. Spearman rank order correlation was calculated to compare MR metrics with clinical measures of disability. Proportion of GM metrics at the center axial section significantly correlated with measures of motor impairment upon admission ( r [9] = -0.78; P = .014) and at 3-month follow-up ( r [9] = -0.66; P = .05). Further, proportion of GM extracted across the full lesion segment significantly correlated with initial motor impairment ( r [9] = -0.74, P = .024). No significant correlation was found for proportion of WM or proportion of cross-sectional area with clinical disability. Atlas-based measures of proportion of GM T2 signal abnormality measured on a single axial MR imaging section and across the full lesion segment correlate with motor impairment and outcome in patients with acute flaccid myelitis. This is the first atlas-based study to correlate clinical outcomes with segmented measures of T2 signal abnormality in the spinal cord. © 2017 by American Journal of Neuroradiology.

  9. Swiss national community survey on functioning after spinal cord injury: Protocol, characteristics of participants and determinants of non-response.

    PubMed

    Brinkhof, Martin W G; Fekete, Christine; Chamberlain, Jonviea D; Post, Marcel W M; Gemperli, Armin

    2016-02-01

    To detail the protocol, recruitment, study population, response, and data quality of the first population-based community survey of the Swiss Spinal Cord Injury (SwiSCI) Cohort Study. The survey consisted of 3 successive modules administered between September 2011 and March 2013. The first two modules queried demographics, lesion characteristics and key domains of functioning. The third module collected information on psychological personal factors and health behaviour; work integration; or health services and aging. Community-dwelling persons with chronic spinal cord injury in Switzerland. Descriptive analyses of the recruitment process, participant characteristics, and correspondence between self-reported and clinical data. Determinants for participation and the impact of non-response on survey results were assessed. Out of 3,144 eligible persons 1,549 participated in the first two modules (cumulative response rate 49.3%). Approximately three-quarters of participants were male, with a median age of 53 years, and 78% had traumatic spinal cord injury. Record-linkage with medical records demonstrated substantial agreement with self-reported demographic and lesion characteristics. A minimal non-response bias was found. The community survey was effective in recruiting an unbiased sample, thus providing valuable information to study functioning, health maintenance, and quality of life in the Swiss SCI community.

  10. Secondary damage in the spinal cord after motor cortex injury in rats.

    PubMed

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  11. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    PubMed

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  12. [Anesthesia for surgery of degenerative and abnormal cervical spine].

    PubMed

    Béal, J L; Lopin, M C; Binnert, M

    1993-01-01

    A feature common to all congenital or inflammatory abnormalities of the cervical spine is an actual or potential reduction in the lumen of the spinal canal. The spinal cord and nerve roots are at risk. During intubation, and positioning the patient on the table, all untoward movements of the cervical spine may lead to spinal cord compression. Abnormalities of the cervical spine carry the risk of a difficult intubation. If there is much debate as to what constitutes optimum management of the airway, there is no evidence that any one method is the best. Recognizing the possible instability and intubating with care, are probably much more important in preserving neurological function than any particular mode of intubation. During maintenance of anaesthesia, the main goal is to preserve adequate spinal cord perfusion in order to prevent further damage. Spinal cord blood flow seems to be regulated by the same factors as cerebral blood flow. Hypercapnia increases cord blood flow while hypocapnia decreases it. Therefore, normocapnia or mild hypocapnia is recommended. Induced hypotension is frequently used to decrease blood loss. However, in patients with a marginally perfused spinal cord, the reduction in blood flow may cause ischaemia of the spinal cord and may therefore be relatively contraindicated. In addition to standard intraoperative monitoring, spinal cord monitoring is almost mandatory. Monitoring somatosensory evoked potentials is used routinely. However, the major limitation is that this technique only monitors dorsal column function; theoretically, motor paralysis can occur despite a lack of change in recorded signals. Neurogenic motor evoked potentials may now be used to monitor anterior spinal cord integrity.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Chronic spinal cord injury in the cervical spine of a young soccer player.

    PubMed

    Kato, Yoshihiko; Koga, Michiaki; Taguchi, Toshihiko

    2010-05-12

    A 17-year-old male soccer player presented with numbness in the upper- and lower-left extremities of 6 months' duration. He had no apparent history of trauma but experienced neck pain during heading of the ball 5 years prior. A high-signal intensity area was seen on T2-weighted magnetic resonance imaging (MRI) of the cervical spine. No muscle weakness was observed. Hypoesthesia was observed in bilateral forearms, hands, and extremities below the inguinal region. Plain radiographs in the neutral position showed local kyphosis at C3/4. A small protrusion of the C3/4 disk was observed on T1-weighted MRI. A high-signal area in the spinal cord at the C3/4 level was observed on T2-weighted MRI, but this was not enhanced by gadolinium. Multiple sclerosis, intramedullary spinal cord tumor, sarcoidosis and malignant lymphoma, and spinal cord injury were all considered in the differential diagnosis. However, in view of the clinical, laboratory, and radiological investigations, we concluded that repeated impacts to the neck caused by heading of the ball during soccer induced a chronic, minor spinal cord injury. This contributed to the high-signal intensity change of the spinal cord in T2-weighted MRI. The present case demonstrates that repeated impact may cause chronic spinal cord injury. Soccer, American football, or rugby players presenting with neck or extremity symptoms should not be overlooked for the possibility of latent spinal cord injury, as this could present later development of more severe or unrecoverable spinal cord injuries. Copyright 2010, SLACK Incorporated.

  14. Neuroprotective effects of Ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats.

    PubMed

    Gokce, Emre Cemal; Kahveci, Ramazan; Atanur, Osman Malik; Gürer, Bora; Aksoy, Nurkan; Gokce, Aysun; Sargon, Mustafa Fevzi; Cemil, Berker; Erdogan, Bulent; Kahveci, Ozan

    2015-11-01

    Ganoderma lucidum (G. lucidum) is a mushroom belonging to the polyporaceae family of Basidiomycota and has widely been used as a traditional medicine for thousands of years. G. lucidum has never been studied in traumatic spinal cord injury. The aim of this study is to investigate whether G. lucidum polysaccharides (GLPS) can protect the spinal cord after experimental spinal cord injury. Rats were randomized into five groups of eight animals each: control, sham, trauma, GLPS, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only a laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analysed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test. After traumatic spinal cord injury, increases in caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. After the administration of GLPS, decreases were observed in tissue caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. Furthermore, GLPS treatment showed improved results in histopathological scores, ultrastructural scores, and functional tests. Biochemical, histopathological, and ultrastructural analyses and functional tests reveal that GLPS exhibits meaningful neuroprotective effects against spinal cord injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  16. Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbits.

    PubMed

    Wang, Qiang; Ding, Qian; Zhou, Yiming; Gou, Xingchun; Hou, Lichao; Chen, Shaoyang; Zhu, Zhenghua; Xiong, Lize

    2009-06-01

    Ethyl pyruvate (EP) has been reported to offer a protective effect against ischemic injury through its antiinflammatory action. The nuclear protein high-mobility group box 1 (HMGB1) can activate inflammatory pathways when released from ischemic cells. This study was designed to investigate the neuroprotective effect of EP against spinal cord ischemic injury and the potential role of HMGB1 in this process. EP was administered at various time points before or after 20 min of spinal cord ischemia in male New Zealand rabbits. All animals were sacrificed at 72 h after reperfusion with modified Tarlov criteria, and the spinal cord segment (L4) was harvested for histopathological examination and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining. The HMGB1 levels in serum and spinal cord tissue were analyzed by enzyme-linked immunosorbent assay. The treatment of EP at 30 min before ischemia or at 6 h after reperfusion significantly improved the hind-limb motor function scores and increased the numbers of normal motor neurons, which was accompanied with reduction of the number of apoptotic neurons and levels of HMGB1 in serum and spinal cord tissue. The HMGB1 contents of spinal cord tissue correlated well with the numbers of apoptotic motor neurons in the anterior spinal cord at 72 h after reperfusion. These results suggest that EP affords a strong protection against the transient spinal cord ischemic injury with a wide therapeutic window through inhibition of HMGB1 release.

  17. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats.

    PubMed

    Gad, Parag; Choe, Jaehoon; Nandra, Mandheerej Singh; Zhong, Hui; Roy, Roland R; Tai, Yu-Chong; Edgerton, V Reggie

    2013-01-21

    Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.

  18. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition

    PubMed Central

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A.; Lombroso, Paul J.; Azkue, Jon J.; Pérez-Navarro, Esther

    2016-01-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP61 protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund’s adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP61 protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP61 inactivation and increased pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception. PMID:26270590

  19. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its ability to execute full weight-supporting locomotion on a treadmill belt.

  20. Concomitance of cervical intramedullary traumatic neuroma and cervical cord herniation in a tetraplegic woman.

    PubMed

    Su, Hui-Yi; Wu, Yung-Tsan; Liu, Ming-Ying; Lin, Yu-Chun; Chu, Heng-Yi; Chang, Shin-Tsu

    2013-01-01

    We present the first case of concomitant intramedullary traumatic neuroma and spinal cord herniation. A 57-year-old woman injured her cervical spine with subluxation and cord compression at the C5-C6 level. After the operation, the patient received intensive rehabilitation for one year with well response. Unfortunately, she experienced weakness and progressive numbness extending to all the limbs later. Cervical magnetic resonance imaging revealed spinal cord herniation at the C5-C6 level and pathology proved intramedullary traumatic neuroma. After the second operation, the paresthesia over the trunk and limbs persisted, and the patient was nearly totally assisted in her activities of daily living. The intramedullary traumatic neuroma and spinal cord herniation are rare causes in patients with spinal cord dysfunction. The case presented here indicates the possibility of the coexisting conditions leading to progressive neurologic deficits in patients with old spinal cord injury.

  1. Spinal cord tumors: new views and future directions.

    PubMed

    Mechtler, Laszlo L; Nandigam, Kaveer

    2013-02-01

    Spinal cord tumors are uncommon neoplasms that, without treatment, can cause significant neurologic morbidity and mortality. The historic classification of spine tumors is based on the use of myelography with 3 main groups: (1) extramedullary extradural, (2) intradural extramedullary, and (3) intradural intramedullary. This chapter focuses on intramedullary spinal cord tumors (ISCTs), with an emphasis on new diagnostic imaging modalities and treatment options. The common ISCTs include ependymoma, astrocytoma and hemangioblastoma, which together account for over 90% of primary ISCTs. Rare tumors such as gangliglioma, oligodendroglioma, paraganglioma, melanocytoma, lipoma, and primary spinal cord lymphoma are also included in this review, in addition to spinal cord metastatic disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Large and persistent electrical currents enter the transected lamprey spinal cord.

    PubMed Central

    Borgens, R B; Jaffe, L F; Cohen, M J

    1980-01-01

    The electrical currents at the surface of the proximal portion of an isolated and transected lamprey spinal cord were measured with an extracellular vibrating probe. Soon after transection, currents of about 0.5 mA/cm2 enter the cut surface of the spinal cord. These currents fall to about a quarter of their initial value within an hour; within the next 2 days they gradually decline from about 100 microA/cm2 to about 4 microA/cm2; they then remain constant up to 6 days posttransection, when the measurements were ended. The pattern of current entry included substantial peaks opposite (and presumably into) the cut ends of giant axons. Response to changes in the ionic composition of the medium indicates that about half of the injury current consists of Na+, and that much of the rest may consist of Ca2+. The measured influx of ions, which adds up to several coulombs per cm2 in a few days, should radically alter the ionic composition of the terminal few millimeters of neural tissue. Thus it may be important in the degenerative and regenerative responses of neurons to axotomy. Images PMID:6928670

  3. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury

    PubMed Central

    Hou, Shaoping; Carson, David M.; Wu, Di; Klaw, Michelle C.; Houlé, John D.; Tom, Veronica J.

    2016-01-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6–S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)− and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. PMID:26655672

  4. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury.

    PubMed

    Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J

    2016-11-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH) + neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH) - and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH + neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D 2 -like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH + neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH + cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH + neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. Published by Elsevier Inc.

  5. The negotiated equilibrium model of spinal cord function.

    PubMed

    Wolpaw, Jonathan R

    2018-04-16

    The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff

  7. Coupling between the spinal cord and cervical vertebral column under tensile loading.

    PubMed

    Kroeker, Shannon G; Ching, Randal P

    2013-02-22

    Current neck injury criteria are based on structural failure of the spinal (vertebral) column without consideration of injury to the spinal cord. Since one of the primary functions of the vertebral column is to protect the cord, it stands to reason that a more refined measure of neck injury threshold would be the onset of spinal cord injury (SCI). This study investigated the relationship between axial strains in the cervical vertebral column and the spinal cord using an in vitro primate model (n=10) under continuous tensile loading. Mean failure loads occurred at 1951.5±396N with failure strains in the vertebral column of 16±5% at the level of failure. Average tensile strains in the spinal cord at failure were 11±5% resulting in a mean coupling ratio of 0.54±0.17 between C1 and C7. The level of peak strain measured in the spinal cord did not always occur at the location of vertebral column failure. Spinal cord strains were less than spine strains and coupling ratios were not significantly different along the length of the spine. The largest coupling ratio was measured in the atlanto-occipital joint whereas the smallest coupling ratio occurred at the adjacent C1-C2 joint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Noradrenergic innervation of the rat spinal cord caudal to a complete spinal cord transection: effects of olfactory ensheathing glia.

    PubMed

    Takeoka, Aya; Kubasak, Marc D; Zhong, Hui; Kaplan, Jennifer; Roy, Roland R; Phelps, Patricia E

    2010-03-01

    Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons. Copyright 2009 Elsevier Inc. All rights reserved.

  9. A PET/CT approach to spinal cord metabolism in amyotrophic lateral sclerosis.

    PubMed

    Marini, Cecilia; Cistaro, Angelina; Campi, Cristina; Calvo, Andrea; Caponnetto, Claudia; Nobili, Flavio Mariano; Fania, Piercarlo; Beltrametti, Mauro C; Moglia, Cristina; Novi, Giovanni; Buschiazzo, Ambra; Perasso, Annalisa; Canosa, Antonio; Scialò, Carlo; Pomposelli, Elena; Massone, Anna Maria; Bagnara, Maria Caludia; Cammarosano, Stefania; Bruzzi, Paolo; Morbelli, Silvia; Sambuceti, Gianmario; Mancardi, Gianluigi; Piana, Michele; Chiò, Adriano

    2016-10-01

    In amyotrophic lateral sclerosis, functional alterations within the brain have been intensively assessed, while progression of lower motor neuron damage has scarcely been defined. The aim of the present study was to develop a computational method to systematically evaluate spinal cord metabolism as a tool to monitor disease mechanisms. A new computational three-dimensional method to extract the spinal cord from (18)F-FDG PET/CT images was evaluated in 30 patients with spinal onset amyotrophic lateral sclerosis and 30 controls. The algorithm identified the skeleton on the CT images by using an extension of the Hough transform and then extracted the spinal canal and the spinal cord. In these regions, (18)F-FDG standardized uptake values were measured to estimate the metabolic activity of the spinal canal and cord. Measurements were performed in the cervical and dorsal spine and normalized to the corresponding value in the liver. Uptake of (18)F-FDG in the spinal cord was significantly higher in patients than in controls (p < 0.05). By contrast, no significant differences were observed in spinal cord and spinal canal volumes between the two groups. (18)F-FDG uptake was completely independent of age, gender, degree of functional impairment, disease duration and riluzole treatment. Kaplan-Meier analysis showed a higher mortality rate in patients with standardized uptake values above the fifth decile at the 3-year follow-up evaluation (log-rank test, p < 0.01). The independence of this value was confirmed by multivariate Cox analysis. Our computational three-dimensional method enabled the evaluation of spinal cord metabolism and volume and might represent a potential new window onto the pathophysiology of amyotrophic lateral sclerosis.

  10. Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection.

    PubMed

    Falci, Scott; Indeck, Charlotte; Barnkow, Dave

    2018-06-01

    OBJECTIVE Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators. METHODS Three unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords-only cephalad to the level of spinal cord transection-with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years. RESULTS All 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators. CONCLUSIONS The results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain generators.

  11. Restoration of motor function after operative reconstruction of the acutely transected spinal cord in the canine model.

    PubMed

    Liu, Zehan; Ren, Shuai; Fu, Kuang; Wu, Qiong; Wu, Jun; Hou, Liting; Pan, Hong; Sun, Linlin; Zhang, Jian; Wang, Bingjian; Miao, Qing; Sun, Guiyin; Bonicalzi, Vincenzo; Canavero, Sergio; Ren, Xiaoping

    2018-05-01

    Cephalosomatic anastomosis or what has been called a "head transplantation" requires full reconnection of the respective transected ends of the spinal cords. The GEMINI spinal cord fusion protocol has been developed for this reason. Here, we report the first randomized, controlled study of the GEMINI protocol in large animals. We conducted a randomized, controlled study of a complete transection of the spinal cord at the level of T10 in dogs at Harbin Medical University, Harbin, China. These dogs were followed for up to 8 weeks postoperatively by assessments of recovery of motor function, somato-sensory evoked potentials, and diffusion tensor imaging using magnetic resonance imaging. A total of 12 dogs were subjected to operative exposure of the dorsal aspect of the spinal cord after laminectomy and longitudinal durotomy followed by a very sharp, controlled, full-thickness, complete transection of the spinal cord at T10. The fusogen, polyethylene glycol, was applied topically to the site of the spinal cord transection in 7 of 12 dogs; 0.9% NaCl saline was applied to the site of transection in the remaining 5 control dogs. Dogs were selected randomly to receive polyethylene glycol or saline. All polyethylene glycol-treated dogs reacquired a substantial amount of motor function versus none in controls over these first 2 months as assessed on the 20-point (0-19), canine, Basso-Beattie-Bresnahan rating scale (P<.006). Somatosensory evoked potentials confirmed restoration of electrical conduction cranially across the site of spinal cord transection which improved over time. Diffusion tensor imaging, a magnetic resonance permutation that assesses the integrity of nerve fibers and cells, showed restitution of the transected spinal cord with polyethylene glycol treatment (at-injury level difference: P<.02). A sharply and fully transected spinal cord at the level of T10 can be reconstructed with restoration of many aspects of electrical continuity in large animals following the GEMINI spinal cord fusion protocol, with objective evidence of motor recovery and of electrical continuity across the site of transection, opening the way to the first cephalosomatic anastomosis. (Surgery 2017;160:XXX-XXX.). Copyright © 2017. Published by Elsevier Inc.

  12. Malignant spinal cord compression in cancer patients may be mimicked by a primary spinal cord tumour.

    PubMed

    Mohammadianpanah, M; Vasei, M; Mosalaei, A; Omidvari, S; Ahmadloo, N

    2006-12-01

    Although it is quite rare, second primary neoplasms in cancer patients may present with the signs and symptoms of malignant spinal cord compression. Primary spinal cord tumours in the cancer patients may be deceptive and considered as the recurrent first cancer. Therefore, it should be precisely differentiated and appropriately managed. We report such a case of intramedullary ependymoma of the cervical spinal cord mimicking metatstatic recurrent lymphoma and causing cord compression. A 50-year-old man developed intramedullary ependymoma of the cervical spinal cord 1.5 years following chemoradiation for Waldeyer's ring lymphoma. He presented with a 2-month history of neck pain, progressive upper- and lower-extremity numbness and weakness, and bowel and bladder dysfunction. Magnetic resonance imaging revealed an intramedullary expansive lesion extending from C4 to C6 levels of the cervical spinal cord. The clinical and radiological findings were suggestive of malignant process. A comprehensive investigation failed to detect another site of disease. He underwent operation, and the tumour was subtotally resected. The patient's neurological deficits improved subsequently. The development of the intramedullary ependymoma following treating lymphoma has not been reported. We describe the clinical, radiological and pathological findings of this case and review the literature.

  13. Sexuality and sexual dysfunction in spinal cord-injured men in Turkey.

    PubMed

    Akman, Ramazan Yavuz; Coşkun Çelik, Evrim; Karataş, Metin

    2015-01-01

    To provide a comprehensive evaluation of sexual function and dysfunction in spinal cord-injured men based on self-reports of patients. Forty-seven spinal cord-injured men who completed the spinal shock and rehabilitation period were included. Patients were asked to complete a questionnaire developed to assess social status, sexual activities, abilities, and sexuality education after injury. Neurologic levels of patients were classified according to American Spinal Cord Injury Association protocol. Erectile function was evaluated by International Index of Erectile Function-5 (IIEF-5) questionnaire. Patients were aged between 20 and 62 years (mean: 35.2). Twenty-eight patients had T10 and above, 15 between T11 and L2, and 4 cauda conus injury. While 61.7% of the patients declared sexual activity, 93.6% declared some degree of erection. Mean IIEF-5 score was 5.3 and 87.3% of the patients had moderate to severe erectile dysfunction. Continuation of sexual activity after injury is very important and has a great impact on quality of life and interpersonal relationships for spinal cord-injured men. More attention must be given to sexuality after spinal cord injury. A very high rate of sexual dysfunction in spinal cord-injured patients was found and the importance of sexual education was emphasized in this study.

  14. Complete spinal cord injury and brain dissection protocol for subsequent wholemount in situ hybridization in larval sea lamprey.

    PubMed

    Barreiro-Iglesias, Antón; Zhang, Guixin; Selzer, Michael E; Shifman, Michael I

    2014-10-14

    After a complete spinal cord injury, sea lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by short distance regeneration (a few mm) of propriospinal axons and spinal-projecting axons from the brainstem. Among the 36 large identifiable spinal-projecting neurons, some are good regenerators and others are bad regenerators. These neurons can most easily be identified in wholemount CNS preparations. In order to understand the neuron-intrinsic mechanisms that favor or inhibit axon regeneration after injury in the vertebrates CNS, we determine differences in gene expression between the good and bad regenerators, and how expression is influenced by spinal cord transection. This paper illustrates the techniques for housing larval and recently transformed adult sea lampreys in fresh water tanks, producing complete spinal cord transections under microscopic vision, and preparing brain and spinal cord wholemounts for in situ hybridization. Briefly, animals are kept at 16°C and anesthetized in 1% Benzocaine in lamprey Ringer. The spinal cord is transected with iridectomy scissors via a dorsal approach and the animal is allowed to recover in fresh water tanks at 23 °C. For in situ hybridization, animals are reanesthetized and the brain and cord removed via a dorsal approach.

  15. Spinal Cord as an Adjunct to Brain Magnetic Resonance Imaging in Defining “No Evidence of Disease Activity” in Multiple Sclerosis

    PubMed Central

    Tummala, Subhash; Singhal, Tarun; Oommen, Vinit V.; Kim, Gloria; Khalid, Fariha; Healy, Brian C.

    2017-01-01

    Background: Monitoring patients with multiple sclerosis (MS) for “no evidence of disease activity” (NEDA) may help guide disease-modifying therapy (DMT) management decisions. Whereas surveillance brain magnetic resonance imaging (MRI) is common, the role of spinal cord monitoring for NEDA is unknown. Objective: To evaluate the role of brain and spinal cord 3T MRI in the 1-year evaluation of NEDA. Methods: Of 61 study patients (3 clinically isolated syndrome, 56 relapsing-remitting, 2 secondary progressive), 56 (91.8%) were receiving DMT. The MRI included brain fluid-attenuated inversion recovery and cervical/thoracic T2-weighted fast spin echo images. On MRI, NEDA was defined as the absence of new or enlarging T2 lesions at 1 year. Results: Thirty-nine patients (63.9%) achieved NEDA by brain MRI, only one of whom had spinal cord activity. This translates to a false-positive rate for NEDA based on the brain of 2.6% (95% CI, 0.1%–13.5%). Thirty-eight patients (62.3%) had NEDA by brain and spinal cord MRI. Fifty-five patients (90.2%) had NEDA by spinal cord MRI, 17 of whom had brain activity. Of the 22 patients (36.1%) with brain changes, 5 had spinal cord changes. No evidence of disease activity was sustained in 48.3% of patients at 1 year and was the same with the addition of spinal cord MRI. Patients with MRI activity in either the brain or the spinal cord only were more likely to have activity in the brain (P = .0001). Conclusions: Spinal cord MRI had a low diagnostic yield as an adjunct to brain MRI at 3T in monitoring patients with MS for NEDA over 1 year. Studies with larger data sets are needed to confirm these findings. PMID:28603465

  16. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    PubMed Central

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  17. The distribution and origin of a novel brain peptide, neuropeptide Y, in the spinal cord of several mammals.

    PubMed

    Gibson, S J; Polak, J M; Allen, J M; Adrian, T E; Kelly, J S; Bloom, S R

    1984-07-20

    The distribution of neuropeptide Y [NPY]-immunoreactive material was examined in the spinal cord and dorsal root ganglia of rat, guinea-pig, cat, marmoset, and horse. Considerable concentrations of NPY and similar distribution patterns of immunoreactive nerve fibres were found in the spinal cord of all species investigated. The dorsal root ganglia of the cat and the horse contained numerous immunoreactive nerve fibres, but in these species, as in the other three studied [rat, guinea-pig, marmoset], no positively stained cell bodies were found. Neuropeptide Y-immunoreactive nerves were observed at all levels of the spinal cord, being most concentrated in the dorsal horn. In the rat, guinea-pig, and marmoset, there was a marked increase of NPY-immunoreactive fibres in the lumbosacral regions of the spinal cord, and this was reflected by a considerable increase of extractable NPY. Estimations of NPY-immunoreactive material in the various regions of the rat spinal cord were as follows: cervical, 13.8 +/- 1.0; thoracic, 21.1 +/- 2.5; lumbar, 16.3 +/- 2.9; sacral, 92.4 +/- 8.5 pmol/gm wet weight of tissue +/- SEM. In the ventral portion of the guinea-pig spinal cord they were as follows: cervical, 7.1 +/- 1.2; thoracic, 8.2 +/- 3.6; lumbar, 22.6 +/- 7.0; sacral, 36.7 +/- 9.5 pmol/gm wet weight of tissue +/- SEM. Analysis of spinal cord extracts by reverse phase high performance liquid chromatography [HPLC] demonstrated that NPY-immunoreactive material elutes in the position of pure NPY standard. No changes in the concentration and distribution of the NPY-like material in the rat spinal cord were observed following a variety of surgical and pharmacological manipulations, including cervical rhizotomy, sciatic nerve section and ligation, and local application of capsaicin [50 mM] to one sciatic nerve. It is therefore suggested that most of the NPY-immunoreactive material in the spinal cord is derived either from intrinsic nerve cell bodies or from supraspinal tracts.

  18. Effects of wheelchair propulsion on neuropathic pain and resting electroencephalography after spinal cord injury.

    PubMed

    Sato, Gosuke; Osumi, Michihiro; Morioka, Shu

    2017-01-31

    To investigate the effects of wheelchair propulsion on neuropathic pain and to examine resting electroencephalography pre- and post-wheelchair propulsion after spinal cord injury. Cross-sectional study. Eleven individuals with spinal cord injury and pain and 10 healthy controls. Single-session 15-min wheelchair propulsion and measurement of resting electroence-phalography. Effects of wheelchair propulsion were investigated using numerical rating scale (NRS) for neuropathic pain and short-form Profile of Mood States-Brief for mood. Peak alpha frequency on electroencephalography was calculated in 4 regions of interest; frontal, central, parietal and occipital areas. These outcomes were compared between pre- and post-wheelchair propulsion. Ten participants with spinal cord injury and all healthy controls completed the wheelchair propulsion exercise. NRS scores and negative mood were significantly improved following the wheelchair propulsion exercise. Pre-wheelchair propulsion, parietal and occipital peak alpha frequencies were significantly lower in the spinal cord injury group compared with the healthy controls group. Post-wheelchair propulsion, central peak alpha frequency increased in the spinal cord injury group. Wheelchair propulsion exercise temporarily decreased neuropathic pain intensity, improved negative mood, and modified alpha activity in spinal cord injury.

  19. Nestin- and Doublecortin-Positive Cells Reside in Adult Spinal Cord Meninges and Participate in Injury-Induced Parenchymal Reaction

    PubMed Central

    Decimo, Ilaria; Bifari, Francesco; Rodriguez, Francisco Javier; Malpeli, Giorgio; Dolci, Sissi; Lavarini, Valentina; Pretto, Silvia; Vasquez, Sandra; Sciancalepore, Marina; Montalbano, Alberto; Berton, Valeria; Krampera, Mauro; Fumagalli, Guido

    2011-01-01

    Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury. Stem Cells 2011;29:2062–2076. PMID:22038821

  20. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction.

    PubMed

    Decimo, Ilaria; Bifari, Francesco; Rodriguez, Francisco Javier; Malpeli, Giorgio; Dolci, Sissi; Lavarini, Valentina; Pretto, Silvia; Vasquez, Sandra; Sciancalepore, Marina; Montalbano, Alberto; Berton, Valeria; Krampera, Mauro; Fumagalli, Guido

    2011-12-01

    Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury. Copyright © 2011 AlphaMed Press.

  1. Variations in the formation of the human caudal spinal cord.

    PubMed

    Saraga-Babić, M; Sapunar, D; Wartiovaara, J

    1995-01-01

    Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.

  2. Central Pain Syndrome

    MedlinePlus

    ... cord. This syndrome can be caused by stroke, multiple sclerosis, tumors, epilepsy, brain or spinal cord trauma, or ... cord. This syndrome can be caused by stroke, multiple sclerosis, tumors, epilepsy, brain or spinal cord trauma, or ...

  3. Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice.

    PubMed

    Zhang, Hong-Mei; Zhou, Hong-Yi; Chen, Shao-Rui; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin

    2007-12-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the tonic regulation of nociceptive transmission in the spinal cord. However, how mAChR subtypes contribute to the regulation of synaptic glycine release is unknown. To determine their role, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in lamina II neurons by using whole-cell recordings in spinal cord slices of wild-type (WT) and mAChR subtype knockout (KO) mice. In WT mice, the mAChR agonist oxotremorine-M dose-dependently decreased the frequency of sIPSCs in most neurons, but it had variable effects in other neurons. In contrast, in M3-KO mice, oxotremorine-M consistently decreased the glycinergic sIPSC frequency in all neurons tested, and in M2/M4 double-KO mice, it always increased the sIPSC frequency. In M2/M4 double-KO mice, the potentiating effect of oxotremorine-M was attenuated by higher concentrations in some neurons through activation of GABA(B) receptors. In pertussis toxin-treated WT mice, oxotremorine-M also consistently increased the sIPSC frequency. In M2-KO and M4-KO mice, the effect of oxotremorine-M on sIPSCs was divergent because of the opposing functions of the M3 subtype and the M2 and M4 subtypes. This study demonstrates that stimulation of the M2 and M4 subtypes inhibits glycinergic inputs to spinal dorsal horn neurons of mice, whereas stimulation of the M3 subtype potentiates synaptic glycine release. Furthermore, GABA(B) receptors are involved in the feedback regulation of glycinergic synaptic transmission in the spinal cord. This study revealed distinct functions of mAChR subtypes in controlling glycinergic input to spinal dorsal horn neurons.

  4. The Glutamatergic Neurons in the Spinal Cord of the Sea Lamprey: An In Situ Hybridization and Immunohistochemical Study

    PubMed Central

    Fernández-López, Blanca; Villar-Cerviño, Verona; Valle-Maroto, Silvia M.; Barreiro-Iglesias, Antón; Anadón, Ramón; Rodicio, María Celina

    2012-01-01

    Glutamate is the main excitatory neurotransmitter involved in spinal cord circuits in vertebrates, but in most groups the distribution of glutamatergic spinal neurons is still unknown. Lampreys have been extensively used as a model to investigate the neuronal circuits underlying locomotion. Glutamatergic circuits have been characterized on the basis of the excitatory responses elicited in postsynaptic neurons. However, the presence of glutamatergic neurochemical markers in spinal neurons has not been investigated. In this study, we report for the first time the expression of a vesicular glutamate transporter (VGLUT) in the spinal cord of the sea lamprey. We also study the distribution of glutamate in perikarya and fibers. The largest glutamatergic neurons found were the dorsal cells and caudal giant cells. Two additional VGLUT-positive gray matter populations, one dorsomedial consisting of small cells and another one lateral consisting of small and large cells were observed. Some cerebrospinal fluid-contacting cells also expressed VGLUT. In the white matter, some edge cells and some cells associated with giant axons (Müller and Mauthner axons) and the dorsolateral funiculus expressed VGLUT. Large lateral cells and the cells associated with reticulospinal axons are in a key position to receive descending inputs involved in the control of locomotion. We also compared the distribution of glutamate immunoreactivity with that of γ-aminobutyric acid (GABA) and glycine. Colocalization of glutamate and GABA or glycine was observed in some small spinal cells. These results confirm the glutamatergic nature of various neuronal populations, and reveal new small-celled glutamatergic populations, predicting that some glutamatergic neurons would exert complex actions on postsynaptic neurons. PMID:23110124

  5. Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.

    PubMed

    Kwiatkoski, Marcelo; Guimarães, Francisco Silveira; Del-Bel, Elaine

    2012-04-01

    Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.

  6. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord.

    PubMed

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s(-1), respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  7. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord-injured individuals.

    PubMed

    Savikj, Mladen; Ruby, Maxwell A; Kostovski, Emil; Iversen, Per O; Zierath, Juleen R; Krook, Anna; Widegren, Ulrika

    2018-06-01

    Despite the well-known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord-injured and six able-bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer-based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able-bodied and spinal cord-injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord-injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord-injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt-mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord-injured individuals was unchanged (P > 0.05) compared to able-bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level

    PubMed Central

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A.; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J.; Finkenstaedt, Felix W.; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas

    2016-01-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient’s environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS (‘immune paralysis’), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788

  10. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  11. Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action.

    PubMed Central

    Mannheimer, C; Eliasson, T; Andersson, B; Bergh, C H; Augustinsson, L E; Emanuelsson, H; Waagstein, F

    1993-01-01

    OBJECTIVE--To investigate the effects of spinal cord stimulation on myocardial ischaemia, coronary blood flow, and myocardial oxygen consumption in angina pectoris induced by atrial pacing. DESIGN--The heart was paced to angina during a control phase and treatment with spinal cord stimulation. Blood samples were drawn from a peripheral artery and the coronary sinus. SETTING--Multidisciplinary pain centre, department of medicine, Ostra Hospital, and Wallenberg Research Laboratory, Sahlgrenska Hospital, Gothenburg, Sweden. SUBJECTS--Twenty patients with intractable angina pectoris, all with a spinal cord stimulator implanted before the study. RESULTS--Spinal cord stimulation increased patients' tolerance to pacing (p < 0.001). At the pacing rate comparable to that producing angina during the control recording, myocardial lactate production during control session turned into extraction (p = 0.003) and, on the electrocardiogram, ST segment depression decreased, time to ST depression increased, and time to recovery from ST depression decreased (p = 0.01; p < 0.05, and p < 0.05, respectively). Spinal cord stimulation also reduced coronary sinus blood flow (p = 0.01) and myocardial oxygen consumption (p = 0.02). At the maximum pacing rate during treatment, all patients experienced anginal pain. Myocardial lactate extraction reverted to production (p < 0.01) and the magnitude and duration of ST segment depression increased to the same values as during control pacing, indicating that myocardial ischaemia during treatment with spinal cord stimulation gives rise to anginal pain. CONCLUSIONS--Spinal cord stimulation has an anti-anginal and anti-ischaemic effect in severe coronary artery disease. These effects seem to be secondary to a decrease in myocardial oxygen consumption. Furthermore, myocardial ischemia during treatment gives rise to anginal pain. Thus, spinal cord stimulation does not deprive the patient of a warning signal. PMID:8400930

  12. Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent.

