Case studies of spinal deformities in ornamental koi, Cyprinus carpio L.
Chin, H N; Loh, R; Hong, Y C; Gibson-Kueh, S
2017-01-01
This is a study of vertebral deformities in ornamental koi based on computed radiography and skeletons cleaned by dermestid beetles (Dermestes maculatus). All koi developed gradual onset of swimming abnormalities as adults. Extensive intervertebral osteophyte formation correlated with age of fish and was associated with hindquarter paresis in one koi. Vertebral compression and fusion were the most common spinal deformities occurring at multiple sites, similar to findings in other farmed fish. Site-specific spinal deformities were thought to develop due to differences in swimming behaviour and rates of vertebral growth. One koi had offspring with spinal deformities. Spinal deformities are significant problems in both European and Australian food fish hatcheries. The heritability of vertebral deformities in farmed fish is reportedly low unless there is concurrent poor husbandry or nutritional deficiencies. The specific aetiologies for vertebral deformities in koi in this study could not be ascertained. Current knowledge on spinal deformities in the better studied European food fish species suggests multifactorial aetiologies. Future research should include prospective longitudinal studies of larger numbers of koi from hatch and consideration of all potential risk factors such as husbandry, nutrition, temperature, photoperiod and genetics. © 2016 John Wiley & Sons Ltd.
Orthopaedic deformities associated with lumbosacral spinal lipomas.
Gourineni, Prasad; Dias, Luciano; Blanco, Ronaldo; Muppavarapu, Satheesh
2009-12-01
Lipomeningocele is the most common cause of occult spinal dysraphism and spinal cord tethering. Children with this condition seem normal at birth except for cutaneous signs, and the initial complaints are usually musculoskeletal. We studied the orthopaedic deformities observed in this condition. We reviewed the medical charts of 159 patients with a diagnosis of lipoma of the lumbosacral spine that were examined in the Myelodysplasia Clinic over 25 years. Of these patients, 122 were treated by a single orthopaedic surgeon (L.D.) and were studied in detail. Of these 122 patients, 45 were over 15 years of age at the time of the final follow-up. Most patients had cutaneous stigmata. Foot deformities were the most common orthopaedic problems, followed by scoliosis. In patients over 15 years of age, the incidence of foot deformities was 44.2% (36 feet), with 20 feet requiring surgical treatment. The most common foot deformities were cavovarus, cavus, and equinocavovarus. In 70% of the surgical cases, good correction was achieved with only one procedure. Foot surgeries in patients under the age of 8 years were usually soft tissue procedures, and bony procedures were performed primarily in patients over the age of 11 years. Orthopaedic deformities are common at the initial presentation in patients with occult spinal dysraphism. A careful clinical examination with a high index of suspicion for spinal cord anomalies is indicated in all cases of spinal and lower extremity deformities. Foot deformities are very common and surgical treatment is usually successful. A thorough follow-up evaluation, including manual muscle strength testing, should be performed routinely to detect tethering of the cord in the early stages and to prevent worsening of the orthopaedic deformities. This was a retrospective case study. Level 4.
Yazici, Muharrem; Emans, John
2009-08-01
Review of relevant literature including personal opinions. To review the current researches investigating the efficacy of growing rod and thoracic expansion techniques in the treatment of congenital spine deformity of young children, and to highlight the contrasting advantages and limitations in the fusionless treatment of progressive congenital scoliosis. Congenital scoliosis has the potential for severe spinal deformity and thoracic insufficiency syndrome (TIS). Conventional fusion treatments in children tend to shorten the spine further exacerbating trunk shortening and TIS. In the surgical treatment of congenital spinal deformities in young children, while reconstructing the spinal deformity, one should simultaneously pursue preserving the growth potential of the vertebrae, improving the volume, symmetry, and functions of the thorax, and protecting this improvement during the growth. Today, employed in the treatment of spinal deformities of young children, there are 2 deformity reconstruction methods serving these targets: Growing rod technique and vertical expandable prosthetic titanium rib (VEPTR) with or without expansion thoracostomy. Peer-reviewed research articles and major international meeting presentations were reviewed. Methods were compared in terms of advantages and limitations. The growing rod technique is a safe and reliable method in the treatment of congenital spine deformity of young children who present some flexibility in the anomalous segment, or when the congenital anomaly involves a vertebral segment too long for resection, or with compensating curve with structural pattern concomitant to the congenital deformity. Expansion thoracostomy and VEPTR are the appropriate choice for severe congenital spine deformity when a large amount of growth remains. Although ventilator dependence is significantly decreasing, thoracic volume and space available for the lung are increased after expansion thoracostomy and VEPTR. Growing rod technique should be used in patients where the primary problem is at the vertebral column. If the patient has rib fusions and/or TIS has developed, in other words, if the primary problem involves the thoracic cage, expansion thoracostomy and VEPTR should be an appropriate option.
Instrumentation and fusion for congenital spine deformities.
Hedequist, Daniel J
2009-08-01
A retrospective clinical review. To review the use of modern instrumentation of the spine for congenital spinal deformities. Spinal instrumentation has evolved since the advent of the Harrington rod. There is a paucity of literature, which discusses the use of modern spinal instrumentation in congenital spine deformity cases. This review focuses on modern instrumentation techniques for congenital scoliosis and kyphosis. A systematic review was performed of the literature to discuss spinal implant use for congenital deformities. Spinal instrumentation may be safely and effectively used in cases of congenital spinal deformity. Spinal surgeons taking care of children with congenital spine deformities need to be trained in all aspects of modern spinal instrumentation.
Korovessis, Panagiotis; Zacharatos, Spyridon; Koureas, Georgios; Megas, Panagiotis
2007-04-01
Bracing is the most effective non-operative treatment for mild progressive spinal deformities in adolescence but it has shown a considerable impact on several aspects of adolescents' functioning. This cross-sectional study investigated the self-perceived health status of adolescents with the two most common deformities, treated with body orthosis. Seventy-nine adolescents with spinal deformities (idiopathic adolescent scoliosis, thoracic Scheuermann kyphosis) and 62 adolescents without spinal deformities were asked to complete the Quality of Life profile for Spine Deformities Instrument. This study showed that adolescents with deformities are significantly less likely to have back pain in training than controls, but more likely to have difficulty in forward bending, and in the most common daily activities while in brace. These individuals claim they wake up because of back pain and feel quite nervous with the external appearance of their body. These patients face often problems with their relations with friends, while they reported difficulties in getting up from bed and sleep at night more often than their counterparts without deformities. As they grow older, patients feel increasing ashamed of their body, as they are more concerned about the future effect of the deformity on their body. As the bracing time increases, patients have much more probability than controls to get low back pain. Girls with deformity have a higher probability than boys to get low back pain while working in the house and while training. Individuals with larger spinal curvatures have more difficulties in bending and increased incidence of back pain than their counterparts with smaller curvatures. Psychological reasons associated mainly with relations at school and back pain are the main causes for low compliance in adolescents with spinal deformities treated with body orthosis. Careful instructions for all individuals who will undergo brace therapy, psychological support for all patients who develop psychological reactions and physical training particularly for older girls should be recommended to increase bracing compliance.
Zacharatos, Spyridon; Koureas, Georgios; Megas, Panagiotis
2006-01-01
Bracing is the most effective non-operative treatment for mild progressive spinal deformities in adolescence but it has shown a considerable impact on several aspects of adolescents’ functioning. This cross-sectional study investigated the self-perceived health status of adolescents with the two most common deformities, treated with body orthosis. Seventy-nine adolescents with spinal deformities (idiopathic adolescent scoliosis, thoracic Scheuermann kyphosis) and 62 adolescents without spinal deformities were asked to complete the Quality of Life profile for Spine Deformities Instrument. This study showed that adolescents with deformities are significantly less likely to have back pain in training than controls, but more likely to have difficulty in forward bending, and in the most common daily activities while in brace. These individuals claim they wake up because of back pain and feel quite nervous with the external appearance of their body. These patients face often problems with their relations with friends, while they reported difficulties in getting up from bed and sleep at night more often than their counterparts without deformities. As they grow older, patients feel increasing ashamed of their body, as they are more concerned about the future effect of the deformity on their body. As the bracing time increases, patients have much more probability than controls to get low back pain. Girls with deformity have a higher probability than boys to get low back pain while working in the house and while training. Individuals with larger spinal curvatures have more difficulties in bending and increased incidence of back pain than their counterparts with smaller curvatures. Psychological reasons associated mainly with relations at school and back pain are the main causes for low compliance in adolescents with spinal deformities treated with body orthosis. Careful instructions for all individuals who will undergo brace therapy, psychological support for all patients who develop psychological reactions and physical training particularly for older girls should be recommended to increase bracing compliance. PMID:16953447
Schairer, William W; Carrer, Alexandra; Lu, Michael; Hu, Serena S
2014-12-01
Retrospective cohort study. To assess the concomitance of cervical spondylosis and thoracolumbar spinal deformity. Patients with degenerative cervical spine disease have higher rates of degeneration in the lumbar spine. In addition, degenerative cervical spine changes have been observed in adult patients with thoracolumbar spinal deformities. However, to the best of our knowledge, there have been no studies quantifying the association between cervical spondylosis and thoracolumbar spinal deformity in adult patients. Patients seen by a spine surgeon or spine specialist at a single institution were assessed for cervical spondylosis and/or thoracolumbar spinal deformity using an administrative claims database. Spinal radiographic utilization and surgical intervention were used to infer severity of spinal disease. The relative prevalence of each spinal diagnosis was assessed in patients with and without the other diagnosis. A total of 47,560 patients were included in this study. Cervical spondylosis occurred in 13.1% overall, but was found in 31.0% of patients with thoracolumbar spinal deformity (OR=3.27, P<0.0001). Similarly, thoracolumbar spinal deformity was found in 10.7% of patients overall, but was increased at 23.5% in patients with cervical spondylosis (OR=3.26, P<0.0001). In addition, increasing severity of disease was associated with an increased likelihood of the other spinal diagnosis. Patients with both diagnoses were more likely to undergo both cervical (OR=3.23, P<0.0001) and thoracolumbar (OR=4.14, P<0.0001) spine fusion. Patients with cervical spondylosis or thoracolumbar spinal deformity had significantly higher rates of the other spinal diagnosis. This correlation was increased with increased severity of disease. Patients with both diagnoses were significantly more likely to have received a spine fusion. Further research is warranted to establish the cause of this correlation. Clinicians should use this information to both screen and counsel patients who present for cervical spondylosis or thoracolumbar spinal deformity.
Spinal deformity in patients with Sotos syndrome (cerebral gigantism).
Tsirikos, Athanasios I; Demosthenous, Nestor; McMaster, Michael J
2009-04-01
Retrospective review of a case series. To present the clinical characteristics and progression of spinal deformity in patients with Sotos syndrome. There is limited information on the development of spinal deformity and the need for treatment in this condition. The medical records and spinal radiographs of 5 consecutive patients were reviewed. All patients were followed to skeletal maturity (mean follow-up: 6.6 y). The mean age at diagnosis of spinal deformity was 11.9 years (range: 5.8 to 14.5) with 4 patients presenting in adolescence. The type of deformity was not uniform. Two patients presented in adolescence with relatively small and nonprogressive thoracolumbar and lumbar scoliosis, which required observation but no treatment until the end of spinal growth. Three patients underwent spinal deformity correction at a mean age of 11.7 years (range: 6 to 15.4). The first patient developed a double structural thoracic and lumbar scoliosis and underwent a posterior spinal arthrodesis extending from T3 to L4. Five years later, she developed marked degenerative changes at the L4/L5 level causing symptomatic bilateral lateral recess stenosis and affecting the L5 nerve roots. She underwent spinal decompression at L4/L5 and L5/S1 levels followed by extension of the fusion to the sacrum. The second patient developed a severe thoracic kyphosis and underwent a posterior spinal arthrodesis. The remaining patient presented at the age of 5.9 years with a severe thoracic kyphoscoliosis and underwent a 2-stage antero-posterior spinal arthrodesis. The development of spinal deformity is a common finding in children with Sotos syndrome and in our series it occurred in adolescence in 4 out of 5 patients. There is significant variability on the pattern of spine deformity, ranging from a scoliosis through kyphoscoliosis to a pure kyphosis, and also the age at presentation and need for treatment.
Arbuatti, Alessio; Della Salda, Leonardo; Romanucci, Mariarita
2013-03-01
To describe the occurrence of various spinal deformations in a captive-bred wild line of Poecilia wingei (P. wingei). Fish belonging to a wild line of P. wingei caught from Laguna de Los Patos, Venezuela, were bred in an aquarium home-breeding system during a period of three years (2006-2009). The spinal curvature was observed to study spinal deformities in P. wingei. Out of a total of 600 fish, 22 showed different types of deformities (scoliosis, lordosis, kyphosis), with a higher incidence in females. Growth, swimming and breeding of deformed fish were generally normal. Possible causes for spinal curvature in fish are discussed on the basis of the current literature. While it is not possible to determine the exact cause(s) of spinal deformities observed in the present study, traumatic injuries, nutritional imbalances, genetic defects or a combination of these factors can be supposed to be involved in the pathogenesis of such lesions.
Orthopaedic Disorders in Myotonic Dystrophy Type 1: descriptive clinical study of 21 patients
2013-01-01
Background Myotonic Dystrophy Type 1 (DM1) is the most common form of hereditary myopathy presenting in adults. This autosomal-dominant systemic disorder is caused by a CTG repeat, demonstrating various symptoms. A mild, classic and congenital form can be distinguished. Often the quality of life is reduced by orthopaedic problems, such as muscle weakness, contractures, foot or spinal deformities, which limit patients’ mobility. The aim of our study was to gather information about the orthopaedic impairments in patients with DM1 in order to improve the medical care of patients, affected by this rare disease. Methods A retrospective clinical study was carried out including 21 patients (11 male and 10 female), all diagnosed with DM1 by genetic testing. All patients were seen during our special consultations for neuromuscular diseases, during which patients were interviewed and examined. We also reviewed surgery reports of our hospitalized patients. Results We observed several orthopaedic impairments: spinal deformities (scoliosis, hyperkyphosis, rigid spine), contractures (of the upper extremities and the lower extremities), foot deformities (equinus deformity, club foot, pes cavus, pes planovalgus, pes cavovarus, claw toes) and fractures. Five patients were affected by pulmonary diseases (obstructive airway diseases, restrictive lung dysfunctions). Twelve patients were affected by cardiac disorders (congenital heart defects, valvular heart defects, conduction disturbances, pulmonary hypertension, cardiomyopathy). Our patients received conservative therapy (physiotherapy, logopaedic therapy, ergotherapy) and we prescribed orthopaedic technical devices (orthopaedic custom-made shoes, insoles, lower and upper leg orthoses, wheelchair, Rehab Buggy). We performed surgery for spinal and foot deformities: the scoliosis of one patient was stabilized and seven patients underwent surgery for correction of foot deformities. Conclusions An orthopaedic involvement in DM1 patients should not be underestimated. The most common orthopaedic impairments are contractures, foot deformities and spinal deformities. Contractures are typically located distally in the lower extremities, but can also occur in the hip or shoulder joints. Foot deformities could be treated with orthopaedic custom-made shoes, orthoses or insoles. Surgery is indicated for severe foot deformities or contractures. PMID:24289806
Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton
2017-06-01
Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.
Historical overview of spinal deformities in ancient Greece
Vasiliadis, Elias S; Grivas, Theodoros B; Kaspiris, Angelos
2009-01-01
Little is known about the history of spinal deformities in ancient Greece. The present study summarizes what we know today for diagnosis and management of spinal deformities in ancient Greece, mainly from the medical treatises of Hippocrates and Galen. Hippocrates, through accurate observation and logical reasoning was led to accurate conclusions firstly for the structure of the spine and secondly for its diseases. He introduced the terms kyphosis and scoliosis and wrote in depth about diagnosis and treatment of kyphosis and less about scoliosis. The innovation of the board, the application of axial traction and even the principle of trans-abdominal correction for correction of spinal deformities have their origin in Hippocrates. Galen, who lived nearly five centuries later impressively described scoliosis, lordosis and kyphosis, provided aetiologic implications and used the same principles with Hippocrates for their management, while his studies influenced medical practice on spinal deformities for more than 1500 years. PMID:19243609
Analysis of National Rates, Cost, and Sources of Cost Variation in Adult Spinal Deformity.
Zygourakis, Corinna C; Liu, Caterina Y; Keefe, Malla; Moriates, Christopher; Ratliff, John; Dudley, R Adams; Gonzales, Ralph; Mummaneni, Praveen V; Ames, Christopher P
2018-03-01
Several studies suggest significant variation in cost for spine surgery, but there has been little research in this area for spinal deformity. To determine the utilization, cost, and factors contributing to cost for spinal deformity surgery. The cohort comprised 55 599 adults who underwent spinal deformity fusion in the 2001 to 2013 National Inpatient Sample database. Patient variables included age, gender, insurance, median income of zip code, county population, severity of illness, mortality risk, number of comorbidities, length of stay, elective vs nonelective case. Hospital variables included bed size, wage index, hospital type (rural, urban nonteaching, urban teaching), and geographical region. The outcome was total hospital cost for deformity surgery. Statistics included univariate and multivariate regression analyses. The number of spinal deformity cases increased from 1803 in 2001 (rate: 4.16 per 100 000 adults) to 6728 in 2013 (rate: 13.9 per 100 000). Utilization of interbody fusion devices increased steadily during this time period, while bone morphogenic protein usage peaked in 2010 and declined thereafter. The mean inflation-adjusted case cost rose from $32 671 to $43 433 over the same time period. Multivariate analyses showed the following patient factors were associated with cost: age, race, insurance, severity of illness, length of stay, and elective admission (P < .01). Hospitals in the western United States and those with higher wage indices or smaller bed sizes were significantly more expensive (P < .05). The rate of adult spinal deformity surgery and the mean case cost increased from 2001 to 2013, exceeding the rate of inflation. Both patient and hospital factors are important contributors to cost variation for spinal deformity surgery. Copyright © 2017 by the Congress of Neurological Surgeons
Rouleau, Pascal; Guertin, Pierre A
2013-01-01
Most animal models of contused, compressed or transected spinal cord injury (SCI) require a laminectomy to be performed. However, despite advantages and disadvantages associated with each of these models, the laminectomy itself is generally associated with significant problems including longer surgery and anaesthesia (related post-operative complications), neuropathic pain, spinal instabilities, deformities, lordosis, and biomechanical problems, etc. This review provides an overview of findings obtained mainly from our laboratory that are associated with the development and characterization of a novel murine model of spinal cord transection that does not require a laminectomy. A number of studies successfully conducted with this model provided strong evidence that it constitutes a simple, reliable and reproducible transection model of complete paraplegia which is particularly useful for studies on large cohorts of wild-type or mutant animals - e.g., drug screening studies in vivo or studies aimed at characterizing neuronal and non-neuronal adaptive changes post-trauma. It is highly suitable also for studies aimed at identifying and developing new pharmacological treatments against aging associated comorbid problems and specific SCI-related dysfunctions (e.g., stereotyped motor behaviours such as locomotion, sexual response, defecation and micturition) largely related with 'command centers' located in lumbosacral areas of the spinal cord.
Health inequalities among students of lower secondary schools in Bytom, Poland.
Wypych-Ślusarska, Agata; Czech, Elżbieta; Kasznia-Kocot, Joanna; Słowiński, Jerzy; Niewiadomska, Ewa; Skrzypek, Michał; Malinowska-Borowska, Jolanta
2018-03-14
Poverty and low level of education pose the biggest threats to public health. Moreover, they generate inequalities in public healthThe aim of the study was to check if there are any inequalities in health among teenagers living in Bytom, Poland. In 2011 and 2012, an epidemiological cross-sectional study was conducted on 1,099 students from lower secondary schools from Bytom. The students completed a questionnaire which was based on an earlier Health Behaviour in School-aged Children study (HBSC). Socio-Economic Status of teenagers (SES) was determined according to the Family Affluence Scale (FAS), the intensity of possible problems in the place of residence and on parents' education. Impact of SES on health self-assessment, asthma, pneumonia, bronchitis with addition to spinal deformities were also investigated. A good or very good level of health was declared by students from families representing a high level of FAS and residing in a more peaceful, less troubled neighbourhood. The highest level of asthma prevalence (10.9%) occurred among students from families with a low level of FAS. The students from families with high FAS were less affected by spinal deformities (34.6%). Students living in a troubled neighbourhood more often suffered from bronchial asthma, pneumonia, bronchitis and spinal deformities. The level of family affluence depends on the parents' education and all the analysed health problems occurred more frequently in children whose parents had completed at least general secondary education. A high economic standard of living and a peaceful neighbourhood determined good or very good health self-assessment among the surveyed students.
Mummaneni, Praveen V; Shaffrey, Christopher I; Lenke, Lawrence G; Park, Paul; Wang, Michael Y; La Marca, Frank; Smith, Justin S; Mundis, Gregory M; Okonkwo, David O; Moal, Bertrand; Fessler, Richard G; Anand, Neel; Uribe, Juan S; Kanter, Adam S; Akbarnia, Behrooz; Fu, Kai-Ming G
2014-05-01
Minimally invasive surgery (MIS) is an alternative to open deformity surgery for the treatment of patients with adult spinal deformity. However, at this time MIS techniques are not as versatile as open deformity techniques, and MIS techniques have been reported to result in suboptimal sagittal plane correction or pseudarthrosis when used for severe deformities. The minimally invasive spinal deformity surgery (MISDEF) algorithm was created to provide a framework for rational decision making for surgeons who are considering MIS versus open spine surgery. A team of experienced spinal deformity surgeons developed the MISDEF algorithm that incorporates a patient's preoperative radiographic parameters and leads to one of 3 general plans ranging from MIS direct or indirect decompression to open deformity surgery with osteotomies. The authors surveyed fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 20 cases to establish interobserver reliability. They then resurveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and tabulated. Fleiss' analysis was performed using MATLAB software. Over a 3-month period, 11 surgeons completed the surveys. Responses for MISDEF algorithm case review demonstrated an interobserver kappa of 0.58 for the first round of surveys and an interobserver kappa of 0.69 for the second round of surveys, consistent with substantial agreement. In at least 10 cases there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.86 ± 0.15 (± SD) and ranged from 0.62 to 1. The use of the MISDEF algorithm provides consistent and straightforward guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity. The MISDEF algorithm was found to have substantial inter- and intraobserver agreement. Although further studies are needed, the application of this algorithm could provide a platform for surgeons to achieve the desired goals of surgery.
Lewis, Noah D H; Keshen, Sam G N; Lenke, Lawrence G; Zywiel, Michael G; Skaggs, David L; Dear, Taylor E; Strantzas, Samuel; Lewis, Stephen J
2015-08-01
A retrospective analysis. The purpose of this study was to determine whether the deformity angular ratio (DAR) can reliably assess the neurological risks of patients undergoing deformity correction. Identifying high-risk patients and procedures can help ensure that appropriate measures are taken to minimize neurological complications during spinal deformity corrections. Subjectively, surgeons look at radiographs and evaluate the riskiness of the procedure. However, 2 curves of similar magnitude and location can have significantly different risks of neurological deficit during surgery. Whether the curve spans many levels or just a few can significantly influence surgical strategies. Lenke et al have proposed the DAR, which is a measure of curve magnitude per level of deformity. The data from 35 pediatric spinal deformity correction procedures with thoracic 3-column osteotomies were reviewed. Measurements from preoperative radiographs were used to calculate the DAR. Binary logistic regression was used to model the relationship between DARs (independent variables) and presence or absence of an intraoperative alert (dependent variable). In patients undergoing 3-column osteotomies, sagittal curve magnitude and total curve magnitude were associated with increased incidence of transcranial motor evoked potential changes. Total DAR greater than 45° per level and sagittal DAR greater than 22° per level were associated with a 75% incidence of a motor evoked potential alert, with the incidence increasing to 90% with sagittal DAR of 28° per level. In patients undergoing 3-column osteotomies for severe spinal deformities, the DAR was predictive of patients developing intraoperative motor evoked potential alerts. Identifying accurate radiographical, patient, and procedural risk factors in the correction of severe deformities can help prepare the surgical team to improve safety and outcomes when carrying out complex spinal corrections. 3.
NASA Astrophysics Data System (ADS)
Giannoglou, V.; Stylianidis, E.
2016-06-01
Scoliosis is a 3D deformity of the human spinal column that is caused from the bending of the latter, causing pain, aesthetic and respiratory problems. This internal deformation is reflected in the outer shape of the human back. The golden standard for diagnosis and monitoring of scoliosis is the Cobb angle, which refers to the internal curvature of the trunk. This work is the first part of a post-doctoral research, presenting the most important researches that have been done in the field of scoliosis, concerning its digital visualisation, in order to provide a more precise and robust identification and monitoring of scoliosis. The research is divided in four fields, namely, the X-ray processing, the automatic Cobb angle(s) calculation, the 3D modelling of the spine that provides a more accurate representation of the trunk and the reduction of X-ray radiation exposure throughout the monitoring of scoliosis. Despite the fact that many researchers have been working on the field for the last decade at least, there is no reliable and universal tool to automatically calculate the Cobb angle(s) and successfully perform proper 3D modelling of the spinal column that would assist a more accurate detection and monitoring of scoliosis.
Asher, Marc A; Lai, Sue-Min; Burton, Douglas C
2012-01-01
Retrospective study of a prospectively assembled cohort. To characterize the survival from subsequent spine surgery and the life survival of patients treated surgically for severe spinal deformity due to neuropathic diseases. Survivorship analysis is widely used to study the natural history of disease processes and of treatments provided, but has very seldom been used to study patients' course after surgery for spinal deformity associated with neuropathic diseases. Patients with neuropathic spinal deformity treated with primary posterior instrumentation and arthrodesis from 1989 through 2002 were identified and studied by review of charts and radiographs, and by mail survey. Subsequent spine surgery and death events, and the time interval from surgery were identified. Fifteen variables possibly influencing survivorship were studied. There were no perioperative deaths, spinal cord injuries, or acute wound infections in the 117 eligible patients. Reoperation and life survival statuses were available for 110 patients (94%) at an average follow-up of 11.89 years (±5.3; range: 2-20.9 yr). Twelve patients (11%) had subsequent spine surgery. Survival from subsequent spine surgery was 91% at 5 years, 90% at 10 and 15 years, and 72% at 20 years. Proximal fixation problems occurred in 4 patients. Twenty-two patients (20%) had died from 4 to 20 years postoperative. Life survival was 98% at 5 years, 89% at 10 years, 81% at 15 years, and 56% at 20 years. The only variable associated with life survival was the occurrence of one or more perioperative complications, P = 0.0032. The younger half of the series at operation (<13.75 yr) was significantly more likely to have one or more perioperative complications, P = 0.0068. Spinal deformity type and magnitude were similar for the younger and older halves of the patients. Life survival of the patients with cerebral-palsy and not-cerebral-palsy upper motor neuron disease was not different. One-hundred-two of 105 were at least satisfied or would have the surgery again for the same condition. Survival from subsequent spine operation was similar to adolescent idiopathic scoliosis series studied in the same manner. Life survival decline began at 4 years postoperative and was significantly associated with the occurrence of one or more perioperative complications. Even after successful spine deformity surgery, this population's health status is often precarious.
The 100 most cited papers in spinal deformity surgery: a bibliometric analysis.
O'Neill, Shane C; Butler, Joseph S; McGoldrick, Niall; O'Leary, Robert; Synnott, Keith
2014-10-27
Spinal deformity is a condition that has been recognized for many millennia. There have been major advances in the treatment of spinal deformity in recent years and studies outlining new ideas can inspire others to further advance the speciality. The number of citations a paper receives may indicate the influence of that paper. It is therefore important that we evaluate and analyze the most cited works in our field. The aim of this study is to identify the 100 most cited papers relevant to spinal deformity surgery in the literature. A search through the Thomson Reuters Web of Science™ for citations related to spinal deformity surgery was performed. The number of citations, mean citation number (total number citations/years since publication), journal, authors, year of publication and country of origin of the top 100 papers was recorded. The top 100 papers were cited a combined 17,646 times, ranging from 453 to 112. The majority of papers originated from the United States (71) and were published in 20 different journals. The decade 1990-1999 was the most prolific, with 36 of the 100 papers published during this time. Papers pertaining to the management of scoliosis (49) were the most common. This study identifies the top 100 most cited papers in the field of spinal deformity surgery. While citation is not a specific marker of the scientific quality of a paper, it is a surrogate for the influence a paper has had on the orthopedic community. This list of papers provides an invaluable resource for both those in training and those actively practicing and involved in the further development of spinal deformity surgery.
The 100 Most Cited Papers in Spinal Deformity Surgery: A Bibliometric Analysis
O’Neill, Shane C.; Butler, Joseph S.; McGoldrick, Niall; O’Leary, Robert; Synnott, Keith
2014-01-01
Spinal deformity is a condition that has been recognized for many millennia. There have been major advances in the treatment of spinal deformity in recent years and studies outlining new ideas can inspire others to further advance the speciality. The number of citations a paper receives may indicate the influence of that paper. It is therefore important that we evaluate and analyze the most cited works in our field. The aim of this study is to identify the 100 most cited papers relevant to spinal deformity surgery in the literature. A search through the Thomson Reuters Web of Science™ for citations related to spinal deformity surgery was performed. The number of citations, mean citation number (total number citations/years since publication), journal, authors, year of publication and country of origin of the top 100 papers was recorded. The top 100 papers were cited a combined 17,646 times, ranging from 453 to 112. The majority of papers originated from the United States (71) and were published in 20 different journals. The decade 1990-1999 was the most prolific, with 36 of the 100 papers published during this time. Papers pertaining to the management of scoliosis (49) were the most common. This study identifies the top 100 most cited papers in the field of spinal deformity surgery. While citation is not a specific marker of the scientific quality of a paper, it is a surrogate for the influence a paper has had on the orthopedic community. This list of papers provides an invaluable resource for both those in training and those actively practicing and involved in the further development of spinal deformity surgery. PMID:25568731
Thoracolumbar spinal deformity: Part I. A historical passage to 1990: historical vignette.
Kanter, Adam S; Bradford, David S; Okonkwo, David O; Rengachary, Setti S; Mummaneni, Praveen V
2009-12-01
Seven millennia of anthropological artifacts and historical tales reference human spinal deformity, its diagnosis, and treatment-many of the latter of which turned out to be worse than the deformity itself. From Hippocrates to Harrington to the 21st century, the literature base has expanded in exponential fashion to yield an imperfect but constantly improving body of evidence, experience, and understanding of this challenging disease phenomenon. This review details the pre-1990 innovations, whose failures and successes have equally contributed to the advancement and dissemination of the increasingly evidence-based field of spinal deformity.
In-vivo spinal cord deformation in flexion
NASA Astrophysics Data System (ADS)
Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.
1997-05-01
Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.
Mao, Keya; Xiao, Songhua; Liu, Zhengsheng; Zhang, Yonggang; Zhang, Xuesong; Wang, Zheng; Lu, Ning; Shourong, Zhu; Xifeng, Zhang; Geng, Cui; Baowei, Liu
2010-01-01
Surgical treatment of complex severe spinal deformity, involving a scoliosis Cobb angle of more than 90° and kyphosis or vertebral and rib deformity, is challenging. Preoperative two-dimensional images resulting from plain film radiography, computed tomography (CT) and magnetic resonance imaging provide limited morphometric information. Although the three-dimensional (3D) reconstruction CT with special software can view the stereo and rotate the spinal image on the screen, it cannot show the full-scale spine and cannot directly be used on the operation table. This study was conducted to investigate the application of computer-designed polystyrene models in the treatment of complex severe spinal deformity. The study involved 16 cases of complex severe spinal deformity treated in our hospital between 1 May 2004 and 31 December 2007; the mean ± SD preoperative scoliosis Cobb angle was 118° ± 27°. The CT scanning digital imaging and communication in medicine (DICOM) data sets of the affected spinal segments were collected for 3D digital reconstruction and rapid prototyping to prepare computer-designed polystyrene models, which were applied in the treatment of these cases. The computer-designed polystyrene models allowed 3D observation and measurement of the deformities directly, which helped the surgeon to perform morphological assessment and communicate with the patient and colleagues. Furthermore, the models also guided the choice and placement of pedicle screws. Moreover, the models were used to aid in virtual surgery and guide the actual surgical procedure. The mean ± SD postoperative scoliosis Cobb angle was 42° ± 32°, and no serious complications such as spinal cord or major vascular injury occurred. The use of computer-designed polystyrene models could provide more accurate morphometric information and facilitate surgical correction of complex severe spinal deformity. PMID:20213294
Proximal junctional kyphosis following adult spinal deformity surgery.
Cho, Samuel K; Shin, John I; Kim, Yongjung J
2014-12-01
Proximal junctional kyphosis (PJK) is a common radiographic finding following long spinal fusions. Whether PJK leads to negative clinical outcome is currently debatable. A systematic review was performed to assess the prevalence, risk factors, and treatments of PJK. Literature search was conducted on PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials using the terms 'proximal junctional kyphosis' and 'proximal junctional failure'. Excluding reviews, commentaries, and case reports, we analyzed 33 studies that reported the prevalence rate, risk factors, and discussions on PJK following spinal deformity surgery. The prevalence rates varied widely from 6 to 61.7%. Numerous studies reported that clinical outcomes for patients with PJK were not significantly different from those without, except in one recent study in which adult patients with PJK experienced more pain. Risk factors for PJK included age at operation, low bone mineral density, shorter fusion constructs, upper instrumented vertebrae below L2, and inadequate restoration of global sagittal balance. Prevalence of PJK following long spinal fusion for adult spinal deformity was high but not clinically significant. Careful and detailed preoperative planning and surgical execution may reduce PJK in adult spinal deformity patients.
Postoperative 3D spine reconstruction by navigating partitioning manifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca; Labelle, Hubert, E-mail: hubert.labelle@recherche-ste-justine.qc.ca; Parent, Stefan, E-mail: stefan.parent@umontreal.ca
Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological casesmore » who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities.« less
Singrakhia, Manoj; Malewar, Nikhil; Deshmukh, Sonal; Deshmukh, Shivaji
2018-06-01
Prospective case series. To study the safety, efficacy, and long-term outcomes of single-stage surgical intervention for congenital spinal deformity and intraspinal anomalies. Congenital spinal deformities associated with intraspinal anomalies are usually treated sequentially, first by treating the intraspinal anomalies followed by deformity correction after a period of 3-6 months. Recently, a single-stage approach has been reported to show better postoperative results and reduced complication rates. Thirty patients (23 females and seven males) were prospectively evaluated for the simultaneous surgical treatment of congenital spinal deformity with concurrent intraspinal anomalies from May 2006 to October 2016. The average age at presentation was 9.8±3.7 years, with the average follow-up duration being 49.06±8.6 months. Clinical records were evaluated for clinical, radiological, perioperative, and postoperative data. The average angle of deformity was 56.53°±25.22° preoperatively, 21.13°±14.34° postoperatively, and 23.93°±14.99° at the final follow-up. The average surgical time was 232.58±53.56 minutes (range, 100-330 minutes), with a mean blood loss of 1,587.09±439.09 mL (range, 100-2,300 mL). Single stage surgical intervention for intraspinal anomalies with congenital spinal deformity correction, including adequate intra-operative wake-up test, is a viable option in appropriately selected patients and has minimum complication rates.
Automatic 3D segmentation of spinal cord MRI using propagated deformable models
NASA Astrophysics Data System (ADS)
De Leener, B.; Cohen-Adad, J.; Kadoury, S.
2014-03-01
Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.
A computer vision system for diagnosing scoliosis using moiré images.
Batouche, M; Benlamri, R; Kholladi, M K
1996-07-01
For young people, scoliosis deformities are an evolving process which must be detected and treated as early as possible. The moiré technique is simple, inexpensive, not aggressive and especially convenient for detecting spinal deformations. Doctors make their diagnosis by analysing the symmetry of fringes obtained by such techniques. In this paper, we present a computer vision system for help diagnosing spinal deformations using noisy moiré images of the human back. The approach adopted in this paper consists of extracting fringe contours from moiré images, then localizing some anatomical features (the spinal column, lumbar hollow and shoulder blades) which are crucial for 3D surface generation carried out using Mota's relaxation operator. Finally, rules furnished by doctors are used to derive the kind of spinal deformation and to yield the diagnosis. The proposed system has been tested on a set of noisy moiré images, and the experimental result have shown its robustness and reliability for the recognition of most scoliosis deformities.
Simultaneous Surgical Treatment of Congenital Spinal Deformity Associated with Intraspinal Anomalies
Singrakhia, Manoj; Malewar, Nikhil; Deshmukh, Sonal; Deshmukh, Shivaji
2018-01-01
Study Design Prospective case series. Purpose To study the safety, efficacy, and long-term outcomes of single-stage surgical intervention for congenital spinal deformity and intraspinal anomalies. Overview of literature Congenital spinal deformities associated with intraspinal anomalies are usually treated sequentially, first by treating the intraspinal anomalies followed by deformity correction after a period of 3–6 months. Recently, a single-stage approach has been reported to show better postoperative results and reduced complication rates. Methods Thirty patients (23 females and seven males) were prospectively evaluated for the simultaneous surgical treatment of congenital spinal deformity with concurrent intraspinal anomalies from May 2006 to October 2016. The average age at presentation was 9.8±3.7 years, with the average follow-up duration being 49.06±8.6 months. Clinical records were evaluated for clinical, radiological, perioperative, and postoperative data. Results The average angle of deformity was 56.53°±25.22° preoperatively, 21.13°±14.34° postoperatively, and 23.93°±14.99° at the final follow-up. The average surgical time was 232.58±53.56 minutes (range, 100–330 minutes), with a mean blood loss of 1,587.09±439.09 mL (range, 100–2,300 mL). Conclusions Single stage surgical intervention for intraspinal anomalies with congenital spinal deformity correction, including adequate intra-operative wake-up test, is a viable option in appropriately selected patients and has minimum complication rates. PMID:29879774
Childhood angular kyphosis: a plea for involvement of the pediatric neurosurgeon.
Cornips, E; Koudijs, S; Vles, J; van Rhijn, L
2017-06-01
Childhood angular kyphosis is rare, as most children are affected by a mixed kyphotic and scoliotic deformity. Published series involving a mix of kyphosis and kyphoscoliosis, pediatric and adult, congenital and acquired cases are almost exclusively authored by orthopedic surgeons, suggesting that (pediatric) neurosurgeons are not involved. We present five cases that illustrate the spectrum of angular kyphosis, and these were treated by a multidisciplinary team including child neurologist, orthopedic surgeon, and pediatric neurosurgeon as complementary partners. Angular kyphosis is a cosmetic problem but above all a serious threat to the spinal cord and as such to the child's ambulatory, sphincter, and genito-urinary functions. Spinal cord stretch over the internal kyphosis may cause pain and/or neurological deficit, often accompanied by myelomalacia or even segmental cord atrophy. Spinal cord function may be additionally affected by associated disorders such as syringomyelia or tethered cord, an orthopedic surgeon may be less familiar with. The decision when and how to proceed surgically should be made by a multidisciplinary team, including a pediatric neurosurgeon who actively participates in the operation and helps to safely achieve adequate spinal cord decompression and stabilization. Childhood angular kyphosis is a complex, heterogeneous disorder that should be managed by a multidisciplinary team in specialized pediatric spine centers. While every case is truly unique, the spinal cord is always at risk, especially during decompression, stabilization, and eventual correction of deformity. Pediatric neurosurgeons have an important role to play in preoperative work-up, actual operation, and follow-up.
Spinal deformities rehabilitation - state of the art review.
Weiss, Hans-Rudolf
2010-12-24
Medical rehabilitation aims at an improvement in function, capacity and participation. For the rehabilitation of spinal deformities, the goal is to maintain function and prevent secondary symptoms in the short- and long-term. In patients with scoliosis, predictable signs and symptoms include pain and reduced pulmonary function. A Pub Med review was completed in order to reveal substantial evidence for inpatient rehabilitation as performed in Germany. No evidence has been found in general to support claims for actual inpatient rehabilitation programmes as used today. Nevertheless, as there is some evidence that inpatient rehabilitation may be beneficial to patients with spinal deformities complicated by certain additional conditions, the body of evidence there is for conservative treatment of spinal deformities has been reviewed in order to allow suggestions for outpatient conservative treatment and inpatient rehabilitation. Today, for both children and adolescents, we are able to offer intensive rehabilitation programmes lasting three to five days, which enable the patients to acquire the skills necessary to prevent postures fostering scoliosis in everyday life without missing too much of school teaching subjects at home. The secondary functional impairments adult scoliosis patients might have, as in the opinion of the author, still today require the time of 3-4 weeks in the clinical in-patient setting. Time to address psychosocial as well as somatic limitations, namely chronic pains and cardiorespiratory malfunction is needed to preserve the patients working capability in the long-term. Outpatient treatment/rehabilitation is sufficient for adolescents with spinal deformities.Inpatient rehabilitation is recommended for patients with spinal deformities and pain or severe restrictive ventilation disorder.
A classification of growth friendly spine implants.
Skaggs, David L; Akbarnia, Behrooz A; Flynn, John M; Myung, Karen S; Sponseller, Paul D; Vitale, Michael G
2014-01-01
Various types of spinal implants have been used with the objective of minimizing spinal deformities while maximizing the spine and thoracic growth in a growing child with a spinal deformity. The aim of this study was to describe a classification system of growth friendly spinal implants to allow researchers and clinicians to have a common language and facilitate comparative studies. Growth friendly spinal implant systems fall into 3 categories based upon the forces of correction the implants exert on the spine, which are as follows: Distraction-based systems correct spinal deformities by mechanically applying a distractive force across a deformed segment with anchors at the top and bottom of the implants, which commonly attach to the spine, rib, and/or the pelvis. The present examples of distraction-based implants are spine-based or rib-based growing rods, vertical expandable titanium rib prosthesis, and remotely expandable devices. Compression-based systems correct spinal deformities with a compressive force applied to the convexity of the curve causing convex growth inhibition. This compressive force may be generated both mechanically at the time of implantation, as well as over time resulting from longitudinal growth of vertebral endplates hindered by the spinal implants. Examples of compression-based systems are vertebral staples and tethers. Guided growth systems correct spinal deformity by anchoring multiple vertebrae (usually including the apical vertebrae) to rods with mechanical forces including translation at the time of the initial implant. The majority of the anchors are not rigidly attached to the rods, thus permitting longitudinal growth over time as the anchors slide over the rods. Examples of guided growth systems include the Luque trolley and Shilla. Each system has its benefits and shortcomings. Knowledge of the fundamental principles upon which these systems are based may aid the clinician to choose an appropriate treatment for patients. Having a common language for these systems may aid in comparative research. Vertical expandable titanium rib prosthesis is used with humanitarian exemption. The other devices mentioned in this manuscript are not approved for growing constructs by the Food and Drug Administration and are used off-label.
[Scoliotic spinal deformity in pilot personnel from aviation physical examination's point of view].
Churilov, Iu K; Moiseev, Iu B; Imenovskiĭ, I É; Radchenko, S N
2013-11-01
According to results of performed examinations scoliotic spinal deformity in flight personnel has a low impact on professional health. This is proved by: oligosymptomatic course of disease - lack of complaints of pain, moderate pain, which is revealed only in case of loading tests and palpation; preservation of supporting and movement spinal function; lack of worsening of deformity during the flight service. At the same time in flight personnel suffering from scoliosis was registered a low tolerance to ergometri; robe, which point to insufficient muscle reserve of lower extremities, abdominals and dorsum. This insufficient may have an adverse effect on G-tolerance of pilots serving in maneuvering aviation. According to this fact authors came to conclusion that first-degree scoliotic deformity is of importance for expert examination of pilots of high-performance aircraft. Scoliotic deformity in pilots of other branches of aviation is of importance only in case of clinical implications (pain syndrome, restraint of movement). From there, it is not necessary to make a record in regulatory documents of flight medical board about functional-compensatory spinal deformity (first- and second degree scoliosis) in flight personnel, except flight personnel of high-performance aircraft.
Community Care Administration of Spinal Deformities in the Brazilian Public Health System.
Bressan-Neto, Mario; da Silva Herrero, Carlos Fernando Pereira; Pacola, Lilian Maria; Nunes, Altacílio Aparecido; Defino, Helton Luiz Aparecido
2017-08-01
Underfunding of the surgical treatment of complex spinal deformities has been an important reason for the steadily growing waiting lists in publicly funded healthcare systems. The aim of this study is to characterize the management of the treatment of spinal deformities in the public healthcare system. A cross-sectional study of 60 patients with complex pediatric spinal deformities waiting for treatment in December 2013 was performed. The evaluated parameters were place of origin, waiting time until first assessment at a specialized spine care center, waiting time for the surgical treatment, and need for implants not reimbursed by the healthcare system. Ninety-one percent of the patients lived in São Paulo State (33% from Ribeirão Preto - DRS XIII). Patients waited for 0.5 to 48.0 months for referral, and the waiting times for surgery ranged from 2 to 117 months. Forty-five percent of the patients required implants for the surgical procedure that were not available. The current management of patients with spinal deformities in the public healthcare system does not provide adequate treatment for these patients in our region. They experience long waiting periods for referral and prolonged waiting times to receive surgical treatment; additionally, many of the necessary procedures are not reimbursed by the public healthcare system.
Tao, Youping; Wu, Jigong; Ma, Huasong; Zhang, Lele; Shao, Shuilin; Si, Zebing; Gao, Bo; Ji, Yong; Li, Haixia; Tao, Feifei
2015-07-01
Case report. To investigate the safety and efficacy of posterior vertebral column resection for severe and rigid spinal deformity associated with neurological deficit after implant removal following posterior instrumented fusion. Loss of correction after implant removal in patients with posterior instrumented fusion has been previously reported. However, to our knowledge, posterior vertebral column resection (PVCR) for severe and rigid spinal deformity associated with neurological deficit after implant removal following posterior instrumented fusion has not been reported. An 18-year-old female with severe and rigid spinal deformity associated with neurological deficit was classified as Frankel C, according to the Frankel grading system. She underwent posterior spinal fusion with pedicle screw fixation at 16 years, and her implants were removed after 1 year due to back pain. Seven months after removal of the implants, she began to experience weakness in her lower limbs but did not seek any treatment. She was unable to stand and had to use a wheelchair. The patient successfully underwent PVCR and posterior reinstrumentation. Within 3 months, her neurological status improved to Frankel E. The patient had no neurological deterioration and infections. There was no instrumentation failure and loosening correction at the 32 months follow-up. Our results suggest that PVCR and pedicle screw fixation is a safe and efficacious option for severe and rigid spinal deformity associated with neurological deficit after implant removal following posterior instrumented fusion. N/A.
Tennis is not dangerous for the spine during growth: results of a cross-sectional study.
Zaina, Fabio; Donzelli, Sabrina; Lusini, Monia; Fusco, Claudia; Minnella, Salvatore; Negrini, Stefano
2016-09-01
Tennis is widely practiced by adolescents in many countries. Many spinal deformity experts consider this activity, together with other asymmetrical sports, as risk factors for scoliosis development even though scientific data are missing. The aim of the present study was to verify the prevalence of spinal deformities and LBP in adolescent competitive tennis players compared to healthy controls. We designed a cross-sectional study. A convenience sample of 102 adolescent tennis players (52 girls) was compared to 203 scholars (102 girls) of the same age (12 years). We used a questionnaire to collect data on LBP and we measured the ATR to screen for spinal deformities and the plumb line distances for kyphosis (C7 and C7 + L3) and lordosis (L3). We found similar spinal deformities in both groups: ATR female: 3.2° ± 1° (tennis) versus 2.8° ± 1° (school), NS; ATR males: 2.8° ± 1° (tennis) versus 2.6° ± 1° (school), p < 0.05. No differences were found for kyphosis and lordosis. Low back pain prevalence was similar for both groups, but a significant difference was found for limitation of usual activity, which was higher for tennis players than controls. The correlation between tennis, an asymmetric sport, and spinal deformities that has been postulated by many experts was not confirmed by our data. There was no correlation between tennis and LBP, even if there were some differences among groups for limitations of the daily activities. Adolescent competitive tennis showed to be a safe sport without an increased risk of spinal deformities and LBP.
Vitamin A Deficiency Induces Congenital Spinal Deformities in Rats
Li, Zheng; Shen, Jianxiong; Wu, William Ka Kei; Wang, Xiaojuan; Liang, Jinqian; Qiu, Guixing; Liu, Jiaming
2012-01-01
Most cases of congenital spinal deformities were sporadic and without strong evidence of heritability. The etiology of congenital spinal deformities is still elusive and assumed to be multi-factorial. The current study seeks to elucidate the effect of maternal vitamin A deficiency and the production of congenital spinal deformities in the offsping. Thirty two female rats were randomized into two groups: control group, which was fed a normal diet; vitamin A deficient group, which were given vitamin A-deficient diet from at least 2 weeks before mating till delivery. Three random neonatal rats from each group were killed the next day of parturition. Female rats were fed an AIN-93G diet sufficient in vitamin A to feed the rest of neonates for two weeks until euthanasia. Serum levels of vitamin A were assessed in the adult and filial rats. Anteroposterior (AP) spine radiographs were obtained at week 2 after delivery to evaluate the presence of the skeletal abnormalities especially of spinal deformities. Liver and vertebral body expression of retinaldehyde dehydrogenase (RALDHs) and RARs mRNA was assessed by reverse transcription-real time PCR. VAD neonates displayed many skeletal malformations in the cervical, thoracic, the pelvic and sacral and limbs regions. The incidence of congenital scoliosis was 13.79% (8/58) in the filial rats of vitamin A deficiency group and 0% in the control group. Furthermore, vitamin A deficiency negatively regulate the liver and verterbral body mRNA levels of RALDH1, RALDH2, RALDH3, RAR-α, RAR-β and RAR-γ. Vitamin A deficiency in pregnancy may induce congenital spinal deformities in the postnatal rats. The decreases of RALDHs and RARs mRNA expression induced by vitamin A deprivation suggest that vertebral birth defects may be caused by a defect in RA signaling pathway during somitogenesis. PMID:23071590
Vitale, Michael; Minkara, Anas; Matsumoto, Hiroko; Albert, Todd; Anderson, Richard; Angevine, Peter; Buckland, Aaron; Cho, Samuel; Cunningham, Matthew; Errico, Thomas; Fischer, Charla; Kim, Han Jo; Lehman, Ronald; Lonner, Baron; Passias, Peter; Protopsaltis, Themistocles; Schwab, Frank; Lenke, Lawrence
Consensus-building using the Delphi and nominal group technique. To establish best practice guidelines using formal techniques of consensus building among a group of experienced spinal deformity surgeons to avert wrong-level spinal deformity surgery. Numerous previous studies have demonstrated that wrong-level spinal deformity occurs at a substantial rate, with more than half of all spine surgeons reporting direct or indirect experience operating on the wrong levels. Nevertheless, currently, guidelines to avert wrong-level spinal deformity surgery have not been developed. The Delphi process and nominal group technique were used to formally derive consensus among 16 fellowship-trained spine surgeons. Surgeons were surveyed for current practices, presented with the results of a systematic review, and asked to vote anonymously for or against item inclusion during three iterative rounds. Agreement of 80% or higher was considered consensus. Items near consensus (70% to 80% agreement) were probed in detail using the nominal group technique in a facilitated group meeting. Participants had a mean of 13.4 years of practice (range: 2-32 years) and 103.1 (range: 50-250) annual spinal deformity surgeries, with a combined total of 24,200 procedures. Consensus was reached for the creation of best practice guidelines (BPGs) consisting of 17 interventions to avert wrong-level surgery. A final checklist consisting of preoperative and intraoperative methods, including standardized vertebral-level counting and optimal imaging criteria, was supported by 100% of participants. We developed consensus-based best practice guidelines for the prevention of wrong-vertebral-level surgery. This can serve as a tool to reduce the variability in preoperative and intraoperative practices and guide research regarding the effectiveness of such interventions on the incidence of wrong-level surgery. Level V. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernstein, Liane; Beaudette, Kathy; Patten, Kessen; Beaulieu-Ouellet, Émilie; Strupler, Mathias; Moldovan, Florina; Boudoux, Caroline
2013-03-01
A zebrafish model has recently been introduced to study various genetic mutations that could lead to spinal deformities such as scoliosis. However, current imaging techniques make it difficult to perform longitudinal studies of this condition in zebrafish, especially in the early stages of development. The goal of this project is to determine whether optical coherence tomography (OCT) is a viable non-invasive method to image zebrafish exhibiting spinal deformities. Images of both live and fixed malformed zebrafish (5 to 21 days postfertilization) as well as wild-type fish (5 to 29 days postfertilization) were acquired non-invasively using a commercial SD-OCT system, with a laser source centered at 930nm (λ=100nm), permitting axial and lateral resolutions of 7 and 8μm respectively. Using two-dimensional images and three-dimensional reconstructions, it was possible to identify the malformed notochord as well as deformities in other major organs at different stages of formation. Visualization of the notochord was facilitated with the development of a segmentation algorithm. OCT images were compared to HE histological sections and images obtained by calcein staining. Because of the possibility of performing longitudinal studies on a same fish and reducing image processing time as compared with staining techniques and histology, the use of OCT could facilitate phenotypic characterization in studying genetic factors leading to spinal deformities in zebrafish and could eventually contribute to the identification of the genetic causes of spinal deformities such as scoliosis.
Domínguez, I; Luque, R; Noriega, M; Rey, J; Alía, J; Urda, A; Marco, F
The prevalence of adult spinal deformity has been increasing exponentially over time. Surgery has been credited with good radiological and clinical results. The incidence of complications is high. MIS techniques provide good results with fewer complications. This is a retrospective study of 25 patients with an adult spinal deformity treated by MIS surgery, with a minimum follow-up of 6 months. Radiological improvement was SVA from 5 to 2cm, coronal Cobb angle from 31° to 6°, and lumbar lordosis from 18° to 38°. All of these parameters remained stable over time. We also present the complications that appeared in 4 patients (16%). Only one patient needed reoperation. We describe the technique used and review the references on the subject. We conclude that the MIS technique for treating adult spinal deformity has comparable results to those of the conventional techniques but with fewer complications. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Driscoll, Mark; Mac-Thiong, Jean-Marc; Labelle, Hubert; Parent, Stefan
2013-01-01
A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices. PMID:23991426
The results of preoperative halo-gravity traction in children with severe spinal deformity.
Garabekyan, Tigran; Hosseinzadeh, Pooya; Iwinski, Henry J; Muchow, Ryan D; Talwalkar, Vishwas R; Walker, Janet; Milbrandt, Todd A
2014-01-01
Halo-gravity traction has been used preoperatively for patients with severe spinal deformity but there are limited data in the literature on the results and complications. We studied the outcomes of perioperative halo-gravity traction in children with severe spinal deformity. A retrospective study was carried out on patients who were treated at our center. Twenty-one patients were included in the study. Radiographic and pulmonary function parameters showed significant improvement during the course of traction and at the final follow-up. The overall complication rate was 19%, including two patients with pin loosening and two patients with superficial pin-site infections treated with oral antibiotics.
Tang, Ming-xing; Zhang, Hong-qi; Wang, Yu-xiang; Guo, Chao-feng; Liu, Jin-yang
2016-02-01
Surgical treatment for spinal tuberculosis includes focal tuberculosis debridement, segmental stability reconstruction, neural decompression and kyphotic deformity correction. For the lesions mainly involved anterior and middle column of the spine, anterior operation of debridement and fusion with internal fixation has been becoming the most frequently used surgical technique for the spinal tuberculosis. However, high risk of structural damage might relate with anterior surgery, such as damage in lungs, heart, kidney, ureter and bowel, and the deformity correction is also limited. Due to the organs are in the front of spine, there are less complications in posterior approach. Spinal pedicle screw passes through the spinal three-column structure, which provides more powerful orthopedic forces compared with the vertebral body screw, and the kyphotic deformity correction effect is better in posterior approach. In this paper, we report a 68-year-old male patient with thoracic tuberculosis who underwent surgical treatment by debridement, interbody fusion and internal fixation via posterior approach only. The patient was placed in prone position under general anesthesia. Posterior midline incision was performed, and the posterior spinal construction was exposed. Then place pedicle screw, and fix one side rod temporarily. Make the side of more bone destruction and larger abscess as lesion debridement side. Resect the unilateral facet joint, and retain contralateral structure integrity. Protect the spinal cord, nerve root. Clear sequestrum, necrotic tissue, abscess of paravertebral and intervertebral space. Specially designed titanium mesh cages or bone blocks were implanted into interbody. Fix both side rods and compress both sides to make the mesh cages and bone blocks tight. Reconstruct posterior column structure with allogeneic bone and autologous bone. Using this technique, the procedures of debridement, spinal cord decompression, deformity correction, bone grafting, and internal fixation can be completed with only one incision and surgical position, and the deformity correction efficiency is higher than anterior surgery. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Yang, Changsheng; Wang, Huafeng; Zheng, Zhaomin; Zhang, Zhongmin; Wang, Jianru; Liu, Hui; Kim, Yongjung Jay; Cho, Samuel
2017-07-01
Halo-gravity traction has been reported to successfully assist in managing severe spinal deformity. This is a systematic review of all studies on halo-gravity traction in the treatment of spinal deformity to provide information for clinical practice. A comprehensive search was conducted for articles on halo-gravity traction in the treatment of spinal deformity according to the PRISMA guidelines. Appropriate studies would be included and analyzed. Preoperative correction rate of spinal deformity, change of pulmonary function and prevalence of complications were the main measurements. Sixteen studies, a total of 351 patients, were included in this review. Generally, the initial Cobb angle was 101.1° in the coronal plane and 80.5° in the sagittal plane, and it was corrected to 49.4° and 56.0° after final spinal fusion. The preoperative correction due to traction alone was 24.1 and 19.3%, respectively. With traction, the flexibility improved 6.1% but postoperatively the patients did not have better correction. Less aggressive procedures and improved pulmonary function were observed in patients with traction. The prevalence of traction-related complications was 22% and three cases of neurologic complication related to traction were noted. The prevalence of total complications related to surgery was 32% and that of neurologic complications was 1%. Partial correction could be achieved preoperatively with halo-gravity traction, and it may help decrease aggressive procedures, improve preoperative pulmonary function, and reduce neurologic complications. However, traction could not increase preoperative flexibility or final correction. Traction-related complications, although usually not severe, were not rare.
Bovine, Gary; Silver, John Russell; Weiner, Marie-France
2012-02-01
Edward Harrison was a distinguished and innovative physician, an educationalist who had a profound influence on the treatment of spinal deformities. He founded the first infirmary for the treatment of spinal diseases in London in 1837. Little is known of this institution but much of Harrison's legacy rests with his disciples who followed Harrison's principles of treatment to treat spinal deformity. Like Harrison they were unconventional individuals, influenced by religious beliefs and liberal political and social ideologies. After his death, initially they followed his methods of treatment but subsequently they were not afraid to pursue new forms of treatment including homeopathy at a time when traditional medicine had little to offer.
Vavken, Patrick; Ganal-Antonio, Anne Kathleen B.; Quidde, Julia; Shen, Francis H.; Chapman, Jens R.; Samartzis, Dino
2015-01-01
Study Design A broad narrative review. Objectives Outcome assessment in spinal disorders is imperative to help monitor the safety and efficacy of the treatment in an effort to change the clinical practice and improve patient outcomes. The following article, part two of a two-part series, discusses the various outcome tools and instruments utilized to address spinal disorders and their management. Methods A thorough review of the peer-reviewed literature was performed, irrespective of language, addressing outcome research, instruments and tools, and applications. Results Numerous articles addressing the development and implementation of health-related quality-of-life, neck and low back pain, overall pain, spinal deformity, and other condition-specific outcome instruments have been reported. Their applications in the context of the clinical trial studies, the economic analyses, and overall evidence-based orthopedics have been noted. Additional issues regarding the problems and potential sources of bias utilizing outcomes scales and the concept of minimally clinically important difference were discussed. Conclusion Continuing research needs to assess the outcome instruments and tools used in the clinical outcome assessment for spinal disorders. Understanding the fundamental principles in spinal outcome assessment may also advance the field of “personalized spine care.” PMID:26225283
Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R
2016-04-01
Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Sagittal balance, a useful tool for neurosurgeons?
Villard, Jimmy; Ringel, Florian; Meyer, Bernhard
2014-01-01
New instrumentation techniques have made any correction of the spinal architecture possible. Sagittal balance has been described as an important parameter for assessing spinal deformity in the early 1970s, but over the last decade its importance has grown with the published results in terms of overall quality of life and fusion rate. Up until now, most of the studies have concentrated on spinal deformity surgery, but its use in the daily neurosurgery practice remains uncertain and may warrant further studies.
Shin, Chul-ho; Kim, Minjeong; Park, Gi Duck
2015-01-01
[Purpose] This study examined spinal shape in professional golfers with chronic back pain, and analyzed the effects of a 4-week regimen of semi-weekly manipulation and corrective core exercises on spinal shape. [Subjects] Two golfers with chronic back pain. [Methods] The pelvis and spinal vertebrae were corrected using the Thompson “drop” technique. Angle and force were adjusted to place the pelvis, lumbar spine, and thoracic vertebrae in neutral position. The technique was applied twice weekly after muscle massage in the back and pelvic areas. The golfers performed corrective, warmup stretching exercises, followed by squats on an unstable surface using the Togu ball. They then used a gym ball for repetitions of hip rotation, upper trunk extension, sit-ups, and pelvic anterior-posterior, pelvic left-right, and trunk flexion-extension exercises. The session ended with cycling as a cool-down exercise. Each session lasted 60 minutes. [Results] The difference in height was measured on the left and right sides of the pelvic bone. The pelvic tilt changed significantly in both participants after the 4-week program. [Conclusion] In golfers, core muscles are critical and are closely related to spinal deformation. Core strengthening and spinal correction play a pivotal role in the correction of spinal deformation. PMID:26504350
Boomerang deformity of cervical spinal cord migrating between split laminae after laminoplasty.
Kimura, S; Gomibuchi, F; Shimoda, H; Ikezawa, Y; Segawa, H; Kaneko, F; Uchiyama, S; Homma, T
2000-04-01
Patients with cervical compression myelopathy were studied to elucidate the mechanism underlying boomerang deformity, which results from the migration of the cervical spinal cord between split laminae after laminoplasty with median splitting of the spinous processes (boomerang sign). Thirty-nine cases, comprising 25 patients with cervical spondylotic myelopathy, 8 patients with ossification of the posterior longitudinal ligament, and 6 patients with cervical disc herniation with developmental canal stenosis, were examined. The clinical and radiological findings were retrospectively compared between patients with (B group, 8 cases) and without (C group, 31 cases) boomerang sign. Moderate increase of the grade of this deformity resulted in no clinical recovery, although there was no difference in clinical recovery between the two groups. Most boomerang signs developed at the C4/5 and/or C5/6 level, where maximal posterior movement of the spinal cord was achieved. Widths between lateral hinges and between split laminae in the B group were smaller than in the C group. Flatness of the spinal cord in the B group was more severe than in the C group. In conclusion, the boomerang sign was caused by posterior movement of the spinal cord, narrower enlargement of the spinal canal and flatness of the spinal cord.
Vertebral column resection for the treatment of severe spinal deformity.
Lenke, Lawrence G; Sides, Brenda A; Koester, Linda A; Hensley, Marsha; Blanke, Kathy M
2010-03-01
The ability to treat severe pediatric and adult spinal deformities through an all-posterior vertebral column resection (VCR) has obviated the need for a circumferential approach in primary and revision surgery, but there is limited literature evaluating this new approach. Our purpose was therefore to provide further support of this technique. We reviewed 43 patients who underwent a posterior-only VCR using pedicle screws, anteriorly positioned cages, and intraoperative spinal cord monitoring between 2002 and 2006. Diagnoses included severe scoliosis, global kyphosis, angular kyphosis, or kyphoscoliosis. Forty (93%) procedures were performed at L1 or cephalad in the spinal cord (SC) territory. Seven patients (18%) lost intraoperative neurogenic monitoring evoked potentials (NMEPs) data during correction with data returning to baseline after prompt surgical intervention. All patients after surgery were at their baseline or showed improved SC function, whereas no one worsened. Two patients had nerve root palsies postoperatively, which resolved spontaneously at 6 months and 2 weeks. Spinal cord monitoring (specifically NMEP) is mandatory to prevent neurologic complications. Although technically challenging, a single-stage approach offers dramatic correction in both primary and revision surgery of severe spinal deformities. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis.
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-12-18
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-01-01
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois. PMID:26716089
Growth-sparing spinal instrumentation in skeletal dysplasia.
Karatas, Ali F; Dede, Ozgur; Rogers, Kenneth; Ditro, Colleen P; Holmes, Laurens; Bober, Michael; Shah, Suken A; Mackenzie, William G
2013-11-15
Retrospective case series. To report the outcomes of distraction-based, growth-sparing spinal instrumentation in patients with skeletal dysplasia. Patients with skeletal dysplasia with spinal deformity often undergo early fusion, further compromising an already small chest. Nonfusion techniques may provide a safe alternative and allow for thoracic growth. Between 2004 and 2010, 12 children with a diagnosis of various types of skeletal dysplasia underwent growth-sparing spinal instrumentation for severe spinal deformities. The mean duration of treatment with growing rods was 57 months (42-84 mo). Nine patients were treated with growing rods (8 dual, 1 single), and 3 were treated with vertical expandable prosthetic titanium rib (VEPTR; Synthes). Preoperative, initial postoperative, and final follow-up anteroposterior and lateral spine radiographs were measured for magnitude of deformity, junctional kyphosis, and implant failure. The major curve Cobb angle improved from a mean of 79° preoperatively to a mean of 41° at the last follow-up (52%). There was a decrease in mean thoracic kyphosis from 77° preoperatively to 64° at final follow-up and an increase in mean lumbar lordosis from 58° preoperatively to 63° at final follow-up. The mean space available for the lungs increased by 26 mm on the concave and 24 mm on the convex side. Six patients required revision surgery for proximal junctional kyphosis. There were 4 rod failures and 6 hook and 8 screw dislodgements. One patient with vertical expandable prosthetic titanium rib had failed rib fixation that required revision. Growth-sparing spinal instrumentation in patients with skeletal dysplasia and severe spinal deformity has a high complication and revision rate, and surgeons should closely monitor these patients. The complication rate is comparable with previous reports on patients with other diagnoses. However, deformities were well controlled, some trunk growth was achieved, and fusion surgery was delayed in all cases. 4.
Gil Martens, L; Lock, E J; Fjelldal, P G; Wargelius, A; Araujo, P; Torstensen, B E; Witten, P E; Hansen, T; Waagbø, R; Ørnsrud, R
2010-12-01
Vegetable oils (Vo) are an alternative to fish oil (Fo) in aquaculture feeds. This study aimed to evaluate the effect of dietary soybean oil (Vo diet), rich in linoleic acid, and of dietary fish oil (Fo diet) on the development of spinal deformities under bacterial lipopolysaccharide (LPS)-induced chronic inflammation conditions in Atlantic salmon, Salmo salar L. Fish [25 g body weight (BW)] were fed the experimental diets for 99 days. On day 47 of feeding (40 g BW), fish were subjected to four experimental regimes: (i) intramuscular injections with LPS, (ii) sham-injected phosphate-buffered saline (PBS), (iii) intraperitoneally injected commercial oil adjuvant vaccine, or (iv) no treatment. The fish continued under a common feeding regime in sea water for 165 more days. Body weight was temporarily higher in the Vo group than in the Fo group prior to immunization and was also affected by the type of immunization. At the end of the trial, no differences were seen between the dietary groups. The overall prevalence of spinal deformities was approximately 14% at the end of the experiment. The Vo diet affected vertebral shape but did not induce spinal deformities. In groups injected with LPS and PBS, spinal deformities ranged between 21% and 38%, diet independent. Deformed vertebrae were located at or in proximity to the injection point. Assessment of inflammatory markers revealed high levels of plasma prostaglandin E₂ (PGE₂) in the Vo-fed and LPS-injected groups, suggesting an inflammatory response to LPS. Cyclooxigenase 2 (COX-2) mRNA expression in bone was higher in fish fed Fo compared to Vo-fed fish. Gene expression of immunoglobulin M (IgM) was up-regulated in bone of all LPS-injected groups irrespective of dietary oil. In conclusion, the study suggests that Vo is not a risk factor for the development of inflammation-related spinal deformities. At the same time, we found evidence that localized injection-related processes could trigger the development of vertebral body malformations. © 2010 Blackwell Publishing Ltd.
Patil, Prateek C; Rathod, Ashok K; Borde, Mandar; Singh, Vishwajeet; Singh, Hemant U
2016-12-01
Traditionally, surgical intervention for patients with a spinal deformity has been considered for cosmetic benefits, but surgical intervention can alter the lung physiology or volumes and in turn leads to increase in physical capacity and exercise tolerance. Therefore, we conducted this to determine whether a surgical correction would restore the lung physiology, physical capacity and exercise tolerance in patients with kyphoscoliosis. To evaluate the usage of six-minute walk test scores and modified Borg scores as tools/measures for exercise tolerance in patients with spinal deformity and to study the effects of surgical correction of spinal deformity on exercise tolerance with above parameters as the measures. Thirty patients with spinal deformity, who had undergone surgery for deformity correction, were evaluated. All patients were investigated pre-operatively with x-rays of the spine (anteroposterior and lateral views). Clinical tests like breath holding time (after full inspiration) in number of seconds, modified Borg scores, six-minute walk test scores (heart rate, respiratory rate, maximum distance walked); were recorded as measures of exercise tolerance. The patients were followed up on the first, third, sixth and twelfth month post-operatively and tested clinically for breath holding time, modified Borg scores, six-minute walk test scores (heart rate, respiratory rate, maximum distance walked) and x-rays of the spine (anteroposterior and lateral views). In our study, breath holding time (p-value = 0.001) and modified Borg scores (p-value = 0.012) showed a significant improvement at 12 months post-operatively. We noted similar findings with heart rate, respiratory rate and maximum distance walked after a six-minute walk test. Improvements were noted in all the parameters, especially in the group of patients with greater than 60 degrees of cobb angle. However, the differences between the two groups (pre-operative cobb angle less than 60 degrees and pre-operative cobb angle more than 60 degrees) were not significant. The results were analysed and tested for significance using Student's t-test (paired and unpaired as appropriate) and Wilcoxon signed rank test. Surgical correction in cases of spinal deformity improves the cosmetic appearance and balance in the patients. Favourable results of surgical intervention were found in exercise tolerance with improvements in modified Borg scores, six-minute walk test results and breath holding time. The above parameters appear to be good tools for the assessment of physical capacity and exercise tolerance in patients with spinal deformity.
Park, Yang Sun; Lim, Young Tae; Koh, Kyung; Kim, Jong Moon; Kwon, Hyun Joon; Yang, Ji Seung; Shim, Jae Kun
2016-07-01
Adolescent idiopathic scoliosis is a prevalent orthopedic problem in children ages 10 to 16years. Although genetic, physiological and biomechanical factors are considered to contribute to the onset and progression of adolescent idiopathic scoliosis, the underlying mechanisms are not yet clear. The purpose of this study was to investigate the association between spinal deformity and inter-leg ground reaction force asymmetry during walking in adolescent idiopathic scoliosis patients. Fourteen patients (3 males and 11 females) participated in this study. Maximum Cobb's angle, adjusted Cobb's angle, and pelvic tilt were calculated from X-ray images. Asymmetry indices between legs were also calculated from ground reaction force magnitude and time variables from their preferred speed walking. Pearson coefficients of correlation were used to investigate associations of asymmetry indices with angle variables. Asymmetry indices of ground reaction force magnitudes positively correlated with adjusted Cobb's angle and maximum Cobb's angle mainly during the peak of braking phase, average of braking phase, while asymmetry indices of ground reaction force time variables showed no significant correlation with adjusted or maximum Cobb's angle. In contrast, asymmetry indices of ground reaction force time variables positively correlated with pelvic tilt during stance phase. We concluded that the spinal deformity of adolescent idiopathic scoliosis patients estimated using the maximum and adjusted Cobb's angles is generally associated with greater asymmetry of ground reaction force magnitudes in walking, while the pelvic tilt is associated with the greater asymmetry of ground reaction force time variables. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xiao-Bin; Lenke, Lawrence G; Thuet, Earl; Blanke, Kathy; Koester, Linda A; Roth, Michael
2016-09-15
Retrospective review of prospectively collected data. To assess the value of the deformity angular ratio (DAR, maximum Cobb measurement divided by number of vertebrae involved) in evaluating the severity of spinal deformity, and predicting the risk of neurologic deficit in posterior vertebral column resection (PVCR). Although the literature has demonstrated that PVCR in spinal deformity patients has achieved excellent outcomes, it is still high risk neurologically. This study, to our knowledge, is the largest series of PVCR patients from a single center, evaluating deformity severity, and potential neurologic deficit risk. A total of 202 consecutive pediatric and adult patients undergoing PVCRs from November 2002 to September 2014 were reviewed. The DAR (coronal DAR, sagittal DAR, and total DAR) was used to evaluate the complexity of the deformity. The incidence of spinal cord monitoring (SCM) events was 20.5%. Eight patients (4.0%) had new neurologic deficits. Patients with a high total DAR (≥25) were significantly younger (20.3 vs. 29.0 yr, P = 0.001), had more severe coronal and sagittal deformities, were more myelopathic (33.3% vs. 11.7%, P = 0.000), needed larger vertebral resections (1.8 vs. 1.3, P = 0.000), and had a significantly higher rate of SCM events than seen in the low total DAR (<25) patients (41.1% vs. 10.8%; P = 0.000). Patients with a high sagittal DAR (≥15) also had a significantly higher rate of SCM events (34.0% vs. 15.1%, P = 0.005) and a greater chance of neurologic deficits postoperatively (12.5% vs. 0, P = 0.000). For patients undergoing a PVCR, the DAR can be used to quantify the angularity of the spinal deformity, which is strongly correlated to the risk of neurologic deficits. Patients with a total DAR greater than or equal to 25 or sagittal DAR greater than or equal to 15 are at much higher risk for intraoperative SCM events and new neurologic deficits. 3.
Computer-assisted spinal osteotomy: a technical note and report of four cases.
Fujibayashi, Shunsuke; Neo, Masashi; Takemoto, Mitsuru; Ota, Masato; Nakayama, Tomitaka; Toguchida, Junya; Nakamura, Takashi
2010-08-15
A report of 4 cases of spinal osteotomy performed under the guidance of a computer-assisted navigation system and a technical note about the use of the navigation system for spinal osteotomy. To document the surgical technique and usefulness of computer-assisted surgery for spinal osteotomy. A computer-assisted navigation system provides accurate 3-dimensional (3D) real-time surgical information during the operation. Although there are many reports on the accuracy and usefulness of a navigation system for pedicle screw placement, there are few reports on the application for spinal osteotomy. We report on 4 complex cases including 3 solitary malignant spinal tumors and 1 spinal kyphotic deformity of ankylosing spondylitis, which were treated surgically using a computer-assisted spinal osteotomy. The surgical technique and postoperative clinical and radiologic results are presented. 3D spinal osteotomy under the guidance of a computer-assisted navigation system was performed successfully in 4 patients. All malignant tumors were resected en bloc, and the spinal deformity was corrected precisely according to the preoperative plan. Pathologic analysis confirmed the en bloc resection without tumor exposure in the 3 patients with a spinal tumor. The use of a computer-assisted navigation system will help ensure the safety and efficacy of a complex 3D spinal osteotomy.
Misterska, Ewa; Glowacki, Maciej; Latuszewska, Joanna
2012-06-15
A cross-sectional analysis of parents' and patients' perceptions of deformity- and brace-related stress regarding conservative treatment of adolescent idiopathic scoliosis. The purpose of this study was to determine the agreement between patients' and parents' assessments of emotional stress and to compare these assessments with radiographical measurements of spinal deformity. Conservative treatment in patients with scoliosis may cause emotional stress. To our knowledge, no group has ever reported patient and parental estimation of stress related to wearing a brace and spinal deformity in girls with adolescent idiopathic scoliosis. Sixty-three pairs of parents and girls with adolescent idiopathic scoliosis treated with a Cheneau brace were separately asked to complete the Bad Sobberheim Stress Questionnaire-Deformity and the Bad Sobberheim Stress Questionnaire-Brace. The age range of the patients was from 10 to 17 years. Patients were assessed at a mean of 14.12 (SD, 10.99) months after the start of the conservative treatment. Patients thought that a moderate level of stress was connected with conservative treatment; however, the stress level, related to perceived trunk deformation, was low. From the parents' perspective, patients experienced a moderate level of stress during conservative treatment and related to spinal deformity. The study groups differ in their perception of stress levels due to body disfigurement but not during the conservative treatment. Parent-patient stress-level disparities were not related to body mass index, age of the patient, brace application, and radiographical measurements of spinal deformity. Patients and parents perceive the emotional stress related to brace treatment in the same way; however, parents overestimate the assessment of stress levels related to body deformity. From the perspective of patients and parents, brace wearing increased the level of stress induced by the deformity alone. Complete assessment of conservative treatment should include evaluation of emotional stress from the perspective of patients and parents.
Spinal deformity in children treated for neuroblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayfield, J.K.; Riseborough, E.J.; Jaffe, N.
1981-02-01
Of seventy-four children who were treated at a mean age of seventeen months for neuroblastoma and survived more than five years, fifty-six had spinal deformity due either to the disease or to the treatment after a mean follow-up of 12.9 years. Of these fifty-six, 50 per cent had post-radiation scoliosis, and 16 per cent had post-radiation kyphosis, most frequently at the thoracolumbar junction, at the time of follow-up. Two kyphotic thoracolumbar curve patterns were identified: an angular kyphosis with a short radius of curvature and its apex at the twelfth thoracic and first lumbar vertebrae, and a thoracic kyphosis withmore » a long radius of curvature that extended into the lumbar spine. The post-radiation deformity - both the scoliosis and the kyphosis - progressed with growth, the scoliosis at a rate of 1 degree per year and the kyphosis at a rate of 3 degrees per year. Epidural spread of the neuroblastoma was associated with most of the cases of severe scoliosis and kyphosis. The deformity was due either to the laminectomy or to the paraplegia acting in conjunction with the radiation. Eighteen per cent of 419 children with this malignant disease survived more than five years, and of the survivors, 20 per cent had spinal deformity severe enough to warrant treatment. The factors associated with the development of spinal deformity in patient treated for neuroblastoma were: orthovoltage radiation exceeding 3000 rads, asymmetrical radiation of the spine, thoracolumbar kyphosis, and epidural spread of the tumor.« less
Spine deformities in rare congenital syndromes: clinical issues.
Campbell, Robert M
2009-08-01
A focused review of the literature with regard to the important system abnormalities of patients with spinal deformities associated with exotic congenital syndromes with additional data from the author's own experience in assessment of patients with rare syndromes treated for thoracic insufficiency syndrome. The objectives of this study are to emphasize important medical considerations that influence the choice of surgical treatment of spinal deformity in patients with exotic congenital syndromes and point out preoperative strategies that reduce treatment morbidity and mortality of these patients. Individual experience is limited in the treatment of spine abnormality in rare exotic syndromes and the medical aspects of these syndromes that may impact spinal treatment are seldom discussed in detail in the orthopedic literature. For a successful outcome in the treatment of spinal deformity in these unique patients, a working knowledge of the unique pitfalls in their medical care is necessary in order to avoid morbidity and mortality during their treatment. The literature was reviewed for 6 exotic congenital syndromes with known or unreported spinal abnormalities and the author's personal 22-years experience of the treatment of thoracic insufficiency syndrome in the relevant congenital syndromes was summarized. Children with Marfan syndrome and spinal deformity may have serious cardiac abnormalities. Spontaneous dissection of the aortic root is a clear danger and patients should be monitored by serial echocardiograms. Prophylactic cardiac surgery may be necessary before spinal surgery is to be performed. Patients with Jeune syndrome have a high rate of proximal cervical stenosis and should undergo screening with cervical spine films at birth. Significant stenosis or instability may require decompression and cervical-occipital fusion. Arthrogryposis may be associated with a severe scoliosis and jaw contracture may make intubation difficult. Larsen syndrome may have early onset scoliosis that is very rigid and requires early intervention. Cervical kyphosis and subluxation may be lethal in these patients and screening radiographs are important. Upper airway abnormalities are an anesthesia concern. Jarcho-Levin syndrome is a thoracic volume depletion deformity due to shortness of the thorax, either a spondylocostal dysostosis variant or spondylothoracic dysplasia. The former has a chaotic congenital scoliosis with varied combination of missing and fused ribs. Although spondylocostal dysostosis has a benign reputation in the literature for respiratory complications, respiratory insufficiency is nevertheless common and 1 death is known from respiratory failure. Spondylothoracic dysplasia seldom has significant scoliosis, but has a mortality rate approaching 50% from respiratory complications due to thoracic insufficiency syndrome. In spite of severe restrictive respiratory disease, adult survivors of spondylothoracic dysplasia appear to do well clinically for unknown reasons. Cerebrocostomandibular syndrome has scoliosis, micrognathia, and thoracic insufficiency syndrome, due to an "implosion" deformity of the thorax from congenital pseudarthrosis of the posterior ribs. For optimal patient care, it is necessary to have a clear understanding of exotic congenital syndromes and how they may impact on both the presentation of spinal deformity and the response to treatment, as well as how they may introduce additional morbidity into standard treatment plans. It is clear that with this understanding that preoperative strategies can be employed to enhance the safety of spinal treatment for these unique children.
Glattes, R Christopher; Burton, Douglas C; Lai, Sue Min; Frasier, Elizabeth; Asher, Marc A
2007-07-15
This is a clinic-based cross-sectional study involving 2 health-related quality-of-life (HRQL) questionnaires. To compare the score distribution and reliability of the spinal deformity specific Scoliosis Research Society-22r (SRS-22r) questionnaire and the established generic Child Health Questionnaire-CF87 (CHQ-CF87), and to assess the concurrent validity of the SRS-22r using the CHQ-CF87 in an adolescent spine deformity population. Different questionnaires are commonly thought to be necessary to assess the HRQL of adolescent and adult populations. But since spinal deformities usually begin in the second decade of life, longitudinal follow-up with the same HRQL is desirable. The SRS-22r HRQL has recently been validated for score distribution and internal consistency in a spinal deformity population ranging in age from 7 to 78 years. The SRS-22r and CHQ-CF87 HRQLs were completed by 70 orthopedic spinal deformity outpatients 8 to 18 years of age, of whom 54 returned mailed retest questionnaires at an average of 24 days later. The ceiling effect averaged 27% for the SRS-22r and 36% for the CHQ-CF87. Respective values for internal consistency (Cronbach alpha) were 0.81 and 0.82, and for test-retest reproducibility the intraclass correlations (ICC) were 0.73 and 0.61. Concurrent validity was r > or = 0.68 or more for relevant function, pain, and mental health domains. The SRS Self-Image and particularly the Satisfaction/Dissatisfaction with Management domains did not correlate well with any CHQ-CF87 domains (r = 0.50 and 0.30, respectively). In a spinal deformity population 8 to 18 years of age, the score distribution and reliability, internal consistency, and reproducibility of the SRS-22r were at least as good as the CHQ-CF87. The SRS-22r function, pain, and mental health domains were concurrently valid in comparison to relevant CHQ-CF87 domains, but the SRS-22r self-image and satisfaction/dissatisfaction domains were not, thereby providing health-related quality-of-life information not provided for by the CHQ-CF87.
LaPatra, S.E.; Batts, W.N.; Overturf, K.; Jones, G.N.; Shewmaker, W.D.; Winton, J.R.
2001-01-01
To assess the risk of transmission of infectious haematopoietic necrosis virus (IHNV) associated with the movement of processed rainbow trout, Oncorhynchus mykiss, from an area where the virus is endemic, 240 freshly eviscerated fish (225-500 g) exhibiting spinal curvature or spinal compression types of deformities were tested for IHNV by virus isolation and polymerase chain reaction (PCR) techniques. Commercially produced rainbow trout, approximately 1-year-old, that exhibited spinal deformities were considered to have had a high likelihood of having survived an outbreak of IHN. Serological analysis of fish exhibiting spinal curvature or spinal compression types of deformities for anti-IHNV antibodies resulted, in 71 and 50% of the serum samples, respectively, with detectable neutralization activity suggesting previous infection with IHNV. A portion of the skin and muscle in the area of the deformity was collected, as well as brain tissue from each commercially processed fish. Tissue homogenates were tested for IHNV using the epithelioma papulosum cyprini (EPC) cell line pretreated with polyethylene glycol and the chinook salmon embryo (CHSE-214) cell line using standard methods. Nested, reverse transcriptase (RT)-PCR for the detection of IHNV used the central 1231 bp portion of the glycoprotein (G) challenge studies and is suggested as a mechanism responsible for virus clearance. These results provide scientific information that can be used to assess the risk associated with the movement of processed rainbow trout from an IHNV endemic area.
Sugimoto, Mitsushige; Hasegawa, Tomohiko; Nishino, Masafumi; Sahara, Shu; Uotani, Takahiro; Ichikawa, Hitomi; Kagami, Takuma; Sugimoto, Ken; Yamato, Yu; Togawa, Daisuke; Kobayashi, Sho; Hoshino, Hironobu; Matsuyama, Yukihiro; Furuta, Takahisa
2016-01-01
Spinal kyphotic deformity occasionally results in gastroesophageal reflux disease (GERD). The effects of acid reflux on the esophagus in kyphotic patients are unclear, however, and it is unknown whether acid reflux, endoscopic GERD, and reflux-related symptoms improve following surgical spinal correction in these patients. Herein, we investigated the characteristics of GERD in kyphotic patients and the improvement in GERD following surgical correction. In 48 patients with severe kyphotic deformity scheduled for surgical spinal correction, we conducted esophagogastroduodenoscopy, 24-h pH monitoring and three questionnaire surveys, including the frequency scale for the symptoms of GERD (FSSG). We repeated these measurements after surgical correction and compared pre- and post-surgery values. Of 48 patients, 70.8% [95% CI: 55.9-83.0%, 34/48] had endoscopically evaluated esophageal mucosal injury. Regarding pH before surgery, 64.9% (CI: 47.5-79.8%, 24/37) had abnormal acid reflux (intraesophageal pH < 4 more than 5% of the time). FSSG score was significantly associated with the severity of GERD, and the positive rate was 52.6% (CI: 35.8-69.0%, 20/38). Following surgical correction, esophageal mucosal injury improved endoscopically in 90% of patients, and median total FSSG score significantly decreased from 8 (0-30) to 5 (0-19) (P = 0.005). Regarding pH after surgery, prevalence of abnormal acid reflux decreased from 66.7% (95% CI: 41.0-86.7%) to 33.3% (95% CI: 13.3-59.0%) (P = 0.045). Surgical spinal correction in kyphosis patients improves not only kyphotic deformity-related disorders but also esophageal mucosal injury, abnormal acid reflux, and reflux-related symptoms. © 2015 Japan Gastroenterological Endoscopy Society.
Management of Spinal Deformities and Evidence of Treatment Effectiveness
Bettany-Saltikov, Josette; Turnbull, Deborah; Ng, Shu Yan; Webb, Richard
2017-01-01
Introduction: The review evaluates the up-to-date evidence for the treatment of spinal deformities, including scoliosis and hyperkyphosis in adolescents and adults. Material and Methods: The PubMed database was searched for review articles, prospective controlled trials and randomized controlled trials related to the treatment of spinal deformities. Articles on syndromic scoliosis were excluded and so were the articles on hyperkyphosis of the spine with causes other than Scheuermann’s disease and osteoporosis. Articles on conservative and surgical treatments of idiopathic scoliosis, adult scoliosis and hyperkyphosis were also included. For retrospective papers, only studies with a follow up period exceeding 10 years were included. Results: The review showed that early-onset idiopathic scoliosis has a worse outcome than late-onset idiopathic scoliosis, which is rather benign. Patients with AIS function well as adults; they have no more health problems when compared to patients without scoliosis, other than a slight increase in back pain and aesthetic concern. Conservative treatment of adolescent idiopathic scoliosis (AIS) using physiotherapeutic scoliosis-specific exercises (PSSE), specifically PSSR and rigid bracing was supported by level I evidence. Yet to date, there is no high quality evidence (RCT`s) demonstrating that surgical treatment is superior to conservative treatment for the management of AIS. For adult scoliosis, there are only a few studies on the effectiveness of PSSEs and a conclusion cannot as yet be drawn. For hyperkyphosis, there is no high-quality evidence for physiotherapy, bracing or surgery for the treatment of adolescents and adults. However, bracing has been found to reduce thoracic hyperkyphosis, ranging from 55 to 80° in adolescents. In patients over the age of 60, bracing improves the balance score, and reduces spinal deformity and pain. Surgery is indicated in adolescents and adults in the presence of progression of kyphosis, refractory pain and loss of balance. Discussion: The available evidence reviewed has suggested that different approaches are needed towards the management of different spinal deformities. Specific exercises should be prescribed in children and adolescents with a Cobb angle in excess of 15°. In progressive curves, they should be used in conjunction with bracing. Clarity regarding differences and similarities is given as to what makes PSSE and PSSR specific exercises. As AIS is relatively benign in nature, conservative treatment should be tried when the curve is at a surgical threshold, before surgery is considered. Similarly, bracing and exercises should be prescribed for patients with hyperkyphosis, particularly when the lumbar spine is afflicted. Surgery should be considered only when the symptoms cannot be managed conservatively. Conclusion: There is at present high quality evidence in support of the conservative treatment of AIS. The current evidence supports the use of PSSE, especially those using PSSR, together with bracing in the treatment of AIS. In view of the lack of medical consequences in adults with AIS, conservative treatment should be considered for curves exceeding the formerly assumed range of conservative indications. There is, however a lack of evidence in support of any treatment of choice for hyperkyphosis in adolescents and spinal deformities in adults. Yet, conservative treatment should be considered first. Yet to date, there is no high quality evidence (RCT`s) demonstrating that surgical treatment is superior to conservative treatment for the management of AIS and hyperkyphosis. Additionally, surgery needs to be considered with caution, as it is associated with a number of long-term complications. PMID:29399227
Proximal Junctional Kyphosis Following Spinal Deformity Surgery in the Pediatric Patient.
Cho, Samuel K; Kim, Yongjung J; Lenke, Lawrence G
2015-07-01
Proper understanding and restoration of sagittal balance is critical in spinal deformity surgery, including conditions such as adolescent idiopathic scoliosis and Scheuermann kyphosis. One potential complication following spinal reconstruction is proximal junctional kyphosis. The prevalence of proximal junctional kyphosis varies in the literature, and several patient- and surgery-related risk factors have been identified. To date, the development of proximal junctional kyphosis has not been shown to lead to a negative clinical outcome following spinal fusion for adolescent idiopathic scoliosis or Scheuermann kyphosis. Treatment options range from simple observation in asymptomatic cases to revision surgery with extension of the fusion proximally. Several techniques and technologies are emerging that seek to address and prevent proximal junctional kyphosis. Copyright 2015 by the American Academy of Orthopaedic Surgeons.
Current concepts and controversies on adolescent idiopathic scoliosis: Part I.
Sud, Alok; Tsirikos, Athanasios I
2013-03-01
Adolescent idiopathic scoliosis is the most common spinal deformity encountered by General Orthopaedic Surgeons. Etiology remains unclear and current research focuses on genetic factors that may influence scoliosis development and risk of progression. Delayed diagnosis can result in severe deformities which affect the coronal and sagittal planes, as well as the rib cage, waistline symmetry, and shoulder balance. Patient's dissatisfaction in terms of physical appearance and mechanical back pain, as well as the risk for curve deterioration are usually the reasons for treatment. Conservative management involves mainly bracing with the aim to stop or slow down scoliosis progression during growth and if possible prevent the need for surgical treatment. This is mainly indicated in young compliant patients with a large amount of remaining growth and progressive curvatures. Scoliosis correction is indicated for severe or progressive curves which produce significant cosmetic deformity, muscular pain, and patient discontent. Posterior spinal arthrodesis with Harrington instrumentation and bone grafting was the first attempt to correct the coronal deformity and replace in situ fusion. This was associated with high pseudarthrosis rates, need for postoperative immobilization, and flattening of sagittal spinal contour. Segmental correction techniques were introduced along with the Luque rods, Harri-Luque, and Wisconsin systems. Correction in both coronal and sagittal planes was not satisfactory and high rates of nonunion persisted until Cotrel and Dubousset introduced the concept of global spinal derotation. Development of pedicle screws provided a powerful tool to correct three-dimensional vertebral deformity and opened a new era in the treatment of scoliosis.
Grivas, Theodoros B; de Mauroy, Jean Claude; Négrini, Stefano; Kotwicki, Tomasz; Zaina, Fabio; Wynne, James H; Stokes, Ian A; Knott, Patrick; Pizzetti, Paolo; Rigo, Manuel; Villagrasa, Monica; Weiss, Hans Rudolf; Maruyama, Toru
2010-11-02
This report is the SOSORT Consensus Paper on Terminology for use in the treatment of conservative spinal deformities. Figures are provided and relevant literature is cited where appropriate. The Delphi method was used to reach a preliminary consensus before the meeting, where the terms that still needed further clarification were discussed. A final agreement was found for all the terms, which now constitute the base of this glossary. New terms will be added after being discussed and accepted. When only one set of terms is used for communication in a place or among a group of people, then everyone can clearly and efficiently communicate. This principle applies for any professional group. Until now, no common set of terms was available in the field of the conservative treatment of scoliosis and spinal deformities. This glossary gives a common base language to draw from to discuss data, findings and treatment.
Seki, Shoji; Hirano, Norikazu; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Suzuki, Kayo; Watanabe, Kenta; Makino, Hiroto; Kanamori, Masahiko; Kimura, Tomoatsu
2017-08-01
Complications of adult spinal deformity surgery are problematic in osteoporotic individuals. We compared outcomes between Japanese patients treated perioperatively with teriparatide vs. low-dose bisphosphonates. Fifty-eight osteoporotic adult Japanese female patients were enrolled and assigned to perioperative teriparatide (33 patients) and bisphosphonate (25 patients) groups in non-blinded fashion. Pre- and post-operative X-ray and computed tomography imaging were used to assess outcome, and rates were compared between the groups and according to age. Pain scores and Oswestry Disability Indices (ODI) were calculated before and 2 years after surgery. Adjacent vertebral fractures and implant failure, fusion failure, and poor pain and ODI outcomes were significantly more common in the bisphosphonates group than the teriparatide group. Perioperative administration of teriparatide is more effective than that of low-dose bisphosphonates in preventing complications and maintaining fusion rates in osteoporotic Japanese females with spinal deformities undergoing surgery.
Verdú-López, Francisco; Beisse, Rudolf
2014-01-01
Thoracoscopic surgery or video-assisted thoracic surgery (VATS) of the thoracic and lumbar spine has evolved greatly since it appeared less than 20 years ago. It is currently used in a large number of processes and injuries. The aim of this article, in its two parts, is to review the current status of VATS of the thoracic and lumbar spine in its entire spectrum. After reviewing the current literature, we developed each of the large groups of indications where VATS takes place, one by one. This second part reviews and discusses the management, treatment and specific thoracoscopic technique in thoracic disc herniation, spinal deformities, tumour pathology, infections of the spine and other possible indications for VATS. Thoracoscopic surgery is in many cases an alternative to conventional open surgery. The transdiaphragmatic approach has made endoscopic treatment of many thoracolumbar junction processes possible, thus widening the spectrum of therapeutic indications. These include the treatment of spinal deformities, spinal tumours, infections and other pathological processes, as well as the reconstruction of injured spinal segments and decompression of the spinal canal if lesion placement is favourable to antero-lateral approach. Good clinical results of thoracoscopic surgery are supported by growing experience reflected in a large number of articles. The degree of complications in thoracoscopic surgery is comparable to open surgery, with benefits in regard to morbidity of the approach and subsequent patient recovery. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Scoliosis and school screening for spinal deformity.
Kane, W J; Brown, J C; Hensinger, R N; Keller, R B
1978-05-01
The onset of "idiopathic" scoliosis is gradual. It goes unnoticed by parent and child alike. The problem is often not detected until the curvature has progressed. Severe scoliosis has serious long-term systemic, cosmetic and psychologic effects. School-based screening programs are very effective in reducing the number of operations required. These programs can be carried out by school nurses, physical education teachers and volunteers who are trained by a knowledgeable physician. Brace treatment is successful when scoliosis is detected only.
Spinal and Limb Abnormalities in Adolescents with Intellectual Disabilities
ERIC Educational Resources Information Center
Lin, Jin-Ding; Lin, Pei-Ying; Lin, Lan-Ping; Lai, Chia-Im; Leu, Yii-Rong; Yen, Chia-Feng; Hsu, Shang-Wei; Chu, Chi-Ming; Wu, Chia-Ling; Chu, Cordia M.
2010-01-01
There are not many studies pertaining to the spinal or limb abnormalities in people with intellectual disabilities, without a clear profile of these deformities of them, efforts to understand its characters and improve their quality of life will be impossible. Therefore, this paper aims to describe the prevalence and related factors of spinal and…
Galbusera, Fabio; Bassani, Tito; La Barbera, Luigi; Ottardi, Claudia; Schlager, Benedikt; Brayda-Bruno, Marco; Villa, Tomaso; Wilke, Hans-Joachim
2015-01-01
In decades of technical developments after the first surgical corrections of spinal deformities, the set of devices, techniques, and tools available to the surgeons has widened dramatically. Nevertheless, the rate of complications due to mechanical failure of the fixation or the instrumentation remains rather high. Indeed, basic and clinical research about the principles of deformity correction and the optimal surgical strategies (i.e., the choice of the fusion length, the most appropriate instrumentation, and the degree of tolerable correction) did not progress as much as the implantable devices and the surgical techniques. In this work, a software approach for the biomechanical simulation of the correction of patient-specific spinal deformities aimed to the identification of its biomechanical principles is presented. The method is based on three-dimensional reconstructions of the spinal anatomy obtained from biplanar radiographic images. A user-friendly graphical user interface allows for the planning of the desired deformity correction and to simulate the implantation of pedicle screws. Robust meshing of the instrumented spine is provided by using consolidated computational geometry and meshing libraries. Based on a finite element simulation, the program is able to predict the loads and stresses acting in the instrumentation as well as those in the biological tissues. A simple test case (reduction of a low-grade spondylolisthesis at L3–L4) was simulated as a proof of concept, and showed plausible results. Despite the numerous limitations of this approach which will be addressed in future implementations, the preliminary outcome is promising and encourages a wide effort toward its refinement. PMID:26579518
Porter, David; Michael, Shona; Kirkwood, Craig
2007-12-01
To investigate: (a) associations between the direction of scoliosis, direction of pelvic obliquity, direction of windswept deformity and side of hip subluxation/ dislocation in non-ambulant people with cerebral palsy; and (b) the lateral distribution of these postural asymmetries. Cross-sectional observational study. Posture management services in three centres in the UK. Non-ambulant people at level five on the gross motor function classification system for cerebral palsy. Direction of pelvic obliquity and lateral spinal curvature determined from physical examination, direction of windswept hip deformity derived from range of hip abduction/adduction, and presence/side of unilateral hip subluxation defined by hip migration percentage. A total of 747 participants were included in the study, aged 6-80 years (median 18 years 10 months). Associations between the direction of scoliosis and direction of pelvic obliquity, and between the direction of windswept hip deformity and side hip subluxation/dislocation were confirmed. A significant association was also seen between the direction of scoliosis and the direction of the windswept hip deformity (P<0.001) such that the convexity of the lateral spinal curve was more likely to be opposite to the direction of windsweeping. Furthermore, significantly more windswept deformities to the right (P=0.007), hips subluxed on the left (P=0.002) and lateral lumbar/lower thoracic spinal curves convex to the left (P=0.03) were observed. The individual asymmetrical postural deformities are not unrelated in terms of direction and not equally distributed to the left/right. A pattern of postural deformity was observed.
Michael, Shona; Kirkwood, Craig
2008-01-01
Objective: To investigate: (a) associations between the direction of scoliosis, direction of pelvic obliquity, direction of windswept deformity and side of hip subluxation/dislocation in non-ambulant people with cerebral palsy; and (b) the lateral distribution of these postural asymmetries. Design: Cross-sectional observational study. Setting: Posture management services in three centres in the UK. Subjects: Non-ambulant people at level five on the gross motor function classification system for cerebral palsy. Main measures: Direction of pelvic obliquity and lateral spinal curvature determined from physical examination, direction of windswept hip deformity derived from range of hip abduction/adduction, and presence/side of unilateral hip subluxation defined by hip migration percentage. Results: A total of 747 participants were included in the study, aged 6–80 years (median 18 years 10 months). Associations between the direction of scoliosis and direction of pelvic obliquity, and between the direction of windswept hip deformity and side hip subluxation/dislocation were confirmed. A significant association was also seen between the direction of scoliosis and the direction of the windswept hip deformity (P < 0.001) such that the convexity of the lateral spinal curve was more likely to be opposite to the direction of windsweeping. Furthermore, significantly more windswept deformities to the right (P = 0.007), hips subluxed on the left (P = 0.002) and lateral lumbar/lower thoracic spinal curves convex to the left (P = 0.03) were observed. Conclusions: The individual asymmetrical postural deformities are not unrelated in terms of direction and not equally distributed to the left/right. A pattern of postural deformity was observed. PMID:18042604
Roberts, Simon B; Tsirikos, Athanasios I
2016-11-21
Neuromuscular scoliosis (NMS) is the second most prevalent spinal deformity (after idiopathic scoliosis) and is usually first identified during early childhood. Cerebral palsy (CP) is the most common cause of NMS, followed by Duchenne muscular dystrophy (DMD). Progressive spinal deformity causes difficulty with daily care, walking and sitting, and can lead to back and rib pain, cardiac and pulmonary complications, altered seizure thresholds, and skin compromise. Early referral to specialist spinal services and early diagnosis of NMS is essential to ensure appropriate multidisciplinary patient management. The most important goals for patients are preservation of function, facilitation of daily care, and alleviation of pain. Non-operative management includes observation or bracing for less severe and flexible deformity in young patients as a temporising measure to provide postural support. Surgical correction and stabilisation of NMS is considered for patients with a deformity >40-50°, but may be performed for less severe deformity in patients with DMD. Post-operative intensive care, early mobilisation and nutritional supplementation aim to minimise the rate of post-surgical complications, which are relatively common in this patient group. However, surgical management of NMS is associated with good long-term outcomes and high satisfaction rates for patients, their relatives and carers.
Saigal, Rajiv; Clark, Aaron J; Scheer, Justin K; Smith, Justin S; Bess, Shay; Mummaneni, Praveen V; McCarthy, Ian M; Hart, Robert A; Kebaish, Khaled M; Klineberg, Eric O; Deviren, Vedat; Schwab, Frank; Shaffrey, Christopher I; Ames, Christopher P
2015-07-15
Recall of the informed consent process in patients undergoing adult spinal deformity surgery and their family members was investigated prospectively. To quantify the percentage recall of the most common complications discussed during the informed consent process in adult spinal deformity surgery, assess for differences between patients and family members, and correlate with mental status. Given high rates of complications in adult spinal deformity surgery, it is critical to shared decision making that patients are adequately informed about risks and are able to recall preoperative discussion of possible complications to mitigate medical legal risk. Patients undergoing adult spinal deformity surgery underwent an augmented informed consent process involving both verbal and video explanations. Recall of the 11 most common complications was scored. Mental status was assessed with the mini-mental status examination-brief version. Patients subjectively scored the informed consent process and video. After surgery, the recall test and mini-mental status examination-brief version were readministered at 5 additional time points: hospital discharge, 6 to 8 weeks, 3 months, 6 months, and 1 year postoperatively. Family members were assessed at the first 3 time points for comparison. Fifty-six patients enrolled. Despite ranking the consent process as important (median overall score: 10/10; video score: 9/10), median patient recall was only 45% immediately after discussion and video re-enforcement and subsequently declined to 18% at 6 to 8 weeks and 1 year postoperatively. Median family recall trended higher at 55% immediately and 36% at 6 to 8 weeks postoperatively. The perception of the severity of complications significantly differs between patient and surgeon. Mental status scores showed a transient, significant decrease from preoperation to discharge but were significantly higher at 1 year. Despite being well-informed in an optimized informed consent process, patients cannot recall most surgical risks discussed and recall declines over time. Significant progress remains to improve informed consent retention. 3.
National Administrative Databases in Adult Spinal Deformity Surgery: A Cautionary Tale.
Buckland, Aaron J; Poorman, Gregory; Freitag, Robert; Jalai, Cyrus; Klineberg, Eric O; Kelly, Michael; Passias, Peter G
2017-08-15
Comparison between national administrative databases and a prospective multicenter physician managed database. This study aims to assess the applicability of National Administrative Databases (NADs) in adult spinal deformity (ASD). Our hypothesis is that NADs do not include comparable patients as in a physician-managed database (PMD) for surgical outcomes in adult spinal deformity. NADs such as National Inpatient Sample (NIS) and National Surgical Quality Improvement Program (NSQIP) provide large numbers of publications owing to ease of data access and lack of IRB approval requirement. These databases utilize billing codes, not clinical inclusion criteria, and have not been validated against PMDs in ASD surgery. The NIS was searched for years 2002 to 2012 and NSQIP for years 2006 to 2013 using validated spinal deformity diagnostic codes. Procedural codes (ICD-9 and CPT) were then applied to each database. A multicenter PMD including years 2008 to 2015 was used for comparison. Databases were assessed for levels fused, osteotomies, decompressed levels, and invasiveness. Database comparisons for surgical details were made in all patients, and also for patients with ≥ 5 level spinal fusions. Approximately, 37,368 NIS, 1291 NSQIP, and 737 PMD patients were identified. NADs showed an increased use of deformity billing codes over the study period (NIS doubled, 68x NSQIP, P < 0.001), but ASD remained stable in the PMD.Surgical invasiveness, levels fused and use of 3-column osteotomy (3-CO) were significantly lower for all patients in the NIS (11.4-13.7) and NSQIP databases (6.4-12.7) compared with PMD (27.5-32.3). When limited to patients with ≥5 levels, invasiveness, levels fused, and use of 3-CO remained significantly higher in the PMD compared with NADs (P < 0.001). National databases NIS and NSQIP do not capture the same patient population as is captured in PMDs in ASD. Physicians should remain cautious in interpreting conclusions drawn from these databases. 4.
Hallager, Dennis Winge; Hansen, Lars Valentin; Dragsted, Casper Rokkjær; Peytz, Nina; Gehrchen, Martin; Dahl, Benny
2016-05-01
Cross-sectional analyses on a consecutive, prospective cohort. To evaluate the ability of the Scoliosis Research Society (SRS)-Schwab Adult Spinal Deformity Classification to group patients by widely used health-related quality-of-life (HRQOL) scores and examine possible confounding variables. The SRS-Schwab Adult Spinal Deformity Classification includes sagittal modifiers considered important for HRQOL and the clinical impact of the classification has been validated in patients from the International Spine Study Group database; however, equivocal results were reported for the Pelvic Tilt modifier and potential confounding variables were not evaluated. Between March 2013 and May 2014, all adult spinal deformity patients from our outpatient clinic with sufficient radiographs were prospectively enrolled. Analyses of HRQOL variance and post hoc analyses were performed for each SRS-Schwab modifier. Age, history of spine surgery, and aetiology of spinal deformity were considered potential confounders and their influence on the association between SRS-Schwab modifiers and aggregated Oswestry Disability Index (ODI) scores was evaluated with multivariate proportional odds regressions. P values were adjusted for multiple testing. Two hundred ninety-two of 460 eligible patients were included for analyses. The SRS-Schwab Classification significantly discriminated HRQOL scores between normal and abnormal sagittal modifier classifications. Individual grade comparisons showed equivocal results; however, Pelvic Tilt grade + versus + + did not discriminate patients according to any HRQOL score. All modifiers showed significant proportional odds for worse aggregated ODI scores with increasing grade levels and the effects were robust to confounding. However, age group and aetiology had individual significant effects. The SRS-Schwab sagittal modifiers reliably grouped patients graded 0 versus + / + + according to the most widely used HRQOL scores and the effects of increasing grade level on odds for worse ODI scores remained significant after adjusting for potential confounders. However, effects of age group and aetiology should not be neglected. 3.
Kim, Han Jo; Lenke, Lawrence G; Oshima, Yasushi; Chuntarapas, Tapanut; Mesfin, Addisu; Hershman, Stuart; Fogelson, Jeremy L; Riew, K Daniel
2014-09-01
Retrospective. The authors hypothesized that cervical lordosis (CL) would decrease with aging and increasing degeneration. It is theorized that with age and degeneration, the cervical spine loses lordosis and becomes progressively more kyphotic; however, no studies support these conclusions in patients with various spinal deformities. The authors performed a radiographic analysis of asymptomatic adults (referring to their cervical spine) of varying ages, with differing forms of spinal deformity to the thoracic/lumbar spine to see how cervical lordosis changes with increasing age. A total of 104 total spine EOS X-rays of adult (aged >18 years) spinal deformity patients without documented neck pain, prior neck surgery, or cervical deformity were reviewed. The researchers only reviewed EOS X-rays because they allow complete visualization from occiput to feet. Cervical lordosis, standard Cobb measurements, sagittal balance parameters, and cervical degeneration were quantified radiographically by the method previously described by Gore et al. Statistical analysis was performed with 1-way analysis of variance to compare significant differences between groups aged <40, 40-60 and >60 years as well as changes in sagittal balance. A p-value < .05 was considered significant. Average CL actually increased with increasing age (10.3 ± 14.7, 15.4 ± 15.1, and 23.3 ± 1.6.7 for age < 40, 40-60, and > 60 years, respectively; p < .05). Average cervical degeneration score increased at all disc space levels from C2 to C7 across age groups (0.7 ± 1.2, 9.9 ± 69, and 16.3 ± 8.9 for age <40, 40-60, and >60 years, respectively; p < .01), with the highest degeneration at the C5-6 and C6-7 disc spaces (3.7 ± 3.3 and 3.2 ± 2.9, respectively; p < .01). This increase did not correlate with the increase in CL seen with aging (r = 0.02; p = .84). Cervical lordosis increased with aging in adult spinal deformity patients. There was no relationship between cervical degeneration and lordosis despite the strong relationship seen between increasing CL in older age groups. Copyright © 2014 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
21 CFR 888.3070 - Pedicle screw spinal system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... treatment of the following acute and chronic instabilities or deformities of the thoracic, lumbar, and... spondylolisthesis with objective evidence of neurologic impairment; fracture; dislocation; scoliosis; kyphosis... with objective evidence of neurologic impairment, fracture, dislocation, scoliosis, kyphosis, spinal...
21 CFR 888.3070 - Pedicle screw spinal system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... treatment of the following acute and chronic instabilities or deformities of the thoracic, lumbar, and... spondylolisthesis with objective evidence of neurologic impairment; fracture; dislocation; scoliosis; kyphosis... with objective evidence of neurologic impairment, fracture, dislocation, scoliosis, kyphosis, spinal...
NASA Astrophysics Data System (ADS)
Ketcha, M. D.; De Silva, T.; Uneri, A.; Jacobson, M. W.; Goerres, J.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.
2017-06-01
A multi-stage image-based 3D-2D registration method is presented that maps annotations in a 3D image (e.g. point labels annotating individual vertebrae in preoperative CT) to an intraoperative radiograph in which the patient has undergone non-rigid anatomical deformation due to changes in patient positioning or due to the intervention itself. The proposed method (termed msLevelCheck) extends a previous rigid registration solution (LevelCheck) to provide an accurate mapping of vertebral labels in the presence of spinal deformation. The method employs a multi-stage series of rigid 3D-2D registrations performed on sets of automatically determined and increasingly localized sub-images, with the final stage achieving a rigid mapping for each label to yield a locally rigid yet globally deformable solution. The method was evaluated first in a phantom study in which a CT image of the spine was acquired followed by a series of 7 mobile radiographs with increasing degree of deformation applied. Second, the method was validated using a clinical data set of patients exhibiting strong spinal deformation during thoracolumbar spine surgery. Registration accuracy was assessed using projection distance error (PDE) and failure rate (PDE > 20 mm—i.e. label registered outside vertebra). The msLevelCheck method was able to register all vertebrae accurately for all cases of deformation in the phantom study, improving the maximum PDE of the rigid method from 22.4 mm to 3.9 mm. The clinical study demonstrated the feasibility of the approach in real patient data by accurately registering all vertebral labels in each case, eliminating all instances of failure encountered in the conventional rigid method. The multi-stage approach demonstrated accurate mapping of vertebral labels in the presence of strong spinal deformation. The msLevelCheck method maintains other advantageous aspects of the original LevelCheck method (e.g. compatibility with standard clinical workflow, large capture range, and robustness against mismatch in image content) and extends capability to cases exhibiting strong changes in spinal curvature.
2010-01-01
Background This report is the SOSORT Consensus Paper on Terminology for use in the treatment of conservative spinal deformities. Figures are provided and relevant literature is cited where appropriate. Methods The Delphi method was used to reach a preliminary consensus before the meeting, where the terms that still needed further clarification were discussed. Results A final agreement was found for all the terms, which now constitute the base of this glossary. New terms will be added after being discussed and accepted. Discussion When only one set of terms is used for communication in a place or among a group of people, then everyone can clearly and efficiently communicate. This principle applies for any professional group. Until now, no common set of terms was available in the field of the conservative treatment of scoliosis and spinal deformities. This glossary gives a common base language to draw from to discuss data, findings and treatment. PMID:21044334
Spinal fusion surgery: A historical perspective.
Tarpada, Sandip P; Morris, Matthew T; Burton, Denver A
2017-03-01
The vast majority of technological advances in spinal fusion surgery have occurred within the past 50 years. Despite this, there existed a rich history of innovation, ingenuity, and resourcefulness among the spine surgeons of centuries before. Here, we pay tribute to this history, highlighting the important characters, their devices, and their thoughts, as they sought to alleviate human suffering from spinal deformity.
Vertebral column resection in children with neuromuscular spine deformity.
Sponseller, Paul D; Jain, Amit; Lenke, Lawrence G; Shah, Suken A; Sucato, Daniel J; Emans, John B; Newton, Peter O
2012-05-15
Retrospective analysis. To determine, in pediatric patients with neuromuscular deformity undergoing vertebral column resection (VCR), the (1) characteristics of the surgery performed; (2) amount of pelvic obliquity restoration, and coronal and sagittal correction achieved; (3) associated blood loss and complications; and (4) extent to which curve type and VCR approach influenced correction, blood loss, and complications. VCR allows for correction of severe, rigid spinal deformity. This technique has not been previously reported in children with neuromuscular disorders. We retrospectively reviewed the records of 23 children with neuromuscular disorders (mean age, 15 years) and spinal deformities (severe scoliosis, 9; global kyphosis or angular kyphosis, 4; kyphoscoliosis, 10) who underwent VCR. The Student t test was used to compare correction differences (statistical significance, P < 0.05). A mean 1.5 vertebrae (27 thoracic and 6 lumbar) were resected per patient. Significant corrections were achieved in pelvic obliquity (11°, from 19° ± 13° to 8° ± 7°), in major coronal curve (56°, from 94° ± 36° to 38° ± 20°), and in major sagittal curve (46°, from 86° ± 37° to 40° ± 19°). There was no difference in correction between various curve types. VCR was associated with substantial blood loss (mean, 76% [estimated blood loss per total blood volume]), which correlated with patient weight and operating time. Overall, 6 patients experienced major complications: spinal cord injury, pleural effusion requiring chest tube insertion, pneumonia, pancreatitis, deep wound infection, and prominent implant requiring revision surgery. There were no deaths or permanent neurological injuries. VCR achieved significant pelvic obliquity restoration and coronal and sagittal correction in children with neuromuscular disorders and severe, rigid spinal deformity. However, this challenging procedure involves the potential for major complications.