    PubMed

    Terraf, Panieh; Kouhsari, Shideh Montasser; Ai, Jafar; Babaloo, Hamideh

    2017-09-01

    Loss of motor and sensory function as a result of neuronal cell death and axonal degeneration are the hallmarks of spinal cord injury. To overcome the hurdles and achieve improved functional recovery multiple aspects, it must be taken into account. Tissue engineering approaches by coalescing biomaterials and stem cells offer a promising future for treating spinal cord injury. Here we investigated human endometrial stem cells (hEnSCs) as our cell source. Electrospun poly ε-caprolactone (PCL) scaffolds were used for hEnSC adhesion and growth. Scanning electron microscopy (SEM) confirmed the attachment and survival of stem cells on the PCL scaffolds. The scaffold-stem cell construct was transplanted into the hemisected spinal cords of adult male rats. Crocin, an ethanol-extractable component of Crocus sativus L., was administered to rats for 15 consecutive days post injury. Neurite outgrowth and axonal regeneration were investigated using immunohistochemical staining for neurofilament marker NF-H and luxol-fast blue (LFB) staining, respectively. TNF-α staining was performed to determine the inflammatory response in each group. Functional recovery was assessed via the Basso-Beattie-Bresnahan (BBB) scale. Results showed that PCL scaffolds seeded with hEnSCs restored the continuity of the damaged spinal cord and decreased cavity formation. Additionally, hEnSC-seeded scaffolds contributed to the functional recovery of the spinal cord. Hence, hEnSC-seeded PCL scaffolds may serve as promising transplants for spinal cord tissue engineering purposes. Furthermore, crocin had an augmenting effect on spinal cord regeneration and proved to exert neuroprotective effects on damaged neurons and may be further studied as a promising drug for spinal cord injury.

  13. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons.

    PubMed

    Cocks, Graham; Romanyuk, Nataliya; Amemori, Takashi; Jendelova, Pavla; Forostyak, Oksana; Jeffries, Aaron R; Perfect, Leo; Thuret, Sandrine; Dayanithi, Govindan; Sykova, Eva; Price, Jack

    2013-06-07

    The use of immortalized neural stem cells either as models of neural development in vitro or as cellular therapies in central nervous system (CNS) disorders has been controversial. This controversy has centered on the capacity of immortalized cells to retain characteristic features of the progenitor cells resident in the tissue of origin from which they were derived, and the potential for tumorogenicity as a result of immortalization. Here, we report the generation of conditionally immortalized neural stem cell lines from human fetal spinal cord tissue, which addresses these issues. Clonal neural stem cell lines were derived from 10-week-old human fetal spinal cord and conditionally immortalized with an inducible form of cMyc. The derived lines were karyotyped, transcriptionally profiled by microarray, and assessed against a panel of spinal cord progenitor markers with immunocytochemistry. In addition, the lines were differentiated and assessed for the presence of neuronal fate markers and functional calcium channels. Finally, a clonal line expressing eGFP was grafted into lesioned rat spinal cord and assessed for survival, differentiation characteristics, and tumorogenicity. We demonstrate that these clonal lines (a) retain a clear transcriptional signature of ventral spinal cord progenitors and a normal karyotype after extensive propagation in vitro, (b) differentiate into relevant ventral neuronal subtypes with functional T-, L-, N-, and P/Q-type Ca(2+) channels and spontaneous calcium oscillations, and (c) stably engraft into lesioned rat spinal cord without tumorogenicity. We propose that these cells represent a useful tool both for the in vitro study of differentiation into ventral spinal cord neuronal subtypes, and for examining the potential of conditionally immortalized neural stem cells to facilitate functional recovery after spinal cord injury or disease.

  14. Fast and accurate semi-automated segmentation method of spinal cord MR images at 3T applied to the construction of a cervical spinal cord template.

    PubMed

    El Mendili, Mohamed-Mounir; Chen, Raphaël; Tiret, Brice; Villard, Noémie; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib

    2015-01-01

    To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects' images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template.

  15. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey

    PubMed Central

    Parker, David

    2017-01-01

    Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury. PMID:29163065

  16. Low-Grade Inflammation and Spinal Cord Injury: Exercise as Therapy?

    PubMed Central

    da Silva Alves, Eduardo; de Aquino Lemos, Valdir; Ruiz da Silva, Francieli; Lira, Fabio Santos; dos Santos, Ronaldo Vagner Thomathieli; Rosa, João Paulo Pereira; Caperuto, Erico; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    An increase in the prevalence of obesity in people with spinal cord injury can contribute to low-grade chronic inflammation and increase the risk of infection in this population. A decrease in sympathetic activity contributes to immunosuppression due to the lower activation of immune cells in the blood. The effects of physical exercise on inflammatory parameters in individuals with spinal cord injury have not been well described. We conducted a review of the literature published from 1974 to 2012. This review explored the relationships between low-grade inflammation, spinal cord injury, and exercise to discuss a novel mechanism that might explain the beneficial effects of exercise involving an increase in catecholamines and cytokines in people with spinal cord injury. PMID:23533315

  17. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    PubMed

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  18. Transverse myelitis-like presentation of methanol intoxication: A case report and review of the literature.

    PubMed

    Algahtani, Hussein; Shirah, Bader; Ahmad, Raafat; Abobaker, Hind; Hmoud, Mohammed

    2018-01-01

    Methanol is the simplest member of alcohol family. However, it is an extremely toxic substance to humans upon exposure with severe and detrimental effects that range from visual loss to death. Spinal cord involvement in methanol intoxication is a rare occurrence. In this article, we are reporting a case of methanol intoxication with extensive spinal cord involvement possibly due to necrosis. A literature review yielded only two cases of spinal cord involvement due to methanol intoxication. Our article is the first to discuss the spinal cord involvement specifically including interesting neuroimaging features. We recommend performing MRI of the cervicothoracic spine in every methanol intoxication case to exclude both asymptomatic and symptomatic cases of spinal cord involvement.

  19. Differences in Affect, Life Satisfaction, and Depression between Successfully and Unsuccessfully Rehabilitated Persons with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Chapin, Martha H.; Holbert, Donald

    2009-01-01

    This study assessed whether persons with spinal cord injuries who were successfully rehabilitated differed from those who were not with regard to positive and negative affect, life satisfaction, and depression. An ex post facto research design compared persons with spinal cord injuries who were previously employed with persons with spinal cord…

  20. Intramedullary spinal metastasis of a carcinoid tumor.

    PubMed

    Kumar, Jay I; Yanamadala, Vijay; Shin, John H

    2015-12-01

    We report an intramedullary spinal cord metastasis from a bronchial carcinoid, and discuss its mechanisms and management. Intramedullary spinal cord metastases from any cancer are rare, and bronchial carcinoids account for only a small fraction of lung cancers. To our knowledge, an intramedullary spinal cord metastasis from a bronchial carcinoid has been described only once previously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain

    PubMed Central

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R.; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-01-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, TNF-α transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-α/JNK pathway. MCP-1 upregulation by TNF-α was dose-dependently inhibited by the JNK inhibitors SP600125 and D-JNKI-1. Spinal injection of TNF-α produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Further, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous excitatory synaptic currents (sEPSCs) but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Taken together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes following JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management. PMID:19339605

  2. Nanog interact with CDK6 to regulates astrocyte cells proliferation following spinal cord injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jun; Department of Orthopaedics, Xishan People's Hospital, Wuxi, Jiangsu; Ni, Yingjie

    2016-01-22

    Previous research had reported transcription factors Nanog expressed in pluripotent embryonic stem cells (ESCS) that played an important role in regulating the cell proliferation. Nanog levels are frequently elevated in ESCS, but the role in the spinal cord was not clear. To examine the biological relevance of Nanog, we studied its properties in spinal cord injury model. The expression of Nanog and PCNA was gradually increased and reached a peak at 3 day by western blot analysis. The expression of Nanog was further analyzed by immunohistochemistry. Double immunofluorescent staining uncovered that Nanog can co-labeled with PCNA and GFAP in themore » spinal cord tissue. In vitro, Nanog can promote the proliferation of astrocyte cell by Fluorescence Activating Cell Sorter (FACS) and CCK8. Meanwhile, the cell-cycle protein CDK6 could interact with Nanog in the spinal cord tissue. Taken together, these data suggested that both Nanog may play important roles in spinal cord pathophysiology via interact with CDK6.« less

  3. Minimally Invasive Drainage of a Post-Laminectomy Subfascial Seroma with Cervical Spinal Cord Compression.

    PubMed

    Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde

    2016-01-01

    A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition.

  4. Spinal cord stimulation paresthesia and activity of primary afferents.

    PubMed

    North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay

    2012-10-01

    A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.

  5. Axonal Spheroid Accumulation In the Brainstem and Spinal Cord of A Young Angus Cow with Ataxia.

    PubMed

    Hanshaw, D M; Finnie, J W; Manavis, J; Kessell, A E

    2015-08-01

    An 18-month-old Angus cow presented with rapidly developing ataxia and subsequently died. The finding of large numbers of axonal spheroids in brainstem nuclei and spinal cord grey matter, bilaterally symmetrical in distribution, was consistent with a histopathological diagnosis of neuroaxonal dystrophy (NAD). Most of the axonal swellings were immunopositive to amyloid precursor protein, suggesting that interruption to axonal flow was important in their genesis. The topographical distribution of axonal spheroids in the brain and spinal cord in this bovine case closely resembled that found in the ovine neurodegenerative disorder termed NAD, in which axonal swellings are the major pathological feature. This appears to be the first reported case of this type of NAD in cattle. The aetiology of the spheroidal aggregations in this case was not determined. There was no evidence from the case history or neuropathology to indicate whether the axonal spheroids in this case involved an acquired or heritable aetiology. © 2015 Australian Veterinary Association.

  6. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  7. Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery

    PubMed Central

    Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed

    2014-01-01

    Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID:24779685

  8. Reliability and validity of the Persian version of the spinal cord injury lifestyle scale and the health behavior questionnaire in persons with spinal cord injury.

    PubMed

    Shabany, Maryam; Nasrabadi, Alireza Nikbakht; Rahimi-Movaghar, Vafa; Mansournia, Mohammad Ali; Mohammadi, Nooredin; Pruitt, Sheri D

    2018-05-01

    Cross-sectional psychometric study. To evaluate the reliability and validity of a spinal cord injury lifestyle scale (SCILS) and Health Behavior Questionnaire (HBQ) in the Persian language for persons with spinal cord injury (SCI). Participants were selected among those referred to health centers and the Brain and Spinal Cord Injury Research Center. In accordance with standard procedure for translation, two questionnaires, the SCILS and HBQ, were translated using a forward and backward translation approach by professional translators. Face validity of the questionnaires was assessed by ten persons with SCI and content validity was agreed upon by 12 professors from health care teaching universities. To test the final versions of both questionnaires, 97 persons with SCI were included using a consecutive sampling method. Other questionnaires were used to assess concurrent validity (secondary impairment checklist, as well as SCILS and HBQ) and convergent validity (impact of event scale revised, brief symptom inventory, beck depression inventory, and functional independence measure). Internal consistency of SCILS and HBQ, assessed by Cronbach's alpha, was 0.75 for SCILS and 0.85 for HBQ. Test-retest reliability intraclass correlations were 0.86 and 0.92 for SCILS and HBQ, respectively. The number of current secondary impairments had a significant and negative correlation with SCILS (r = -0.22, P < 0.001), but it was not correlated with HBQ. SCILS had a significant and strong correlation with HBQ (r = 0.65, P < 0.001). SCILS and HBQ can be used for measuring the health behavior of persons with SCI in Iran.

  9. Evaluation of the thoraco-laryngeal reflex ('slap test') as an aid to the diagnosis of cervical spinal cord and brainstem disease in horses.

    PubMed

    Newton-Clarke, M J; Divers, T J; Delahunta, A; Mohammed, H O

    1994-09-01

    A study was conducted over a 12 month period to assess the specificity and sensitivity of the 'slap test', using endoscopic evaluation, in the detection of cervical spinal cord and caudal brainstem lesions in horses. Fifteen ataxic horses were subjected to the 'slap test' and subsequently examined post mortem. Twelve out of the 15 had histopathological lesions consistent with their clinical signs. Thirteen horses with no history of neurological dysfunction and no histopathological evidence of cervical spinal cord or brainstem disease were used as controls. The laryngeal adductory responses exhibited by all horses were filmed and later scored independently by 3 assessors. The proportion of animals diagnosed with cervical spinal cord and/or brainstem disease, defined by histopathological criteria, was found to be statistically similar to the proportion with abnormal 'slap test' responses, using the McNemar chi-Square test. Despite statistical significance between proportions, sensitivity of the 'slap test' was low, 50% for the left side on both days and 58% for the right side. Specificity was higher, 69% (Day 1) and 75% (Day 2) for the left side and 75% (Day 1) and 69% (Day 2) for the right side. In contrast to this, conventional neurological examination was found to be 100% sensitive and 81% specific in the detection of lesions of histopathological significance in the cervical spinal cord/caudal brainstem. Agreement between scores for the 'slap test' from the same assessor on different days was good, with values for kappa of 0.59 to 0.85. In contrast, agreement between assessors on the 'slap test' score was poor, with kappa 0.35.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats

    PubMed Central

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-01-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (P<0.05). MRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some positive effects for the regeneration of the white matter. PMID:29201191

  11. Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation.

    PubMed

    Bjerkefors, Anna; Squair, Jordan W; Chua, Romeo; Lam, Tania; Chen, Zhen; Carpenter, Mark G

    2015-02-01

    To use transcranial magnetic stimulation and electromyography to assess the potential for preserved function in the abdominal muscles in individuals classified with motor-complete spinal cord injury above T6. Five individuals with spinal cord injury (C5-T3) and 5 able-bodied individuals. Transcranial magnetic stimulation was delivered over the abdominal region of primary motor cortex during resting and sub-maximal (or attempted) contractions. Surface electromyography was used to record motor-evoked potentials as well as maximal voluntary (or attempted) contractions in the abdominal muscles and the diaphragm. Responses to transcranial magnetic stimulation in the abdominal muscles occurred in all spinal cord injury subjects. Latencies of muscle response onsets were similar in both groups; however, peak-to-peak amplitudes were smaller in the spinal cord injury group. During maximal voluntary (or attempted) contractions all spinal cord injury subjects were able to elicit electromyography activity above resting levels in more than one abdominal muscle across tasks. Individuals with motor-complete spinal cord injury above T6 were able to activate abdominal muscles in response to transcranial magnetic stimulation and during maximal voluntary (or attempted) contractions. The activation was induced directly through corticospinal pathways, and not indirectly by stretch reflex activations of the diaphragm. Transcranial magnetic stimulation and electromyography measurements provide a useful method to assess motor preservation of abdominal muscles in persons with spinal cord injury.

  12. Numb rats walk - a behavioural and fMRI comparison of mild and moderate spinal cord injury.

    PubMed

    Hofstetter, Christoph P; Schweinhardt, Petra; Klason, Tomas; Olson, Lars; Spenger, Christian

    2003-12-01

    Assessment of sensory function serves as a sensitive measure for predicting the functional outcome following spinal cord injury in patients. However, little is known about loss and recovery of sensory function in rodent spinal cord injury models as most tests of sensory functions rely on behaviour and thus motor function. We used functional magnetic resonance imaging (fMRI) to investigate cortical and thalamic BOLD-signal changes in response to limb stimulation following mild or moderate thoracic spinal cord weight drop injury in Sprague-Dawley rats. While there was recovery of close to normal hindlimb motor function as determined by open field locomotor testing following both degrees of injury, recovery of hindlimb sensory function as determined by fMRI and hot plate testing was only seen following mild injury and not following moderate injury. Thus, moderate injury can lead to near normal hindlimb motor function in animals with major sensory deficits. Recovered fMRI signals following mild injury had a partly altered cortical distribution engaging also ipsilateral somatosensory cortex and the cingulate gyrus. Importantly, thoracic spinal cord injury also affected sensory representation of the upper nonaffected limbs. Thus, cortical and thalamic activation in response to forelimb stimulation was significantly increased 16 weeks after spinal cord injury compared to control animals. We conclude that both forelimb and hindlimb cortical sensory representation is altered following thoracic spinal cord injury. Furthermore tests of sensory function that are independent of motor behaviour are needed in rodent spinal cord injury research.

  13. Shriners Hospital Spinal Cord Injury Self Care Manual.

    ERIC Educational Resources Information Center

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  14. Compressive mechanical characterization of non-human primate spinal cord white matter.

    PubMed

    Jannesar, Shervin; Allen, Mark; Mills, Sarah; Gibbons, Anne; Bresnahan, Jacqueline C; Salegio, Ernesto A; Sparrey, Carolyn J

    2018-05-02

    The goal of developing computational models of spinal cord injury (SCI) is to better understand the human injury condition. However, finite element models of human SCI have used rodent spinal cord tissue properties due to a lack of experimental data. Central nervous system tissues in non human primates (NHP) closely resemble that of humans and therefore, it is expected that material constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI models. Human SCI most often results from compressive loading and spinal cord white matter properties affect FE predicted patterns of injury; therefore, the objectives of this study were to characterize the unconfined compressive response of NHP spinal cord white matter and present an experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples (3 mm in diameter) were taken from both lateral columns of the spinal cord and were divided into four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem <1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and showed substantial stress relaxation confirming the viscoelastic behavior of the material. An Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element derived material constitutive model of this study will increase the fidelity of SCI computational models and provide important insights for transferring pre-clinical findings to clinical treatments. Spinal cord injury (SCI) finite element (FE) models provide an important tool to bridge the gap between animal studies and human injury, assess injury prevention technologies (e.g. helmets, seatbelts), and provide insight into the mechanisms of injury. Although, FE model outcomes depend on the assumed material constitutive model, there is limited experimental data for fresh spinal cords and all was obtained from rodent, porcine or bovine tissues. Central nervous system tissues in non human primates (NHP) more closely resemble humans. This study characterizes fresh NHP spinal cord material properties at high strains rates and large deformations typical of SCI for the first time. A constitutive model was defined that can be readily implemented in finite strain FE analysis of SCI. Copyright © 2018. Published by Elsevier Ltd.

  15. Measuring Fatigue in Persons with Spinal Cord Injury

    PubMed Central

    Anton, Hubert A.; Miller, William C.; Townson, Andrea F.

    2013-01-01

    Objective To evaluate the psychometric properties of the Fatigue Severity Scale (FSS) in persons with spinal cord injury (SCI). Design A two week methodological study was conducted to assess the internal consistency, reliability and the construct validity of the FSS. Setting A tertiary spinal cord rehabilitation facility. Participants 48 community living individuals at least one year post SCI with ASIA A or B SCI and no medical conditions causing fatigue. Main Outcome Measures The ASIA Impairment Scale; the FSS; a Visual Analogue Scale for Fatigue (VAS-F), the SF-36 vitality scale, and the Centre for Epidemiological Studies Depression – Scale (CES-D) Results Our sample was predominantly male (n=31, 65%) with tetraplegia (n=26, 54%) and ASIA A injuries (n=30, 63%). The mean FSS score at baseline was 4.4 (SD=1.4) with 54% (N=26) scoring greater than 4. The internal consistency of the FSS was Cronbach’s alpha = 0.89. Two-week test-retest reliability was ICC=0.84 (95% CI 0.74 – 0.90). The magnitude of the relationship was as hypothesized for the VAS-F(r=.67) and CES-D (r=.58) and lower than hypothesized for the vitality subscore (r=−.48) of the SF-36. Conclusions The FSS has acceptable reliability with regard to internal consistency, test-retest reliability, and validity in persons with motor complete SCI. PMID:18295634

  16. [Effect of local hypothermia on H- and M-responses after spinal cord contusion in dogs].

    PubMed

    Iafarova, G G; Tumakaev, R F; Khazieva, A R; Baltina, T V

    2014-01-01

    In this study we investigated a motor-neuronal functional state based on H- and M-responses from m. quadratus plantae in dogs before and after experimental spinal cord contusion with and without following local intraoperative hypothermia. H- and M-responses from m. quadratus plantae were recorded during stimulation of the tibial nerve and results were compared between the groups. Our results demonstrate that local hypothermia applied after spinal cord contusion reduces amplitude of both M- and H-responses and also H(max)/M(max) ratio that may indicate depression of motorneurons excitability. After spinal cord contusion without following hypothermia the excitability of the spinal motorneurons during post-traumatic period, in opposite, was significantly increased. These results support a conclusion that intraoperative hypothermia after spinal cord contusion can delay development of functional excitability of the motoneurons and protect from further changes in H- and M-responses.

  17. Magnetic resonance diffusion tensor imaging of cervical spinal cord and lumbosacral enlargement in patients with cervical spondylotic myelopathy.

    PubMed

    Chen, Xueming; Kong, Chao; Feng, Shiqing; Guan, Hua; Yu, Zhenshan; Cui, Libin; Wang, Yanhui

    2016-06-01

    To identify the correlations of diffusion tensor imaging (DTI) indices between the cervical spinal cord and lumbosacral enlargement in healthy volunteers and patients with cervical spondylotic myelopathy (CSM). DTI was performed at the cervical spinal cord and lumbosacral enlargement in 10 CSM patients and 10 volunteers at 1.5T. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of were measured and compared between CSM patients and volunteers. DTI indices of different cervical segments in volunteers were compared. DTI indices of the cervical spinal cord were correlated with those of the lumbosacral enlargement. In healthy subjects, DTI indices of different cervical cord sections showed no significant difference (ADC: F = 0.62; P = 0.65; FA: F = 1.228; P = 0.312); there was no correlation between the DTI indices of the cervical spinal cord and those of the lumbosacral enlargement (ADC: r = 0.442, P = 0.201; FA: r = -0.054, P = 0.881). In the CSM patients, the ADC value significantly increased, while the FA value significantly decreased in the cervical spinal cord (ADC: P = 0.002; FA: P < 0.001) and lumbosacral enlargement (ADC: P = 0.003; FA: P < 0.001) compared with the healthy group. Both DTI indices showed no correlation between the cervical spinal cord and those of the lumbosacral enlargement in the CSM group (ADC: r = -0.052, P = 0.887; FA: r = 0.129, P = 0.722). The ADC value of the cervical spinal cord and lumbosacral enlargement in CSM patients showed significant increase compared with healthy volunteers, while the FA value significantly decreased. Both DTI indices of the cervical spinal cord had no linear correlation with those of the lumbosacral enlargement. J. Magn. Reson. Imaging 2016;43:1484-1491. © 2015 Wiley Periodicals, Inc.

  18. Nonlinear optical techniques for imaging and manipulating the mouse central nervous system

    NASA Astrophysics Data System (ADS)

    Farrar, Matthew John

    The spinal cord of vertebrates serves as the conduit for somatosensory information and motor control, as well as being the locus of neural circuits that govern fast reflexes and patterned behaviors, such as walking in mammals or swimming in fish. Consequently, pathologies of the spinal cord -such as spinal cord injury (SCI)- lead to loss of motor control and sensory perception, with accompanying decline in life expectancy and quality of life. Despite the devastating effects of these diseases, few therapies exist to substantially ameliorate patient outcome. In part, studies of spinal cord pathology have been limited by the inability to perform in vivo imaging at the level of cellular processes. The focus of this thesis is to present the underlying theory for and demonstration of novel multi-photon microscopy (MPM) and optical manipulation techniques as they apply to studies the mouse central nervous system (CNS), with an emphasis on the spinal cord. The scientific findings which have resulted from the implementation of these techniques are also presented. In particular, we have demonstrated that third harmonic generation is a dye-free method of imaging CNS myelin, a fundamental constituent of the spinal cord that is difficult to label using exogenous dyes and/or transgenic constructs. Since gaining optical access to the spinal cord is a prerequisite for spinal cord imaging, we review our development of a novel spinal cord imaging chamber and surgical procedure which allowed us to image for multiple weeks following implantation without the need for repeated surgeries. We also have used MPM to characterize spinal venous blood flow before and after point occlusions. We review a novel nonlinear microscopy technique that may serve to show optical interfaces in three dimensions inside scattering tissue. Finally, we discuss a model and show results of optoporation, a means of transfecting cells with genetic constructs. Brief reviews of MPM and SCI are also presented.

  19. "Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury".

    PubMed

    Paula, Alecsandra Araujo; Nicolau, Renata Amadei; Lima, Mario de Oliveira; Salgado, Miguel Angel Castillo; Cogo, José Carlos

    2014-11-01

    Scientific advances have been made to optimize the healing process in spinal cord injury. Studies have been developed to obtain effective treatments in controlling the secondary injury that occurs after spinal cord injury, which substantially changes the prognosis. Low-intensity laser therapy (LILT) has been applied in neuroscience due to its anti-inflammatory effects on biological tissue in the repairing process. Few studies have been made associating LILT to the spinal cord injury. The objective of this study was to investigate the effect of the LILT (GaAlAs laser-780 nm) on the locomotor functional recovery, histomorphometric, and histopathological changes of the spinal cord after moderate traumatic injury in rats (spinal cord injury at T9 and T10). Thirty-one adult Wistar rats were used, which were divided into seven groups: control without surgery (n = 3), control surgery (n = 3), laser 6 h after surgery (n = 5), laser 48 h after surgery (n = 5), medullar lesion (n = 5) without phototherapy, medullar lesion + laser 6 h after surgery (n = 5), and medullar lesion + laser 48 h after surgery (n = 5). The assessment of the motor function was performed using Basso, Beattie, and Bresnahan (BBB) scale and adapted Sciatic Functional Index (aSFI). The assessment of urinary dysfunction was clinically performed. After 21 days postoperative, the animals were euthanized for histological and histomorphometric analysis of the spinal cord. The results showed faster motor evolution in rats with spinal contusion treated with LILT, maintenance of the effectiveness of the urinary system, and preservation of nerve tissue in the lesion area, with a notorious inflammation control and increased number of nerve cells and connections. In conclusion, positive effects on spinal cord recovery after moderate traumatic spinal cord injury were shown after LILT.

  20. Spinal Meninges and Their Role in Spinal Cord Injury: A Neuroanatomical Review.

    PubMed

    Grassner, Lukas; Grillhösl, Andreas; Griessenauer, Christoph J; Thomé, Claudius; Bühren, Volker; Strowitzki, Martin; Winkler, Peter A

    2018-02-01

    Current recommendations support early surgical decompression and blood pressure augmentation after traumatic spinal cord injury (SCI). Elevated intraspinal pressure (ISP), however, has probably been underestimated in the pathophysiology of SCI. Recent studies provide some evidence that ISP measurements and durotomy may be beneficial for individuals suffering from SCI. Compression of the spinal cord against the meninges in SCI patients causes a "compartment-like" syndrome. In such cases, intentional durotomy with augmentative duroplasty to reduce ISP and improve spinal cord perfusion pressure (SCPP) may be indicated. Prior to performing these procedures routinely, profound knowledge of the spinal meninges is essential. Here, we provide an in-depth review of relevant literature along with neuroanatomical illustrations and imaging correlates.

  1. The pathology of lumbosacral lipomas: macroscopic and microscopic disparity have implications for embryogenesis and mode of clinical deterioration.

    PubMed

    Jones, Victoria; Wykes, Victoria; Cohen, Nicki; Thompson, Dominic; Jacques, Tom S

    2018-06-01

    Lumbosacral lipomas (LSL) are congenital disorders of the terminal spinal cord region that have the potential to cause significant spinal cord dysfunction in children. They are of unknown embryogenesis with variable clinical presentation and natural history. It is unclear whether the spinal cord dysfunction reflects a primary developmental dysplasia or whether it occurs secondarily to mechanical traction (spinal cord tethering) with growth. While different anatomical subtypes are recognised and classified according to radiological criteria, these subtypes correlate poorly with clinical prognosis. We have undertaken an analysis of surgical specimens in order to describe the spectrum of histological changes that occur and have correlated the histology with the anatomical type of LSL to determine if there are distinct histological subtypes. The histopathology was reviewed of 64 patients who had undergone surgical resection of LSL. The presence of additional tissues and cell types were recorded. LSLs were classified from pre-operative magnetic resonance imaging (MRI) scans according to Chapman classification. Ninety-five per cent of the specimens consisted predominantly of mature adipocytes with all containing thickened bands of connective tissue and peripheral nerve fibres, 91% of samples contained ectatic blood vessels with thickened walls, while 22% contained central nervous system (CNS) glial tissue. Additional tissue was identified of both mesodermal and neuroectodermal origin. Our analysis highlights the heterogeneity of tissue types within all samples, not reflected in the nomenclature. The diversity of tissue types, consistent across all subtypes, challenges currently held notions regarding the embryogenesis of LSLs and the assumption that clinical deterioration is due simply to tethering. © 2018 The Authors. Histopathology Published by John Wiley & Sons Ltd.

  2. Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)—Patient Version

    Cancer.gov

    Brain and spinal cord tumors may be benign (not cancer) or malignant (cancer). Both types cause signs or symptoms and need treatment. Get information about the many kinds of brain and spinal cord tumors, signs and symptoms, tests to diagnose, and treatment in this expert-reviewed summary.

  3. 34 CFR 359.10 - What types of projects are authorized under this program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rehabilitation services to individuals with spinal cord injuries; and (b) Conduct spinal cord research, including clinical research and the analysis of standardized data in collaboration with other related projects... REHABILITATION RESEARCH: SPECIAL PROJECTS AND DEMONSTRATIONS FOR SPINAL CORD INJURIES What Kinds of Activities...

  4. Life satisfaction in patients with and without spinal cord ischemia after advanced endovascular therapy for extensive aortic disease at mid-term follow-up.

    PubMed

    Mehmedagic, Irma; Santén, Stefan; Jörgensen, Sophie; Acosta, Stefan

    2016-11-11

    Advanced endovascular aortic repair can be used to treat patients with extensive and complex aortic disease who are at risk of spinal cord ischaemia. The aim of this study was to compare whether life satisfaction differs between patients with and without spinal cord ischaemia at mid-term follow-up. Nested case-control study. Among patients undergoing advanced endovascular aortic repair between 2009 and 2012, 18 patients with spinal cord ischaemia and 33 without were interviewed at home. The Life Satisfaction Questionnaire (LiSat-11) and the Satisfaction With Life Scale (SWLS) were used. LiSat-11 found that patients with spinal cord ischaemia were more dissatisfied with their activities of daily living than were patients without spinal cord ischaemia (p=0.012). Both groups had similar, very low, scores in the sexual life domain; median 2.0 (interquartile range (IQR) 1.5-3.0) and 3.0 (IQR 2.0-4.0), respectively. There was no difference in SWLS between the groups. This study cohort of patients who underwent advanced endovascular aortic repair was rather homo-genous in their rating of life satisfaction and there was little difference between mid-term survivors who had spinal cord ischaemia and those who did not.

  5. Serum leptin, bone mineral density and the healing of long bone fractures in men with spinal cord injury.

    PubMed

    Wang, Lei; Liu, Linjuan; Pan, Zhanpeng; Zeng, Yanjun

    2015-11-16

    Previously reported fracture rates in patients with spinal cord injury range from 1% to 20%. However, the exact role of spinal cord injury in bone metabolism has not yet been clarified. In order to investigate the effects of serum leptin and bone mineral density on the healing of long bone fractures in men with spinal cord injury, 15 male SCI patients and 15 matched controls were involved in our study. The outcome indicated that at 4 and 8 weeks after bone fracture, callus production in patients with spinal cord injury was lower than that in controls. Besides, bone mineral density was significantly reduced at 2, 4 and 8 weeks. In addition, it was found that at each time point, patients with spinal cord injury had significantly higher serum leptin levels than controls and no association was found between serum leptin level and bone mineral density of lumbar vertebrae. Moreover, bone mineral density was positively correlated with bone formation in both of the groups. These findings suggest that in early phases i.e. week 4 and 8, fracture healing was impaired in patients with spinal cord injury and that various factors participated in the complicated healing process, such as hormonal and mechanical factors.

  6. Technique of spinal cord compression induced by inflation of epidural balloon catheter in rabbits (Oryctologus cuniculus): efficient and easy to use model.

    PubMed

    Fonseca, Antonio F B DA; Scheffer, Jussara P; Coelho, Barbara P; Aiello, Graciane; Guimarães, Arthur G; Gama, Carlos R B; Vescovini, Victor; Cabral, Paula G A; Oliveira, André L A

    2016-09-01

    The most common cause of spinal cord injury are high impact trauma, which often result in some motor impairment, sensory or autonomic a greater or lesser extent in the distal areas the level of trauma. In terms of survival and complications due to sequelae, veterinary patients have a poor prognosis unfavorable. Therefore justified the study of experimental models of spinal cord injury production that could provide more support to research potential treatments for spinal cord injuries in medicine and veterinary medicine. Preclinical studies of acute spinal cord injury require an experimental animal model easily reproducible. The most common experimental animal model is the rat, and several techniques for producing a spinal cord injury. The objective of this study was to describe and evaluate the effectiveness of acute spinal cord injury production technique through inflation of Fogarty(r) catheter using rabbits as an experimental model because it is a species that has fewer conclusive publications and contemplating. The main requirements of a model as low cost, handling convenience, reproducibility and uniformity. The technique was adequate for performing preclinical studies in neuro-traumatology area, effectively leading to degeneration and necrosis of the nervous tissue fostering the emergence of acute paraplegia.

  7. Brachial plexus injury mimicking a spinal-cord injury

    PubMed Central

    Macyszyn, Luke J.; Gonzalez-Giraldo, Ernesto; Aversano, Michael; Heuer, Gregory G.; Zager, Eric L.; Schuster, James M.

    2010-01-01

    Objective: High-energy impact to the head, neck, and shoulder can result in cervical spine as well as brachial plexus injuries. Because cervical spine injuries are more common, this tends to be the initial focus for management. We present a case in which the initial magnetic resonance imaging (MRI) was somewhat misleading and a detailed neurological exam lead to the correct diagnosis. Clinical presentation: A 19-year-old man presented to the hospital following a shoulder injury during football practice. The patient immediately complained of significant pain in his neck, shoulder, and right arm and the inability to move his right arm. He was stabilized in the field for a presumed cervical-spine injury and transported to the emergency department. Intervention: Initial radiographic assessment (C-spine CT, right shoulder x-ray) showed no bony abnormality. MRI of the cervical-spine showed T2 signal change and cord swelling thought to be consistent with a cord contusion. With adequate pain control, a detailed neurological examination was possible and was consistent with an upper brachial plexus avulsion injury that was confirmed by CT myelogram. The patient failed to make significant neurological recovery and he underwent spinal accessory nerve grafting to the suprascapular nerve to restore shoulder abduction and external rotation, while the phrenic nerve was grafted to the musculocutaneous nerve to restore elbow flexion. Conclusion: Cervical spinal-cord injuries and brachial plexus injuries can occur by the same high energy mechanisms and can occur simultaneously. As in this case, MRI findings can be misleading and a detailed physical examination is the key to diagnosis. However, this can be difficult in polytrauma patients with upper extremity injuries, head injuries or concomitant spinal-cord injury. Finally, prompt diagnosis and early surgical renerveration have been associated with better long-term recovery with certain types of injury. PMID:22956928

  8. Transverse Myelitis

    MedlinePlus

    ... cord injury to study strategies for replacement or regeneration of spinal cord nerve cells. The knowledge gained from such research should lead ... cord injury to study strategies for replacement or regeneration of spinal cord nerve cells. The knowledge gained from such research should lead ...