Progressive Spinal Kyphosis in the Aging Population.
Ailon, Tamir; Shaffrey, Christopher I; Lenke, Lawrence G; Harrop, James S; Smith, Justin S
2015-10-01
Thoracic kyphosis tends to increase with age. Hyperkyphosis is defined as excessive curvature of the thoracic spine and may be associated with adverse health effects. Hyperkyphosis in isolation or as a component of degenerative kyphoscoliosis has important implications for the surgical management of adult spinal deformity. Our objective was to review the literature on the epidemiology, etiology, natural history, management, and outcomes of thoracic hyperkyphosis. We performed a narrative review of literature on thoracic hyperkyphosis and its implications for adult spinal deformity surgery. Hyperkyphosis has a prevalence of 20% to 40% and is more common in the geriatric population. The cause is multifactorial and involves an interaction between degenerative changes, vertebral compression fractures, muscular weakness, and altered biomechanics. It may be associated with adverse health consequences including impaired physical function, pain and disability, impaired pulmonary function, and increased mortality. Nonoperative management may slow the progression of kyphosis and improve function. Surgery is rarely performed for isolated hyperkyphosis in the elderly due to the associated risk, but is an option when kyphosis occurs in the context of significant deformity. In this scenario, increased thoracic kyphosis influences selection of fusion levels and overall surgical planning. Kyphosis is common in older individuals and is associated with adverse health effects and increased mortality. Current evidence suggests a role for nonoperative therapies in reducing kyphosis and delaying its progression. Isolated hyperkyphosis in the elderly is rarely treated surgically; however, increased thoracic kyphosis as a component of global spinal deformity has important implications for patient selection and operative planning.
Treatment of Combined Spinal Deformity in Patient with Ollier Disease and Abnormal Vertebrae
Ryabykh, S. О.; Gubin, A. V.; Prudnikova, О. G.; Kobyzev, А. Е.
2012-01-01
We report staged treatment of severe combined spinal deformity in an 11-year-old patient with Ollier disease and abnormal cervical vertebra. Combined scoliosis with systemic pathology and abnormal vertebrae is a rare condition and features atypical deformity location and rapid progression rate and frequently involves the rib cage and pelvis, disturbing the function of chest organs and skeleton. Progressive deformity resulted in cachexia and acute respiratory failure. A halo-pelvic distraction device assembled of Ilizarov components was employed for a staged surgical treatment performed for lifesaving indications. After vital functions stabilized, the scoliosis curve of the cervical spine was corrected and fixed with a hybrid system of transpedicular supporting points, connecting rods, and connectors that provided staged distraction during growth. The treatment showed good functional and cosmetic result. PMID:24436859
Pelvic Evaluation in Thoracolumbar Corrective Spine Surgery: How I Do It.
Murtagh, Ryan D; Quencer, Robert M; Uribe, Juan
2016-03-01
Surgeons and radiologists have traditionally focused on frontal radiographs and the measurement of scoliosis curves as important tools in the management of spinal deformity. It has become evident, however, that the management of spinal deformity should use a multidimensional approach with an increased emphasis on standing lateral radiographs and the sagittal position of the spine. Furthermore, they have come to realize the critical role that the pelvis plays in the maintenance of posture. Failure to recognize pelvic compensation can lead to under-treatment and poor postoperative outcomes.
Topologically preserving straightening of spinal cord MRI.
De Leener, Benjamin; Mangeat, Gabriel; Dupont, Sara; Martin, Allan R; Callot, Virginie; Stikov, Nikola; Fehlings, Michael G; Cohen-Adad, Julien
2017-10-01
To propose a robust and accurate method for straightening magnetic resonance (MR) images of the spinal cord, based on spinal cord segmentation, that preserves spinal cord topology and that works for any MRI contrast, in a context of spinal cord template-based analysis. The spinal cord curvature was computed using an iterative Non-Uniform Rational B-Spline (NURBS) approximation. Forward and inverse deformation fields for straightening were computed by solving analytically the straightening equations for each image voxel. Computational speed-up was accomplished by solving all voxel equation systems as one single system. Straightening accuracy (mean and maximum distance from straight line), computational time, and robustness to spinal cord length was evaluated using the proposed and the standard straightening method (label-based spline deformation) on 3T T 2 - and T 1 -weighted images from 57 healthy subjects and 33 patients with spinal cord compression due to degenerative cervical myelopathy (DCM). The proposed algorithm was more accurate, more robust, and faster than the standard method (mean distance = 0.80 vs. 0.83 mm, maximum distance = 1.49 vs. 1.78 mm, time = 71 vs. 174 sec for the healthy population and mean distance = 0.65 vs. 0.68 mm, maximum distance = 1.28 vs. 1.55 mm, time = 32 vs. 60 sec for the DCM population). A novel image straightening method that enables template-based analysis of quantitative spinal cord MRI data is introduced. This algorithm works for any MRI contrast and was validated on healthy and patient populations. The presented method is implemented in the Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1209-1219. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Kowalski, Ireneusz M.; Palko, Tadeusz; Pasniczek, Roman; Szarek, Jozef
2009-01-01
Clinical studies were carried out in the period of 2003-2006 at the Provincial Children's Rehabilitation Hospital in Ameryka near Olsztyn (Poland). The study involved a group of children and youth exhibiting spinal deformity progression in idiopathic scoliosis (IS) of more than 5° per year according to the Cobb scale. Four hundred and fifty patients between 4 and 15 years of age were divided into three groups (n = 150). Group I and group II received 2-hour and 9-hour lateral electrical surface stimulation (LESS), respectively, whereas group III (control) was treated only with corrective exercises for 30 minutes twice a day. LESS was performed with the use of a battery-operated SCOL-2 stimulator manufactured by Elmech, Warsaw, Poland. The effectiveness of this method was confirmed in the treatment of spinal IS in children and youth, especially when the initial spinal deformity did not exceed 20° according to the Cobb scale. A short-duration electrostimulation (2 hours daily) was found to produce results similar to those obtained after overnight (9 h) electrostimulation. Moreover, the analysis of the Harrington prognostic index F confirms the positive effect of LESS in both groups of patients (2 h and 9 h of LESS).
Shapiro, F; Zurakowski, D; Bui, T; Darras, B T
2014-01-01
We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p < 0.001). Scoliosis developed in virtually all DMD patients not receiving steroids once they became wheelchair-dependent, and the degree of deformity deteriorated over time. In general, scoliosis increased at a constant rate, beginning at the time of wheelchair-dependency (p < 0.001). In some there was no scoliosis for as long as three years after dependency, but scoliosis then developed and increased at a constant rate. Some patients showed a rapid increase in the rate of progression of the curve after a few years - the clinical phenomenon of a rapidly collapsing curve over a few months. A sagittal plane kyphotic deformity was seen in 37 of 60 patients (62%) with appropriate radiographs, with 23 (38%) showing lumbar lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and sagittal planes in wheelchair-dependent patients with other neuromuscular disorders.
Bridwell, Keith H
2006-09-01
Author experience and literature review. To investigate and discuss decision-making on when to perform a Smith-Petersen osteotomy as opposed to a pedicle subtraction procedure and/or a vertebral column resection. Articles have been published regarding Smith-Petersen osteotomies, pedicle subtraction procedures, and vertebral column resections. Expectations and complications have been reviewed. However, decision-making regarding which of the 3 procedures is most useful for a particular spinal deformity case is not clearly investigated. Discussed in this manuscript is the author's experience and the literature regarding the operative options for a fixed coronal or sagittal deformity. There are roles for Smith-Petersen osteotomy, pedicle subtraction, and vertebral column resection. Each has specific applications and potential complications. As the magnitude of resection increases, the ability to correct deformity improves, but also the risk of complication increases. Therein, an understanding of potential applications and complications is helpful.
Induction of SHP2 deficiency in chondrocytes causes severe scoliosis and kyphosis in mice.
Kim, Harry K W; Aruwajoye, Olumide; Sucato, Daniel; Richards, B Stephens; Feng, Gen-Sheng; Chen, Di; King, Philip D; Kamiya, Nobuhiro
2013-10-01
Genetic engineering techniques were used to develop an animal model of juvenile scoliosis during a postnatal skeletal-growth stage. To investigate the effect of targeted SHP2 (Src homology-2) deficiency in chondrocytes on the development of scoliosis during a juvenile growth stage in mice. Juvenile idiopathic scoliosis can lead to progressive severe spinal deformity. The pathophysiology and molecular mechanisms responsible for the deformity are unknown. Here, we investigated the role of SHP2 deficiency in chondrocytes as a potential cause of juvenile scoliosis. Genetically engineered mice with inducible deletion of SHP2 in chondrocytes were generated. The SHP2 function in chondrocytes was inactivated during a juvenile growth stage from the mouse age of 4 weeks. Radiographical, micro-computed tomographic, and histological assessments were used to analyze spinal changes. When SHP2 deficiency was induced during the juvenile stage, a progressive kyphoscoliotic deformity (thoracic lordosis and thoracolumbar kyphoscoliosis) developed within 2 weeks of the initiation of SHP2 deficiency. The 3-dimensional micro-computed tomography analysis confirmed the kyphoscoliotic deformity with a rotational deformity of the spine and osteophyte formation. The histological analysis revealed disorganization of the vertebral growth plate cartilage. Interestingly, when SHP2 was disrupted during the adolescent to adult stages, no spinal deformity developed. SHP2 plays an important role in normal spine development during skeletal maturation. Chondrocyte-specific deletion of SHP2 at a juvenile stage produced a kyphoscoliotic deformity. This new mouse model will be useful for future investigations of the role of SHP2 deficiency in chondrocytes as a mechanism leading to the development of juvenile scoliosis. N/A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Tian, Z; Gu, X
2014-06-15
Purpose: We studied dosimetric effects of inter-fraction deformation in lung stereotactic body radiotherapy (SBRT), in order to investigate the necessity of adaptive re-planning for lung SBRT treatments. Methods: Six lung cancer patients with different treatment fractions were retrospectively investigated. All the patients were immobilized and localized with a stereotactic body frame and were treated under cone-beam CT (CBCT) image guidance at each fraction. We calculated the actual delivered dose of the treatment plan using the up-to-date patient geometry of each fraction, and compared the dose with the intended plan dose to investigate the dosimetric effects of the inter-fraction deformation. Deformablemore » registration was carried out between the treatment planning CT and the CBCT of each fraction to obtain deformed planning CT for more accurate dose calculations of the delivered dose. The extent of the inter-fraction deformation was also evaluated by calculating the dice similarity coefficient between the delineated structures on the planning CT and those on the deformed planning CT. Results: The average dice coefficients for PTV, spinal cord, esophagus were 0.87, 0.83 and 0.69, respectively. The volume of PTV covered by prescription dose was decreased by 23.78% on average for all fractions and all patients. For spinal cord and esophagus, the volumes covered by the constraint dose were increased by 4.57% and 3.83%. The maximum dose was also increased by 4.11% for spinal cord and 4.29% for esophagus. Conclusion: Due to inter-fraction deformation, large deterioration was found in both PTV coverage and OAR sparing, which demonstrated the needs for adaptive re-planning of lung SBRT cases to improve target coverage while reducing radiation dose to nearby normal tissues.« less
Dubousset, J; Machida, M
2001-01-01
The unexpected finding in 1959 by Marie-Jeanne Thillard that pinealectomy in young chickens gives way to spinal deformities was confirmed by the authors. In another experiment they found that injected melatonine to the chick at adequate dose and at the same time as surgery, lessen or even totally prevents the occurrence of deformities. On the other hand, at too low dose or delayed after pinealectomy melatonine injection, may not prevent the deformity which will be persisting or even increasing. In a subsequent series of experiments on the rat, pinealectomy results in decreasing the plasmatic amount of melatonine as well as giving way to spinal deformities. The nature of these deformities observed here is dependent on the stature between of the animal. The normal quadrupede rat develops after pinealectomy a standard scoliosis. Inversely the scoliotic deformity occurs when the animal has been forced to a bipede condition, which may be achieved by removing its forelimbs when baby, then forcing it to stand and remain in erect posture by high enough feeding. Melatonine depressing and erect position are in two conditions, when associated, likely to give way to experimental scoliosis. In human, a low nycthemeral level of plasmatic melatonine is correlated with progressive scoliosis. The level of platelets calmoduline, when is normally modulated by melatonine, has been proved by Kindsfater to be increased in progressive scoliosis. Then raises the hypothesis that human idiopathic scoliosis may be due to an inherited disorder of neuro-transmitters from neuro-hormonal origin, associated with bipedal condition, where an horizontal localized neuro-muscular imbalance starts and produces the scoliotic deformity of the fibro-elastic and bony structures axial spinal pilar.
Yusof, Mohammad Imran; Hassan, Eskandar; Rahmat, Nasazli; Yunus, Rohaizan
2009-04-01
Pedicle involvement in spinal tuberculosis (TB), the prevertebral abscess formation, severity of vertebral body, and disc collapse were evaluated from magnetic resonance imaging (MRI) of the patients. To study the pedicle involvement in spine TB in relation to the degree of vertebral body and disc collapse, prevertebral abscess collection, and degree of kyphosis; and to correlate the occurrence of pedicle involvement and the degree of spinal deformity. There are a few reports describing the posterior element involvement in spinal TB. Typically, the infection resides in the anterior part of the vertebral body endplates and rarely involved the pedicles. There were 31 patients, who had been diagnosed and treated for spinal TB from 2003 to 2007 at our center. Critical evaluation of each patient's MRI was carried out for the pedicle involvement, prevertebral abscess formation, severity of vertebral body, and disc collapse. Spinal TB mostly involved the thoracic level (48.4%). Pedicle involvement was noted in 64.5% of patients, and the highest involvement was at thoracic level. The mean vertebral body, disc collapse, prevertebral abscess, and kyphosis were more severe in pedicle involved group. The posterior spinal element, specifically the pedicle is not uncommonly involved in spinal TB. Pedicle involvement is part of the disease process and usually associated with relatively severe vertebral body and disc destruction, wide prevertebral abscess, and severe kyphosis. Pedicle involvement can be detected early from MRI and need to be documented as it may influence the treatment strategy.
Scoliosis in Steinert syndrome: a case report.
Themistocleous, George S; Sapkas, George S; Papagelopoulos, Panayiotis J; Stilianessi, Eugenia V; Papadopoulos, Elias Ch; Apostolou, Constantinos D
2005-01-01
Steinert syndrome is described as an autosomal dominant condition characterized by progressive muscular wasting, myotonia, musculoskeletal manifestations and rare spinal defects. Little is reported about spinal deformity associated with this syndrome. We present a patient with Steinert syndrome complicated by scoliosis. In the literature on muscular dystrophy, other than Duchenne, little mention is given to the problem of scoliosis in general and its treatment in particular. A case report of a patient with Steinert syndrome associated with thoracic scoliosis and hypokyphosis is presented. A 17-year-old boy presented with King type II right thoracic scoliosis (T5-T11, Cobb angle of 40 degrees) and hypokyphosis--10 degrees. He was treated with posterior stabilization and instrumentation at level T3-L2 with a postoperative correction of the scoliotic curve to 20 degrees. Histopathologic examination of the muscles confirmed the diagnosis of Steinert myotonic dystrophy. At 30-month follow-up, the patient was clinically pain free and well balanced. Plain radiographs showed solid spine fusion with no loss of deformity correction. Scoliosis in Steinert syndrome shares the characteristic of an arthrogrypotic neuromuscular curve and demands the extensive soft tissue release for optimal surgical correction. Intraoperative observations included profound tissue bleeding, abnormally tough soft tissues and a difficult recovery from anaesthesia.
What's New in Congenital Scoliosis?
Pahys, Joshua M; Guille, James T
2018-03-01
Congenital scoliosis is a failure of vertebral formation, segmentation, or a combination of the 2 arising from abnormal vertebral development during weeks 4 to 6 of gestation. The associated spinal deformity can be of varying severity and result in a stable or progressive deformity based on the type and location of the anomalous vertebra(e). Bracing for congenital scoliosis is rarely indicated, while recent reports have demonstrated the utility of serial derotational casting for longer curves with multiple anomalous vertebrae as an effective "time buying strategy" to delay the need for surgery. Earlier hemivertebra excision and short-segment posterior spinal fusion have been advocated to prevent future curve progression of the deformity and/or the development of large compensatory curves. It has been shown in recent long-term follow-up studies that growth rates of the vertebral body and spinal canal are not as dramatically affected by pedicle screw instrumentation at a young age as once thought. Growth friendly surgery with either spine-based or rib-based anchors has demonstrated good results with curve correction while maintaining spinal growth. Rib-based anchors are typically more commonly indicated in the setting of chest wall abnormalities and/or when spinal anatomy precludes placement of spinal instrumentation. Recently, magnetically controlled growing rods have shown promising results in several studies that include a small subset of congenital scoliosis cases. A literature search was performed to identify existing studies related to the treatment of congenital scoliosis published from January 1, 2005 to June 1, 2016. Databases included PubMed, Medline, and the Cochrane Library. The search was limited to English articles and yielded 36 papers. This project was initiated by the Pediatric Orthopaedic Society of North America Publications Committee and was reviewed and approved by the Pediatric Orthopaedic Society of North America Presidential Line. A total of 36 papers were selected for review based upon new findings. Classic manuscripts on congenital scoliosis are also included to provide sufficient background information. Congenital scoliosis represents a wide range of pathology from the simple, stable hemivertebra to the complex, progressive spinal deformity with chest wall abnormalities and associated cardiac, renal, and neural axis anomalies. This paper reviews the natural history and associated anomalies with congenital scoliosis as well as the most up-to-date classification schemes and various treatment options for the care of this challenging patient population. Level 5.
Canavese, Federico; Rousset, Marie; Mansour, Mounira; Samba, Antoine; Dimeglio, Alain
2016-02-01
Infantile and juvenile scoliosis, among different types of spinal deformity, is still a challenge for pediatric orthopedic surgeons. The ideal treatment of infantile and juvenile scoliosis has not yet been identified as both clinicians and surgeons still face multiple challenges, including preservation of the thoracic spine, thoracic cage, lung growth and cardiac function without reducing spinal motion. Elongation, derotation, flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three dimensional correction concept. This cast offers three-dimensional correction and can control the evolution of the deformity in some cases. Spinal growth can be guided by EDF casting as it can influence the initially curved spine to grow straighter. This article aimed to provide a comprehensive review of how infantile and juvenile scoliosis can affect normal spine and thorax and how these deformities can be treated with serial EDF casting technique. A current literature review is mandatory in order to understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in young and very young patients.
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.; Adler, Roy L.; Margulies, Joseph Y.; Tresser, Charles P.; Wu, Chai W.
1999-05-01
Decision making in the treatment of scoliosis is typically based on longitudinal studies that involve the imaging and visualization the progressive degeneration of a patient's spine over a period of years. Some patients will need surgery if their spinal deformation exceeds a certain degree of severity. Currently, surgeons rely on 2D measurements, obtained from x-rays, to quantify spinal deformation. Clearly working only with 2D measurements seriously limits the surgeon's ability to infer 3D spinal pathology. Standard CT scanning is not a practical solution for obtaining 3D spinal measurements of scoliotic patients. Because it would expose the patient to a prohibitively high dose of radiation. We have developed 2 new CT-based methods of 3D spinal visualization that produce 3D models of the spine by integrating a very small number of axial CT slices with data obtained from CT scout data. In the first method the scout data are converted to sinogram data, and then processed by a tomographic image reconstruction algorithm. In the second method, the vertebral boundaries are detected in the scout data, and these edges are then used as linear constraints to determine 2D convex hulls of the vertebrae.
Utility of an allograft tendon for scoliosis correction via the costo-transverse foreman.
Sun, Dong; McCarthy, Michael; Dooley, Adam C; Ramakrishnaiah, Raghu H; Shelton, R Shane; McLaren, Sandra G; Skinner, Robert A; Suva, Larry J; McCarthy, Richard E
2017-01-01
Current convex tethering techniques for treatment of scoliosis have centered on anterior convex staples or polypropylene tethers. We hypothesized that an allograft tendon tether inserted via the costo-transverse foramen would correct an established spinal deformity. In the pilot study, six 8-week-old pigs underwent allograft tendon tethering via the costo-transverse foreman or sham to test the strength of the transplanted tendon to retard spine growth. After 4 months, spinal deformity in three planes was induced in all animals with allograft tendons. In the treatment study, the allograft tendon tether was used to treat established scoliosis in 11 8-week-old pigs (spinal deformity > 50°). Once the deformity was observed (4 months) animals were assigned to either no treatment group or allograft tendon tether group and progression assessed by monthly radiographs. At final follow-up, coronal Cobb angle and maximum vertebral axial rotation of the treatment group was significantly smaller than the non-treatment group, whereas sagittal kyphosis of the treatment group was significantly larger than the non-treatment group. In sum, a significant correction was achieved using a unilateral allograft tendon spinal tether, suggesting that an allograft tendon tethering approach may represent a novel fusion-less procedure to correct idiopathic scoliosis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:183-192, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Wong, Y W; Samartzis, D; Cheung, K M C; Luk, K
2017-10-01
To address the natural history of severe post-tuberculous (TB) kyphosis, with focus upon the long-term neurological outcome, occurrence of restrictive lung disease, and the effect on life expectancy. This is a retrospective clinical review of prospectively collected imaging data based at a single institute. A total of 24 patients of Southern Chinese origin who presented with spinal TB with a mean of 113° of kyphosis (65° to 159°) who fulfilled inclusion criteria were reviewed. Plain radiographs were used to assess the degree of spinal deformity. Myelography, CT and MRI were used when available to assess the integrity of the spinal cord and canal. Patient demographics, age of onset of spinal TB and interventions, types of surgical procedure, intra- and post-operative complications, and neurological status were assessed. All except one of the 24 patients were treated with anti-TB chemotherapy when they were first diagnosed with spinal TB. They subsequently received surgery either for neurological deterioration, or deformity correction in later life. The mean follow-up was 34 years (11 to 59) since these surgical interventions. Some 16 patients (66.7%) suffered from late neurological deterioration at a mean of 26 years (8 to 49) after the initial drug treatment. The causes of neurological deterioration were healed disease in nine patients (56.2%), re-activation in six patients (37.5%) and adjacent level spinal stenosis in one patient (6.3%). The result of surgery was worse in healed disease. Eight patients without neurological deterioration received surgery to correct the kyphosis. The mean correction ranged from 97° to 72°. Three patients who were clinically quiescent with no neurological deterioration were found to have active TB of the spine. Solid fusion was achieved in all cases and no patient suffered from neurological deterioration after 42 years of follow-up. On final follow-up, six patients were noted to have deceased (age range: 47 years to 75 years). Our study presents one of the longest assessments of spinal TB with severe kyphosis. Severe post-TB kyphosis may lead to significant health problems many years following the initial drug treatment. Early surgical correction of the kyphosis, solid fusion and regular surveillance may avoid late complications. Paraplegia, restrictive lung disease and early onset kyphosis might relate to early death. Clinically quiescent disease does not mean cure. Cite this article: Bone Joint J 2017;99-B:1381-8. ©2017 The British Editorial Society of Bone & Joint Surgery.
Burwell, R G; Aujla, R K; Freeman, B J C; Dangerfield, P H; Cole, A A; Kirby, A S; Polak, F J; Pratt, R K; Moulton, A
2008-01-01
The deformity of the ribcage in thoracic adolescent idiopathic scoliosis (AIS) is viewed by most as being secondary to the spinal deformity, though a few consider it primary or involved in curve aggravation. Those who consider it primary ascribe pathogenetic significance to rib-vertebra angle asymmetry. In thoracic AIS, supra-apical rib-vertebra angle differences (RVADs) are reported to be associated with the severity of the Cobb angle. In this paper we attempt to evaluate rib and spinal pathomechanisms in thoracic and thnoracolumbar AIS using spinal radiographs and real-time ultrasound. On the radiographs by costo-vertebral angle asymmetries (rib-vertebral angle differences RVADs, and rib-spinal angle differences RSADs), apical vertebral rotation (AV) and apical vertebral translation (AVT) were measured; and by ultrasound, spine-rib rotation differences (SRRDs) were estimated. RVADs are largest at two and three vertebral levels above the apex where they correlate significantly and positively with Cobb angle and AVT but not AVR. In right thoracic AIS, the cause(s) of the RVA asymmetries is unknown: it may result from trunk muscle imbalance, or from ribs adjusting passively within the constraint of the fourth column of the spine to increasing spinal curvature from whatever cause. Several possible mechanisms may drive axial vertebral rotation including, biplanar spinal asymmetry, relative anterior spinal overgrowth, dorsal shear forces in the presence of normal vertebral axial rotation, asymmetry of rib linear growth, trunk muscle imbalance causing rib-vertebra angle asymmetry weakening the spinal rotation-defending system of bipedal gait, and CNS mechanisms.
Yang, Won Seok; Gil, Hyun Woo; Yoo, Gwang Yeol; Park, In-Seok
2015-01-01
For the 2 years of farming, at the indoor circulating aquaculture system, four kinds of skeletal deformities were found among 60 Far Eastern catfish, Silurus asotus. Deformities saw jawbone’s luxation, abnormality of upper lip and malocclusion. Spinal deformity was most fatal deformities with low weight and small length. Jawbone’s luxation had 1 maxilla and 2 mandibles. Abnormality of upper lip had just lip was back over. Malocclusion’s left maxilla and right maxilla were not balanced. This experiment was any deformities in this species through the deformity can grasp how it affects. PMID:27004272
Sganzerla, Erik Pietro; Riva, Michele Augusto
2017-06-01
Some authors sustained that the pessimistic thought of the Italian writer and philosopher Giacomo Leopardi (1798-1837) may be attributed to his unhappy life, characterized by several health problems. His philosophical theories appear as the result of depressive and melancholic state, related to his precarious health conditions, so limiting their intrinsic values. Several authors formulated various hypotheses on the diseases that Leopardi suffered from and postulated different theories on the cause of his early death. This article assumed that Leopardi may have been affected by juvenile ankylosing spondylitis, conditioning spinal deformities, relapsing-remitting uveitis, urinary tract and bowel tract problems, and acute arthritis. Chest deformity, as a complication of juvenile ankylosing spondylitis, may have caused progressive cardiorespiratory failure, worsened by recurrent bronchial and pulmonary complications, until his death caused by acute right ventricular heart failure. The acknowledgment of a physical cause of Leopardi's disease contributes to reevaluate his "cosmic pessimism" as an original expression of his thought, so leading a general revaluation of the figure of one of the most important European thinkers of the 19th century.
Load-sharing through elastic micro-motion accelerates bone formation and interbody fusion.
Ledet, Eric H; Sanders, Glenn P; DiRisio, Darryl J; Glennon, Joseph C
2018-02-13
Achieving a successful spinal fusion requires the proper biological and biomechanical environment. Optimizing load-sharing in the interbody space can enhance bone formation. For anterior cervical discectomy and fusion (ACDF), loading and motion are largely dictated by the stiffness of the plate, which can facilitate a balance between stability and load-sharing. The advantages of load-sharing may be substantial for patients with comorbidities and in multilevel procedures where pseudarthrosis rates are significant. We aimed to evaluate the efficacy of a novel elastically deformable, continuously load-sharing anterior cervical spinal plate for promotion of bone formation and interbody fusion relative to a translationally dynamic plate. An in vivo animal model was used to evaluate the effects of an elastically deformable spinal plate on bone formation and spine fusion. Fourteen goats underwent an ACDF and received either a translationally dynamic or elastically deformable plate. Animals were followed up until 18 weeks and were evaluated by plain x-ray, computed tomography scan, and undecalcified histology to evaluate the rate and quality of bone formation and interbody fusion. Animals treated with the elastically deformable plate demonstrated statistically significantly superior early bone formation relative to the translationally dynamic plate. Trends in the data from 8 to 18 weeks postoperatively suggest that the elastically deformable implant enhanced bony bridging and fusion, but these enhancements were not statistically significant. Load-sharing through elastic micro-motion accelerates bone formation in the challenging goat ACDF model. The elastically deformable implant used in this study may promote early bony bridging and increased rates of fusion, but future studies will be necessary to comprehensively characterize the advantages of load-sharing through micro-motion. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Rajasekaran, S; Bhushan, Manindra; Aiyer, Siddharth; Kanna, Rishi; Shetty, Ajoy Prasad
2018-01-09
To develop a classification based on the technical complexity encountered during pedicle screw insertion and to evaluate the performance of AIRO ® CT navigation system based on this classification, in the clinical scenario of complex spinal deformity. 31 complex spinal deformity correction surgeries were prospectively analyzed for performance of AIRO ® mobile CT-based navigation system. Pedicles were classified according to complexity of insertion into five types. Analysis was performed to estimate the accuracy of screw placement and time for screw insertion. Breach greater than 2 mm was considered for analysis. 452 pedicle screws were inserted (T1-T6: 116; T7-T12: 171; L1-S1: 165). The average Cobb angle was 68.3° (range 60°-104°). We had 242 grade 2 pedicles, 133 grade 3, and 77 grade 4, and 44 pedicles were unfit for pedicle screw insertion. We noted 27 pedicle screw breach (medial: 10; lateral: 16; anterior: 1). Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Average screw insertion time was 1.76 ± 0.89 min. After accounting for planned breach, the effective breach rate was 3.8% resulting in 96.2% accuracy for pedicle screw placement. This classification helps compare the accuracy of screw insertion in range of conditions by considering the complexity of screw insertion. Considering the clinical scenario of complex pedicle anatomy in spinal deformity AIRO ® navigation showed an excellent accuracy rate of 96.2%.
Yu, Bin; Zhu, Ke; Zhao, Deng; Wang, Fei; Liang, Yijian
2016-02-01
A case report of treatment of extreme tuberculous kyphosis using spinal osteotomy and halopelvic traction. The aim of this study was to describe the process and outcome of treatment of a case with extreme tuberculous kyphosis using spine osteotomy and halo-pelvic traction. Spinal tuberculosis causes destruction, deformity, and paraplegia. Long-standing kyphosis may progress with growth in children, and produces respiratory insufficiency, and neurologic deficit. Surgery may help to prevent or reverse the neurological deterioration, while improving pulmonary function in cases with significant spinal deformity. Review of records and radiographs. A 24-year-old female with tuberculous angular kyphosis presented with bilateral lower extremities paresis and dyspnea. The vertebral bodies from T3 to T9 were severely destructed, with a Cobb's angle of 180°on radiographs. The total duration of distraction using halopelvic apparatus kept 10 months. During the duration of traction, the patient underwent a posterior release surgery because flexibility of the kyphosis was not sufficient. Pedicle subtraction osteotomy and pedicle screw fixation were performed to achieve final correction when the Cobb's angle decreased to about 80°. After the whole treatment of halopelvic traction and spine ostetomy, the patient's height increased nearly 30 cm, whereas the angular kyphosis was corrected to a Cobb's angle of 30°. The patient had no complication and neurological deterioration during the treatment. Correction angle and good sagittal balance were well maintained in the duration of 2 years' follow-up. The halo-pelvic apparatus produces high corrective forces applied over a long period, and it provides a slow and safe correction of deformity. In cases of extreme kyphotic deformity, halopelvic traction is an appropriate technique, while avoiding many serious complications from a rapid, one-stage correction. N/A.
Concurrent orthopedic and neurosurgical procedures in pediatric patients with spinal deformity.
Mooney, James F; Glazier, Stephen S; Barfield, William R
2012-11-01
The management of pediatric patients with complex spinal deformity often requires both an orthopedic and a neurosurgical intervention. The reasons for multiple subspecialty involvement include, but are not limited to, the presence of a tethered cord requiring release or a syrinx requiring decompression. It has been common practice to perform these procedures in a staged manner, although there is little evidence in the literature to support separate interventions. We reviewed a series of consecutive patients who underwent spinal deformity correction and a neurosurgical intervention concurrently in an attempt to assess the safety, efficacy, and possible complications associated with such an approach. Eleven patients were reviewed who underwent concurrent orthopedic and neurosurgical procedures. Data were collected for patient demographics, preoperative diagnosis, procedures performed, intraoperative and perioperative complications, as well as any unexpected return to the operating room for any reason. Operative notes and anesthesia records were reviewed to determine estimated blood loss, surgical time, and the use of intraoperative neurological monitoring. Patient diagnoses included myelodysplasia (N=6), congenital scoliosis and/or kyphosis (N=4), and scoliosis associated with Noonan syndrome (N=1). Age at the time of surgery averaged 9 years 2 months (range=14 months to 17 years 2 months). Estimated blood loss averaged 605 ml (range=50-3000 ml). The operative time averaged 313 min (range=157-477 min). There were no intraoperative complications, including incidental dural tears or deterioration in preoperative neurological status. One patient developed a sore associated with postoperative cast immobilization that led to a deep wound infection. It appears that concurrent orthopedic and neurosurgical procedures in pediatric patients with significant spinal deformities can be performed safely and with minimal intraoperative and postoperative complications when utilizing modern surgical and neuromonitoring techniques. Level of evidence=Level IV. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Anwer, Shahnawaz; Alghadir, Ahmad; Abu Shaphe, Md.; Anwar, Dilshad
2015-01-01
Objectives. This systematic review was conducted to examine the effects of exercise on spinal deformities and quality of life in patients with adolescent idiopathic scoliosis (AIS). Data Sources. Electronic databases, including PubMed, CINAHL, Embase, Scopus, Cochrane Register of Controlled Trials, PEDro, and Web of Science, were searched for research articles published from the earliest available dates up to May 31, 2015, using the key words “exercise,” “postural correction,” “posture,” “postural curve,” “Cobb's angle,” “quality of life,” and “spinal deformities,” combined with the Medical Subject Heading “scoliosis.” Study Selection. This systematic review was restricted to randomized and nonrandomized controlled trials on AIS published in English language. The quality of selected studies was assessed by the PEDro scale, the Cochrane Collaboration's tool, and the Grading of Recommendations Assessment, Development, and Evaluation System (GRADE). Data Extraction. Descriptive data were collected from each study. The outcome measures of interest were Cobb angle, trunk rotation, thoracic kyphosis, lumbar kyphosis, vertebral rotation, and quality of life. Data Synthesis. A total of 30 studies were assessed for eligibility. Six of the 9 selected studies reached high methodological quality on the PEDro scale. Meta-analysis revealed moderate-quality evidence that exercise interventions reduce the Cobb angle, angle of trunk rotation, thoracic kyphosis, and lumbar lordosis and low-quality evidence that exercise interventions reduce average lateral deviation. Meta-analysis revealed moderate-quality evidence that exercise interventions improve the quality of life. Conclusions. A supervised exercise program was superior to controls in reducing spinal deformities and improving the quality of life in patients with AIS. PMID:26583083
Model-based registration for assessment of spinal deformities in idiopathic scoliosis
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans
2014-01-01
Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.
Neuromuscular diseases: Diagnosis and management.
Mary, P; Servais, L; Vialle, R
2018-02-01
Neuromuscular diseases (NMDs) affect the peripheral nervous system, which includes the motor neurons and sensory neurons; the muscle itself; or the neuromuscular junction. Thus, the term NMDs encompasses a vast array of different syndromes. Some of these syndromes are of direct relevance to paediatric orthopaedic surgeons, either because the presenting manifestation is a functional sign (e.g., toe-walking) or deformity (e.g., pes cavus or scoliosis) suggesting a need for orthopaedic attention or because orthopaedic abnormalities requiring treatment develop during the course of a known NMD. The main NMDs relevant to the orthopaedic surgeon are infantile spinal muscular atrophy (a motor neuron disease), peripheral neuropathies (chiefly, Charcot-Marie-Tooth disease), congenital muscular dystrophies, progressive muscular dystrophies, and Steinert myotonic dystrophy (or myotonic dystrophy type 1). Muscle weakness is a symptom shared by all these conditions. The paediatric orthopaedic surgeon must be familiar, not only with the musculoskeletal system, but also with many other domains (particularly respiratory and cardiac function and nutrition) that may interfere with the treatment and require preoperative management. Good knowledge of the natural history of each NMD is essential to ensure optimal timing of the therapeutic interventions, which must be performed under the best possible conditions in these usually frail patients. Timing is particularly crucial for the treatment of spinal deformities due to paraspinal muscle hypotonia during growth: depending on the disease and natural history, the treatment may involve non-operative methods or growing rods, followed by spinal fusion. A multidisciplinary approach is always required. Finally, the survival gains achieved in recent years increasingly require attention to preparing for adult life, to orthopaedic problems requiring treatment before the patient leaves the paediatric environment, and to the transition towards the adult healthcare system. Copyright © 2017. Published by Elsevier Masson SAS.
[Adolescent idiopathic scoliosis].
2016-12-01
Adolescent idiopathic scoliosis is a 3D spinal deformity in frontal, sagittal and axial planes, with high relevance in the pediatric population especially in adolescents and females between 10 years of age and the end of growth spurt and skeletal maturity. The radiographic manifestation is a curve greater than 10° measured by Cobb method associated with vertebral rotation. "Idiopathic" diagnosis has to be done after neuroanatomical anomalies of the posterior cerebral fosa and spinal canal have been ruled out. The physical finding of a thoracic or lumbar hump is the clinical manifestation of vertebral rotation seen in a forward bending test (Adam's Test). It is recommended that all curves with a magnitude greater than 20° have to be controlled and treated by a spinal surgeon being observation, bracing and surgery the different treatment options based on the extent, progression of deformity and basically the clinical condition of the patient. Sociedad Argentina de Pediatría.
Global geometric torsion estimation in adolescent idiopathic scoliosis.
Kadoury, Samuel; Shen, Jesse; Parent, Stefan
2014-04-01
Several attempts have been made to measure geometrical torsion in adolescent idiopathic scoliosis (AIS) and quantify the three-dimensional (3D) deformation of the spine. However, these approaches are sensitive to imprecisions in the 3D modeling of the anatomy and can only capture the effect locally at the vertebrae, ignoring the global effect at the regional level and thus have never been widely used to follow the progression of a deformity. The goal of this work was to evaluate the relevance of a novel geometric torsion descriptor based on a parametric modeling of the spinal curve as a 3D index of scoliosis. First, an image-based approach anchored on prior statistical distributions is used to reconstruct the spine in 3D from biplanar X-rays. Geometric torsion measuring the twisting effect of the spine is then estimated using a technique that approximates local arc-lengths with parametric curve fitting centered at the neutral vertebra in different spinal regions. We first evaluated the method with simulated experiments, demonstrating the method's robustness toward added noise and reconstruction inaccuracies. A pilot study involving 65 scoliotic patients exhibiting different types of deformities was also conducted. Results show the method is able to discriminate between different types of deformation based on this novel 3D index evaluated in the main thoracic and thoracolumbar/lumbar regions. This demonstrates that geometric torsion modeled by parametric spinal curve fitting is a robust tool that can be used to quantify the 3D deformation of AIS and possibly exploited as an index to classify the 3D shape.
Abduljabbar, Fahad H; Waly, Feras; Nooh, Anas; Ouellet, Jean
2016-09-01
Early-onset scoliosis often occurs by the age of 5 years and is attributed to many structural abnormalities. Syndromic early-onset scoliosis is considered one of the most aggressive types of early-onset scoliosis. Treatment starts with serial casting and bracing, but eventually most of these patients undergo growth-sparing procedures, such as a single growing rod, dual growing rods, or a vertical expandable titanium prosthetic rib. This case report aimed to describe an unusual complication of erosion of a growing rod through the lamina that caused spinal cord compression in an 8-year-old girl with early-onset scoliosis. This is a case report. A retrospective chart review was used to describe the clinical course and radiographic findings of this case after rod erosion into the spinal canal. The patient underwent successful revision surgery removing the rod without neurologic complications. Patients with syndromic early-onset scoliosis are more prone to progressive curves and severe rotational deformity. We believe that the severe kyphotic deformity in addition to the dysplastic nature of the deformity in this population may predispose them to this unusual complication. Copyright © 2016 Elsevier Inc. All rights reserved.
[The prevalence of childhood obesity in a sample of schoolchildren in Belgrade].
Kisić-Tepavcević, Darija; Jovanović, Natasa; Kisić, Vesna; Nalić, Dragana; Repcić, Mira; Popović, Aleksandra; Pekmezović, Tatjana
2008-01-01
Obesity in children has become a global epidemic with many health and social consequences that often continue into adulthood. According to the International Obesity Task Force report from 2005, Serbia has had one of the most rapidly increasing trends in the prevalence of childhood obesity during the last 10 years. The aim of the study was to estimate the prevalence of childhood obesity in a sample of schoolchildren in Belgrade and to investigate the correlation between child obesity and the presence of selected diseases. The study comprised of 854 pupils from two primary schools in Belgrade. The anthropometric data, as well as the data on the presence of selected diseases were obtained from medical records of regular health check-ups in the period from 2006-2007. The classification of childhood obesity was done according to the WHO percentiles reference data for obesity and overweight in children. Statistical analyses included chi 2 test and correlation analysis. In our sample of schoolchildren, the prevalence of obesity was 30.7%. The following diseases were present among the pupils: spinal deformities 192 (22.5%), chest wall deformities 90 (10.5%) and foot deformities 226 (26.5%). Statistically significant correlation was registered between child obesity and the presence of spinal (p=0.192; p=0.001) and foot deformities (p=0.099; p=0.049). Chest wall deformities were more frequent in the group of children with normal weight compared with the obese group (chi 2=0.206; p=0.052). Statistically significant correlation was registered between childhood obesity and the presence of hypertension (p=0.261; p=0.001). Regular physical activity was in correlation with the absence of childhood obesity (p=-0.093; p=0.055). In our sample of Belgrade schoolchildren, we detected a high prevalence of obesity. Furthermore, a significant correlation between childhood obesity and the presence of hypertension, spinal deformities and foot deformities were also observed.
A Novel Junctional Tether Weave Technique for Adult Spinal Deformity: 2-Dimensional Operative Video.
Buell, Thomas J; Mullin, Jeffrey P; Nguyen, James H; Taylor, Davis G; Garces, Juanita; Mazur, Marcus D; Buchholz, Avery L; Shaffrey, Mark E; Yen, Chun-Po; Shaffrey, Christopher I; Smith, Justin S
2018-06-05
Proximal junctional kyphosis (PJK) is a common problem after multilevel spine instrumentation for adult spinal deformity. Various anti-PJK techniques such as junctional tethers for ligamentous augmentation have been proposed. We present an operative video demonstrating technical nuances of junctional tether "weave" application. A 70-yr-old male with prior L2-S1 instrumented fusion presented with worsening back pain and posture. Imaging demonstrated pathological loss of lumbar lordosis (flat back deformity), proximal junctional failure, and pseudarthrosis. The patient had severe global and segmental sagittal malalignment, with sagittal vertical axis (SVA, C7-plumbline) measuring 22.3 cm, pelvic incidence (PI) 55°, lumbar lordosis (LL) 8° in kyphosis, pelvic tilt (PT) 30°, and thoracic kyphosis (TK) 6°. The patient gave informed consent for surgery and use of imaging for medical publication. Briefly, surgery first involved re-instrumentation with bilateral pedicle screws from T10 to S1. After right-sided iliac screw fixation (left-sided iliac screw fixation was not performed due to extensive prior iliac crest bone graft harvesting), we then completed a L2-3 Smith-Petersen osteotomy, extended L4 pedicle subtraction osteotomy, and L3-4 interbody arthrodesis with a 12° lordotic cage (9 × 14 × 40 mm). Cobalt Chromium rods were placed spanning the instrumentation bilaterally, and accessory supplemental rods spanning the PSO were attached. An anti-PJK junctional tether "weave" was then implemented using 4.5 mm polyethylene tape (Mersilene tape [Ethicon, Somerville, New Jersey]). Postoperative imaging demonstrated improved alignment (SVA 2.8 cm, PI 55°, LL 53°, PT 25°, TK 45°) and no significant neurological complications occurred during convalescence or at 6 mo postop.
Ikegami, Daisuke; Matsuoka, Takashi; Miyoshi, Yuji; Murata, Yoichi; Aoki, Yasuaki
2015-06-15
Case report. We report a case of proximal junctional failure at the ankylosed, but not the mobile, junction after segmental instrumented fusion for degenerative lumbar kyphosis with ankylosing spinal disorder. Proximal junctional failure (PJF) and proximal junctional kyphosis (PJK) are important complications that occur subsequent to long-segment instrumentation for correction of adult spinal deformity. Thus far, most studies have focused on the mobile junction as a site at which PJK/PJF can occur, and little is known about the relationship between PJK/PJF and ankylosing spinal disorders such as diffuse idiopathic skeletal hyperostosis. The patient was an 82-year-old female with degenerative lumbar kyphosis. She had abnormal confluent hyperostosis in the anterior longitudinal ligaments from Th5 to Th10. The patient was treated operatively with spinal instrumented fusion from Th10 to the sacrum. Four weeks subsequent to initial surgery, the patient developed progressive lower extremity paresis caused by the uppermost instrumented vertebrae fracture (Th10) and adjacent subluxation (Th9). Extension of fusion to Th5 with decompression at Th9-Th10 was performed. However, the patient showed no improvement in neurological function. PJF can occur at the ankylosing site above the uppermost instrumented vertebrae after long-segment instrumentation for adult spinal deformity. PJF in the ankylosed spine may cause severe fracture instability and cord deficit. The ankylosed spine should be integrated into the objective determination of materials contributing to the appropriate selection of fusion levels. 3.
Surgical Management of Spinal Conditions in the Elderly Osteoporotic Spine.
Goldstein, Christina L; Brodke, Darrel S; Choma, Theodore J
2015-10-01
Osteoporosis, the most common form of metabolic bone disease, leads to alterations in bone structure and density that have been shown to compromise the strength of spinal instrumentation. In addition, osteoporosis may contribute to high rates of fracture and instrumentation failure after long posterior spinal fusions, resulting in proximal junctional kyphosis and recurrent spinal deformity. As increasing numbers of elderly patients present for surgical intervention for degenerative and traumatic spinal pathologies, current and future generations of spine surgeons will increasingly be faced with the challenge of obtaining adequate fixation in osteoporotic bone. The purpose of this review is to familiarize the reader with the impact of osteoporosis on spinal instrumentation, the broad variety of techniques that have been developed for addressing these issues, and the biomechanical and clinical evidence in support of the use of these techniques.
[Orthopedic management of spina bifida].
Biedermann, R
2014-07-01
Spina bifida is associated with congenital deformities, such as kyphosis, spinal malformations, teratological hip dislocations, clubfeet, vertical talus and also with acquired deformities due to muscle imbalance and impaired biomechanics. The degree of the acquired deformities and the mobility of the patient depend on the level of the spinal lesion. Neurological symptoms are mostly asymmetric and there is an inconsistent correlation between the anatomical level of the lesion and muscle function. Deficits of sensation are usually one to two levels lower than the motor level. An exact neurological diagnosis should not be made before the second or third year of life and an early prognosis about walking ability should be avoided. The level L3 and therefore function of the quadriceps is a functional milestone after which modified independent ambulation with the use of ankle foot orthoses (AFO) and crutches is possible. The basic principle is to support verticalization and gait even when loss of ambulation is later expected. It is also important to support and maintain sitting ability for high lesions, if necessary with correction of the spinal deformity. Findings in gait analysis have shifted the focus of treatment from radiological criteria to functional improvement, thus maintenance of the flexibility of the hip is the main goal of hip surgery. Reduction of the hip often leads to stiffness and has a high redislocation rate. Clubfoot deformities should be treated early and foot arthrodesis and stiffness have to be avoided. Another focus is the prevention of joint contracture by early prophylactic treatment. The purpose of management is to maximize the functional potential of the child. Subjective well-being, absence of pain, mobility and socialization are the main goals. This does not necessarily imply ambulation; nevertheless, verticalization and associated orthotic management is one major objective of the orthopedic management of spina bifida.
Dang, Natasha Radhika; Moreau, Marc J; Hill, Douglas L; Mahood, James K; Raso, James
2005-05-01
Retrospective cross-sectional assessment of the reproducibility and reliability of radiographic parameters. To measure the intra-examiner and interexaminer reproducibility and reliability of salient radiographic features. The management and treatment of adolescent idiopathic scoliosis (AIS) depends on accurate and reproducible radiographic measurements of the deformity. Ten sets of radiographs were randomly selected from a sample of patients with AIS, with initial curves between 20 degrees and 45 degrees. Fourteen measures of the deformity were measured from posteroanterior and lateral radiographs by 2 examiners, and were repeated 5 times at intervals of 3-5 days. Intra-examiner and interexaminer differences were examined. The parameters include measures of curve size, spinal imbalance, sagittal kyphosis and alignment, maximum apical vertebral rotation, T1 tilt, spondylolysis/spondylolisthesis, and skeletal age. Intra-examiner reproducibility was generally excellent for parameters measured from the posteroanterior radiographs but only fair to good for parameters from the lateral radiographs, in which some landmarks were not clearly visible. Of the 13 parameters observed, 7 had excellent interobserver reliability. The measurements from the lateral radiograph were less reproducible and reliable and, thus, may not add value to the assessment of AIS. Taking additional measures encourages a systematic and comprehensive assessment of spinal radiographs.
Porter, D; Michael, S; Kirkwood, C
2010-09-01
A pattern of postural deformity was observed in a previous study that included an association between direction of spinal curvature and direction of windsweeping with more windswept deformities occurring to the right and lateral spinal curvatures occurring convex to the left. The direction of this pattern was found to be associated with preferred lying posture in early life. The aim of this study was to test the association between foetal position and both the preferred lying posture after birth, and the direction of subsequent postural deformity in non-ambulant children with cerebral palsy (CP). A retrospective cohort study was carried out involving 60 participants at level five on the gross motor function classification for CP. Foetal position during the last month of pregnancy was taken from antenatal records and parents were interviewed to identify preferred lying posture in the first year of life. At the time of the physical assessment ages ranged from 1 year and 1 month to 19 years with a median age of 13 years and 1 month. Foetal presentation was found to be associated with the preferred lying posture with participants carried in a left occipito-anterior/lateral position more likely to adopt a supine head right lying posture, and vice versa. An association was also observed between the foetal position and asymmetrical postural deformity occurring later in life with participants carried in a left occipito-anterior/lateral presentation more likely to have a convex left spinal curve, a lower left pelvic obliquity, and a windswept hip pattern to the right. Clinicians should be aware of the association between foetal presentation, asymmetrical lying posture, and the direction of subsequent postural deformity for severely disabled children. A hypothesis is described that might help to explain these findings.
Ishikawa, Yoshinori; Miyakoshi, Naohisa; Hongo, Michio; Kasukawa, Yuji; Kudo, Daisuke; Shimada, Yoichi
2017-03-01
Spinal deformities can affect quality of life (QOL) and risk of falling, but no studies have explored the relationships of spinal mobility and sagittal alignment of spine and the lower extremities simultaneously. Purpose of this study is to clarify the relationship of those postural parameters to QOL and risk of falling. The study evaluated 110 subjects (41 men, 69 women; mean age, 73 years). Upright and flexion and extension angles for thoracic kyphosis, lumbar lordosis, and spinal inclination were evaluated with SpinalMouse ® . Total-body inclination and hip and knee flexion angles in upright position were measured from lateral photographs. Subjects were divided into Fallers (n=23, 21%) and Non-fallers (n=87, 79%) based on past history of falls. QOL was assessed using the Short Form 36 Health Survey (SF-36 ® ). Age, total-body inclination, spinal inclination upright and in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and knee flexion correlated significantly with the SF-36. Multiple regression analysis revealed total-body inclination and knee flexion to have the most significant relationships with the SF-36. SF-36, total-body inclination, spinal inclination in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and hip and knee flexion angles differed significantly between Fallers and Non-fallers (P<0.05 for all). Multivariate logistic regression analyses revealed lumbar lordosis in extension to be a significant predictor of falling (P=0.038). Forward-stooped posture and knee-flexion deformity could be important indicator of lower QOL. Moreover, limited extension in the lumbar spine could be a useful screening examination for fall prevention in the elderly. Copyright © 2017 Elsevier B.V. All rights reserved.
Watanabe, Kota; Lenke, Lawrence G; Daubs, Michael D; Watanabe, Kei; Bridwell, Keith H; Stobbs, Georgia; Hensley, Marsha
2009-09-15
Retrospective clinical outcome study. To evaluate the clinical outcomes and satisfaction associated with the surgical treatment of neuromuscular spinal deformity secondary to cerebral palsy. Controversy still exists regarding whether spinal deformity surgery is truly a beneficial surgery for patients with cerebral palsy (CP) since there is limited functional benefit and higher perioperative complications rates in this patient population. Neuromuscular patient evaluation questionnaires were answered retrospectively by 84 patients/families of spastic CP patients undergoing spinal fusion. The average follow-up was 6.2 years (range: 2-16). The questionnaires were designed to assess expectation, cosmesis, function, patient care, quality of life, pulmonary function, pain, health status, self-image, and satisfaction. Questionnaire results, complications, and radiographic data were divided into "satisfied group" and "less satisfied group" and we analyzed reasons of satisfaction and dissatisfaction. The overall satisfaction rate was 92%. Ninety-three percent reported improvement with sitting balance, 94% with cosmesis, and 71% in patient's quality of life. Functional improvements seemed limited, but 8% to 40% of the patients still perceived the surgical results as improvement. The postoperative complication rate was 27%. The mean preoperative Cobb angle of the major curve was 88 degrees (range: 53 degrees-141 degrees), which corrected to 39 degrees (range: 5 degrees-88 degrees) after surgery. The less satisfied group had a significantly higher late complication rate, less correction of the major curve, greater residual major curve, and hyperlordosis of the lumbar spine after surgery. Despite the perioperative difficulties seen with CP patients, the majority of the patient/parents were satisfied with the results of the spinal deformity surgery. Functional improvements were limited but 8% to 40% of the patients still perceived the results as improved. The reason for less than optimal satisfaction appears to be due to less correction of the major curve, greater residual major Cobb angle, hyperlordosis of the lumbar spine after surgery, and late postoperative complications.
Congenital cervical kyphosis in an infant with Ehlers-Danlos syndrome.
Kobets, Andrew J; Komlos, Daniel; Houten, John K
2018-07-01
Ehler-Danlos syndome (EDS) refers to a group of heritable connective tissue disorders; rare manifestations of which are cervical kyphosis and clinical myelopathy. Surgical treatment is described for the deformity in the thoracolumbar spine in adolescents but not for infantile cervical spine. Internal fixation for deformity correction in the infantile cervical spine is challenging due to the diminutive size of the bony anatomy and the lack of spinal instrumentation specifically designed for young children. We describe the first case of successful surgical treatment in an infant with a high cervical kyphotic deformity in EDS. A 15-month-old female with EDS presented with several months of regression in gross motor skills in all four extremities. Imaging demonstrated 45° of kyphosis from the C2-4 levels with spinal cord compression. Corrective surgery consisted of a C3 corpectomy and C2-4 anterior fusion with allograft block and anterior fixation with dual 2 × 2 hole craniofacial miniplates, supplemented by C2-4 posterior fusion using four craniofacial miniplates fixated to the lamina. Radiographs at 20 months post-surgery demonstrated solid fusion both anteriorly and posteriorly with maintenance of correction. Ehlers-Danlos syndrome may present in the pediatric population with congenital kyphosis from cervical deformity in addition to the more commonly seen thoracolumbar deformities.
Rigo, Manuel
2011-01-01
Progressive adolescent idiopathic scoliosis (AIS) produces specific signs and symptoms, including trunk and spinal deformity and imbalance, impairment of breathing function, pain, progression during adult life, and psychological problems, as a whole resulting in an alteration of the health-related quality of life. A scoliosis-specific rehabilitation program attempts to prevent, improve, or minimize these signs and symptoms by using exercises and braces as the main tools in the rehabilitation treatment. Patient evaluation is an essential point in the decision-making process and determines the selection of the specific exercises and the specifications of the brace design. However, this article is not addressed to scoliosis management. In this present article, a complete definition and discussion of radiological aspects, such as the Cobb angle, axial rotation, curve pattern classifications, and sagittal configuration, follow a short description of the three-dimensional nature of AIS. The relationship between AIS and growth is also discussed. There is also a section dedicated to the assessment of trunk deformity and back asymmetry. Other important clinical aspects, such as pain and disability, changes in other regions of the body, muscular balance, breathing function, and health-related quality of life, are not discussed in this present article.
Involvement of the Spinal Cord in Mitochondrial Disorders.
Finsterer, Josef; Zarrouk-Mahjoub, Sinda
2018-01-01
This review aims at summarising and discussing the current status concerning the clinical presentation, pathogenesis, diagnosis, and treatment of spinal cord affection in mitochondrial disorders (MIDs). A literature search using the database Pubmed was carried out by application of appropriate search terms and their combinations. Involvement of the spinal cord in MIDs is more frequent than anticipated. It occurs in specific and non-specific MIDs. Among the specific MIDs it has been most frequently described in LBSL, LS, MERRF, KSS, IOSCA, MIRAS, and PCH and only rarely in MELAS, CPEO, and LHON. Clinically, spinal cord involvement manifests as monoparesis, paraparesis, quadruparesis, sensory disturbances, hypotonia, spasticity, urinary or defecation dysfunction, spinal column deformities, or as transverse syndrome. Diagnosing spinal cord involvement in MIDs requires a thoroughly taken history, clinical exam, and imaging studies. Additionally, transcranial magnetic stimulation, somato-sensory-evoked potentials, and cerebro-spinal fluid can be supportive. Treatment is generally not at variance compared to the underlying MID but occasionally surgical stabilisation of the spinal column may be necessary. It is concluded that spinal cord involvement in MIDs is more frequent than anticipated but may be missed if cerebral manifestations prevail. Spinal cord involvement in MIDs may strongly determine the mobility of these patients.