  9. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    PubMed

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Investigation into an outbreak of encephalomyelitis caused by a neuroinvasive porcine sapelovirus in the United Kingdom.

    PubMed

    Schock, Alex; Gurrala, Rajesh; Fuller, Harriet; Foyle, Leo; Dauber, Malte; Martelli, Francesca; Scholes, Sandra; Roberts, Lisa; Steinbach, Falko; Dastjerdi, Akbar

    2014-08-27

    An outbreak of neurological disease in grower pigs characterised by ataxia and paraparesis was investigated in this study. The outbreak occurred 3-4 weeks post weaning in grower pigs which displayed signs of spinal cord damage progressing to recumbency. Pathology in the affected spinal cords and to a lesser extent in the brainstem was characterised by pronounced inflammation and neuronophagia in the grey matter. Molecular investigation using a pan-virus microarray identified a virus related to porcine sapelovirus (PSV) in the spinal cord of the two affected pigs examined. Analysis of 802 nucleotides of the virus polymerase gene showed the highest homology with those of viruses in the genus Sapelovirus of Picornaviridae. This PSV, strain G5, shared 91-93%, 67-69% and 63% nucleotide homology with porcine, simian and avian sapeloviruses, respectively. The nucleotide homology to other members of the Picornaviridae ranged from 41% to 62%. Furthermore, viral antigen was detected and co-localised in the spinal cord lesions of affected animals by an antibody known to react with PSV. In conclusion, clinical and laboratory observations of the diseased pigs in this outbreak are consistent with PSV-G5 being the causative agent. To the best of the authors' knowledge, this is the first unequivocal report of polioencephalomyelitis in pigs by a neuroinvasive PSV in the United Kingdom. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. Symptoms of major depression in people with spinal cord injury: implications for screening.

    PubMed

    Bombardier, Charles H; Richards, J Scott; Krause, James S; Tulsky, David; Tate, Denise G

    2004-11-01

    To provide psychometric data on a self-report measure of major depressive disorder (MDD) and to determine whether somatic symptoms are nonspecific or count toward the diagnosis. Survey. Data from the National Spinal Cord Injury Statistical Center representing 16 Model Spinal Cord Injury Systems. Eight hundred forty-nine people with spinal cord injury who completed a standardized follow-up evaluation 1 year after injury. Not applicable. The Patient Health Questionnaire-9 (PHQ-9), a measure of MDD as defined by the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition . We computed descriptive statistics on rates of depressive symptoms and probable MDD, evaluated internal consistency and construct validity, and analyzed the accuracy of individual items as predictors of MDD. Exactly 11.4% of participants met criteria for probable MDD. Probable MDD was associated with poorer subjective health, lower satisfaction with life, and more difficulty in daily role functioning. Probable MDD was not related to most demographic or injury-related variables. Both somatic and psychologic symptoms predicted probable MDD. The PHQ-9 has promise as a tool with which to identify probable MDD in people with SCI. Somatic symptoms should be counted toward the diagnosis and should alert health care providers to the likelihood of MDD. More efficient screening is only one of the quality improvement efforts needed to enhance management of MDD.

  12. The effect of extracorporeal shock wave lithotripsy on the rat spinal cord.

    PubMed

    Karatas, A; Dosoglu, M; Zeyrek, T; Kayikci, A; Erol, A; Can, B

    2008-09-01

    Experimental study. To determine the effects of extracorporeal shock wave lithotripsy (ESWL) on the rat spinal cord. Animals were randomly divided into three groups. Groups 1 and 2 consisted of five rats each that underwent ESWL (2000 impulses at 15 kV and 2000 impulses at 18 kV, respectively) and group 3 contained five control rats (no shock wave treatment). ESWL-treated and control rats were compared with regard to light and electron microscopic findings of the adjacent spinal cord. Gross neurological outcomes were normal in all groups. Light microscopic examination of group 1 showed extensive extravasation of red blood cells over all the interstitial spaces. Group 2 also had haemorrhagic areas and an irregular organization of axons in the white matter. Transmission electron microscopic examination of group 1 indicated extravasated red blood cells through the endothelium and swollen axoplasm, degenerated mitochondria, destruction of myelin sheaths and a slight increase in the number of lysosomes. Extravasated red blood cells were also seen in group 2. The axoplasmic mitochondria were enlarged, but no sign of mitochondrial degeneration was observed. Lamellar degeneration of myelin sheaths and abundant lysosomes were more predominant in group 2 than in group 1. Extracorporeal shock wave lithotripsy caused not only haemorrhage but also damage to neuronal structures except the nucleus. Our findings showed that higher-energy ESWL caused more myelin degeneration in the spinal cord.

  13. Spinal cord stimulation for treatment of meralgia paresthetica.

    PubMed

    Barna, Steven A; Hu, M Melvin; Buxo, Carlos; Trella, Jason; Cosgrove, G Rees

    2005-07-01

    Meralgia paresthetica is a clinical syndrome of pain, dysesthesia or both, in the anterolateral thigh. It is associated with an entrapment mononeuropathy of the lateral femoral cutaneous nerve. Diagnosis of meralgia paresthetica is typically made clinically and is based on the characteristic location of pain or dysesthesia, sensory abnormality on exam, and absence of any other neurological abnormality in the leg. The majority of patients with meralgia paresthetica respond well to conservative treatment. To present a case of intractable meralgia paresthetica in which conservative treatment options failed but which was successfully treated with a spinal cord stimulator. A 44-year-old woman presented to the pain clinic with a one-year history of bilateral anterolateral thigh pain. History, physical exam, and diagnostic work-up were consistent with meralgia paresthetica. Multiple medications, physical therapy, and chiropractic therapy were not successful for this patient. In addition, local anesthetic/steroid injection of the lateral femoral cutaneous nerve provided only short-term relief. Ultimately, a spinal cord stimulator was implanted after a successful temporary percutaneous trial. Two months after the implantation, she continued to have 100% pain relief, worked full-time, was physically active, and no longer required any pain medication including opioids. An implanted spinal cord stimulator may be an ideal treatment for intractable meralgia paresthetica after conservative treatments have failed because it is not destructive and can always be explanted without significant permanent adverse effects.

  14. Identification of ghost artifact using texture analysis in pediatric spinal cord diffusion tensor images.

    PubMed

    Alizadeh, Mahdi; Conklin, Chris J; Middleton, Devon M; Shah, Pallav; Saksena, Sona; Krisa, Laura; Finsterbusch, Jürgen; Faro, Scott H; Mulcahey, M J; Mohamed, Feroze B

    2018-04-01

    Ghost artifacts are a major contributor to degradation of spinal cord diffusion tensor images. A multi-stage post-processing pipeline was designed, implemented and validated to automatically remove ghost artifacts arising from reduced field of view diffusion tensor imaging (DTI) of the pediatric spinal cord. A total of 12 pediatric subjects including 7 healthy subjects (mean age=11.34years) with no evidence of spinal cord injury or pathology and 5 patients (mean age=10.96years) with cervical spinal cord injury were studied. Ghost/true cords, labeled as region of interests (ROIs), in non-diffusion weighted b0 images were segmented automatically using mathematical morphological processing. Initially, 21 texture features were extracted from each segmented ROI including 5 first-order features based on the histogram of the image (mean, variance, skewness, kurtosis and entropy) and 16s-order feature vector elements, incorporating four statistical measures (contrast, correlation, homogeneity and energy) calculated from co-occurrence matrices in directions of 0°, 45°, 90° and 135°. Next, ten features with a high value of mutual information (MI) relative to the pre-defined target class and within the features were selected as final features which were input to a trained classifier (adaptive neuro-fuzzy interface system) to separate the true cord from the ghost cord. The implemented pipeline was successfully able to separate the ghost artifacts from true cord structures. The results obtained from the classifier showed a sensitivity of 91%, specificity of 79%, and accuracy of 84% in separating the true cord from ghost artifacts. The results show that the proposed method is promising for the automatic detection of ghost cords present in DTI images of the spinal cord. This step is crucial towards development of accurate, automatic DTI spinal cord post processing pipelines. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multimodal intraoperative monitoring: an overview and proposal of methodology based on 1,017 cases

    PubMed Central

    Eggspuehler, Andreas; Muller, Alfred; Dvorak, Jiri

    2007-01-01

    To describe different currently available tests of multimodal intraoperative monitoring (MIOM) used in spine and spinal cord surgery indicating the technical parameters, application and interpretation as an easy understanding systematic overview to help implementation of MIOM and improve communication between neurophysiologists and spine surgeons. This article aims to give an overview and proposal of the different MIOM-techniques as used daily in spine and spinal cord surgery at our institution. Intensive research in neurophysiology over the past decades has lead to a profound understanding of the spinal cord, nerve functions and their intraoperative functional evaluation in anaesthetised patients. At present, spine surgeons and neurophysiologist are faced with 1,883 publications in PubMed on spinal cord monitoring. The value and the limitations of single monitoring methods are well documented. The diagnostic power of the multimodal approach in a larger study population in spine surgery, as measured with sensitivity and specificity, is dealt with elsewhere in this supplement (Sutter et al. in Eur Spine J Suppl, 2007). This paper aims to give a detailed description of the different modalities used in this study. Description of monitoring techniques of the descending and ascending spinal cord and nerve root pathways by motor evoked potentials of the spinal cord and muscles elicited after transcranial electrical motor cortex, spinal cord, cauda equina and nerve root stimulation, continuous EMG, sensory cortical and spinal evoked potentials, as well as direct spinal cord evoked potentials applied on 1,017 patients. The method of MIOM, continuously adapted according to the site, stage of surgery and potential danger to nerve tissues, proved to be applicable with online results, reliable and furthermore teachable. PMID:17653777

  16. Endogenous stem cell proliferation induced by intravenous hedgehog agonist administration after contusion in the adult rat spinal cord.

    PubMed

    Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H

    2009-02-01

    Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

  17. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study

    PubMed Central

    Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2014-01-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are co-activated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. PMID:21401670

  18. Involvement of peripheral and spinal tumor necrosis factor α in spinal cord hyperexcitability during knee joint inflammation in rats.

    PubMed

    König, Christian; Zharsky, Maxim; Möller, Christian; Schaible, Hans-Georg; Ebersberger, Andrea

    2014-03-01

    Tumor necrosis factor α (TNFα) is produced not only in peripheral tissues, but also in the spinal cord. The purpose of this study was to address the potential of peripheral and spinal TNFα to induce and maintain spinal hyperexcitability, which is a hallmark of pain states in the joints during rheumatoid arthritis and osteoarthritis. In vivo recordings of the responses of spinal cord neurons to nociceptive knee input under normal conditions and in the presence of experimental knee joint inflammation were obtained in anesthetized rats. TNFα, etanercept, or antibodies to TNF receptors were applied to either the knee joint or the spinal cord surface. Injection of TNFα into the knee joint cavity increased the responses of spinal cord neurons to mechanical joint stimulation, and injection of etanercept into the knee joint reduced the inflammation-evoked spinal activity. These spinal effects closely mirrored the induction and reduction of peripheral sensitization. Responses to joint stimulation were also enhanced by spinal application of TNFα, and spinal application of either etanercept or anti-TNF receptor type I significantly attenuated the generation of inflammation-evoked spinal hyperexcitability, which is characterized by widespread pain sensitization beyond the inflamed joint. Spinally applied etanercept did not reduce established hyperexcitability in the acute kaolin/carrageenan model. In antigen-induced arthritis, etanercept decreased spinal responses on day 1, but not on day 3. While peripheral TNFα increases spinal responses to joint stimulation, spinal TNFα supports the generation of the full pattern of spinal hyperexcitability. However, established spinal hyperexcitability may be maintained by downstream mechanisms that are independent of spinal TNFα. Copyright © 2014 by the American College of Rheumatology.

  19. Focal thoracolumbar spinal cord lymphosarcoma in a ferret (Mustela putorius furo)

    PubMed Central

    Ingrao, Joelle C.; Eshar, David; Vince, Andrew; Lee-Chow, Bridget; Nykamp, Stephanie; DeLay, Josepha; Smith, Dale

    2014-01-01

    A 6-year-old, castrated male domestic ferret (Mustela putorius furo) was euthanized following progressive hind limb paresis and atonia of the bladder of 1-year duration. Neurological evaluation localized the lesion to the thoracolumbar spinal region, and magnetic resonance imaging showed a focal intramedullary spinal cord lesion. Histopathology revealed an extensive, unencapsulated, poorly demarcated mass within the thoracolumbar spinal cord, diagnosed as lymphosarcoma. PMID:24982519

  20. The Prevalence and Phenotype of Activated Microglia/Macrophages within the Spinal Cord of the Hyperostotic Mouse (twy/twy) Changes in Response to Chronic Progressive Spinal Cord Compression: Implications for Human Cervical Compressive Myelopathy

    PubMed Central

    Hirai, Takayuki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Takeura, Naoto; Watanabe, Shuji; Sugita, Daisuke; Yoshida, Ai; Johnson, William E. B.; Baba, Hisatoshi

    2013-01-01

    Background Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease. Methods Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass. Results The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) −2 progressively increased. Conclusions Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. PMID:23717624

  1. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity

    PubMed Central

    D'Amico, Jessica M.; Condliffe, Elizabeth G.; Martins, Karen J. B.; Bennett, David J.; Gorassini, Monica A.

    2014-01-01

    The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI. PMID:24860447

  2. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  3. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier.

    PubMed

    Eve, David J; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V; Garbuzova-Davis, Svitlana

    2018-02-13

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 + (hBM34 + ) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34 + cells (5 × 10 4 , 5 × 10 5 or 1 × 10 6 ) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls' Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34 + cells. The study results provide translational outcomes supporting transplantation of hBM34 + cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients.

  4. The temporal profile of the reaction of microglia, astrocytes, and macrophages in the delayed onset paraplegia after transient spinal cord ischemia in rabbits.

    PubMed

    Matsumoto, Satoshi; Matsumoto, Mishiya; Yamashita, Atsuo; Ohtake, Kazunobu; Ishida, Kazuyoshi; Morimoto, Yasuhiro; Sakabe, Takefumi

    2003-06-01

    In the present study, we sought to elucidate the temporal profile of the reaction of microglia, astrocytes, and macrophages in the progression of delayed onset motor dysfunction after spinal cord ischemia (15 min) in rabbits. At 2, 4, 8, 12, 24, and 48 h after reperfusion (9 animals in each), hind limb motor function was assessed, and the lumbar spinal cord was histologically examined. Delayed motor dysfunction was observed in most animals at 48 h after ischemia, which could be predicted by a poor recovery of segmental spinal cord evoked potentials at 15 min of reperfusion. In the gray matter of the lumbar spinal cord, both microglia and astrocytes were activated early (2 h) after reperfusion. Microglia were diffusely activated and engulfed motor neurons irrespective of the recovery of segmental spinal cord evoked potentials. In contrast, early astrocytic activation was confined to the area where neurons started to show degeneration. Macrophages were first detected at 8 h after reperfusion and mainly surrounded the infarction area later. Although the precise roles of the activation of microglia, astrocytes, and macrophages are to be further determined, the results indicate that understanding functional changes of astrocytes may be important in the mechanism of delayed onset motor dysfunction including paraplegia. Microglia and macrophages play a role in removing tissue debris after transient spinal cord ischemia. Disturbance of astrocytic defense mechanism, breakdown of the blood-spinal cord barrier, or both seemed to be involved in the development of delayed motor dysfunction.

  5. "My body was my temple": a narrative revealing body image experiences following treatment of a spinal cord injury.

    PubMed

    Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S

    2017-09-01

    This narrative explores the lived experience of a young woman, Rebecca, and her transitioned body image after sustaining and being treated for a spinal cord injury. Data were collected from a single semi-structured in-depth interview. Rebecca disclosed her transitioned body image experiences after sustaining a spinal cord injury and being treated by medical staff immediately following her injury. Before her injury, she described a holistic body experience and named this experience her "temple". During intensive care in the hospital, she explained her body was treated as an object. The disconnected treatment of her body led to a loss of the private self, as she described her sacred body being stripped away - her "temple" lost and in ruins. Body image may be an overlooked component of health following a spinal cord injury. This narrative emphasizes the importance of unveiling body image experiences after the treatment of a spinal cord injury to medical professionals. Lessons of the importance of considering the transitioned body experiences after a spinal cord injury may help prevent body-related depression and other subsequent health impacts. Recommendations for best practice are provided. Implications for Rehabilitation    Spinal Cord Injury   • A spinal cord injury may drastically change a person's body image, thereby significantly impacting psychological health   • More effective screening for body image within the medical/rehabilitation context is needed to help practitioners recognize distress   • Practitioners should be prepared to refer clients to distress hotlines they may need once released from treatment.

  6. Trident sign trumps Aquaporin-4-IgG ELISA in diagnostic value in a case of longitudinally extensive transverse myelitis.

    PubMed

    Jolliffe, Evan A; Keegan, B Mark; Flanagan, Eoin P

    2018-04-21

    Longitudinally-extensive T2-hyperintense spinal cord lesions (≥3 vertebral segments) are associated with neuromyelitis optical spectrum disorder but occur with other disorders including spinal cord sarcoidosis. When linear dorsal subpial enhancement is accompanied by central cord/canal enhancement the axial post-gadolinium sequences may reveal a "trident" pattern that has previously been shown to be strongly suggestive of spinal cord sarcoidosis. We report a case in which the patient was initially diagnosed with neuromyelitis optical spectrum disorder, but where the "trident" sign ultimately led to the correct diagnosis of spinal cord sarcoidosis. Copyright © 2018. Published by Elsevier B.V.

  7. Attachment Style, Social Support, and Coping as Psychosocial Correlates of Happiness in Persons with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Wilson, Lisa; Catalano, Denise; Sung, Connie; Phillips, Brian; Chou, Chih-Chin; Chan, Jacob Yui Chung; Chan, Fong

    2013-01-01

    Objective: To examine the roles of attachment, social support, and coping as psychosocial correlates in predicting happiness in people with spinal cord injuries. Design: Quantitative descriptive research design using multiple regression and correlation techniques. Participants: 274 individuals with spinal cord injuries. Outcome Measures: Happiness…

  8. [Rehabilitation programme using neuromuscular electrical stimulation in spinal cord: epidemiological aspects].

    PubMed

    Bittar, Cíntia Kelly; Cliquet, Alberto

    2011-01-01

    To assess epidemiological profile of spinal cord injury outpatients which have been participating of rehabilitation programme using neuromuscular electrical stimulation, in order to implement campaigns for preventing spinal cord trauma. From January to April 2009, 30 patients at the spinal cord injury ambulatory clinic at Hospital das Clínicas of Unicamp were analysed by some epidemiologic characteristics: age, profession, type and level of their paralysis, origin and time of injury. All patients had complete spinal cord injury (ASIA); 24 patients were men and six were women, the mean age was 34.6 years (range, 10-64 years), two patients were children. Twenty-one patients were paraplegic and nine were tetraplegic; causes included automobile accident (12), run over (three), diving (four), bicycle accident (one), motorcycle accident (three), gunshot wound (six), thoracic tuberculosis (one), and lumbar surgery (one). The mean lesion time was 8.2 years (range, 1-15 years). Two patients were retired. The results suggested that spinal cord injury affects mainly young active men. It is necessary to develop incisive actions to prevent accidents, specially directed to traffic security.

  9. 'Full dose' reirradiation of human cervical spinal cord.

    PubMed

    Ryu, S; Gorty, S; Kazee, A M; Bogart, J; Hahn, S S; Dalal, P S; Chung, C T; Sagerman, R H

    2000-02-01

    With the progress of modern multimodality cancer treatment, retreatment of late recurrences or second tumors became more commonly encountered in management of patients with cancer. Spinal cord retreatment with radiation is a common problem in this regard. Because radiation myelopathy may result in functional deficits, many oncologists are concerned about radiation-induced myelopathy when retreating tumors located within or immediately adjacent to the previous radiation portal. The treatment decision is complicated because it requires a pertinent assessment of prognostic factors with and without reirradiation, radiobiologic estimation of recovery of occult spinal cord damage from the previous treatment, as well as interactions because of multimodality treatment. Recent studies regarding reirradiation of spinal cord in animals using limb paralysis as an endpoint have shown substantial and almost complete recovery of spinal cord injury after a sufficient time after the initial radiotherapy. We report a case of "full" dose reirradiation of the entire cervical spinal cord in a patient who has not developed clinically detectable radiation-induced myelopathy on long-term follow-up of 17 years after the first radiotherapy and 5 years after the second radiotherapy.

  10. Extracellular matrix-derived hydrogels for dental stem cell delivery.

    PubMed

    Viswanath, Aiswarya; Vanacker, Julie; Germain, Loïc; Leprince, Julian G; Diogenes, Anibal; Shakesheff, Kevin M; White, Lisa J; des Rieux, Anne

    2017-01-01

    Decellularized mammalian extracellular matrices (ECM) have been widely accepted as an ideal substrate for repair and remodelling of numerous tissues in clinical and pre-clinical studies. Recent studies have demonstrated the ability of ECM scaffolds derived from site-specific homologous tissues to direct cell differentiation. The present study investigated the suitability of hydrogels derived from different source tissues: bone, spinal cord and dentine, as suitable carriers to deliver human apical papilla derived mesenchymal stem cells (SCAP) for spinal cord regeneration. Bone, spinal cord, and dentine ECM hydrogels exhibited distinct structural, mechanical, and biological characteristics. All three hydrogels supported SCAP viability and proliferation. However, only spinal cord and bone derived hydrogels promoted the expression of neural lineage markers. The specific environment of ECM scaffolds significantly affected the differentiation of SCAP to a neural lineage, with stronger responses observed with spinal cord ECM hydrogels, suggesting that site-specific tissues are more likely to facilitate optimal stem cell behavior for constructive spinal cord regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 319-328, 2017. © 2016 Wiley Periodicals, Inc.

  11. The mechanism of Naringin-enhanced remyelination after spinal cord injury

    PubMed Central

    Rong, Wei; Pan, Yong-wei; Cai, Xu; Song, Fei; Zhao, Zhe; Xiao, Song-hua; Zhang, Cheng

    2017-01-01

    Our previous study revealed that intragastric administration of naringin improved remyelination in rats with spinal cord injury and promoted the recovery of neurological function of the injured spinal cord. This study sought to reveal the mechanisms by which naringin improves oligodendrocyte precursor cell differentiation and maturation, and promotes remyelination. Spinal cord injury was induced in rats by the weight-drop method. Naringin was intragastrically administered daily (20, 40 mg/kg) for 4 weeks after spinal cord injury induction. Behavioral assessment, histopathological staining, immunofluorescence spectroscopy, ultrastructural analysis and biochemical assays were employed. Naringin treatment remarkably mitigated demyelination in the white matter, increased the quality of myelinated nerve fibers and myelin sheath thickness, promoted oligodendrocyte precursor cell differentiation by upregulating the expression of NKx2.2 and 2′3′-cyclic nucleotide 3′-phosphodiesterase, and inhibited β-catenin expression and glycogen synthase kinase-3β (GSK-3β) phosphorylation. These findings indicate that naringin treatment regulates oligodendrocyte precursor cell differentiation and promotes remyelination after spinal cord injury through the β-catenin/GSK-3β signaling pathway. PMID:28469664

  12. Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion.

    PubMed

    Liu, Zhi-Qiang; Xing, Shan-Shan; Zhang, Wei

    2013-03-01

    Ischemic/reperfusion (I/R) injury of the spinal cord is a serious complication that can result from thoracoabdominal aortic surgery. To investigate the neuroprotective effect of curcumin against I/R injury in a rabbit model. A total of 36 rabbits were randomly divided into three groups: sham, I/R, and curcumin-treated group. Rabbits were subject to 30-min aortic occlusion to induce transient spinal cord ischemia. Neurological function was observed after reperfusion and spinal cord segment (L3-L5) was collected for histopathological evaluation. Malondialdehyde (MDA) and total superoxide dismutase (SOD) activity were also assayed. Rabbits in I/R group were induced to paraplegia. While after 48-hour treatment, compared with I/R group, curcumin significantly improved neurological function, reduced cell apoptosis and MDA levels as well as increased SOD activity (P < 0.05). The results suggest that curcumin, at least in an animal model, can attenuate transient spinal cord ischemic injury potentially via reducing oxidative damage, which may provide a novel approach in the treatment of spinal cord ischemic injury.

  13. Distribution of syringomyelia along the entire spinal cord in clinically affected Cavalier King Charles Spaniels.

    PubMed

    Loderstedt, Shenja; Benigni, Livia; Chandler, Kate; Cardwell, Jacqueline M; Rusbridge, Clare; Lamb, Christopher R; Volk, Holger A

    2011-12-01

    Chiari-like malformation (CM) and syringomyelia (SM) is an important disease complex in the Cavalier King Charles Spaniel (CKCS) but data about the anatomical distribution of SM along the spinal cord are lacking in veterinary medicine. The objective of this study was to define the anatomic distribution of SM in CKCS clinically affected by CM/SM. Magnetic resonance imaging (MRI) of the brain and the entire spinal cord of 49 dogs was performed and different morphological parameters compared. Syrinx formation was present in the C1-C4 region and in other parts of the spinal cord. The maximal dorsoventral syrinx size can occur in any region of the spinal cord and the total syrinx size was positively correlated with age. Seventy-six per cent of CKCS with a cranial cervical syrinx also have a syrinx affecting more caudal spinal cord regions. MRI restricted to the cervical region may underestimate the extent of SM and the severity of the disease process in the majority of dogs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Accelerated recovery of sensorimotor function in a dog submitted to quasi-total transection of the cervical spinal cord and treated with PEG.

    PubMed

    Kim, C-Yoon; Hwang, In-Kyu; Kim, Hana; Jang, Se-Woong; Kim, Hong Seog; Lee, Won-Young

    2016-01-01

    A case report on observing the recovery of sensory-motor function after cervical spinal cord transection. Laminectomy and transection of cervical spinal cord (C5) was performed on a male beagle weighing 3.5 kg. After applying polyethylene glycol (PEG) on the severed part, reconstruction of cervical spinal cord was confirmed by the restoration of sensorimotor function. Tetraplegia was observed immediately after operation, however, the dog showed stable respiration and survival without any complication. The dog showed fast recovery after 1 week, and recovered approximately 90% of normal sensorimotor function 3 weeks after the operation, although urinary disorder was still present. All recovery stages were recorded by video camera twice a week for behavioral analysis. While current belief holds that functional recovery is impossible after a section greater than 50% at C5-6 in the canine model, this case study shows the possibility of cervical spinal cord reconstruction after near-total transection. Furthermore, this case study also confirms that PEG can truly expedite the recovery of sensorimotor function after cervical spinal cord sections in dogs.

  15. The retrograde delivery of adenovirus vector carrying the gene for brain-derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice.

    PubMed

    Uchida, Kenzo; Nakajima, Hideaki; Hirai, Takayuki; Yayama, Takafumi; Chen, Kebing; Guerrero, Alexander Rodriguez; Johnson, William Eustace; Baba, Hisatoshi

    2012-12-15

    The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of β-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.

  16. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.

    PubMed

    Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S

    2016-04-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.

  17. Fractionated radiation facilitates repair and functional motor recovery after spinal cord transection in rat.

    PubMed

    Kalderon, N; Xu, S; Koutcher, J A; Fuks, Z

    2001-06-22

    Previous studies suggest that motor recovery does not occur after spinal cord injury because reactive glia abort the natural repair processes. A permanent wound gap is left in the cord and the brain-cord circuitry consequently remains broken. Single-dose x-irradiation destroys reactive glia at the damage site in transected adult rat spinal cord. The wound then heals naturally, and a partially functional brain-cord circuitry is reconstructed. Timing is crucial; cell ablation is beneficial only within the third week after injury. Data presented here point to the possibility of translating these observations into a clinical therapy for preventing the paralysis following spinal cord injury in the human. The lesion site (at low thoracic level) in severed adult rat spinal cord was treated daily, over the third week postinjury, with protocols of fractionated radiation similar to those for treating human spinal cord tumors. This resulted, as with the single-dose protocol, in wound healing and restoration of some hindquarter motor function; in addition, the beneficial outcome was augmented. Of the restored hindlimb motor functions, weight-support and posture in stance was the only obvious one. Recovery of this motor function was partial to substantial and its incidence was 100% instead of about 50% obtained with the single-dose treatment. None of the hindlimbs, however, regained frequent stepping or any weight-bearing locomotion. These data indicate that the therapeutic outcome may be further augmented by tuning the radiation parameters within the critical time-window after injury. These data also indicate that dose-fractionation is an effective strategy and better than the single-dose treatment for targeting of reactive cells that abort the natural repair, suggesting that radiation therapy could be developed into a therapeutic procedure for repairing injured spinal cord.

  18. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs.

    PubMed

    Ryu, Hak-Hyun; Kang, Byung-Jae; Park, Sung-Su; Kim, Yongsun; Sung, Gyu-Jin; Woo, Heung-Myong; Kim, Wan Hee; Kweon, Oh-Kyeong

    2012-12-01

    Previous animal studies have shown that transplantation of mesenchymal stem cells (MSCs) into spinal cord lesions enhances axonal regeneration and promotes functional recovery. We isolated the MSCs derived from fat, bone marrow, Wharton's jelly and umbilical cord blood (UCB) positive for MSC markers and negative for hematopoietic cell markers. Their effects on the regeneration of injured canine spinal cords were compared. Spinal cord injury was induced by balloon catheter compression. Dogs with injured spinal cords were treated with only matrigel or matrigel mixed with each type of MSCs. Olby and modified Tarlov scores, immunohistochemistry, ELISA and Western blot analysis were used to evaluate the therapeutic effects. The different MSC groups showed significant improvements in locomotion at 8 weeks after transplantation (P<0.05). This recovery was accompanied by increased numbers of surviving neuron and neurofilament-positive fibers in the lesion site. Compared to the control, the lesion sizes were smaller, and fewer microglia and reactive astrocytes were found in the spinal cord epicenter of all MSC groups. Although there were no significant differences in functional recovery among the MSCs groups, UCB-derived MSCs (UCSCs) induced more nerve regeneration and anti-inflammation activity (P<0.05). Transplanted MSCs survived for 8 weeks and reduced IL-6 and COX-2 levels, which may have promoted neuronal regeneration in the spinal cord. Our data suggest that transplantation of MSCs promotes functional recovery after SCI. Furthermore, application of UCSCs led to more nerve regeneration, neuroprotection and less inflammation compared to other MSCs.

  19. Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: A 2D phase sensitive inversion recovery imaging study.

    PubMed

    Papinutto, Nico; Schlaeger, Regina; Panara, Valentina; Zhu, Alyssa H; Caverzasi, Eduardo; Stern, William A; Hauser, Stephen L; Henry, Roland G

    2015-01-01

    The source of inter-subject variability and the influence of age and gender on morphometric characteristics of the spinal cord, such as the total cross-sectional area (TCA), the gray matter (GM) and white matter (WM) areas, currently remain under investigation. Understanding the effect of covariates such as age, gender, brain volumes, and skull- and vertebra-derived metrics on cervical and thoracic spinal cord TCA and GM areas in healthy subjects would be fundamental for exploring compartment specific changes in neurological diseases affecting the spinal cord. Using Magnetic Resonance Imaging at 3T we investigated 32 healthy subjects using a 2D phase sensitive inversion recovery sequence and we measured TCA, GM and WM areas at 4 cervical and thoracic levels of the spinal cord. We assessed age and gender relationships of cord measures and explored associations between cord measures and a) brain volumes and b) skull- and vertebra-derived metrics. Age and gender had a significant effect on TCA, WM and GM areas (with women and elderly having smaller values than men and younger people respectively), but not on the GM area/TCA ratio. The total intracranial volume and C3 vertebra dimensions showed the highest correlations with cord measures. When used in multi-regression models, they reduced cord areas group variability by approximately a third. Age and gender influences on cord measures and normalization strategies here presented might be of use in the study of compartment specific changes in various neurological diseases affecting the spinal cord.

  20. The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process.

    PubMed

    Wei, Fang; Zhang, Cui; Xue, Rong; Shan, Lidong; Gong, Shan; Wang, Guoqing; Tao, Jin; Xu, Guangyin; Zhang, Guoxing; Wang, Linhui

    2017-08-01

    It has been proved that cerebrospinal fluid (CSF) in the subarachnoid space could reenter the brain parenchyma via the perivascular space. The present study was designed to explore the pathway of subarachnoid CSF flux into the spinal cord and the potential role of aquaporin-4 (AQP4) in this process. Fluorescently tagged cadaverine, for the first time, was used to study CSF movement in mice. Following intracisternal infusion of CSF tracers, the cervical spinal cord was sliced and prepared for fluorescence imaging. Some sections were subject with immunostaining in order to observe tracer distribution and AQP4 expression. Fluorescently tagged cadaverine rapidly entered the spinal cord. Tracer influx into the spinal parenchyma was time dependent. At 10min post-infusion, cadaverine was largely distributed in the superficial tissue adjacent to the pial surface. At 70min post-infusion, cadaverine was distributed in the whole cord and especially concentrated in the gray matter. Furthermore, fluorescent tracer could enter the spinal parenchyma either along the perivascular space or across the pial surface. AQP4 was observed highly expressed in the astrocytic endfeet surrounding blood vessels and the pial surface. Blocking AQP4 by its specific inhibitor TGN-020 strikingly reduced the inflow of CSF tracers into the spinal cord. Subarachnoid CSF could flow into the spinal cord along the perivascular space or across the pial surface, in which AQP4 is involved. Our observation provides a basis for the study on CSF movement in the spinal cord when some neurological diseases occur. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS.

    PubMed

    Liu, Yaou; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Liu, Zheng; Dong, Huiqing; Weiler, Florian; Hahn, Horst K; Shi, Fu-Dong; Butzkueven, Helmut; Barkhof, Frederik; Li, Kuncheng

    2018-01-01

    To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. • Spinal cord atrophy progression was observed in NMO. • Spinal cord atrophy changes were associated with disability progression in NMO. • Brain lesion and atrophy were related to disability progression in MS.