Virtual endoscopic imaging of the spine.
Kotani, Toshiaki; Nagaya, Shigeyuki; Sonoda, Masaru; Akazawa, Tsutomu; Lumawig, Jose Miguel T; Nemoto, Tetsuharu; Koshi, Takana; Kamiya, Koshiro; Hirosawa, Naoya; Minami, Shohei
2012-05-20
Prospective trial of virtual endoscopy in spinal surgery. To investigate the utility of virtual endoscopy of the spine in conjunction with spinal surgery. Several studies have described clinical applications of virtual endoscopy to visualize the inside of the bronchi, paranasal sinus, stomach, small intestine, pancreatic duct, and bile duct, but, to date, no study has described the use of virtual endoscopy in the spine. Virtual endoscopy is a realistic 3-dimensional intraluminal simulation of tubular structures that is generated by postprocessing of computed tomographic data sets. Five patients with spinal disease were selected: 2 patients with degenerative disease, 2 patients with spinal deformity, and 1 patient with spinal injury. Virtual endoscopy software allows an observer to explore the spinal canal with a mouse, using multislice computed tomographic data. Our study found that virtual endoscopy of the spine has advantages compared with standard imaging methods because surgeons can noninvasively explore the spinal canal in all directions. Virtual endoscopy of the spine may be useful to surgeons for diagnosis, preoperative planning, and postoperative assessment by obviating the need to mentally construct a 3-dimensional picture of the spinal canal from 2-dimensional computed tomographic scans.
Congenital spinal malformations in small animals.
Westworth, Diccon R; Sturges, Beverly K
2010-09-01
Congenital anomalies of the spine are common in small animals. The type of deformity, location, severity, time of onset of associated clinical signs, and progression of neurologic dysfunction varies widely. To promote clearer understanding, the authors present the various spinal malformations using modified human classification schemes and use current widely accepted definitions and terminology. The diagnostic approach, including utilization of advanced imaging, and surgical management is emphasized. Copyright 2010. Published by Elsevier Inc.
Anderson, Paul A; Huber, Daniel R; Berzins, Ilze K
2012-12-01
A number of captive sandtiger sharks (Carcharias taurus) in public aquaria have developed spinal deformities over the past decade, ranging in severity from mild curvature to spinal fracture and severe subluxation. To determine the frequency and etiologic basis of this disease, U.S. public aquaria participated in a two-stage epidemiologic study of resident sharks: 1) a history and husbandry survey and 2) hematology, clinical chemistry, and radiography conducted during health exams. Eighteen aquaria submitted data, samples, or both from 73 specimens, including 19 affected sharks (26%). Sharks caught off the Rhode Island coast or by pound net were smaller at capture and demonstrated a higher prevalence of deformity than did larger sharks caught from other areas via hook and line. Relative to healthy sharks, affected sharks were deficient in zinc, potassium, and vitamins C and E. Capture and transport results lead to two likely etiologic hypotheses: 1) that the pound-net capture process induces spinal trauma that becomes exacerbated over time in aquarium environments or 2) that small (and presumably young) sharks caught by pound net are exposed to disease-promoting conditions (including diet or habitat deficiencies) in aquaria during the critical growth phase of their life history. The last hypothesis is further supported by nutrient deficiencies among affected sharks documented in this study; potassium, zinc, and vitamin C play critical roles in proper cartilage-collagen development and maintenance. These correlative findings indicate that public aquaria give careful consideration to choice of collection methods and size at capture and supplement diets to provide nutrients required for proper development and maintenance of cartilaginous tissue.
Current status of adult spinal deformity.
Youssef, J A; Orndorff, D O; Patty, C A; Scott, M A; Price, H L; Hamlin, L F; Williams, T L; Uribe, J S; Deviren, V
2013-03-01
Purpose To review the current literature for the nonoperative and operative treatment for adult spinal deformity. Recent Findings With more than 11 million baby boomers joining the population of over 60 years of age in the United States, the incidence of lumbar deformity is greatly increasing. Recent literature suggests that a lack of evidence exists to support the effectiveness of nonoperative treatment for adult scoliosis. In regards to operative treatment, current literature reports a varying range of improved clinical outcomes, curve correction, and complication rates. The extension of fusion to S1 compared with L5 and lower thoracic levels compared with L1 remains a highly controversial topic among literature. Summary Most adult deformity patients never seek nonoperative or operative treatment. Of the few that seek treatment, many can benefit from nonoperative treatment. However, in selected patients who have failed nonoperative treatment and who are candidates for surgical intervention, the literature reflects positive outcomes related to surgical intervention as compared with nonoperative treatment despite varying associated ranges in morbidity and mortality rates. If nonoperative therapy fails in addressing a patient's complaints, then an appropriate surgical procedure that relieves neural compression, corrects excessive sagittal or coronal imbalance, and results in a solidly fused, pain-free spine is warranted.
A new system for measuring three-dimensional back shape in scoliosis
Pynsent, Paul; Fairbank, Jeremy; Disney, Simon
2008-01-01
The aim of this work was to develop a low-cost automated system to measure the three-dimensional shape of the back in patients with scoliosis. The resulting system uses structured light to illuminate a patient’s back from an angle while a digital photograph is taken. The height of the surface is calculated using Fourier transform profilometry with an accuracy of ±1 mm. The surface is related to body axes using bony landmarks on the back that have been palpated and marked with small coloured stickers prior to photographing. Clinical parameters are calculated automatically and presented to the user on a monitor and as a printed report. All data are stored in a database. The database can be interrogated and successive measurements plotted for monitoring the deformity changes. The system developed uses inexpensive hardware and open source software. Accurate surface topography can help the clinician to measure spinal deformity at baseline and monitor changes over time. It can help the patients and their families to assess deformity. Above all it reduces the dependence on serial radiography and reduces radiation exposure when monitoring spinal deformity. PMID:18247064
... and tendons and abnormal curvature of the spine ( scoliosis ). Bracing may be needed. Surgery may be needed to correct skeletal deformities, such as scoliosis. Outlook (Prognosis) Children with SMA type I rarely ...
Gazzeri, Roberto; Faiola, Andrea; Neroni, Massimiliano; Fiore, Claudio; Callovini, Giorgio; Pischedda, Mauro; Galarza, Marcelo
2013-09-01
Intraoperative motor evoked potentials (MEP) and electromyography (EMG) monitoring in patients with spinal and cranial lesions is a valuable tool for prevention of postoperative motor deficits. The purpose of this study was to determine whether electrophysiological monitoring during skull base, spinal cord, and spinal surgery might be useful for predicting postoperative motor deterioration. From January 2012 to March 2013, thirty-three consecutive patients were studied using intraoperative monitoring (Nuvasive NV-M5 System) to check the integrity of brainstem, spinal cord, and nerve roots, recording transcranial motor evoked potentials (TcMEPs) and electromyography. Changes in MEPs and EMGs were related to postoperative deficits. Preoperative diagnosis included skull base and brainstem lesions (6 patients), spinal tumors (11 patients), spinal deformity (16 cases). Using TcMEPs and EMG is a practicable and safe method. MEPs are useful in any surgery in which the brainstem and spinal cord are at risk. EMG stimulation helps to identify an optimal trans-psoas entry point for an extreme lateral lumbar interbody fusion (XLIF) approach to protect against potential nerve injury. This neural navigation technique via a surgeon-interpreted interface assists the surgical team in safely removing lesions and accessing the intervertebral disc space for minimally invasive spinal procedures.
He, Qing-Yi; Xu, Jian-Zhong; Zhou, Qiang; Luo, Fei; Hou, Tianyong; Zhang, Zehua
2015-10-01
Fifty-four juvenile cases under 18 years of age with thoracic and lumbar spinal tuberculosis underwent focus debridement, deformity correction, bone graft fusion, and internal fixation. The treatment effects, complications, and reasons were analyzed retrospectively. There were 54 juvenile cases under 18 years of age with thoracolumbar spinal tuberculosis. The average age was 9.2 years old, and the sample comprised 38 males and 16 females. The disease types included 28 thoracic cases, 17 thoracolumbar cases, and 9 lumbar cases. Nerve function was evaluated with the Frankel classification. Thirty-six cases were performed with focus debridement and deformity correction and were supported with allograft or autograft in mesh and fixed with pedicle screws from a posterior approach. Eight cases underwent a combined anterior and posterior surgical approach. Nine cases underwent osteotomy and deformity correction, and one case received focus debridement. The treatment effects, complications, and bone fusions were tracked for an average of 52 months. According to the Frankel classification, paralysis was improved from 3 cases of B, 8 cases of C, 18 cases of D, and 25 cases of E preoperatively. This improvement was found in 3 cases of C, 6 cases of D, and 45 cases of E at a final follow-up postoperatively. No nerve dysfunction was aggravated. VAS was improved from 7.8 ± 1.7 preoperatively to 3.2 ± 2.1 at final follow-up postoperatively. ODI was improved from 77.5 ± 17.3 preoperatively to 28.4 ± 15.9 at final follow-up postoperatively. Kyphosis Cobb angle improved from 62.2° ± 3.7° preoperatively to 37° ± 2.4° at final follow-up postoperatively. Both of these are significant improvements, and all bone grafts were fused. Complications related to the operation occurred in 31.5% (17/54) of cases. Six cases suffered postoperative aggravated kyphosis deformity, eight cases suffered proximal kyphosis deformity, one case suffered pedicle penetration, one case suffered failure of internal devices, and one case suffered recurrence of tuberculosis. As long as the treatment plan is fully prepared, the surgical option can achieve a satisfactory curative effect in treating juvenile spinal tuberculosis despite some complications.
Lumbar degenerative spinal deformity: Surgical options of PLIF, TLIF and MI-TLIF
Hey, Hwee Weng Dennis; Hee, Hwan Tak
2010-01-01
Degenerative disease of the lumbar spine is common in ageing populations. It causes disturbing back pain, radicular symptoms and lowers the quality of life. We will focus our discussion on the surgical options of posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) and minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) for lumbar degenerative spinal deformities, which include symptomatic spondylolisthesis and degenerative scoliosis. Through a description of each procedure, we hope to illustrate the potential benefits of TLIF over PLIF. In a retrospective study of 53 ALIF/PLIF patients and 111 TLIF patients we found reduced risk of vessel and nerve injury in TLIF patients due to less exposure of these structures, shortened operative time and reduced intra-operative bleeding. These advantages could be translated to shortened hospital stay, faster recovery period and earlier return to work. The disadvantages of TLIF such as incomplete intervertebral disc and vertebral end-plate removal and potential occult injury to exiting nerve root when under experienced hands are rare. Hence TLIF remains the mainstay of treatment in degenerative deformities of the lumbar spine. However, TLIF being a unilateral transforaminal approach, is unable to decompress the opposite nerve root. This may require contralateral laminotomy, which is a fairly simple procedure. The use of minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) to treat degenerative lumbar spinal deformity is still in its early stages. Although the initial results appear promising, it remains a difficult operative procedure to master with a steep learning curve. In a recent study comparing 29 MI-TLIF patients and 29 open TLIF, MI-TLIF was associated with longer operative time, less blood loss, shorter hospital stay, with no difference in SF-36 scores at six months and two years. Whether it can replace traditional TLIF as the surgery of choice for degenerative lumbar deformity remains unknown and more studies are required to validate the safety and efficiency. PMID:20419002
[Constitutional narrowing of the cervical spinal canal. Radiological and clinical findings].
Ritter, G; Rittmeyer, K; Hopf, H C
1975-02-21
A constitutional narrowing of the cervical spinal canal was seen in 31 patients with neurological disorders. The ratio of the inner diameter of the spinal canal to the diameter of the vertebral body was smaller than 1 (normal greater than 1). Clinical signs were observed from 45 years upwards where reactivedegenerative changes cause additional narrowing. The majority of patients were male, predominantly heavy manual labourers. There is often a trauma preceding. On myelography multilocular deformations of the spinal subarachnoid space and nerve roots are seen. On the mechanical narrowing of the spinal canal a vascular factor supervenes, caused by exostoses, intervertebral disc protrusions, and fibrosing processes. Clinically a chronic progressive spinal transection syndrome (cervical myelopathy) dominates besides a multilocular root involvement. Posterior column sensibility is predominantly lost. Pain in the extemities and the cervical column is an early symptom. Non-specific CSF changes occur frequently. In case of root involvement the electromyogram is pathological. The prognosis is bad. Operation can only remove reactive processes but not the constitutional anomaly.
Impact of Gender on 30-Day Complications After Adult Spinal Deformity Surgery.
Kothari, Parth; Lee, Nathan J; Leven, Dante M; Lakomkin, Nikita; Shin, John I; Skovrlj, Branko; Steinberger, Jeremy; Guzman, Javier Z; Cho, Samuel K
2016-07-15
Retrospective study of prospectively collected data. To determine if postoperative morbidity for patients undergoing spinal deformity surgery varies by sex. Influence of sex has been investigated in other surgical procedures but has not yet been studied in adult spinal deformity surgery. The American College of Surgeons National Surgical Quality Improvement Program is a large multicenter clinical registry that prospectively collects preoperative risk factors, intraoperative variables, and 30-day postoperative morbidity and mortality outcomes from about 400 hospitals nationwide. Current Procedural Terminology codes were used to query the database for adults who underwent fusion for spinal deformity. Patients were separated into groups of male and female sex. Univariate analysis and multivariate logistic regression were used to analyze the effect of sex on the incidence of postoperative morbidity and mortality. Female sex was found to be a predictor of any complication[odds ratio (OR): 1.4, 95% confidence interval (CI) 1.2-1.7, P < 0.0001], intra- or postoperative RBC transfusion (OR: 1.6, 95% CI 1.4-1.9, P < .0001), urinary tract infection (OR: 2.0, 95% CI 1.2-3.3, P = 0.0046), and length of stay >5 days (OR: 1.3, 95% CI 1.1-1.5, P = 0.0015). Male sex was associated with higher rate of pulmonary (2.9% vs. 2.0%, P = 0.0344) and cardiac complications (0.9% vs. 0.5%, P = 0.0497). However, male sex as an independent risk factor for pulmonary (OR: 1.4, 95% CI 1.0-2.1, P = 0.0715) and cardiac complications (OR: 1.9, 95% CI 0.9-4.0, P = 0.1076) did not reach significance. Female sex was found to increase overall morbidity, particularly for urinary tract infection, transfusion, and length of stay >5 days. Male sex was associated with greater incidence of pulmonary and cardiac complications. Thus, sex and other patient characteristics highlighted must be considered as part of surgical risk planning and patient counseling. 3.
Kurra, Swamy; Metkar, Umesh; Yirenkyi, Henaku; Tallarico, Richard A; Lavelle, William F
Retrospectively reviewed surgeries between 2011 and 2015 of patients who underwent posterior spinal deformity instrumentation with constructs involving fusions to pelvis and encompassing at least five levels. Measure the radiographic outcomes of coronal malalignment (CM) after use of an intraoperative T square shaped instrument in posterior spinal deformity surgeries with at least five levels of fusion and extension to pelvis. Neuromuscular children found to benefit from intraoperative T square technique to help achieve proper coronal spinal balance with extensive fusions. This intraoperative technique used in our posterior spine deformity instrumentation surgeries with the aforementioned parameters. There were 50 patients: n = 16 with intraoperative T square and n = 34 no-T square shaped device. Subgroups divided based on greater than 20 mm displacement and greater than 40 mm displacement of the C7 plumb line to the central sacral vertical line on either side in preoperative radiographs. We analyzed the demographics and the pre- and postoperative radiographic parameters of standing films: standing CM (displacement of C7 plumb line to central sacral vertical line), and major coronal Cobb angles in total sample and subgroups and compared T square shaped device with no-T square shaped device use by analysis of variance. A p value ≤.05 is statistically significant. In the total sample, though postoperative CM mean was not statistically different, we observed greater CM corrections in patients where a T square shaped device was used (70%) versus no-T square shaped device used (18%). In >20 mm and >40 mm subgroups, the postoperative mean CM values were statistically lower for the patients where a T square shaped device was used, p = .016 and p = .003, respectively. Cobb corrections were statistically higher for T square shaped device use in both >20 mm and >40 mm subgroups, 68%, respectively. The intraoperative T square shaped device technique had a positive effect on the amount of spine coronal malalignment correction after its use and for lumbar and thoracic coronal Cobb angles. Level III. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Paraplegic patients: how to measure balance and what is normal or functional?
Barkoh, Kaku; Lucas, Joshua W; Lee, Larry; Hsieh, Patrick C; Wang, Jeffrey C; Rolfe, Kevin
2018-02-01
To review the current understanding and data of sagittal balance and alignment considerations in paraplegic patients. A PubMed literature search was conducted to identify all relevant articles relating to sagittal alignment and sagittal balance considerations in paraplegic and spinal cord injury patients. While there are numerous studies and publications on sagittal balance in the ambulatory patient with spinal deformity or complex spine disorders, there is paucity of the literature on "normal" sagittal balance in the paraplegic patients. Studies have reported significantly alterations of the sagittal alignment parameters in the non-ambulatory paraplegic patients compared to ambulatory patients. The variability of the alignment changes is related to the differences in the level of the spinal cord injury and their differences in the activations of truncal muscles to allow functional movements in those patients, particularly in optimizing sitting and transferring. Surgical goal in treating paraplegic patients with complex pathologies should not be solely directed to achieve the "normal" radiographic parameters of sagittal alignment in the ambulatory patients. The goal should be to maintain good coronal balance to allow ideal sitting position and to preserve motion segment to optimize functions of paraplegia patients. Current available literature data have not defined normal sagittal parameters for paraplegic patients. There are significant differences in postural sagittal parameters and muscle activations in paraplegic and non-spinal cord injury patients that can lead to differences in sagittal alignment and balance. Treatment goal in spine surgery for paraplegic patients should address their global function, sitting balance, and ability to perform self-care rather than the accepted radiographic parameters for adult spinal deformity in ambulatory patients.
Luo, Hong-Ji; Lin, Shi-Xiang; Wu, Shyi-Kuen; Tsai, Mei-Wun; Lee, Shwn-Jen
2017-01-01
Postural rehabilitation emphasizing on motor control training of segmental spinal movements has been proposed to effectively reduce the scoliotic spinal deformities in adolescent idiopathic scoliosis (AIS). However, information regarding the impairments of segmental spinal movement control involving segmental spinal stabilizers in adolescent idiopathic scoliosis remains limited. Examination of segmental spinal movement control may provide a window for investigating the features of impaired movement control specific to spinal segments that may assist in the development of physiotherapeutic management of AIS. To compare segmental spinal movement control in adolescents with and without idiopathic scoliosis using modified pressure biofeedback unit. Segmental spinal movement control was assessed in twenty adolescents with idiopathic scoliosis (AISG) and twenty healthy adolescents (CG) using a modified pressure biofeedback unit. Participants performed segmental spinal movements that primarily involved segmental spinal stabilizing muscles with graded and sustained muscle contraction against/off a pressure cuff from baseline to target pressures and then maintained for 1 min. Pressure data during the 1-minute maintenance phase were collected for further analysis. Pressure deviation were calculated and compared between groups. The AISG had significantly greater pressure deviations for all segmental spinal movements of cervical, thoracic, and lumbar spine than the CG. Pressure biofeedback unit was feasible for assessing segmental spinal movement control in AIS. AISG exhibited poorer ability to grade and sustain muscle activities for local movements of cervical, thoracic, and lumbar spine, suggesting motor control training of segmental spinal movements involving segmental spinal stabilizing muscles on frontal, sagittal, and transverse planes were required.
Biomechanical evaluation of different instrumentation for spinal stabilisation.
Graftiaux, A G; Wattier, B; Gentil, P; Mazel, C; Skalli, W; Diop, A; Kehr, P H; Lavaste, F
1995-12-01
The varying problems following arthrodesis of the lumbar spine with rods or plates (too much rigidity for the first and insufficient stability for the second) have led us to conceive another type of material, flexible but with enough stability, to favorise healing of bone graft, and decrease the induced pathology on adjacent levels. An experimental study of three types of material: rigid, semi-rigid and flexible was performed on eighteen fresh cadaver spinal segments without and then with discectomy and corporectomy to find out the various types of behaviour. The flexible device seems more supple than the other materials tested: more mobility, less stiffness. Rising hysteresis is explained by plastic deformation. The semi-rigid device presents strong osseous stresses on the L3 level and a large hysteresis corresponding most likely to a mobility between the screws and plates. The rigid device has less mobility, especially in torsion, ascribed to the transverse connection. The stability is high with a small hysteresis. This is of value for bone loss or instability with displacement of the vertebral body.The second study was a modeling of the flexible device validated by comparison to the experimental study. The strains in the wire were high, decreasing with increasing diameter, but is still lower than the elastic limit. The proximity of the elastic limit may allow plastic deformation of the wire. Howewer less strains were found on the screw fixation but increase with the increase diameter of the wire. The influence of the bone quality on the behavior of the device was demonstrated.
Spinal cord deformation due to nozzle gas flow effects using optical coherence tomography
NASA Astrophysics Data System (ADS)
Wong, Ronnie J.; Jivraj, Jamil; Vuong, Barry; Ramjist, Joel; Sun, Cuiru; Huang, Yize; Yang, Victor X. D.
2015-03-01
The use of gas assistance in laser machining hard materials is well established in manufacturing but not in the context of surgery. Laser cutting of osseous tissue in the context of neurosurgery can benefit from gas-assist but requires an understanding of flow and pressure effects to minimize neural tissue damage. In this study we acquire volumetric flow rates through a gas nozzle on the spinal cord, with dura and without dura.
Geometric Structure of 3D Spinal Curves: Plane Regions and Connecting Zones
Berthonnaud, E.; Hilmi, R.; Dimnet, J.
2012-01-01
This paper presents a new study of the geometric structure of 3D spinal curves. The spine is considered as an heterogeneous beam, compound of vertebrae and intervertebral discs. The spine is modeled as a deformable wire along which vertebrae are beads rotating about the wire. 3D spinal curves are compound of plane regions connected together by zones of transition. The 3D spinal curve is uniquely flexed along the plane regions. The angular offsets between adjacent regions are concentrated at level of the middle zones of transition, so illustrating the heterogeneity of the spinal geometric structure. The plane regions along the 3D spinal curve must satisfy two criteria: (i) a criterion of minimum distance between the curve and the regional plane and (ii) a criterion controlling that the curve is continuously plane at the level of the region. The geometric structure of each 3D spinal curve is characterized by the sizes and orientations of regional planes, by the parameters representing flexed regions and by the sizes and functions of zones of transition. Spinal curves of asymptomatic subjects show three plane regions corresponding to spinal curvatures: lumbar, thoracic and cervical curvatures. In some scoliotic spines, four plane regions may be detected. PMID:25031873
Correction of Spinal Deformity on a Lung Transplantation Recipient.
Andrés Peiró, José Vicente; Granell, Joan Bagó; Moret, Montserrat Feliu; Galdó, Antonio Moreno
2017-01-01
The coexistence of lung disease and scoliosis entails a dramatic situation. There are no papers reporting scoliosis surgery in patients who suffered lung transplantation. To describe the case of a patient who underwent surgery to correct progressive spinal deformity after two consecutive lung transplants. Case report, including review of patient records, imaging and pulmonary function tests, and literature review. A 9-year-old woman diagnosed of idiopathic pulmonary fibrosis and progressive scoliosis underwent lung transplant. Retransplantation of right lung was performed at the age of 14 due to chronic rejection. When she was 16, respiratory function was stable and spinal deformity severely impaired her quality of life. Patient and family demanded a surgical correction. At that moment, she had severe osteoporosis and immunosuppression as a result of anti-rejection therapy. The pattern was a severe double thoracic curve T1-T6 89° and T7-L1 139°. To correct it, a posterior instrumented spine fusion from T2 to L4 using a hybrid configuration was performed. No significant complications occurred in perioperative, postoperative, and midterm follow-up periods. Solid fusion was achieved and patient was satisfied with surgery. Unfortunately, chronic lung graft rejection worsened her long-term general status. Scoliosis surgery on lung transplant recipients is feasible, regardless of potential complications related to immunosuppression and osteoporosis. The goal is to improve quality of life. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Kundnani, Vishal K; Zhu, Lisa; Tak, HH; Wong, HK
2010-01-01
Background: Multimodal intraoperative neuromonitoring is recommended during corrective spinal surgery, and has been widely used in surgery for spinal deformity with successful outcomes. Despite successful outcomes of corrective surgery due to increased safety of the patients with the usage of spinal cord monitoring in many large spine centers, this modality has not yet achieved widespread popularity. We report the analysis of prospectively collected intraoperative neurophysiological monitoring data of 354 consecutive patients undergoing corrective surgery for adolescent idiopathic scoliosis (AIS) to establish the efficacy of multimodal neuromonitoring and to evaluate comparative sensitivity and specificity. Materials and Methods: The study group consisted of 354 (female = 309; male = 45) patients undergoing spinal deformity corrective surgery between 2004 and 2008. Patients were monitored using electrophysiological methods including somatosensory-evoked potentials and motor-evoked potentials simultaneously. Results: Mean age of patients was 13.6 years (±2.3 years). The operative procedures involved were instrumented fusion of the thoracic/lumbar/both curves, Baseline somatosensory-evoked potentials (SSEP) and neurogenic motor-evoked potentials (NMEP) were recorded successfully in all cases. Thirteen cases expressed significant alert to prompt reversal of intervention. All these 13 cases with significant alert had detectable NMEP alerts, whereas significant SSEP alert was detected in 8 cases. Two patients awoke with new neurological deficit (0.56%) and had significant intraoperative SSEP + NMEP alerts. There were no false positives with SSEP (high specificity) but 5 patients with false negatives with SSEP (38%) reduced its sensitivity. There was no false negative with NMEP but 2 of 13 cases were false positive with NMEP (15%). The specificity of SSEP (100%) is higher than NMEP (96%); however, the sensitivity of NMEP (100%) is far better than SSEP (51%). Due to these results, the overall sensitivity, specificity and positive predictive value of combined multimodality neuromonitoring in this adult deformity series was 100, 98.5 and 85%, respectively. Conclusion: Neurogenic motor-evoked potential (NMEP) monitoring appears to be superior to conventional SSEP monitoring for identifying evolving spinal cord injury. Used in conjunction, the sensitivity and specificity of combined neuromonitoring may reach up to 100%. Multimodality monitoring with SSEP + NMEP should be the standard of care. PMID:20165679
Current Status of Adult Spinal Deformity
Youssef, J. A.; Orndorff, D. O.; Patty, C. A.; Scott, M. A.; Price, H. L.; Hamlin, L. F.; Williams, T. L.; Uribe, J. S.; Deviren, V.
2012-01-01
Purpose To review the current literature for the nonoperative and operative treatment for adult spinal deformity. Recent Findings With more than 11 million baby boomers joining the population of over 60 years of age in the United States, the incidence of lumbar deformity is greatly increasing. Recent literature suggests that a lack of evidence exists to support the effectiveness of nonoperative treatment for adult scoliosis. In regards to operative treatment, current literature reports a varying range of improved clinical outcomes, curve correction, and complication rates. The extension of fusion to S1 compared with L5 and lower thoracic levels compared with L1 remains a highly controversial topic among literature. Summary Most adult deformity patients never seek nonoperative or operative treatment. Of the few that seek treatment, many can benefit from nonoperative treatment. However, in selected patients who have failed nonoperative treatment and who are candidates for surgical intervention, the literature reflects positive outcomes related to surgical intervention as compared with nonoperative treatment despite varying associated ranges in morbidity and mortality rates. If nonoperative therapy fails in addressing a patient's complaints, then an appropriate surgical procedure that relieves neural compression, corrects excessive sagittal or coronal imbalance, and results in a solidly fused, pain-free spine is warranted. PMID:24436852
Severe Thoraco-lumbar Kyphoscoliosis Associated with Osteoporosis in Siblings - Case study.
Szumera, Edyta; Jasiewicz, Barbara; Potaczek, Tomasz; Sułko, Jerzy; Tęsiorowski, Maciej
2015-01-01
The incidence of scoliosis among patients with certain systemic diseases is much higher than in the general population. Moreover, the onset of the scoliosis is in early childhood before the age of 5 and the deformity reaches extreme values. We present the clinical course of two siblings with multiple musculoskeletal deformities, osteoporosis, severe kyphoscolisis and an undiagnosed systemic disease. The onset of scoliosis was in the first months of life of both children, with a marked progression about the 8th month of life. Due to lower limb deformities, ambulation was delayed until the 5th year of life in the male sibling, and the girl remains non-ambulant. Both children had osteoporosis, which caused numerous fractures of the upper and lower limbs. Due to progression of the spinal deformity the boy underwent a posterior hemispondylodesis with instrumentation at the age of 7. The girl also underwent surgery at the age of 7, but instrumentation could not be placed successfully due to inadequate bone quality. The last follow-up to date has been at the age of 12 years for the female patient and 20 years for the male patient. The spinal deformity in the female has not progressed during the last 2-3 years. She has been on bisphosphonate therapy for two years and no new fractures have been noted. The male patient has undergone multiple surgeries for lower limb deformities and is an independent walker. His scoliosis remains stable, but a minor progression of kyphosis has been noted in the last year. The history of the two patients shows that not all early-onset deformities can be effectively treated and that osteoporosis is a crucial obstacle to this treatment.
The effects of needle deformation during lumbar puncture.
Özdemir, Hasan Hüseyin; Demir, Caner F; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref
2015-01-01
The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH.
The Animal Model of Spinal Cord Injury as an Experimental Pain Model
Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi
2011-01-01
Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995
Thoracic Aortic Stent-Graft Placement for Safe Removal of a Malpositioned Pedicle Screw
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Hongtao; Shin, Ji Hoon, E-mail: jhshin@amc.seoul.kr; Hwang, Jae-Yeon
2010-10-15
We describe a case of percutaneous placement of a thoracic aortic stent-graft for safe removal of a malpositioned pedicle screw in a 52-year-old man. The patient had undergone posterior thoracic spinal instrumentation for pyogenic spondylitis and spinal deformity 8 months previously. Follow-up CT images showed a malpositioned pedicle screw which was abutting the thoracic aorta at the T5 level. After percutaneous stent-graft placement, the malpositioned pedicle screw was safely and successfully removed.
The treatment for multilevel noncontiguous spinal fractures
Lian, Xiao Feng; Hou, Tie Sheng; Yuan, Jian Dong; Jin, Gen Yang; Li, Zhong Hai
2006-01-01
We report the outcome of 30 patients with multilevel noncontiguous spinal fractures treated between 2000 and 2005. Ten cases were treated conservatively (group A), eight cases were operated on at only one level (group B), and 12 cases were treated surgically at both levels (group C). All cases were followed up for 14–60 months (mean 32 months). Initial mobilisation with a wheelchair or crutches in group A was 9.2±1.1 weeks, which was significantly longer than groups B and C with 6.8±0.7 weeks and 3.1±0.4 weeks, respectively. Operative time and blood loss in group C were significantly more than group B. The neurological deficit improved in six cases in group A (60%), six in group B (75%) and eight in group C (80%). Correction of kyphotic deformity was significantly superior in groups C and B at the operated level, and increasing deformity occurred in groups A and B at the non-operated level. From the results we believe that three treatment strategies were suitable for multilevel noncontiguous spinal fractures, and individualised treatment should be used in these patients. In the patients treated surgically, the clinical and radiographic outcomes are much better. PMID:17043863
Regan, J J; Mack, M J; Picetti, G D
1995-04-01
This report is a preliminary description of the efficacy of video-assisted thoracoscopic surgery in thoracic spinal procedures that otherwise require open thoracotomy. This report sought to describe the efficacy of video-assisted thoracoscopic surgery in thoracic spinal procedures that otherwise require open thoracotomy. In a landmark study that compared video-assisted thoracoscopic surgery for peripheral lung lesions with thoracotomy, video-assisted thoracoscopic surgery reduced postoperative pain, improved early shoulder girdle function, and shortened hospital stay. Video-assisted thoracoscopic surgery was performed in 12 thoracic spinal patients (herniated nucleus pulposus, infection, tumor, or spinal deformity) and is described in detail in this report. Video-assisted thoracoscopic surgery in thoracic spinal surgery resulted in little postoperative pain, short intensive care unit and hospital stays, and little or no morbidity. In the short follow-up period, there was no post-thoracotomy pain syndrome nor neurologic sequelae in these patients. Operative time decreased dramatically as experience was gained with the procedure. Given consistently improving surgical skills, a number of thoracic spinal procedures using video-assisted thoracoscopic surgery, including thoracic discectomy, internal rib thoracoplasty, anterior osteotomy, corpectomy, and fusion, can be performed safely with no additional surgical time or risk to the patient.
Hey, Hwee Weng Dennis; Teo, Alex Quok An; Tan, Kimberly-Anne; Ng, Li Wen Nathaniel; Lau, Leok-Lim; Liu, Ka-Po Gabriel; Wong, Hee-Kit
2017-06-01
The current prevailing school of thought in spinal deformity surgery is to restore sagittal balance with reference to the alignment of the spine when the patient is standing. This strategy, however, likely accounts for increased rates of proximal junctional failure. The purpose of this study was to investigate the differences between the spine in standing and sitting positions as these may elucidate reasons for deformity correction failure. A prospective, comparative study of 58 healthy patients presenting to a tertiary hospital over a 6-month period was carried out. All patients presenting with a less than 3-month history of first episode lower back pain were included. Patients who had radicular symptoms, red flag symptoms, previous spine surgery, or visible spinal deformity during forward bending test were excluded. Pregnant patients were also excluded. Radiographic measurements including sagittal vertical axis (SVA), lumbar lordosis (LL), thoracolumbar angle (TL), thoracic kyphosis (TK), cervical lordosis (CL), pelvic incidence (PI), and pelvic tilt (PT) were collected. The sagittal apex and end vertebrae of all radiographs were also recorded. Basic demographic data (age, gender, and ethnicity) was recorded. Lateral standing and sitting radiographs were obtained using EOS technology. Statistical analysis was performed to compare standing and sitting parameters using chi-square tests for categorical variables and paired t tests for continuous variables. Taking the standing position as the reference point, forward displacement of the SVA occurred during sitting by a mean of 6.39±3.87 cm (p<.001). This was accompanied by a reduction of LL and TK by a mean of 24.63±12.70° (p<.001) and 8.56±7.21°(p<.001), respectively. The TL became more lordotic by a mean of 3.25±7.30° (p<.001). The CL only reached borderline significance (p=.047) for increased lordosis by a mean of 3.45±12.92°. The PT also increased by 50% (p<.001). Despite relatively constant end vertebrae, the apex vertebra moved inferiorly for the thoracic curve (p<.006) and superiorly for the lumbar curve (p<.001) by approximately one vertebral level each. Sagittal spinal alignment changes significantly between standing and sitting positions. Understanding these differences is crucial to avoid overcorrection of LL, which may occur if deformity correction is based solely on the spine's standing sagittal profile. Copyright © 2016 Elsevier Inc. All rights reserved.
Martín-Fernández, M; López-Herradón, A; Piñera, A R; Tomé-Bermejo, F; Duart, J M; Vlad, M D; Rodríguez-Arguisjuela, M G; Alvarez-Galovich, L
2017-08-01
Dramatic increases in the average life expectancy have led to increases in the variety of degenerative changes and deformities observed in the aging spine. The elderly population can present challenges for spine surgeons, not only because of increased comorbidities, but also because of the quality of their bones. Pedicle screws are the implants used most commonly in spinal surgery for fixation, but their efficacy depends directly on bone quality. Although polymethyl methacrylate (PMMA)-augmented screws represent an alternative for patients with osteoporotic vertebrae, their use has raised some concerns because of the possible association between cement leakages (CLs) and other morbidities. To analyze potential complications related to the use of cement-augmented screws for spinal fusion and to investigate the effectiveness of using these screws in the treatment of patients with low bone quality. A retrospective single-center study. This study included 313 consecutive patients who underwent spinal fusion using a total of 1,780 cement-augmented screws. We analyzed potential complications related to the use of cement-augmented screws, including CL, vascular injury, infection, screw extraction problems, revision surgery, and instrument failure. There are no financial conflicts of interest to report. A total of 1,043 vertebrae were instrumented. Cement leakage was observed in 650 vertebrae (62.3%). There were no major clinical complications related to CL, but two patients (0.6%) had radicular pain related to CL at the S1 foramina. Of the 13 patients (4.1%) who developed deep infections requiring surgical debridement, two with chronic infections had possible spondylitis that required instrument removal. All patients responded well to antibiotic therapy. Revision surgery was performed in 56 patients (17.9%), most of whom had long construction. A total of 180 screws were removed as a result of revision. There were no problems with screw extraction. These results demonstrate the efficacy and safety of cement-augmented screws for the treatment of patients with low bone mineral density. Copyright © 2017 Elsevier Inc. All rights reserved.
Subramani, Suresh; Shetty, Ajoy Prasad; Kanna, Rishi Mugesh; Shanmuganathan, Rajasekaran
2017-01-01
Late onset paraplegia is a rare complication of spinal tuberculosis. Disease reactivation and cord compression by internal gibbus are the common causes for neurological deficit. We report a patient with post-tubercular kyphotic deformity in whom the late onset paraplegia is caused by ossified ligamentum flavum above the level of kyphotic deformity. The deficit was attributable to the ossified ligamentum flavum and she recovered completely following posterior decompression and instrumented posterolateral fusion. To the best of our knowledge, this is the first report of this unusual cause of late onset paraplegia.
Lehman, Ronald A; Kang, Daniel G; Lenke, Lawrence G; Sucato, Daniel J; Bevevino, Adam J
2015-05-01
There are no guidelines for when surgeons should allow patients to return to sports and athletic activities after spinal fusion for adolescent idiopathic scoliosis (AIS). Current recommendations are based on anecdotal reports and a survey performed more than a decade ago in the era of first/second-generation posterior implants. To identify current recommendations for return to sports and athletic activities after surgery for AIS. Questionnaire-based survey. Adolescent idiopathic scoliosis after corrective surgery. Type and time to return to sports. A survey was administered to members of the Spinal Deformity Study Group. The survey consisted of surgeon demographic information, six clinical case scenarios, three different construct types (hooks, pedicle screws, hybrid), and questions regarding the influence of lowest instrumented vertebra (LIV) and postoperative physical therapy. Twenty-three surgeons completed the survey, and respondents were all experienced expert deformity surgeons. Pedicle screw instrumentation allows earlier return to noncontact and contact sports, with most patients allowed to return to running by 3 months, both noncontact and contact sports by 6 months, and collision sports by 12 months postoperatively. For all construct types, approximately 20% never allow return to collision sports, whereas all surgeons allow eventual return to contact and noncontact sports regardless of construct type. In addition to construct type, we found progressively distal LIV resulted in more surgeons never allowing return to collision sports, with 12% for selective thoracic fusion to T12/L1 versus 33% for posterior spinal fusion to L4. Most respondents also did not recommend formal postoperative physical therapy (78%). Of all surgeons surveyed, there was only one reported instrumentation failure/pullout without neurologic deficit after a patient went snowboarding 2 weeks postoperatively. Modern posterior instrumentation allows surgeons to recommend earlier return to sports after fusion for AIS, with the majority allowing running by 3 months, noncontact and contact sports by 6 months, and collision sports by 12 months. Published by Elsevier Inc.
A rare cause of late onset neurological deficit in post tuberculous kyphotic deformity-case report.
Subramani, Suresh; Shetty, Ajoy Prasad; Kanna, Rishi M; Rajasekaran, Shanmuganathan
2017-12-01
Late onset neurological deficit is a rare complication of spinal tuberculosis. Reactivation of the disease and compression by internal gibbus are the common causes for late onset neurological deficit. We report a rare cause of late onset paraplegia in a patient with post tubercular kyphotic deformity. The late onset neurological deficit was due to the adjacent segment degeneration proximal to the kyphotic deformity. Posterior hypertrophied ligamentum flavum and anterior disc osteophyte complex caused the cord compression. The increased stress for prolonged period at the end of the deformity was the reason for the accelerated degeneration. Patient underwent posterior decompression, posterolateral and interbody fusion. Deformity correction was not done. To our best knowledge, this is only the second report of this unusual cause of late onset paraplegia.
Wawrzynek, Wojciech; Siemianowicz, Anna; Koczy, Bogdan; Kasprowska, Sabina; Besler, Krzysztof
2005-01-01
The Sprengel's deformity is a congenital anomaly of the shoulder girdle with an elevation of the scapula and limitation of movement of the shoulder. Sprengel's deformity is frequently associated with cervical spine malformations such as: spinal synostosis, spina bifida and an abnormal omovertebral fibrous, cartilaginous or osseus connection. The diagnosis of Sprengel's deformity is based on a clinical examination and radiological procedures. In every case of Sprengel's deformity plain radiography and computed tomography should be performed. Three-dimensional (3D) reconstructions allow to visualize precise topography and spatial proportions of examined bone structures. 3D reconstruction also enables an optional rotation of visualized bone structures in order to clarify the anatomical abnormalities and to plan surgical treatment.
Escalas, Cécile; Bourdet, Christopher; Fayech, Chiraz; Demoor-Goldschmidt, Charlotte
2015-01-01
The objective of the present retrospective study was to describe the clinical, radiological and bone characteristics of long-term survivors who have received radiotherapy involving some part of the vertebral column for certain childhood tumors. Monocentric descriptive study of a cohort of patients followed at Gustave-Roussy in the framework of long-term monitoring treated for a solid tumor in childhood with radiotherapy on part of the spine and having back pain and/or spinal deformity have been addressed in the Service of Musculoskeletal Rehabilitation at the Cochin Hospital. For each patient, were performed standardized radiographs of the entire spine and spinal MRI. Eighteen patients were evaluated (average age of 35.4 ± 6.9 years; mean age at radiation therapy: 3.6 ± 2.8 years). Original tumors were nephroblastoma (9 cases), neuroblastoma (4 cases) and medulloblastoma (3 cases). Of the 15 patients analyzed by X-rays of the entire spine, 67% (10/15) patients had scoliosis (2 with a Cobb angle > 20°), 73% (11/15) had an abnormal thoracic kyphosis, 67% (10/15) had abnormal lumbar lordosis. Of the 16 patients analyzed by MRI, 75% (12/16) had discopathies or anomalies of the discal plate, 63% (10/16) had mild abnormalities of bone marrow. Muscle abnormalities were common (81%, 13/16). The main risk factors of spinal deformities are intraductal tumor, spinal surgery, spinal radiotherapy and a young age at the time of the cancer. These cured children require dedicated monitoring. Currently, this risk is reduced with the actual techniques of radiotherapy. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Sparrey, Carolyn J; Bailey, Jeannie F; Safaee, Michael; Clark, Aaron J; Lafage, Virginie; Schwab, Frank; Smith, Justin S; Ames, Christopher P
2014-05-01
The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.
3D spine reconstruction of postoperative patients from multi-level manifold ensembles.
Kadoury, Samuel; Labelle, Hubert; Parent, Stefan
2014-01-01
The quantitative assessment of surgical outcomes using personalized anatomical models is an essential task for the treatment of spinal deformities such as adolescent idiopathic scoliosis. However an accurate 3D reconstruction of the spine from postoperative X-ray images remains challenging due to presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. In this paper, we formulate the reconstruction problem as an optimization over a manifold of articulated spine shapes learned from pathological training data. The manifold itself is represented using a novel data structure, a multi-level manifold ensemble, which contains links between nodes in a single hierarchical structure, as well as links between different hierarchies, representing overlapping partitions. We show that this data structure allows both efficient localization and navigation on the manifold, for on-the-fly building of local nonlinear models (manifold charting). Our reconstruction framework was tested on pre- and postoperative X-ray datasets from patients who underwent spinal surgery. Compared to manual ground-truth, our method achieves a 3D reconstruction accuracy of 2.37 +/- 0.85 mm for postoperative spine models and can deal with severe cases of scoliosis.
Neurological deterioration during intubation in cervical spine disorders
Durga, Padmaja; Sahu, Barada Prasad
2014-01-01
Anaesthesiologists are often involved in the management of patients with cervical spine disorders. Airway management is often implicated in the deterioration of spinal cord function. Most evidence on neurological deterioration resulting from intubation is from case reports which suggest only association, but not causation. Most anaesthesiologists and surgeons probably believe that the risk of spinal cord injury (SCI) during intubation is largely due to mechanical compression produced by movement of the cervical spine. But it is questionable that the small and brief deformations produced during intubation can produce SCI. Difficult intubation, more frequently encountered in patients with cervical spine disorders, is likely to produce greater movement of spine. Several alternative intubation techniques are shown to improve ease and success, and reduce cervical spine movement but their role in limiting SCI is not studied. The current opinion is that most neurological injuries during anaesthesia are the result of prolonged deformation, impaired perfusion of the cord, or both. To prevent further neurological injury to the spinal cord and preserve spinal cord function, minimizing movement during intubation and positioning for surgery are essential. The features that diagnose laryngoscopy induced SCI are myelopathy present on recovery, short period of unconsciousness, autonomic disturbances following laryngoscopy, cranio-cervical junction disease or gross instability below C3. It is difficult to accept or refute the claim that neurological deterioration was induced by intubation. Hence, a record of adequate care at laryngoscopy and also perioperative period are important in the event of later medico-legal proceedings. PMID:25624530
[Video-assisted thoracic surgery to treat spinal deformities: climbing the learning curve].
Rivo Vázquez, José Eduardo; Cañizares Carretero, Miguel Angel; García Fontán, Eva; Blanco Ramos, Montserrat; Varela Ares, Ermitas; Justo Tarrazo, César
2007-04-01
The aim of this study was to analyze the impact of the learning curve on the preliminary results of video-assisted thoracic surgery for spinal deformities in a general hospital setting. We retrospectively reviewed the medical records of 15 patients who underwent video-assisted thoracic surgery performed by a multidisciplinary team comprising orthopedic and thoracic surgeons. Endoscopic anterior release and fusion were followed by posterior instrumentation in a single procedure. Demographic, orthopedic, morbidity, and mortality statistics were compiled for the 15 patients and compared to results reported for similar series. Endoscopic surgery was indicated for 15 patients: 11 women (73.3%) and 4 men (26.7%). The median age was 15 years (interquartile range [IQR], 14-19 years). Three patients (20%) required conversion to thoracotomy. There were 2 serious (13.3%) and 3 minor complications (20%). They all resolved satisfactorily and there was no perioperative mortality. The median Cobb angle was 71 degrees (IQR, 63.75 degrees -75.25 degrees ) before surgery and 41 degrees (IQR, 30 degrees -50 degrees ) after surgery. Median duration of surgery was 360 minutes (IQR, 300-360 minutes), duration of postoperative recovery unit stay was 1.5 days (IQR, 1-2.75 days), and total hospital stay was 11.5 days (IQR, 8.25-14 days). Despite the complexity of video-assisted thoracic surgical procedures, we believe they will become the standard approach to treating spinal deformities in the near future. By working together in general hospital settings, orthopedic and thoracic surgeons can help to overcome the steep yet manageable learning curve.
Asymmetrical intrapleural pressure distribution: a cause for scoliosis? A computational analysis.
Schlager, Benedikt; Niemeyer, Frank; Galbusera, Fabio; Wilke, Hans-Joachim
2018-04-13
The mechanical link between the pleural physiology and the development of scoliosis is still unresolved. The intrapleural pressure (IPP) which is distributed across the inner chest wall has yet been widely neglected in etiology debates. With this study, we attempted to investigate the mechanical influence of the IPP distribution on the shape of the spinal curvature. A finite element model of pleura, chest and spine was created based on CT data of a patient with no visual deformities. Different IPP distributions at a static end of expiration condition were investigated, such as the influence of an asymmetry in the IPP distribution between the left and right hemithorax. The results were then compared to clinical data. The application of the IPP resulted in a compressive force of 22.3 N and a flexion moment of 2.8 N m at S1. An asymmetrical pressure between the left and right hemithorax resulted in lateral deviation of the spine towards the side of the reduced negative pressure. In particular, the pressure within the dorsal section of the rib cage had a strong influence on the vertebral rotation, while the pressure in medial and ventral region affected the lateral displacement. An asymmetrical IPP caused spinal deformation patterns which were comparable to deformation patterns seen in scoliotic spines. The calculated reaction forces suggest that the IPP contributes in counterbalancing the weight of the intrathoracic organs. The study confirms the potential relevance of the IPP for spinal biomechanics and pathologies, such as adolescent idiopathic scoliosis.
... surgeons, innovative research and the most advanced spine technologies in an international forum. Donate Your support can change the lives of others with spinal deformities! 100 percent of all donations to the Scoliosis Research Society’s (SRS) Research, Education Outreach (REO) Fund are used ...
Safaee, Michael M; Deviren, Vedat; Dalle Ore, Cecilia; Scheer, Justin K; Lau, Darryl; Osorio, Joseph A; Nicholls, Fred; Ames, Christopher P
2018-05-01
OBJECTIVE Proximal junctional kyphosis (PJK) is a well-recognized, yet incompletely defined, complication of adult spinal deformity surgery. There is no standardized definition for PJK, but most studies describe PJK as an increase in the proximal junctional angle (PJA) of greater than 10°-20°. Ligament augmentation is a novel strategy for PJK reduction that provides strength to the upper instrumented vertebra (UIV) and adjacent segments while also reducing junctional stress at those levels. METHODS In this study, ligament augmentation was used in a consecutive series of adult spinal deformity patients at a single institution. Patient demographics, including age; sex; indication for surgery; revision surgery; surgical approach; and use of 3-column osteotomies, vertebroplasty, or hook fixation at the UIV, were collected. The PJA was measured preoperatively and at last follow-up using 36-inch radiographs. Data on change in PJA and need for revision surgery were collected. Univariate and multivariate analyses were performed to identify factors associated with change in PJA and proximal junctional failure (PJF), defined as PJK requiring surgical correction. RESULTS A total of 200 consecutive patients were included: 100 patients before implementation of ligament augmentation and 100 patients after implementation of this technique. The mean age of the ligament augmentation cohort was 66 years, and 67% of patients were women. Over half of these cases (51%) were revision surgeries, with 38% involving a combined anterior or lateral and posterior approach. The mean change in PJA was 6° in the ligament augmentation group compared with 14° in the control group (p < 0.001). Eighty-four patients had a change in PJA of less than 10°. In a multivariate linear regression model, age (p = 0.016), use of hook fixation at the UIV (p = 0.045), and use of ligament augmentation (p < 0.001) were associated with a change in PJA. In a separate model, only ligament augmentation (OR 0.193, p = 0.012) showed a significant association with PJF. CONCLUSIONS Ligament augmentation represents a novel technique for the prevention of PJK and PJF. Compared with a well-matched historical cohort, ligament augmentation is associated with a significant decrease in PJK and PJF. These data support the implementation of ligament augmentation in surgery for adult spinal deformity, particularly in patients with a high risk of developing PJK and PJF.
Sung, Dong-Hun; Yoon, Seong-Deok; Park, Gi Duck
2015-03-01
[Purpose] It is important for patients with incomplete spinal cord injury (SCI) to strengthen their muscle strength and return to the work force one of the ultimate objectives of rehabilitation. This study reports how a single patient with SCI became stabilized in terms of abdominal muscles and back extension muscles, as well as returning the back to the neutral position from spinal deformation, as result of complex exercises performed for 12 weeks. [Subjects] The degree of damage of the subject was rated as C grade. The subject of this study had unstable posture due to paralysis in the lower extremities of the left side after removal of a malignant tumor by surgical operation, and tilting and torsion in the pelvis increased followed by increase of kyphosis in the thoracolumbar spine. The subject was more than two years since diagnosis of incomplete SCI after surgery. [Methods] Using isokinetic lumbar muscle strength measurement equipment, peak torque/weight, total work and average power in flexion and extension of the lumbar region were measured. A trunk measurement system (Formetric 4D, DIERS, Germany), which is a 3D image processing apparatus with high resolution for vertebrae, was used in order to measure 3D vertebrae and pelvis deformation as well as static balance abilities. As an exercise method, a foam roller was used to conduct fascia relaxation massage for warming-up, and postural kyphosis was changed into postural lordosis by lat pull-down using equipment, performed in 5 sets of 15 times preset at 60% intensity of 1RM 4 set of 10 crunch exercises per set using Togu's were done while sitting at the end of Balance pad, and 4 sets of 15 bridge exercises. [Results] All angular speed tests showed a gradual increase in muscle strength. Flexion and extension showed 10% and 3% improvements, respectively. The spine deformation test showed that isokinetic exercise and lat pull-down exercise for 12 weeks resulted in improved spinal shape. [Conclusion] In this study, core stability exercise for deep muscle training and lat pull-down exercise had positive effects on lower extremity muscle strength and the spinal shape of a patient with SCI.
Schmitt, Paul J; Kelleher, John P; Ailon, Tamir; Heller, Joshua E; Kasliwal, Manish K; Shaffrey, Christopher I; Smith, Justin S
2016-08-01
Although use of very high-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) has been reported to markedly improve fusion rates in adult spinal deformity (ASD) surgery, most centers use much lower doses due to cost constraints. How effective these lower doses are for fusion enhancement remains unclear. To assess fusion rates using relatively low-dose rhBMP-2 for ASD surgery. This was a retrospective review of consecutive ASD patients that underwent thoracic to sacral fusion. Patients that achieved 2-year follow-up were analyzed. Impact of patient and surgical factors on fusion rate was assessed, and fusion rates were compared with historical cohorts. Of 219 patients, 172 (78.5%) achieved 2-year follow-up and were analyzed. Using an average rhBMP-2 dose of 3.1 mg/level (average total dose = 35.9 mg/case), the 2-year fusion rate was 73.8%. Cancellous allograft, local autograft, and very limited iliac crest bone graft (<20 mL, obtained during iliac bolt placement) were also used. On multivariate analysis, female sex was associated with a higher fusion rate, whereas age, comorbidity score, deformity type, and 3-column osteotomy were not. There were no complications directly attributable to rhBMP-2. Fusion rates for ASD using low-dose rhBMP-2 were comparable to those reported for iliac crest bone graft but lower than for high-dose rhBMP-2. Importantly, there were substantial differences between patients in the present series and those in the historical comparison groups that could not be fully adjusted for based on available data. Prospective evaluation of rhBMP-2 dosing for ASD surgery is warranted to define the most appropriate dose that balances benefits, risks, and costs. ASD, adult spinal deformityICBG, iliac crest bone graftOR, odds ratiorhBMP-2, recombinant human bone morphogenetic protein-2RR, risk ratioTCO, 3-column osteotomy.
Cost Implications of Primary Versus Revision Surgery in Adult Spinal Deformity.
Qureshi, Rabia; Puvanesarajah, Varun; Jain, Amit; Kebaish, Khaled; Shimer, Adam; Shen, Francis; Hassanzadeh, Hamid
2017-08-01
Adult spinal deformity (ASD) is an important problem to consider in the elderly. Although studies have examined the complications of ASD surgery and have compared functional and radiographic results of primary surgery versus revision, no studies have compared the costs of primary procedures with revisions. We assessed the in-hospital costs of these 2 surgery types in patients with ASD. The PearlDiver Database, a database of Medicare records, was used in this study. Mutually exclusive groups of patients undergoing primary or revision surgery were identified. Patients in each group were queried for age, sex, and comorbidities. Thirty-day readmission rates, 30-day and 90-day complication rates, and postoperative costs of care were assessed with multivariate analysis. For analyses, significance was set at P < 0.001. The average reimbursement of the primary surgery cohort was $57,078 ± $30,767. Reimbursement of revision surgery cohort was $52,999 ± $27,658. The adjusted difference in average costs between the 2 groups is $4773 ± $1069 (P < 0.001). The 30-day and 90-day adjusted difference in cost of care when sustaining any of the major medical complications in primary surgery versus revision surgery was insignificant. Patients undergoing primary and revision corrective procedures for ASD have similar readmission rates, lengths of stays, and complication rates. Our data showed a higher cost of primary surgery compared with revision surgery, although costs of sustaining postoperative complications were similar. This finding supports the decision to perform revision procedures in patients with ASD when indicated because neither outcomes nor costs are a hindrance to correction. Copyright © 2017 Elsevier Inc. All rights reserved.
Ventriculoperitoneal Shunt Fracture Following Application of Halo-Gravity Traction: A Case Report.
Blakeney, William G; D'Amato, Charles
2015-09-01
Ventriculoperitoneal (VP) shunt malfunctions are very common, and shunt fracture is one of the most common causes. Shunt fractures are often a result of calcification and tethering, which predispose the tubing to fracture when mechanical stresses are applied. This case report describes a case of shunt fracture following application of halo-gravity traction for correction of spinal deformity. Chart and imaging data for a single case were reviewed and reported in this retrospective case study. A 10-year-old female, being treated for syndromic scoliosis, underwent posterior surgical release and application of halo-gravity traction. Increasing weight of traction was applied over a period of 6 weeks, for gradual deformity correction. It was noted on the 6-week cervical spine radiograph that the VP shunt had fractured at the base of the neck. The patient was taken to the operating room and intraoperative findings confirmed shunt fracture. This was repaired without complications. This case, to our best knowledge, is the first reported occurrence of shunt fracture following application of halo-gravity traction. It demonstrates the importance of careful monitoring of patients with VP shunts, when they are undergoing traction for correction of spinal deformity. Level IV.
Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images
NASA Astrophysics Data System (ADS)
Li, Hao; Leow, Wee Kheng; Huang, Chao-Hui; Howe, Tet Sen
Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum potential energy registration of the rod to the scoliotic spine in the x-ray image. Test results show that it is possible to obtain accurate 3D reconstruction using only the landmarks in a single view, provided that appropriate boundary conditions and elastic properties are included as constraints.
Anaesthesia for dwarfs and other patients of pathological small stature.
Walts, L F; Finerman, G; Wyatt, G M
1975-11-01
Sixty-nine anaesthetics were administered to 29 patients of pathological proportionate and disproportionate small stature. The anaesthetic course in most cases was uncomplicated. The few complications noted were similar in type and severity to those found in normal size patients undergoing similar anaesthesia and operative procedures. Achondroplastic dwarfs often develop neurological problems due to their bony deformities. General anaesthesia should be given preferential consideration in these patients. Non-achondroplastic dwarfs may have an associated odontoid dysplasia and if the neck is placed in flexion there is a potential risk of spinal cord damage. Tube size for proportionately small children is best estimated from body weight. No definite recommendations concerning proper tybe size in dwarfs can be given on the basis of the findings in the study.
Duramaz, Altuğ; Yılmaz, Semra; Ziroğlu, Nezih; Bursal Duramaz, Burcu; Kara, Tayfun
2018-05-25
The purpose of this prospective study was to evaluate the effects of deformity correction on body image, quality of life, self-esteem, depression and anxiety in patients with adolescent idiopathic scoliosis (AIS) who underwent surgery. Between June 2014 and July 2015, 41 consecutive patients who underwent surgery for AIS were compared with the control group of 52 healthy patients regarding the changes in the pre- and postoperative quality of life and psychiatric status of patients with deformity correction. Body Cathexis Scale (BCS), Pediatric Quality of Life Inventory (PedsQL), Children's Depression Inventory (CDI), Piers-Harris self-esteem questionnaire (PH-SEQ) and state-trait Anxiety Inventory for Children were used to evaluate the patients. There was a significant decrease in postoperative first-year Cobb angle and trunkal shift imbalance compared with the preoperative values (p = 0.0001 and p = 0.0001). Postoperative first-year thoracic kyphosis angle and body height showed a significant increase according to preoperative values (p = 0.0001 and p = 0.0001). Postoperative PH-SEQ score and PedsQL total score showed a significant increase in the study group compared to the preoperative level, but no significant difference was found between the control group. Postoperative CDI score, BCS score, STAI-state and STAI-trait scores decreased significantly in the study group compared with preoperative scores. Surgical correction of deformity in AIS provided significant improvements regarding quality of life and psychiatric condition. Spinal surgeons should be aware of the possible psychological problems of AIS patients and should keep in mind that deformity correction not only improves physical health but also improves mental health. These slides can be retrieved under Electronic Supplementary Material.
The effects of needle deformation during lumbar puncture
Özdemir, Hasan Hüseyin; Demir, Caner F.; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref
2015-01-01
Objective: The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. Materials and Methods: The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. Results: A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Conclusion: Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH. PMID:25883480
Physical health problems in adults with Prader-Willi syndrome.
Sinnema, Margje; Maaskant, Marian A; van Schrojenstein Lantman-de Valk, Henny M J; van Nieuwpoort, I Caroline; Drent, Madeleine L; Curfs, Leopold M G; Schrander-Stumpel, Constance T R M
2011-09-01
Prader-Willi syndrome (PWS) is a genetic disorder which is characterized by severe hypotonia and feeding problems in early infancy. In later childhood and adolescence, this is followed by hyperphagia and extreme obesity if the diet is not strictly controlled. Data on physical health problems in adults with PWS are scarce. We report on the prevalence of physical health problems in a Dutch cohort of adults with PWS in relation to age, BMI, and genetic subtype. Participants (n = 102) were retrieved via the Dutch Prader-Willi Parent Association and through physicians specializing in persons with intellectual disabilities (ID). Details regarding physical health problem spanning the participants' lifespan were collected from caretakers through semi-structured interviews. Cardiovascular problems included diabetes mellitus, hypertension, and cerebrovascular accidents. Respiratory infections were frequent in adulthood. In males, cryptorchidism was almost universal, for which 28/48 males had a history of surgery, mostly orchidopexy. None of the women had a regular menstrual cycle. Sixteen individuals had a diagnosis of osteoporosis. Spinal deformation, hip dysplasia, and foot abnormalities were common. Skinpicking, leg edema, and erysipelas were frequent dermatological problems. The findings in our group support the notion that the prevalence of physical health problems is underestimated. This underscores the importance of developing monitoring programs which would help to recognize physical health problems at an early stage. Copyright © 2011 Wiley-Liss, Inc.
Vande Velde, S; Van Biervliet, S; De Bruyne, R; Van Renterghem, K; Plasschaert, F; Van Winckel, M
2010-08-01
Scoliosis is a common complication in children with cerebral palsy (CP). In these patients, surgical correction carries a high risk of complications. CP is also associated with gastrointestinal dysmotility such as delayed gastric emptying and gastro-oesophageal reflux. We describe 5 patients with CP in whom symptoms of gastric dysmotility clearly exacerbated after orthopaedic scoliosis surgery. They all showed persisting vomiting, nausea, bloating, weight loss, and anorexia necessitating total parental nutrition and/or jejunal feeding. This intensified nutritional support resulted in weight gain. Symptoms, however, persisted in half of the patients. The aetiology of these gastro-intestinal motility problems following scoliosis surgery remains unclear. Mechanical obstruction needs to be ruled out. Delayed gastric emptying may be due to postprandial antral hypomotility as a consequence of sympathic stimulation. Malnutrition could further aggravate gastrointestinal dysmotility. This complication should be taken into account when surgery for spinal deformities in CP patients is planned, especially in patients with pre-existing gastrointestinal motility problems. © Georg Thieme Verlag KG Stuttgart · New York.
Miriutinova, N F; Suleĭmanov, R R
2011-01-01
The present study has demonstrated that pulsed magnetotherapy in combination with the traction of the vertebral column in young subjects with discogenic scoliosis makes it possible to reduce the flow of vertebral painful pulsation, has beneficial effect on the spinal muscular corset (reduced asymmetry of the muscular tone on the intact and affected sides), decreases the degree of vertebral deformation, broadens the scope of spinal movements due to the enhanced activity of vertebral muscles, and helps to sustain and maintain the results thus obtained for a longer period.
Aurégan, Jean-Charles; Odent, Thierry; Coyle, Ryan M; Miladi, Lotfi; Wicart, Philippe; Dubousset, Jean; Le Merrer, Martine; Padovani, Jean-Paul; Glorion, Christophe
2014-04-20
A review of clinical publications, current knowledge, and recent developments regarding the etiology of ischiovertebral dysplasia was combined with a clinical review of the condition. To acquaint orthopedic spine surgeons with identification patterns of ischiovertebral dysplasia in order to provide them with guidelines about spine management and which complications to expect. Ischiovertebral dysplasia is a rare skeletal dysplasia that may appear in a sporadic fashion or be inherited with an autosomal dominant inheritance pattern. It is defined by the association of an ischiopubic ramus hypoplasia and a vertebral dysplasia. It leads to a specific spine deformity whose management and complications should be clarified. Thirty consecutive patients from 0 to 31 years of age with ischiovertebral dysplasia were included from 5 centers specialized in congenital spinal deformities. Frontal and sagittal Cobb angles before treatment, natural history of the curves, therapeutic options, and their complications were systematically analyzed. All the patients had a vertebral dysplasia and 28 of them developed a spinal deformity. This deformity was an extremely severe thoracic kyphoscoliosis in 25 cases. The other deformities were a thoracolumbar scoliosis in 1 case and a thoracolumbar kyphosis in 2 cases. The management of the thoracic kyphoscoliosis was always challenging and complications included death by respiratory failure (3 cases) and neurological impairment (9 cases). Recognizing the occurrence of ischioverterbral dysplasia is very important to allow for dedicated treatment. The authors advocate preoperative distraction and circumferential fusion to prevent progression of the curve and to avoid the potentially fatal sequelae associated with this disorder. 4.
Lin, Bon-Jour; Lin, Meng-Chi; Lin, Chin; Lee, Meei-Shyuan; Feng, Shao-Wei; Ju, Da-Tong; Ma, Hsin-I; Liu, Ming-Ying; Hueng, Dueng-Yuan
2015-10-01
Previous studies have identified the factors affecting the surgical outcome of cervical spondylotic myelopathy (CSM) following laminoplasty. Nonetheless, the effect of these factors remains controversial. It is unknown about the association between pre-operative cervical spinal cord morphology and post-operative imaging result following laminoplasty. The goal of this study is to analyze the impact of pre-operative cervical spinal cord morphology on post-operative imaging in patients with CSM. Twenty-six patients with CSM undergoing open-door laminoplasty were classified according to pre-operative cervical spine bony alignment and cervical spinal cord morphology, and the results were evaluated in terms of post-operative spinal cord posterior drift, and post-operative expansion of the antero-posterior dura diameter. By the result of study, pre-operative spinal cord morphology was an effective classification in predicting surgical outcome - patients with anterior convexity type, description of cervical spinal cord morphology, had more spinal cord posterior migration than those with neutral or posterior convexity type after open-door laminoplasty. Otherwise, the interesting finding was that cervical spine Cobb's angle had an impact on post-operative spinal cord posterior drift in patients with neutral or posterior convexity type spinal cord morphology - the degree of kyphosis was inversely proportional to the distance of post-operative spinal cord posterior drift, but not in the anterior convexity type. These findings supported that pre-operative cervical spinal cord morphology may be used as screening for patients undergoing laminoplasty. Patients having neutral or posterior convexity type spinal cord morphology accompanied with kyphotic deformity were not suitable candidates for laminoplasty. Copyright © 2015 Elsevier B.V. All rights reserved.
Spinal cord injury - Symptoms and causes
... are the leading cause of spinal cord injuries, accounting for almost half of new spinal cord injuries ... address these problems if they affect you. Respiratory system. Your injury may make it more difficult to ...
Obeid, Ibrahim; Hauger, Olivier; Aunoble, Stéphane; Bourghli, Anouar; Pellet, Nicolas; Vital, Jean-Marc
2011-09-01
It has become well recognised that sagittal balance of the spine is the result of an interaction between the spine and the pelvis. Knee flexion is considered to be the last compensatory mechanism in case of sagittal imbalance, but only few studies have insisted on the relationship between spino-pelvic parameters and lower extremity parameters. Correlation between the lack of lumbar lordosis and knee flexion has not yet been established. A retrospective study was carried out on 28 patients with major spinal deformities. The EOS system was used to measure spinal and pelvic parameters and the knee flexion angle; the lack of lumbar lordosis was calculated after prediction of lumbar lordosis with two different formulas. Correlation analysis between the different measured parameters was performed. Lumbar lordosis correlated with sacral slope (r = -0.71) and moderately with knee flexion angle (r = 0.42). Pelvic tilt correlated moderately with knee flexion angle (r = 0.55). Lack of lumbar lordosis correlated best with knee flexion angle (r = 0.72 and r = 0.63 using the two formulas, respectively). Knee flexion as a compensatory mechanism to sagittal imbalance was well correlated to the lack of lordosis and, depending on the importance of the former parameter, the best procedure to correct sagittal imbalance could be chosen.
Fritz, Jan; Niemeyer, Thomas; Clasen, Stephan; Wiskirchen, Jakub; Tepe, Gunnar; Kastler, Bruno; Nägele, Thomas; König, Claudius W; Claussen, Claus D; Pereira, Philippe L
2007-01-01
If low back pain does not improve with conservative management, the cause of the pain must be determined before further therapy is initiated. Information obtained from the patient's medical history, physical examination, and imaging may suffice to rule out many common causes of chronic pain (eg, fracture, malignancy, visceral or metabolic abnormality, deformity, inflammation, and infection). However, in most cases, the initial clinical and imaging findings have a low predictive value for the identification of specific pain-producing spinal structures. Diagnostic spinal injections performed in conjunction with imaging may be necessary to test the hypothesis that a particular structure is the source of pain. To ensure a valid test result, diagnostic injection procedures should be monitored with fluoroscopy, computed tomography, or magnetic resonance imaging. The use of controlled and comparative injections helps maximize the reliability of the test results. After a symptomatic structure has been identified, therapeutic spinal injections may be administered as an adjunct to conservative management, especially in patients with inoperable conditions. Therapeutic injections also may help hasten the recovery of patients with persistent or recurrent pain after spinal surgery. RSNA, 2007
Viscoelastic Response of the Human Lower Back to Passive Flexion: The Effects of Age.
Shojaei, Iman; Allen-Bryant, Kacy; Bazrgari, Babak
2016-09-01
Low back pain is a leading cause of disability in the elderly. The potential role of spinal instability in increasing risk of low back pain with aging was indirectly investigated via assessment of age-related differences in viscoelastic response of lower back to passive deformation. The passive deformation tests were conducted in upright standing posture to account for the effects of gravity load and corresponding internal tissues responses on the lower back viscoelastic response. Average bending stiffness, viscoelastic relaxation, and dissipated energy were quantified to characterize viscoelastic response of the lower back. Larger average bending stiffness, viscoelastic relaxation and dissipated energy were observed among older vs. younger participants. Furthermore, average bending stiffness of the lower back was found to be the highest around the neutral standing posture and to decrease with increasing the lower back flexion angle. Larger bending stiffness of the lower back at flexion angles where passive contribution of lower back tissues to its bending stiffness was minimal (i.e., around neutral standing posture) highlighted the important role of active vs. passive contribution of tissues to lower back bending stiffness and spinal stability. As a whole our results suggested that a diminishing contribution of passive and volitional active subsystems to spinal stability may not be a reason for higher severity of low back pain in older population. The role of other contributing elements to spinal stability (e.g., active reflexive) as well as equilibrium-based parameters (e.g., compression and shear forces under various activities) in increasing severity of low back pain with aging should be investigated in future.
Garg, Bhavuk; Gupta, Manish; Singh, Menaka; Kalyanasundaram, Dinesh
2018-05-03
Spinal deformities are very challenging to treat and have a great risk of neurological complications due to hardware placement during corrective surgery. Various techniques have been introduced to ensure safe and accurate placement of pedicle screws. Patient-specific screw guides with pre-drawn and pre-validated trajectory seems to be an attractive option. We have focused on developing 3D printing technique for complex spinal deformities in India. This study also aimed to compare the placement of pedicle screw with 3D printing and free hand technique. This is a retrospective comparative clinical study at an academic institutional setting. A total of 20 patients were enrolled during the study, 10 were operated with the help of 3D printing (group 1) and 10 were operated with freehand technique (group 2). Group 1 included 6 congenital, 3 adolescent idiopathic scoliosis (AIS), one post tubercular kyphosis and Group 2 included 5 congenital, 4 AIS and one post tubercular kyphosis patient. Primary outcomes were measured in terms of screw violation and secondary outcome were measured in terms of Surgical time, Blood loss, Radiation exposure (no. of shoots required) and complications. MIMICS v18.0 Software was used for 3D reconstruction from CT scan images of all the patients. 3-Matic software was used to create drill guide. 3-D printer from Stratasys Mojo ABS P 430 model material cartilage (a thermoplastic material) was used for printing of vertebrae model and jigs. Two sample test of proportion was used to compare correctly and wrongly pedicle screw placement with 3D printing and freehand technique. T-test with equal variance was used for operating surgical time and blood loss. This work was carried out by collaboration of Orthopaedics Department, All India Institute of Medical Sciences (AIIMS), New Delhi and Biomedical Engineering Department, Indian Institute of Technology (IIT) Delhi. This project received the grant of USD 60000 from Department of Biotechnology (DBT), Government of India under DBT Innovative young Biotechnologist Award. No study-specific conflicts of interest-associated biases is declared by the authors. No superior or inferior screw violation was observed in any of our patients in either group. We found significant (p=0.03) difference between 2 groups regarding perfect screw placement in favour of 3D printing. There were 13 grade 2 medial perforations in free hand group and 3 in 3D printing group. There was no grade 3 medial perforation in either group. There were 6 grade 2 lateral perforations in free hand group and 7 in 3D printing group were observed. There were 3 grade 3 lateral perforation in free hand group and 2 in 3D printing group were observed. Analysis showed a statistically significant (p-value: 0.005) medial violation in free hand group. Surgical time was significantly (p-value: 0.03) less in 3D printing group as compared to free hand group. Mean Blood loss was higher in free hand group, however it was not statistically significant (p-value: 0.3) in 3D printing group. Fluoroscopic shots required were less in number in 3D printing group in comparison to free hand group. There was no neurological deficit in any of the patient in any group. In our study, focusing on spinal deformities statistically significant higher rate of accurate screw positioning and higher number of inserted screws with 3D printing was possible due to enhanced safety particularly at apical levels. As such, spinal deformities are difficult to treat worldwide. In India, these deformities are often neglected and present at a very late and much more deformed state when their treatment becomes even more challenging. Developing these patient specific drill templates will enable an average spine surgeon to treat these patients with much ease and safety. Copyright © 2018. Published by Elsevier Inc.
Weiss, Hans-Rudolf; Werkmann, Mario
2009-01-01
Background Up to now, chronic low back pain without radicular symptoms is not classified and attributed in international literature as being "unspecific". For specific bracing of this patient group we use simple physical tests to predict the brace type the patient is most likely to benefit from. Based on these physical tests we have developed a simple functional classification of "unspecific" low back pain in patients with spinal deformities. Methods Between January 2006 and July 2007 we have tested 130 patients (116 females and 14 males) with spinal deformities (average age 45 years, ranging from 14 years to 69) and chronic unspecific low back pain (pain for > 24 months) along with the indication for brace treatment for chronic unspecific low back pain. Some of the patients had symptoms of spinal claudication (n = 16). The "sagittal realignment test" (SRT) was applied, a lumbar hyperextension test, and the "sagittal delordosation test" (SDT). Additionally 3 female patients with spondylolisthesis were tested, including one female with symptoms of spinal claudication and 2 of these patients were 14 years of age and the other 43yrs old at the time of testing. Results 117 Patients reported significant pain release in the SRT and 13 in the SDT (>/= 2 steps in the Roland & Morris VRS). 3 Patients had no significant pain release in both of the tests (< 2 steps in the Roland & Morris VRS). Pain intensity was high (3,29) before performing the physical tests (VRS-scale 0–5) and low (1,37) while performing the physical test for the whole sample of patients. The differences where highly significant in the Wilcoxon test (z = -3,79; p < 0,0001). In the 16 patients who did not respond to the SRT in the manual investigation we found hypermobility at L5/S1 or a spondylolisthesis at level L5/S1. In the other patients who responded well to the SRT loss of lumbar lordosis was the main issue, a finding which, according to scientific literature, correlates well with low back pain. The 3 patients who did not respond to either test had a fair pain reduction in a generally delordosing brace with an isolated small foam pad inserted at the level of L 2/3, leading to a lordosation at this region. Discussion With the exception of 3 patients (2.3%) a clear distribution to one of the two classes has been possible. 117 patients were supplied successfully with a sagittal realignment test-brace (physio-logic® brace) and 13 with a sagittal delordosing brace (spondylogic® brace). There were patients with scoliosies and hyperkyphosiesbrace). Therefore a clear distribution of the patients from this sample to either chronic postural or chronic instability back pain was possible. In 2.3% a combined chronic low back pain from the findings obtained seems reasonable. Conclusion Chronic unspecific low back pain is possible to clearly be classified physically. This functional classification is necessary to decide on which specific conservative approach (physical therapy, braces) should be used. Other factors than spinal deformities contribute to chronic low back pain. PMID:19222845
Weiss, Hans-Rudolf; Werkmann, Mario
2009-02-17
Up to now, chronic low back pain without radicular symptoms is not classified and attributed in international literature as being "unspecific". For specific bracing of this patient group we use simple physical tests to predict the brace type the patient is most likely to benefit from. Based on these physical tests we have developed a simple functional classification of "unspecific" low back pain in patients with spinal deformities. Between January 2006 and July 2007 we have tested 130 patients (116 females and 14 males) with spinal deformities (average age 45 years, ranging from 14 years to 69) and chronic unspecific low back pain (pain for > 24 months) along with the indication for brace treatment for chronic unspecific low back pain. Some of the patients had symptoms of spinal claudication (n = 16). The "sagittal realignment test" (SRT) was applied, a lumbar hyperextension test, and the "sagittal delordosation test" (SDT). Additionally 3 female patients with spondylolisthesis were tested, including one female with symptoms of spinal claudication and 2 of these patients were 14 years of age and the other 43yrs old at the time of testing. 117 Patients reported significant pain release in the SRT and 13 in the SDT (> or = 2 steps in the Roland & Morris VRS). 3 Patients had no significant pain release in both of the tests (< 2 steps in the Roland & Morris VRS).Pain intensity was high (3,29) before performing the physical tests (VRS-scale 0-5) and low (1,37) while performing the physical test for the whole sample of patients. The differences where highly significant in the Wilcoxon test (z = -3,79; p < 0,0001).In the 16 patients who did not respond to the SRT in the manual investigation we found hypermobility at L5/S1 or a spondylolisthesis at level L5/S1. In the other patients who responded well to the SRT loss of lumbar lordosis was the main issue, a finding which, according to scientific literature, correlates well with low back pain. The 3 patients who did not respond to either test had a fair pain reduction in a generally delordosing brace with an isolated small foam pad inserted at the level of L 2/3, leading to a lordosation at this region. With the exception of 3 patients (2.3%) a clear distribution to one of the two classes has been possible. 117 patients were supplied successfully with a sagittal realignment test-brace (physio-logic brace) and 13 with a sagittal delordosing brace (spondylogic brace). There were patients with scoliosies and hyperkyphosiesbrace). Therefore a clear distribution of the patients from this sample to either chronic postural or chronic instability back pain was possible. In 2.3% a combined chronic low back pain from the findings obtained seems reasonable. Chronic unspecific low back pain is possible to clearly be classified physically. This functional classification is necessary to decide on which specific conservative approach (physical therapy, braces) should be used.Other factors than spinal deformities contribute to chronic low back pain.
External validation of the adult spinal deformity (ASD) frailty index (ASD-FI).
Miller, Emily K; Vila-Casademunt, Alba; Neuman, Brian J; Sciubba, Daniel M; Kebaish, Khaled M; Smith, Justin S; Alanay, Ahmet; Acaroglu, Emre R; Kleinstück, Frank; Obeid, Ibrahim; Sánchez Pérez-Grueso, Francisco Javier; Carreon, Leah Y; Schwab, Frank J; Bess, Shay; Scheer, Justin K; Lafage, Virginie; Shaffrey, Christopher I; Pellisé, Ferran; Ames, Christopher P
2018-03-30
To assess the ability of the recently developed adult spinal deformity frailty index (ASD-FI) to predict odds of perioperative complications, odds of reoperation, and length of hospital stay after adult spinal deformity (ASD) surgery using a database other than the one used to create the index. We used the ASD-FI to calculate frailty scores for 266 ASD patients who had minimum postoperative follow-up of 2 years in the European Spine Study Group (ESSG) database. Patients were enrolled from 2012 through 2013. Using ASD-FI scores, we categorized patients as not frail (NF) (< 0.3 points), frail (0.3-0.5 points), or severely frail (SF) (> 0.5 points). Multivariable logistic regression, adjusted for preoperative and surgical factors such as operative time and blood loss, was performed to determine the relationship between ASD-FI category and odds of major complications, odds of reoperation, and length of hospital stay. We categorized 135 patients (51%) as NF, 90 patients (34%) as frail, and 41 patients (15%) as SF. Overall mean ASD-FI score was 0.29 (range 0-0.8). The adjusted odds of experiencing a major intraoperative or postoperative complication (OR 4.5, 95% CI 2.0-10) or having a reoperation (OR 3.9, 95% CI 1.7-8.9) were higher for SF patients compared with NF patients. Mean hospital stay was 2.1 times longer (95% CI 1.8-2.4) for SF patients compared with NF patients. Greater patient frailty, as measured by the ASD-FI, is associated with longer hospital stays and greater odds of major complications and reoperation. These slides can be retrieved under Electronic Supplementary Material.
Quadriplegia after parathyroidectomy in a hemodialysis patient.
Wang, Yu-Chieh; Huang, Shih-Yu; Lin, Ho-Tien; Hu, Jenkin-S; Chan, Kwok-Hon; Tsou, Mei-Yung
2011-03-01
We present a case of post-operative iatrogenic quadriplegia, which occurred after subtotal parathyroidectomy. This patient was on long-term hemodialysis for 7 years. The need of prolonged neck extension for this procedure was probably the main risk factor for the spinal cord injury. Systemic hypotension which contributed to the injury in this case, should be anticipated and promptly treated to prevent further damage. Spinal deformities associated with end-stage renal disease may make such patients more susceptible. Since appropriate precautions against potential neurologic damage can be undertaken, we suggest that evaluating carefully for the pre-existing spinal stenosis before a procedure requiring prominent and prolonged hyper-extension of the neck, especially in long-term hemodialysis patients is of paramount importance. Copyright © 2011. Published by Elsevier B.V.
A rare cause of late onset neurological deficit in post tuberculous kyphotic deformity—case report
Shetty, Ajoy Prasad; Kanna, Rishi M.; Rajasekaran, Shanmuganathan
2017-01-01
Late onset neurological deficit is a rare complication of spinal tuberculosis. Reactivation of the disease and compression by internal gibbus are the common causes for late onset neurological deficit. We report a rare cause of late onset paraplegia in a patient with post tubercular kyphotic deformity. The late onset neurological deficit was due to the adjacent segment degeneration proximal to the kyphotic deformity. Posterior hypertrophied ligamentum flavum and anterior disc osteophyte complex caused the cord compression. The increased stress for prolonged period at the end of the deformity was the reason for the accelerated degeneration. Patient underwent posterior decompression, posterolateral and interbody fusion. Deformity correction was not done. To our best knowledge, this is only the second report of this unusual cause of late onset paraplegia. PMID:29354759
Hey, Hwee Weng Dennis; Wong, Chengyuan Gordon; Lau, Eugene Tze-Chun; Tan, Kimberly-Anne; Lau, Leok-Lim; Liu, Ka-Po Gabriel; Wong, Hee-Kit
2017-02-01
Sitting spinal alignment is increasingly recognized as a factor influencing strategy for deformity correction. Considering that most individuals sit for longer hours in a "slumped" rather than in an erect posture, greater understanding of the natural sitting posture is warranted. This study aimed to investigate the differences in sagittal spinal alignment between two common sitting postures: a natural, patient-preferred posture; and an erect, investigator-controlled posture that is commonly used in alignment studies. This is a randomized, prospective study of 28 young, healthy patients seen in a tertiary hospital over a 6-month period. Twenty-eight patients (24 men, 4 women), with a mean age of 24 years (range 19-38), were recruited for this study. All patients with first episode of lower back pain of less than 3 months' duration were included. The exclusion criteria consisted of previous spinal surgery, radicular symptoms, red flag symptoms, previous spinal trauma, obvious spinal deformity on forward bending test, significant personal or family history of malignancy, and current pregnancy. Radiographic measurements included sagittal vertical axis (SVA), lumbar lordosis (LL), thoracolumbar angle (TL), thoracic kyphosis (TK), and cervical lordosis (CL). Standard spinopelvic parameters (pelvic incidence, pelvic tilt [PT], and sacral slope) and sagittal apex and end vertebrae were also measured. Basic patient demographics (age, gender, ethnicity) were recorded. Lateral sitting whole spine radiographs were obtained using a slot scanner in the imposed erect and the natural sitting posture. Statistical analyses of the radiographical parameters were performed comparing the two sitting postures using chi-squared tests for categorical variables and paired t tests for continuous variables. There was forward SVA shift between the two sitting postures by a mean of 2.9 cm (p<.001). There was a significant increase in CL by a mean of 11.62° (p<.001), and TL kyphosis by a mean of 11.48° (p<.001), as well as a loss of LL by a mean of 21.26° (p<.001). The mean PT increased by 17.68° (p<.001). The entire thoracic and lumbar spine has the tendency to form a single C-shaped curve with the apex moving to L1 (p=.002) vertebra in the majority of patients. In a natural sitting posture, the lumbar spine becomes kyphotic and contributes to a single C-shaped sagittal profile comprising the thoracic and the lumbar spine. This is associated with an increase in CL and PT, as well as a constant SVA. These findings lend insight into the body's natural way of energy conservation using the posterior ligamentous tension band while achieving sitting spinal sagittal balance. It also provides information on one of the possible causes of proximal junctional kyphosis or proximal junctional failure. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Smet, A.A.
1985-01-01
This book offers the only comprehensive, concise summary of both the clinical and radiologic features of thoracic and lumbar spine deformity. Emphasis is placed on idiopathic scoliosis, which represents 85% of all patients with scoliosis, but less common areas of secondary scoliosis, kyphosis and lordosis are also covered.
Influence of implant rod curvature on sagittal correction of scoliosis deformity.
Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu
2014-08-01
Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8°, respectively. The average preoperative and postoperative implant rod angle of curvature at the convex side was 25.5° and 23.9°, respectively. A significant relationship was found between the degree of rod deformation and preoperative implant rod angle of curvature (r=0.60, p<.005). The implant rods at the convex side of all patients did not have significant deformation. The results indicate that the postoperative sagittal outcome could be predicted from the initial rod shape. Changes in implant rod angle of curvature may lead to over- or undercorrection of the sagittal curve. Rod deformation at the concave side suggests that corrective forces acting on that side are greater than the convex side. Copyright © 2014 Elsevier Inc. All rights reserved.
Siu, Timothy L; Rogers, Jeffrey M; Lin, Kainu; Thompson, Robert; Owbridge, Mark
2018-03-01
Advances in minimally invasive interbody fusion have greatly enhanced surgeons' capability to correct adult spinal deformity with reduced morbidity. However, the feasibility of such approaches is limited in patients with previous osteoporotic fractures as the resultant vertebral deformity renders the end plate geometry incongruous with conventional interbody implants. Current 3-dimensional (3D) printing technology offers a novel solution by fabricating custom-made implants tailored to individual anatomy. We present the results of a patient with osteoporotic lumbar fractures treated by such technology. A 74-year-old woman, with previous osteoporotic fractures at L2 and L3 resulting in concave deformity of the end plates, presented with intractable radiculopathy secondary to lateral recess and foraminal stenosis (L2-3 and L3-4). A minimally invasive lateral lumbar interbody fusion at L2-3 and L3-4 was considered favorable, but due to the associated vertebral collapse, off-the-shelf implants were not compatible with patient anatomy. In silico simulation based on preoperative computed tomography (CT) imaging was thus conducted to design customized cages to cater for the depressed recipient end plates and vertebral loss. The design was converted to implantable titanium cages through 3D additive manufacturing. At surgery, a tight fit between the implants and the targeted disk space was achieved. Postoperative CT scan confirmed excellent implant-end plate matching and restoration of lost disk space. The patient began to ambulate from postoperative day 1 and at 6-month follow-up resolution of radicular symptoms and CT evidence of interbody fusion were recorded. 3D-printed custom-made interbody cages can help overcome the difficulties in deformity correction secondary to osteoporotic fractures. Copyright © 2017 Elsevier Inc. All rights reserved.
Mavrogenis, Andreas F.; Megaloikonomos, Panayiotis D.; Igoumenou, Vasileios G.; Panagopoulos, Georgios N.; Giannitsioti, Efthymia; Papadopoulos, Antonios; Papagelopoulos, Panayiotis J.
2017-01-01
Spondylodiscitis may involve the vertebral bodies, intervertebral discs, paravertebral structures and spinal canal, with potentially high morbidity and mortality rates. A rise in the susceptible population and improved diagnosis have increased the reported incidence of the disease in recent years. Blood cultures, appropriate imaging and biopsy are essential for diagnosis and treatment. Most patients are successfully treated by conservative means; however, some patients may require surgical treatment. Surgical indications include doubtful diagnosis, progressive neurological deficits, progressive spinal deformity, failure to respond to treatment, and unresolved pain. Cite this article: EFORT Open Rev 2017;2:447–461. DOI: 10.1302/2058-5241.2.160062 PMID:29218230
Tekelioglu, Umit Yasar; Demirhan, Abdullah; Ozturan, Kutay Engin; Bayir, Hakan; Kocoglu, Hasan; Bilgi, Murat
2014-01-01
Background Although regional anesthesia is the first choice for patients undergoing total knee arthroplasty (TKA), it may not be effective and the risk of complications is greater in patients who are obese or who have spinal deformities. We compared the success of ultrasound-guided femoral and sciatic nerve blocks with sedoanalgesia versus spinal anesthesia in unilateral TKA patients in whom spinal anesthesia was difficult. Methods We enrolled 30 patients; 15 for whom spinal anesthesia was expected to be difficult were classified as the block group, and 15 received spinal anesthesia. Regional anesthesia was achieved with bupivacaine 62.5 mg and prilocaine 250 mg to the sciatic nerve, and bupivacaine 37.5 mg and prilocaine 150 mg to the femoral nerve. Bupivacaine 20 mg was administered to induce spinal anesthesia. Hemodynamic parameters, pain and sedation scores, and surgical and patient satisfaction were compared. Results A sufficient block could not be obtained in three patients in the block group. The arterial pressure was significantly lower in the spinal group (P < 0.001), and the incidence of nausea was higher (P = 0.017) in this group. Saturation and patient satisfaction were lower in the block group (P < 0.028), while the numerical pain score (P < 0.046) and the Ramsay sedation score were higher (P = 0.007). Conclusions Ultrasound-guided sciatic and femoral nerve blocks combined with sedoanalgesia were an alternative anesthesia method in selected TKA patients. PMID:25237444
Pedersen, Mona E; Takle, Harald; Ytteborg, Elisabeth; Veiseth-Kent, Eva; Enersen, Grethe; Færgestad, Ellen; Baeverfjord, Grete; Hannesson, Kirsten O
2011-12-01
We have previously characterized the development of vertebral fusions induced by elevated water temperature in Atlantic salmon. Molecular markers of bone and cartilage development together with histology were used to understand the complex pathology and mechanism in the development of this spinal malformation. In this study, we wanted to use proteomics, a non-hypothetical approach to screen for possible new markers involved in the fusion process. Proteins extracted from non-deformed and fused vertebrae of Atlantic salmon were therefore compared by two-dimensional electrophoresis (2DE) and MALDI-TOF analysis. Data analysis of protein spots in the 2DE gels demonstrated matrilin-1, also named cartilage matrix protein, to be the most highly up-regulated protein in fused compared with non-deformed vertebrae. Furthermore, real-time PCR analysis showed strong up-regulation of matrilin-1 mRNA in fused vertebrae. Immunohistochemistry demonstrated induced matrilin-1 expression in trans-differentiating cells undergoing a metaplastic shift toward chondrocytes in fusing vertebrae, whereas abundant expression was demonstrated in cartilaginous tissue and chordocytes of both non-deformed and fused vertebrae. These results identifies matrilin-1 as a new interesting candidate in the fusion process, and ratify the use of proteomic as a valuable technique to screen for markers involved in vertebral pathogenesis.
Leitner, Lukas; Malaj, Isabella; Sadoghi, Patrick; Amerstorfer, Florian; Glehr, Mathias; Vander, Klaus; Leithner, Andreas; Radl, Roman
2018-04-13
Spinal fusion is used for treatment of spinal deformities, degeneration, infection, malignancy, and trauma. Reduction of motion enables osseous fusion and permanent stabilization of segments, compromised by loosening of the pedicle screws (PS). Deep implant infection, biomechanical, and chemical mechanisms are suspected reasons for loosening of PS. Study objective was to investigate the frequency and impact of deep implant infection on PS loosening. Intraoperative infection screening from wound and explanted material sonication was performed during revision surgeries following dorsal stabilization. Case history events and factors, which might promote implant infections, were included in this retrospective survey. 110 cases of spinal metal explantation were included. In 29.1% of revision cases, infection screening identified a germ, most commonly Staphylococcus (53.1%) and Propionibacterium (40.6%) genus. Patients screened positive had a significant higher number of previous spinal operations and radiologic loosening of screws. Patients revised for adjacent segment failure had a significantly lower rate of positive infection screening than patients revised for directly implant associated reasons. Removal of implants that revealed positive screening effected significant pain relief. Chronic implant infection seems to play a role in PS loosening and ongoing pain, causing revision surgery after spinal fusion. Screw loosening and multiple prior spinal operations should be suspicious for implant infection after spinal fusion when it comes to revision surgery. These slides can be retrieved under Electronic Supplementary Material.
Pedicle screw fixation in spinal disorders: a European view.
Boos, N; Webb, J K
1997-01-01
Continuing controversy over the use of pedicular fixation in the United States is promoted by the lack of governmental approval for the marketing of these devices due to safety and efficacy concerns. These implants have meanwhile become an invaluable part of spinal instrumentation in Europe. With regard to the North American view, there is a lack of comprehensive reviews that consider the historical evolution of pedicle screw systems, the rationales for their application, and the clinical outcome from a European perspective. This literature review suggests that pedicular fixation is a relatively safe procedure and is not associated with a significantly higher complication risk than non-pedicular instrumentation. Pedicle screw fixation provides short, rigid segmental stabilization that allows preservation of motion segments and stabilization of the spine in the absence of intact posterior elements, which is not possible with non-pedicular instrumentation. Fusion rates and clinical outcome in the treatment of thoracolumbar fractures appear to be superior to that achieved using other forms of treatment. For the correction of spinal deformity (i.e., scoliosis, kyphosis, spondylolisthesis, tumor), pedicular fixation provides the theoretical benefit of rigid segmental fixation and of facilitated deformity correction by a posterior approach, but the clinical relevance so far remains unknown. In low-back pain disorders, a literature analysis of 5,600 cases of lumbar fusion with different techniques reveals a trend that pedicle screw fixation enhances the fusion rate but not clinical outcome. The most striking finding in the literature is the large range in the radiological and clinical results. For every single fusion technique poor and excellent results have been described. This review argues that European spine surgeons should begin to back up the evident benefits of pedicle screw systems for specific spinal disorders by controlled prospective clinical trials. This may prevent forthcoming medical licensing authorities from restricting the use of pedicle screw devices and dictating the practice of spinal surgery in Europe in the near future.
Scoliosis Screening in Schools.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Pupil Personnel Services.
The booklet outlines New York state school policy and procedures for screening students for scoliosis, lateral curvature of the spine. It is explained that screening is designed to discover spinal deformities early enough to prevent surgery. Planning aspects, including organizing a planning team for the school district, are discussed. Among…
Zhang, Ying; Xie, Jingming; Wang, Yingsong; Bi, Ni; Zhao, Zhi; Li, Tao
2014-08-13
Posterior vertebral column resection (PVCR) is an effective alternative for treating rigid and severe spinal deformities. Accurate placement of pedicle screws, especially apically, is crucial. As morphologic evaluations of thoracic pedicles have not provided objective criteria, we propose a thoracic pedicle classification for treating rigid and severe spinal deformities. A consecutive series of 56 patients with severe and rigid spinal deformities who underwent PVCR at a single institution were reviewed retrospectively. Altogether, 1098 screws were inserted into thoracic pedicles at T2-T12. Based on the inner cortical width of the thoracic pedicles, the patients were divided into four groups: group 1 (0-1.0 mm), group 2 (1.1-2.0 mm), group 3 (2.1-3.0 mm), group 4 (≥3.1 mm). The proportion of screws accurately inserted in thoracic pedicles for each group was calculated. Statistical analysis was also performed regarding types of thoracic pedicles classified by Lenke et al. (SPINE 35:1836-1842, 2010) using a morphological method. There were statistically significant differences in the rates of screws inserted in thoracic pedicles between the groups (P < 0.008) except groups 3 and 4 (P > 0.008), which were then combined. The accuracies for the three new groups were 35.05%, 65.34%, and 88.32%, respectively, with statistically significant differences between the groups (P < 0.017). Rates of screws inserted in thoracic pedicles classified by Lenke et al. (SPINE 35:1836-1842, 2010) were 82.31%, 83.40%, 80.00%, and 30.28% for types A, B, C, and D, respectively. There was no statistically significant difference (P > 0.008) between these types except between type D and the other three types (P < 0.008). The inner cortical width of thoracic pedicles is the sole factor crucial for accurate placement of thoracic pedicle screws. We propose a computed tomography-based classification of the pedicle's inner cortical width: type I thoracic pedicle: absent channel, inner cortical width of 0-1 mm; type II: presence of a channel of which type IIa has an inner cortical width of 1.1-2.0 mm and type IIb a width of ≥2.1 mm. The proposed classification can help surgeons predict whether screws can be inserted into the thoracic pedicle, thus guiding instrumentation when PVCR is performed.
Magnetic resonance imaging of spinal infection.
Tins, Bernhard J; Cassar-Pullicino, Victor N; Lalam, Radhesh K
2007-06-01
This article reviews the pathophysiology of spinal infection and its relevance for imaging. Magnetic resonance imaging (MRI) is the modality with by far the best sensitivity and specificity for spinal infection. The imaging appearances of spinal infection in MRI are outlined, and imaging techniques are discussed. The problems of clinical diagnosis are outlined. There is some emphasis on the MRI differentiation of pyogenic and nonpyogenic infection and on the differential diagnosis of spinal infection centered on the imaging presentation.
Caronni, Antonio; Sciumè, Luciana; Donzelli, Sabrina; Zaina, Fabio; Negrini, Stefano
2017-09-01
Spinal deformities are commonly associated with poor health-related quality of life (HRQOL). Several questionnaires (eg, Scoliosis Research Society-24 [SRS-24] and Scoliosis Research Society-22 [SRS-22]) have been developed to evaluate HRQOL in these conditions. In adults as well as during growth, the HRQOL is considered one of the most relevant outcomes of both conservative and surgical treatments. Rasch analysis is a powerful statistical technique for developing high-quality and valid questionnaires. The SRS-24 and SRS-22 have been evaluated using the Rasch analysis but showed poor measurement properties. Thus, a proper measure of HRQOL in people with a spine condition is still missing. This study aimed to develop a new questionnaire that is totally Rasch consistent for measuring the HRQOL in young people with a spine condition. This is a cross-sectional study for developing a new HRQOL measure. A total of 402 participants with adolescent idiopathic scoliosis or Scheuermann juvenile kyphosis were included in the study. The outcome measure used was the Italian Spine Youth Quality of Life (ISYQOL) questionnaire. The study consisted of different stages: a conventional approach content analysis, an opinion poll among clinicians trained in spine deformities, and the Rasch analysis (partial credit model). The Rasch analysis showed that all items of the ISYQOL questionnaire had ordered thresholds and a good fit to the model. Differential item functioning was present for Item 1, with bracing only, and was solved with a conventional items splitting procedure. The ISYQOL item map spans an adequate range of HRQOL. The principal component analysis for Rasch residuals showed, in practical terms, the ISYQOL unidimensionality. The reliability of ISYQOL was high enough so that approximately three significantly different levels of HRQOL could be discerned. Two questionnaire versions were provided for patients with and without the brace, respectively. ISYQOL is the first HRQOL questionnaire developed according to the Rasch analysis. It was developed in a conservative treatment setting for all types of spinal deformities, including also patients with surgical curves. Validation in many languages is already under way. Copyright © 2017 Elsevier Inc. All rights reserved.
Drinking Patterns, Drinking Expectancies, and Coping after Spinal Cord Injury.
ERIC Educational Resources Information Center
Heinemann, Allen W.; And Others
1994-01-01
Drinking patterns, alcohol expectancies, and coping strategies were assessed for 121 persons with recent spinal cord injuries during hospitalization, 3 months after surgery, and 12 months after surgery. Although the rate of heavy drinking decreased, preinjury problem drinkers still had the lowest rate of positive reappraisal, problem solving, and…
Yeap, P L; Noble, D J; Harrison, K; Bates, A M; Burnet, N G; Jena, R; Romanchikova, M; Sutcliffe, M P F; Thomas, S J; Barnett, G C; Benson, R J; Jefferies, S J; Parker, M A
2017-07-12
To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is [Formula: see text], and the median DBC is ([Formula: see text]) mm. An intra-observer comparison for the same scans gives a median CI of [Formula: see text] and a DBC of ([Formula: see text]) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.
Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J
2016-02-01
Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (p<0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeap, P. L.; Noble, D. J.; Harrison, K.; Bates, A. M.; Burnet, N. G.; Jena, R.; Romanchikova, M.; Sutcliffe, M. P. F.; Thomas, S. J.; Barnett, G. C.; Benson, R. J.; Jefferies, S. J.; Parker, M. A.
2017-08-01
To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is 0.759 +/- 0.003 , and the median DBC is (0.87 +/- 0.01 ) mm. An intra-observer comparison for the same scans gives a median CI of 0.820 +/- 0.002 and a DBC of (0.64 +/- 0.01 ) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.
Physical examination in adolescent idiopathic scoliosis.
Diab, Mohammad
2007-04-01
The following distinguish the physical examination in scoliosis: it is extensive, it is revealing, and it influences treatment. Throughout this discussion, reference frequently is made to evaluation for underlying neural disease. Idiopathic scoliosis is a diagnosis of exclusion, and a neural etiology of spinal deformity must be ruled out in every case.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-18
... regarding the classification of posterior cervical screws, including pedicle and lateral mass screws. Cervical pedicle and lateral mass screws are components of rigid, posterior spinal screw and rod systems... neck pain confirmed by radiographic studies), trauma, deformity, failed previous fusion, tumor...
Isis: Integrated Shape Imaging System (Oxford Metrics Ltd.) A New System For Follow-Up Of Scoliosis.
NASA Astrophysics Data System (ADS)
Van Poucke, M.; Boone, P.; Vercauteren, M.
1986-07-01
ISIS is a non-invasive optical method for obtaining topographical data of the human back shape. It is used for the follow-up of scoliosis (spinal deformity). Using the ISIS, the number of x-ray photographs can be reduced in the scoliosis clinics.
Spinal cord injuries among paragliders in Norway.
Rekand, T; Schaanning, E E; Varga, V; Schattel, U; Gronning, M
2008-06-01
A national retrospective descriptive study. To study the clinical effects of spinal cord injuries (SCIs) caused by paragliding accidents in Norway. Spinal cord units at Haukeland University Hospital, Sunnaas Rehabilitation Hospital and St Olav Hospital in Norway. We studied the medical files for nine patients with SCI caused by paragliding accidents to evaluate the circumstances of the accidents, and clinical effects of injury. We obtained the data from hospital patient files at all three spinal units in Norway and crosschecked them through the Norwegian Paragliding Association's voluntary registry for injuries. All patients were hospitalized from 1997 to 2006, eight men and one woman, with mean age 30.7 years. The causes of the accidents were landing problems combined with unexpected wind whirls, technical problems and limited experience with unexpected events. All patients contracted fractures in the thoracolumbal junction of the spine, most commonly at the L1 level. At clinical follow-up, all patients presented clinically incomplete SCI (American Spinal Injury Association impairment scores B-D). Their main health problems differed widely, ranging from urinary and sexual disturbances to neuropathic pain and loss of motor functioning. Only three patients returned to full-time employment after rehabilitation. Paragliding accidents cause spinal fractures predominantly in the thoracolumbal junction with subsequent SCIs and increased morbidity. All patients experienced permanent health problems that influenced daily activities and required long-time clinical follow-up and medical intervention. Better education in landing techniques and understanding of aerodynamics may reduce the risk of paragliding accidents.
Volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity
Moal, Bertrand; Bronsard, Nicolas; Raya, José G; Vital, Jean Marc; Schwab, Frank; Skalli, Wafa; Lafage, Virginie
2015-01-01
AIM: To investigate fat infiltration and volume of spino-pelvic muscles in adults spinal deformity (ASD) with magnetic resonance imaging (MRI) and 3D reconstructions. METHODS: Nineteen female ASD patients (mean age 60 ± 13) were included prospectively and consecutively and had T1-weighted Turbo Spin Echo sequence MRIs with Dixon method from the proximal tibia up to T12 vertebra. The Dixon method permitted to evaluate the proportion of fat inside each muscle (fat-water ratio). In order to investigate the accuracy of the Dixon method for estimating fat vs water, the same MRI acquisition was performed on phantoms of four vials composed of different proportion of fat vs water. With Muscl’X software, 3D reconstructions of 17 muscles or group of muscles were obtained identifying the muscle’s contour on a limited number of axial images [Deformation of parametric specific objects (DPSO) Method]. Musclar volume (Vmuscle), infiltrated fat volume (Vfat) and percentage of fat infiltration [Pfat, calculated as follow: Pfat = 100 × (Vfat/Vmuscle)] were characterized by extensor or flexor function respectively for the spine, hip and knee and theirs relationship with demographic data were investigated. RESULTS: Phantom acquisition demonstrated a non linear relation between Dixon fat-water ratio and the real fat-water ratio. In order to correct the Dixon fat-water ratio, the non linear relation was approximated with a polynomial function of degree three using the phantom acquisition. On average, Pfat was 13.3% ± 5.3%. Muscles from the spinal extensor group had a Pfat significantly greater than the other muscles groups, and the largest variability (Pfat = 31.9% ± 13.8%, P < 0.001). Muscles from the hip extensor group ranked 2nd in terms of Pfat (14% ± 8%), and were significantly greater than those of the knee extensor (P = 0.030). Muscles from the knee extensor group demonstrated the least Pfat (12% ± 8%). They were also the only group with a significant correlation between Vmuscle and Pfat (r = -0.741, P < 0.001), however this correlation was lacking in the other groups. No correlation was found between the Vmuscle total and age or body mass index. Except for the spine flexors, Pfat was correlated with age. Vmuscle and Vfat distributions demonstrated that muscular degeneration impacted the spinal extensors most. CONCLUSION: Mechanisms of fat infiltration are not similar among the muscle groups. Degeneration impacted the spinal and hip extensors most, key muscles of the sagittal alignment. PMID:26495250
Spine Day 2012: spinal pain in Swiss school children- epidemiology and risk factors.
Wirth, Brigitte; Knecht, Christina; Humphreys, Kim
2013-10-05
The key to a better understanding of the immense problem of spinal pain seems to be to investigate its development in adolescents. Based on the data of Spine Day 2012 (an annual action day where Swiss school children were examined by chiropractors on a voluntary basis for back problems), the aim of the present study was to gain systematic epidemiologic data on adolescent spinal pain in Switzerland and to explore risk factors per gender and per spinal area. Data (questionnaires and physical examinations) of 836 school children were descriptively analyzed for prevalence, recurrence and severity of spinal pain. Of those, 434 data sets were included in risk factor analysis. Using logistic regression analysis, psycho-social parameters (presence of parental back pain, parental smoking, media consumption, type of school bag) and physical parameters (trunk symmetry, posture, mobility, coordination, BMI) were analyzed per gender and per spinal area. Prevalence of spinal pain was higher for female gender in all areas apart from the neck. With age, a steep increase in prevalence was observed for low back pain (LBP) and for multiple pain sites. The increasing impact of spinal pain on quality of life with age was reflected in an increase in recurrence, but not in severity of spinal pain. Besides age and gender, parental back pain (Odds ratio (OR)=3.26, p=0.011) and trunk asymmetry (OR=3.36, p=0.027) emerged as risk factors for spinal pain in girls. Parental smoking seemed to increase the risk for both genders (boys: OR=2.39, p=0.020; girls: OR=2.19, p=0.051). Risk factor analysis per spinal area resulted in trunk asymmetry as risk factor for LBP (OR=3.15, p=0.015), while parental smoking increased the risk for thoracic spinal pain (TSP) (OR=2.83, p=0.036) and neck pain (OR=2.23, p=0.038). The risk for TSP was further enhanced by a higher BMI (OR=1.15, p=0.027). This study supports the view of adolescent spinal pain as a bio-psycho-social problem that should be investigated per spinal area, age and gender. The role of trunk asymmetry and passive smoking as risk factors as well as the association between BMI and TSP should be further investigated, preferably in prospective studies.
Clinical, Genetic and Environmental Factors Associated with Congenital Vertebral Malformations
Giampietro, P.F.; Raggio, C.L.; Blank, R.D.; McCarty, C.; Broeckel, U.; Pickart, M.A.
2013-01-01
Congenital vertebral malformations (CVM) pose a significant health problem because they can be associated with spinal deformities, such as congenital scoliosis and kyphosis, in addition to various syndromes and other congenital malformations. Additional information remains to be learned regarding the natural history of congenital scoliosis and related health problems. Although significant progress has been made in understanding the process of somite formation, which gives rise to vertebral bodies, there is a wide gap in our understanding of how genetic factors contribute to CVM development. Maternal diabetes during pregnancy most commonly contributes to the occurrence of CVM, followed by other factors such as hypoxia and anticonvulsant medications. This review highlights several emerging clinical issues related to CVM, including pulmonary and orthopedic outcome in congenital scoliosis. Recent breakthroughs in genetics related to gene and environment interactions associated with CVM development are discussed. The Klippel-Feil syndrome which is associated with cervical segmentation abnormalities is illustrated as an example in which animal models, such as the zebrafish, can be utilized to provide functional evidence of pathogenicity of identified mutations. PMID:23653580
Management of chronic spinal cord dysfunction.
Abrams, Gary M; Ganguly, Karunesh
2015-02-01
Both acute and chronic spinal cord disorders present multisystem management problems to the clinician. This article highlights key issues associated with chronic spinal cord dysfunction. Advances in symptomatic management for chronic spinal cord dysfunction include use of botulinum toxin to manage detrusor hyperreflexia, pregabalin for management of neuropathic pain, and intensive locomotor training for improved walking ability in incomplete spinal cord injuries. The care of spinal cord dysfunction has advanced significantly over the past 2 decades. Management and treatment of neurologic and non-neurologic complications of chronic myelopathies ensure that each patient will be able to maximize their functional independence and quality of life.
[Therapeutic algorithm of idiopathic scoliosis in children].
Ciortan, Ionica; Goţia, D G
2008-01-01
Acquired deformations of spinal cord (scoliosis, kyphosis, lordosis) represent a frequent pathology in child; their treatment is complex, with variable results which depend on various parameters. Mild scoliosis, with an angle less than 30 degrees, is treated with physiotherapy and regular follow-up. If the angle is higher than 30 degrees, the orthopedic corset is required; the angle over 45 degrees impose surgically correction. The indications of every therapeutic method depend on many factors, the main target of the treatment is to prevent the aggravation of the curvature; concerning the surgery, the goal is to obtain a correction as normal as possible of the spinal axis.
Théroux, Jean; Le May, Sylvie; Hebert, Jeffrey J; Labelle, Hubert
2017-08-01
A cross-sectional study. The aim of this study was to investigate spinal pain prevalence in adolescents with idiopathic scoliosis (AIS) and to explore associations between pain intensity and pain-related disability with scoliosis site, severity, and spinal bracing. The causal link between spinal pain and AIS remains unclear. Spinal asymmetry has been recognized as a back pain risk factor, which is a known cause of care-seeking in adolescents. Participants were recruited from an outpatient tertiary-care scoliosis clinic. Pain intensity and pain-related disability were measured by the Brief Pain Inventory questionnaire and the Roland-Morris Disability Questionnaire. Scoliosis severity estimation was performed using Cobb angles. Associations were explored using multiple linear regressions and reported with unstandardized beta coefficients (β) adjusted for age and sex. We recruited 500 patients (85% female) with mean (SD) age of 14.2 (1.8) years. Means (SD) of thoracic and lumbar Cobb angle were 24.54(9.77) and 24.13 (12.40), respectively. Spinal pain prevalence was 68% [95% confidence interval (95% CI): 64.5-72.4] with a mean intensity of 1.63 (SD, 1.89). Spinal pain intensity was positively associated with scoliosis severity in the main thoracic (P = 0.003) and lumbar (P = 0.001) regions. The mean (SD) disability score was 1.73 (2.98). Disability was positively associated with scoliosis severity in the proximal thoracic (P = 0.035), main thoracic (P = 0.000), and lumbar (P = 0.000) regions.Spinal bracing was associated with lower spinal pain intensity in the thoracic (P = 0.000) and lumbar regions (P = 0.009). Bracing was also related with lower disability for all spinal areas (P < 0.045). Spinal pain is common among patients with AIS, and greater spinal deformity was associated with higher pain intensity. These findings should inform clinical decision-making when caring for patients with AIS. 3.
Analysis of role of bone compliance on mechanics of a lumbar motion segment.
Shirazi-Adl, A
1994-11-01
A large deformation elasto-static finite element formulation is developed and used for the determination of the role of bone compliance in mechanics of a lumbar motion segment. This is done by simulating each vertebra as a deformable body with realistic material properties, as a deformable body with stiffer or softer mechanical properties, as a single rigid body, or finally as two rigid bodies attached by deformable beams. The single loadings of axial compression, flexion moment, extension moment, and axial torque are considered. The results indicate the marked effect of alteration in bone material properties on biomechanics of lumbar segments specially under larger loads. The biomechanical studies of the lumbar spine should, therefore, be performed and evaluated in the light of such dependency. A model for bony vertebrae is finally proposed that preserves both the accuracy and the cost-efficiency in nonlinear finite element analyses of spinal multi-motion segment systems.
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Vavruch, Ludvig; Tropp, Hans; Knutsson, Hans
2013-03-01
Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro-Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971-0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method.
NASA Astrophysics Data System (ADS)
Buendía, M.; Salvador, R.; Cibrián, R.; Laguia, M.; Sotoca, J. M.