  2. The changing nature of admissions to a spinal cord injury center: violence on the rise.

    PubMed

    Farmer, J C; Vaccaro, A R; Balderston, R A; Albert, T J; Cotler, J

    1998-10-01

    The purpose of this study was to analyze changing etiologies for admission to a spinal cord injury center. This study was designed to retrospectively analyze the etiology of admissions to a spinal cord injury center during a 15-year period, specifically gunshot versus nongunshot wound injuries. Gunshot wounds are a well-recognized cause of spinal cord injury. In some centers, up to 52% of admissions are due to this, and these trends are believed to be increasing. All patients with spinal cord injury admitted to our center between 1979 and 1993 were analyzed. Frequencies of specific etiologies were determined and then comparisons were made between gunshot wound and nongunshot wound groups. Factors analyzed included age, male/female ratio, ethnic make-up, marital status, employment status, level of injury, and neurologic status. One thousand eight hundred seventeen patients were included. Overall, gunshot wound spinal cord injuries compromised 16.9% of injuries. A clear trend of increasing numbers of admissions was seen between 1984 and 1993 because of this. Gunshot wounds and nongunshot wounds differed dramatically in terms of age, ethnic make-up, marital status, employment status, and neurologic status. Cost attributed to treating gunshot wound injuries at our center for 1993 was 5.4 million dollars. Gunshot wounds as a cause of spinal cord injury are increasing at an alarming rate. The demographics of the gunshot wounds and nongunshot wound spine cord injuries differ significantly.

  3. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord

    NASA Astrophysics Data System (ADS)

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    Objectives. The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Approaches. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. Main results. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s-1, respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. Significance. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  4. Impact Depth and the Interaction with Impact Speed Affect the Severity of Contusion Spinal Cord Injury in Rats

    PubMed Central

    Lam, Cameron J.; Assinck, Peggy; Liu, Jie; Tetzlaff, Wolfram

    2014-01-01

    Abstract Spinal cord injury (SCI) biomechanics suggest that the mechanical factors of impact depth and speed affect the severity of contusion injury, but their interaction is not well understood. The primary aim of this work was to examine both the individual and combined effects of impact depth and speed in contusion SCI on the cervical spinal cord. Spinal cord contusions between C5 and C6 were produced in anesthetized rats at impact speeds of 8, 80, or 800 mm/s with displacements of 0.9 or 1.5 mm (n=8/group). After 7 days postinjury, rats were assessed for open-field behavior, euthanized, and spinal cords were harvested. Spinal cord tissue sections were stained for demyelination (myelin-based protein) and tissue sparing (Luxol fast blue). In parallel, a finite element model of rat spinal cord was used to examine the resulting maximum principal strain in the spinal cord during impact. Increasing impact depth from 0.9 to 1.5 mm reduced open-field scores (p<0.01) above 80 mm/s, reduced gray (GM) and white matter (WM) sparing (p<0.01), and increased the amount of demyelination (p<0.01). Increasing impact speed showed similar results at the 1.5-mm impact depth, but not the 0.9-mm impact depth. Linear correlation analysis with finite element analysis strain showed correlations (p<0.001) with nerve fiber damage in the ventral (R2=0.86) and lateral (R2=0.74) regions of the spinal cord and with WM (R2=0.90) and GM (R2=0.76) sparing. The results demonstrate that impact depth is more important in determining the severity of SCI and that threshold interactions exist between impact depth and speed. PMID:24945364

  5. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells

    PubMed Central

    Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan

    2016-01-01

    Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3+ cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3+ neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is lost in non-regenerative froglets. PMID:25797152

  6. Characteristics of AMPA receptor-mediated responses of cultured cortical and spinal cord neurones and their correlation to the expression of glutamate receptor subunits, GluR1-4

    PubMed Central

    Dai, Wei-Min; Egebjerg, Jan; Lambert, John D C

    2001-01-01

    Electrophysiological recordings have been used to characterize responses mediated by AMPA receptors expressed by cultured rat cortical and spinal cord neurones. The EC50 values for AMPA were 17 and 11 μM, respectively.Responses of cortical neurones to AMPA were inhibited competitively by NBQX (pKi=6.6). Lower concentrations of NBQX (⩽1 μM) also potentiated the plateau responses of spinal cord neurones to AMPA, which could be attributed to a depression of desensitization to AMPA.GYKI 52466 inhibited responses of spinal cord neurones to AMPA to about twice the extent of responses of cortical neurones.Blockade of AMPA receptor desensitization by cyclothiazide (CTZ) potentiated responses of spinal cord neurones (6.8 fold) significantly more than responses of cortical neurones (4.8 fold). Responses of cortical neurones to KA were potentiated 3.5 fold by CTZ, while responses of spinal cord neurones were unaffected.Ultra-fast applications of AMPA to outside-out patches showed responses of spinal cord neurones desensitized by 97.5% and exhibit marked inward rectification, whereas cortical neurones desensitized by 91% and exhibited slight outward rectification. The time constants of deactivation and desensitization were about twice as fast in spinal cord than cortical neurones.In cortical neurones, single-cell RT – PCR showed GluR2 and GluR1 accounted for 91% of all subunits and were expressed together in 67% of neurones, predominantly as the flip variants (78%). GluR2 was detected alone in 24% of neurones. GluR3 and GluR4 were present in only 14 and 29% of neurones, respectively. For spinal cord neurones, GluR4o was detected in 81% of neurones, whereas predominantly flop versions of GluR1, 2 and 3 were detected in 38, 13 and 13% of neurones, respectively. These expression patterns are related to the respective pharmacological and mechanistic properties. PMID:11309259

  7. Fast and Accurate Semi-Automated Segmentation Method of Spinal Cord MR Images at 3T Applied to the Construction of a Cervical Spinal Cord Template

    PubMed Central

    El Mendili, Mohamed-Mounir; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib

    2015-01-01

    Objective To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. Materials and Methods A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects’ images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Results Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. Conclusion A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template. PMID:25816143

  8. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates.

    PubMed

    Sparrey, Carolyn J; Salegio, Ernesto A; Camisa, William; Tam, Horace; Beattie, Michael S; Bresnahan, Jacqueline C

    2016-06-15

    Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5-1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries.

  9. Left-Right Asymmetry of Maturation Rates in Human Embryonic Neural Development.

    PubMed

    de Kovel, Carolien G F; Lisgo, Steven; Karlebach, Guy; Ju, Jia; Cheng, Gang; Fisher, Simon E; Francks, Clyde

    2017-08-01

    Left-right asymmetry is a fundamental organizing feature of the human brain, and neuropsychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks postconception, the majority of human fetuses move their right arms more than their left arms, but because nerve fiber tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role. We used RNA sequencing to measure gene expression levels in the left and right spinal cords, and the left and right hindbrains, of 18 postmortem human embryos aged 4 to 8 weeks postconception. Genes showing embryonic lateralization were tested for an enrichment of signals in genome-wide association data for schizophrenia. The left side of the embryonic spinal cord was found to mature faster than the right side. Both sides transitioned from transcriptional profiles associated with cell division and proliferation at earlier stages to neuronal differentiation and function at later stages, but the two sides were not in synchrony (p = 2.2 E-161). The hindbrain showed a left-right mirrored pattern compared with the spinal cord, consistent with the well-known crossing over of function between these two structures. Genes that showed lateralization in the embryonic spinal cord were enriched for association signals with schizophrenia (p = 4.3 E-05). These are the earliest stage left-right differences of human neural development ever reported. Disruption of the lateralized developmental program may play a role in the genetic susceptibility to schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. The international spinal cord injury endocrine and metabolic function basic data set.

    PubMed

    Bauman, W A; Biering-Sørensen, F; Krassioukov, A

    2011-10-01

    To develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Function Basic Data Set within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of basic endocrine and metabolic findings in the SCI population. International. The International SCI Endocrine and Metabolic Function Data Set was developed by a working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies, and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Endocrine and Metabolic Function Data Set contains questions on the endocrine and metabolic conditions diagnosed before and after spinal cord lesion. If available, information collected before injury is to be obtained only once, whereas information after injury may be collected at any time. These data include information on diabetes mellitus, lipid disorders, osteoporosis, thyroid disease, adrenal disease, gonadal disease and pituitary disease. The question of gonadal status includes stage of sexual development and that for females also includes menopausal status. Data will be collected for body mass index and for the fasting serum lipid profile. The complete instructions for data collection and the data sheet itself are freely available on the websites of ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  11. Pharmacodynamic and pharmacokinetic studies of agmatine after spinal administration in the mouse.

    PubMed

    Roberts, John C; Grocholski, Brent M; Kitto, Kelley F; Fairbanks, Carolyn A

    2005-09-01

    Agmatine is an endogenous decarboxylation product of arginine that has been previously shown to antagonize the N-methyl-d-aspartate (NMDA) receptor and inhibit nitric-oxide synthase. Many neuropharmacological studies have shown that exogenous administration of agmatine prevents or reverses biological phenomena dependent on central nervous system glutamatergic systems, including opioid-induced tolerance, opioid self-administration, and chronic pain. However, the central nervous system (CNS) pharmacokinetic profile of agmatine remains minimally defined. The present study determined the spinal cord pharmacokinetics and acute pharmacodynamics of intrathecally administered agmatine in mice. After a single bolus intrathecal injection, agmatine concentrations in spinal cord (cervical, thoracic, and lumbosacral) tissue and serum were quantified by an isocratic high-performance liquid chromatography fluorescence detection system. Agmatine persisted at near maximum concentrations in all levels of the spinal cord for several hours with a half-life of approximately 12 h. Initial agmatine concentrations in serum were 10% those in CNS. However, the serum half-life was less than 10 min after intrathecal injection of agmatine, consistent with previous preliminary pharmacokinetic reports of systemically administered agmatine. The pharmacodynamic response to agmatine in the NMDA-nociceptive behavior and thermal hyperalgesia tests was assessed. Whereas MK-801 (dizocilpine maleate) inhibits these two responses with equal potency, agmatine inhibits the thermal hyperalgesia with significantly increased potency compared with the nociceptive behavior, suggesting two sites of action. In contrast to the pharmacokinetic results, the agmatine inhibition of both behaviors had a duration of only 10 to 30 min. Collectively, these results suggest the existence of a currently undefined agmatinergic extracellular clearance process in spinal cord.

  12. Making sense out of spinal cord somatosensory development

    PubMed Central

    Seal, Rebecca P.

    2016-01-01

    The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits. PMID:27702783

  13. Idiopathic thoracic transdural intravertebral spinal cord herniation

    PubMed Central

    Turel, Mazda K; Wewel, Joshua T; Kerolus, Mena G; O'Toole, John E

    2017-01-01

    Idiopathic spinal cord herniation is a rare and often missed cause of thoracic myelopathy. The clinical presentation and radiological appearance is inconsistent and commonly confused with a dorsal arachnoid cyst and often is a misdiagnosed entity. While ventral spinal cord herniation through a dural defect has been previously described, intravertebral herniation is a distinct entity and extremely rare. We present the case of a 70-year old man with idiopathic thoracic transdural intravertebral spinal cord herniation and discuss the clinico-radiological presentation, pathophysiology and operative management along with a review the literature of this unusual entity. PMID:29021685

  14. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    PubMed

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  15. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

    PubMed

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-04-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

  16. Spinal cord compression secondary to hemangiosarcoma in a saddlebred stallion.

    PubMed Central

    Berry, S

    1999-01-01

    Hemangiosarcoma in the spinal canal was diagnosed in a 25-year-old stallion showing progressive and symmetrical 4-limb ataxia, proprioceptive deficits, and weakness. On necropsy, an extradural mass consisting of spindle-shaped cells and numerous free erythrocytes was found at the level of C7-T1. Immunohistochemical staining confirmed a neoplasm of endothelial origin. PMID:10646067

  17. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells.

    PubMed

    Bonner, Joseph F; Steward, Oswald

    2015-09-04

    Spinal cord injury (SCI) disrupts the long axonal tracts of the spinal cord leading to devastating loss of function. Cell transplantation in the injured spinal cord has the potential to lead to recovery after SCI via a variety of mechanisms. One such strategy is the formation of neuronal relays between injured long tract axons and denervated neurons. The idea of creating a neuronal relay was first proposed over 25 years ago when fetal tissue was first successfully transplanted into the injured rodent spinal cord. Advances in labeling of grafted cells and the development of neural stem cell culturing techniques have improved the ability to create and refine such relays. Several recent studies have examined the ability to create a novel neuronal circuit between injured axons and denervated targets. This approach is an alternative to long-distance regeneration of damaged axons that may provide a meaningful degree of recovery without direct recreation of lost pathways. This brief review will examine the contribution of fetal grafting to current advances in neuronal grafting. Of particular interest will be the ability of transplanted neurons derived from fetal grafts, neural precursor cells and neural stem cells to reconnect long distance motor and sensory pathways of the injured spinal cord. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Resilience and the rehabilitation of adult spinal cord injury survivors: A qualitative systematic review.

    PubMed

    Kornhaber, Rachel; Mclean, Loyola; Betihavas, Vasiliki; Cleary, Michelle

    2018-01-01

    To synthesize the qualitative research evidence that explored how survivors of adult spinal cord injury experience and make sense of resilience. Spinal cord injury is often a sudden and unexpected life-changing event requiring complex and long-term rehabilitation. The development of resilience is essential in determining how spinal cord injury survivors negotiate this injury and rehabilitation. A qualitative systematic review and thematic synthesis of the research evidence. CINAHL, PubMed, Embase, Scopus and PsycINFO were searched, no restriction dates were used. Methodological quality was assessed using the Critical Appraisal Skills Programme checklist. Thematic synthesis focused on how survivors of adult spinal cord injury experience and make sense of resilience. Six qualitative research articles reported the experiences of 84 spinal cord injury survivors. Themes identified were: uncertainty and regaining independence; prior experiences of resilience; adopting resilient thinking; and strengthening resilience through supports. Recovery and rehabilitation following spinal cord survivors is influenced by the individual's capacity for resilience. Resilience may be influenced by previous life experiences and enhanced by supportive nursing staff encouraging self-efficacy. Survivors identified the need for active involvement in decision-making about their care to enable a sense of regaining control of their lives. This has the potential to have a significant impact on their self-efficacy and in turn health outcomes. © 2017 John Wiley & Sons Ltd.

  19. [Exoskeletons for rehabilitation of patients with spinal cord injuries. Options and limitations].

    PubMed

    Aach, M; Meindl, R C; Geßmann, J; Schildhauer, T A; Citak, M; Cruciger, O

    2015-02-01

    Mobile exoskeletons are increasingly being applied in the course of rehabilitation and provision of medical aids to patients with spinal cord injuries. This article gives a description of the currently available exoskeletal systems and the clinical application including scientific and medical evidence, to derive recommendations regarding clinical practice of the various exoskeletons in the rehabilitation of patients with spinal cord injuries. The different systems represent a useful adjunct to the therapeutic regimen depending on the medical objectives. Posture-controlled exoskeletons in particular enable mobilization of patients with neurological gait disorders via direct motion support. In addition the neurologically controlled exoskeleton HAL® leads to functional improvements in patients with residual muscular functions in the chronic phase of spinal cord injury in terms of improved walking abilities subsequent to training. However, beneficial effects on bone density, bladder function and perfusion are conceivable but not yet adequately supported by evidence. Positive effects on spasticity and neuropathic pain are currently based only on case series or small clinical trials. Although exoskeletons are not yet an established tool in the treatment of spinal cord injuries, the systems will play a more important role in rehabilitation of patients with spinal cord injuries in the future. Neurologically controlled exoskeletons show beneficial effects in the treatment of acute and chronic spinal cord injuries and might therefore evolve to be a useful alternative to conventional locomotion training.

  20. Absence of detectable melatonin and preservation of cortisol and thyrotropin rhythms in tetraplegia

    NASA Technical Reports Server (NTRS)

    Zeitzer, J. M.; Ayas, N. T.; Shea, S. A.; Brown, R.; Czeisler, C. A.

    2000-01-01

    The human circadian timing system regulates the temporal organization of several endocrine functions, including the production of melatonin (via a neural pathway that includes the spinal cord), TSH, and cortisol. In traumatic spinal cord injury, afferent and efferent circuits that influence the basal production of these hormones may be disrupted. We studied five subjects with chronic spinal cord injury (three tetraplegic and two paraplegic, all neurologically complete injuries) under stringent conditions in which the underlying circadian rhythmicity of these hormones could be examined. Melatonin production was absent in the three tetraplegic subjects with injury to their lower cervical spinal cord and was of normal amplitude and timing in the two paraplegic subjects with injury to their upper thoracic spinal cord. The amplitude and the timing of TSH and cortisol rhythms were robust in the paraplegics and in the tetraplegics. Our results indicate that neurologically complete cervical spinal injury results in the complete loss of pineal melatonin production and that neither the loss of melatonin nor the loss of spinal afferent information disrupts the rhythmicity of cortisol or TSH secretion.

  1. Phantom sensations in people with complete spinal cord lesions: a grounded theory perspective.

    PubMed

    Drysdale, Daren G; Shem, Kazuko; Walbom, Agnes; Miner, Maureen D; Maclachlan, Malcolm

    2009-01-01

    Phantom sensations are somatic phenomena arising from denervated parts of the body. There is very little research, and much diagnostic confusion, regarding such experiences in people with spinal cord injuries. In the case of 'complete' spinal cord lesions, phantom experiences may challenge, and indeed, contradict, the understanding that both clinicians and patients have of such injuries. This paper seeks to provide a better understanding of such 'phantom' sensations in spinal cord injury. We used grounded theory methods to explore 'phantom' sensations as experienced by individuals with complete (ASIA A) spinal lesions. Eight people with complete lesions, who were selected through theoretical sampling, participated in a semi-structured interview. Emergent themes included injury context, sensations experienced, the meaning of sensations, body connectivity, attitude and communication about sensations. Our results provide an enhanced understanding of the embodied experience of phantom sensations, and important insights regarding self-construction and rehabilitative processes in people with spinal cord injury who experience such anomalous sensations.

  2. [Attempts at management of experimental spinal cord hemisection by complete immobilization of the spine in dogs].

    PubMed

    Renard, C

    1980-06-01

    This animal experimentation shows the results of a method aiming at proving the possibilities of medullar reconstruction, if the medullar surfaces are in firm contact ant if medullar tension is neutralized. After hemitransection of the spinal cord, a total spinal immobilization in extension is obtained by using an original orthopaedic prosthesis. Thus, we operated on five dogs, one of which, the reference dog, underwent hemitransection of the spinal cord but no spine immobilization. From a clinical point of view, this dog developed a spastic crural monoplegia, whereas recuperation of motricity by the other dogs was surprising. Histological studies allowed us to observe a certain re-establishment of the spinal cord continuity, suggesting the beginning of an organization of a regeneration mechanism. These statements show the harmful influence of intra-medullar tension for spinal cord reconstruction. In practice, tractions on the spine must be abandoned for they increase the intramedullar tension very much and compromise any eventual "recuperation" after a medullar traumatism.

  3. Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord.

    PubMed

    Conrad, Benjamin N; Barry, Robert L; Rogers, Baxter P; Maki, Satoshi; Mishra, Arabinda; Thukral, Saakshi; Sriram, Subramaniam; Bhatia, Aashim; Pawate, Siddharama; Gore, John C; Smith, Seth A

    2018-06-01

    Patients with multiple sclerosis present with focal lesions throughout the spinal cord. There is a clinical need for non-invasive measurements of spinal cord activity and functional organization in multiple sclerosis, given the cord's critical role in the disease. Recent reports of spontaneous blood oxygenation level-dependent fluctuations in the spinal cord using functional MRI suggest that, like the brain, cord activity at rest is organized into distinct, synchronized functional networks among grey matter regions, likely related to motor and sensory systems. Previous studies looking at stimulus-evoked activity in the spinal cord of patients with multiple sclerosis have demonstrated increased levels of activation as well as a more bilateral distribution of activity compared to controls. Functional connectivity studies of brain networks in multiple sclerosis have revealed widespread alterations, which may take on a dynamic trajectory over the course of the disease, with compensatory increases in connectivity followed by decreases associated with structural damage. We build upon this literature by examining functional connectivity in the spinal cord of patients with multiple sclerosis. Using ultra-high field 7 T imaging along with processing strategies for robust spinal cord functional MRI and lesion identification, the present study assessed functional connectivity within cervical cord grey matter of patients with relapsing-remitting multiple sclerosis (n = 22) compared to a large sample of healthy controls (n = 56). Patient anatomical images were rated for lesions by three independent raters, with consensus ratings revealing 19 of 22 patients presented with lesions somewhere in the imaged volume. Linear mixed models were used to assess effects of lesion location on functional connectivity. Analysis in control subjects demonstrated a robust pattern of connectivity among ventral grey matter regions as well as a distinct network among dorsal regions. A gender effect was also observed in controls whereby females demonstrated higher ventral network connectivity. Wilcoxon rank-sum tests detected no differences in average connectivity or power of low frequency fluctuations in patients compared to controls. The presence of lesions was, however, associated with local alterations in connectivity with differential effects depending on columnar location. The patient results suggest that spinal cord functional networks are generally intact in relapsing-remitting multiple sclerosis but that lesions are associated with focal abnormalities in intrinsic connectivity. These findings are discussed in light of the current literature on spinal cord functional MRI and the potential neurological underpinnings.

  4. Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology.

    PubMed

    Buchanan, J T

    2001-03-01

    Among the advantages offered by the lamprey brainstem and spinal cord for studies of the structure and function of the nervous system is the unique identifiability of several pairs of reticulospinal neurons in the brainstem. These neurons have been exploited in investigations of the patterns of sensory input to these cells and the patterns of their outputs to spinal neurons, but no doubt these cells could be used much more effectively in exploring their roles in descending control of the spinal cord. The variability of cell positions of neurons in the spinal cord has precluded the recognition of unique spinal neurons. However, classes of nerve cells can be readily defined and characterized within the lamprey spinal cord and this has led to progress in understanding the cellular and synaptic mechanisms of locomotor activity. In addition, both the identifiable reticulospinal cells and the various spinal nerve cell classes and their known synaptic interactions have been used to demonstrate the degree and specificity of regeneration within the lamprey nervous system. The lack of uniquely identifiable cells within the lamprey spinal cord has hampered progress in these areas, especially in gaining a full understanding of the locomotor network and how neuromodulation of the network is accomplished.

  5. Measurement Structure of the Trait Hope Scale in Persons with Spinal Cord Injury: A Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Smedema, Susan Miller; Pfaller, Joseph; Moser, Erin; Tu, Wei-Mo; Chan, Fong

    2013-01-01

    Objective: To evaluate the measurement structure of the Trait Hope Scale (THS) among individuals with spinal cord injury. Design: Confirmatory factor analysis and reliability and validity analyses were performed. Participants: 242 individuals with spinal cord injury. Results: Results support the two-factor measurement model for the THS with agency…

  6. Religiosity and Spirituality among Persons with Spinal Cord Injury: Attitudes, Beliefs, and Practices

    ERIC Educational Resources Information Center

    Marini, Irmo; Glover-Graf, Noreen M.

    2011-01-01

    A total of 157 persons with spinal cord injury completed the "Spirituality and Spinal Cord Injury Survey" in relation to their spiritual and/or religious attitudes, beliefs, and practices in terms of adapting to their disability. Factor analysis accounting for 69% of the variance revealed four factors related to Spiritual Help and Improvement…

  7. Body composition of active persons with spinal cord injury and with poliomyelitis

    USDA-ARS?s Scientific Manuscript database

    This study sought to evaluate the body composition of subjects with active spinal cord injuries and polio. Two groups of males and females, active, free-living, of similar ages and body mass index (BMI), were distributed according to the source of deficiency: SCI – low spinal cord injury (T5-T12) an...

  8. Coordination of Fictive Motor Activity in the Larval Zebrafish Is Generated by Non-Segmental Mechanisms

    PubMed Central

    Wiggin, Timothy D.; Peck, Jack H.; Masino, Mark A.

    2014-01-01

    The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs) is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits. PMID:25275377

  9. Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity

    PubMed Central

    Jirjis, Michael B.; Kurpad, Shekar N.

    2013-01-01

    Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233

  10. Enrichment of spinal cord cell cultures with motoneurons

    PubMed Central

    1978-01-01

    Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221- 283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation. PMID:566275

  11. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    PubMed

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  12. Inflammatory response to Escherichia coli urinary tract infection in the neurogenic bladder of the spinal cord injured host.

    PubMed

    Chaudhry, Rajeev; Madden-Fuentes, Ramiro J; Ortiz, Tara K; Balsara, Zarine; Tang, Yuping; Nseyo, Unwanaobong; Wiener, John S; Ross, Sherry S; Seed, Patrick C

    2014-05-01

    Urinary tract infections cause significant morbidity in patients with spinal cord injury. An in vivo spinal cord injured rat model of experimental Escherichia coli urinary tract infection mimics human disease with enhanced susceptibility to urinary tract infection compared to controls. We hypothesized that a dysregulated inflammatory response contributes to enhanced susceptibility to urinary tract infection. Spinal cord injured and sham injured rats were inoculated transurethrally with E. coli. Transcript levels of 84 inflammatory pathway genes were measured in bladder tissue of each group before infection, 24 hours after infection and after 5 days of antibiotic therapy. Before infection quantitative polymerase chain reaction array revealed greater than twofold up-regulation in the proinflammatory factor transcripts slc11a1, ccl4 and il1β, and down-regulation of the antimicrobial peptides lcn2 and mpo in spinal cord injured vs control bladders. At 24 hours after infection spinal cord injured bladders showed an attenuated innate immune response with decreased expression of il6, slc11a1, il1β and lcn2, and decreased il10 and slpi expression compared to controls. Despite clearance of bacteriuria with antibiotics spinal cord injured rats had delayed induction of il6 transcription and a delayed anti-inflammatory response with decreased il10 and slpi transcript levels relative to controls. Spinal cord injured bladders fail to mount a characteristic inflammatory response to E. coli infection and cannot suppress inflammation after infection is eliminated. This may lead to increased susceptibility to urinary tract infection and persistent chronic inflammation through neural mediated pathways, which to our knowledge remain to be defined. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. The impact of pain on spiritual well-being in people with a spinal cord injury.

    PubMed

    Siddall, P J; McIndoe, L; Austin, P; Wrigley, P J

    2017-01-01

    The study uses a cross-sectional, group comparison, questionnaire-based design. To determine whether spinal cord injury and pain have an impact on spiritual well-being and whether there is an association between spiritual well-being and measures of pain and psychological function. University teaching hospital in Sydney, New South Wales, Australia. Questionnaires evaluating pain, psychological and spiritual well-being were administered to a group of people with a spinal cord injury (n=53) and a group without spinal cord injury (n=37). Spiritual well-being was assessed using the Functional Assessment of Chronic Illness and Therapy - Spirituality Extended Scale (FACIT-Sp-Ex). Pain and psychological function were also assessed using standard, validated measures of pain intensity, pain interference, mood and cognition. Levels of spiritual well-being in people with a spinal cord injury were significantly lower when compared with people without a spinal cord injury. In addition, there was a moderate but significant negative correlation between spiritual well-being and pain intensity. There was also a strong and significant negative correlation between depression and spiritual well-being and a strong and significant positive correlation between spiritual well-being and both pain self-efficacy and satisfaction with life. Consequences of a spinal cord injury include increased levels of spiritual distress, which is associated, with higher levels of pain and depression and lower levels of pain self-efficacy and satisfaction with life. These findings indicate the importance of addressing spiritual well-being as an important component in the long-term rehabilitation of any person following spinal cord injury. This study was supported by grant funding from the Australian and New Zealand College of Anaesthetists, and the National Health and Medical Research Council of Australia.

  14. Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM).

    PubMed

    Mehta, Prachi; Premkumar, Brian; Morris, Renée

    2016-08-03

    The mammalian central nervous system (CNS) is composed of multiple cellular elements, making it challenging to segregate one particular cell type to study their gene expression profile. For instance, as motor neurons represent only 5-10% of the total cell population of the spinal cord, meaningful transcriptional analysis on these neurons is almost impossible to achieve from homogenized spinal cord tissue. A major challenge faced by scientists is to obtain good quality RNA from small amounts of starting material. In this paper, we used Laser Capture Microdissection (LCM) techniques to identify and isolate spinal cord motor neurons. The present analysis revealed that perfusion with paraformaldehyde (PFA) does not alter RNA quality. RNA integrity numbers (RINs) of tissue samples from rubrospinal tract (RST)-transected, intact spinal cord or from whole spinal cord homogenate were all above 8, which indicates intact, high-quality RNA. Levels of mRNA for brain-derived neurotrophic factor (BDNF) or for its tropomyosin receptor kinase B (TrkB) were not affected by rubrospinal tract (RST) transection, a surgical procedure that deprive motor neurons from one of their main supraspinal input. The isolation of pure populations of neurons with LCM techniques allows for robust transcriptional characterization that cannot be achieved with spinal cord homogenates. Such preparations of pure population of motor neurons will provide valuable tools to advance our understanding of the molecular mechanisms underlying spinal cord injury and neuromuscular diseases. In the near future, LCM techniques might be instrumental to the success of gene therapy for these debilitating conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of electroacupuncture and the retinoid X receptor (RXR) signalling pathway on oligodendrocyte differentiation in the demyelinated spinal cord of rats

    PubMed Central

    Yang, Xiao-Hua; Ding, Ying; Li, Wen; Zhang, Rong-Yi; Wu, Jin-Lang; Ling, Eng-Ang; Wu, Wutian

    2017-01-01

    Objectives In spinal cord demyelination, some oligodendrocyte precursor cells (OPCs) remain in the demyelinated region but have a reduced capacity to differentiate into oligodendrocytes. This study investigated whether ‘Governor Vessel’ (GV) electroacupuncture (EA) would promote the differentiation of endogenous OPCs into oligodendrocytes by activating the retinoid X receptor γ (RXR-γ)-mediated signalling pathway. Methods Adult rats were microinjected with ethidium bromide (EB) into the T10 spinal cord to establish a model of spinal cord demyelination. EB-injected rats remained untreated (EB group, n=26) or received EA treatment (EB+EA group, n=26). A control group (n=26) was also included that underwent dural exposure without EB injection. After euthanasia at 7 days (n=5 per group), 15 days (n=8 per group) or 30 days (n=13 per group), protein expression of RXR-γ in the demyelinated spinal cord was evaluated by immunohistochemistry and Western blotting. In addition, OPCs derived from rat embryonic spinal cord were cultured in vitro, and exogenous 9-cis-RA (retinoic acid) and RXR-γ antagonist HX531 were administered to determine whether RA could activate RXR-γ and promote OPC differentiation. Results EA was found to increase the numbers of both OPCs and oligodendrocytes expressing RXR-γ and RALDH2, and promote remyelination in the remyelinated spinal cord. Exogenous 9-cis-RA enhanced the differentiation of OPCs into mature oligodendrocytes by activating RXR-γ. Conclusions The results suggest that EA may activate RXR signalling to promote the differentiation of OPCs into oligodendrocytes in spinal cord demyelination. PMID:27841975

  16. Preexisting severe cervical spinal cord compression is a significant risk factor for severe paralysis development in patients with traumatic cervical spinal cord injury without bone injury: a retrospective cohort study.

    PubMed

    Oichi, Takeshi; Oshima, Yasushi; Okazaki, Rentaro; Azuma, Seiichi

    2016-01-01

    The objective of this study is to investigate whether preexisting severe cervical spinal cord compression affects the severity of paralysis once patients develop traumatic cervical spinal cord injury (CSCI) without bone injury. We retrospectively investigated 122 consecutive patients with traumatic CSCI without bone injury. The severity of paralysis on admission was assessed by the American Spinal Injury Association impairment scale (AIS). The degree of preexisting cervical spinal cord compression was evaluated by the maximum spinal cord compression (MSCC) and was divided into three categories: minor compression (MSCC ≤ 20 %), moderate compression (20 % < MSCC ≤ 40 %), and severe compression (40 % < MSCC). We investigated soft-tissue damage on magnetic resonance imaging to estimate the external force applied. Other potential risk factors, including age, sex, fused vertebra, and ossification of longitudinal ligament, were also reviewed. A multivariate logistic regression analysis was performed to investigate the risk factors for developing severe paralysis (AIS A-C) on admission. Our study included 103 males and 19 females with mean age of 65 years. Sixty-one patients showed severe paralysis (AIS A-C) on admission. The average MSCC was 22 %. Moderate compression was observed in 41, and severe in 20. Soft-tissue damage was observed in 91. A multivariate analysis showed that severe cervical spinal cord compression significantly affected the severity of paralysis at the time of injury, whereas both mild and moderate compression did not affect it. Soft-tissue damage was also significantly associated with severe paralysis on admission. Preexisting severe cervical cord compression is an independent risk factor for severe paralysis once patients develop traumatic CSCI without bone injury.

  17. Convection-enhanced delivery of a hydrophilic nitrosourea ameliorates deficits and suppresses tumor growth in experimental spinal cord glioma models.

    PubMed

    Ogita, Shogo; Endo, Toshiki; Sugiyama, Shinichiro; Saito, Ryuta; Inoue, Tomoo; Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta; Sonoda, Yukihiko; Tominaga, Teiji

    2017-05-01

    Convection-enhanced delivery (CED) is a technique allowing local infusion of therapeutic agents into the central nervous system, circumventing the blood-brain or spinal cord barrier. To evaluate the utility of nimustine hydrochloride (ACNU) CED in controlling tumor progression in an experimental spinal cord glioma model. Toxicity studies were performed in 42 rats following the administration of 4 μl of ACNU CED into the mid-thoracic spinal cord at concentrations ranging from 0.1 to 10 mg/ml. Behavioral analyses and histological evaluations were performed to assess ACNU toxicity in the spinal cord. A survival study was performed in 32 rats following the implantation of 9 L cells into the T8 spinal cord. Seven days after the implantation, rats were assigned to four groups: ACNU CED (0.25 mg/ml; n = 8); ACNU intravenous (i.v.) (0.4 mg; n = 8); saline CED (n = 8); saline i.v. (n = 8). Hind limb movements were evaluated daily in all rats for 21 days. Tumor sizes were measured histologically. The maximum tolerated ACNU concentration was 0.25 mg/ml. Preservation of hind limb motor function and tumor growth suppression was observed in the ACNU CED (0.25 mg/ml) and ACNU i.v. groups. Antitumor effects were more prominent in the ACNU CED group especially in behavioral analyses (P < 0.05; log-rank test). ACNU CED had efficacy in controlling tumor growth and preserving neurological function in an experimental spinal cord tumor model. ACNU CED can be a viable treatment option for spinal cord high-grade glioma.

  18. Cycling exercise and fetal spinal cord transplantation act synergistically on atrophied muscle following chronic spinal cord injury in rats.

    PubMed

    Peterson, C A; Murphy, R J; Dupont-Versteegden, E E; Houlé, J D

    2000-01-01

    The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.

  19. Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury.

    PubMed

    Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A

    2017-09-01

    Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.