1999-01-01
The projection of structured light is a technique frequently used to determine the surface shape of an object. In this paper, a new procedure is described that efficiently resolves the correspondence between the knots of the projected grid and those obtained on the object when the projection is made. The method is based on the use of three images of the projected grid. In two of them the grid is projected over a flat surface placed, respectively, before and behind the object; both images are used for calibration. In the third image the grid is projected over the object. It is not reliant on accurate determination of the camera and projector pair relative to the grid and object. Once the method is calibrated, we can obtain the surface function by just analysing the projected grid on the object. The procedure is especially suitable for the study of objects without discontinuities or large depth gradients. It can be employed for determining, in a non-invasive way, the patient's back surface function. Symmetry differences permit a quantitative diagnosis of spinal deformities such as scoliosis.
Weiss, Hans-Rudolf; Chockalingam, Nachiappan; Kandasamy, Gokulakannan; Arnell, Tracey
2016-01-01
Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spine which is usually not symptomatic and which can progress during growth and cause a surface deformity. In adulthood, if the final spinal curvature surpasses a certain critical threshold, the risk of health problems and curve progression is increased. Although surgery is usually recommended for curvatures exceeding 40° to 50° to stop curvature progression, recent reviews have shed some light on the long-term complications of such surgery and to the lack of evidence for such complicated procedures within the scientific literature. Furthermore, a number of patients are very fearful of having surgery and refuse this option or live in countries where specialist scoliosis surgery is not available. Other patients may be unable to afford the cost of specialist scoliosis surgery. For these patients the only choice is an alternative non-surgical treatment option. To examine the impact of different management options in patients with severe AIS, with a focus on trunk balance, progression of scoliosis, cosmetic issues, quality of life, disability, psychological issues, back pain, and adverse effects, at both the short-term (a few months) and the long-term (over 20 years). We searched CENTRAL, MEDLINE, EMBASE, CINHAL and two other databases up to January 2016 with no language limitations. We also checked the reference lists of relevant articles and conducted an extensive hand search of the grey literature. We searched for randomised controlled trials as well as prospective and retrospective controlled trials comparing spinal fusion surgery with no treatment or conservative treatment in AIS patients with a Cobb angle greater than 40°. We did not identify any evidence of superiority of effectiveness of operative compared to nonoperative interventions for patients with severe AIS. Within the present literature there is no clear evidence to suggest that a specific type of treatment is superior to other types of treatment. PMID:27994796
Schultz, Randall; Steven, Andrew; Wessell, Aaron; Fischbein, Nancy; Sansur, Charles A; Gandhi, Dheeraj; Ibrahimi, David; Raghavan, Prashant
2017-06-01
OBJECTIVE Dorsal arachnoid webs (DAWs) and spinal cord herniation (SCH) are uncommon abnormalities affecting the thoracic spinal cord that can result in syringomyelia and significant neurological morbidity if left untreated. Differentiating these 2 entities on the basis of clinical presentation and radiological findings remains challenging but is of vital importance in planning a surgical approach. The authors examined the differences between DAWs and idiopathic SCH on MRI and CT myelography to improve diagnostic confidence prior to surgery. METHODS Review of the picture archiving and communication system (PACS) database between 2005 and 2015 identified 6 patients with DAW and 5 with SCH. Clinical data including demographic information, presenting symptoms and neurological signs, and surgical reports were collected from the electronic medical records. Ten of the 11 patients underwent MRI. CT myelography was performed in 3 patients with DAW and in 1 patient with SCH. Imaging studies were analyzed by 2 board-certified neuroradiologists for the following features: 1) location of the deformity; 2) presence or absence of cord signal abnormality or syringomyelia; 3) visible arachnoid web; 4) presence of a dural defect; 5) nature of dorsal cord indentation (abrupt "scalpel sign" vs "C"-shaped); 6) focal ventral cord kink; 7) presence of the nuclear trail sign (endplate irregularity, sclerosis, and/or disc-space calcification that could suggest a migratory path of a herniated disc); and 8) visualization of a complete plane of CSF ventral to the deformity. RESULTS The scalpel sign was positive in all patients with DAW. The dorsal indentation was C-shaped in 5 of 6 patients with SCH. The ventral subarachnoid space was preserved in all patients with DAW and interrupted in cases of SCH. In no patient was a web or a dural defect identified. CONCLUSIONS DAW and SCH can be reliably distinguished on imaging by scrutinizing the nature of the dorsal indentation and the integrity of the ventral subarachnoid space at the level of the cord deformity.
Thoracic Spine Growth Revisited: How Accurate Is the Dimeglio Data?
Dede, Ozgur; Büyükdoğan, Kadir; Demirkıran, Halil Gökhan; Akpınar, Erhan; Yazici, Muharrem
2017-06-15
Cross-sectional descriptive study. To describe the normal rate pattern of thoracic spine growth in children without any spinal deformity. The knowledge of thoracic spine growth and height is important for growing spine treatment and the decision of final fusion. Currently, pediatric spinal deformity is approached as early onset and late onset with an understanding of the fast growth during the first 5 years of life. The growth data that support this classification is often cited but has not been reconfirmed with follow-up studies. Sagittal computed tomography (CT) reformations of thoracic vertebrae were examined in children without spinal deformity. The sagittal CT cut at the widest canal diameter was identified and the measurements were performed on this image. The length of the thoracic spine was measured from the posterosuperior corner of T1 to the posteroinferior corner of the T12. One hundred forty-four thoracic CT scans satisfied the inclusion criteria. The analysis of the data identified two break points in the growth velocity; one at the end of the 4th year of life and the other at the beginning of the 12th year. Specifically, growth rate between 1 and 4 years was 1.71 cm/yr, between 4 and 8 years was 0.55 cm/yr, between 8 and 10 was 0.74 cm/yr, between 10 and 12 was 0.69 cm/yr, and between 12 and 16 was 1.61 cm/yr. The results show that in growing children the thoracic spine demonstrates two major growth spurts. The initial growth spurt is between the birth to the end of the fourth year of life and the second is between the 12 and 16 years of age. Between 4 and 12 years there is a steady but slower increase in thoracic height. The findings show that the fastest growth velocity may be limited to a younger age group than previously believed. This data will help guide growth friendly management strategies. 2.
Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S
2007-11-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests.
Arima, Hideyuki; Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Yoshida, Go; Yasuda, Tatsuya; Banno, Tomohiro; Oe, Shin; Mihara, Yuki; Togawa, Daisuke; Matsuyama, Yukihiro
2017-10-01
Longitudinal cohort. The present study aimed to document changes in posture and lower extremity kinematics during gait in patients with adult spinal deformity (ASD) after extensive corrective surgery. Standing radiographic parameters are typically used to evaluate patients with ASD. Previously, preoperative walking and standing posture discrepancy were reported in patients with ASD. We did not include comparison between before and after surgery. Therefore, we thought that pre- and postoperative evaluations for patients with ASD should include gait analysis. Thirty-nine patients with ASD (5 men, 34 women; mean age, 71.0 ± 6.1) who underwent posterior corrective fixation surgeries from the thoracic spine to the pelvis were included. A 4-m walk was recorded and analyzed. Sagittal balance while walking was calculated as the angle between the plumb line on the side and the line connecting the greater trochanter and pinna while walking (i.e., the gait-trunk tilt angle [GTA]). We measured maximum knee extension angle during one gait cycle, step length (cm), and walking speed (m/min). Radiographic parameters were also measured. The mean GTA and the mean maximum knee extension angle significantly improved from 13.4° to 6.4°, and -13.3° to -9.4°(P < 0.001 and P = 0.006), respectively. The mean step length improved from 40.4 to 43.1 cm (P = 0.049), but there was no significant change in walking speed (38.4 to 41.5 m/min, P = 0.105). Postoperative GTA, maximum knee extension angle and step length correlated with postoperative pelvic incidence minus lumbar lordosis (r = 0.324, P = 0.044; r = -0.317, P = 0.049; r = -0.416, P = 0.008, respectively). Our results suggest that postoperative posture, maximum knee extension angle, and step length during gait in patients with ASD improved corresponding to how much correction of the sagittal spinal deformity was achieved. 3.
Cochran, John E.; King, Dottie; Burke, Donald S.
2007-01-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (Fz, My) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted (“dived into”) the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2–13% of peak neck loads in all three tests. “Diving-type” neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975
Principles of management of osteometabolic disorders affecting the aging spine.
Hadjipavlou, Alexander G; Katonis, Paul G; Tzermiadianos, Michael N; Tsoukas, George M; Sapkas, George
2003-10-01
Osteoporosis is the most common contributing factor of spinal fractures, which characteristically are not generally known to produce spinal cord compression symptoms. Recently, an increasing number of medical reports have implicated osteoporotic fractures as a cause of serious neurological deficit and painful disabling spinal deformities. This has been corroborated by the present authors as well. These complications are only amenable to surgical management, requiring instrumentation. Instrumenting an osteoporotic spine, although a challenging task, can be accomplished if certain guidelines for surgical techniques are respected. Neurological deficits respond equally well to an anterior or posterior decompression, provided this is coupled with multisegmental fixation of the construct. With the steady increase in the elderly population, it is anticipated that the spine surgeon will face serious complications of osteoporotic spines more frequently. With regard to surgery, however, excellent correction of deformities can be achieved, by combining anterior and posterior approaches. Paget's disease of bone (PD) is a non-hormonal osteometabolic disorder and the spine is the second most commonly affected site. About one-third of patients with spinal involvement exhibit symptoms of clinical stenosis. In only 12-24% of patients with PD of the spine is back pain attributed solely to PD, while in the majority of patients, back pain is either arthritic in nature or a combination of a pagetic process and coexisting arthritis. In this context, one must be certain before attributing low back pain to PD exclusively, and antipagetic medical treatment alone may be ineffective. Neural element dysfunction may be attributed to compressive myelopathy by pagetic bone overgrowth, pagetic intraspinal soft tissue overgrowth, ossification of epidural fat, platybasia, spontaneous bleeding, sarcomatous degeneration and vertebral fracture or subluxation. Neural dysfunction can also result from spinal ischemia when blood is diverted by the so-called "arterial steal syndrome". Because the effectiveness of pharmacologic treatment for pagetic spinal stenosis has been clearly demonstrated, surgical decompression should only be instituted after failure of antipagetic medical treatment. Surgery is indicated as a primary treatment when neural compression is secondary to pathologic fractures, dislocations, spontaneous epidural hematoma, syringomyelia, platybasia, or sarcomatous transformation. Five classes of drugs are available for the treatment of PD. Bisphosphonates are the most popular antipagetic drug and several forms have been investigated.
Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Narita, Kengo; Şen, Mustafa; Shiku, Hitoshi; Matsue, Tomokazu
2015-01-01
In this study, various amounts of oxygen were added to Ti-10Cr (mass%) alloys. It is expected that a large changeable Young's modulus, caused by a deformation-induced ω-phase transformation, can be achieved in Ti-10Cr-O alloys by the appropriate oxygen addition. This "changeable Young's modulus" property can satisfy the otherwise conflicting requirements for use in spinal implant rods: high and low moduli are preferred by surgeons and patients, respectively. The influence of oxygen on the microstructures and mechanical properties of the alloys was examined, as well as the bending springback and cytocompatibility of the optimized alloy. Among the Ti-10Cr-O alloys, Ti-10Cr-0.2O (mass%) alloy shows the largest changeable Young's modulus following cold rolling for a constant reduction ratio. This is the result of two competing factors: increased apparent β-lattice stability and decreased amounts of athermal ω phase, both of which are caused by oxygen addition. The most favorable balance of these factors for the deformation-induced ω-phase transformation occurred at an oxygen concentration of 0.2mass%. Ti-10Cr-0.2O alloy not only exhibits high tensile strength and acceptable elongation, but also possesses a good combination of high bending strength, acceptable bending springback and great cytocompatibility. Therefore, Ti-10Cr-0.2O alloy is a potential material for use in spinal fixture devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Towards an affordable deep learning system: automated intervertebral disc detection in x-ray images
NASA Astrophysics Data System (ADS)
Sa, Ruhan; Owens, William; Wiegand, Raymond; Chaudhary, Vipin
2017-03-01
Adult Spinal Deformity is a prominent medical issue with about 68% of the elderly population suffering from the disease.1 Detailed biomechanical assessment is needed both in the presurgical planning of structural spinal deformity as well as in early functional biomechanical compensation in ambulatory spinal pain patients. When considering automation of this process, we have to look at photographic intervertebral disc detection technique as a way to produce a detailed model of the spine with appropriate measurements required to make efficient and accurate decisions on patient care. Deep convolutional neural network (CNN) has given remarkable results in object recognition tasks in recent years. However, massive training data, computational resources and long training time is needed for both training a deep network from scratch or finetuning a network. Using pretrained model as feature extractor has shown promising result for moderate sized medical data.2 However, most work have extracted features from the last layer and little has been explored in terms of the number of convolutional layers needed for best performance. In this work we trained Support Vector Machine (SVM) classifiers on different layers of CaffeNet3 features to show that deeper the better concept does not hold for task such as intervertebral disc detection. Furthermore, our experimental results show the potential of using very small training data, such as 15 annotated medical images in our experiment, to yield satisfactory classification performance with accuracy up to 97.2%.
2011-01-01
Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-based medical therapy for AIS cannot be assessed at present, and must await new research derived from the evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis. PMID:22136338
Safaee, Michael M; Dalle Ore, Cecilia L; Zygourakis, Corinna C; Deviren, Vedat; Ames, Christopher P
2018-05-01
OBJECTIVE Proximal junctional kyphosis (PJK) is a well-recognized complication of surgery for adult spinal deformity and is characterized by increased kyphosis at the upper instrumented vertebra (UIV). PJK prevention strategies have the potential to decrease morbidity and cost by reducing rates of proximal junctional failure (PJF), which the authors define as radiographic PJK plus clinical sequelae requiring revision surgery. METHODS The authors performed an analysis of 195 consecutive patients with adult spinal deformity. Age, sex, levels fused, upper instrumented vertebra (UIV), use of 3-column osteotomy, pelvic fixation, and mean time to follow-up were collected. The authors also reviewed operative reports to assess for the use of surgical adjuncts targeted toward PJK prevention, including ligament augmentation, hook fixation, and vertebroplasty. The cost of surgery, including direct and total costs, was also assessed at index surgery and revision surgery. Only revision surgery for PJF was included. RESULTS The mean age of the cohort was 64 years (range 25-84 years); 135 (69%) patients were female. The mean number of levels fused was 10 (range 2-18) with the UIV as follows: 2 cervical (1%), 73 upper thoracic (37%), 108 lower thoracic (55%), and 12 lumbar (6%). Ligament augmentation was used in 99 cases (51%), hook fixation in 60 cases (31%), and vertebroplasty in 71 cases (36%). PJF occurred in 18 cases (9%). Univariate analysis found that ligament augmentation and hook fixation were associated with decreased rates of PJF. However, in a multivariate model that also incorporated age, sex, and UIV, only ligament augmentation maintained a significant association with PJF reduction (OR 0.196, 95% CI 0.050-0.774; p = 0.020). Patients with ligament augmentation, compared with those without, had a higher cost of index surgery, but ligament augmentation was overall cost effective and produced significant cost savings. In sensitivity analyses in which we independently varied the reduction in PJF, cost of ligament augmentation, and cost of reoperation by ± 50%, ligament augmentation remained a cost-effective strategy for PJF prevention. CONCLUSIONS Prevention strategies for PJK/PJF are limited, and their cost-effectiveness has yet to be established. The authors present the results of 195 patients with adult spinal deformity and show that ligament augmentation is associated with significant reductions in PJF in both univariate and multivariate analyses, and that this intervention is cost-effective. Future studies will need to determine if these clinical results are reproducible, but for high-risk cases, these data suggest an important role of ligament augmentation for PJF prevention and cost savings.
[Larsen syndrome: two reports of cases with spinal cord compromise].
Martín Fernández-Mayoralas, D; Fernández-Jaén, A; Muñoz-Jareño, N; Calleja-Pérez, B; San Antonio-Arce, V; Martínez-Boniche, H
Larsen syndrome is characterised by untreatable congenital dislocation of multiple body joints, along with marked foot deformities. These patients have a flattened face with a short nose, a broad depressed nasal bridge and a prominent forehead. In this clinical note our aim is to report two cases that coursed with spinal cord compromise. Case 1: an 18-month-old female with congenital dislocation of knees and hips. The patient had a flat face, sunken root of nose, and carp mouth. Magnetic resonance imaging of the spine showed severe cervical kyphosis secondary to malformation and hypoplasia of the cervical vertebral bodies and important compression of the spinal cord. Clinically, there were also signs of upper motor neuron syndrome, which was especially prominent in the lower limbs. Case 2: a 14-year-old male with a characteristic face and dislocation of the head of the radius. The patient presented amyotrophy of the muscles in the right hand and clinical signs of lower motor neuron syndrome due to neuronal damage secondary to spinal malformations. Larsen syndrome is an infrequent osteochondrodysplasia. Alteration of the spine is common and may give rise to spinal cord compression with varying clinical repercussions which require surgical treatment in the early years of the patient's life.
Kyphectomy improves sitting and skin problems in patients with myelomeningocele.
Garg, Sumeet; Oetgen, Matthew; Rathjen, Karl; Richards, B Stephens
2011-05-01
Progressive kyphosis occurs in up to 20% of patients with myelomeningocele. Severely affected patients can develop recurrent skin breakdown, osteomyelitis, sitting imbalance, and poor cosmetic appearance. We (1) assessed the ability of kyphectomy to restore an intact skin envelope and allow comfortable seating in a wheelchair; (2) reviewed the complications of kyphectomy and spinal fusion in myelomeningocele; and (3) determined whether patients requiring unexpected reoperation had worse correction or more ulceration compared with those patients treated with a single surgery. We retrospectively reviewed the records of 23 children with thoracic-level myelomeningocele who were treated with kyphectomy and spinal fusion since 1980. Indications for surgery included recurrent skin breakdown (15 patients) and poor sitting balance or unacceptable cosmetic deformity (three patients). We evaluated operative technique, type of sacropelvic fixation, surgical complications, radiographic correction, and skin condition at followup. The minimum followup was 2 years (median, 4.1 years; range, 2.1-10 years); 18 of the 23 children had greater than 2 years followup and are reported here. Kyphectomy achieved a sitting balance and resolved in skin ulceration in 17 of 18 patients. Seven patients had complications requiring reoperation. Three patients had multiple reoperations for early deep infection and one patient each had reoperation for late infection, pseudarthrosis, implant-related sacral pressure sore, and planned extension of proximal fusion after growth. Patients requiring multiple operations had similar correction and relief of ulceration to those treated with a single procedure. Complications after kyphectomy are frequent and many children with myelomeningocele and severe hyperkyphosis require multiple procedures and lengthy hospital stays. Nonetheless, improved seating balance and resolution of skin problems was achieved in 17 of 18 patients.
Bartlett, Richard D; Choi, David; Phillips, James B
2016-10-01
Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering.
Spinal sagittal contour affecting falls: cut-off value of the lumbar spine for falls.
Ishikawa, Yoshinori; Miyakoshi, Naohisa; Kasukawa, Yuji; Hongo, Michio; Shimada, Yoichi
2013-06-01
Spinal deformities reportedly affect postural instability or falls. To prevent falls in clinical settings, the determination of a cut-off angle of spinal sagittal contour associated with increase risk for falls would be useful for screening for high-risk fallers. The purpose of this study was to calculate the spinal sagittal contour angle associated with increased risk for falls during medical checkups in community dwelling elders. The subjects comprised 213 patients (57 men, 156 women) with a mean age of 70.1 years (range, 55-85 years). The upright and flexion/extension thoracic kyphosis and lumbar lordosis angles, and the spinal inclination were evaluated with SpinalMouse(®). Postural instability was evaluated by stabilometry, using the total track length (LNG), enveloped areas (ENV), and track lengths in the lateral and anteroposterior directions (X LNG and Y LNG, respectively). The back extensor strength (BES) was measured using a strain-gauge dynamometer. The relationships among the parameters were analyzed statistically. Age, lumbar lordosis, spinal inclination, LNG, X LNG, Y LNG, and BES were significantly associated with falls (P<0.05). Multivariate logistic regression analyses revealed that lumbar lordosis was the most significant factor (P<0.01). Univariate logistic regression analyses for falls about lumbar lordosis angles revealed that angles of 3° and less were significant for falls. The present findings suggest that increased age, spinal inclination, LNG, X LNG, Y LNG, and decreased BES and lumbar lordosis, are associated with falls. An angle of lumbar lordosis of 3° or less was associated with falls in these community-dwelling elders. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.
1984-01-01
The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.
Albert, Michael C; LaFleur, Brett C
2015-03-01
Segmental spinal instrumentation with Luque wire fixation has been the standard treatment of neuromuscular scoliosis for >30 years. More recently, pedicle screw constructs have become the most widely utilized method of posterior spinal fixation; however, they are associated with complications such as implant malposition. We report the use of polyester bands and clamps utilized with pedicle screws in a hybrid fixation construct in the treatment of neuromuscular scoliosis. A retrospective review was conducted of 115 pediatric spinal deformity cases between 2008 and 2010 at a single center performed by a single surgeon. Intraoperative and postoperative complications were recorded. Radiographs were reviewed preoperatively and at the latest follow-up. A systematic review of the literature was conducted. Data from case series reporting outcomes of sublaminar wires and all-pedicle screw constructs in the treatment of neuromuscular scoliosis were compared with outcomes of the present study. Twenty-nine patients with neuromuscular scoliosis who underwent segmental spinal instrumentation with a hybrid construct including sublaminar bands and pedicle screws were included. There was an average follow-up of 29 months (range, 12 to 40 mo). The average postoperative correction of coronal balance was 69% (range, 24 to 71 degrees). Sagittal balance was corrected to within 2 cm of the C7 plumbline in 97% of patients. The loss of coronal and sagittal correction at latest follow-up was 0% and 2%, respectively. There were 2 intraoperative clamp failures of the 398 implants (0.5%). There were 2 major (6.9%) and 7 minor (24%) complications in 7 patients (24% overall). These results compared favorably to previous case series of sublaminar wire and all-pedicle screw fixation techniques. The polyester band technique is an excellent adjunct in the correction of spinal deformity in patients with neuromuscular scoliosis. Sublaminar bands utilized in a hybrid construct appear to be safe, can achieve corrections equivalent to all-pedicle screw constructs, and may decrease the potential complications associated with every level transpedicular fixation in the patient with a highly dysmorphic and osteoporotic spine. Level IV: cohort study.
Richaud, J; Bousquet, P; Ealet, G; Clamens, J; Beltchika, K; Lazorthes, Y
1990-01-01
The authors present 31 cases of spinal trauma affecting thoraco lumbar level with severe spinal canal stenosis secondary to compressive trauma of the anterior disco-corpereal region. Associated neurological disorders were of varying severity. 23 cases were investigated by computed tomography. In all cases, the surgical procedure involved rectification of spinal deformities, with initially a unilateral postero-lateral approach permitting anterior spinal canal recalibration, either by impaction of protrusive fragments or ablation of free disc fragments. The stabilization was usually achieved by complementary bilateral plates using Roy-Camille or Privat material in 22 cases, associated with postero-lateral arthrodesis by grafting with reconstruction of the articulo-pedicular structure in 19 cases. Emergency operation was done in 14 cases; in 5 cases operation was done on the 2nd or 3rd day and in 11 cases after the 3rd day. The functional spinal result was excellent, and recalibration was verified by tomography in all cases. In those cases showing neurological deficiency, good and early recovery was attributable to the suppression of spinal canal stenosis, and a consequently neurological improvement was always obtained, even for the most serious of lesions except those at the thoracis level superior to T10. The application of this postero-lateral approach for severe spinal trauma seems to represent, in all cases of recent lesions, an alternative to the anterior or combined methods. We do not share the opinion that delay in decompression does not influence the neurological prognosis and emergency operation is advisable.
Spinal fusion in patients with congenital heart disease. Predictors of outcome.
Coran, D L; Rodgers, W B; Keane, J F; Hall, J E; Emans, J B
1999-07-01
The strong association between congenital heart disease and spinal deformity is well established, but data on the risks and outcome of spinal fusion surgery in patients with congenital heart disease are scarce. The purpose of this study was to identify predictors of perioperative risk and outcome in a large series of children and adolescents with congenital heart disease who underwent spinal fusion for scoliosis or kyphosis. In the authors' retrospective analysis of 74 consecutive patients with congenital heart disease undergoing spinal fusion, there were two deaths (2.7%) and 18 significant complications (24.3%) in the perioperative period. Preoperative cyanosis (arterial oxygen saturation < 90% at rest) with uncorrected or incompletely corrected congenital heart disease was associated with both deaths. Complications occurred in nine of 18 (50%) patients with cyanosis and in 11 of 56 (20%) patients without cyanosis. As judged by multivariate analysis the best predictors of perioperative outcome were the overall physical status of the patient as represented by the American Society of Anesthesiologists' preoperative score and a higher rate of intraoperative blood loss. Seventeen of 43 patients (40%) with an American Society of Anesthesiologists score of 3 or higher experienced complications including two perioperative deaths. Successful spinal fusion and correction were achieved in 97% of patients. Children and adolescents with congenital heart disease can undergo elective spinal fusion with risks that relate to overall cardiac status. Careful assessment of preoperative status by pediatric cardiologists and cardiac anesthesiologists familiar with surgical treatment of patients with congenital heart disease will assist the orthopaedic surgeon in providing the most realistic estimate of risk.
Instability in Thoracolumbar Trauma: Is a New Definition Warranted?
Abbasi Fard, Salman; Skoch, Jesse; Avila, Mauricio J; Patel, Apar S; Sattarov, Kamran V; Walter, Christina M; Baaj, Ali A
2017-10-01
Review of the articles. The objective of this study was to review all articles related to spinal instability to determine a consensus statement for a contemporary, practical definition applicable to thoracolumbar injuries. Traumatic fractures of the thoracolumbar spine are common. These injuries can result in neurological deficits, disability, deformity, pain, and represent a great economic burden to society. The determination of spinal instability is an important task for spine surgeons, as treatment strategies rely heavily on this assessment. However, a clinically applicable definition of spinal stability remains elusive. A review of the Medline database between 1930 and 2014 was performed limited to papers in English. Spinal instability, thoracolumbar, and spinal stability were used as search terms. Case reports were excluded. We reviewed listed references from pertinent search results and located relevant manuscripts from these lists as well. The search produced a total of 694 published articles. Twenty-five articles were eligible after abstract screening and underwent full review. A definition for spinal instability was described in only 4 of them. Definitions were primarily based on biomechanical and classification studies. No definitive parameters were outlined to define stability. Thirty-six years after White and Panjabi's original definition of instability, and many classification schemes later, there remains no practical and meaningful definition for spinal instability in thoracolumbar trauma. Surgeon expertise and experience remains an important factor in stability determination. We propose that, at an initial assessment, a distinction should be made between immediate and delayed instability. This designation should better guide surgeons in decision making and patient counseling.
Complications of growth-sparing surgery in early onset scoliosis.
Akbarnia, Behrooz A; Emans, John B
2010-12-01
Review of available literature, authors' opinion. To describe complications associated with growth-sparing surgical treatment of early onset scoliosis (EOS). EOS has many potential etiologies and is often associated with thoracic insufficiency syndrome. The growth of the spine, thorax, and lungs are interrelated, and severe EOS typically involves disturbance of the normal development of all 3. Severe EOS may be treated during growth with surgical techniques, intended to preserve growth while controlling deformity, the most common of which are spinal "growing rods" (GR) or "vertical expandable prosthetic titanium rib" (VEPTR). Although presently popular, there is minimal long-term data on the outcome of growth-sparing surgical techniques on EOS. Review. Potential adverse outcomes of GR or VEPTR treatment of EOS include failure to prevent progressive deformity or thoracic insufficiency syndrome, an unacceptably short or stiff spine or deformed thorax, increased family burden of care, and potentially negative psychological consequences from repeated surgical interventions. Neither technique reliably controls all deformity over the entirety of growth period. Infections are common to both GR and VEPTR. Rod breakage and spontaneous premature spinal fusion beneath rods are troublesome complications in GR, whereas drift of rib attachments and chest wall scarring are anticipated complications in VEPTR treatment. Indications for GR and VEPTR overlap, but thoracogenic scoliosis and severe upper thoracic kyphosis are best treated by VEPTR and GR, respectively. Surgeons planning treatment of EOS should anticipate the many complications common to growth-sparing surgery, share their knowledge with families, and use complications as one factor in the complex decision as to when and whether to initiate the repetitive surgeries associated with GR or VEPTR in the treatment of severe EOS.
Miller, Emily K; Lenke, Lawrence G; Neuman, Brian J; Sciubba, Daniel M; Kebaish, Khaled M; Smith, Justin S; Qiu, Yong; Dahl, Benny T; Pellisé, Ferran; Matsuyama, Yukihiro; Carreon, Leah Y; Fehlings, Michael G; Cheung, Kenneth M; Lewis, Stephen; Dekutoski, Mark B; Schwab, Frank J; Boachie-Adjei, Oheneba; Mehdian, Hossein; Bess, Shay; Shaffrey, Christopher I; Ames, Christopher P
2018-05-14
Analysis of a prospective multicenter database. To assess the ability of the recently created Adult Spinal Deformity (ASD) Frailty Index (ASD-FI) to predict odds of major complications and length of hospital stay for patients who had more severe preoperative deformity and underwent more invasive ASD surgery compared with patients in the database used to create the index. Accurate preoperative estimates of risk are necessary given the high complication rates currently associated with ASD surgery. Patients were enrolled by participating institutions in Europe, Asia, and North America from 2009 to 2011. ASD-FI scores were used to classify 267 patients as not frail (NF) (<0.3), frail (0.3-0. 5), or severely frail (SF) (>0.5). Multivariable logistic regression, adjusted for preoperative and surgical covariates such as operative time and blood loss, was performed to determine the relationship between ASD-FI category and incidence of major complications, overall incidence of complications, and length of hospital stay. The mean ASD-FI score was 0.3 (range, 0-0.7). We categorized 105 patients as NF, 103 as frail, and 59 as SF. The adjusted odds of developing a major complication were higher for SF patients (odds ratio = 4.4; 95% CI 2.0, 9.9) compared with NF patients. After adjusting for covariates, length of hospital stay for SF patients increased by 19% (95% CI 1.4%, 39%) compared with NF patients. The odds of developing a major complication or having increased length of stay were similar between frail and NF patients. Greater patient frailty, as measured by the ASD-FI, is associated with a longer hospital stay and greater risk of major complications among patients who have severe preoperative deformity and undergo invasive surgical procedures. 2.
Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy
2017-05-01
Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of the screw designs.
A study of patients with spinal disease using Maudsley Personality Inventory.
Kasai, Yuichi; Takegami, Kenji; Uchida, Atsumasa
2004-02-01
We administered the Maudsley Personality Inventory (MPI) preoperatively to 303 patients with spinal diseases about to undergo surgery. Patients younger than 20 years, patients previously treated in the Department of Psychiatry, and patients with poor postoperative results were excluded. Patients with N-scores (neuroticism scale) of 39 points or greater or L-scores (lie scale) of 26 points or greater were regarded as "abnormal." Based on clinical definitions we identified 24 "problem patients" during the course and categorized them as "Unsatisfied," "Indecisive," "Doctor shoppers," or "Distrustful." Preoperative MPI categorized 26 patients as abnormal; 22 patients categorized as abnormal became problem patients ( p<0.001). MPI sensitivity and specificity was 84.6% and 99.3%, respectively. Preoperative MPI to patients with spinal disease was found to be useful in detecting problem patients.
Kinon, Merritt D; Nasser, Rani; Nakhla, Jonathan P; Adogwa, Owoicho; Moreno, Jessica R; Harowicz, Michael; Verla, Terence; Yassari, Reza; Bagley, Carlos A
2016-01-01
The surgical treatment of adult scoliosis frequently involves long segment fusions across the lumbosacral joints that redistribute tremendous amounts of force to the remaining mobile spinal segments as well as to the pelvis and hip joints. Whether or not these forces increase the risk of femoral bone pathology remains unknown. The aim of this study is to determine the correlation between long segment spinal fusions to the pelvis and the antecedent development of degenerative hip pathologies as well as what predictive patient characteristics, if any, correlate with their development. A retrospective chart review of all long segment fusions to the pelvis for adult degenerative deformity operated on by the senior author at the Duke Spine Center from February 2008 to March 2014 was undertaken. Enrolment criteria included all available demographic, surgical, and clinical outcome data as well as pre and postoperative hip pathology assessment. All patients had prospectively collected outcome measures and a minimum 2-year follow-up. Multivariable logistic regression analysis was performed comparing the incidence of preoperative hip pain and antecedent postoperative hip pain as a function of age, gender, body mass index (BMI), and number of spinal levels fused. In total, 194 patients were enrolled in this study. Of those, 116 patients (60%) reported no hip pain prior to surgery. Eighty-three patients (71.6%) remained hip pain free, whereas 33 patients (28.5%) developed new postoperative hip pain. Age, gender, and BMI were not significant among those who went on to develop hip pain postoperatively ( P < 0.0651, 0.3491, and 0.1021, respectively). Of the 78 patients with preoperative hip pain, 20 patients (25.6%) continued to have hip pain postoperatively, whereas 58 patients reported improvement in the hip pain after long segment fusion for correction of their deformity, a 74.4% rate of reduction. Age, gender, and BMI were not significant among those who continued to have hip pain postoperatively ( P < 0.4386, 0.4637, and 0.2545, respectively). Number of levels fused was not a significant factor in the development of hip pain in either patient population; patients without preoperative pain who developed pain postoperatively ( P < 0.1407) as well as patients with preoperative pain who continued to have pain postoperatively ( P < 0.0772). This study demonstrates that long segment lumbosacral fusions are not associated with an increase in postoperative hip pathology. Age, gender, BMI, and levels fused do not correlate with the development of postoperative hip pain. The restoration of spinal alignment with long segment fusions may actually decrease the risk of developing femoral bone pathology and have a protective effect on the hip.
Yavari, Arash; Goriely, Alain
2016-12-01
The elastic Ericksen problem consists of finding deformations in isotropic hyperelastic solids that can be maintained for arbitrary strain-energy density functions. In the compressible case, Ericksen showed that only homogeneous deformations are possible. Here, we solve the anelastic version of the same problem, that is, we determine both the deformations and the eigenstrains such that a solution to the anelastic problem exists for arbitrary strain-energy density functions. Anelasticity is described by finite eigenstrains. In a nonlinear solid, these eigenstrains can be modelled by a Riemannian material manifold whose metric depends on their distribution. In this framework, we show that the natural generalization of the concept of homogeneous deformations is the notion of covariantly homogeneous deformations -deformations with covariantly constant deformation gradients. We prove that these deformations are the only universal deformations and that they put severe restrictions on possible universal eigenstrains . We show that, in a simply-connected body, for any distribution of universal eigenstrains the material manifold is a symmetric Riemannian manifold and that in dimensions 2 and 3 the universal eigenstrains are zero-stress.
Chan-Seng, E; Perrin, F E; Segnarbieux, F; Lonjon, N
2013-09-01
Ninety percent of the lesions resulting from diving injuries affect the cervical spine and are potentially associated with spinal cord injuries. The objective is to determine the most frequent lesion mechanisms. Evaluate the therapeutic alternatives and the biomechanical evolution (kyphotic deformation) of diving-induced cervical spine injuries. Define epidemiological characteristics of diving injuries. A retrospective analysis over a period of 10 years was undertaken for patients admitted to the Department of Neurosurgery of Montpellier, France, with cervical spinal injuries due to a diving accident. Patients were re-evaluated and clinical and radiological evaluation follow-ups were done. This study included 64 patients. Cervical spine injuries resulting from diving predominantly affect young male subjects. They represent 9.5% of all the cervical spine injuries. In 22% of cases, patients presented severe neurological troubles (ASIA A, B, C) at the time of admission. A surgical treatment was done in 85% of cases, mostly using an anterior cervical approach. This is a retrospective study (type IV) with some limitations. The incidence of diving injuries in our region is one of the highest as compared to reports in the literature. Despite an increase of our surgical indications, 55% of these cases end up with a residual kyphotic deformation but there is no relationship between the severity of late vertebral deformity and high Neck Pain and Disability Scale (NPDS) scores. Level IV, retrospective study. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Dural ectasia in a child with Larsen syndrome.
Jain, Viral V; Anadio, Jennifer M; Chan, Gilbert; Sturm, Peter F; Crawford, Alvin H
2014-01-01
We present a case of an incidental finding of dural ectasia in a child diagnosed with Larsen syndrome. Larsen syndrome is a rare inherited disorder of connective tissue characterized by facial dysmorphism, congenital joint dislocations of the hips, knees and elbows, and deformities of the hands and feet. Dural ectasia is as an abnormal expansion of the dural sac surrounding the spinal cord and may result in spinal morphologic changes, instability, and spontaneous dislocation. To the best of our knowledge, the presence of dural ectasia in Larsen syndrome has not previously been reported. A 6-year-old boy diagnosed with Larsen syndrome presented with an upper thoracic curve measuring 74 degrees, a right thoracic curve measuring 65 degrees, and significant cervicothoracic kyphosis with 50% anterior subluxation of C6 on C7 and C7 on T1. Advanced imaging studies showed dural ectasia (evidenced by spinal canal and dural sac expansion), thinning of pedicles and lamina, and C4 and C6 pars defects with cervical foramen enlargement. The patient received growing rod instrumentation (attached to cervical spine fixation) by a combined anterior/posterior surgical approach using intraoperative halo. Complications included intraoperative medial breach (fully resolved), wound dehiscence, 2 instances of bilateral broken rods, and a broken cervical rod. Following 7 lengthening procedures, the patient underwent definitive fusion. Surgeons should be aware of the potential for dural ectasia in patients with Larsen syndrome. Its presence will cause difficulties in the surgical intervention for spinal deformity. Multiple factors must be considered, and surgical approach and technique will require modification to avoid complications. Although dural ectasia confounds surgical intervention in these patients, surgery still appears to outweigh the risks associated with delayed intervention. The presence of dural ectasia should not preclude surgical decompression and stabilization. This report adds to the body of knowledge on the treatment of Larsen syndrome by demonstrating the potential existence of dural ectasia and highlights the importance of careful and thorough preoperative evaluation and diagnostic imaging.
McClendon, Jamal; Smith, Timothy R; Sugrue, Patrick A; Thompson, Sara E; O'Shaughnessy, Brian A; Koski, Tyler R
2016-11-01
To evaluate spinal implant density and proximal junctional kyphosis (PJK) in adult spinal deformity (ASD). Consecutive patients with ASD receiving ≥5 level fusions were retrospectively analyzed between 2007 and 2010. ASD, elective fusions, minimum 2-year follow-up. age <18 years, neuromuscular or congenital scoliosis, cervical or cervicothoracic fusions, nonelective conditions (infection, tumor, trauma). Instrumented fusions were classified by the Scoliosis Research Society-Schwab ASD classification. Statistical analysis consisted of descriptives (measures of central tendency, dispersion, frequencies), independent Student t tests, χ 2 , analysis of variance, and logistic regression to determine association of implant density [(number of screws + number of hooks)/surgical levels of fusion] and PJK. Mean and median follow-up was 2.8 and 2.7 years, respectively. Eighty-three patients (17 male, 66 female) with a mean age of 59.7 years (standard deviation, 10.3) were analyzed. Mean body mass index (BMI) was 29.5 kg/m 2 (range, 18-56 kg/m 2 ) with mean preoperative Oswestry Disability Index of 48.67 (range, 6-86) and mean preoperative sagittal vertical axis of 8.42. The mean levels fused were 9.95 where 54 surgeries had interbody fusion. PJK prevalence was 21.7%, and pseudoarthrosis was 19.3%. Mean postoperative Oswestry Disability Index was 27.4 (range, 0-74). Independent Student t tests showed that PJK was not significant for age, gender, BMI, rod type, mean postoperative sagittal vertical axis, or Scoliosis Research Society-Schwab ASD classification; but iliac fixation approached significance (P = 0.077). Implant density and postoperative lumbar lordosis (LL) were predictors for PJK (P = 0.018 and 0.045, respectively). Controlling for age, BMI, and gender, postoperative LL (not implant density) continued to show significance in multivariate logistic regression model. PJK, although influenced by a multitude of factors, may be statistically related to implant density and LL. Copyright © 2016. Published by Elsevier Inc.
A biomechanical analysis of the self-retaining pedicle hook device in posterior spinal fixation
van Laar, Wilbert; Meester, Rinse J.; Smit, Theo H.
2007-01-01
Regular hooks lack initial fixation to the spine during spinal deformity surgery. This runs the risk of posterior hook dislodgement during manipulation and correction of the spinal deformity, that may lead to loss of correction, hook migration, and post-operative junctional kyphosis. To prevent hook dislodgement during surgery, a self-retaining pedicle hook device (SPHD) is available that is made up of two counter-positioned hooks forming a monoblock posterior claw device. The initial segmental posterior fixation strength of a SPHD, however, is unknown. A biomechanical pull-out study of posterior segmental spinal fixation in a cadaver vertebral model was designed to investigate the axial pull-out strength for a SPHD, and compared to the pull-out strength of a pedicle screw. Ten porcine lumbar vertebral bodies were instrumented in pairs with two different instrumentation constructs after measuring the bone mineral density of each individual vertebra. The instrumentation constructs were extracted employing a material testing system using axial forces. The maximum pull-out forces were recorded at the time of the construct failure. Failure of the SPHD appeared in rotation and lateral displacement, without fracturing of the posterior structures. The average pull-out strength of the SPHD was 236 N versus 1,047 N in the pedicle screws (P < 0.001). The pull-out strength of the pedicle screws showed greater correlation with the BMC compared to the SPHD (P < 0.005). The SPHD showed to provide a significant inferior segmental fixation to the posterior spine in comparison to pedicle screw fixation. Despite the beneficial characteristics of the monoblock claw construct in a SPHD, that decreases the risk of posterior hook dislodgement during surgery compared to regular hooks, the SPHD does not improve the pull-out strength in such a way that it may provide a biomechanically solid alternative to pedicle screw fixation in the posterior spine. PMID:17203270
Kapural, Leonardo; Peterson, Erika; Provenzano, David A; Staats, Peter
2017-07-15
A systematic review. A systematic literature review of the clinical data from prospective studies was undertaken to assess the efficacy of spinal cord stimulation (SCS) in the treatment of failed back surgery syndrome (FBSS) in adults. For patients with unrelenting back pain due to mechanical instability of the spine, degenerative disc disease, spinal injury, or deformity, spinal surgery is a well-accepted treatment option; however, even after surgical intervention, many patients continue to experience chronic back pain that can be notoriously difficult to treat. Clinical evidence suggests that for patients with FBSS, repeated surgery will not likely offer relief. Additionally, evidence suggests long-term use of opioid pain medications is not effective in this population, likely presents additional complications, and requires strict management. A systematic literature review was performed using several bibliographic databases, prospective studies in adults using SCS for FBSS were included. SCS has been shown to be a safe and efficacious treatment for this patient population. Recent technological developments in SCS offer even greater pain relief to patients' refractory to other treatment options, allowing patients to regain functionality and improve their quality of life with significant reductions in pain. N/A.
Lumbar Spinal Stenosis: Who Should Be Fused? An Updated Review
Hasankhani, Ebrahim Ghayem; Ashjazadeh, Amir
2014-01-01
Lumbar spinal stenosis (LSS) is mostly caused by osteoarthritis (spondylosis). Clinically, the symptoms of patients with LSS can be categorized into two groups; regional (low back pain, stiffness, and so on) or radicular (spinal stenosis mainly presenting as neurogenic claudication). Both of these symptoms usually improve with appropriate conservative treatment, but in refractory cases, surgical intervention is occasionally indicated. In the patients who primarily complain of radiculopathy with an underlying biomechanically stable spine, a decompression surgery alone using a less invasive technique may be sufficient. Preoperatively, with the presence of indicators such as failed back surgery syndrome (revision surgery), degenerative instability, considerable essential deformity, symptomatic spondylolysis, refractory degenerative disc disease, and adjacent segment disease, lumbar fusion is probably recommended. Intraoperatively, in cases with extensive decompression associated with a wide disc space or insufficient bone stock, fusion is preferred. Instrumentation improves the fusion rate, but it is not necessarily associated with improved recovery rate and better functional outcome. PMID:25187873
Oravecz-Wilson, Katherine I; Kiel, Mark J; Li, Lina; Rao, Dinesh S; Saint-Dic, Djenann; Kumar, Priti D; Provot, Melissa M; Hankenson, Kurt D; Reddy, Venkat N; Lieberman, Andrew P; Morrison, Sean J; Ross, Theodora S
2004-04-15
Huntingtin Interacting Protein 1 (HIP1) binds clathrin and AP2, is overexpressed in multiple human tumors, and transforms fibroblasts. The function of HIP1 is unknown although it is thought to play a fundamental role in clathrin trafficking. Gene-targeted Hip1-/- mice develop premature testicular degeneration and severe spinal deformities. Yet, although HIP1 is expressed in many tissues including the spleen and bone marrow and was part of a leukemogenic translocation, its role in hematopoiesis has not been examined. In this study we report that three different mutations of murine Hip1 lead to hematopoietic abnormalities reflected by diminished early progenitor frequencies and resistance to 5-FU-induced bone marrow toxicity. Two of the Hip1 mutant lines also display the previously described spinal defects. These observations indicate that, in addition to being required for the survival/proliferation of cancer cells and germline progenitors, HIP1 is also required for the survival/proliferation of diverse types of somatic cells, including hematopoietic progenitors.
... or back Numbness, weakness, cramping, or pain in your arms or legs Pain going down the leg Foot problems Doctors diagnose spinal stenosis with a physical exam and imaging tests. Treatments include medications, physical therapy, braces, and surgery. NIH: National Institute of Arthritis ...
Belykh, Evgenii; Malik, Kashif; Simoneau, Isabelle; Yagmurlu, Kaan; Lei, Ting; Cavalcanti, Daniel D; Byvaltsev, Vadim A; Theodore, Nicholas; Preul, Mark C
2016-07-01
André Feil (1884-1955) was a French physician best recognized for his description, coauthored with Maurice Klippel, of patients with congenital fusion of cervical vertebrae, a condition currently known as Klippel-Feil syndrome. However, little is known about his background aside from the fact that he was a student of Klippel and a physician who took a keen interest in describing congenital anomalies. Despite the relative lack of information on Feil, his contributions to the fields of spinal disease and teratology extended far beyond science to play an integral role in changing the misguided perception shrouding patients with disfigurements, defects, deformities, and so-called monstrous births. In particular, Feil's 1919 medical school thesis on cervical abnormalities was a critical publication in defying long-held theory and opinion that human "monstrosities," anomalies, developmental abnormalities, and altered congenital physicality were a consequence of sinful behavior or a reversion to a primitive state. Indeed, his thesis on a spinal deformity centering on his patient, L. Joseph, was at the vanguard for a new view of a patient as nothing less than fully human, no matter his or her physicality or appearance.
Glasby, Michael A; Tsirikos, Athanasios I; Henderson, Lindsay; Horsburgh, Gillian; Jordan, Brian; Michaelson, Ciara; Adams, Christopher I; Garrido, Enrique
2017-08-01
To compare measurements of motor evoked potential latency stimulated either magnetically (mMEP) or electrically (eMEP) and central motor conduction time (CMCT) made pre-operatively in conscious patients using transcranial and intra-operatively using electrical cortical stimulation before and after successful instrumentation for the treatment of adolescent idiopathic scoliosis. A group initially of 51 patients with adolescent idiopathic scoliosis aged 12-19 years was evaluated pre-operatively in the outpatients' department with transcranial magnetic stimulation. The neurophysiological data were then compared statistically with intra-operative responses elicited by transcranial electrical stimulation both before and after successful surgical intervention. MEPs were measured as the cortically evoked compound action potentials of Abductor hallucis. Minimum F-waves were measured using conventional nerve conduction methods and the lower motor neuron conduction time was calculated and this was subtracted from MEP latency to give CMCT. Pre-operative testing was well tolerated in our paediatric/adolescent patients. No neurological injury occurred in any patient in this series. There was no significant difference in the values of mMEP and eMEP latencies seen pre-operatively in conscious patients and intra-operatively in patients under anaesthetic. The calculated quantities mCMCT and eCMCT showed the same statistical correlations as the quantities mMEP and eMEP latency. The congruency of mMEP and eMEP and of mCMCT and eCMCT suggests that these measurements may be used comparatively and semi-quantitatively for the comparison of pre-, intra-, and post-operative spinal cord function in spinal deformity surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Tian, Z; Gu, X
Purpose: To investigate the dosimetric benefit of adaptive re-planning for lung stereotactic body radiotherapy(SBRT). Methods: Five lung cancer patients with SBRT treatment were retrospectively investigated. Our in-house supercomputing online re-planning environment (SCORE) was used to realize the re-planning process. First a deformable image registration was carried out to transfer contours from treatment planning CT to each treatment CBCT. Then an automatic re-planning using original plan DVH guided fluence-map optimization is performed to get a new plan for the up-to-date patient geometry. We compared the re-optimized plan to the original plan projected on the up-to-date patient geometry in critical dosimetric parameters,more » such as PTV coverage, spinal cord maximum and volumetric constraint dose, esophagus maximum and volumetric constraint dose. Results: The average volume of PTV covered by prescription dose for all patients was improved by 7.56% after the adaptive re-planning. The volume of the spinal cord receiving 14.5Gy and 23Gy (V14.5, V23) decreased by 1.48% and 0.68%, respectively. For the esophagus, the volume receiving 19.5Gy (V19.5) reduced by 1.37%. Meanwhile, the maximum dose dropped off by 2.87% for spinal cord and 4.80% for esophagus. Conclusion: Our experimental results demonstrate that adaptive re-planning for lung SBRT has the potential to minimize the dosimetric effect of inter-fraction deformation and thus improve target coverage while reducing the risk of toxicity to nearby normal tissues.« less
Oakley, J C
1999-07-01
Spinal cord stimulation has become an accepted technique used in the management of chronic neuropathic pain syndromes. However, a number of problematic questions remain unanswered. This introduction states some of these problems and concentrates on the problem of whether low back pain can be relieved by stimulation. This paper introduces subsequent contributions to this symposium, which offer some interesting new techniques, and attempts to answer some of the problems presented.
2016-01-01
The elastic Ericksen problem consists of finding deformations in isotropic hyperelastic solids that can be maintained for arbitrary strain-energy density functions. In the compressible case, Ericksen showed that only homogeneous deformations are possible. Here, we solve the anelastic version of the same problem, that is, we determine both the deformations and the eigenstrains such that a solution to the anelastic problem exists for arbitrary strain-energy density functions. Anelasticity is described by finite eigenstrains. In a nonlinear solid, these eigenstrains can be modelled by a Riemannian material manifold whose metric depends on their distribution. In this framework, we show that the natural generalization of the concept of homogeneous deformations is the notion of covariantly homogeneous deformations—deformations with covariantly constant deformation gradients. We prove that these deformations are the only universal deformations and that they put severe restrictions on possible universal eigenstrains. We show that, in a simply-connected body, for any distribution of universal eigenstrains the material manifold is a symmetric Riemannian manifold and that in dimensions 2 and 3 the universal eigenstrains are zero-stress. PMID:28119554
... and heart problems can be treated with medications. Orthopedic problems such as foot deformities and scoliosis can ... and heart problems can be treated with medications. Orthopedic problems such as foot deformities and scoliosis can ...
Impact of Age on Change in Self-Image 5 Years After Complex Spinal Fusion (≥5 Levels).
Elsamadicy, Aladine A; Adogwa, Owoicho; Sergesketter, Amanda; Behrens, Shay; Hobbs, Cassie; Bridwell, Keith H; Karikari, Isaac O
2017-01-01
Spinal deformities that require ≥5 fusion levels are difficult and challenging for both the surgeon and patient. Corrections of moderate to severe deformities have been shown to improve patient-reported outcomes (PROs), and provide patients with a better quality of life. Self-image is an important PRO because it sheds insight into the patient's perception of health, as well as serving as a proxy of satisfaction for patients with spine deformity undergoing corrective surgery. However, with an aging population, the impact of age on long-term change in self-image is unknown. The aim of this study is to determine the effects of age on self-image 5 years after undergoing an elective complex spinal fusion (≥5 levels). This was a retrospective analysis of prospectively collected data of 55 adult patients (≥18 years old) undergoing ≥5 levels of spinal fusion to the sacrum with iliac fixation from January 2002 to December 2008. Patients were grouped by age: young (<60 years old) and older (≥60 years old). Patient demographics, comorbidities, preoperative variables (sagittal and Cobb angles) and postoperative complication rates were collected. All patients had prospectively collected outcome measures and a minimum of 5 years follow-up. PRO instrument SRS-22r (function, self-image, mental health, and pain) was completed before surgery then at follow-up (at least 5 years after surgery). The primary outcome investigated in this study was the change in self-image after surgery. Baseline characteristics and preoperative variables were similar in both cohorts. There were no significant differences in intraoperative variables, including the mean ± standard deviation number of fusion levels between the cohorts (young, 11.2 ±4.3 vs. older, 12.1 ± 4.0; P = 0.42). Complication rates were similar between the cohorts, with no significant differences in the types of complications (young, 29.63% vs. older, 25.0%; P = 0.77). There were no significant differences in preoperative and follow-up PROs between the cohorts. The mean ± standard deviation preoperative and follow-up self-image scores were (young, 2.35±0.58 vs. older, 2.68 ± 0.64; P = 0.51) and (young, 3.82 ± 0.63 vs. older, 3.51 ± 0.94), respectively. There were no significant differences in the change of function, mental health, or pain between the cohorts. However, the younger cohort experienced a significantly greater overall change in self-image than did the older cohort (young, 1.49 ± 0.87 vs. older, 0.70±1.14; P = 0.01). Our study suggests that age significantly affects the perception of self-image after deformity correction surgery; with younger patients reporting a greater change from baseline in self-image after surgery. Further studies are necessary to corroborate our observed findings. Copyright © 2016 Elsevier Inc. All rights reserved.
Illés, Tamás; Somoskeöy, Szabolcs
2013-06-01
A new concept of vertebra vectors based on spinal three-dimensional (3D) reconstructions of images from the EOS system, a new low-dose X-ray imaging device, was recently proposed to facilitate interpretation of EOS 3D data, especially with regard to horizontal plane images. This retrospective study was aimed at the evaluation of the spinal layout visualized by EOS 3D and vertebra vectors before and after surgical correction, the comparison of scoliotic spine measurement values based on 3D vertebra vectors with measurements using conventional two-dimensional (2D) methods, and an evaluation of horizontal plane vector parameters for their relationship with the magnitude of scoliotic deformity. 95 patients with adolescent idiopathic scoliosis operated according to the Cotrel-Dubousset principle were subjected to EOS X-ray examinations pre- and postoperatively, followed by 3D reconstructions and generation of vertebra vectors in a calibrated coordinate system to calculate vector coordinates and parameters, as published earlier. Differences in values of conventional 2D Cobb methods and methods based on vertebra vectors were evaluated by means comparison T test and relationship of corresponding parameters was analysed by bivariate correlation. Relationship of horizontal plane vector parameters with the magnitude of scoliotic deformities and results of surgical correction were analysed by Pearson correlation and linear regression. In comparison to manual 2D methods, a very close relationship was detectable in vertebra vector-based curvature data for coronal curves (preop r 0.950, postop r 0.935) and thoracic kyphosis (preop r 0.893, postop r 0.896), while the found small difference in L1-L5 lordosis values (preop r 0.763, postop r 0.809) was shown to be strongly related to the magnitude of corresponding L5 wedge. The correlation analysis results revealed strong correlation between the magnitude of scoliosis and the lateral translation of apical vertebra in horizontal plane. The horizontal plane coordinates of the terminal and initial points of apical vertebra vectors represent this (r 0.701; r 0.667). Less strong correlation was detected in the axial rotation of apical vertebras and the magnitudes of the frontal curves (r 0.459). Vertebra vectors provide a key opportunity to visualize spinal deformities in all three planes simultaneously. Measurement methods based on vertebral vectors proved to be just as accurate and reliable as conventional measurement methods for coronal and sagittal plane parameters. In addition, the horizontal plane display of the curves can be studied using the same vertebra vectors. Based on the vertebra vectors data, during the surgical treatment of spinal deformities, the diminution of the lateral translation of the vertebras seems to be more important in the results of the surgical correction than the correction of the axial rotation.
Dubory, Arnaud; Bouloussa, Houssam; Riouallon, Guillaume; Wolff, Stéphane
2017-12-01
Widely used in traumatic pelvic ring fractures, the iliosacral (IS) screw technique for spino-pelvic fixation remains anecdotal in adult spinal deformity. The objective of this study was to assess anatomical variability of the adult upper sacrum and to provide a user guide of spino-pelvic fixation with IS screws in adult spinal deformity. Anatomical variability of the upper sacrum according to age, gender, height and weight was sought on 30 consecutive pelvic CT-scans. Thus, a user guide of spino-pelvic fixation with IS screws was modeled and assessed on ten CT-scans as described below. Two invariable landmarks usable during the surgical procedure were defined: point A (corresponding to the connector binding the IS screw to the spinal rod), equidistant from the first posterior sacral hole and the base of the S1 articular facet and 10 mm-embedded into the sacrum; point B (corresponding to the tip of the IS screw) located at the junction of the anterior third and middle third of the sacral endplate in the sagittal plane and at the middle of the endplate in the coronal plane. Point C corresponded to the intersection between the A-B direction and the external facet of the iliac wing. Three-dimensional reconstructions modeling the IS screw optimal direction according to the A-B-C straight line were assessed. Age had no effect on the anatomy of the upper sacrum. The distance between the base of the S1 superior articular facet and the top of the first posterior sacral hole was correlated with weight (r = 0.6; 95% CI [0.6-0.9]); p < 0.001). Sacral end-plate thickness increased for male patients (p < 0.001) and was strongly correlated with height (r = 0.6; 95% CI [0.29-0.75]); p < 0.001) and weight (r = 0.8; 95% CI [0.6-0.9]); p < 0.001). The thickness of the inferior part of the S1 vertebral body increased in male patients (p < 0.001). Other measured parameters slightly varied according to gender, height and weight. Simulating the described technique of pelvic fixation, no misplaced IS screw was found whatever the age, gender and morphologic parameters. This user guide of spinopelvic fixation with IS screws seems to be reliable and reproducible independently of age, gender and morphologic characteristics but needs clinical assessment. Level IV.