  20. Spinal cord lesions in Bangladesh: an epidemiological study 1994 - 1995.

    PubMed

    Hoque, M F; Grangeon, C; Reed, K

    1999-12-01

    Spinal Cord Lesions are a major public health problem in Bangladesh. This epidemiological study was undertaken in order to identify the causes of spinal cord lesions and thus to allow prevention and control programs to be developed. The records of 247 patients with spinal cord lesions admitted to The Centre for the Rehabilitation of the Paralysed (CRP), Savar, Dhaka from January 1994 to June 1995 were reviewed retrospectively. Comparisons were made with the reports of studies from other countries, both developing and developed. The most common cause of traumatic lesions was a fall from a height followed by falling when carrying a heavy weight on the head and road traffic accidents. Most of the patients were between 20 - 40 years old and the overall age group ranged from 10 - 70 years. The male:female ratio was 7.5 : 1.0. Among the traumatic spinal cord lesions, 60% were paraplegics and 40% tetraplegics. Among the non-traumatic spinal cord lesions cases 84% were paraplegics and 16% tetraplegics. The leading cause of death resulted from respiratory complications and these deaths occurred in the very early period of admission. From the results it can be deduced that the high incidence of spinal cord lesion as a result from falls from a height, and from falling when carrying a heavy weight on the head, can be explained by the mainly agricultural based economy of Bangladesh. The most common age group (10 - 40 years) of patients reflects the socio-economic conditions of Bangladesh. The male:female ratio (7.5 : 1.0) of patients with a spinal cord lesion is due to the socio-economic status and to the traditional culture of the society.

  1. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    PubMed

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  2. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats

    PubMed Central

    Kim, Jae Young; Mun, Chin Hee; Suh, Minah

    2017-01-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206+ & ED1+ cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype. PMID:29093636

  3. Spinal cord ischemia after simultaneous and sequential treatment of multilevel aortic disease.

    PubMed

    Piffaretti, Gabriele; Bonardelli, Stefano; Bellosta, Raffaello; Mariscalco, Giovanni; Lomazzi, Chiara; Tolenaar, Jip L; Zanotti, Camilla; Guadrini, Cristina; Sarcina, Antonio; Castelli, Patrizio; Trimarchi, Santi

    2014-10-01

    The aim of the present study is to report a risk analysis for spinal cord injury in a recent cohort of patients with simultaneous and sequential treatment of multilevel aortic disease. We performed a multicenter study with a retrospective data analysis. Simultaneous treatment refers to descending thoracic and infrarenal aortic lesions treated during the same operation, and sequential treatment refers to separate operations. All descending replacements were managed with endovascular repair. Of 4320 patients, multilevel aortic disease was detected in 77 (1.8%). Simultaneous repair was performed in 32 patients (41.5%), and a sequential repair was performed in 45 patients (58.4%). Postoperative spinal cord injury developed in 6 patients (7.8%). At multivariable analysis, the distance of the distal aortic neck from the celiac trunk was the only independent predictor of postoperative spinal cord injury (odds ratio, 0.75; 95% confidence interval, 0.56-0.99; P=.046); open surgical repair of the abdominal aortic disease was associated with a higher risk of spinal cord injury but did not reach statistical significance (odds ratio, 0.16; 95% confidence interval, 0.02-1.06; P=.057). Actuarial survival estimates at 1, 2, and 5 years after the procedure were 80%±5%, 68%±6%, and 63%±7%, respectively. Spinal cord injury did not impair survival (P=.885). In our experience, the risk of spinal cord injury is still substantial at 8% in patients with multilevel aortic disease. The distance of the distal landing zone from the celiac trunk is a significant predictor of spinal cord ischemia. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  4. GDNF and NGF family members and receptors in human fetal and adult spinal cord and dorsal root ganglia.

    PubMed

    Josephson, A; Widenfalk, J; Trifunovski, A; Widmer, H R; Olson, L; Spenger, C

    2001-11-12

    We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. Messenger RNA was found encoding RET, GFR alpha-1, BDNF, trkB, and trkC in the adult human spinal cord and BDNF, NT-3, p75, trkB, and trkC in the fetal human spinal cord. The percentage of adult human DRG cells expressing p75, trkA, trkB, or trkC was 57, 46, 29, and 24%, respectively, and that of DRG cells expressing RET, GFR alpha-1, GFR alpha-2, or GFR alpha-3 was 79, 20, 51, and 32%, respectively. GFR alpha-2 was expressed selectively in small, GFR alpha-3 principally in small and GFR alpha-1 and RET in both large and small adult human DRG neurons. p75 and trkB were expressed by a wide range of DRG neurons while trkA was expressed in most small diameter and trkC primarily in large DRG neurons. Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord. Copyright 2001 Wiley-Liss, Inc.

  5. Brain and cord myelin water imaging: a progressive multiple sclerosis biomarker

    PubMed Central

    Kolind, Shannon; Seddigh, Arshia; Combes, Anna; Russell-Schulz, Bretta; Tam, Roger; Yogendrakumar, Vignan; Deoni, Sean; Sibtain, Naomi A.; Traboulsee, Anthony; Williams, Steven C.R.; Barker, Gareth J.; Brex, Peter A.

    2015-01-01

    Objectives Conventional magnetic resonance imaging (MRI) is used to diagnose and monitor inflammatory disease in relapsing remitting (RR) multiple sclerosis (MS). In the less common primary progressive (PP) form of MS, in which focal inflammation is less evident, biomarkers are still needed to enable evaluation of novel therapies in clinical trials. Our objective was to characterize the association — across the brain and cervical spinal cord — between clinical disability measures in PPMS and two potential biomarkers (one for myelin, and one for atrophy, both resulting from the same imaging technique). Methods Multi-component driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) MRI of the brain and cervical spinal cord were obtained for 15 PPMS patients and 11 matched controls. Data were analysed to estimate the signal related to myelin water (VFM), as well as volume measurements. MS disability was assessed using the Multiple Sclerosis Functional Composite score, which includes measures of cognitive processing (Paced Auditory Serial Addition Test), manual dexterity (9-Hole Peg Test) and ambulatory function (Timed 25-Foot Walk); and the Expanded Disability Status Scale. Results Brain and spinal cord volumes were different in PPMS compared to controls, particularly ventricular (+ 46%, p = 0.0006) and cervical spinal cord volume (− 16%, p = 0.0001). Brain and spinal cord myelin (VFM) were also reduced in PPMS (brain: − 11%, p = 0.01; spine: − 19%, p = 0.000004). Cognitive processing correlated with brain ventricular volume (p = 0.009). Manual dexterity correlated with brain ventricular volume (p = 0.007), and both brain and spinal cord VFM (p = 0.01 and 0.06, respectively). Ambulation correlated with spinal cord volume (p = 0.04) and spinal cord VFM (p = 0.04). Interpretation In this study we demonstrated that mcDESPOT can be used to measure myelin and atrophy in the brain and spinal cord. Results correlate well with clinical disability scores in PPMS representing cognitive, fine motor and ambulatory disability. PMID:26594633

  6. Altered spinal cord activity during sexual stimulation in women with SCI: a pilot fMRI study.

    PubMed

    Alexander, Marcalee; Kozyrev, Natalie; Figley, Chase R; Richards, J Scott

    2017-01-01

    The objective of this study was to assess the feasibility of the use of functional magnetic resonance imaging (fMRI) to evaluate the spinal activation during sexual response of the thoracic, lumbar and sacral spinal cord. This is a laboratory-based pilot study in human females at a University-based medical center in the United States. In three healthy spinal cord injury (SCI) females, spinal cord activations during sexual audiovisual stimulation (alone), genital self-stimulation (alone) and simultaneous audiovisual and genital self-stimulation (combined) were assessed and then compared with each subjects' remaining sensory and motor function. Spinal fMRI responses of the intermediolateral columns were found during audiovisual stimulation in both subjects with incomplete injuries, but they were not observed in the subject with a complete injury. Moreover, sacral responses to combined stimulation differed greatly between the subjects with complete and incomplete injuries. These results not only provide the first in vivo documentation of spinal fMRI responses associated with sexual arousal in women with SCIs, but also suggest that spinal cord fMRI is capable of distinguishing between injury subtypes. Therefore, although there are certain limitations associated with fMRI during sexual stimulation (for example, movement artifacts, an artificially controlled environment and so), these findings demonstrate the potential utility of incorporating spinal cord fMRI in future research to evaluate the impact of specific patterns of SCI on sexual responses and/or the effects of treatment.

  7. Clinical interpretation of the Spinal Cord Injury Functional Index (SCI-FI).

    PubMed

    Fyffe, Denise; Kalpakjian, Claire Z; Slavin, Mary; Kisala, Pamela; Ni, Pengsheng; Kirshblum, Steven C; Tulsky, David S; Jette, Alan M

    2016-09-01

    To provide validation of functional ability levels for the Spinal Cord Injury - Functional Index (SCI-FI). Cross-sectional. Inpatient rehabilitation hospital and community settings. A sample of 855 individuals with traumatic spinal cord injury enrolled in 6 rehabilitation centers participating in the National Spinal Cord Injury Model Systems Network. Not Applicable. Spinal Cord Injury-Functional Index (SCI-FI). Cluster analyses identified three distinct groups that represent low, mid-range and high SCI-FI functional ability levels. Comparison of clusters on personal and other injury characteristics suggested some significant differences between groups. These results strongly support the use of SCI-FI functional ability levels to document the perceived functional abilities of persons with SCI. Results of the cluster analysis suggest that the SCI-FI functional ability levels capture function by injury characteristics. Clinical implications regarding tracking functional activity trajectories during follow-up visits are discussed.

  8. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    PubMed

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  9. Thoracic arachnoid cyst resection.

    PubMed

    Deutsch, Harel

    2014-09-01

    Arachnoid cysts in the spinal cord may be asymptomatic. In some cases arachnoid cysts may exert mass effect on the thoracic spinal cord and lead to pain and myelopathy symptoms. Arachnoid cysts may be difficult to visualize on an MRI scan because the thin walled arachnoid may not be visible. Focal displacement of the thoracic spinal cord and effacement of the spinal cord with apparent widening of the cerebrospinal fluid space is seen. This video demonstrates surgical techniques to remove a dorsal arachnoid cyst causing spinal cord compression. The surgery involves a thoracic laminectomy. The dura is opened sharply with care taken not to open the arachnoid so that the cyst can be well visualized. The thickened arachnoid walls of the cyst are removed to alleviate the compression caused by the arachnoid cyst. The video can be found here: http://youtu.be/pgUrl9xvsD0.

  10. Modeling the neuroanatomic propagation of ALS in the spinal cord

    NASA Astrophysics Data System (ADS)

    Drawert, Brian; Thakore, Nimish; Mitchell, Brian; Pioro, Erik; Ravits, John; Petzold, Linda R.

    2017-07-01

    Recent hypotheses of amyotrophic lateral sclerosis (ALS) progression have posited a point-source origin of motor neuron death with neuroanatomic propagation either contiguously to adjacent regions, or along networks via axonal and synaptic connections. Although the molecular mechanisms of propagation are unknown, one leading hypothesis is a "prion-like" spread of misfolded and aggregated proteins, including SOD1 and TDP-43. We have developed a mathematical model representing cellular and molecular spread of ALS in the human spinal cord. Our model is based on the stochastic reaction-diffusion master equation approach using a tetrahedral discretized space to capture the complex geometry of the spinal cord. Domain dimension and shape was obtained by reconstructing human spinal cord from high-resolution magnetic resonance (MR) images and known gross and histological neuroanatomy. Our preliminary results qualitatively recapitulate the clinically observed pattern of spread of ALS thorough the spinal cord.

  11. Spinal cord lesions of progressive multifocal leukoencephalopathy in an acquired immunodeficiency syndrome patient.

    PubMed

    Bernal-Cano, F; Joseph, J T; Koralnik, I J

    2007-10-01

    Progressive multifocal leukoencephalopathy (PML) is a deadly demyelinating disease of the central nervous system, which occurs in immunosuppressed individuals. This disease is caused by a reactivation of the polyomavirus JC (JCV). Clinical presentation can be variable from patient to patient as lesions can occur anywhere in the CNS white matter; however, they appear to spare the optic nerves and the spinal cord. The authors present a case of PML in the setting of acquired immunodeficiency syndrome (AIDS) who developed PML lesions in the spinal cord, discovered during the postmortem examination. This finding is significant because PML has recently been diagnosed in patients with multiple sclerosis (MS) treated with the novel immunomodulatory medication natalizumab. Indeed, spinal cord lesions are frequent in MS. Therefore clinicians should be aware that in addition to the brain, PML may also affect the spinal cord white matter.

  12. Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury.

    PubMed

    Birenbaum, Nathan K; MacEwan, Matthew R; Ray, Wilson Z

    2017-06-01

    Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T 9-10 site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-sieve electrode and recording both electromyography signals and evoked muscle force from distal musculature. Electromyography measurements were recorded from the tibialis anterior and gastrocnemius muscles, while evoked muscle force measurements were recorded from the tibialis anterior, extensor digitorum longus, and gastrocnemius muscles. The macro-sieve electrode and regenerated sciatic nerve were then explanted for histological evaluation. Successful sciatic nerve regeneration across the macro-sieve electrode interface following spinal cord injury was seen in all five animals. Recorded electromyography signals and muscle force recordings obtained through macro-sieve electrode stimulation confirm the ability of the macro-sieve electrode to successfully recruit distal musculature in this injury model. Taken together, these results demonstrate the macro-sieve electrode as a viable interface for peripheral nerve stimulation in the context of spinal cord injury.

  13. Percutaneous Radiofrequency Ablation of Painful Spinal Tumors Adjacent to the Spinal Cord with Real-Time Monitoring of Spinal Canal Temperature: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuka, Atsuhiro, E-mail: nakatuka@clin.medic.mie-u.ac.jp; Yamakado, Koichiro; Takaki, Haruyuki

    2009-01-15

    PurposeTo prospectively evaluate the feasibility, safety, and clinical utility of bone radiofrequency (RF) ablation with real-time monitoring of the spinal canal temperature for the treatment of spinal tumors adjacent to the spinal cord.Materials and MethodsOur Institutional Review Board approved this study. Patients gave informed consent. The inclusion criteria were (a) a painful spinal metastasis and (b) a distance of 1 cm or less between the metastasis and the spinal cord. The thermocouple was placed in the spinal canal under CT fluoroscopic guidance. When the spinal canal temperature reached 45{sup o}C, RF application was immediately stopped. RF ablation was considered technicallymore » successful when the procedure was performed without major complications. Clinical success was defined as a fall in the visual analogue scale score of at least 2 points.ResultsTen patients with spinal tumors measuring 3-8 cm (mean, 4.9 {+-} 1.5 cm) were enrolled. The distance between the tumor and the spinal cord was 1-6 mm (mean, 2.4 {+-} 1.6 mm). All procedures were judged technically successful (100%). The spinal canal temperature did not exceed 45{sup o}C in 9 of the 10 patients (90%). In the remaining patient, the temperature rose to 48{sup o}C, resulting in transient neural damage, although RF application was immediately stopped when the temperature reached 45{sup o}C. Clinical success was achieved within 1 week in all patients (100%).ConclusionBone RF ablation with real-time monitoring of the spinal canal temperature is feasible, safe, and clinically useful for the treatment of painful spinal metastases adjacent to the spinal cord.« less

  14. Boomerang deformity of cervical spinal cord migrating between split laminae after laminoplasty.

    PubMed

    Kimura, S; Gomibuchi, F; Shimoda, H; Ikezawa, Y; Segawa, H; Kaneko, F; Uchiyama, S; Homma, T

    2000-04-01

    Patients with cervical compression myelopathy were studied to elucidate the mechanism underlying boomerang deformity, which results from the migration of the cervical spinal cord between split laminae after laminoplasty with median splitting of the spinous processes (boomerang sign). Thirty-nine cases, comprising 25 patients with cervical spondylotic myelopathy, 8 patients with ossification of the posterior longitudinal ligament, and 6 patients with cervical disc herniation with developmental canal stenosis, were examined. The clinical and radiological findings were retrospectively compared between patients with (B group, 8 cases) and without (C group, 31 cases) boomerang sign. Moderate increase of the grade of this deformity resulted in no clinical recovery, although there was no difference in clinical recovery between the two groups. Most boomerang signs developed at the C4/5 and/or C5/6 level, where maximal posterior movement of the spinal cord was achieved. Widths between lateral hinges and between split laminae in the B group were smaller than in the C group. Flatness of the spinal cord in the B group was more severe than in the C group. In conclusion, the boomerang sign was caused by posterior movement of the spinal cord, narrower enlargement of the spinal canal and flatness of the spinal cord.

  15. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    PubMed

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  16. Neuromodulation of lower limb motor control in restorative neurology.

    PubMed

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-06-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Neuromodulation of lower limb motor control in restorative neurology

    PubMed Central

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657

  18. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...

  19. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...

  20. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...

  1. Cardiac dysfunctions following spinal cord injury

    PubMed Central

    Sandu, AM; Popescu, M; Iacobini, MA; Stoian, R; Neascu, C; Popa, F

    2009-01-01

    The aim of this article is to analyze cardiac dysfunctions occurring after spinal cord injury (SCI). Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1–L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur. Proper prophylaxis, including nonpharmacologic and pharmacological strategies and cardiac rehabilitation diminish occurrence of the cardiac dysfunction following SCI. Each type of cardiac disturbance requires specific treatment. PMID:20108532

  2. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.

    PubMed

    Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F

    2018-01-01

    There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P < .01). Prediction at 1 year with clinical scores ( R 2 = 0.54) was improved when including a combination of gray matter and white matter cross-sectional areas ( R 2 = 0.74). Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.

  3. Intraspinal AAV Injections Immediately Rostral to a Thoracic Spinal Cord Injury Site Efficiently Transduces Neurons in Spinal Cord and Brain

    PubMed Central

    Klaw, Michelle C; Xu, Chen; Tom, Veronica J

    2013-01-01

    In the vast majority of studies utilizing adeno-associated virus (AAV) in central nervous system applications, including those published with spinal cord injury (SCI) models, AAV has been administered at the level of the cell body of neurons targeted for genetic modification, resulting in transduction of neurons in the vicinity of the injection site. However, as SCI interrupts many axon tracts, it may be more beneficial to transduce a diverse pool of supraspinal neurons. We determined if descending axons severed by SCI are capable of retrogradely transporting AAV to remotely transduce a variety of brain regions. Different AAV serotypes encoding the reporter green fluorescent protein (GFP) were injected into gray and white matter immediately rostral to a spinal transection site. This resulted in the transduction of thousands of neurons within the spinal cord and in multiple regions within the brainstem that project to spinal cord. In addition, we established that different serotypes had disparate regional specificity and that AAV5 transduced the most brain and spinal cord neurons. This is the first demonstration that retrograde transport of AAV by axons severed by SCI is an effective means to transduce a collection of supraspinal neurons. Thus, we identify a novel, minimally invasive means to transduce a variety of neuronal populations within both the spinal cord and the brain following SCI. This paradigm to broadly distribute viral vectors has the potential to be an important component of a combinatorial strategy to promote functional axonal regeneration. PMID:23881451

  4. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    PubMed

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory feedback to the brain guides further change that preserves old behaviors. This finding contributes to a new understanding of spinal cord function and to development of new rehabilitation therapies. Copyright © 2017 the authors 0270-6474/17/378198-09$15.00/0.

  5. The Role of Core Self-Evaluations in the Relationship between Stress and Depression in Persons with Spinal Cord Injury

    ERIC Educational Resources Information Center

    DeAngelis, Jesse B.; Yaghmaian, Rana; Smedema, Susan Miller

    2016-01-01

    Purpose: To investigate the role of core self-evaluations (CSE) in the relationship between perceived stress and depression in persons with spinal cord injury. Method: Two hundred forty-seven adults with spinal cord injury completed an online survey measuring perceived stress, CSE, and depressive symptoms. Results: A multiple regression analysis…

  6. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  7. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl

    PubMed Central

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2016-01-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl. PMID:26477559

  8. Site-specific gene transfer into the rat spinal cord by photomechanical waves

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Toyooka, Terushige; Uozumi, Yoichi; Nawashiro, Hiroshi; Ashida, Hiroshi; Obara, Minoru

    2011-10-01

    Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.

  9. Development of serotonergic and adrenergic receptors in the rat spinal cord: effects of neonatal chemical lesions and hyperthyroidism.

    PubMed

    Lau, C; Pylypiw, A; Ross, L L

    1985-03-01

    The sympathetic preganglionic neurons in the spinal cord receive dense serotonergic (5-HT) and catecholaminergic (CA) afferent inputs from the descending supraspinal pathways. In the rat spinal cord, the levels of these biogenic amines and their receptors are low at birth, but undergo rapid ontogenetic increases in the ensuing 2-3 postnatal weeks until the adult levels are reached. In many systems it has been shown that denervation of presynaptic neurons leads to an up-regulation of the number of postsynaptic receptors. To determine whether the 5-HT and CA receptors in the developing spinal cord are also subject to such transsynaptic regulation, we examined the ontogeny of serotonergic receptors and alpha- and beta-adrenergic receptors in thoracolumbar spinal cord of rats given neurotoxins which destroy serotonergic (5,7-dihydroxytryptamine (5,7-DHT)) or noradrenergic (6-hydroxydopamine (6-OHDA)) nerve terminals. Intracisternal administration of 5,7-DHT or 6-OHDA at 1 and 6 days of age prevented, respectively, the development of 5-HT and CA levels in the spinal cord. Rats lesioned with 5,7-DHT displayed a marked elevation of 5-HT receptors with a binding of 50% greater than controls at 1 week and a continuing increase to twice normal by 4 weeks. A similar pattern of up-regulation was also detected with the alpha-adrenergic receptor, as rats lesioned with 6-OHDA exhibited persistent increases in receptor concentration. However, in these same animals ontogeny of the beta-adrenergic receptor in the spinal cord remained virtually unaffected by the chemical lesion. In several other parts of the nervous system, it has been demonstrated that the beta-adrenergic sensitivity can be modulated by hormonal signals, particularly that of the thyroid hormones. This phenomenon was examined in the spinal cord and in confirmation with previous studies neonatal treatment of triiodothyronine (0.1 mg/kg, s.c. daily) was capable of evoking persistent increases in beta-adrenergic receptor binding. These results suggest that: (a) development of the postjunctional serotonergic and alpha-adrenergic receptors in the rat spinal cord can occur in the absence of the prejunctional nerve terminals and are subject to transsynaptic modulation; (b) beta-adrenergic receptors in the spinal cord also can develop after prejunctional lesions but are regulated by hormonal rather than neuronal factors.

  10. Microsurgical resection of intramedullary spinal cord ependymoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Ependymomas are the most commonly occurring intramedullary spinal cord tumor in adults. With few exceptions these tumors are histologically benign, although they exhibit some biologic variability with respect to growth rate. While unencapsulated, spinal ependymomas are non-infiltrative and present a clear margin of demarcation from the surrounding spinal cord that serves as an effective dissection plane. This video demonstrates the technique of microsurgical resection of an intramedullary ependymoma through a posterior midline myelotomy. The video can be found here: http://youtu.be/lcHhymSvSqU.

  11. [Spinal cord injury due to penetrating missiles].

    PubMed

    Ohry, Avi

    2003-10-01

    Gunshot wound of the spine is a major cause of spinal cord injury among US civilian population, members of the military armed conflict personnel, or civilians injured in terrorists attacks. The bullet fragments cause damage to the spinal cord even without penetrating the spinal canal. Concussive effects, heat, fractures or vascular injury may cause the neurological damage. Unfortunately, bullet or shrapnel removal or laminectomy do not change the prognosis. In this article we review the historical background, the Israeli experience, ballistic-forensic considerations, complications, treatment and prognosis.

  12. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    PubMed

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-11-25

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.

  13. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

    PubMed

    Rangasamy, Suresh Babu

    2013-07-01

    Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys. Copyright © 2013 Wiley Periodicals, Inc.

  14. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    PubMed Central

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta; Kiehn, Ole

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion. PMID:28128321

  15. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord.

    PubMed

    Keirstead, H S; Levine, J M; Blakemore, W F

    1998-02-01

    Elucidation of the response of oligodendrocyte progenitor cell populations to demyelination in the adult central nervous system (CNS) is critical to understanding why remyelination fails in multiple sclerosis. Using the anti-NG2 monoclonal antibody to identify oligodendrocyte progenitor cells, we have documented their response to antibody-induced demyelination in the dorsal column of the adult rat spinal cord. The number of NG2+ cells in the vicinity of demyelinated lesions increased by 72% over the course of 3 days following the onset of demyelination. This increase in NG2+ cell numbers did not reflect a nonspecific staining of reactive cells, as GFAP, OX-42, and Rip antibodies did not co-localise with NG2 + cells in double immunostained tissue sections. NG2 + cells incorporated BrdU 48-72 h following the onset of demyelination. After the onset of remyelination (10-14 days), the number of NG2+ cells decreased to 46% of control levels and remained consistently low for 2 months. When spinal cords were exposed to 40 Grays of x-irradiation prior to demyelination, the number of NG2+ cells decreased to 48% of control levels by 3 days following the onset of demyelination and remained unchanged at 3 weeks. Since 40 Grays of x-irradiation kills dividing cells, these studies illustrate a responsive and nonresponsive NG2+ cell population following demyelination in the adult spinal cord and suggest that the responsive NG2+ cell population does not renew itself.

  16. How important is resilience among family members supporting relatives with traumatic brain injury or spinal cord injury?

    PubMed

    Simpson, Grahame; Jones, Kate

    2013-04-01

    To investigate the relationship between resilience and affective state, caregiver burden and caregiving strategies among family members of people with traumatic brain or spinal cord injury. An observational prospective cross-sectional study. Inpatient and community rehabilitation services. Convenience sample of 61 family respondents aged 18 years or older at the time of the study and supporting a relative with severe traumatic brain injury (n = 30) or spinal cord injury (n= 31). Resilience Scale, Positive And Negative Affect Schedule, Caregiver Burden Scale, Functional Independence Measure, Carer's Assessment of Managing Index. Correlational analyses found a significant positive association between family resilience scores and positive affect (r(s) = 0.67), and a significant negative association with negative affect (r(s) = -0.47) and caregiver burden scores (r(s) = -0.47). No association was found between family resilience scores and their relative's severity of functional impairment. Family members with high resilience scores rated four carer strategies as significantly more helpful than family members with low resilience scores. Between-groups analyses (families supporting relative with traumatic brain injury vs. spinal cord injury) found no significant differences in ratings of the perceived helpfulness of carer strategies once Bonferroni correction for multiple tests was applied. Self-rated resilience correlated positively with positive affect, and negatively with negative affect and caregiver burden. These results are consistent with resilience theories which propose that people with high resilience are more likely to display positive adaptation when faced by significant adversity.

  17. Progressive solitary sclerosis

    PubMed Central

    Kaufmann, Timothy J.; Weinshenker, Brian G.; Kantarci, Orhun H.; Schmalstieg, William F.; Paz Soldan, M. Mateo; Flanagan, Eoin P.

    2016-01-01

    Objective: To report patients with progressive motor impairment resulting from an isolated CNS demyelinating lesion in cerebral, brainstem, or spinal cord white matter that we call progressive solitary sclerosis. Methods: Thirty patients were identified with (1) progressive motor impairment for over 1 year with a single radiologically identified CNS demyelinating lesion along corticospinal tracts, (2) absence of other demyelinating CNS lesions, and (3) no history of relapses affecting other CNS pathways. Twenty-five were followed prospectively in our multiple sclerosis (MS) clinic and 5 were identified retrospectively from our progressive MS database. Patients were excluded if an alternative etiology for progressive motor impairment was found. Multiple brain and spinal cord MRI were reviewed by a neuroradiologist blinded to the clinical details. Results: The patients' median age was 48.5 years (range 23–71) and 15 (50%) were women. The median follow-up from symptom onset was 100 months (range 15–343 months). All had insidiously progressive upper motor neuron weakness attributable to the solitary demyelinating lesion found on MRI. Clinical presentations were hemiparesis/monoparesis (n = 24), quadriparesis (n = 5), and paraparesis (n = 1). Solitary MRI lesions involved cervical spinal cord (n = 18), cervico-medullary/brainstem region (n = 6), thoracic spinal cord (n = 4), and subcortical white matter (n = 2). CSF abnormalities consistent with MS were found in 13 of 26 (50%). Demyelinating disease was confirmed pathologically in 2 (biopsy, 1; autopsy, 1). Conclusions: Progressive solitary sclerosis results from an isolated CNS demyelinating lesion. Future revisions to MS diagnostic criteria could incorporate this presentation of demyelinating disease. PMID:27638926

  18. Potential of human dental stem cells in repairing the complete transection of rat spinal cord

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Li, Xinghan; Sun, Liang; Guo, Weihua; Tian, Weidong

    2017-04-01

    Objective. The adult spinal cord of mammals contains a certain amount of neural precursor cells, but these endogenous cells have a limited capacity for replacement of lost cells after spinal cord injury. The exogenous stem cells transplantation has become a therapeutic strategy for spinal cord repairing because of their immunomodulatory and differentiation capacity. In addition, dental stem cells originating from the cranial neural crest might be candidate cell sources for neural engineering. Approach. Human dental follicle stem cells (DFSCs), stem cells from apical papilla (SCAPs) and dental pulp stem cells (DPSCs) were isolated and identified in vitro, then green GFP-labeled stem cells with pellets were transplanted into completely transected spinal cord. The functional recovery of rats and multiple neuro-regenerative mechanisms were explored. Main results. The dental stem cells, especially DFSCs, demonstrated the potential in repairing the completely transected spinal cord and promote functional recovery after injury. The major involved mechanisms were speculated below: First, dental stem cells inhibited the expression of interleukin-1β to reduce the inflammatory response; second, they inhibited the expression of ras homolog gene family member A (RhoA) to promote neurite regeneration; third, they inhibited the sulfonylurea receptor1 (SUR-1) expression to reduce progressive hemorrhagic necrosis; lastly, parts of the transplanted cells survived and differentiated into mature neurons and oligodendrocytes but not astrocyte, which is beneficial for promoting axons growth. Significance. Dental stem cells presented remarkable tissue regenerative capability after spinal cord injury through immunomodulatory, differentiation and protection capacity.

  19. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord wasmore » clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.« less

  20. Scissors stab wound to the cervical spinal cord at the craniocervical junction.

    PubMed

    Zhang, Xiao-Yong; Yang, Ying-Ming

    2016-06-01

    Stab wounds resulting in spinal cord injury of the craniocervical junction are rare. A scissors stab wound to the cervical spinal cord has been reported only once in the literature. This paper aimed to report a case of Brown-Séquard-plus syndrome in an 8-year-old boy secondary to a scissors stab wound at the craniocervical junction. Case report and review of the literature. Case report of an 8-year-old boy accidentally stabbed in the neck by scissors, which were thrown as a dart. The case study of an 8-year-old boy who was hospitalized because of a scissors stab wound at the craniocervical junction. The patient developed Brown-Séquard-plus syndrome on the left side of the body. Magnetic resonance imaging revealed a laceration of the spinal cord at the craniocervical junction with cerebrospinal fluid leakage. Careful cleansing and interrupted sutures of the wounds were performed to prevent cerebrospinal fluid leakage. Rehabilitation therapy was performed 2 days later. A follow-up examination revealed complete recovery of the neurologic deficit 8 months post-injury. Treatment of scissors stab wounds to the cervical spinal cord, whether conservative management or thorough surgical exploration, should be individualized based on history, examination, and imaging. As shown in this case report, despite conservative management, complete recovery, which was unexpected, was attributed to the initial mild laceration of the spinal cord and ipsilateral spinal cord functional compensation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cannabis use in persons with traumatic spinal cord injury in Denmark.

    PubMed

    Andresen, Sven R; Biering-Sørensen, Fin; Hagen, Ellen Merete; Nielsen, Jørgen F; Bach, Flemming W; Finnerup, Nanna B

    2017-01-31

    To evaluate recreational and medical cannabis use in individuals with traumatic spinal cord injury, including reasons and predictors for use, perceived benefits and negative consequences. Cross-sectional survey in Denmark. A 35-item questionnaire was sent to 1,101 patients with spinal cord injury who had been in contact with a rehabilitation centre between 1990 and 2012. A total of 537 participants completed the questionnaire. Of these, 36% had tried cannabis at least once and 9% were current users. Of current users, 79% had started to use cannabis before their spinal cord injury. The main reason for use was pleasure, but 65% used cannabis partly for spinal cord injury-related consequences and 59% reported at least good effect on pain and spasticity. Negative consequences of use were primarily inertia and feeling quiet/subdued. Lower age, living in rural areas/larger cities, tobacco-smoking, high alcohol intake and higher muscle stiffness were significantly associated with cannabis use. Those who had never tried cannabis reported that they would mainly use cannabis to alleviate pain and spasticity if it were legalized. Cannabis use is more frequent among individuals with spinal cord injury in Denmark than among the general population. High muscle stiffness and various demographic characteristics (lower age, living in rural areas/larger cities, tobacco-smoking and high alcohol intake) were associated with cannabis use. Most participants had started using cannabis before their spinal cord injury. There was considerable overlap between recreational and disability-related use.

  2. Spinal Cord Diseases

    MedlinePlus

    ... spinal muscular atrophy Symptoms vary but might include pain, numbness, loss of sensation and muscle weakness. These symptoms can occur around the spinal cord, and also in other areas such as your arms and legs. Treatments often include medicines and surgery.

  3. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  4. The rat corticospinal system is functionally and anatomically segregated.

    PubMed

    Olivares-Moreno, Rafael; Moreno-Lopez, Yunuen; Concha, Luis; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo

    2017-12-01

    The descending corticospinal (CS) projection has been considered a key element for motor control, which results from direct and indirect modulation of spinal cord pre-motor interneurons in the intermediate gray matter of the spinal cord, which, in turn, influences motoneurons in the ventral horn. The CS tract (CST) is also involved in a selective and complex modulation of sensory information in the dorsal horn. However, little is known about the spinal network engaged by the CST and the organization of CS projections that may encode different cortical outputs to the spinal cord. This study addresses the issue of whether the CS system exerts parallel control on different spinal networks, which together participate in sensorimotor integration. Here, we show that in the adult rat, two different and partially intermingled CS neurons in the sensorimotor cortex activate, with different time latencies, distinct spinal cord neurons located in the dorsal horn and intermediate zone of the same segment. The fact that different populations of CS neurons project in a segregated manner suggests that CST is composed of subsystems controlling different spinal cord circuits that modulate motor outputs and sensory inputs in a coordinated manner.

  5. An unusual cause of autonomic dysreflexia: pheochromocytoma in an individual with tetraplegia.

    PubMed

    Armenti-Kapros, Brenda; Nambiar, Prabhakaran K; Lippman, H Robert; Levy, James R

    2003-01-01

    Autonomic dysreflexia (AD) is a frequent, serious acute syndrome that occurs in patients with spinal cord lesions at level T6 and above. The syndrome is caused by massive sympathetic discharge that is triggered by a noxious stimulus below the level of the spinal cord lesion. Pheochromocytomas are rare tumors that present with symptoms similar to AD. Case Report. A 50-year-old man with C7 American Spinal Injury Association scale A tetraplegia presented with episodes of severe headaches and paroxysmal hypertension. He was diagnosed with AD. Despite resolving bladder and bowel problems, he continued to have hypertensive episodes. A CT scan of the abdomen revealed a heterogeneous left adrenal mass. Further workup revealed significantly elevated serum and 24-hour urinary catecholamines. Clonidine failed to fully suppress the markedly elevated concentrations of serum catecholamines. These biochemical findings were consistent with the diagnosis of pheochromocytoma. Prior to surgery, the patient was treated with alpha-receptor blockers and volume expansion with intravenous fluids. A left adrenalectomy was performed. The surgical specimen revealed that the adrenal gland was expanded by a spherical mass. The pathologic report was benign pheochromocytoma of the left adrenal gland. Clinical symptoms and hypertensive episodes resolved following adrenalectomy. To our knowledge, this is the first reported case of a pheochromocytoma in an individual with spinal cord injury.