Jou, I M
2000-08-01
Acute spinal cord injury was induced by a clip compression model in rats to approximate spinal cord injury encountered in spinal surgery. Spinal somatosensory-evoked potential neuromonitoring was used to study the electrophysiologic change. To compare and correlate changes in evoked potential after acute compression at different core temperatures with postoperative neurologic function and histologic change, to evaluate current intraoperative neuromonitoring warning criteria for neural damage, and to confirm the protective effect of hypothermia in acute spinal cord compression injury by electrophysiologic, histologic, and clinical observation. With the increase in aggressive correction of spinal deformities, and the invasiveness of surgical instruments, the incidence of neurologic complication appears to have increased despite the availability of sensitive intraoperative neuromonitoring techniques designed to alert surgeons to impending neural damage. Many reasons have been given for the frequent failures of neuromonitoring, but the influence of temperature-a very important and frequently encountered factor-on evoked potential has not been well documented. Specifically, decrease in amplitude and elongation of latency seem not to have been sufficiently taken into account when intraoperative neuromonitoring levels were interpreted and when acceptable intraoperative warning criteria were determined. Experimental acute spinal cord injury was induced in rats by clip compression for two different intervals and at three different core temperatures. Spinal somatosensory-evoked potential, elicited by stimulating the median nerve and recorded from the cervical interspinous C2-C3, was monitored immediately before and after compression, and at 15-minute intervals for 1 hour. Spinal somatosensory-evoked potential change is almost parallel to temperature-based amplitude reduction and latency elongation. Significant neurologic damage induced by acute compression of the cervical spinal cord produced a degree of effect on the amplitude of spinal somatosensory-evoked potential in normothermic conditions that differed from the effect in moderately hypothermic conditions. Using the same electromonitoring criteria,moderately hypothermic groups showed a significantly higher false-negative rate statistically (35%) than normothermic groups (10%). Systemic cooling may protect against the detrimental effects of aggressive spinal surgical procedures. There is still not enough published information available to establish statistically and ethically acceptable intraoperative neuromonitoring warning and intervention criteria conclusively. Therefore, an urgent need exists for further investigation. Although a reduction of more than 50% in evoked potential still seems acceptable as an indicator of impending neural function loss, maintenance of more than 50% of baseline evoked potential is no guarantee of normal postoperative neural function, especially at lower than normal temperatures.
[RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS].
Lu, Qi; Yu, Binsheng
2016-09-08
To summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. The recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. At present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. 3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.
Management of patients with Paget's disease: a consensus document of the Belgian Bone Club.
Devogelaer, J-P; Bergmann, P; Body, J-J; Boutsen, Y; Goemaere, S; Kaufman, J-M; Reginster, J-Y; Rozenberg, S; Boonen, S
2008-08-01
Paget's disease of bone (PDB) is a potentially crippling condition. Pain, fracture, spinal stenosis, nerve entrapment, vascular steal syndrome, secondary osteoarthritis, bone deformity, dental problems, deafness, excessive bleeding during orthopaedic surgery, rare sarcomatous degeneration, and hypercalcaemia constitute complications that may impair the quality of life. The therapeutic approach varies from symptomatic (analgesics, anti-inflammatory drugs) to more specific drugs such as increasingly potent bisphosphonates. Studies such as the PRISM study should in the future help to determine the superiority or not of aggressive treatment over symptomatic treatment in the prevention of complications. Various oral and/or intravenous (i.v.) bisphosphonates have been tested and are currently on the market. The most recently available nitrogen-containing bisphosphonate, i.v. zoledronic acid, is the most potent therapy available for the treatment of PDB. Its therapeutic efficacy, its long-term effect on biologic activity and its good tolerance currently supports its use as a first-line therapeutic option in patients suffering from PDB.
Cell Saver for Adult Spinal Deformity Surgery Reduces Cost.
Gum, Jeffrey L; Carreon, Leah Yacat; Kelly, Michael P; Hostin, Richard; Robinson, Chessie; Burton, Douglas C; Polly, David W; Shaffrey, Christopher I; LaFage, Virginie; Schwab, Frank J; Ames, Christopher P; Kim, Han Jo; Smith, Justin S; Bess, R Shay
2017-07-01
Retrospective cohort. To determine if the use of cell saver reduces overall blood costs in adult spinal deformity (ASD) surgery. Recent studies have questioned the clinical value of cell saver during spine procedures. ASD patients enrolled in a prospective, multicenter surgical database who had complete preoperative and surgical data were identified. Patients were stratified into (1) cell saver available during surgery, but no intraoperative autologous infusion (No Infusion group), or (2) cell saver available and received autologous infusion (Infusion group). There were 427 patients in the Infusion group and 153 in the No infusion group. Patients in both groups had similar demographics. Mean autologous infusion volume was 698 mL. The Infusion group had a higher percentage of EBL relative to the estimated blood volume (42.2%) than the No Infusion group (19.6%, p < .000). Allogeneic transfusion was more common in the Infusion group (255/427, 60%) than the No Infusion group (67/153, 44%, p = .001). The number of allogeneic blood units transfused was also higher in the Infusion group (2.4) than the No Infusion group (1.7, p = .009). Total blood costs ranged from $396 to $2,146 in the No Infusion group and from $1,262 to $5,088 in the Infusion group. If the cost of cell saver blood was transformed into costs of allogeneic blood, total blood costs for the Infusion group would range from $840 to $5,418. Thus, cell saver use yielded a mean cost savings ranging from $330 to $422 (allogeneic blood averted). Linear regression showed that after an EBL of 614 mL, cell saver becomes cost-efficient. Compared to transfusing allogeneic blood, cell saver autologous infusion did not reduce the proportion or the volume of allogeneic transfusion for patients undergoing surgery for adult spinal deformity. The use of cell saver becomes cost-efficient above an EBL of 614 mL, producing a cost savings of $330 to $422. Level III. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Stabilizing properties of the halo apparatus.
Mirza, S K; Moquin, R R; Anderson, P A; Tencer, A F; Steinmann, J; Varnau, D
1997-04-01
A cadaveric cervical spine specimen fixed between a fiberglass torso and a plastic skull was used as a model to determine the effect of halo structural parameters on motion at a lesion simulated at C5-C6. In a second part, nine commercially available halo devices were compared. To define the contributions of the various components of the halo apparatus to reducing motion in an injured cervical spine and to compare the stability offered by a sample of commercially available halo devices. Controversy exists concerning the ability of the halo apparatus to stabilize the injured cervical spine. The halo apparatus has been shown to be the most effective nonsurgical method for stabilizing the fractured spine. Nonetheless, several clinical studies have demonstrated that unacceptably large motions can occur at the injured spinal segment stabilized with a halo apparatus. Each cadaveric cervical spine was mounted onto a fiberglass torso and a rigid plastic skull was attached to the base of the occiput. A posterior ligamentous lesion was created between C5 and C6. The halo ring was fitted to the skull and a vest to the torso. Loads were applied to the skull in flexion, extension, and lateral bending, and relative angulation between C5 and C6 was measured with electroinclinometers. In the first part, the effect of parameters such as vest tightness, vest-thorax friction, vest deformation, and connecting bar rigidity on spinal angulation were measured using one vest. In the second part, the stability offered by each of nine commercially available halo devices was compared. Increasing chest strap tightness and decreasing vest deformation reduced angulation at the spinal lesion. Once connecting bar joints were tightened to 25% of their recommended torque, increased tightening or adding additional bars had no effect on rigidity. Although specific vests permitted significantly greater motion in specific directions, no vest allowed greater angulation consistently in all loading planes. Increasing vest tightness, decreasing the deformability of the vest, and ensuring a good fit can reduce motion in the fractured spine. Most commercially available halo vests provide similar mechanical stability to the injured cervical spine.
Hawes, Martha C; Brooks, William J
2002-01-01
This report describes improved signs and symptoms of previously untreated symptomatic spinal deformity in an adult female diagnosed with moderately severe thoracic scoliosis at the age of .7 years. Current treatment initiated at the age of forty included massage therapy, manual traction, ischemic pressure, and comprehensive manipulative medicine (CMM). A left-right chest circumference inequity was reduced by >10 cm, in correlation with improved appearance of the ribcage deformity and a 40% reduction in magnitude of Cobb angle, which had been stable for 30 years. The changes occurred gradually over an eight-year period, with the most rapid improvement occurring during two periods when CMM was employed.
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.
Daniels, Alan H; Ames, Christopher P; Smith, Justin S; Hart, Robert A
2014-12-03
Current spine surgeon training in the United States consists of either an orthopaedic or neurological surgery residency, followed by an optional spine surgery fellowship. Resident spine surgery procedure volume may vary between and within specialties. The Accreditation Council for Graduate Medical Education surgical case logs for graduating orthopaedic surgery and neurosurgery residents from 2009 to 2012 were examined and were compared for spine surgery resident experience. The average number of reported spine surgery procedures performed during residency was 160.2 spine surgery procedures performed by orthopaedic surgery residents and 375.0 procedures performed by neurosurgery residents; the mean difference of 214.8 procedures (95% confidence interval, 196.3 to 231.7 procedures) was significant (p = 0.002). From 2009 to 2012, the average total spinal surgery procedures logged by orthopaedic surgery residents increased 24.3% from 141.1 to 175.4 procedures, and those logged by neurosurgery residents increased 6.5% from 367.9 to 391.8 procedures. There was a significant difference (p < 0.002) in the average number of spinal deformity procedures between graduating orthopaedic surgery residents (9.5 procedures) and graduating neurosurgery residents (2.0 procedures). There was substantial variability in spine surgery exposure within both specialties; when comparing the top 10% and bottom 10% of 2012 graduates for spinal instrumentation or arthrodesis procedures, there was a 13.1-fold difference for orthopaedic surgery residents and an 8.3-fold difference for neurosurgery residents. Spine surgery procedure volumes in orthopaedic and neurosurgery residency training programs vary greatly both within and between specialties. Although orthopaedic surgery residents had an increase in the number of spine procedures that they performed from 2009 to 2012, they averaged less than half of the number of spine procedures performed by neurological surgery residents. However, orthopaedic surgery residents appear to have greater exposure to spinal deformity than neurosurgery residents. Furthermore, orthopaedic spine fellowship training provides additional spine surgery case exposure of approximately 300 to 500 procedures; thus, before entering independent practice, when compared with neurosurgery residents, most orthopaedic spine surgeons complete as many spinal procedures or more. Although case volume is not the sole determinant of surgical skills or clinical decision making, variability in spine surgery procedure volume does exist among residency programs in the United States. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Yang, Benson P; Ondra, Stephen L; Chen, Larry A; Jung, Hee Soo; Koski, Tyler R; Salehi, Sean A
2006-07-01
The authors conducted a study to evaluate the radiographically documented and functional outcomes obtained in patients who underwent pedicle subtraction osteotomy (PSO). They also compared outcomes after classification of cases into thoracic and lumbar PSO subgroups. The authors analyzed data obtained in 35 consecutive PSO-treated patients with sagittal imbalance. One surgeon performed all surgeries. The minimal follow-up period was 2 years. Events during the perioperative course and complications were noted. Standing long-film radiographs of the spine were obtained and measurements were made preoperatively, immediately postoperatively, and at most recent follow-up examination. The modified Prolo Scale and the 22-item Scoliosis Research Society (SRS-22) Outcomes Questionnaire were administered. Early complications after PSO included neurological injury, wound-related problems, and nosocomial infections. Late complications were limited to pseudarthrosis and attendant instrumentation failure. Early and late complication rates ranged from 10 to 30% for both thoracic and lumbar PSO cohorts. Lumbar PSO was associated with improvements in local, segmental, and global measures of sagittal balance, whereas thoracic PSO was only associated with local improvement. Most patients rated their functional status as fair to good according to the modified Prolo Scale and reported, according to the SRS-22 Outcomes Questionnaire, that they were satisfied with the overall treatment of their back condition. The ability to perform a PSO at both lumbar and thoracic levels is a powerful asset for the spine surgeon treating spinal deformity. In the present study radiographic and clinical outcomes were superior when PSO was used to treat lumbar deformity rather than thoracic deformity because of several anatomical and technical obstacles that hindered the thoracic procedure. Nevertheless, the thoracic PSO proved a useful addition with which to produce regional improvement in sagittal balance for patients with a fixed thoracic kyphosis.
Kruger, Erwin A.; Pires, Marilyn; Ngann, Yvette; Sterling, Michelle; Rubayi, Salah
2013-01-01
Pressure ulcers in spinal cord injury represent a challenging problem for patients, their caregivers, and their physicians. They often lead to recurrent hospitalizations, multiple surgeries, and potentially devastating complications. They present a significant cost to the healthcare system, they require a multidisciplinary team approach to manage well, and outcomes directly depend on patients' education, prevention, and compliance with conservative and surgical protocols. With so many factors involved in the successful treatment of pressure ulcers, an update on their comprehensive management in spinal cord injury is warranted. Current concepts of local wound care, surgical options, as well as future trends from the latest wound healing research are reviewed to aid medical professionals in treating patients with this difficult problem. PMID:24090179
Locomotor problems of supersonic aviation and astronautics.
Remes, P
1989-04-01
Modern high-speed aviation and space flight are fraught with many problems and require a high standard of health and fitness. Those responsible for the health of pilots must appreciate the importance of early diagnosis even before symptoms appear. This is particularly true in terms of preventing spinal injuries where even a single Schmorl's node may make a pilot unfit for high-speed flying. Spinal fractures are frequent during emergency ejection and landing. Helicopter crews are particularly prone to spinal disc degeneration due to vibration. By effective lowering of vibration by changes in the seats, a reduction in such lesions is possible. The osteoporosis and muscle atrophy occurring among astronauts subjected to prolonged weightlessness can be prevented by regular physical exercises.
Taghi Karimi, Mohammad; Rabczuk, Timon; Kavyani, Mahsa
2018-03-01
Scoliosis is a three-dimensional deformity of the spine and rib cage. Depending on the severity of this disease, various kinds of treatment methods have been used and bracing is among the most common. One of the braces which has been used for subjects with scoliosis is the Chêneau brace. The aim of this review was to evaluate the efficiency of the Chêneau brace on the scoliosis curve progression and control based on the available literature. We conducted a Medline search via PubMed, Google Scholar, ISI Web of Sciences, Ebsco and Scopus. Keywords such as Chêneau brace, Chêneau light and CAD/CAM spinal brace were used in combination with scoliosis. The quality of the studies was evaluated by the Down and Black tool. Based on the aforementioned keywords, 55 papers were found. Finally based on the mentioned criteria 14 papers were selected for final analysis. The quality of the studies varied between scores of 13 and 25 using the Down and Black tool. The results of the selected studies confirmed that a good scoliotic curve correction can be achieved with the Chêneau brace. The Chêneau brace provides a 3-dimensional correction of the spinal deformity which not only influences the progression of scoliotic curve but also influences its natural history. It cannot be concluded that the Chêneau brace is superior to other available braces; however, it has been shown that this brace is effective to control the scoliotic curve progression especially in the lumbar and thoracolumbar regions.
Carod Artal, F J; Vázquez Cabrera, C B
The aim of this work was to study the cranial trepanations and deformations carried out by the ancient Paraca, Huari, Tiahuanaco and Inca cultures. To do so, we conducted a field study involving visits to archaeological remains and anthropological museums on the Andean plateau and the Peruvian coast. Cranial deformation was more common in the Andean regions and was performed by putting little pieces of wood or compressive bandages on newborn infants' heads in order to modify the growth axis of the cranial cavity. Cranial deformations were performed for aesthetic and magic religious reasons, but were also used as a means of ethnic or social identification, as a symbol of nobility or to distinguish the ruling classes. The immediate consequence of such deformation was the modification of the normal process by which the cranial sutures close. There is a significant correlation between the presence of posterior and lateral wormian bones, according to the degree of artificial deformation. The persistence of metopic suture and exostosis of the outer ear canal have been found in 5% of the skulls belonging to pre Columbine mummies. Other paleopathological findings include cranial fractures (7%), porotic hyperostosis (25% of children's skulls), spina bifida occulta, signs of spinal disk arthrosis and Pott's disease. Artificial cranial deformation was a very widespread practice in the Andean regions in pre Columbine times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, C; Liu, T; Chen, J
Purpose: This study aimed to analyze dosimetry changes during radiotherapy for the mid-thoracic esophageal carcinoma, and investigate dosimetry difference between rigid and deformed registration. Methods: Twelve patients with primary middle thoracic esophageal carcinoma were selected randomly. Based on first CT scanning of each patient, plans-o were generated by experience physicists. After 20 fractions treatment, the corresponding plans-re were created with second CT scanning. And then, these two CT images were rigid and deformed registration respectively, and the dose was accumulated plan-o with plan-re. The dosimetry variation of these plans (plan-o: with 30 fractions, plan-rig: the accumulated dose with rigid registrationmore » and plan-def: the accumulated dose with deformed registration) were evaluated by paired T-test. Results: The V20 value of total lung were 32.68%, 30.3% and 29.71% for plan-o, plan-rig and plan-def respectively. The mean dose of total lung was 17.19 Gy, 16.67 Gy and 16.51 Gy for plan-o plan-rig and plan-def respectively. There were significant differences between plan-o and plan-rig or plan-def for both V20 and mean dose of total lung (with p= 0.003, p= 0.000 for V20 and p=0.008, p= 0.000 for mean dose respectively). There was no significant difference between plan-rig and plan-def (with p=0.118 for V20 and p=0.384 for mean dose). The max dose of spinal-cord was 41.95 Gy, 41.48 Gy and 41.4 Gy for plan-o, plan-rig and plan-def respectively. There were no significant differences for the max dose of spinal-cord between these plans. Conclusion: The target volume changes and anatomic position displacement of mid-thoracic esophageal carcinoma should not be neglected in clinics. These changes would cause overdose in normal tissue. Therefore, it is necessary to have another CT scanning and re-plan during the mid-thoracic esophageal carcinoma radiotherapy. And the dosimetry difference between rigid and deformed fusions was not found in this study.« less
Spinal pedicle screw planning using deformable atlas registration
NASA Astrophysics Data System (ADS)
Goerres, J.; Uneri, A.; De Silva, T.; Ketcha, M.; Reaungamornrat, S.; Jacobson, M.; Vogt, S.; Kleinszig, G.; Osgood, G.; Wolinsky, J.-P.; Siewerdsen, J. H.
2017-04-01
Spinal screw placement is a challenging task due to small bone corridors and high risk of neurological or vascular complications, benefiting from precision guidance/navigation and quality assurance (QA). Implicit to both guidance and QA is the definition of a surgical plan—i.e. the desired trajectories and device selection for target vertebrae—conventionally requiring time-consuming manual annotations by a skilled surgeon. We propose automation of such planning by deriving the pedicle trajectory and device selection from a patient’s preoperative CT or MRI. An atlas of vertebrae surfaces was created to provide the underlying basis for automatic planning—in this work, comprising 40 exemplary vertebrae at three levels of the spine (T7, T8, and L3). The atlas was enriched with ideal trajectory annotations for 60 pedicles in total. To define trajectories for a given patient, sparse deformation fields from the atlas surfaces to the input (CT or MR image) are applied on the annotated trajectories. Mean value coordinates are used to interpolate dense deformation fields. The pose of a straight trajectory is optimized by image-based registration to an accumulated volume of the deformed annotations. For evaluation, input deformation fields were created using coherent point drift (CPD) to perform a leave-one-out analysis over the atlas surfaces. CPD registration demonstrated surface error of 0.89 ± 0.10 mm (median ± interquartile range) for T7/T8 and 1.29 ± 0.15 mm for L3. At the pedicle center, registered trajectories deviated from the expert reference by 0.56 ± 0.63 mm (T7/T8) and 1.12 ± 0.67 mm (L3). The predicted maximum screw diameter differed by 0.45 ± 0.62 mm (T7/T8), and 1.26 ± 1.19 mm (L3). The automated planning method avoided screw collisions in all cases and demonstrated close agreement overall with expert reference plans, offering a potentially valuable tool in support of surgical guidance and QA.
Spinal pedicle screw planning using deformable atlas registration.
Goerres, J; Uneri, A; De Silva, T; Ketcha, M; Reaungamornrat, S; Jacobson, M; Vogt, S; Kleinszig, G; Osgood, G; Wolinsky, J-P; Siewerdsen, J H
2017-04-07
Spinal screw placement is a challenging task due to small bone corridors and high risk of neurological or vascular complications, benefiting from precision guidance/navigation and quality assurance (QA). Implicit to both guidance and QA is the definition of a surgical plan-i.e. the desired trajectories and device selection for target vertebrae-conventionally requiring time-consuming manual annotations by a skilled surgeon. We propose automation of such planning by deriving the pedicle trajectory and device selection from a patient's preoperative CT or MRI. An atlas of vertebrae surfaces was created to provide the underlying basis for automatic planning-in this work, comprising 40 exemplary vertebrae at three levels of the spine (T7, T8, and L3). The atlas was enriched with ideal trajectory annotations for 60 pedicles in total. To define trajectories for a given patient, sparse deformation fields from the atlas surfaces to the input (CT or MR image) are applied on the annotated trajectories. Mean value coordinates are used to interpolate dense deformation fields. The pose of a straight trajectory is optimized by image-based registration to an accumulated volume of the deformed annotations. For evaluation, input deformation fields were created using coherent point drift (CPD) to perform a leave-one-out analysis over the atlas surfaces. CPD registration demonstrated surface error of 0.89 ± 0.10 mm (median ± interquartile range) for T7/T8 and 1.29 ± 0.15 mm for L3. At the pedicle center, registered trajectories deviated from the expert reference by 0.56 ± 0.63 mm (T7/T8) and 1.12 ± 0.67 mm (L3). The predicted maximum screw diameter differed by 0.45 ± 0.62 mm (T7/T8), and 1.26 ± 1.19 mm (L3). The automated planning method avoided screw collisions in all cases and demonstrated close agreement overall with expert reference plans, offering a potentially valuable tool in support of surgical guidance and QA.
Optimal management of idiopathic scoliosis in adolescence
Kotwicki, Tomasz; Chowanska, Joanna; Kinel, Edyta; Czaprowski, Dariusz; Tomaszewski, Marek; Janusz, Piotr
2013-01-01
Idiopathic scoliosis is a three-dimensional deformity of the growing spine, affecting 2%–3% of adolescents. Although benign in the majority of patients, the natural course of the disease may result in significant disturbance of body morphology, reduced thoracic volume, impaired respiration, increased rates of back pain, and serious esthetic concerns. Risk of deterioration is highest during the pubertal growth spurt and increases the risk of pathologic spinal curvature, increasing angular value, trunk imbalance, and thoracic deformity. Early clinical detection of scoliosis relies on careful examination of trunk shape and is subject to screening programs in some regions. Treatment options are physiotherapy, corrective bracing, or surgery for mild, moderate, or severe scoliosis, respectively, with both the actual degree of deformity and prognosis being taken into account. Physiotherapy used in mild idiopathic scoliosis comprises general training of the trunk musculature and physical capacity, while specific physiotherapeutic techniques aim to address the spinal curvature itself, attempting to achieve self-correction with active trunk movements developed in a three-dimensional space by an instructed adolescent under visual and proprioceptive control. Moderate but progressive idiopathic scoliosis in skeletally immature adolescents can be successfully halted using a corrective brace which has to be worn full time for several months or until skeletal maturity, and is able to prevent more severe deformity and avoid the need for surgical treatment. Surgery is the treatment of choice for severe idiopathic scoliosis which is rapidly progressive, with early onset, late diagnosis, and neglected or failed conservative treatment. The psychologic impact of idiopathic scoliosis, a chronic disease occurring in the psychologically fragile period of adolescence, is important because of its body distorting character and the onerous treatment required, either conservative or surgical. Optimal management of idiopathic scoliosis requires cooperation within a professional team which includes the entire therapeutic spectrum, extending from simple watchful observation of nonprogressive mild deformities through to early surgery for rapidly deteriorating curvature. Probably most demanding is adequate management with regard to the individual course of the disease in a given patient, while avoiding overtreatment or undertreatment. PMID:24600296
Le Huec, J C; Cogniet, A; Demezon, H; Rigal, J; Saddiki, R; Aunoble, S
2015-01-01
Pedicle subtraction osteotomies (PSO) enable correction of spinal deformities but remain difficult and are associated with high complication rates. This study aimed to prospectively review different post-operative complications and mechanical problems in patients who underwent PSO as treatment for sagittal imbalance as sequelae of degenerative disc disease or previous spinal fusion. This was a descriptive prospective single center study of 63 patients who underwent sagittal imbalance correction by PSO. Radiographic analysis of pre- and post-operative pelvic and spinal parameters was completed based on EOS images following 3D modeling. Global and sub-group analyses were completed based on the Roussouly classification. A systematic analysis of post-operative complications was conducted during hospital stay and at follow-up visits. Complications included 15 cases (20.2%) of bilateral leg pain, with transient neurological deficit in 6 cases (9.5%), and 9 cases (12.5%) of early surgical site infections. Intra-operative complications included five tears of the dura mater and two cases of excessive blood loss (>5,000 mL). Two mortalities occurred from major intracerebral bleeds in the early post-operative period. Mechanical complications were principally non-union (9 cases) and junctional kyphosis (3 cases). All 19 post-operative complications (28.1%) were revised at an average of 2 years following surgery. All mechanical complications were found in the patients who had insufficient imbalance correction and this was mainly associated with high PI (>60°) or a moderate PI (45-60º) combined with excess FBI pre-operatively that remained >10° post-operatively. Infection and neurologic complications following PSO are relatively common, and frequently reported in the literature. The principal cause of mechanical complications, such as non-union or junctional kyphosis, was insufficient sagittal correction, characterized by post-operative FBI >10°. The risks of insufficient correction are greater in patients with higher pelvic incidence and those patients who required very high correction.
Pathogenesis and Treatment of Spine Disease in the Mucopolysaccharidoses
Peck, Sun H.; Casal, Margret L.; Malhotra, Neil R.; Ficicioglu, Can; Smith, Lachlan J.
2016-01-01
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Skeletal disease is common in MPS patients, with the severity varying both within and between subtypes. Within the spectrum of skeletal disease, spinal manifestations are particularly prevalent. Developmental and degenerative abnormalities affecting the substructures of the spine can result in compression of the spinal cord and associated neural elements. Resulting neurological complications, including pain and paralysis, significantly reduce patient quality of life and life expectancy. Systemic therapies for MPS such as hematopoietic stem cell transplantation and enzyme replacement therapy have shown limited efficacy for improving spinal manifestations in patients and animal models, and there is therefore a pressing need for new therapeutic approaches that specifically target this debilitating aspect of the disease. In this review, we examine how pathological abnormalities affecting the key substructures of the spine – the discs, vertebrae, odontoid process and dura – contribute to the progression of spinal deformity and symptomatic compression of neural elements. Specifically, we review current understanding of the underlying pathophysiology of spine disease in MPS, how the tissues of the spine respond to current clinical and experimental treatments, and discuss future strategies for improving the efficacy of these treatments. PMID:27296532
Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng
2014-08-15
Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.
A clinical evaluation of four non-Luer spinal needle and syringe systems.
Kinsella, S M; Goswami, A; Laxton, C; Kirkham, L; Wharton, N; Bowen, M
2012-11-01
We performed an evaluation of non-Luer spinal devices supplied by four manufacturers or suppliers: Polymedic; Pajunk; Sarstedt; and Smiths. For each supplier, 100 evaluations were performed using a 25-G 90-mm spinal needle, 3-ml syringe, 5-ml syringe and filter needle; for comparison, 100 evaluations were performed with our standard Luer equipment. The non-Luer devices were associated with more qualitative problems compared with the Luer devices, for example, poor feel of dural puncture (9-32% vs 10%, respectively), poor observation of cerebrospinal fluid in the hub (3-27% vs 0%), and connection problem of the syringe to the spinal needle (7-33% vs 0%). There was also more frequent failure to achieve the spinal injection due to equipment-related causes (4-7% vs 0%, respectively). Median (IQR [range]) numeric satisfaction scores for the spinal needles were: Luer 10 (9-10 [7-10]); Polymedic 7 (4-8 [0-10]; Pajunk 7 (5-8 [0-10]); Sarstedt 7 (6-8 [0-10]); and Smiths 9 (7-10 [0-10]) (p<0.0001). Satisfaction scores for all spinal equipment were: Luer 10 (9-10 [5-10]); Polymedic 8 (6-8 [0-10]); Pajunk 7 (5-7 [1-9]); Sarstedt 8 (6-8 [0-10]); and Smiths 8 (8-9 [2-10]) (p<0.0001). Between 21% and 75% of non-Luer evaluations were rated with satisfaction worse than the usual Luer needle compared with 0-10% rated better, depending on the needle type. Between 22% and 76% of non-Luer evaluations were rated with satisfaction worse than the usual Luer equipment compared with 0-14% rated better. Specific concerns included poor feel of tissue planes and observation of cerebrospinal fluid (Polymedic), difficulty with connection of the syringe to the spinal needle and trocar removal (Pajunk), poor feel of tissue planes and needle flexibility (Sarstedt) and difficulty with connection of the syringe to the spinal needle (Smiths). We could not demonstrate a short-term learning curve for the new devices. Decisions on purchasing and implementation of the new non-Luer equipment will have to acknowledge that clinicians may have greater technical problems and reduced satisfaction compared with the current equipment. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.
Buckling and bone modeling as factors in the development of idiopathic scoliosis.
Goto, Manabu; Kawakami, Noriaki; Azegami, Hideyuki; Matsuyama, Yukihiro; Takeuchi, Kenzen; Sasaoka, Ryu
2003-02-15
Computational analysis using the finite-element method was used to examine a possible etiology of idiopathic scoliosis. To compare changes in the coronal and the transverse planes of idiopathic thoracic scoliosis with changes produced in a finite-element buckling model, and to investigate the influence of bone modeling on the buckling spine. Although it is now widely accepted that growth is related strongly to the onset and progression of scoliosis, the pathomechanism or etiology of idiopathic scoliosis still is not clear. A previous study showed that a buckling phenomenon caused by anterior spinal overgrowth can produce scoliosis, and that the fourth buckling mode matched the clinical characteristics associated with the thoracic type of idiopathic scoliosis. The fourth buckling mode occurs when the first, second, and third buckling modes are prevented. The spinal finite-element model used in this study consisted of 68,582 elements and 84,603 nodes. The transverse changes seen in the computed tomography images of 41 patients with idiopathic thoracic scoliosis (apex, T8; average Cobb angle, 52.5 degrees) were compared with those produced in the fourth buckling mode. Bone modeling (bone formation and resorption) was simulated as heat deformation caused by changes in temperature. The bone formation and resorption were simulated, respectively, by positive and negative volume changes in proportion to the stress that occurred in the buckling spine. Computed tomography images of scoliosis show that as the scoliosis becomes more severe, the thoracic cage decreases on the convex side of the curve and increases on the concave side. The opposite thoracic cage deformation was obtained in the fourth buckling mode. In patients with scoliosis, the sternum essentially remains in its original position with respect to the vertebrae, but in the linear buckling model, it shifted in the direction of vertebral body rotation. In contrast to clinical data, the incremental deformation resulting from bone formation corrected the original curve, and the thoracic cage distorted. On the other hand, incremental deformation resulting from bone resorption worsened the original curve, and the thoracic cage distorted in a manner similar to that described by the clinical data. This computational investigation suggests that scoliotic changes in the spinal column triggered by the buckling phenomenon are counteracted by bone formation, but worsened by bone resorption. The authors hypothesized that scoliosis progressed with resorption of loaded bone. However, it is unclear whether this hypothesis applies to a living body in practice because of the effects from additional factors.
Dho, Yun-Sik; Kim, Hyoungmin; Wang, Kyu-Chang; Kim, Seung-Ki; Lee, Ji Yeoun; Shin, Hee Young; Park, Kyung Duk; Kang, Hyoung Jin; Kim, Il Han; Park, Sung-Hye; Phi, Ji Hoon
2018-06-01
Spinal epidural lymphoma with compressive myelopathy is a rarely found condition. The aims of this study are to describe the clinical features and to analyze its treatment outcome and prognostic factors. We searched for all pediatric patients with newly diagnosed spinal epidural lymphoma from 1999 to 2014 in our institution. We evaluated the clinical features, including neurologic status, time interval to treatment, treatment modality, and outcomes. Twelve of 302 pediatric patients with lymphoma (4.0%) presented with compressive myelopathy, and they were all found to have spinal epidural lymphoma. In 11 patients, epidural space was the only site of lymphoma involvement. The median age was 9 years (range, 5-15 years). Common initial symptoms were back pain and low extremity weakness. Surgery was performed on 9 patients, biopsy on 2 patients, and radiation therapy on 1 patient. In 9 patients who received surgery, 6 patients with preoperative motor power grade ≥II attained improvement in weakness. Three patients with preoperative motor power grade
Pastorelli, F; Di Silvestre, M; Vommaro, F; Maredi, E; Morigi, A; Bacchin, M R; Bonarelli, S; Plasmati, R; Michelucci, R; Greggi, T
2015-11-01
Combined intraoperative monitoring (IOM) of transcranial electric motor-evoked potentials (tce-MEPs) and somatosensory-evoked potentials (SSEPs) is safe and effective for spinal cord monitoring during scoliosis surgery. However, the literature data regarding the reliability of spinal cord monitoring in patients with neuromuscular scoliosis are conflicting and need to be confirmed. We reviewed IOM records of 40 consecutive patients with neuromuscular scoliosis related to central nervous system (CNS) (29 pts) or peripheral nervous system (PNS) (11 patients) diseases, who underwent posterior fusion with instrumentation surgery for spinal deformity. Multimodalitary IOM with SSEPs and tce-MEPs was performed. Spinal cord monitoring using at least one modality was attempted in 38/40 (95 %) patients. No false-negative results were present in either group, but a relatively high incidence of false-positive cases (4/29, 13.8 %) was noted in the CNS group. Two patients in the CNS group and one patient in the PNS group presented transient postoperative motor deficits (true positive), related to surgical manoeuvres in two cases and to malposition in the other one. Multimodalitary IOM is safe and effective to detect impending spinal cord and peripheral nerves dysfunction in neuromuscular scoliosis surgery. However, the interpretation of neurophysiological data may be challenging in such patients, and the rate of false-positive results is high when pre-operatory motor deficits are severe.
De la Garza-Ramos, Rafael; Nakhla, Jonathan; Gelfand, Yaroslav; Echt, Murray; Scoco, Aleka N; Kinon, Merritt D; Yassari, Reza
2018-03-01
To identify predictive factors for critical care unit-level complications (CCU complication) after long-segment fusion procedures for adult spinal deformity (ASD). The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database [2010-2014] was reviewed. Only adult patients who underwent fusion of 7 or more spinal levels for ASD were included. CCU complications included intraoperative arrest/infarction, ventilation >48 hours, pulmonary embolism, renal failure requiring dialysis, cardiac arrest, myocardial infarction, unplanned intubation, septic shock, stroke, coma, or new neurological deficit. A stepwise multivariate regression was used to identify independent predictors of CCU complications. Among 826 patients, the rate of CCU complications was 6.4%. On multivariate regression analysis, dependent functional status (P=0.004), combined approach (P=0.023), age (P=0.044), diabetes (P=0.048), and surgery for over 8 hours (P=0.080) were significantly associated with complication development. A simple scoring system was developed to predict complications with 0 points for patients aged <50, 1 point for patients between 50-70, 2 points for patients 70 or over, 1 point for diabetes, 2 points dependent functional status, 1 point for combined approach, and 1 point for surgery over 8 hours. The rate of CCU complications was 0.7%, 3.2%, 9.0%, and 12.6% for patients with 0, 1, 2, and 3+ points, respectively (P<0.001). The findings in this study suggest that older patients, patients with diabetes, patients who depend on others for activities of daily living, and patients who undergo combined approaches or surgery for over 8 hours may be at a significantly increased risk of developing a CCU-level complication after ASD surgery.
Puzovic, Vladimir; Rotim, Kresimir; Jurisic, Vladimir; Samardzic, Miroslav; Zivkovic, Bojana; Savic, Andrija; Rasulic, Lukas
2015-09-01
The aim of this study is to estimate the prevalence of spine and feet deformities among children who are regularly involved in basketball trainings, as well as finding differences in the prevalence of those deformities between children of different gender and age. The study included a total of 64 children, of which 43 were boys and 21 were girls, ages 10-12. All subjects have been regularly participating in basketball trainings for at least one year. Postural disorder is defined as an irregularity in posture of the spine and feet, and it is assessed by visual methods from the front, side and rear side of the body. The prevalence of spinal deformities in our group was 53.13%. The boys had a significantly higher prevalence than girls, 65.1% compared to 28.57% (p=0.006). There was no significant difference in prevalence of spine deformities between children of different ages. The prevalence of feet deformities was 64.06%. There was a statistically significant difference between the sexes, where boys had a significantly greater prevalence of the feet deformities than girls, 83.7% compared to 23.81% (p=0.001). Flat feet were the most common in 10 year old children (85.71%). In conclusion, it can be said that despite regular participation in basketball training, subjects in this study have high prevalence of deformities; especially boys who stand out with the high prevalence of flat feet.
Theologis, Alexander A; Mundis, Gregory M; Nguyen, Stacie; Okonkwo, David O; Mummaneni, Praveen V; Smith, Justin S; Shaffrey, Christopher I; Fessler, Richard; Bess, Shay; Schwab, Frank; Diebo, Bassel G; Burton, Douglas; Hart, Robert; Deviren, Vedat; Ames, Christopher
2017-02-01
OBJECTIVE The aim of this study was to evaluate the utility of supplementing long thoracolumbar posterior instrumented fusion (posterior spinal fusion, PSF) with lateral interbody fusion (LIF) of the lumbar/thoracolumbar coronal curve apex in adult spinal deformity (ASD). METHODS Two multicenter databases were evaluated. Adults who had undergone multilevel LIF of the coronal curve apex in addition to PSF with L5-S1 interbody fusion (LS+Apex group) were matched by number of posterior levels fused with patients who had undergone PSF with L5-S1 interbody fusion without LIF (LS-Only group). All patients had at least 2 years of follow-up. Percutaneous PSF and 3-column osteotomy (3CO) were excluded. Demographics, perioperative details, radiographic spinal deformity measurements, and HRQoL data were analyzed. RESULTS Thirty-two patients were matched (LS+Apex: 16; LS: 16) (6 men, 26 women; mean age 63 ± 10 years). Overall, the average values for measures of deformity were as follows: Cobb angle > 40°, sagittal vertical axis (SVA) > 6 cm, pelvic tilt (PT) > 25°, and mismatch between pelvic incidence (PI) and lumbar lordosis (LL) > 15°. There were no significant intergroup differences in preoperative radiographic parameters, although patients in the LS+Apex group had greater Cobb angles and less LL. Patients in the LS+Apex group had significantly more anterior levels fused (4.6 vs 1), longer operative times (859 vs 379 minutes), and longer length of stay (12 vs 7.5 days) (all p < 0.01). For patients in the LS+Apex group, Cobb angle, pelvic tilt (PT), lumbar lordosis (LL), PI-LL (lumbopelvic mismatch), Oswestry Disability Index (ODI) scores, and visual analog scale (VAS) scores for back and leg pain improved significantly (p < 0.05). For patients in the LS-Only group, there were significant improvements in Cobb angle, ODI score, and VAS scores for back and leg pain. The LS+Apex group had better correction of Cobb angles (56% vs 33%, p = 0.02), SVA (43% vs 5%, p = 0.46), LL (62% vs 13%, p = 0.35), and PI-LL (68% vs 33%, p = 0.32). Despite more LS+Apex patients having major complications (56% vs 13%; p = 0.02) and postoperative leg weakness (31% vs 6%, p = 0.07), there were no intergroup differences in 2-year outcomes. CONCLUSIONS Long open posterior instrumented fusion with or without multilevel LIF is used to treat a variety of coronal and sagittal adult thoracolumbar deformities. The addition of multilevel LIF to open PSF with L5-S1 interbody support in this small cohort was often used in more severe coronal and/or lumbopelvic sagittal deformities and offered better correction of major Cobb angles, lumbopelvic parameters, and SVA than posterior-only operations. As these advantages came at the expense of more major complications, more leg weakness, greater blood loss, and longer operative times and hospital stays without an improvement in 2-year outcomes, future investigations should aim to more clearly define deformities that warrant the addition of multilevel LIF to open PSF and L5-S1 interbody fusion.
Progressive early-onset scoliosis in Conradi disease: a 34-year follow-up of surgical management.
Kabirian, Nima; Hunt, Leonel A; Ganjavian, Mohammad S; Akbarnia, Behrooz A
2013-03-01
Conradi-Hunermann syndrome (CHS) is a rare metabolic syndrome with several orthopaedic problems. Early-onset scoliosis is of great importance because of often rapidly progressive nature and high risk of postoperative complications. To report the 34-year follow-up and outcome of a patient with CHS treated with combined anterior and posterior fusion without instrumentation. All available clinical and radiographs of a female patient with CHS retrospectively reviewed. Overall health status, sagittal and coronal deformity, pulmonary function test, and outcome questionnaires were evaluated. Initial films at the age of 4 months showed a curve of 37 degrees from T6-T11 and a curve of 17 degrees from T11-L2. Thoracic kyphosis was measured at 43 degrees. Standing films at the age of 2 years and 2 months showed progression of both the curves to 50 and 66 degrees, respectively, and a significant spinal imbalance. The kyphosis also progressed to 57 degrees. She underwent a staged anterior inlay graft spinal fusion with autograft and allograft ribs from T8-L1 and posterior in situ fusion from T6-L1 with corticocancellous allograft. Solid radiographic fusion was observed 18 months after surgery. She was 36 years old at her latest follow-up, 34 years after surgery, with neutral clinical coronal and sagittal balance. No significant pain and respiratory complaint at moderate sports and normal daily life activity. "Vital capacity" and "total lung capacity" were 65% and 75%, respectively, of the normal. Thoracic curve of 35 degrees (T6-T11) and right thoracolumbar curve of 53 degrees from T11-L2 with a solid fusion fromT6-L1 with kyphosis measured over the fused area of 40 degrees were observed. Her overall mean Scoliosis Research Society-22 score was 3.68. She is an MBA graduate from a competitive school and currently works full-time. Although the treatment of early-onset scoliosis has significantly evolved over the past 3 decades, the traditional method of anterior release and fusion and staged in-situ posterior fusion posterior fusion with postoperative immobilization showed acceptable deformity correction and maintenance of the pulmonary function over the 34 years.
Prudnikova, Oksana G; Shchurova, Elena N
2018-02-01
There is high risk of neurologic complications in one-stage management of severe rigid spinal deformities in adolescents. Therefore, gradual spine stretching variants are applied. One of them is the use of external transpedicular fixation. Our aim was to retrospectively study the outcomes of gradual correction with an apparatus for external transpedicular fixation followed by internal fixation used for high-grade kyphoscoliosis in adolescents. Twenty five patients were reviewed (mean age, 15.1 ± 0.4 years). Correction was performed in two stages: 1) gradual controlled correction with the apparatus for external transpedicular fixation; and 2) internal posterior transpedicular fixation. Rigid deformities in eight patients required discapophysectomy. Clinical and radiographic study of the outcomes was conducted immediately after treatment and at a mean long-term period of 3.8 ± 0.4 years. Pain was evaluated using the visual analogue scale (VAS, 10 points). The Oswestry questionnaire (ODI scale) was used for functional assessment. Deformity correction with the external apparatus was 64.2 ± 4.6% in the main curve and 60.7 ± 3.7% in the compensatory one. It was 72.8 ± 4.1% and 66.2 ± 5.3% immediately after treatment and 70.8 ± 4.6% and 64.3 ± 4.2% at long term, respectively. Pain relieved by 33.2 ± 4.2% (p < 0.05) immediately after treatment and by 55.6 ± 2.8% (p < 0.05) at long term. ODI reduced by 30.2 ± 1.7% (p < 0.05) immediately after treatment and by 37.2 ± 1.6% (p < 0.05) at long term. The apparatus for external transpedicular fixation provides gradual controlled correction for high-grade kyphoscoliosis in adolescents. Transition to internal fixation preserves the correction achieved, and correction is maintained at long term.
Roentgenographic Evaluation of the Spine in Patients With Osteogenesis Imperfecta.
de Lima, Marcos Vaz; de Lima, Fabiana Vaz; Akkari, Miguel; Resende, Vanessa Ribeiro de; Santili, Claudio
2015-11-01
Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder that leads to bone weakness and deformities, especially in the spine, which can lead to poor outcomes.The aim of this study was to find patterns and risk factors in spinal deformities in patients with OI.In a retrospective study, 70 patients with OI were selected. Radiographs of the spine were evaluated. We observed the presence or absence of the following changes: biconcave vertebrae, chest and vertebral deformities, unilateral rib, and thoracolumbar kyphosis. The greater curve was considered the primary one, and the secondary curve considered compensatory.In the study sample, we observed that the patients' ages ranged between 7 and 50 years, with a mean equal to 13 years, and 76% had scoliosis. In 68% of cases the main curve in the thoracic region was observed with the convexity to the right.The following was found in patients with OI: scoliosis, biconcave vertebrae, vertebral and chest deformity, unilateral rib, and thoracolumbar kyphosis. The thoracolumbar kyphosis is highly associated with thoracic hypokyphosis in patients with OI.
Kopparty, S N
1995-09-01
Though the impact of social inequality on health conditions is widely known, its impact on the chronic and stigmatized disease, leprosy, has received little attention. Deformity sometimes leads to disabilities and to handicaps causing problems to the patient and his family. In this paper an attempt has been made to understand the impact of social inequality, prevalent in the form of the caste system in India on the deformed leprosy patients and on their families. This impact was examined in terms of the problems faced by the patients. A sample of 150 deformed patients and their families, drawn from two districts in Tamil Nadu, was selected for the study. About 57% of the deformed patients experienced their deformity as a handicap which caused social and economic problems while the rest did not. Of the three caste groups, the Lower Caste group experienced more severe economic problems while the Upper Caste group faced more social problems. The extent of acceptance of deformed patients in their family varied significantly among those facing and not facing problems due to their deformity. The deformed patients without any handicap were accepted in a large majority of their families (82%) regardless of their caste status. In contrast the deformed but handicapped patients were accepted differentially among the three caste groups with the Upper group accepting them in most of their families (80%) while in the Lower group much less number of families (54%) did. All the families of the deformed but not handicapped patients desired to keep their patients till their death irrespective of their caste status. On the contrary, while all the families in the Upper Caste group expressed their willingness to keep their handicapped patients in the family till their death, 10% in the Middle and 22% in the Lower Caste groups did not want to do so. This suggests the gradual marginalization, rejection and dehabilitation of the affected. Thus, one's caste status can be a broad indicator of the nature and the extent of handicaps and acceptance in the family. This factor needs to be appropriately taken care of for rehabilitation and disability management in leprosy control programmes.
Smith, Justin S; Singh, Manish; Klineberg, Eric; Shaffrey, Christopher I; Lafage, Virginie; Schwab, Frank J; Protopsaltis, Themistocles; Ibrahimi, David; Scheer, Justin K; Mundis, Gregory; Gupta, Munish C; Hostin, Richard; Deviren, Vedat; Kebaish, Khaled; Hart, Robert; Burton, Douglas C; Bess, Shay; Ames, Christopher P
2014-08-01
Increased sagittal vertical axis (SVA) correlates strongly with pain and disability for adults with spinal deformity. A subset of patients with sagittal spinopelvic malalignment (SSM) have flatback deformity (pelvic incidence-lumbar lordosis [PI-LL] mismatch > 10°) but remain sagittally compensated with normal SVA. Few data exist for SSM patients with flatback deformity and normal SVA. The authors' objective was to compare baseline disability and treatment outcomes for patients with compensated (SVA < 5 cm and PI-LL mismatch > 10°) and decompensated (SVA > 5 cm) SSM. The study was a multicenter, prospective analysis of adults with spinal deformity who consecutively underwent surgical treatment for SSM. Inclusion criteria included age older than 18 years, presence of adult spinal deformity with SSM, plan for surgical treatment, and minimum 1-year follow-up data. Patients with SSM were divided into 2 groups: those with compensated SSM (SVA < 5 cm and PI-LL mismatch > 10°) and those with decompensated SSM (SVA ≥ 5 cm). Baseline and 1-year follow-up radiographic and health-related quality of life (HRQOL) outcomes included Oswestry Disability Index, Short Form-36 scores, and Scoliosis Research Society-22 scores. Percentages of patients achieving minimal clinically important difference (MCID) were also assessed. A total of 125 patients (27 compensated and 98 decompensated) met inclusion criteria. Compared with patients in the compensated group, patients in the decompensated group were older (62.9 vs. 55.1 years; p = 0.004) and had less scoliosis (43° vs 54°; p = 0.002), greater SVA (12.0 cm vs. 1.7 cm; p < 0.001), greater PI-LL mismatch (26° vs. 20°; p = 0.013), and poorer HRQOL scores (Oswestry Disability Index, Short Form-36 physical component score, Scoliosis Research Society-22 total; p ≤ 0.016). Although these baseline HRQOL differences between the groups reached statistical significance, only the mean difference in Short Form-36 physical component score reached threshold for MCID. Compared with baseline assessment, at 1 year after surgery improvement was noted for patients in both groups for mean SVA (compensated -1.1 cm, decompensated +4.8 cm; p ≤ 0.009), mean PI-LL mismatch (compensated 6°, decompensated 5°; p < 0.001), and all HRQOL measures assessed (p ≤ 0.005). No significant differences were found between the compensated and decompensated groups in the magnitude of HRQOL score improvement or in the percentages of patients achieving MCID for each of the outcome measures assessed. Decompensated SSM patients with elevated SVA experience significant disability; however, the amount of disability in compensated SSM patients with flatback deformity caused by PI-LL mismatch but normal SVA is underappreciated. Surgical correction of SSM demonstrated similar radiographic and HRQOL score improvements for patients in both groups. Evaluation of SSM should extend beyond measuring SVA. Among patients with concordant pain and disability, PI-LL mismatch must be evaluated for SSM patients and can be considered a primary indication for surgery.
Crash scene photography in motor vehicle crashes without air bag deployment.
Newgard, Craig D; Martens, Katherine A; Lyons, Evelyn M
2002-09-01
To determine whether vehicle characteristics, measured using crash scene photography, are associated with anatomic patterns of injury and severity of injury sustained in motor vehicle crashes (MVCs) without air bag deployment. A prospective observational study was conducted over 22 months, using 12 fire departments serving two hospitals. Two vehicle photographs (exterior and interior) were taken at each MVC. Vehicular variables were assigned by grading the photographs with a standardized scoring system, and outcome information on each patient was collected by chart review. Five hundred fifty-nine patients were entered into the study. Frontal crashes and increasing passenger space intrusion (PSI) were associated with head, facial, and lower-extremity injuries, while rear crashes were associated with spinal injuries. Restraint use had a protective effect in head, facial, and upper and lower extremity injuries, yet was associated with higher odds of spinal injury. Lack of restraint use, increasing PSI, and steering wheel deformity were associated with an increased hospital length of stay and hospital charges, yet only steering wheel deformity was associated with increasing injury severity when adjusting for other crash variables. Out-of-hospital variables, as obtained from crash vehicle photography, are associated with injury site, injury severity, hospital length of stay, and hospital charges in patients involved in MVCs without air bag deployment.
Neurosurgeons in Japan Are Exclusively Brain Surgeons.
Asamoto, Shunji
2017-03-01
In Japan, neurosurgeons have traditionally mainly treated brain diseases, with most cases involving the spine and spinal diseases historically being treated by orthopedists. Nowadays, spinal surgery is 1 of the many subspecialties in the neurosurgical field in Japan. Most patients with neurological deficits or suspected neurological diseases see board-certified neurosurgeons directly in Japan, not through referrals from family physicians or specialists in other fields. Problems originating in the spine and spinal cord have been overlooked or misdiagnosed in these situations. Neurosurgeons in Japan must rethink the educational program to include advanced trauma life support and spinal surgery. Copyright © 2016. Published by Elsevier Inc.
Compressive mechanical characterization of non-human primate spinal cord white matter.
Jannesar, Shervin; Allen, Mark; Mills, Sarah; Gibbons, Anne; Bresnahan, Jacqueline C; Salegio, Ernesto A; Sparrey, Carolyn J
2018-05-02
The goal of developing computational models of spinal cord injury (SCI) is to better understand the human injury condition. However, finite element models of human SCI have used rodent spinal cord tissue properties due to a lack of experimental data. Central nervous system tissues in non human primates (NHP) closely resemble that of humans and therefore, it is expected that material constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI models. Human SCI most often results from compressive loading and spinal cord white matter properties affect FE predicted patterns of injury; therefore, the objectives of this study were to characterize the unconfined compressive response of NHP spinal cord white matter and present an experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples (3 mm in diameter) were taken from both lateral columns of the spinal cord and were divided into four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem <1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and showed substantial stress relaxation confirming the viscoelastic behavior of the material. An Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element derived material constitutive model of this study will increase the fidelity of SCI computational models and provide important insights for transferring pre-clinical findings to clinical treatments. Spinal cord injury (SCI) finite element (FE) models provide an important tool to bridge the gap between animal studies and human injury, assess injury prevention technologies (e.g. helmets, seatbelts), and provide insight into the mechanisms of injury. Although, FE model outcomes depend on the assumed material constitutive model, there is limited experimental data for fresh spinal cords and all was obtained from rodent, porcine or bovine tissues. Central nervous system tissues in non human primates (NHP) more closely resemble humans. This study characterizes fresh NHP spinal cord material properties at high strains rates and large deformations typical of SCI for the first time. A constitutive model was defined that can be readily implemented in finite strain FE analysis of SCI. Copyright © 2018. Published by Elsevier Ltd.
Minamide, Akihito; Yoshida, Munehito; Iwahashi, Hiroki; Simpson, Andrew K; Yamada, Hiroshi; Hashizume, Hiroshi; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Tsutsui, Shunji; Kagotani, Ryohei; Sonekatsu, Mayumi; Sasaki, Takahide; Shinto, Kazunori; Deguchi, Tsuyoshi
2017-05-01
There is ongoing controversy regarding the most appropriate surgical treatment for lumbar spinal stenosis (LSS) with concurrent degenerative lumbar scoliosis (DLS): decompression alone, decompression with limited spinal fusion, or long spinal fusion for deformity correction. The coexistence of degenerative stenosis and deformity is a common scenario; Nonetheless, selecting the appropriate surgical intervention requires thorough understanding of the patients clinical symptomatology as well as radiographic parameters. Minimally invasive (MIS) decompression surgery was performed for LSS patients with DLS. The aims of this study were (1) to investigate the clinical outcomes of MIS decompression surgery in LSS patients with DLS, and (2) to identify the predictive factors for both radiographic and clinical outcomes after MIS surgery. 438 consecutive patients were enrolled in this study. Inclusion criteria was evidence of LSS and DLS with coronal curvature measuring greater than 10°. The Japanese Orthopaedic Association (JOA) score, JOA recovery rate, low back pain (LBP), and radiographic features were evaluated preoperatively and at over 2 years postoperatively. Of the 438 patients, 122 were included in final analysis, with a mean follow-up of 2.4 years. The JOA recovery rate was 47.6%. LBP was significantly improved at final follow-up. Cobb angle was maintained for 2 years postoperatively (p = 0.159). Clinical outcomes in foraminal stenosis patients were significantly related to sex, preoperative high Cobb angle and progression of scoliosis (p = 0.008). In the severe scoliosis patients, the JOA recovery was 44%, and was significantly depended on progression of scoliosis (Cobb angle: preoperation 29.6°, 2-years follow-up 36.9°) and mismatch between the pelvic incidence (PI) and the lumbar lordosis (LL) (preoperative PI-LL 35.5 ± 21.2°) (p = 0.028). This study investigated clinical outcomes of MIS decompression surgery in LSS patients with DLS. The predictive risk factors of clinical outcomes were severe scoliosis, foramina stenosis, progressive scoliosis and large mismatch of PI-LL. Copyright © 2016 The Japanese Orthopaedic Association. All rights reserved.
The Effects of Ketorolac Injected via Patient Controlled Analgesia Postoperatively on Spinal Fusion
Park, Si-Young; Moon, Seong-Hwan; Park, Moon-Soo; Oh, Kyung-Soo
2005-01-01
Lumbar spinal fusions have been performed for spinal stability, pain relief and improved function in spinal stenosis, scoliosis, spinal fractures, infectious conditions and other lumbar spinal problems. The success of lumbar spinal fusion depends on multifactors, such as types of bone graft materials, levels and numbers of fusion, spinal instrumentation, electrical stimulation, smoking and some drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs). From January 2000 to December 2001, 88 consecutive patients, who were diagnosed with spinal stenosis or spondylolisthesis, were retrospectively enrolled in this study. One surgeon performed all 88 posterolateral spinal fusions with instrumentation and autoiliac bone graft. The patients were divided into two groups. The first group (n=30) was infused with ketorolac and fentanyl intravenously via patient controlled analgesia (PCA) postoperatively and the second group (n=58) was infused only with fentanyl. The spinal fusion rates and clinical outcomes of the two groups were compared. The incidence of incomplete union or nonunion was much higher in the ketorolac group, and the relative risk was approximately 6 times higher than control group (odds ratio: 5.64). The clinical outcomes, which were checked at least 1 year after surgery, showed strong correlations with the spinal fusion status. The control group (93.1%) showed significantly better clinical results than the ketorolac group (77.6%). Smoking had no effect on the spinal fusion outcome in this study. Even though the use of ketorolac after spinal fusion can reduce the need for morphine, thereby decreasing morphine related complications, ketorolac used via PCA at the immediate postoperative state inhibits spinal fusion resulting in a poorer clinical outcome. Therefore, NSAIDs such as ketorolac, should be avoided after posterolateral spinal fusion. PMID:15861498
Planar dynamics of large-deformation rods under moving loads
NASA Astrophysics Data System (ADS)
Zhao, X. W.; van der Heijden, G. H. M.