  6. Experiences of Living with Pain after a Spinal Cord Injury

    DTIC Science & Technology

    2013-09-01

    AD_________________ Award Number: W81XWH-12-1-0465 TITLE: Experiences of Living with Pain after a...COVERED 01 September 2012 – 31 August 2013 4. TITLE AND SUBTITLE Experiences of Living with Pain after a Spinal Cord Injury 5a. CONTRACT NUMBER...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Persistent chronic pain is prevalent after a spinal cord injury (SCI), with

  7. Employment among Spinal Cord Injured Patients Living in Turkey: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Gunduz, Berrin; Erhan, Belgin; Bardak, Ayse Nur

    2010-01-01

    The aim of this study was to determine the rate of employment and to establish the factors affecting vocational status in spinal cord injured patients living in Turkey. One hundred and fifty-two traumatic spinal cord injured patients older than 18 years with injury duration of at least 1 year and living in the community were included in the study;…

  8. Cardio Respiratory Adaptations with Long Term Personalized Exercise Program in a T12 Spinal Cord Injured Person

    ERIC Educational Resources Information Center

    Vasiliadis, Angelo; Christoulas, Kosmas; Evaggelinou, Christina; Vrabas, Ioannis

    2009-01-01

    The purpose of this study was to investigate the physiological adaptations in cardio respiratory endurance with a personalized exercise program with arm-cranking exercise in a paraplegic person (incomplete T12 spinal cord injury). A 32 year-old man with spinal cord injury (T12) participated in the present study performing 30 minutes arm cranking…

  9. Evaluation of normal appearing spinal cord by diffusion tensor imaging, fiber tracking, fractional anisotropy, and apparent diffusion coefficient measurement in 13 dogs

    PubMed Central

    2013-01-01

    Background Functional magnetic resonance (fMR) imaging offers plenty of new opportunities in the diagnosis of central nervous system diseases. Diffusion tensor imaging (DTI) is a technique sensitive to the random motion of water providing information about tissue architecture. We applied DTI to normal appearing spinal cords of 13 dogs of different breeds and body weights in a 3.0 T magnetic resonance (MR) scanner. The aim was to study fiber tracking (FT) patterns by tractography and the variations of the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) observed in the spinal cords of dogs with different sizes and at different locations (cervical and thoracolumbar). For that reason we added a DTI sequence to the standard clinical MR protocol. The values of FA and ADC were calculated by means of three regions of interest defined on the cervical or the thoracolumbar spinal cord (ROI 1, 2, and 3). Results The shape of the spinal cord fiber tracts was well illustrated following tractography and the exiting nerve roots could be differentiated from the spinal cord fiber tracts. Routine MR scanning times were extended for 8 to 12 min, depending on the size of the field of view (FOV), the slice thickness, and the size of the interslice gaps. In small breed dogs (< 15 kg body weight) the fibers could be tracked over a length of approximately 10 vertebral bodies with scanning times of about 8 min, whereas in large breed dogs (> 25 kg body weight) the traceable fiber length was about 5 vertebral bodies which took 10 to 12 min scanning time. FA and ADC values showed mean values of 0.447 (FA), and 0.560 × 10-3 mm2/s (ADC), respectively without any differences detected with regard to different dog sizes and spinal cord 45 segments examined. Conclusion FT is suitable for the graphical depiction of the canine spinal cord and the exiting nerve roots. The FA and ADC values offer an objective measure for evaluation of the spinal cord fiber integrity in dogs. PMID:23618404

  10. p53 participates in the protective effects of ischemic post-conditioning against OGD-reperfusion injury in primary cultured spinal cord neurons.

    PubMed

    Li, Jinquan; Chen, Gong; Gao, Xinjie; Shen, Chao; Zhou, Ping; Wu, Xing; Che, Xiaoming; Xie, Rong

    2017-01-18

    Spinal cord ischemia-reperfusion (I/R) injury is a severe clinical condition, while the mechanism is still not clarified and the therapeutic approach is limited. Ischemia post-conditioning (PC) has been found to have the protective effects against I/R injury in brain. Recently p53 has been reported to take part in the regulation and protection of I/R injury. We hypothesize that PC has the protective effects in primary cultured spinal cord neurons against ischemia-reperfusion injury, and MDM2-p53 signaling pathway may involve in its protective mechanism. In this study, we used an OGD (oxygen and glucose deprivation)-reperfusion model in primary cultured spinal cord neurons to simulate the I/R injury of spinal cord in vitro, and PC was conducted by 3 cycles of 15min restoration of glucose and oxygen with 15min OGD, followed by 6h fully restoration as reperfusion. Lentiviral vectors were used to knock down MDM2 or over-express p53 genes in primary cultured spinal cord neurons. The results showed that 3 cycles of 15min PC generated the most significant protective effects in primary cultured spinal cord neurons against OGD-reperfusion injury. The levels of MDM2 were decreased while p53, Bax, and cleaved Caspase 3 were increased under OGD-reperfusion condition. PC could significantly reverse the down-regulation of MDM2 and up-regulation of p53, Bax, and cleaved Caspase 3 by OGD-reperfusion injury. Moreover, MDM2 knockdown or p53 over-expression could induce the cleaved Caspase 3 expression and blocked the protective effects of PC in primary cultured spinal cord neurons against OGD-reperfusion injury. In conclusion, our work demonstrated that MDM2-p53 pathway plays a pivotal role in the protective effect of PC against OGD-reperfusion injury and PC may be a feasible therapy strategy in the treatment for spinal cord I/R injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Psychometric properties of the International Classification of Functioning, Disability and Health set for spinal cord injury nursing based on Rasch analysis.

    PubMed

    Li, Kun; Yan, Tiebin; You, Liming; Xie, Sumei; Li, Yun; Tang, Jie; Wang, Yingmin; Gao, Yan

    2018-02-01

    To examine the psychometric properties of the International Classification of Functioning, Disability and Health (ICF) set for spinal cord injury nursing (ICF-SCIN) using Rasch analysis. A total of 140 spinal cord injury patients were recruited between December 2013 and March 2014 through convenience sampling. Nurses used the components body functions (BF), body structures (BS), and activities and participation (AP) of the ICF-SCIN to rate the patients' functioning. Rasch analysis was performed using RUMM 2030 software. In each component, categories were rescored from 01234 to 01112 because of reversed thresholds. Nine testlets were created to overcome local dependency. Four categories which fit to the Rasch model poorly were deleted. After modification, the components BF, BS, and AP showed good fit to the Rasch model with a Bonferroni-adjusted significant level (χ 2  =   86.29, p = 0.006; χ 2  =   22.44, p = 0.130; χ 2  =   39.92, p = 0.159). The person separation indices (PSIs) for the three components were 0.80, 0.54, and 0.97, respectively. No differential item functioning (DIF) was detected across age, gender, or educational level. The fit properties of the ICF set were satisfactory after modifications. The ICF-SCIN has the potential as a nursing assessment instrument for measuring the functioning of patients with spinal cord injury. Implications for rehabilitation The International Classification of Functioning, Disability and Health (ICF) set for spinal cord injury nursing contains a group of categories which can reflect the functioning of spinal cord injury patients from the perspective of nurses. The components body functions (BF), body structures (BS), and activities and participation (AP) of the ICF set for spinal cord injury achieved the fit to the Rasch model through rescoring, generating testlets, and deleting categories with poor fit. The ICF set for spinal cord injury nursing (ICF-SCIN) has the potential to be used as a clinical nursing assessment tool in measuring the functioning of patients with spinal cord injury.

  12. [RECONSTRUCTION OF LOWER EXTREMITY FUNCTION OF COMPLETE SPINAL CORD INJURY RATS BY FIRST NEURON CONNECTION].

    PubMed

    Wang, Fangyong; Yuan, Yuan; Li, Jianjun

    2015-12-01

    To investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. Forty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L₁ transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n = 20) and experimental group (n = 20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. After establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P > 0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. Direct reconstruction of the first neurons is sufficient in the regeneration of corresponding neural circuit by the growth of residual axon; but the motor function recovery of the target muscles innervated by peripheral nerve is not observed.

  13. Ultrastructural blood-brain barrier alterations and edema formation in acute spinal cord trauma.

    PubMed

    Goodman, J H; Bingham, W G; Hunt, W E

    1976-04-01

    Endothelial changes leading to edema formation are examined in the primate spinal cord (Macaca mulatta) following a lesion created by a 20-gm weight falling 15 cm onto the exposed dura. Intravascular perfusion of a paraformaldehydeglutaraldehyde solution followed by carbon black provides adequate fixation of vascular structures and glial elements. Myelin is poorly preserved. Ultrastructural alterations of the blood-brain barrier consist of loss of integrity of the endothelial tight junctions. Edema caused by vascular disruption and parenchymatous extravasation of intravascular contents is observed along with glial swelling. Interglial gap junctions persist in areas of marked cellular seperation and do not impede the migration of edema fluid.

  14. Invasive histiocytic sarcoma of the lumbar spine in a ferret (Mustela putorius furo).

    PubMed

    Warschau, M; Hoffmann, M; Dziallas, P; Hansmann, F; Baumgärtner, W; Mischke, R; Cichowski, S; Fehr, M

    2017-02-01

    This report describes the history, clinical examination and histopathology of a histiocytic sarcoma in a domestic ferret. Clinical signs were acute paraplegia and dysuria. Physical examination revealed a firm, smooth, touch-sensitive mass in and around the lumbar vertebral column. Neurologic examination was consistent with a lesion between spinal cord segments T3 and L3. Magnetic resonance images revealed bone lesions of L2 and L3 combined with compression of the spinal cord due to a homogenous, isointense mass that was diagnosed as a malignant round cell tumour and the ferret was euthanased. Histopathology confirmed the diagnosis of an infiltrative histiocytic sarcoma. © 2017 British Small Animal Veterinary Association.

  15. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates

    PubMed Central

    Salegio, Ernesto A.; Camisa, William; Tam, Horace; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2016-01-01

    Abstract Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5–1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries. PMID:26670940

  16. A THREE-DIMENSIONAL MAP OF THE HINDLIMB MOTOR REPRESENTATION IN THE LUMBAR SPINAL CORD IN SPRAGUE DAWLEY RATS

    PubMed Central

    Borrell, Jordan A.; Frost, Shawn; Peterson, Jeremy; Nudo, Randolph J.

    2016-01-01

    Objective Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282,000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a three-dimensional (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and EMG activity. Via fine wire electromyographic (EMG) electrodes, Stimulus-Triggered Averaging (StTA) was used on rectified EMG data to determine response latency. Main results Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance The derived motor map provides insight into the parameters needed for future neuromodulatory devices. PMID:27934789

  17. TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain: Distinct role of TNF receptor subtype 1 and 2

    PubMed Central

    Zhang, Ling; Berta, Temugin; Xu, Zhen-Zhong; Liu, Tong; Park, Jong Yeon; Ji, Ru-Rong

    2010-01-01

    Tumor necrosis factor-alpha (TNF-α) is a key proinflammatory cytokine. It is generally believed that TNF-α exerts its effects primarily via TNF receptor subtype-1 (TNFR1). We investigated distinct role of TNFR1 and TNFR2 in spinal cord synaptic transmission and inflammatory pain. Compared to wild-type (WT) mice, TNFR1 and TNFR2 knockout (KO) mice exhibited normal heat sensitivity and unaltered excitatory synaptic transmission in the spinal cord, as revealed by spontaneous excitatory postsynaptic currents (sEPSCs) in lamina II neurons of spinal cord slices. However, heat hyperalgesia after intrathecal TNF-α and the second-phase spontaneous pain in the formalin test were reduced in both TNFR1- and TNFR2-KO mice. In particular, heat hyperalgesia after intraplantar injection of complete Freund's adjuvant (CFA) was decreased in the early phase in TNFR2-KO mice but reduced in both early and later phase in TNFR1-KO mice. Consistently, CFA elicited a transient increase of TNFR2 mRNA levels in the spinal cord on day 1. Notably, TNF-α evoked a drastic increase in sEPSC frequency in lamina II neurons, which was abolished in TNFR1-KO mice and reduced in TNFR2-KO mice. TNF-α also increased NMDA currents in lamina II neurons, and this increase was abolished in TNFR1-KO mice but retained in TNFR2-KO mice. Finally, intrathecal injection of the NMDA receptor antagonist MK-801 prevented heat hyperalgesia elicited by intrathecal TNF-α. Our findings support a central role of TNF-α in regulating synaptic plasticity (central sensitization) and inflammatory pain via both TNFR1 and TNFR2. Our data also uncover a unique role of TNFR2 in mediating early-phase inflammatory pain. PMID:21159431

  18. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats

    NASA Astrophysics Data System (ADS)

    Borrell, Jordan A.; Frost, Shawn B.; Peterson, Jeremy; Nudo, Randolph J.

    2017-02-01

    Objective. Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach. Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. Main results. Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance. The derived motor map provides insight into the parameters needed for future neuromodulatory devices.

  19. Early Versus Delayed Surgical Decompression of Spinal Cord after Traumatic Cervical Spinal Cord Injury: A Cost-Utility Analysis.

    PubMed

    Furlan, Julio C; Craven, B Catharine; Massicotte, Eric M; Fehlings, Michael G

    2016-04-01

    This cost-utility analysis was undertaken to compare early (≤24 hours since trauma) versus delayed surgical decompression of spinal cord to determine which approach is more cost effective in the management of patients with acute traumatic cervical spinal cord injury (SCI). This study includes the patients enrolled into the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS) and admitted at Toronto Western Hospital. Cases were grouped into patients with motor complete SCI and individuals with motor incomplete SCI. A cost-utility analysis was performed for each group of patients by the use of data for the first 6 months after SCI. The perspective of a public health care insurer was adopted. Costs were estimated in 2014 U.S. dollars. Utilities were estimated from the STASCIS. The baseline analysis indicates early spinal decompression is more cost-effective approach compared with the delayed spinal decompression. When we considered the delayed spinal decompression as the baseline strategy, the incremental cost-effectiveness ratio analysis revealed a saving of US$ 58,368,024.12 per quality-adjusted life years gained for patients with complete SCI and a saving of US$ 536,217.33 per quality-adjusted life years gained in patients with incomplete SCI for the early spinal decompression. The probabilistic analysis confirmed the early-decompression strategy as more cost effective than the delayed-decompression approach, even though there is no clearly dominant strategy. The results of this economic analysis suggests that early decompression of spinal cord was more cost effective than delayed surgical decompression in the management of patients with motor complete and incomplete SCI, even though no strategy was clearly dominant. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    PubMed

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  1. International lower urinary tract function basic spinal cord injury data set.

    PubMed

    Biering-Sørensen, F; Craggs, M; Kennelly, M; Schick, E; Wyndaele, J-J

    2008-05-01

    To create the International Lower Urinary Tract Function Basic Spinal Cord Injury (SCI) Data Set within the framework of the International SCI Data Sets. International working group. The draft of the Data Set was developed by a working group consisting of the members appointed by the International Continence Society, the European Association of Urology, the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the Executive Committee of the International SCI Standards and Data Sets. The final version of the Data Set was developed after review and comments by the members of the Executive Committee of the International SCI Standards and Data Sets, the ISCoS Scientific Committee, ASIA Board, relevant and interested (international) organizations and societies (around 40) and persons, and the ISCoS Council. Endorsement of the Data Set by relevant organizations and societies will be obtained. To make the Data Set uniform, each variable and each response category within each variable have been specifically defined in a way that is designed to promote the collection and reporting of comparable minimal data. Variables included in the International Lower Urinary Tract Function Basic SCI Data Set are as follows: date of data collection, urinary tract impairment unrelated to spinal cord lesion, awareness of the need to empty the bladder, bladder emptying, average number of voluntary bladder emptyings per day during the last week, incontinence within the last 3 months, collecting appliances for urinary incontinence, any drugs for the urinary tract within the last year, surgical procedures on the urinary tract and any change in urinary symptoms within the last year. Complete instruction for data collection, data sheet and training cases available at the website of ISCoS (www.iscos.org.uk) and ASIA (www.asia-spinalinjury.org).

  2. Quality of life and the related factors in spouses of veterans with chronic spinal cord injury

    PubMed Central

    2013-01-01

    Background The quality of life (QOL) of caregivers of individuals with chronic spinal cord injuries may be affected by several factors. Moreover, this issue is yet to be documented fully in the literature. The purpose of this study was to evaluate the health related quality of life of spouses who act as primary caregivers of veterans with chronic spinal cord injuries in Iran. Methods The study consisted of 72 wives of 72 veterans who were categorized as spinal cord injured patients based on the American Spinal Injury Association (ASIA) classification. Health related quality of life was assessed by the Short Form (SF-36) Health Survey. Pearson's correlation was carried out to find any correlation between demographic variables with SF-36 dimensions. To find the effect of the factors like age, employment status, duration of care giving, education, presence or absence of knee osteoarthritis, and mechanical back pain on different domains of the SF-36 health survey, Multivariate analysis of variance (MANOVA) was used. Results The mean age of the participants was 44.7 years. According to the ASIA classification 88.9% and 11.1% of the veterans were paraplegic and tetraplegic respectively. Fifty percent of them had a complete injury (ASIA A) and 85% of the spouses were exclusive care givers. All of the SF-36 scores of the spouses were significantly lower than the normal population. Pearson's correlation demonstrated a negative significant correlation between both age and duration of caring with the PF domain. The number of children had a negative correlation with RE and VT. Conclusion The burden of caregiving can impact the QOL of caregivers and cause health problems. These problems can cause limitations for caregiver spouses and it can lead to a decrease in the quality of given care. PMID:23506336

  3. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord.

    PubMed

    Elliott Donaghue, Irja; Tator, Charles H; Shoichet, Molly S

    2015-01-01

    Spinal cord injury is a debilitating condition that currently lacks effective clinical treatment. Neurotrophin-3 (NT-3) has been demonstrated in experimental animal models to induce axonal regeneration and functional improvements, yet its local delivery remains challenging. For ultimate clinical translation, a drug delivery system is required for localized, sustained, and minimally invasive release. Here, an injectable composite drug delivery system (DDS) composed of biodegradable polymeric nanoparticles dispersed in a hyaluronan/methyl cellulose hydrogel was injected into the intrathecal space to achieve acute local delivery to the spinal cord after a thoracic clip compression injury. NT-3 was encapsulated in the DDS and released in vitro for up to 50 d. With a single injection of the DDS into the intrathecal space of the injured spinal cord, NT-3 diffused ventrally through the cord and was detectable in the spinal cord for at least 28 d therein. Delivery of NT-3 resulted in significant axon growth with no effect on the astroglial response to injury in comparison with vehicle and injury controls. NT-3 treatment promoted functional improvements at 21 d according to the Basso Beattie Bresnahan locomotor scale in comparison with the DDS alone. The sustained delivery of bioactive NT-3 to the injured spinal cord achieved in this study demonstrates the promise of this DDS for central nervous system repair.

  4. Thoracic Unilateral Spinal Cord Injury After Spinal Anaesthesia for Total Hip Replacement: Fate or Mistake?

    PubMed Central

    Fabio, Costa; Romualdo, Del Buono; Eugenio, Agrò Felice; Vittoradolfo, Tambone; Massimiliano, Vitali Andrea; Giovanna, Ricci

    2017-01-01

    Spinal anaesthesia is the most preffered anesthesia technique for total hip replacement, and its complications range from low entity (insignificant) to life threatening. The incidence of neurologic complications after neuraxial anaesthesia is not perfectly clear, although there are several described cases of spinal cord ischaemia. We present a case of unilateral T8–T11 spinal cord ischaemia following L2–L3 spinal anaesthesia for total hip replacement. Magnetic resonance imaging showed a hyperintense T8–T11 signal alteration on the leftside of paramedian spinal cord. A temporal epidemiologic linkage between the damage and the surgery seems to be present. The injury occurred without anatomical proximity between the injury site and the spinal needle entry site. This may be due to multiple contributing factors, each of them is probably not enough to determine the damage by itself; however, acting simultaneously, they could have been responsible for the complication. The result was unpredictable and unavoidable and was caused by unforeseeable circumstances and not by inadequate medical practice. PMID:28439446

  5. Observational study of the effectiveness of spinal cord injury rehabilitation using the Spinal Cord Injury-Ability Realization Measurement Index.

    PubMed

    Scivoletto, G; Bonavita, J; Torre, M; Baroncini, I; Tiberti, S; Maietti, E; Laurenza, L; China, S; Corallo, V; Guerra, F; Buscaroli, L; Candeloro, C; Brunelli, E; Catz, A; Molinari, M

    2016-06-01

    Retrospective observational study. The objective of this study was to determine the rehabilitation potential and the extent to which it is realized in a cohort of spinal cord injury patients using the Spinal Cord Injury-Ability Realization Measurement Index (SCI-ARMI) and to study the clinical factors that influence this realization. Two spinal units in Italy. Consecutive patients were assessed at the end of an in-patient rehabilitation program using the Spinal Cord Independence Measure and the International Standards for Neurological Classification of Spinal Cord Injury. On the basis of these data and of the age and gender of the patients, we calculated the SCI-ARMI score. Regression analyses were performed to study the relationship between clinical factors and the extent to which rehabilitation potential is realized. We examined the data for 306 patients. Most patients were discharged without having reached their rehabilitation potential, with an SCI-ARMI score <80%. SCI-ARMI scores at discharge were positively influenced by etiology and the lesion level and correlated negatively with lesion severity and the presence of complications during rehabilitation. The SCI-ARMI is an effective tool that can be used to measure the achievement of rehabilitation potential in SCI patients and to identify groups of patients who are at risk of not meeting their rehabilitative potential.

  6. Peripheral ionotropic glutamate receptors contribute to Fos expression increase in the spinal cord through antidromic electrical stimulation of sensory nerves.

    PubMed

    Li, Jia-Heng; He, Pei-Yao; Fan, Dan-Ni; Alemujiang, Dilinapa; Huo, Fu-Quan; Zhao, Yan; Cao, Dong-Yuan

    2018-06-21

    Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. In vitro and in vivo analysis and characterization of engineered spinal neural implants (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shor, Erez; Shoham, Shy; Levenberg, Shulamit

    2016-03-01

    Spinal cord injury is a devastating medical condition. Recent developments in pre-clinical and clinical research have started to yield neural implants inducing functional recovery after spinal cord transection injury. However, the functional performance of the transplants was assessed using histology and behavioral experiments which are unable to study cell dynamics and the therapeutic response. Here, we use neurophotonic tools and optogenetic probes to investigate cellular level morphology and activity characteristics of neural implants over time at the cellular level. These methods were used in-vitro and in-vivo, in a mouse spinal cord injury implant model. Following previous attempts to induce recovery after spinal cord injury, we engineered a pre-vascularized implant to obtain better functional performance. To image network activity of a construct implanted in a mouse spinal cord, we transfected the implant to express GCaMP6 calcium activity indicators and implanted these constructs under a spinal cord chamber enabling 2-photon chronic in vivo neural activity imaging. Activity and morphology analysis image processing software was developed to automatically quantify the behavior of the neural and vascular networks. Our experimental results and analyses demonstrate that vascularized and non-vascularized constructs exhibit very different morphologic and activity patterns at the cellular level. This work enables further optimization of neural implants and also provides valuable tools for continuous cellular level monitoring and evaluation of transplants designed for various neurodegenerative disease models.

  8. Verminous (Strongylus vulgaris) myelitis in a donkey.

    PubMed

    Mayhew, I G; Brewer, B D; Reinhard, M K; Greiner, E C

    1984-01-01

    A fifth stage Strongylus vulgaris migrated through the spinal cord of a 2-year-old, male donkey resulting in progressive paraparesis and then tetraplegia. A profound neutrophilic pleocytosis was detected on analysis of cerebrospinal fluid. The parasite appeared to have entered the mid-lumbar spinal cord, migrated to the cranial thoracic segments, exited, then re-entered the spinal cord a few segments craniad. It then traveled further cranially and was found in the third cervical spinal cord segment. Some parts of the lesion were remarkably free from tissue necrosis, hemorrhage and inflammation. Severe granulomatous myelitis with hemorrhage and necrosis were seen at other sites. The latter were quite similar to lesions seen in equine protozoal myeloencephalitis.

  9. Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury

    PubMed Central

    Vigani, Barbara; Rossi, Silvia; Sandri, Giuseppina; Bonferoni, Maria Cristina; Ferrari, Franca

    2017-01-01

    The complex pathophysiology of spinal cord injury may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. Many efforts have been performed to design and develop suitable scaffolds for spinal cord regeneration, keeping in mind that the reconstruction of a pro-regenerative environment is the key challenge for an effective neurogenesis. The aim of this review is to outline the main features of an ideal scaffold, based on biomaterials, produced by the electrospinning technique and intended for the spinal cord regeneration. An overview of the polymers more investigated in the production of neural fibrous scaffolds is also provided. PMID:29239316

  10. Favourable outcome of posterior decompression and stabilization in lordosis for cervical spondylotic myelopathy: the spinal cord "back shift" concept.

    PubMed

    Denaro, Vincenzo; Longo, Umile Giuseppe; Berton, Alessandra; Salvatore, Giuseppe; Denaro, Luca

    2015-11-01

    Surgical management of patients with multilevel CSM aims to decompress the spinal cord and restore the normal sagittal alignment. The literature lacks of high level evidences about the best surgical approach. Posterior decompression and stabilization in lordosis allows spinal cord back shift, leading to indirect decompression of the anterior spinal cord. The purpose of this study was to investigate the efficacy of posterior decompression and stabilization in lordosis for multilevel CSM. 36 out of 40 patients were clinically assessed at a mean follow-up of 5, 7 years. Outcome measures included EMS, mJOA Score, NDI and SF-12. Patients were asked whether surgery met their expectations and if they would undergo the same surgery again. Bone graft fusion, instrumental failure and cervical curvature were evaluated. Spinal cord back shift was measured and correlation with EMS and mJOA score recovery rate was analyzed. All scores showed a significative improvement (p < 0.001), except the SF12-MCS (p > 0.05). Ninety percent of patients would undergo the same surgery again. There was no deterioration of the cervical alignment, posterior grafted bones had completely fused and there were no instrument failures. The mean spinal cord back shift was 3.9 mm (range 2.5-4.5 mm). EMS and mJOA recovery rates were significantly correlated with the postoperative posterior cord migration (P < 0.05). Posterior decompression and stabilization in lordosis is a valuable procedure for patients affected by multilevel CSM, leading to significant clinical improvement thanks to the spinal cord back shift. Postoperative lordotic alignment of the cervical spine is a key factor for successful treatment.

  11. The application of a modified neuroprosthetic hand system in a child with a C7 spinal cord injury. Case report.

    PubMed

    Smith, B T; Mulcahey, M J; Triolo, R J; Betz, R R

    1992-08-01

    A neuroprosthetic hand system developed at Case Western Reserve University has been modified for use by an 8 year old child with an incomplete C7 spinal cord injury. This system has been adapted to accommodate voluntary thumb and finger extension, and provides stimulated finger flexion and thumb position for lateral and palmar prehension. Three months were required to develop grasp with sufficient strength and coordination for functional use. This period consisted of: implantation and immobilization of percutaneous intramuscular electrodes; stimulated exercise of the muscles of the hand and forearm; programming grasp patterns; and system training. Functional assessments show that the neuroprosthetic hand system allows the subject to perform unilateral and bilateral tasks that were otherwise impossible or were previously performed bimanually. The ability to perform activities of daily living with one hand frees the contralateral upper extremity to be used either for balance which increases the work area, or to stabilize an object allowing manipulation with the instrumented hand. Telephone interviews suggest that the hand system is used on a consistent basis at home and school. This single subject application indicates that a stimulation system designed for adults with C5-6 spinal cord injuries can enhance hand function and facilitate independence in a child with a low level cervical lesion.

  12. Amyotrophic lateral sclerosis in an adult following acute paralytic poliomyelitis in early childhood.

    PubMed

    Shimada, A; Lange, D J; Hays, A P

    1999-03-01

    About 30% of polio survivors develop a post-polio syndrome. Some of these patients develop slowly progressive muscle weakness known as post-poliomyelitis muscular atrophy (PPMA). We describe an unusual form of amyotrophic lateral sclerosis (ALS) in a patient with acute poliomyelitis in childhood. An 80-year-old woman had acute poliomyelitis at 2 years of age and developed weakness limited to the lower extremities. Residual weakness was stable until the age of 75 when she developed rapidly progressive weakness that first affected her left arm and subsequently the right arm. Neurological examination revealed both upper and lower motor neuron signs. These clinical features were more consistent with ALS than PPMA. At autopsy, there was marked atrophy of the precentral gyrus. Microscopic examination revealed a severe loss of all nerve cells and pronounced fibrillary astrocytosis of the lumbar ventral horns in the spinal cord, presumably a result of poliomyelitis. Superimposed on these spinal cord alterations were the pathological features of ALS, consisting of loss of Betz cells, corticospinal tract degeneration and loss of motor neurons of other levels of the spinal cord. The findings included some atypical features for ALS, namely, sparing of the hypoglossal nucleus, absence of Bunina bodies and absence of ubiquitin-immunoreactive inclusions. Although poliomyelitis and ALS may be coincidental, the unusual pathological expression of ALS raise the possibility that it is related to the antecedent poliomyelitis.

  13. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    PubMed Central

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury. PMID:27830790

  14. The development of spinal cord anatomy.

    PubMed

    Pearce, J M S

    2008-01-01

    A panel illustrating spinal cord injury in The Dying Lioness in the British Museum dates to 650 BC. This paper outlines the subsequent progression of knowledge of the anatomy of the spinal cord. The animal dissections of Galen are considered because his deductions persisted through the Dark Ages until the late 18th century. Anatomy advanced gradually to yield discoveries of the complex tracts and grey matter elements of the cord and their functions. Amongst many distinguished exponents, the works of Blasius, Huber, Vicq d'Azyr and Stilling are emphasised. (c) 2008 S. Karger AG, Basel

  15. Sexual counseling with spinal cord-injured clients.

    PubMed

    Miller, D K

    1975-01-01

    Spinal cord-injured clients have many fears and misapprehension about their sexual functioning. Common beliefs include: (a) disabled men cannot sexually satisfy able-bodied women; and (b) cord-injured persons cannot have sexual intercourse. Such misapprehensions can be helped by the counselor's willingness to discuss sexual issues openly. Clients need a clear and accurate picture of the facts, as well as encouragement and support to help them rediscover their sexuality. Spinal cord injury does not mean sexual incapacity. Given a knowing and patient partner, most clients can enjoy a satisfying sex life.

  16. Comparison of alpha-synuclein immunoreactivity in the spinal cord between the adult and aged beagle dog

    PubMed Central

    Ahn, Ji-Hyeon; Choi, Jung-Hoon; Park, Joon-Ha; Yan, Bing-Chun; Kim, In-Hye; Lee, Jae-Chul; Lee, Dae-Hwan; Kim, Jin-Sang

    2012-01-01

    Alpha-synuclein (α-syn) is a presynaptic protein that is richly expressed in the central and peripheral nervous systems of mammals, and it is related to the pathogenesis of Parkinson's disease and other neurodegenerative disorders. In the present study, we compared the distribution of the immunoreactivity of α-syn and its related gliosis in the spinal cord of young adult (2-3 years) and aged (10-12 years) beagle dogs. We discovered that α-syn immunoreactivity was present in many neurons in the thoracic level of the aged spinal cord, however, its protein level was not distinct inform that of the adult spinal cord. In addition, ionized calcium-binding adapter molecule-1 (a marker for microglia) immunoreactivity, and not glial fibrillary acidic protein (a marker for astrocytes) immunoreactivity, was somewhat increased in the aged group compared to the adult group. These results indicate that α-syn immunoreactivity was not dramatically changed in the dog spinal cord during aging. PMID:23091516

  17. Clinical interpretation of the Spinal Cord Injury Functional Index (SCI-FI)

    PubMed Central

    Fyffe, Denise; Kalpakjian, Claire Z.; Slavin, Mary; Kisala, Pamela; Ni, Pengsheng; Kirshblum, Steven C.; Tulsky, David S.; Jette, Alan M.

    2016-01-01

    Objective: To provide validation of functional ability levels for the Spinal Cord Injury – Functional Index (SCI-FI). Design: Cross-sectional. Setting: Inpatient rehabilitation hospital and community settings. Participants: A sample of 855 individuals with traumatic spinal cord injury enrolled in 6 rehabilitation centers participating in the National Spinal Cord Injury Model Systems Network. Interventions: Not Applicable. Main Outcome Measures: Spinal Cord Injury-Functional Index (SCI-FI). Results: Cluster analyses identified three distinct groups that represent low, mid-range and high SCI-FI functional ability levels. Comparison of clusters on personal and other injury characteristics suggested some significant differences between groups. Conclusions: These results strongly support the use of SCI-FI functional ability levels to document the perceived functional abilities of persons with SCI. Results of the cluster analysis suggest that the SCI-FI functional ability levels capture function by injury characteristics. Clinical implications regarding tracking functional activity trajectories during follow-up visits are discussed. PMID:26781769

  18. Acute electroacupuncture inhibits nitric oxide synthase expression in the spinal cord of neuropathic rats.

    PubMed

    Cha, Myeoung Hoon; Bai, Sun Joon; Lee, Kyung Hee; Cho, Zang Hee; Kim, Young-Bo; Lee, Hye-Jung; Lee, Bae Hwan

    2010-02-01

    To examine the effects of electroacupuncture stimulation on behavioral changes and neuronal nitric oxide synthase expression in the rat spinal cord after nerve injury. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery by tightly ligating and cutting the left tibial and sural nerves. Behavioral responses to mechanical stimulation were tested for 2 weeks post-operatively. At the end of behavioral testing, electroacupuncture stimulation was applied to ST36 (Choksamni) and SP9 (Eumleungcheon) acupoints. Immunocytochemical staining was performed to investigate changes in the expression of neuronal nitric oxide synthase-immunoreactive neurons in the L4-5 spinal cord. Mechanical allodynia was observed by nerve injury. The mechanical allodynia was decreased after electroacupuncture stimulation. Neuronal nitric oxide synthase expression was also decreased in L4-5 spinal cord by electroacupuncture treatment. These results suggest that electroacupuncture relieves mechanical allodynia in the neuropathic rats possibly by the inhibition of neuronal nitric oxide synthase expression in the spinal cord.

  19. Therapeutic horse back riding of a spinal cord injured veteran: a case study.

    PubMed

    Asselin, Glennys; Penning, Julius H; Ramanujam, Savithri; Neri, Rebecca; Ward, Constance

    2012-01-01

    To determine an incomplete spinal cord injured veteran's experience following participation in a therapeutic horseback riding program. Following the establishment of a nationwide therapeutic riding program for America's wounded service veterans in 2007, a Certified Rehabilitation Registered Nurse from the Michael E. DeBakey Veteran Affairs Medical Center worked with an incomplete spinal cord injured veteran who participated in the Horses for Heroes program. This program resulted in many benefits for the veteran, including an increase in balance, muscle strength, and self-esteem. A physical, psychological, and psychosocial benefit of therapeutic horseback riding is shown to have positive results for the spinal cord injured. Therapeutic riding is an emerging field where the horse is used as a tool for physical therapy, emotional growth, and learning. Veterans returning from the Iraq/Afghanistan war with traumatic brain injuries, blast injuries, depression, traumatic amputations, and spinal cord injuries may benefit from this nurse-assisted therapy involving the horse. © 2012 Association of Rehabilitation Nurses.

  20. Respiratory Plasticity Following Spinal Injury: Role of Chloride-Dependent Inhibitory Neurotransmission

    DTIC Science & Technology

    2016-12-01

    respiratory pathways following spinal cord injury. J Appl Physiol. 94(2):795-810. Raineteau O and Schwab ME (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2(4):262-73. APPENDICES : None

  1. Congenital Zika Virus Infection Induces Severe Spinal Cord Injury.

    PubMed

    Ramalho, Fernando S; Yamamoto, Aparecida Y; da Silva, Luis L; Figueiredo, Luiz T M; Rocha, Lenaldo B; Neder, Luciano; Teixeira, Sara R; Apolinário, Letícia A; Ramalho, Leandra N Z; Silva, Deisy M; Coutinho, Conrado M; Melli, Patrícia P; Augusto, Marlei J; Santoro, Ligia B; Duarte, Geraldo; Mussi-Pinhata, Marisa M

    2017-08-15

    We report 2 fatal cases of congenital Zika virus (ZIKV) infection. Brain anomalies, including atrophy of the cerebral cortex and brainstem, and cerebellar aplasia were observed. The spinal cord showed architectural distortion, severe neuronal loss, and microcalcifications. The ZIKV proteins and flavivirus-like particles were detected in cytoplasm of spinal neurons, and spinal cord samples were positive for ZIKV RNA. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Spinal Reflexes and Windup In Vitro: Effects of Analgesics and Anesthetics.

    PubMed

    Rivera-Arconada, Ivan; Roza, Carolina; Lopez-Garcia, Jose A

    2016-02-01

    The spinal cord is the first relay center for nociceptive information. Following peripheral injury, the spinal cord sensitizes. A sign of spinal sensitization is the hyper-reflexia which develops shortly after injury and can be detected in the isolated spinal cord as a "memory of pain." In this context, it is easy to understand that many analgesic compounds target spinally located sites of action to attain analgesia. In vitro isolated spinal cord preparations have been used for a number of years, and experience on the effects of compounds of diverse pharmacological families on spinal function has accumulated. Recently, we have proposed that the detailed study of spinal segmental reflexes in vitro may produce data relevant to the evaluation of the analgesic potential of novel compounds. In this review, we describe the main features of segmental reflexes obtained in vitro and discuss the effects of compounds of diverse chemical nature and pharmacological properties on such reflexes. Our aim was to compare the different profiles of action of the compounds on segmental reflexes in order to extract clues that may be helpful for pharmacological characterization of novel analgesics. © 2015 John Wiley & Sons Ltd.

  3. Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    been established, linking post- traumatic ischemia to axonal dysfunction.8 Decreased oxygen level in severe traumatic injuries appears to be implicated...rodent weight drop traumatic spinal cord injury model; ( 2 ) determine if enhanced oxygen delivery in spinal cord injury spares cellular elements, white...shown that ischemia /hypoxia play crucial role in the devastating effects of the secondary injury following SCI which translates into worse neurological

  4. Muscle activity and mood state during simulated plant factory work in individuals with cervical spinal cord injury

    PubMed Central

    Okahara, Satoshi; Kataoka, Masataka; Okuda, Kuniharu; Shima, Masato; Miyagaki, Keiko; Ohara, Hitoshi

    2016-01-01

    [Purpose] The present study investigated the physical and mental effects of plant factory work in individuals with cervical spinal cord injury and the use of a newly developed agricultural working environment. [Subjects] Six males with C5–C8 spinal cord injuries and 10 healthy volunteers participated. [Methods] Plant factory work involved three simulated repetitive tasks: sowing, transplantation, and harvesting. Surface electromyography was performed in the dominant upper arm, upper trapezius, anterior deltoid, and biceps brachii muscles. Subjects’ moods were monitored using the Profile of Mood States. [Results] Five males with C6–C8 injuries performed the same tasks as healthy persons; a male with a C5 injury performed fewer repetitions of tasks because it took longer. Regarding muscle activity during transplantation and harvesting, subjects with spinal cord injury had higher values for the upper trapezius and anterior deltoid muscles compared with healthy persons. The Profile of Mood States vigor scores were significantly higher after tasks in subjects with spinal cord injury. [Conclusion] Individuals with cervical spinal cord injury completed the plant factory work, though it required increased time and muscle activity. For individuals with C5–C8 injuries, it is necessary to develop an appropriate environment and assistive devices to facilitate their work. PMID:27134377

  5. 2-Decenoic acid ethyl ester, a derivative of unsaturated medium-chain fatty acids, facilitates functional recovery of locomotor activity after spinal cord injury.

    PubMed

    Hirakawa, A; Shimizu, K; Fukumitsu, H; Soumiya, H; Iinuma, M; Furukawa, S

    2010-12-29

    There is increasing evidence that omega-3 polyunsaturated fatty acids (PUFAs) have therapeutic potential in various animal models of neuronal injury. However, very few studies have examined the effect of medium-chain fatty acids (MCFAs) on neuronal injury. So in the present study we synthesized various MCFAs and their derivatives, and found that exposure to trans-2-decenoic acid ethyl ester (DAEE) markedly activated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in cultured cortical neurons. Therefore, we examined the effect of DAEE treatment on a rat model of spinal cord injury. DAEE (150 μg/kg body weight) administered after hemisection of the spinal cord resulted in improved functional recovery, decreased the lesion size, increased the activation of ERK1/2, and enhanced the expression of bcl-2 and brain-derived neurotrophic factor (BDNF) mRNA in the injury site of the spinal cord. Furthermore, it also increased neuronal survival after spinal cord injury. These results indicate that the possibility that DAEE will become a promising tool for reducing the secondary damage observed following primary physical injury to the spinal cord. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Melatonin Inhibits Neural Cell Apoptosis and Promotes Locomotor Recovery via Activation of the Wnt/β-Catenin Signaling Pathway After Spinal Cord Injury.

    PubMed

    Shen, Zhaoliang; Zhou, Zipeng; Gao, Shuang; Guo, Yue; Gao, Kai; Wang, Haoyu; Dang, Xiaoqian

    2017-08-01

    The spinal cord is highly sensitive to spinal cord injury (SCI) by external mechanical damage, resulting in irreversible neurological damage. Activation of the Wnt/β-catenin signaling pathway can effectively reduce apoptosis and protect against SCI. Melatonin, an indoleamine originally isolated from bovine pineal tissue, exerts neuroprotective effects after SCI through activation of the Wnt/β-catenin signaling pathway. In this study, we demonstrated that melatonin exhibited neuroprotective effects on neuronal apoptosis and supported functional recovery in a rat SCI model by activating the Wnt/β-catenin signaling pathway. We found that melatonin administration after SCI significantly upregulated the expression of low-density lipoprotein receptor related protein 6 phosphorylation (p-LRP-6), lymphoid enhancer factor-1 (LEF-1) and β-catenin protein in the spinal cord. Melatonin enhanced motor neuronal survival in the spinal cord ventral horn and improved the locomotor functions of rats after SCI. Melatonin administration after SCI also reduced the expression levels of Bax and cleaved caspase-3 in the spinal cord and the proportion of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) positive cells, but increased the expression level of Bcl-2. These results suggest that melatonin attenuated SCI by activating the Wnt/β-catenin signaling pathway.

  7. Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries.

    PubMed

    Hamers, F P; Lankhorst, A J; van Laar, T J; Veldhuis, W B; Gispen, W H

    2001-02-01

    Analysis of locomotion is an important tool in the study of peripheral and central nervous system damage. Most locomotor scoring systems in rodents are based either upon open field locomotion assessment, for example, the BBB score or upon foot print analysis. The former yields a semiquantitative description of locomotion as a whole, whereas the latter generates quantitative data on several selected gait parameters. In this paper, we describe the use of a newly developed gait analysis method that allows easy quantitation of a large number of locomotion parameters during walkway crossing. We were able to extract data on interlimb coordination, swing duration, paw print areas (total over stance, and at 20-msec time resolution), stride length, and base of support: Similar data can not be gathered by any single previously described method. We compare changes in gait parameters induced by two different models of spinal cord injury in rats, transection of the dorsal half of the spinal cord and spinal cord contusion injury induced by the NYU or MASCIS device. Although we applied this method to rats with spinal cord injury, the usefulness of this method is not limited to rats or to the investigation of spinal cord injuries alone.

  8. Multilevel thoracic hemangioma with spinal cord compression in a pediatric patient: case report and review of the literature.

    PubMed

    Cherian, Jacob; Sayama, Christina M; Adesina, Adekunle M; Lam, Sandi K; Luerssen, Thomas G; Jea, Andrew

    2014-09-01

    Vertebral hemangiomas are common benign vascular tumors of the spine. It is very rare for these lesions to symptomatically compress neural elements. If spinal cord compression does occur, it usually involves only a single level. Multilevel vertebral hemangiomas causing symptomatic spinal cord compression have never been reported in the pediatric population to the best of our knowledge. We report the case of a 15-year-old boy presenting with progressive paraparesis due to thoracic spinal cord compression from a multilevel thoracic hemangioma (T5-T10) with epidural extension. Because of his progressive neurological deficit, he was initially treated with urgent multilevel decompressive laminectomies from T4 to T11. This was to be followed by radiotherapy for residual tumor, but the patient was unfortunately lost to follow-up. He re-presented 3 years later with recurrent paraparesis and progressive disease. This was treated with urgent radiotherapy with good response. As of 6 months follow-up, he has made an excellent neurological recovery. In this report, we present the first case of a child with multilevel vertebral hemangiomas causing symptomatic spinal cord compression and review the literature to detail the pathophysiology, management, and treatment of other cases of spinal cord compression by vertebral hemangiomas.

  9. Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia

    PubMed Central

    Haller, Edward; Tajiri, Naoki; Thomson, Avery; Barretta, Jennifer; Williams, Stephanie N.; Haim, Eithan D.; Qin, Hua; Frisina-Deyo, Aric; Abraham, Jerry V.; Sanberg, Paul R.; Van Loveren, Harry; Borlongan, Cesario V.

    2016-01-01

    We previously demonstrated blood-brain barrier impairment in remote contralateral brain areas in rats at 7 and 30 days after transient middle cerebral artery occlusion (tMCAO), indicating ischemic diaschisis. Here, we focused on effects of subacute and chronic focal cerebral ischemia on the blood-spinal cord barrier (BSCB). We observed BSCB damage on both sides of the cervical spinal cord in rats at 7 and 30 days post-tMCAO. Major BSCB ultrastructural changes in spinal cord gray and white matter included vacuolated endothelial cells containing autophagosomes, pericyte degeneration with enlarged mitochondria, astrocyte end-feet degeneration and perivascular edema; damaged motor neurons, swollen axons with unraveled myelin in ascending and descending tracts and astrogliosis were also observed. Evans Blue dye extravasation was maximal at 7 days. There was immunofluorescence evidence of reduction of microvascular expression of tight junction occludin, upregulation of Beclin-1 and LC3B immunoreactivities at 7 days and a reduction of the latter at 30 days post-ischemia. These novel pathological alterations on the cervical spinal cord microvasculature in rats after tMCAO suggest pervasive and long-lasting BSCB damage after focal cerebral ischemia, and that spinal cord ischemic diaschisis should be considered in the pathophysiology and therapeutic approaches in patients with ischemic cerebral infarction. PMID:27283328

  10. Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate-Induced Excitotoxicity.

    PubMed

    Liu, Dongfei; Chen, Jian; Jiang, Tao; Li, Wei; Huang, Yao; Lu, Xiyi; Liu, Zehua; Zhang, Weixia; Zhou, Zheng; Ding, Qirui; Santos, Hélder A; Yin, Guoyong; Fan, Jin

    2018-04-01

    New treatment strategies for spinal cord injury with good therapeutic efficacy are actively pursued. Here, acetalated dextran (AcDX), a biodegradable polymer obtained by modifying vicinal diols of dextran, is demonstrated to protect the traumatically injured spinal cord. To facilitate its administration, AcDX is formulated into microspheres (≈7.2 µm in diameter) by the droplet microfluidic technique. Intrathecally injected AcDX microspheres effectively reduce the traumatic lesion volume and inflammatory response in the injured spinal cord, protect the spinal cord neurons from apoptosis, and ultimately, recover the locomotor function of injured rats. The neuroprotective feature of AcDX microspheres is achieved by sequestering glutamate and calcium ions in cerebrospinal fluid. The scavenging of glutamate and calcium ion reduces the influx of calcium ions into neurons and inhibits the formation of reactive oxygen species. Consequently, AcDX microspheres attenuate the expression of proapoptotic proteins, Calpain, and Bax, and enhance the expression of antiapoptotic protein Bcl-2. Overall, AcDX microspheres protect traumatically injured spinal cord by alleviating the glutamate-induced excitotoxicity. This study opens an exciting perspective toward the application of neuroprotective AcDX for the treatment of severe neurological diseases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Acquisition of Involuntary Spinal Locomotion (Spinal Walking) in Dogs with Irreversible Thoracolumbar Spinal Cord Lesion: 81 Dogs.

    PubMed

    Gallucci, A; Dragone, L; Menchetti, M; Gagliardo, T; Pietra, M; Cardinali, M; Gandini, G

    2017-03-01

    Spinal walking (SW) is described as the acquisition of an involuntary motor function in paraplegic dogs and cats without pain perception affected by a thoracolumbar lesion. Whereas spinal locomotion is well described in cats that underwent training trials after experimental spinal cord resection, less consistent information is available for dogs. Paraplegic dogs affected by a thoracolumbar complete spinal cord lesion undergoing intensive physical rehabilitation could acquire an autonomous SW gait under field conditions. Eighty-one acute paraplegic thoracolumbar dogs without pelvic limb pain perception. Retrospective study of medical records of dogs selected for intensive rehabilitation treatment in paraplegic dogs with absence of pain perception on admission and during the whole treatment. Binary regression and multivariate logistic regression were used to analyze potential associations with the development of SW. Autonomous SW was achieved in 48 dogs (59%). Median time to achieve SW was of 75.5 days (range: 16-350 days). On univariate analysis, SW gait was associated with younger age (P = .002) and early start of physiotherapy (P = .024). Multivariate logistic regression showed that younger age (≤60 months) and lightweight (≤7.8 kg) were positively associated with development of SW (P = .012 and P < .001, respectively). BCS, full-time hospitalization, and type and site of the lesion were not significantly associated with development of SW. Dogs with irreversible thoracolumbar lesion undergoing intensive physiotherapic treatment can acquire SW. Younger age and lightweight are positively associated with the development of SW gait. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  12. Inflammatory myofibroblastic tumour of the spinal cord: case report and review of the literature.

    PubMed

    Despeyroux-Ewers, M; Catalaâ, I; Collin, L; Cognard, C; Loubes-Lacroix, F; Manelfe, C

    2003-11-01

    Inflammatory myofibroblastic tumours (IMT), also called inflammatory pseudotumours, nodular lymphoid hyperplasia, plasma-cell granuloma and fibrous xanthoma, are rare soft-tissue lesions characterised by inflammatory cells and a fibrous stroma. Clinically and radiologically, they may look like malignant tumours. They rarely affect the central nervous system and are very rare in the spinal cord. We report an IMT of the spinal cord in a 22-year-old woman presenting with spinal cord compression and a cauda equina syndrome. MRI showed a lesion at T9 with extramedullary and intramedullary components giving low signal on T2-weighted images and enhancing homogeneously. Pial lesions on the lumbar enlargement and thoracic spinal were present 11 months after surgery, when the lesion recurred. We present the radiological, operative and pathological findings and review the literature.

  13. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics.

    PubMed

    Samineni, Vijay K; Yoon, Jangyeol; Crawford, Kaitlyn E; Jeong, Yu Ra; McKenzie, Kajanna C; Shin, Gunchul; Xie, Zhaoqian; Sundaram, Saranya S; Li, Yuhang; Yang, Min Young; Kim, Jeonghyun; Wu, Di; Xue, Yeguang; Feng, Xue; Huang, Yonggang; Mickle, Aaron D; Banks, Anthony; Ha, Jeong Sook; Golden, Judith P; Rogers, John A; Gereau, Robert W

    2017-11-01

    The advent of optogenetic tools has allowed unprecedented insights into the organization of neuronal networks. Although recently developed technologies have enabled implementation of optogenetics for studies of brain function in freely moving, untethered animals, wireless powering and device durability pose challenges in studies of spinal cord circuits where dynamic, multidimensional motions against hard and soft surrounding tissues can lead to device degradation. We demonstrate here a fully implantable optoelectronic device powered by near-field wireless communication technology, with a thin and flexible open architecture that provides excellent mechanical durability, robust sealing against biofluid penetration and fidelity in wireless activation, thereby allowing for long-term optical stimulation of the spinal cord without constraint on the natural behaviors of the animals. The system consists of a double-layer, rectangular-shaped magnetic coil antenna connected to a microscale inorganic light-emitting diode (μ-ILED) on a thin, flexible probe that can be implanted just above the dura of the mouse spinal cord for effective stimulation of light-sensitive proteins expressed in neurons in the dorsal horn. Wireless optogenetic activation of TRPV1-ChR2 afferents with spinal μ-ILEDs causes nocifensive behaviors and robust real-time place aversion with sustained operation in animals over periods of several weeks to months. The relatively low-cost electronics required for control of the systems, together with the biocompatibility and robust operation of these devices will allow broad application of optogenetics in future studies of spinal circuits, as well as various peripheral targets, in awake, freely moving and untethered animals, where existing approaches have limited utility.

  14. Systemic effects induced by intralesional injection of ω-conotoxin MVIIC after spinal cord injury in rats

    PubMed Central

    2014-01-01

    Background Calcium channel blockers such as conotoxins have shown a great potential to reduce brain and spinal cord injury. MVIIC neuroprotective effects analyzed in in vitro models of brain and spinal cord ischemia suggest a potential role of this toxin in preventing injury after spinal cord trauma. However, previous clinical studies with MVIIC demonstrated that clinical side effects might limit the usefulness of this drug and there is no research on its systemic effects. Therefore, the present study aimed to investigate the potential toxic effects of MVIIC on organs and to evaluate clinical and blood profiles of rats submitted to spinal cord injury and treated with this marine toxin. Rats were treated with placebo or MVIIC (at doses of 15, 30, 60 or 120 pmol) intralesionally following spinal cord injury. Seven days after the toxin administration, kidney, brain, lung, heart, liver, adrenal, muscles, pancreas, spleen, stomach, and intestine were histopathologically investigated. In addition, blood samples collected from the rats were tested for any hematologic or biochemical changes. Results The clinical, hematologic and biochemical evaluation revealed no significant abnormalities in all groups, even in high doses. There was no significant alteration in organs, except for degenerative changes in kidneys at a dose of 120 pmol. Conclusions These findings suggest that MVIIC at 15, 30 and 60 pmol are safe for intralesional administration after spinal cord injury and could be further investigated in relation to its neuroprotective effects. However, 120 pmol doses of MVIIC may provoke adverse effects on kidney tissue. PMID:24739121

  15. Activation of p38 MAP Kinase is Involved in Central Neuropathic Pain Following Spinal Cord Injury

    PubMed Central

    Crown, Eric D; Gwak, Young Seob; Ye, Zaiming; Johnson, Kathia M; Hulsebosch, Claire E

    2008-01-01

    Recent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Specifically, Crown and colleagues (2005, 2006) have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury. Using a combination of behavioral, immunocytochemical, and electrophysiological measures we demonstrate that increased activation of p38 MAPK occurs in the spinal cord just rostral to the site of injury in rats that develop at-level mechanical allodynia after moderate SCI. Immunocytochemical analyses indicate that the increases in p38 MAPK activation occurred in astrocytes, microglia, and dorsal horn neurons in the spinal cord rostral to the site of injury. Inhibiting the enzymatic activity of p38 MAPK dose dependently reverses the behavioral expression of at-level mechanical allodynia and also decreases the hyperexcitability seen in thoracic dorsal horn neurons after moderate SCI. Taken together, these novel data are the first to demonstrate causality that increased activation of p38 MAPK in multiple cell types play an important role in the maintenance of at-level CNP following spinal cord injury. PMID:18590729

  16. Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies.

    PubMed

    Oliveira, J Miguel; Carvalho, Luisa; Silva-Correia, Joana; Vieira, Sílvia; Majchrzak, Malgorzata; Lukomska, Barbara; Stanaszek, Luiza; Strymecka, Paulina; Malysz-Cymborska, Izabela; Golubczyk, Dominika; Kalkowski, Lukasz; Reis, Rui L; Janowski, Miroslaw; Walczak, Piotr

    2018-01-01

    The prospects for cell replacement in spinal cord diseases are impeded by inefficient stem cell delivery. The deep location of the spinal cord and complex surgical access, as well as densely packed vital structures, question the feasibility of the widespread use of multiple spinal cord punctures to inject stem cells. Disorders characterized by disseminated pathology are particularly appealing for the distribution of cells globally throughout the spinal cord in a minimally invasive fashion. The intrathecal space, with access to a relatively large surface area along the spinal cord, is an attractive route for global stem cell delivery, and, indeed, is highly promising, but the success of this approach relies on the ability of cells (1) to survive in the cerebrospinal fluid (CSF), (2) to adhere to the spinal cord surface, and (3) to migrate, ultimately, into the parenchyma. Intrathecal infusion of cell suspension, however, has been insufficient and we postulate that embedding transplanted cells within hydrogel scaffolds will facilitate reaching these goals. In this review, we focus on practical considerations that render the intrathecal approach clinically viable, and then discuss the characteristics of various biomaterials that are suitable to serve as scaffolds. We also propose strategies to modulate the local microenvironment with nanoparticle carriers to improve the functionality of cellular grafts. Finally, we provide an overview of imaging modalities for in vivo monitoring and characterization of biomaterials and stem cells. This comprehensive review should serve as a guide for those planning preclinical and clinical studies on intrathecal stem cell transplantation.

  17. Individualization of a Manualized Pressure Ulcer Prevention Program: Targeting Risky Life Circumstances Through a Community-Based Intervention for People with Spinal Cord Injury

    PubMed Central

    Vaishampayan, Ashwini; Clark, Florence; Carlson, Mike; Blanche, Erna Imperatore

    2012-01-01

    Purpose To sensitize practitioners working with individuals with spinal cord injury to the complex life circumstances that are implicated in the development of pressure ulcers, and to document the ways that interventions can be adapted to target individual needs. Methods Content analysis of weekly fidelity/ quality control meetings that were undertaken as part of a lifestyle intervention for pressure ulcer prevention in community-dwelling adults with spinal cord injury. Results Four types of lifestyle-relevant challenges to ulcer prevention were identified: risk-elevating life circumstances, communication difficulties, equipment problems, and individual personality issues. Intervention flexibility was achieved by changing the order of treatment modules, altering the intervention content or delivery approach, or going beyond the stipulated content. Conclusion Attention to recurrent types of individual needs, along with explicit strategies for tailoring manualized interventions, has potential to enhance pressure ulcer prevention efforts for adults with spinal cord injury. Target audience This continuing education article is intended for practitioners interested in learning about a comprehensive, context-sensitive, community-based pressure ulcer prevention program for people with spinal cord injury. Objectives After reading this article, the reader should be able to: Describe some of the contextual factors that increase pressure ulcer risk in people with spinal cord injury living in the community.Distinguish between tailored and individualized intervention approaches.Identify the issues that must be taken into account to design context-sensitive, community-based pressure ulcer prevention programs for people with spinal cord injury.Describe approaches that can be used to individualize manualized interventions. PMID:21586911

  18. MiR-137 inhibited inflammatory response and apoptosis after spinal cord injury via targeting of MK2.

    PubMed

    Gao, Lin; Dai, Chenfei; Feng, Zhiping; Zhang, Lixin; Zhang, Zhiqiang

    2018-04-01

    Spinal cord injuries are common and troublesome disorder, which is mediated by various signal pathways and mechanisms. MK2 is also involved in numerous inflammatory diseases including spinal cord injury. The role of microRNA-137 (miR-137) and its detailed working mechanism in spinal cord injuries remain unclear. In the present study, we found that an elevated MK2 but a decreased miR-137 was expressed in serum specimens of patients with spinal cord injury and in hydrogen peroxide-treated C8-D1A and C8-B4 cells. Meanwhile, we suggested that upregulation of miR-137 could inhibit the expression of TNF-α and IL-6, two markers of inflammatory response after SCI, and apoptosis in hydrogen peroxide-treated C8-D1A and C8-B4 cells. Furthermore, we verified that MK2 was a direct target of miR-137 thorough a constructed luciferase assay. Even further, we elucidated that miR-137 could suppress the inflammatory response and apoptosis via negative regulation of MK2. Finally, through an animal model trial performed using mice, we demonstrated the protective effect of how miR-137 works on inflammatory response and apoptosis after spinal cord injury. Considering all the forementioned, our findings revealed that miR-137 inhibited inflammatory response and apoptosis after spinal cord injury via the targeting of MK2. The outcomes of the present study might indicate a new target in molecular treatment of SCI. © 2017 Wiley Periodicals, Inc.

  19. Viral neurotropism, peripheral neuropathy and other morphological abnormalities in bovine ephemeral fever virus-infected downer cattle.

    PubMed

    Barigye, R; Davis, S; Hunt, R; Hunt, N; Walsh, S; Elliott, N; Burnup, C; Aumann, S; Day, C; Dyrting, K; Weir, R; Melville, L F

    2016-10-01

    This study assessed the neurotropism of bovine ephemeral fever (BEF) virus (BEFV) and described histomorphological abnormalities of the brain, spinal cord and peripheral nerves that may causally contribute to paresis or paralysis in BEF. Four paralysed and six asymptomatic but virus-infected cattle were monitored, and blood and serum samples screened by qRT-PCR, virus isolation and neutralisation tests. Fresh brain, spinal cord, peripheral nerve and other tissues were qRT-PCR-tested for viral RNA, while formalin-fixed specimens were processed routinely and immunohistochemically evaluated for histomorphological abnormalities and viral antigen distribution, respectively. The neurotropism of BEFV was immunohistochemically confirmed in the brain and peripheral nerves and peripheral neuropathy was demonstrated in three paralysed but not the six aneurological but virus-infected animals. Wallerian degeneration (WD) was present in the ventral funicular white matter of the lumbar spinal cord of a paralysed steer and in cervical and thoracic spinal cord segments of three paralysed animals. Although no spinal cord lesions were seen in the steer euthanased within 7 days of illness, peripheral neuropathy was present and more severe in nerves of the brachial plexuses than in the gluteal or fibular nerves. The only steer with WD in the lumbar spinal cord also showed intrahistiocytic cell viral antigen that was spatially distributed within areas of moderate brain stem encephalitis. The data confirmed neurotropism of BEFV in cattle and documented histomorphological abnormalities in peripheral nerves and brain which, together with spinal cord lesions, may contribute to chronic paralysis in BEFV-infected downer cattle. © 2016 Australian Veterinary Association.

  20. Fertility and sexuality in the spinal cord injury patient.

    PubMed

    Stoffel, J T; Van der Aa, F; Wittmann, D; Yande, S; Elliott, S

    2018-06-14

    After a spinal cord injury, patients have different perceptions of sexuality, sexual function, and potential for fertility. These changes can greatly impact quality of life over a lifetime. The purpose of this workgroup was to identify common evidence based or expert opinion themes and recommendations regarding treatment of sexuality, sexual function and fertility in the spinal cord injury population. As part of the SIU-ICUD joint consultation of Urologic Management of the Spinal Cord Injury (SCI), a workgroup and comprehensive literature search of English language manuscripts regarding fertility and sexuality in the spinal cord injury patient were formed. Articles were compiled, and recommendations in the chapter are based on group discussion and follow the Oxford Centre for Evidence-based Medicine system for levels of evidence (LOEs) and grades of recommendation (GORs). Genital arousal, ejaculation, and orgasm are significantly impacted after spinal cord injury in both male and female SCI patients. This may have a more significant impact on potential for fertility in male spinal cord injury patients, particularly regarding ability of generate erection, semen quantity and quality. Female patients should be consulted that pregnancy is still possible after injury and a woman should expect resumption of normal reproductive function. As a result, sexual health teaching should be continued in women despite injury. Pregnancy in a SCI may cause complications such as autonomic dysreflexia, so this group should be carefully followed during pregnancy. By understanding physiologic changes after injury, patients and care teams can work together to achieve goals and maximize sexual quality of life after the injury.

  1. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    PubMed

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  2. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord.

    PubMed

    Saruhashi, Yasuo; Matsusue, Yoshitaka; Fujimiya, Mineko

    2009-09-01

    Experimental spinal cord injury. To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

  3. Therapeutic potential of spinal cord stimulation for gastrointestinal motility disorders: a preliminary rodent study.

    PubMed

    Song, G-Q; Sun, Y; Foreman, R D; Chen, J D Z

    2014-03-01

    Spinal cord electrical stimulation (SCS) has been applied for the management of chronic pain. Most of studies have revealed a decrease in sympathetic activity with SCS. The aim of this study was to investigate the effects and mechanisms of SCS on gastrointestinal (GI) motility in healthy and diabetic rats. Male rats chronically implanted with a unipolar electrode at T9/T10 were studied. The study included four experiments to assess the effects of SCS on (1) gastric tone; (2) gastric emptying of liquids and intestinal transit; (3) gastric emptying of solids; and (4) sympathovagal balance in healthy rats and/or in Streptozotocin (STZ)-induced diabetic rat. (1) Spinal cord stimulation intensity dependently increased gastric tone in healthy rats. The gastric volume was 0.97 ± 0.15 mL at baseline, and decreased to 0.92 ± 0.16 mL with SCS of the 30% motor threshold (MT; p = 0.13 vs baseline), 0.86 ± 0.14 mL with 60% MT (p = 0.045 vs baseline), and 0.46 ± 0.19 mL with 90% MT (p = 0.0050 vs baseline). (2) Spinal cord stimulation increased gastric emptying of liquids by about 17% and accelerated small intestinal transit by about 20% in healthy rats (p < 0.001). (3) Spinal cord stimulation accelerated gastric emptying of solids by about 24% in healthy rats and by about 78% in diabetic rats. (4) Spinal cord stimulation decreased sympathetic activity (1.13 ± 0.18 vs 0.68 ± 0.09, p < 0.04) and sympathovagal balance (0.51 ± 0.036 vs 0.40 ± 0.029, p = 0.028). Spinal cord stimulation accelerates gastric emptying of liquids and solids, and intestinal transit, probably by inhibiting the sympathetic activity. Spinal cord stimulation may have a therapeutic potential for treating GI motility disorders. © 2013 John Wiley & Sons Ltd.

  4. Using peer mentoring for people with spinal cord injury to enhance self-efficacy beliefs and prevent medical complications.

    PubMed

    Ljungberg, Inger; Kroll, Thilo; Libin, Alexander; Gordon, Samuel

    2011-02-01

    Individuals with spinal cord injury/disease are faced with a myriad of psychosocial adjustment challenges. This article describes the implementation of a peer-mentoring programme designed to support this adjustment process for people with SCI/disease and the programme's believed impact on self-efficacy and prevention of medical complications. With shorter length of stay in acute inpatient rehabilitation after spinal cord injury/disease, peer mentor programmes are becoming an important component to assist with education and community re-integration. Quasi-experimental non-controlled pretest/post-test. Patients with newly acquired spinal cord injury/disease participated in a one-year spinal cord injury peer-mentoring programme. Peer mentors met with their assigned participants regularly during inpatient care and on discharge to track medical complications and assist with adjusting to life after spinal cord injury/disease. In all, of 37 mentees enrolled, 24 successfully completed the programme. Sixty-seven per cent showed improved self-efficacy score between the two time points. Medical complications and doctor visits all decreased significantly between 0-6 months and 7-12 months. Our findings indicate that the older an individual is, the lower the likelihood of having a urinary tract infection (p = 0.006). The programme was well received by all mentees who felt they could connect well with their peer mentor. Peer mentoring in a rehabilitation setting enhances the understanding of challenges that patients and medical staff deal with on a day-to-day basis. Our findings suggest it is important to monitor and educate individuals with spinal cord injury/disease at the acute stage to improve medical outcomes. Caution is advised in the interpretation of these results as they were obtained in a small non-random sample using self-report data. Peer mentors play an increasingly important role in nurse-delivered education in the spinal cord injury/disease population. © 2011 Blackwell Publishing Ltd.

  5. Examining the relationship between post-traumatic stress disorder and social participation among Veterans with spinal cord injuries and disorders.

    PubMed

    Etingen, Bella; Locatelli, Sara M; Miskevics, Scott; LaVela, Sherri L

    2017-07-26

    The objectives of this study were to examine differences in social participation among Veterans with spinal cord injuries/disorders with and without post-traumatic stress disorder, and determine if lower social participation was independently associated with having post-traumatic stress disorder. A cross-sectional mailed national survey was sent to a national sample of Veterans with spinal cord injuries/disorders who received prior-year Veterans Affairs healthcare. Surveys provided data on: demographics, health conditions, injury characteristics, and social participation. Analyses included bivariate comparisons, and multivariate logistic regression to determine if lower social participation was independently associated with post-traumatic stress disorder. Veterans with (vs. without) post-traumatic stress disorder (n = 896) reported lower social participation (40.2 vs. 43.9, p < 0.0001). Multivariate analyses showed that longer duration of injury (OR = 0.98, 95% CI: 0.97-1.00, p = 0.04) and white race (OR = 0.62, 95% CI: 0.38-1.01, p = 0.05) were associated with lower odds of post-traumatic stress disorder, while a greater number of health conditions (OR = 1.43, 95% CI: 1.25-1.64, p < 0.0001) was associated with greater odds. When controlling for covariates, lower social participation was independently associated with post-traumatic stress disorder (OR = 0.94, 95% CI: 0.90-0.98, p = 0.003). Results indicate post-traumatic stress disorder is associated with lower social participation in Veterans with spinal cord injuries/disorders, independent of other factors that may impact participation. Efforts to screen for and treat post-traumatic stress disorder among persons with spinal cord injuries/disorders, regardless of injury-specific factors, are needed to improve participation. Implications for Rehabilitation Individuals with spinal cord injuries/disorders often have post-traumatic stress disorder; in Veterans with spinal cord injuries/disorders this may be compounded by trauma incurred through military experiences. Social participation, an important aspect of rehabilitation and community integration following spinal cord injury or disorder, may be hindered by symptoms of post-traumatic stress disorder. Our data show that post-traumatic stress disorder is associated with lower social participation in Veterans with spinal cord injuries/disorders, independent of other factors that may impact participation. These results indicate that efforts to screen for and treat post-traumatic stress disorder among persons with spinal cord injuries/disorders, regardless of injury-specific factors, are needed to improve participation in this patient population.

  6. Spinal sensory circuits in motion.

    PubMed

    Böhm, Urs Lucas; Wyart, Claire

    2016-12-01

    The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this view: GABAergic sensory neurons located within the spinal cord have been shown to relay mechanical and chemical information from the cerebrospinal fluid to motor circuits. Innovative approaches combining genetics, quantitative analysis of behavior and optogenetics now allow probing the contribution of these sensory feedback pathways to locomotion and recovery following spinal cord injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    PubMed

    Doodnath, Reshma; Dervan, Adrian; Wride, Michael A; Puri, Prem

    2010-12-01

    Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the first time that Tg(GFAP:GFP)(mi2001) zebrafish model is an ideal one to study spatio-temporal patterning of early ENS development.

  8. Relative shortening and functional tethering of spinal cord in adolescent scoliosis - Result of asynchronous neuro-osseous growth, summary of an electronic focus group debate of the IBSE.

    PubMed

    Chu, Winnie Cw; Lam, Wynnie Mw; Ng, Bobby Kw; Tze-Ping, Lam; Lee, Kwong-Man; Guo, Xia; Cheng, Jack Cy; Burwell, R Geoffrey; Dangerfield, Peter H; Jaspan, Tim

    2008-06-27

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The Statement for this debate was written by Dr WCW Chu and colleagues who examine the spinal cord to vertebral growth interaction during adolescence in scoliosis. Using the multi-planar reconstruction technique of magnetic resonance imaging they investigated the relative length of spinal cord to vertebral column including ratios in 28 girls with AIS (mainly thoracic or double major curves) and 14 age-matched normal girls. Also evaluated were cerebellar tonsillar position, somatosensory evoked potentials (SSEPs), and clinical neurological examination. In severe AIS compared with normal controls, the vertebral column is significantly longer without detectable spinal cord lengthening. They speculate that anterior spinal column overgrowth relative to a normal length spinal cord exerts a stretching tethering force between the two ends, cranially and caudally leading to the initiation and progression of thoracic AIS. They support and develop the Roth-Porter concept of uncoupled neuro-osseous growth in the pathogenesis of AIS which now they prefer to term 'asynchronous neuro-osseous growth'. Morphological evidence about the curve apex suggests that the spinal cord is also affected, and a 'double pathology' is suggested. AIS is viewed as a disorder with a wide spectrum and a common neuroanatomical abnormality namely, a spinal cord of normal length but short relative to an abnormally lengthened anterior vertebral column. Neuroanatomical changes and/or abnormal neural function may be expressed only in severe cases. This asynchronous neuro-osseous growth concept is regarded as one component of a larger concept. The other component relates to the brain and cranium of AIS subjects because abnormalities have been found in brain (infratentorial and supratentorial) and skull (vault and base). The possible relevance of systemic melatonin-signaling pathway dysfunction, platelet calmodulin levels and putative vertebral vascular biology to the asynchronous neuro-osseous growth concept is discussed. A biomechanical model to test the spinal component of the concept is in hand. There is no published research on the biomechanical properties of the spinal cord for scoliosis specimens. Such research on normal spinal cords includes movements (kinematics), stress-strain responses to uniaxial loading, and anterior forces created by the stretched cord in forward flexion that may alter sagittal spinal shape during adolescent growth. The asynchronous neuro-osseous growth concept for the spine evokes controversy. Dr Chu and colleagues respond to five other concepts of pathogenesis for AIS and suggest that relative anterior spinal overgrowth and biomechanical growth modulation may also contribute to AIS pathogenesis.

  9. In-vivo spinal nerve sensing in MISS using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Xu, Weiliang; Broderick, Neil

    2016-04-01

    In modern Minimally Invasive Spine Surgery (MISS), lack of visualization and haptic feedback information are the main obstacles. The spinal cord is a part of the central nervous system (CNS). It is a continuation of the brain stem, carries motor and sensory messages between CNS and the rest of body, and mediates numerous spinal reflexes. Spinal cord and spinal nerves are of great importance but vulnerable, once injured it may result in severe consequences to patients, e.g. paralysis. Raman Spectroscopy has been proved to be an effective and powerful tool in biological and biomedical applications as it works in a rapid, non-invasive and label-free way. It can provide molecular vibrational features of tissue samples and reflect content and proportion of protein, nucleic acids lipids etc. Due to the distinct chemical compositions spinal nerves have, we proposed that spinal nerves can be identified from other types of tissues by using Raman spectroscopy. Ex vivo experiments were first done on samples taken from swine backbones. Comparative spectral data of swine spinal cord, spinal nerves and adjacent tissues (i.e. membrane layer of the spinal cord, muscle, bone and fatty tissue) are obtained by a Raman micro-spectroscopic system and the peak assignment is done. Then the average spectra of all categories of samples are averaged and normalized to the same scale to see the difference against each other. The results verified the feasibility of spinal cord and spinal nerves identification by using Raman spectroscopy. Besides, a fiber-optic Raman sensing system including a miniature Raman sensor for future study is also introduced. This Raman sensor can be embedded into surgical tools for MISS.

  10. Impact of H3.3 K27M Mutation on Prognosis and Survival of Grade IV Spinal Cord Glioma on the Basis of New 2016 World Health Organization Classification of the Central Nervous System.

    PubMed

    Yi, Seong; Choi, Sunkyu; Shin, Dong Ah; Kim, Du Su; Choi, Junjeong; Ha, Yoon; Kim, Keung Nyun; Suh, Chang-Ok; Chang, Jong Hee; Kim, Se Hoon; Yoon, Do Heum

    2018-05-01

    Spinal cord glioma grade IV is a rare, diffuse midline glioma. H3 K27M-mutant was classified in a different entity in the 2016 World Health Organization (WHO) classification recently. No reports about prognosis of spinal cord glioma grade IV are available yet. To analyze the prognostic factors for spinal cord glioma grade IV. Twenty-five patients with spinal cord glioma of grade IV who underwent surgery in a single institute were selected. All grade IV spinal cord glioma histologically confirmed as glioblastoma or "diffuse midline glioma with H3 K27M-mutant" by the 2016 WHO classification of the central nervous system were included. Basic demographics, treatment modalities, and pathological tumor molecular profiles were investigated for prognosis. Mean age was 39.1 yr; male to female ratio was 18 : 7. Tumor was located in thoracic cord (53.3%), cervical cord (40%), and lumbar area (6.7%). Median overall survival was 37.1 mo; median disease-free survival was 18.5 mo. Treatment modality showed no statistical difference. Only K27M profile showed significant prognostic value, 20 patients (80%) showed K27M mutation positive, K27M mutation patients showed longer overall survival (40.07 mo) than K27M negative patients (11.63 mo, P < .0001), and disease-free survival (20.85 vs 8.72 mo, P = .0241). This study is the first and largest report of the prognosis of primary spinal cord grade IV glioma using the new WHO classification. This study reported survival analysis and prognostic factors, and revealed that H3.3 K27M mutation is not a major poor prognostic factor. Further studies to explore K27M mutations needed for risk stratification and therapy optimization.

  11. Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.

    PubMed

    Song, Y Y; Peng, C G; Ye, X B

    2015-12-29

    This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P < 0.05 for each). Thus, edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.

  12. Inhibitory descending rhombencephalic projections in larval sea lamprey.

    PubMed

    Valle-Maroto, S M; Fernández-López, B; Villar-Cerviño, V; Barreiro-Iglesias, A; Anadón, R; Rodicio, M Celina

    2011-10-27

    Lampreys are jawless vertebrates, the most basal group of extant vertebrates. This phylogenetic position makes them invaluable models in comparative studies of the vertebrate central nervous system. Lampreys have been used as vertebrate models to study the neuronal circuits underlying locomotion control and axonal regeneration after spinal cord injury. Inhibitory inputs are key elements in the networks controlling locomotor behaviour, but very little is known about the descending inhibitory projections in lampreys. The aim of this study was to investigate the presence of brain-spinal descending inhibitory pathways in larval stages of the sea lamprey Petromyzon marinus by means of tract-tracing with neurobiotin, combined with immunofluorescence triple-labeling methods. Neurobiotin was applied in the rostral spinal cord at the level of the third gill, and inhibitory populations were identified by the use of cocktails of antibodies raised against glycine and GABA. Glycine-immunoreactive (-ir) neurons that project to the spinal cord were observed in three rhombencephalic reticular nuclei: anterior, middle and posterior. Spinal-projecting GABA-ir neurons were observed in the anterior and posterior reticular nuclei. Double glycine-ir/GABA-ir spinal cord-projecting neurons were only observed in the posterior reticular nucleus, and most glycine-ir neurons did not display GABA immunoreactivity. The present results reveal the existence of inhibitory descending projections from brainstem reticular neurons to the spinal cord, which were analyzed in comparative and functional contexts. Further studies should investigate which spinal cord circuits are affected by these descending inhibitory projections. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Surfer’s Myelopathy: A Radiologic Study of 23 Cases

    PubMed Central

    Nakamoto, B.K.; Siu, A.M.; Hashiba, K.A.; Sinclair, B.T.; Baker, B.J.; Gerber, M.S.; McMurtray, A.M.; Pearce, A.M.; Pearce, J.W.

    2015-01-01

    BACKGROUND AND PURPOSE Surfing is an uncommon cause of an acute nontraumatic myelopathy. This study describes the MR imaging characteristics and clinical correlates in 23 subjects with surfer’s myelopathy. MATERIALS AND METHODS This was a retrospective review of 23 cases of surfer’s myelopathy from 2003–2012. Spinal cord MR imaging characteristics and neurologic examinations with the use of the American Spinal Injury Association scale were reviewed. Logistic regression was used to determine associations between MR imaging characteristics, American Spinal Injury Association scale, and clinical improvement. RESULTS All subjects (19 male, 4 female; mean age, 26.3 ± 7.4 years) demonstrated “pencil-like,” central T2-hyperintense signal abnormalities in the spinal cord extending from the midthoracic region to the conus with associated cord expansion and varying degrees of conus enlargement on spinal cord MR imaging within 24 hours of symptom onset. T1 signal was normal. Faint gadolinium enhancement was present in a minority. Although there was a strong correlation between initial American Spinal Injury Association score and clinical improvement (P = .0032), MR imaging characteristics were not associated with American Spinal Injury Association score or clinical improvement. CONCLUSIONS Surfer’s myelopathy should be considered in the radiographic differential diagnosis of a longitudinally extensive T2-hyperintense spinal cord lesion. MR imaging characteristics do not appear to be associated with severity on examination or clinical improvement. PMID:23828111

  14. Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury.

    PubMed

    Lobenwein, Daniela; Tepeköylü, Can; Kozaryn, Radoslaw; Pechriggl, Elisabeth J; Bitsche, Mario; Graber, Michael; Fritsch, Helga; Semsroth, Severin; Stefanova, Nadia; Paulus, Patrick; Czerny, Martin; Grimm, Michael; Holfeld, Johannes

    2015-10-27

    Paraplegia following spinal cord ischemia represents a devastating complication of both aortic surgery and endovascular aortic repair. Shock wave treatment was shown to induce angiogenesis and regeneration in ischemic tissue by modulation of early inflammatory response via Toll-like receptor (TLR) 3 signaling. In preclinical and clinical studies, shock wave treatment had a favorable effect on ischemic myocardium. We hypothesized that shock wave treatment also may have a beneficial effect on spinal cord ischemia. A spinal cord ischemia model in mice and spinal slice cultures ex vivo were performed. Treatment groups received immediate shock wave therapy, which resulted in decreased neuronal degeneration and improved motor function. In spinal slice cultures, the activation of TLR3 could be observed. Shock wave effects were abolished in spinal slice cultures from TLR3(-/-) mice, whereas the effect was still present in TLR4(-/-) mice. TLR4 protein was found to be downregulated parallel to TLR3 signaling. Shock wave-treated animals showed significantly better functional outcome and survival. The protective effect on neurons could be reproduced in human spinal slices. Shock wave treatment protects from neuronal degeneration via TLR3 signaling and subsequent TLR4 downregulation. Consequently, it represents a promising treatment option for the devastating complication of spinal cord ischemia after aortic repair. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Release and repair of a ventral thoracic spinal cord herniation.

    PubMed

    McCormick, Paul C

    2014-09-01

    Ventral thoracic spinal cord herniation is a rare but increasingly recognized cause of progressive myelopathy. This video demonstrates the imaging characteristics and surgical techniques for release and reduction of the spinal cord herniation as well as primary repair and reinforcement of the ventral dural hernia defect through an extended posterior approach. An instrumented fusion was concomitantly performed. The video can be found here: http://youtu.be/6Pcokep6Tug.

  16. Overcoming the Practical Barriers to Spinal Cord Cell Transplantation for ALS

    DTIC Science & Technology

    2012-10-01

    ABSTRACT: This grant will provide critical data on tolerance and toxicity of cell dosing and numbers of permissible spinal cord injections. Rigorous...Surgical Technique) will provide critical data on tolerance and toxicity of cell dosing and numbers of permissible spinal cord injections. Aim 2 (Graft...connected to a rigid needle of the same gauge as the floating cannula one – Figure 7) using the maximum volume/number of injections could result in

  17. Targeting L-Selectin to Improve Neurologic and Urologic Function After Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    demonstrated locomotor recovery in mice receiving 40mg/kg DFA up to 3 hours following spinal cord injury -We demonstrated improved locomotor recovery...health, as evaluated by body weight -We identified no added locomotor recovery due to multiple, successive doses of DFA. Moreover, additional doses...bladder function Significance: We have identified robust locomotor recovery in both mild and severe spinal cord injured mice that received DFA up

  18. Development of an Animal Model of Thoracolumbar Burst Fracture-Induced Acute Spinal Cord Injury

    DTIC Science & Technology

    2016-07-01

    Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12...subjected to spinal cord impact with a custom-made controlled spinal cord impactor and balloon compression. Neurological function was assessed for

  19. Improving the Efficiency and Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    2   INTRODUCTION: The magnitude of acute post- traumatic hemorrhagic necrosis (PHN) is an early prognostic indicator of long-term...Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury PRINCIPAL INVESTIGATOR: J. Marc Simard...Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury 5b. GRANT NUMBER W81XWH-10-1-0898 5c. PROGRAM ELEMENT NUMBER 6

  20. Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment

    DTIC Science & Technology

    2013-10-01

    collection in underway. 15. SUBJECT TERMS Spinal Cord Injury, Immunogenetics, Chronic pain, Opioids 16. SECURITY CLASSIFICATION OF: 17...prototypic opioid , morphine, is capable of TLR4-mediated proinflammation6-8 . As such, exposure to morphine at the time of injury may result in...fashion to the spinal cord injury and/or to experience inflammation in response to opioid exposure. Critically, this genetic variability may

  1. Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment

    DTIC Science & Technology

    2014-10-01

    collection in underway. 15. SUBJECT TERMS Spinal Cord Injury, Immunogenetics, Chronic pain, Opioids 16. SECURITY CLASSIFICATION OF: 17...The prototypic opioid , morphine, is capable of TLR4-mediated proinflammation6-8. As such, exposure to morphine at the time of injury may result in...proinflammatory fashion to the spinal cord injury, and/or to experience inflammation in response to opioid exposure. Critically, this genetic variability

  2. Combining Adult Learning Theory with Occupational Therapy Intervention for Bladder and Bowel Management after Spinal Cord Injury: A Case Report.

    PubMed

    Gallagher, Gina; Bell, Alison

    2016-01-01

    Bladder and bowel management is an important goal of rehabilitation for clients with spinal cord injury. Dependence is these areas have been linked to a variety of secondary complications, including decreased quality of life, urinary tract infections and pressure ulcers (Hammell, 2010; Hicken et al, 2001). Occupational therapists have been identified as important members of the health care team in spinal cord injury rehabilitation; however, specific roles and interventions have not been clearly described. This case report will describe occupational therapy interventions embedded with principles of adult learning theory to address bladder and bowel management with an adult client who sustained an incomplete thoracic level spinal cord injury.

  3. Adenosine A1-Dopamine D1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron.

    PubMed

    Rivera-Oliver, Marla; Moreno, Estefanía; Álvarez-Bagnarol, Yocasta; Ayala-Santiago, Christian; Cruz-Reyes, Nicole; Molina-Castro, Gian Carlo; Clemens, Stefan; Canela, Enric I; Ferré, Sergi; Casadó, Vicent; Díaz-Ríos, Manuel

    2018-05-24

    While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A 1 -dopamine D 1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D 1 receptor-mediated signaling. A 1 -D 1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.

  4. SU-F-T-113: Inherent Functional Dependence of Spinal Cord Doses of Variable Irradiated Volumes in Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Braunstein, S; Chiu, J

    2016-06-15

    Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive anmore » EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.« less

  5. Inflammatory cascades mediate synapse elimination in spinal cord compression

    PubMed Central

    2014-01-01

    Background Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice. Methods Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests. Results Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals. Conclusions We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM. PMID:24589419

  6. Vgf is a novel biomarker associated with muscle weakness in amyotrophic lateral sclerosis (ALS), with a potential role in disease pathogenesis

    PubMed Central

    Zhao, Zhong; Lange, Dale J.; Ho, Lap; Bonini, Sara; Shao, Belinda; Salton, Stephen R.; Thomas, Sunil; Pasinetti, Giulio Maria

    2008-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Previous proteomic evidence revealed that the content of certain peptide fragments including Vgf-derived peptide aa 398-411 (Vgf398-411) of the precursor Vgf protein in the cerebral spinal fluid (CSF) correctly identified patients with ALS from normal and disease controls. Using quantitative ELISA immunoassay we found that the CSF levels of Vgf decreases with muscle weakness in patients with ALS. In SOD1 G93A transgenic mice, loss of full-length Vgf content in CSF, serum and in SMI-32 immunopositive spinal cord motor neurons is noted in asymptomatic animals (approximately 75 days old) and continues to show a progressive decline as animals weaken. In vitro studies show that viral-mediated exogenous Vgf expression in primary mixed spinal cord neuron cultures attenuates excitotoxic injury. Thus, while Vgf may be a reliable biomarker of progression of muscle weakness in patients with ALS, restoration of Vgf expression in spinal cord motor neurons may therapeutically rescue spinal cord motorneurons against excitotoxic injury. PMID:18432310

  7. Vgf is a novel biomarker associated with muscle weakness in amyotrophic lateral sclerosis (ALS), with a potential role in disease pathogenesis.

    PubMed

    Zhao, Zhong; Lange, Dale J; Ho, Lap; Bonini, Sara; Shao, Belinda; Salton, Stephen R; Thomas, Sunil; Pasinetti, Giulio Maria

    2008-04-15

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Previous proteomic evidence revealed that the content of certain peptide fragments including Vgf-derived peptide aa 398-411 (Vgf(398-411)) of the precursor Vgf protein in the cerebral spinal fluid (CSF) correctly identified patients with ALS from normal and disease controls. Using quantitative ELISA immunoassay we found that the CSF levels of Vgf decreases with muscle weakness in patients with ALS. In SOD1 G93A transgenic mice, loss of full-length Vgf content in CSF, serum and in SMI-32 immunopositive spinal cord motor neurons is noted in asymptomatic animals (approximately 75 days old) and continues to show a progressive decline as animals weaken. In vitro studies show that viral-mediated exogenous Vgf expression in primary mixed spinal cord neuron cultures attenuates excitotoxic injury. Thus, while Vgf may be a reliable biomarker of progression of muscle weakness in patients with ALS, restoration of Vgf expression in spinal cord motor neurons may therapeutically rescue spinal cord motorneurons against excitotoxic injury.

  8. Spasticity therapy reacts to astrocyte GluA1 receptor upregulation following spinal cord injury

    PubMed Central

    Gómez-Soriano, Julio; Goiriena, Eider; Taylor, Julian

    2010-01-01

    For almost three decades intrathecal baclofen therapy has been the standard treatment for spinal cord injury spasticity when oral medication is ineffective or produces serious side effects. Although intrathecal baclofen therapy has a good clinical benefit-risk ratio for spinal spasticity, tolerance and the life-threatening withdrawal syndrome present serious problems for its management. Now, in an experimental model of spinal cord injury spasticity, AMPA receptor blockade with NGX424 (Tezampanel) has been shown to reduce stretch reflex activity alone and during tolerance to intrathecal baclofen therapy. These results stem from the observation that GluA1 receptors are overexpressed on reactive astrocytes following experimental ischaemic spinal cord injury. Although further validation is required, the appropriate choice of AMPA receptor antagonists for treatment of stretch hyperreflexia based on our recent understanding of reactive astrocyte neurobiology following spinal cord injury may lead to the development of a better adjunct clinical therapy for spasticity without the side effects of intrathecal baclofen therapy. LINKED ARTICLE This article is a commentary on Oshiro et al., pp. 976–985 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2010.00954.x PMID:20662840

  9. Spinally projecting neurons of the dorsal column nucleus in a reptile: locus of origin and trajectory of termination.

    PubMed

    Pritz, M B

    1996-01-01

    Interconnections between the dorsal column nucleus and the spinal cord were investigated in a reptile, Caiman crocodilus. After placement of an anterograde tracer into the dorsal column nucleus, descending fibers are seen to leave this nucleus to enter the dorsal funiculus where they course ventrally to terminate in lamina V of the spinal cord as far caudally as C2. Placement of a retrograde tracer into cut fibers of the cervical spinal cord identified the relay cells of the dorsal column nucleus that project to the spinal cord. These neurons were mainly clustered in a caudal and ventral part of this nucleus. The soma of these spinally projecting cells were small and were generally round or oval in shape. A number of these neurons had the long axis of their soma oriented dorsoventrally, with a primary dendrite extending dorsally. Fibers in the dorsal funiculus that originated from the spinal cord enter the caudal part of the dorsal column nucleus and turn ventral. In the dorsal column nucleus, these axons run parallel to the vertically oriented dendrites of these spinally projecting cells before termination in close relation to the cell bodies of these neurons. Quantitative observations (mean +/- standard error) were made on well labeled neurons and included several measurements: area, perimeter, and degree of eccentricity (greatest width/greatest length) in both the transverse as well as the sagittal plane. These spinally projecting neurons in Caiman are located in the dorsal column nucleus in a position similar to that of spinally projecting cells in cats.

  10. Spinal cord compression in a patient with a pain pump for failed back syndrome: a chalk-like precipitate mimicking a spinal cord neoplasm: case report.

    PubMed

    Wadhwa, Rishi K; Shaya, Mark R; Nanda, Anil

    2006-02-01

    The use of intrathecal morphine has been effective with few complications for chronic intractable pain of both benign and malignant origins. A rare but serious problem that exists is the formation of an inflammatory mass at the catheter tip of the pain pump. We report the case of a 67-year-old female patient with failed back syndrome who presented with sensory complaints and back pain. Magnetic resonance imaging revealed impingement on the thoracic cord by a mass. The mass was originally thought to be a spinal cord tumor; however, operation and chemical analysis of the mass showed that it was a bupivacaine precipitate at the tip of the catheter of the pain pump. This is the first such case, to our knowledge, of a bupivacaine precipitate mimicking a spinal cord tumor.

  11. [Satisfaction of Users with Spinal Cord Injury in relation to the Service of Promotion of Personal Autonomy of the Balearic Islands, Spain].

    PubMed

    Capó-Juan, Miguel Ángel; Fiol-Delgado, Rosa Mª; Alzamora-Perelló, Mª Magdalena; Bosch-Gutiérrez, Marta; Serna-López, Lucía; Bennasar-Veny, Miguel; Aguiló-Pons, Antonio; De Pedro-Gómez, Joan E

    2016-11-10

    Public Service Promotion of Personal Autonomy aims to provide care to users with severe physical and/or physical-mental disabilities, including people with spinal cord injury. These users are in a chronic phase and thus they require educational-therapeutic measures of physiotherapy. This study is meant to determine the satisfaction of people with spinal cord injury who attend this service. A descriptive, cross-sectional, quantitative study in the Public Service Promotion of Personal Autonomy after a sixteen-month therapeutic monitoring process was carried out, which began in March 2015. The final study sample was 25 people with spinal cord injury (17 men and 8 women). At the end of therapeutic intervention, users responded to the SERVQHOS questionnaire, which consists in nineteen questions that aim to measure the quality of the care services provided. A statistical analysis was conducted, calculating averages and standard deviations or frecuencies and percentages. The best valued external factor was the staff appearance with 4,5 on average and the worst scored external factor was the ease of access and / or signposting of the center with 2,6 on average. On the other hand, the best valued internal factor was the kindness of the staff with 4,8 on average and the worst scored factor was the speed in which the users receive what they requested with 4,2 on average. We concluded that the quality offered is determined by internal factors (kindness, trust, willingness to help) and weaknesses are related to structural factors of the center (external factors).

  12. Progressive solitary sclerosis: Gradual motor impairment from a single CNS demyelinating lesion.

    PubMed

    Keegan, B Mark; Kaufmann, Timothy J; Weinshenker, Brian G; Kantarci, Orhun H; Schmalstieg, William F; Paz Soldan, M Mateo; Flanagan, Eoin P

    2016-10-18

    To report patients with progressive motor impairment resulting from an isolated CNS demyelinating lesion in cerebral, brainstem, or spinal cord white matter that we call progressive solitary sclerosis. Thirty patients were identified with (1) progressive motor impairment for over 1 year with a single radiologically identified CNS demyelinating lesion along corticospinal tracts, (2) absence of other demyelinating CNS lesions, and (3) no history of relapses affecting other CNS pathways. Twenty-five were followed prospectively in our multiple sclerosis (MS) clinic and 5 were identified retrospectively from our progressive MS database. Patients were excluded if an alternative etiology for progressive motor impairment was found. Multiple brain and spinal cord MRI were reviewed by a neuroradiologist blinded to the clinical details. The patients' median age was 48.5 years (range 23-71) and 15 (50%) were women. The median follow-up from symptom onset was 100 months (range 15-343 months). All had insidiously progressive upper motor neuron weakness attributable to the solitary demyelinating lesion found on MRI. Clinical presentations were hemiparesis/monoparesis (n = 24), quadriparesis (n = 5), and paraparesis (n = 1). Solitary MRI lesions involved cervical spinal cord (n = 18), cervico-medullary/brainstem region (n = 6), thoracic spinal cord (n = 4), and subcortical white matter (n = 2). CSF abnormalities consistent with MS were found in 13 of 26 (50%). Demyelinating disease was confirmed pathologically in 2 (biopsy, 1; autopsy, 1). Progressive solitary sclerosis results from an isolated CNS demyelinating lesion. Future revisions to MS diagnostic criteria could incorporate this presentation of demyelinating disease. © 2016 American Academy of Neurology.

  13. Test-retest reliability at the item level and total score level of the Norwegian version of the Spinal Cord Injury Falls Concern Scale (SCI-FCS).

    PubMed

    Roaldsen, Kirsti Skavberg; Måøy, Åsa Blad; Jørgensen, Vivien; Stanghelle, Johan Kvalvik

    2016-05-01

    Translation of the Spinal Cord Injury Falls Concern Scale (SCI-FCS), and investigation of test-retest reliability on item-level and total-score-level. Translation, adaptation and test-retest study. A specialized rehabilitation setting in Norway. Fifty-four wheelchair users with a spinal cord injury. The median age of the cohort was 49 years, and the median number of years after injury was 13. Interventions/measurements: The SCI-FCS was translated and back-translated according to guidelines. Individuals answered the SCI-FCS twice over the course of one week. We investigated item-level test-retest reliability using Svensson's rank-based statistical method for disagreement analysis of paired ordinal data. For relative reliability, we analyzed the total-score-level test-retest reliability with intraclass correlation coefficients (ICC2.1), the standard error of measurement (SEM), and the smallest detectable change (SDC) for absolute reliability/measurement-error assessment and Cronbach's alpha for internal consistency. All items showed satisfactory percentage agreement (≥69%) between test and retest. There were small but non-negligible systematic disagreements among three items; we recovered an 11-13% higher chance for a lower second score. There was no disagreement due to random variance. The test-retest agreement (ICC2.1) was excellent (0.83). The SEM was 2.6 (12%), and the SDC was 7.1 (32%). The Cronbach's alpha was high (0.88). The Norwegian SCI-FCS is highly reliable for wheelchair users with chronic spinal cord injuries.

  14. An N-terminal fragment of substance P, substance P(1-7), down-regulates neurokinin-1 binding in the mouse spinal cord.

    PubMed

    Yukhananov RYu; Larson, A A

    1994-08-29

    Injected intrathecally, substance P (SP) down-regulates neurokinin-1 (NK-1) binding in the spinal cord and desensitizes rats to the behavioral effect of SP. N-terminal fragments of SP, such as SP(1-7), induce antinociception and play a role in desensitization to SP in mice. The goal of this study was to assess the abilities of N- and C-terminal fragments of SP to down-regulate NK-1 binding. Binding of [3H]SP to mouse spinal cord membranes was inhibited by SP, CP-96,345, and to a lesser extent by SP(5-11), but not SP(1-7), consistent with these binding sites being NK-1 receptors. Injection of SP(5-11) intrathecally did not affect the affinity (Kd) or concentration (Bmax) of [3H]SP binding. However, injection of 1 nmol of SP(1-7) decreased the Bmax of [3H]SP binding in the spinal cord at 6 h after its injection just as this dose of SP decreased the Bmax at 24 h. These data suggest that the N-terminus of SP is responsible for down-regulation of NK-1 binding. As SP(5-11) did not down-regulate NK-1 binding, activation of NK-1 sites does not appear necessary or sufficient for down-regulation of SP binding. In contrast, SP(1-7), in spite of its inability to interact with NK-1 sites, did down-regulate SP binding, suggesting an indirect mechanism dissociated from NK-1 receptors.

  15. Paralysis recovery in humans and model systems

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie; Roy, Roland R.

    2002-01-01

    Considerable evidence now demonstrates that extensive functional and anatomical reorganization following spinal cord injury occurs in centers of the brain that have some input into spinal motor pools. This is very encouraging, given the accumulating evidence that new connections formed across spinal lesions may not be initially functionally useful. The second area of advancement in the field of paralysis recovery is in the development of effective interventions to counter axonal growth inhibition. A third area of significant progress is the development of robotic devices to quantify the performance level of motor tasks following spinal cord injury and to 'teach' the spinal cord to step and stand. Advances are being made with robotic devices for mice, rats and humans.

  16. Descending motor pathways and the spinal motor system - Limbic and non-limbic components

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1991-01-01

    Research on descending motor pathways to caudal brainstem and spinal cord in the spinal motor system is reviewed. Particular attention is given to somatic and autonomic motoneurons in the spinal cord and brainstem, local projections to motoneurons, bulbospinal interneurons projecting to motoneurons, descending pathways of somatic motor control systems, and descending pathways involved in limbic motor control systems.

  17. Targeting L-Selectin to Improve Neurologic and Urologic Function After Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    doses of DFA, male C57BL/6 mice were subjected to a 2g weight dropped 7.5 cm onto the exposed spinal cord at the thoracic 9 vertebral level (mild...detect the absence of L-selectin on leukocytes 1 day post-SCI. Male C57BL/6 mice were subjected to a 2g weight dropped 7.5 cm onto the exposed spinal...subjected to a 2g weight dropped 7.5 cm onto the exposed spinal cord at the thoracic 9 vertebral level. DFA (40mg/kg) or vehicle was administered

  18. Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection.

    PubMed

    Sharma, Hari S; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Ozkizilcik, Asya; Tian, Z Ryan; Nozari, Ala; Sharma, Aruna

    2017-01-01

    The possibility that histamine influences the spinal cord pathophysiology following trauma through specific receptor-mediated upregulation of neuronal nitric oxide synthase (nNOS) was examined in a rat model. A focal spinal cord injury (SCI) was inflicted by a longitudinal incision into the right dorsal horn of the T10-11 segments. The animals were allowed to survive 5h. The SCI significantly induced breakdown of the blood-spinal cord barrier to protein tracers, reduced the spinal cord blood flow at 5h, and increased the edema formation and massive upregulation of nNOS expression. Pretreatment with histamine H1 receptor antagonist mepyramine (1mg, 5mg, and 10mg/kg, i.p., 30min before injury) failed to attenuate nNOS expression and spinal cord pathology following SCI. On the other hand, blockade of histamine H2 receptors with cimetidine or ranitidine (1mg, 5mg, or 10mg/kg) significantly reduced these early pathophysiological events and attenuated nNOS expression in a dose-dependent manner. Interestingly, TiO 2 -naowire delivery of cimetidine or ranitidine (5mg doses) exerted superior neuroprotective effects on SCI-induced nNOS expression and cord pathology. It appears that effects of ranitidine were far superior than cimetidine at identical doses in SCI. On the other hand, pretreatment with histamine H3 receptor agonist α-methylhistamine (1mg, 2mg, or 5mg/kg, i.p.) that inhibits histamine synthesis and release in the central nervous system thwarted the spinal cord pathophysiology and nNOS expression when used in lower doses. Interestingly, histamine H3 receptor antagonist thioperamide (1mg, 2mg, or 5mg/kg, i.p.) exacerbated nNOS expression and cord pathology after SCI. These novel observations suggest that blockade of histamine H2 receptors or stimulation of histamine H3 receptors attenuates nNOS expression and induces neuroprotection in SCI. Taken together, our results are the first to demonstrate that histamine-induced pathophysiology of SCI is mediated via nNOS expression involving specific histamine receptors. © 2017 Elsevier Inc. All rights reserved.

  19. Magnetic Resonance Imaging of the Codman Microsensor Transducer Used for Intraspinal Pressure Monitoring: Findings From the Injured Spinal Cord Pressure Evaluation Study.

    PubMed

    Phang, Isaac; Mada, Marius; Kolias, Angelos G; Newcombe, Virginia F J; Trivedi, Rikin A; Carpenter, Adrian; Hawkes, Rob C; Papadopoulos, Marios C

    2016-05-01

    Laboratory and human study. To test the Codman Microsensor Transducer (CMT) in a cervical gel phantom. To test the CMT inserted to monitor intraspinal pressure in a patient with spinal cord injury. We recently introduced the technique of intraspinal pressure monitoring using the CMT to guide management of traumatic spinal cord injury [Werndle et al. Crit Care Med 2014;42:646]. This is analogous to intracranial pressure monitoring to guide management of patients with traumatic brain injury. It is unclear whether magnetic resonance imaging (MRI) of patients with spinal cord injury is safe with the intraspinal pressure CMT in situ. We measured the heating produced by the CMT placed in a gel phantom in various configurations. A 3-T MRI system was used with the body transmit coil and the spine array receive coil. A CMT was then inserted subdurally at the injury site in a patient who had traumatic spinal cord injury and MRI was performed at 1.5 T. In the gel phantom, heating of up to 5°C occurred with the transducer wire placed straight through the magnet bore. The heating was abolished when the CMT wire was coiled and passed away from the bore. We then tested the CMT in a patient with an American Spinal Injuries Association grade C cervical cord injury. The CMT wire was placed in the configuration that abolished heating in the gel phantom. Good-quality T1 and T2 images of the cord were obtained without neurological deterioration. The transducer remained functional after the MRI. Our data suggest that the CMT is MR conditional when used in the spinal configuration in humans. Data from a large patient group are required to confirm these findings. N/A.

  20. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    PubMed

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

Top