2018-01-01
We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.
SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-09-01
This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.
Evidence basis for management of spine and chest wall deformities in children.
Sponseller, Paul D; Yazici, Muharrem; Demetracopoulos, Constantine; Emans, John B
2007-09-01
: Review of relevant studies, including levels of evidence. : To review research on growth of the spine and chest wall and treatment of deformities. To place this knowledge in context of evidence-based assessment. : Knowledge of the growth of the spine, chest wall, and lung in the normal and deformity states has evolved among independent specialties over the past 60 years. Interest in the interrelationship has blossomed as more tools for assessment and treatment have developed. Spine-based and chest wall-based treatment options now exist, as well as options of resection versus gradual distraction. : Peer-reviewed research published on the growth of the spine, lung, chest wall, and treatment of their deformities was reviewed. Treatment methods and outcomes were compared. Ranking of the levels of evidence was performed where possible. : Most studies of these topics are Level III and IV studies, consisting of case-control studies and case series. This limitation arises because of the rarity and heterogeneity of the disorders affecting the growing spine and chest wall. The natural history of most types of spinal/chest wall deformities is not known with accuracy. Some experimental evidence informs the treatments which involve modulation of the growth of the spine. However, accurate models of the deformities themselves are lacking. Improvements in imaging and measurement offer options for more accurate patient comparison. : The natural history and results of treatment of deformities of the spine and chest wall offer much opportunity for further evidence-based research.
Park, Se-Jun; Lee, Chong-Suh; Chung, Sung-Soo; Lee, Jun-Young; Kang, Sang-Soo; Park, Se-Hwan
2017-02-01
The failure modes, time to development, and clinical relevance are known to differ between proximal junctional kyphosis (PJK) and proximal junctional failure (PJF). However, there are no reports that study the risk factors of PJK and PJF separately. The aim of this study was to investigate the risk factors for PJK and PJF separately. A retrospective study of 160 consecutive patients who underwent a long instrumented fusion to the sacrum for adult spinal deformity with a minimum follow-up of 2 years was conducted. A separate survivorship analysis of PJK and PJF was performed using the Cox proportional hazards model for the 3 categorical parameters of surgical, radiographic, and patient factors. PJK developed in 27 patients (16.9%) and PJF in 29 patients (18.1%). The median survival time was 17.0 months for PJK and 3.0 months for PJF. Multivariate analyses revealed that a high body mass index was an independent risk factor for PJK (hazard ratio [HR] = 1.179), whereas the significant risk factors for PJF were older age, the presence of osteoporosis, the uppermost instrumented vertebra level at T11-L1, and a greater preoperative sagittal vertical axis (HR = 1.082, 6.465, 5.236, and 1.017, respectively). A large correction of sagittal deformity was shown to be a risk factor for PJF on univariate analyses, but not on multivariate analyses. PJK developed at a median of 17 months and PJF at a median of 3 months. A high body mass index was an independent risk factor for PJK, whereas older age, osteoporosis, uppermost instrumented vertebra level at the thoracolumbar junction, and greater preoperative sagittal vertical axis were risk factors for PJF.
Rheumatoid arthritis of the cervical spine: current techniques for management.
Casey, Adrian T H; Crockard, H Alan; Pringle, Jean; O'Brien, Michael F; Stevens, John M
2002-04-01
The incidence of rheumatoid arthritis in the European and North American population is significant. Rheumatoid arthritis can result in serious damage to the cervical spine and the central neuraxis, ranging from mild instability to myelopathy and death. Aggressive conservative care should be established early. The treating physician should not be lulled into a false sense of security by reports suggesting that cervical subluxations are typically asymptomatic [76-78]. Gradual spinal cord compression can result in severe neurologic deficits that may be irreversible despite appropriate surgical intervention when applied too late. [figure: see text] The treatment of rheumatoid disease in the cervical spine is challenging. Many details must be considered when diagnosing and attempting to institute a treatment plan, particularly surgical treatment. The pathomechanics may result in either instability or ankylosis. The superimposed deformities may be either fixed or mobile. The algorithm suggested by the authors can be used to navigate through the numerous details that must be considered to formulate a reasonable surgical plan. Although these patients are [figure: see text] frail, an "aggressive" surgical solution applied in a timely fashion yields better results than an incomplete or inappropriate surgical solution applied too late. When surgical intervention is anticipated, it should be performed before the development of severe myelopathy. Patients who progress to a Ranawat III-B status have a much higher morbidity and mortality rate associated with surgical intervention than do patients who ambulate. Although considered aggressive by some, "prophylactic" stabilization and fusion of a [figure: see text] relatively flexible, moderately deformed spine before the onset of severe neurologic symptoms may be reasonable. This approach ultimately may serve the patient better than "observation" if the patient is slowly drifting into a severe spinal deformity or shows signs of early myelopathy or paraparesis.
Spino-pelvic sagittal balance of spondylolisthesis: a review and classification.
Labelle, Hubert; Mac-Thiong, Jean-Marc; Roussouly, Pierre
2011-09-01
In L5-S1 spondylolisthesis, it has been clearly demonstrated over the past decade that sacro-pelvic morphology is abnormal and that it can be associated to an abnormal sacro-pelvic orientation as well as to a disturbed global sagittal balance of the spine. The purpose of this article is to review the work done within the Spinal Deformity Study Group (SDSG) over the past decade, which has led to a classification incorporating this recent knowledge. The evidence presented has been derived from the analysis of the SDSG database, a multi-center radiological database of patients with L5-S1 spondylolisthesis, collected from 43 spine surgeons in North America and Europe. The classification defines 6 types of spondylolisthesis based on features that can be assessed on sagittal radiographs of the spine and pelvis: (1) grade of slip, (2) pelvic incidence, and (3) spino-pelvic alignment. A reliability study has demonstrated substantial intra- and inter-observer reliability similar to other currently used classifications for spinal deformity. Furthermore, health-related quality of life measures were found to be significantly different between the 6 types, thus supporting the value of a classification based on spino-pelvic alignment. The clinical relevance is that clinicians need to keep in mind when planning treatment that subjects with L5-S1 spondylolisthesis are a heterogeneous group with various adaptations of their posture. In the current controversy on whether high-grade deformities should or should not be reduced, it is suggested that reduction techniques should preferably be used in subjects with evidence of abnormal posture, in order to restore global spino-pelvic balance and improve the biomechanical environment for fusion.
Adogwa, Owoicho; Vuong, Victoria D; Elsamadicy, Aladine A; Lilly, Daniel T; Desai, Shyam A; Khalid, Syed; Cheng, Joseph; Bagley, Carlos A
2018-05-14
Wound infections after adult spinal deformity surgery place a high toll on patients, providers, and the healthcare system. Staphylococcus aureus is a common cause of postoperative wound infections, and nasal colonization by this organism may be an important factor in the development of surgical site infections (SSIs). The aim is to investigate whether post-operative surgical site infections after elective spine surgery occur at a higher rate in patients with methicillin-resistant S. aureus (MRSA) nasal colonization. Consecutive patients undergoing adult spinal deformity surgery between 2011-2013 were enrolled. Enrolled patients were followed up for a minimum of 3 months after surgery and received similar peri-operative infection prophylaxis. Baseline characteristics, operative details, rates of wound infection, and microbiologic data for each case of post-operative infection were gathered by direct medical record review. Local vancomycin powder was used in all patients and sub-fascial drains were used in the majority (88%) of patients. 1200 operative spine cases were performed for deformity between 2011 and 2013. The mean ± standard deviation age and body mass index were 62.08 ± 14.76 years and 30.86 ± 7.15 kg/m 2 , respectively. 29.41% had a history of diabetes. All SSIs occurred within 30 days of surgery, with deep wound infections accounting for 50% of all SSIs. Of the 34 (2.83%) cases of SSIs that were identified, only 1 case occurred in a patient colonized with MRSA. Our study suggests that the preponderance of SSIs occurred in patients without nasal colonization by methicillin-resistant S. aureus. Future prospective multi-institutional studies are needed to corroborate our findings. Copyright © 2018 Elsevier Inc. All rights reserved.
Fu, Kai-Ming G; Smith, Justin S; Burton, Douglas C; Kebaish, Khaled M; Shaffrey, Christopher I; Schwab, Frank; Lafage, Virginie; Arlet, Vincent; Hostin, Richard; Boachie, Oheneba; Akbarnia, Behrooz; Bess, Shay
2014-01-01
To evaluate the outcomes and complications of patients with adult spinal deformity treated in a primary versus revision fashion with long fusions to the sacropelvis. A retrospective review was performed of a multicenter consecutive series of patients with adult spinal deformity requiring fusion to the sacropelvis, either primarily or as revision, with minimum 2-year follow-up. Clinical (Scoliosis Research Society [SRS] 22 questionnaire) and radiographic parameters (including sagittal vertical axis [SVA], coronal Cobb angle, lumbar lordosis, and thoracic kyphosis) were compared between the groups. There were 63 patients who met inclusion criteria; mean patient age was 51.9 years, and mean follow-up was 43 months. Patients requiring primary fusion were older (58.0 years vs. 49.5 years, P=0.01) and at baseline had a lower SVA (2.1 cm vs. 6.8 cm, P=0.01) and greater thoracolumbar Cobb angle (51.2 degrees vs. 36.5 degrees, P=0.003). At last follow-up, patients undergoing primary fusion and patients undergoing revision treatment had similar SVA (2.9 cm vs. 1.8 cm, P=0.32) and lumbar lordosis (-42.3 degrees vs. -43.4 degrees, P=0.82); patients undergoing revision treatment had more favorable SRS 22 scores (3.65 vs. 3.14, P=0.005). There was no statistical difference in complication rates between the groups (44.4% vs. 35%, P=0.68). Patients requiring revision extension of instrumentation to the pelvis can be treated with the same expectation of radiographic and clinical success as patients treated primarily with fusion to the sacropelvis. The complication rate for the revision procedure is not insignificant and may be similar to a primary procedure that includes pelvic fixation. Copyright © 2014 Elsevier Inc. All rights reserved.
Restrained Differential Growth: The Initiating Event of Adolescent Idiopathic Scoliosis?
Crijns, Tom Joris; Stadhouder, Agnita; Smit, Theodoor Henri
2017-06-15
An experimental model study and a short review of literature. The purpose of this study was to explore a new hypothesis suggesting that the curvatures seen in adolescent idiopathic scoliosis (AIS) originate from restrained differential growth between the vertebral column and the surrounding musculo-ligamentary structures. Despite decades of research, there is no generally accepted theory on the physical origin of the severe spinal deformations seen in AIS. The prevailing theories tend to focus on left-right asymmetry, rotational instability, or the sagittal spinal profile in idiopathic scoliosis. We test our hypothesis with a physical model of the spine that simulates growth, counteracted by ligaments and muscles, modeled by tethers and springs. Growth of the spine is further restrained by an anterior band representing the thorax, the linea alba, and abdominal musculature. We also explore literature in search of molecular mechanisms that may induce differential growth. Differential growth in the restrained spine model first induces hypokyphosis and mild lateral bending of the thoracic spine, but then suddenly escalates into a scoliotic deformity, consistent with clinical observations of AIS. The band simulating the ventral structures of the body had a pivotal effect on sagittal curvature and the initiation of lateral bending and rotation. In literature, several molecular mechanisms were found that may explain the occurrence of differential growth between the spine and the musculo-ligamentary structures. While AIS is a three-dimensional deformation of the spine, it appears that restrained differential growth in the sagittal plane can result in lateral bending and rotation without a pre-existing left-right asymmetry. This supports the concept that AIS may result from a growth imbalance rather than a local anatomical defect. N/A.
Godzik, J; Dardas, A; Kelly, M P; Holekamp, T F; Lenke, L G; Smyth, M D; Park, T S; Leonard, J R; Limbrick, D D
2016-02-01
To describe curve patterns in patients with Chiari malformation I (CIM) without syringomyelia, and compare to patients with Chiari malformation with syringomyelia (CIM + SM). Review of medical records from 2000 to 2013 at a single institution was performed to identify CIM patients with scoliosis. Patients with CIM were matched (1:1) by age and gender to CIM + SM. Radiographic curve patterns, MRI-based craniovertebral junction parameters, and associated neurological signs were compared between the two cohorts. Eighteen patients with CIM-associated scoliosis in the absence of syringomyelia were identified; 14 (78 %) were female, with mean age of 11.5 ± 4.5 years. Mean tonsillar descent was 9.9 ± 4.1 mm in the CIM group and 9.1 ± 3.0 mm in the CIM + SM group (p = 0.57). Average syrinx diameter in the CIM + SM group was 9.0 ± 2.7 mm. CIM patients demonstrated less severe scoliotic curves (32.1° vs. 46.1°, p = 0.04), despite comparable thoracic kyphosis (43.7° vs. 49.6°, p = 0.85). Two (11 %) patients with CIM demonstrated thoracic apex left deformities compared to 9/18 (50 %) in the CIM + SM cohort (p = 0.01). Neurological abnormalities were only observed in the group with syringomyelia (6/18, or 33 %; p = 0.007). In the largest series specifically evaluating CIM and scoliosis, we found that these patients appear to present with fewer atypical curve features, with less severe scoliotic curves, fewer apex left curves, and fewer related neurological abnormalities than CIM + SM. Notably, equivalent thoracic kyphosis was observed in both groups. Future studies are needed to better understand pathogenesis of spinal deformity in CIM with and without SM.
NASA Astrophysics Data System (ADS)
Strzałkowski, Piotr; Ścigała, Roman; Szafulera, Katarzyna
2018-04-01
Some problems have been discussed, connected with performing predictions of post-mining terrain deformations. Especially problems occur with the summation of horizontal strain over long time intervals as well as predictions of linear discontinuous deformations. Of great importance in recent years is the problem of taking into account transient values of deformations associated with the development of extraction field. The exemplary analysis has been presented of planned extraction influences on two characteristic locations of building structure. The proposal has been shown of calculations with using transient deformation model allowing to describe the influence of extraction advance influence on the value of coefficient of extraction rate c (time factor), according to own original empirical formula.
Incidence of Secondary Complications in Spinal Cord Injury.
ERIC Educational Resources Information Center
Anson, C. A.; Shepherd, C.
1996-01-01
Data from 348 patients (mean age 37) with postacute spinal cord injury revealed that 95% reported at least 1 secondary problem, and 58% reported 3 or more. The number and severity of complications varied with time since the injury. Obesity, pain, spasticity, urinary tract infections, pressure sores, and lack of social integration were common…
Muramoto, Akio; Imagama, Shiro; Ito, Zenya; Hirano, Kenichi; Ishiguro, Naoki; Hasegawa, Yukiharu
2016-03-01
Spinal sagittal imbalance has been well known risk factor of decreased quality of life in the field of adult spinal deformity. However, the impact of spinal sagittal balance on locomotive syndrome and physical performance in community-living elderly has not yet been clarified. The present study investigated the influence of spinal sagittal alignment on locomotive syndrome (LS) and physical performance in community-living middle-aged and elderly women. A total of 125 women between the age of 40-88 years (mean 66.2 ± 9.7 years) who completed the questionnaires, spinal mouse test, physical examination and physical performance tests in Yakumo study were enrolled in this study. Participants answered the 25-Question Geriatric Locomotive Function Scale (GLFS-25), the visual analog scale (VAS) for low back pain (LBP), knee pain. LS was defined as having a score of >16 points on the GLFS-25. Using spinal mouse, spinal inclination angle (SIA), thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacral slope angle (SSA), thoracic spinal range of motion (TSROM), lumbar spinal range of motion (LSROM) were measured. Timed-up-and-go test (TUG), one-leg standing time with eyes open (OLS), and maximum stride, back muscle strength were also measured. The relationship between spinal sagittal parameters and GLFS-25, VAS and physical performance tests were analyzed. 26 people were diagnosed as LS and 99 were diagnosed as non-LS. LBP and knee pain were greater, physical performance tests were poorer, SIA were greater, LLA were smaller in LS group compared to non-LS group even after adjustment by age. SIA significantly correlated with GLFS-25, TUG, OLS and maximum stride even after adjustment by age. The cutoff value of SIA for locomotive syndrome was 6°. People with a SIA of 6° or greater were grouped as "Inclined" and people with a SIA of less than 6° were grouped as "Non-inclined". 21 people were "Inclined" and 104 were "Non-inclined". Odds ratio to fall in LS of Inclined group compared to Non-inclined group is 5.0. GLFS-25 were significantly higher, VAS for LBP were greater, TUG, OLS and maximum stride were poorer in Inclined group compared to Non-inclined group even after adjustment by age. The present study demonstrated that spinal sagittal balance influences the LS and physical performance in community-living middle-aged and elderly women. SIA is a useful spinal parameter to evaluate the risk of LS, and its cutoff value is 6°. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Yao, Ziming; Du, Jianwei; Wang, Zheng; Zheng, Guoquan; Zhang, Xuesong; Cui, Geng; Wang, Yan
2016-09-01
A retrospective study. The aim of this study was to assess the changes in sexual activities in male patients surgically treated for ankylosing spondylitis (AS)-induced kyphosis and the correlation between these changes and spinal sagittal realignment. Sexual function may be affected by AS. However, little is known about the effect of spinal surgery on the sexual activity of patients with AS-induced kyphosis. Data of 45 male patients who had been surgically treated for AS-induced kyphosis were retrospectively reviewed. Changes in sexual activity were evaluated by the international index of erectile function (IIEF), frequency of sexual activity, and time point at which sexual activity began postoperatively. We compared the above-mentioned parameters before and 24 months postoperatively and analyzed the correlation of the changes in the IIEF with the changes in radiological characteristics. Each domain of the IIEF and the total IIEF were increased postoperatively. Improved sexual function was correlated with changes in spinal sagittal characteristics, among which lumbar lordosis (LL) and the chin-brow vertical angle (CBVA) were the most significant causes (P < 0.05). Most patients (71.1%) resumed their sexual activity 5 to 12 weeks after surgery. At the 24-month follow-up, the frequency of patients' sexual activity was higher than that before surgery (P < 0.05). Surgical correction of spinal deformity may improve sexual function and increase the frequency of sexual activity in men with AS. Spinal sagittal realignment and pelvic rotation may be correlated with improvement of sexual function. 4.
Navigation and Robotics in Spinal Surgery: Where Are We Now?
Overley, Samuel C; Cho, Samuel K; Mehta, Ankit I; Arnold, Paul M
2017-03-01
Spine surgery has experienced much technological innovation over the past several decades. The field has seen advancements in operative techniques, implants and biologics, and equipment such as computer-assisted navigation and surgical robotics. With the arrival of real-time image guidance and navigation capabilities along with the computing ability to process and reconstruct these data into an interactive three-dimensional spinal "map", so too have the applications of surgical robotic technology. While spinal robotics and navigation represent promising potential for improving modern spinal surgery, it remains paramount to demonstrate its superiority as compared to traditional techniques prior to assimilation of its use amongst surgeons.The applications for intraoperative navigation and image-guided robotics have expanded to surgical resection of spinal column and intradural tumors, revision procedures on arthrodesed spines, and deformity cases with distorted anatomy. Additionally, these platforms may mitigate much of the harmful radiation exposure in minimally invasive surgery to which the patient, surgeon, and ancillary operating room staff are subjected.Spine surgery relies upon meticulous fine motor skills to manipulate neural elements and a steady hand while doing so, often exploiting small working corridors utilizing exposures that minimize collateral damage. Additionally, the procedures may be long and arduous, predisposing the surgeon to both mental and physical fatigue. In light of these characteristics, spine surgery may actually be an ideal candidate for the integration of navigation and robotic-assisted procedures.With this paper, we aim to critically evaluate the current literature and explore the options available for intraoperative navigation and robotic-assisted spine surgery. Copyright © 2016 by the Congress of Neurological Surgeons.
Spratt, Daniel E; Beeler, Whitney H; de Moraes, Fabio Y; Rhines, Laurence D; Gemmete, Joseph J; Chaudhary, Neeraj; Shultz, David B; Smith, Sean R; Berlin, Alejandro; Dahele, Max; Slotman, Ben J; Younge, Kelly C; Bilsky, Mark; Park, Paul; Szerlip, Nicholas J
2017-12-01
Spinal metastases are becoming increasingly common because patients with metastatic disease are living longer. The close proximity of the spinal cord to the vertebral column limits many conventional therapeutic options that can otherwise be used to treat cancer. In response to this problem, an innovative multidisciplinary approach has been developed for the management of spinal metastases, leveraging the capabilities of image-guided stereotactic radiosurgery, separation surgery, vertebroplasty, and minimally invasive local ablative approaches. In this Review, we discuss the variables that should be considered during the management of these patients and review the role of each discipline and their respective management options to provide optimal care. This work is synthesised into a practical algorithm to aid clinicians in the management of patients with spinal metastasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai
2017-06-01
Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.
Ban, Ehsan; Zhang, Sijia; Zarei, Vahhab; Barocas, Victor H; Winkelstein, Beth A; Picu, Catalin R
2017-07-01
The spinal facet capsular ligament (FCL) is primarily comprised of heterogeneous arrangements of collagen fibers. This complex fibrous structure and its evolution under loading play a critical role in determining the mechanical behavior of the FCL. A lack of analytical tools to characterize the spatial anisotropy and heterogeneity of the FCL's microstructure has limited the current understanding of its structure-function relationships. Here, the collagen organization was characterized using spatial correlation analysis of the FCL's optically obtained fiber orientation field. FCLs from the cervical and lumbar spinal regions were characterized in terms of their structure, as was the reorganization of collagen in stretched cervical FCLs. Higher degrees of intra- and intersample heterogeneity were found in cervical FCLs than in lumbar specimens. In the cervical FCLs, heterogeneity was manifested in the form of curvy patterns formed by collections of collagen fibers or fiber bundles. Tensile stretch, a common injury mechanism for the cervical FCL, significantly increased the spatial correlation length in the stretch direction, indicating an elongation of the observed structural features. Finally, an affine estimation for the change of correlation length under loading was performed which gave predictions very similar to the actual values. These findings provide structural insights for multiscale mechanical analyses of the FCLs from various spinal regions and also suggest methods for quantitative characterization of complex tissue patterns.
2013-01-01
This paper aims to integrate into current understanding of AIS causation, etiopathogenetic information presented at two Meetings during 2012 namely, the International Research Society of Spinal Deformities (IRSSD) and the Scoliosis Research Society (SRS). The ultimate hope is to prevent the occurrence or progression of the spinal deformity of AIS with non-invasive treatment, possibly medical. This might be attained by personalised polymechanistic preventive therapy targeting the appropriate etiology and/or etiopathogenetic pathways, to avoid fusion and maintain spinal mobility. Although considerable progress had been made in the past two decades in understanding the etiopathogenesis of adolescent idiopathic scoliosis (AIS), it still lacks an agreed theory of etiopathogenesis. One problem may be that AIS results not from one cause, but several that interact with various genetic predisposing factors. There is a view there are two other pathogenic processes for idiopathic scoliosis namely, initiating (or inducing), and those that cause curve progression. Twin studies and observations of family aggregation have revealed significant genetic contributions to idiopathic scoliosis, that place AIS among other common disease or complex traits with a high heritability interpreted by the genetic variant hypothesis of disease. We summarize etiopathogenetic knowledge of AIS as theories of pathogenesis including recent multiple concepts, and blood tests for AIS based on predictive biomarkers and genetic variants that signify disease risk. There is increasing evidence for the possibility of an underlying neurological disorder for AIS, research which holds promise. Like brain research, most AIS workers focus on their own corner and there is a need for greater integration of research effort. Epigenetics, a relatively recent field, evaluates factors concerned with gene expression in relation to environment, disease, normal development and aging, with a complex regulation across the genome during the first decade of life. Research on the role of environmental factors, epigenetics and chronic non-communicable diseases (NCDs) including adiposity, after a slow start, has exploded in the last decade. Not so for AIS research and the environment where, except for monozygotic twin studies, there are only sporadic reports to suggest that environmental factors are at work in etiology. Here, we examine epigenetic concepts as they may relate to human development, normal life history phases and AIS pathogenesis. Although AIS is not regarded as an NCD, like them, it is associated with whole organism metabolic phenomena, including lower body mass index, lower circulating leptin levels and other systemic disorders. Some epigenetic research applied to Silver-Russell syndrome and adiposity is examined, from which suggestions are made for consideration of AIS epigenetic research, cross-sectional and longitudinal. The word scoliogeny is suggested to include etiology, pathogenesis and pathomechanism. PMID:23448588
Rate of complications in scoliosis surgery - a systematic review of the Pub Med literature.
Weiss, Hans-Rudolf; Goodall, Deborah
2008-08-05
Spinal fusion surgery is currently recommended when curve magnitude exceeds 40-45 degrees. Early attempts at spinal fusion surgery which were aimed to leave the patients with a mild residual deformity, failed to meet such expectations. These aims have since been revised to the more modest goals of preventing progression, restoring 'acceptability' of the clinical deformity and reducing curvature.In view of the fact that there is no evidence that health related signs and symptoms of scoliosis can be altered by spinal fusion in the long-term, a clear medical indication for this treatment cannot be derived. Knowledge concerning the rate of complications of scoliosis surgery may enable us to establish a cost/benefit relation of this intervention and to improve the standard of the information and advice given to patients. It is also hoped that this study will help to answer questions in relation to the limiting choice between the risks of surgery and the "wait and see - observation only until surgery might be recommended", strategy widely used. The purpose of this review is to present the actual data available on the rate of complications in scoliosis surgery. Search strategy for identification of studies; Pub Med and the SOSORT scoliosis library, limited to English language and bibliographies of all reviewed articles. The search strategy included the terms; 'scoliosis'; 'rate of complications'; 'spine surgery'; 'scoliosis surgery'; 'spondylodesis'; 'spinal instrumentation' and 'spine fusion'. The electronic search carried out on the 1st February 2008 with the key words "scoliosis", "surgery", "complications" revealed 2590 titles, which not necessarily attributed to our quest for the term "rate of complications". 287 titles were found when the term "rate of complications" was used as a key word. Rates of complication varied between 0 and 89% depending on the aetiology of the entity investigated. Long-term rates of complications have not yet been reported upon. Scoliosis surgery has a varying but high rate of complications. A medical indication for this treatment cannot be established in view of the lack of evidence. The rate of complications may even be higher than reported. Long-term risks of scoliosis surgery have not yet been reported upon in research. Mandatory reporting for all spinal implants in a standardized way using a spreadsheet list of all recognised complications to reveal a 2-year, 5-year, 10-year and 20-year rate of complications should be established. Trials with untreated control groups in the field of scoliosis raise ethical issues, as the control group could be exposed to the risks of undergoing such surgery.
Wheelchair Tai Chi as a Therapeutic Exercise for Individuals with Spinal Cord Injury
ERIC Educational Resources Information Center
Wang, Yong Tai; Chang, Li-Shan; Chen, Shihui; Zhong, Yaping; Yang, Yi; Li, Zhanghua; Madison, Timothy
2015-01-01
Individuals with spinal cord injuries (SCI) rarely participate in health-promotion programs or wellness screenings due to the lack of accessibility, adaptations, and tertiary healthcare providers. An unconditioned body is more prone to suffer injury and is at risk for more severe health problems than a conditioned one. As is common in individuals…
Psychosocial outcomes following spinal cord injury in Iran.
Khazaeipour, Zahra; Norouzi-Javidan, Abbas; Kaveh, Mahboobeh; Khanzadeh Mehrabani, Fatemeh; Kazazi, Elham; Emami-Razavi, Seyed-Hasan
2014-05-01
Objective/background In patients with spinal cord injury (SCI), SCI causes psychosocial complications that vary based on culture, conditions, and the amenities of each community. Health planners and social services should have full knowledge of these issues in order to plan schedules that address them. In this study, we aimed to understand the psychosocial problems of persons with SCI in Iran and to explore the requirements for minimizing these difficulties. Design This was a descriptive cross-sectional study. Setting Brain and Spinal Cord Injury Research (BASIR) Center, Tehran University of Medical Sciences, Tehran, Iran. Participants One hundred nineteen persons with SCI referred to BASIR clinic to receive outpatient rehabilitation. Methods In this study, trained interviewers administered a questionnaire to the participants. The questionnaire consisted of socio-demographic variables and psychosocial questions about finances, employment, housing, education, and social communication problems. Results Psychosocial problems for persons with SCI are mainly associated with financial hardship due to unemployment and the high cost of living, followed by difficulties with transportation, house modification, education, marriage, social communication, sports, and entertainment. Psychological problems include sadness, depression, irritability/anger, suicidal thoughts, and a lack of self-confidence. The levels of the aforementioned problems differ with respect to sex. Conclusion Persons suffering from SCI can face some serious psychosocial problems that may vary according to sex. For example, transportation difficulties can lead to problems such as unsociability. After recognizing these problems, the next step would be providing services to facilitate a productive lifestyle, enhancing social communication and psychological health, and ultimately creating a higher quality of life.
Isometric deformations of planar quadrilaterals with constant index
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaputryaeva, E S
We consider isometric deformations (motions) of polygons (so-called carpenter's rule problem) in the case of self-intersecting polygons with the additional condition that the index of the polygon is preserved by the motion. We provide general information about isometric deformations of planar polygons and give a complete solution of the carpenter's problem for quadrilaterals. Bibliography: 17 titles.
Luk, Keith D K
2011-03-01
Prevention or correction of severe kyphotic deformity in addition to eradication of the infective focus has become the modern standard of management of tuberculosis of the spine. Circumferential excision of the kyphus is now technically feasible with the development of rigid pedicle screw fixation system and intraoperative spinal cord monitoring in the past two decades.
Roth, Alex K; Boon-Ceelen, Karlien; Smelt, Harold; van Rietbergen, Bert; Willems, Paul C; van Rhijn, Lodewijk W; Arts, Jacobus J
2018-02-01
Polymeric sublaminar cables have a number of advantages over metal cables in the field of spinal deformity surgery, with decreased risk of neurological injury and potential for higher correction forces as the two most predominant. However, currently available polymer cables are radiolucent, precluding postoperative radiological assessment of instrumentation stability and integrity. This study provides a preclinical assessment of a woven UHMWPE cable made with radiopaque UHMWPE fibers. Our primary goal was to determine if the addition of a radiopacifier negatively affects the mechanical properties of UHMWPE woven cables. Tensile mechanical properties were determined and compared to suitable controls. Radiopacity was evaluated and radiopacifier leaching was assessed in vitro and in vivo. Finally, in vivo bismuth organ content was quantified after a 24-week implantation period in sheep. Results show that the mechanical properties of woven UHMWPE cables were not deleteriously affected by the addition of homogenously dispersed bismuth oxide particles within each fiber. Limited amounts of bismuth oxide were released in vitro, well below the toxicological threshold. Tissue concentrations lower than generally accepted therapeutic dosages for use against gastrointestinal disorders, well below toxic levels, were discovered in vivo. These results substantiate controlled clinical introduction of these radiopaque UHMWPE cables. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 771-779, 2018. © 2017 Wiley Periodicals, Inc.
Tuan Dao, Tien
2017-03-01
Knowledge of spinal loads in neighboring disks after interbody fusion plays an important role in the clinical decision of this treatment as well as in the elucidation of its effect. However, controversial findings are still noted in the literature. Moreover, there are no existing models for efficient prediction of intervertebral disk stresses within annulus fibrosus (AF) and nucleus pulposus (NP) regions. In this present study, a new hybrid rigid-deformable modeling workflow was established to quantify the mechanical stress behaviors within AF and NP regions of the L1-2, L2-3, and L4-5 disks after interbody fusion at L3-4 level. The changes in spinal loads were compared with results of the intact model without interbody fusion. The fusion outcomes revealed maximal stress changes (10%) in AF region of L1-2 disk and in NP region of L2-3 disk. The minimal stress change (1%) is noted at the NP region of the L1-2 disk. The validation of simulation outcomes of fused and intact lumbar spine models against those of other computational models and in vivo measurements showed good agreements. Thus, this present study may be used as a novel design guideline for a specific implant and surgical scenario of the lumbar spine disorders.
Aono, Hiroyuki; Ishii, Keisuke; Tobimatsu, Hidekazu; Nagamoto, Yukitaka; Takenaka, Shota; Furuya, Masayuki; Chiaki, Horii; Iwasaki, Motoki
2017-08-01
Short-segment posterior spinal instrumentation for thoracolumbar burst fracture provides superior correction of kyphosis by an indirect reduction technique, but it has a high failure rate. The purpose of the study we report here was to compare outcomes for temporary short-segment pedicle screw fixation with vertebroplasty and for such fixation without vertebroplasty. This is a prospective multicenter comparative study. We studied 62 consecutive patients with thoracolumbar burst fracture who underwent short-segment posterior instrumentation using ligamentotaxis with Schanz screws with or without vertebroplasty. Radiological parameters (Cobb angle on standing lateral radiographs) were used. Implants were removed approximately 1 year after surgery. Neurologic function, kyphotic deformity, canal compromise, and fracture severity were evaluated prospectively. After surgery, all patients with neurologic deficit had improvement equivalent to at least one grade on the American Spinal Injury Association impairment scale and had fracture union. Kyphotic deformity was reduced significantly, and reduction of the vertebrae was maintained with and without vertebroplasty, regardless of load-sharing classification. Although no patient required additional anterior reconstruction, kyphotic change was observed at disc level mainly after implant removal with or without vertebroplasty. Temporary short-segment fixation yielded satisfactory results in the reduction and maintenance of fractured vertebrae with or without vertebroplasty. Kyphosis recurrence may be inevitable because adjacent discs can be injured during the original trauma. Copyright © 2017 Elsevier Inc. All rights reserved.
Outcome instruments to assess scoliosis surgery.
Bagó, Juan; Climent, Jose Ma; Pérez-Grueso, Francisco J S; Pellisé, Ferran
2013-03-01
To review and summarize the current knowledge regarding the outcome measures used to evaluate scoliosis surgery. Literature review. Outcome instruments should be tested to ensure that they have adequate metric characteristics: content and construct validity, reliability, and responsiveness. In the evaluation of scoliosis, generic instruments to assess health-related quality of life (HRQL) have been used, such as the SF-36 questionnaire and the EuroQol5D instrument. Nonetheless, it is preferable to use disease-specific instruments for this purpose, such as the SRS-22 Patient Questionnaire and the quality of life profile for spinal deformities (QLPSD). More recently, these generic and disease-specific instruments have been complemented with the use of super-specific instruments; i.e., those assessing a single aspect of the condition or specific populations with the condition. The patients' perception of their trunk deformity and body image has received particular attention, and several instruments are available to evaluate these aspects, such as the Walter-Reed Visual Assessment Scale (WRVAS), the Spinal Appearance Questionnaire (SAQ), and the Trunk Appearance Perception Scale (TAPS). The impacts of brace use can also be measured with specific scales, including the Bad Sobernheim Stress Questionnaire (BSSQ) and the Brace Questionnaire (BrQ). The available instruments to evaluate the treatment for non-idiopathic scoliosis have not been sufficiently validated and analyzed. Evaluation of scoliosis treatment should include the patient's perspective, which can be obtained with the use of patient-reported outcome measures.
[Surgical management of ankylosing spondylitis (Bechterew's disease)].
Allouch, H; Shousha, M; Böhm, H
2017-12-01
Ankylosing spondylitis is an inflammatory rheumatic disease that is often associated with back pain and restricted spinal movement. In the later stages of the disease, complete ossification of the entire spine and severe deformity can occur, often resulting in a marked reduction in quality of life and an increased risk of loss of independence due to diminished visual field. Patients with ankylosing spondylitis are at greater risk of spinal fractures. These are generally complex fractures associated with high morbidity and mortality; in addition, neurological deficits are not unusual. Conventional radiological diagnosis is often insufficient to establish a diagnosis. Conservative treatment of fractures of the spine in this patient group is unsatisfactory. Surgical procedures, if necessary combined with decompression, are often the preferred treatment of choice in the fractured or malaligned ankylosed spine. Rebalancing of the sagittal profile with normalization of the visual axis and an improvement of quality of life is achieved through corrective osteotomies. Despite the high rate of complications, long-term results following spinal surgery in patients with ankylosing spondylitis are good. Minimally invasive surgery is appropriate for a further reduction in the complication rate. Meticulous preoperative planning is essential in the treatment of patients with ankylosing spondylitis.
NASA Astrophysics Data System (ADS)
Tamaki, Tamotsu; Umezaki, Eisaku; Yamagata, Masatsune; Inoue, Shun-ichi
1984-10-01
For the therapy of diseases of spinal deformity such as scoliosis, the data of 3-dimensional and correct spinal configuration are needed. Authors developed the system of spinal configuration analysis using bi-plane X-ray photogrammetry which is strong aid for this subject. The idea of correction angle of rotation of vertebra is introduced for this system. Calculated result under this idea has the clinical meaning because the correction angle is the angle which should be corrected on the treatment such as operation or wearing the equipment. Method of 30° oblique projection which gives the apparent X-ray image and eases the measurement of the anatomically characteristic points is presented. The anatomically characteristic bony points whose images should be measured on a- or b-film are of four points. These are centers of upper and lower end plates of each vertebra the center is calculated from two points which are most distant each other on the contour of vertebral end plate ), the lower end points of root of right and left pedicles. Some clinical applications and the effectiveness of this system are presented.
Jeong, Je Hoon; Kim, Hee Kyung; Im, Soo Bin
2017-01-01
Atlantoaxial spondyloarthropathy most often results from rheumatoid arthritis, cancer metastasis, or basilar invagination. Dialysis-related spondyloarthropathy is a rare cause of spinal deformity and cervical myelopathy at the atlantoaxial joint. We report 2 patients on long-term hemodialysis who presented with atlantoaxial spondyloarthropathy. Two patients with end-stage renal failure presented with a history of progressively worsening neck pain, motion limitation, and gait disturbance. In both patients, radiologic findings showed a bone-destroying soft tissue mass lateral to C1 and C2, compressing the spinal cord and causing atlantoaxial instability. We performed a C1 laminectomy and C12 transarticular screw fixation and biopsied the osteolytic mass. The neck pain, hand numbness, and gait disturbance improved. Although the surgical management of these patients involves many challenges, appropriate decompression and fusion surgery is an effective treatment option. Copyright © 2016 Elsevier Inc. All rights reserved.
Bachour, E; Coloma, P; Freitas, E; Messerer, R; Michel, F; Barrey, C
2016-12-01
We report a case of three patients treated with pedicle subtraction osteotomy for post-vertebroplasty kyphosis. These patients were initially treated with a vertebroplasty for vertebral fracture (two cases) and spinal lymphoma (1 case). All of these patients worsened progressively on a clinical and radiographic level with progression of the spinal deformity in the form of kyphosis. The surgery consisted of transpedicular osteotomy instrumented at the level of the vertebra cemented with maximum removal of intra-corporeal cement. One of the three patients required a supplementary anterior approach to achieve good quality bone fusion. In all three cases the post-vertebroplasty kyphosis was able to be reduced by at least 50 % emphasizing the feasibility and relevance of the pedicle subtraction osteotomy in a context of cemented vertebra. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Diagnosis and treatment of common metabolic spinal disorders in the geriatric population.
Eck, J C; Humphreys, S C
1998-12-01
Bone is constantly resorbed and remodeled throughout life. After approximately age 30, there is a net loss of bone mass. This places the geriatric population at an increased risk of pathologic bone disorders that can lead to fractures and deformity. In this paper, we review bone metabolism and remodeling and introduce the proper diagnostic techniques. The most common pathologic spinal disorders are introduced, with emphasis on presentation and treatment options. To prevent excessive bone loss, patients should be educated on proper nutrition (calcium and vitamin D requirements) and lifestyle (avoiding alcohol and cigarette smoking). Sex hormone and drug therapies are available to reduce bone loss. New bisphosphonates such as alendronate sodium (Fosamax) have been effective in increasing bone mass. Early diagnosis and proper treatment of pathologic bone disorders can reduce the incidence of fracture and allow the patient a more productive and comfortable life.
NASA Technical Reports Server (NTRS)
Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.;
1998-01-01
Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.
Recurrent and Transient Spinal Pain Among Commercial Helicopter Pilots.
Andersen, Knut; Baardsen, Roald; Dalen, Ingvild; Larsen, Jan Petter
2015-11-01
The aim of this study was to provide information on the occurrence of spinal pain, i.e., low back and neck pain, among commercial helicopter pilots, along with possible associations between pain and anthropometric and demographic factors and flying exposure. Data were collected through a subjective and retrospective survey among all the 313 (294 men, 19 women) full-time pilots employed by two helicopter companies. A questionnaire was used to assess the extent of spinal complaints in a transient and recurrent pain pattern along with information on physical activities, occupational flying experience, and airframes. The survey had 207 responders (194 men, 13 women). The pilots had extensive flying experience. Spinal pain was reported by 67%. Flying-related transient pain was reported among 50%, whereas recurrent spinal pain, not necessarily associated with flying, was reported by 52%. Women experienced more pain, but sample size prevented further conclusions. Male pilots reporting any spinal pain flew significantly more hours last year (median 500 h, IQR 400-650) versus men with no pain (median 445 h, IQR 300-550). Male pilots with transient or recurrent spinal pain did not differ from nonaffected male colleagues in the measured parameters. Spinal pain is a frequent problem among male and female commercial helicopter pilots. For men, no significant associations were revealed for transient or recurrent spinal pain with age, flying experience in years, total hours, annual flying time, type of aircraft, or anthropometric factors except for any spinal pain related to hours flown in the last year.
Jabbari, Ali; Alijanpour, Ebrahim; Mir, Mehrafza; Bani hashem, Nadia; Rabiea, Seyed Mozaffar; Rupani, Mohammad Ali
2013-01-01
Post spinal puncture headache (PSPH) is a well known complication of spinal anesthesia. It occurs after spinal anesthesia induction due to dural and arachnoid puncture and has a significant effect on the patient’s postoperative well being. This manuscript is based on an observational study that runs on Babol University of Medical Sciences and review of literatures about current concepts about the incidence, risk factors and predisposing factors of post spinal puncture headache. The overall incidence of post-dural puncture headache after intentional dural puncture varies form 0.1-36%, while it is about 3.1% by atraumatic spinal needle 25G Whitacre. 25G Quincke needle with a medium bevel cutting is popular with widespread use and the incidence of PSPH is about 25%, but its incidence obtained 17.3% by spinal needle 25G Quincke in our observation. The association of predisposing factors like female, young age, pregnancy, low body mass index, multiple dural puncture, inexpert operators and past medical history of chronic headache, expose the patient to PSPH. The identification of factors that predict the likelihood of PSPH is important so that measures can be taken to minimize this painful complication resulting from spinal anesthesia. PMID:24009943
Validity of a smartphone protractor to measure sagittal parameters in adult spinal deformity.
Kunkle, William Aaron; Madden, Michael; Potts, Shannon; Fogelson, Jeremy; Hershman, Stuart
2017-10-01
Smartphones have become an integral tool in the daily life of health-care professionals (Franko 2011). Their ease of use and wide availability often make smartphones the first tool surgeons use to perform measurements. This technique has been validated for certain orthopedic pathologies (Shaw 2012; Quek 2014; Milanese 2014; Milani 2014), but never to assess sagittal parameters in adult spinal deformity (ASD). This study was designed to assess the validity, reproducibility, precision, and efficiency of using a smartphone protractor application to measure sagittal parameters commonly measured in ASD assessment and surgical planning. This study aimed to (1) determine the validity of smartphone protractor applications, (2) determine the intra- and interobserver reliability of smartphone protractor applications when used to measure sagittal parameters in ASD, (3) determine the efficiency of using a smartphone protractor application to measure sagittal parameters, and (4) elucidate whether a physician's level of experience impacts the reliability or validity of using a smartphone protractor application to measure sagittal parameters in ASD. An experimental validation study was carried out. Thirty standard 36″ standing lateral radiographs were examined. Three separate measurements were performed using a marker and protractor; then at a separate time point, three separate measurements were performed using a smartphone protractor application for all 30 radiographs. The first 10 radiographs were then re-measured two more times, for a total of three measurements from both the smartphone protractor and marker and protractor. The parameters included lumbar lordosis, pelvic incidence, and pelvic tilt. Three raters performed all measurements-a junior level orthopedic resident, a senior level orthopedic resident, and a fellowship-trained spinal deformity surgeon. All data, including the time to perform the measurements, were recorded, and statistical analysis was performed to determine intra- and interobserver reliability, as well as accuracy, efficiency, and precision. Statistical analysis using the intra- and interclass correlation coefficient was calculated using R (version 3.3.2, 2016) to determine the degree of intra- and interobserver reliability. High rates of intra- and interobserver reliability were observed between the junior resident, senior resident, and attending surgeon when using the smartphone protractor application as demonstrated by high inter- and intra-class correlation coefficients greater than 0.909 and 0.874 respectively. High rates of inter- and intraobserver reliability were also seen between the junior resident, senior resident, and attending surgeon when a marker and protractor were used as demonstrated by high inter- and intra-class correlation coefficients greater than 0.909 and 0.807 respectively. The lumbar lordosis, pelvic incidence, and pelvic tilt values were accurately measured by all three raters, with excellent inter- and intra-class correlation coefficient values. When the first 10 radiographs were re-measured at different time points, a high degree of precision was noted. Measurements performed using the smartphone application were consistently faster than using a marker and protractor-this difference reached statistical significance of p<.05. Adult spinal deformity radiographic parameters can be measured accurately, precisely, reliably, and more efficiently using a smartphone protractor application than with a standard protractor and wax pencil. A high degree of intra- and interobserver reliability was seen between the residents and attending surgeon, indicating measurements made with a smartphone protractor are unaffected by an observer's level of experience. As a result, smartphone protractors may be used when planning ASD surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Degenerative spinal disease in large felids.
Kolmstetter, C; Munson, L; Ramsay, E C
2000-03-01
Degenerative spinal disorders, including intervertebral disc disease and spondylosis, seldom occur in domestic cats. In contrast, a retrospective study of 13 lions (Panthera leo), 16 tigers (Panthera tigris), 4 leopards (Panthera pardis), 1 snow leopard (Panthera uncia), and 3 jaguars (Panthera onca) from the Knoxville Zoo that died or were euthanatized from 1976 to 1996 indicated that degenerative spinal disease is an important problem in large nondomestic felids. The medical record, radiographic data, and the necropsy report of each animal were examined for evidence of intervertebral disc disease or spondylosis. Eight (three lions, four tigers, and one leopard) animals were diagnosed with degenerative spinal disease. Clinical signs included progressively decreased activity, moderate to severe rear limb muscle atrophy, chronic intermittent rear limb paresis, and ataxia. The age at onset of clinical signs was 10-19 yr (median = 18 yr). Radiographic evaluation of the spinal column was useful in assessing the severity of spinal lesions, and results were correlated with necropsy findings. Lesions were frequently multifocal, included intervertebral disc mineralization or herniation with collapsed intervertebral disc spaces, and were most common in the lumbar area but also involved cervical and thoracic vertebrae. Marked spondylosis was present in the cats with intervertebral disc disease, presumably subsequent to vertebral instability. Six of the animals' spinal cords were examined histologically, and five had acute or chronic damage to the spinal cord secondary to disc protrusion. Spinal disease should be suspected in geriatric large felids with decreased appetite or activity. Radiographic evaluation of the spinal column is the most useful method to assess the type and severity of spinal lesions.
Opoku, Harriet; Yirerong, Theresa; Osei-Onwona, Belinda; Boachie-Adjei, Oheneba
To compare arm span and height in body mass index (BMI) calculation in patients with spinal curvature and investigate their impact on interpretation of BMI. Prospective case-control cohorts. The BMI value is based on weight to height ratio. Spine deformity patients experience height loss and its use in calculating BMI is likely to produce errors. A surrogate for height should therefore be sought in BMI determination. Ninety-three spine deformity patients were matched with 64 normal children. Anthropometric values (height, arm span, and weight) and spinal curve were obtained. BMIs using arm span and height were calculated, and statistical analysis performed to assess the relationship between BMI/height and BMI/arm span in both groups as well as the relationship between these values and Arm Span to Height difference (Delta AH). There were 46 males and 47 females, the average age was 15.5 years in Group 1 versus 33 males and 31 females, average age 14.8 years in Group 2. Major scoliosis in Group 1 averaged 125.7° (21° to 252°). The extreme curves show vertebral transposition, with overlapping segments making it more than 180°. A logistic regression showed that there was linearity in BMI scores (R 2 = 0.97) for both arm span and height (R 2 = 0.94) in group 2 patients. For group 1 patients there was a significant difference in the BMI values when comparing BMI/arm span versus BMI/height (p < .0001). Mean BMI values using height was overstated by 2.8 (18.6%). The threshold at which BMI score must be calculated using arm span as opposed to the height (Delta AH) was determined to be 3 cm. Spine deformity patients experience height loss, which can impact their true BMI values thereby giving an erroneous impression of their nutritional status. The arm span should be used in patients with Delta AH >3 cm to properly assess nutritional status. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis
Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul
2013-01-01
Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim that scoliosis could be initiated through a hypokyphosis. PMID:23977058
Multilevel non-contiguous spinal injuries: incidence and patterns based on whole spine MRI.
Kanna, Rishi Mugesh; Gaike, Chandrasekar V; Mahesh, Anupama; Shetty, Ajoy Prasad; Rajasekaran, S
2016-04-01
Multi-level non-contiguous spinal injuries are not uncommon and their incidence varies from 1.6 to 77% depending on the type of imaging modality used. Delayed diagnosis and missed spinal injuries in non-contiguous spine fractures have been frequently described which can result in significant pain, deformity and neurological deficit. The efficacy of whole spine MRI in detecting asymptomatic significant vertebral fractures is not known. Consecutive spinal injury patients treated between 2011 and 2013 were retrospectively evaluated based on clinical and radiographic records. Patients' demographics, mode of injury, presence of associated injuries, clinical symptoms and the presence of neurological deficit were studied. Radiographs of the fractured region and whole spine MRI were evaluated for the presence of multi-level injuries. Among 484 patients, 95 (19.62%) patients had multilevel injuries including 86 (17.76%) with non-contiguous injuries. Five common patterns of non-contiguous spinal injuries were observed. Pattern I: cervical and thoracic--29.1%, Pattern II: thoracolumbar and lumbosacral--22.1%, Pattern III: thoracic and thoracolumbar--12.8 %, Pattern IV: cervical and thoracolumbar--9.1% and Pattern V: lumbosacral and associated injuries--9.0 %. The incidence of intra-regional non-contiguous injuries was 17.4%. Whole spine MRI scan detected 24 (28.6%) missed secondary injuries of which 5 were unstable. The incidence of multilevel non-contiguous spine injury using whole spine MRI imaging is 17.76%. Five different patterns of multi-level non-contiguous injuries were found with the most common pattern being the cervical and thoracic level injuries. The incidence of unstable injuries can be as high as 21% of missed secondary injuries.
Miyazaki, Masashi; Kanezaki, Shozo; Notani, Naoki; Ishihara, Toshinobu; Tsumura, Hiroshi
2017-12-01
Fixed thoracolumbar kyphosis with spinal stenosis in adult patients with achondroplasia presents a challenging issue. We describe the first case in which spondylectomy and minimally invasive lateral access interbody arthrodesis were used for the treatment of fixed severe thoracolumbar kyphosis and lumbar spinal canal stenosis in an adult with achondroplasia. A 61-year-old man with a history of achondroplastic dwarfism presented with low back pain and radiculopathy and neurogenic claudication. Plain radiographs revealed a high-grade thoracolumbar kyphotic deformity with diffuse degenerative changes in the lumbar spine. The apex was located at L2, the local kyphotic angle from L1 to L3 was 105°, and the anterior area was fused from the L1 to L3 vertebrae. MRI revealed significant canal and lateral recess stenosis secondary to facet hypertrophy. We planned a front-back correction of the anterior and posterior spinal elements. We first performed anterior release at the fused part from L1 to L3 and XLIF at L3/4 and L4/5. Next, the patient was placed in the prone position. Spondylectomy at the L2 vertebra and posterior fusion from T10 to L5 were performed. Postoperative radiographs revealed L1 to L3 kyphosis of 32°. No complications occurred during or after surgery. Postoperatively, the patient's low back pain and neurological claudication were resolved. No worsening of kyphosis was observed 24 months postoperatively. Circumferential decompression of the spinal cord at the apical vertebral level and decompression of lumbar canal stenosis were necessary. Front-back correction of the anterior and posterior spinal elements via spondylectomy and lateral lumbar interbody fusion is a reasonable surgical option for thoracolumbar kyphosis and developmental canal stenosis in patients with achondroplasia.
A systematic review of definitions and classification systems of adjacent segment pathology.
Kraemer, Paul; Fehlings, Michael G; Hashimoto, Robin; Lee, Michael J; Anderson, Paul A; Chapman, Jens R; Raich, Annie; Norvell, Daniel C
2012-10-15
Systematic review. To undertake a systematic review to determine how "adjacent segment degeneration," "adjacent segment disease," or clinical pathological processes that serve as surrogates for adjacent segment pathology are classified and defined in the peer-reviewed literature. Adjacent segment degeneration and adjacent segment disease are terms referring to degenerative changes known to occur after reconstructive spine surgery, most commonly at an immediately adjacent functional spinal unit. These can include disc degeneration, instability, spinal stenosis, facet degeneration, and deformity. The true incidence and clinical impact of degenerative changes at the adjacent segment is unclear because there is lack of a universally accepted classification system that rigorously addresses clinical and radiological issues. A systematic review of the English language literature was undertaken and articles were classified using the Grades of Recommendation Assessment, Development, and Evaluation criteria. RESULTS.: Seven classification systems of spinal degeneration, including degeneration at the adjacent segment, were identified. None have been evaluated for reliability or validity specific to patients with degeneration at the adjacent segment. The ways in which terms related to adjacent segment "degeneration" or "disease" are defined in the peer-reviewed literature are highly variable. On the basis of the systematic review presented in this article, no formal classification system for either cervical or thoracolumbar adjacent segment disorders currently exists. No recommendations regarding the use of current classification of degeneration at any segments can be made based on the available literature. A new comprehensive definition for adjacent segment pathology (ASP, the now preferred terminology) has been proposed in this Focus Issue, which reflects the diverse pathology observed at functional spinal units adjacent to previous spinal reconstruction and balances detailed stratification with clinical utility. A comprehensive classification system is being developed through expert opinion and will require validation as well as peer review. Strength of Statement: Strong.
Shi, Benlong; Mao, Saihu; Xu, Leilei; Sun, Xu; Liu, Zhen; Zhu, Zezhang; Lam, Tsz Ping; Cheng, Jack Cy; Ng, Bobby; Qiu, Yong
2016-07-04
Height gain is a common beneficial consequence following correction surgery in adolescent idiopathic scoliosis (AIS), yet little is known concerning factors favoring regain of the lost vertical spinal height (SH) through posterior spinal fusion. A consecutive series of AIS patients from February 2013 to August 2015 were reviewed. Surgical changes in SH (ΔSH), as well as the multiple coronal and sagittal deformity parameters were measured and correlated. Factors associated with ΔSH were identified through Pearson correlation analysis and multivariate regression analysis. A total of 172 single curve and 104 double curve patients were reviewed. The ΔSH averaged 2.5 ± 0.9 cm in single curve group and 2.9 ± 1.0 cm in double curve group. The multivariate regression analysis revealed the following pre-operative variables contributed significantly to ΔSH: pre-op Cobb angle, pre-op TK (single curve group only), pre-op GK (double curve group only) and pre-op LL (double curve group only) (p < 0.05). Thus change in height (in cm) = 0.044 × (pre-op Cobb angle) + 0.012 × (pre-op TK) (Single curve, adjusted R(2) = 0.549) or 0.923 + 0.021 × (pre-op Cobb angle1) + 0.028 × (pre-op Cobb angle2) + 0.015 × (pre-op GK)-0.012 × (pre-op LL) (Double curve, adjusted R(2) = 0.563). Severer pre-operative coronal Cobb angle and greater sagittal curves were beneficial factors favoring more contribution to the surgical lengthening effect in vertical spinal height in AIS.
Lee, Andy C H; Feger, Mark A; Singla, Anuj; Abel, Mark F
2016-11-15
Systemic review and meta-analysis. To analyze the effect of spinal fusion and instrumentation for adolescent idiopathic scoliosis (AIS) on absolute pulmonary function test (PFTs). Pulmonary function is correlated with severity of deformity in AIS patients and studies that have analyzed the effect of spinal fusion and instrumentation on PFTs for AIS have reported inconsistent results. There is a need to analyze the effect of spinal fusion on PFTs with stratification by surgical approach. Our analysis included 22 studies. Cohen's d effect sizes were calculated for absolute PFT outcome measures with 95% confidence intervals (CI). Meta-analyses were performed at each postoperative time frame for six homogeneous surgical approaches: (i) combined anterior release and posterior fusion with instrumentation; (ii) combined video assisted anterior release and posterior fusion with instrumentation without thoracoplasty; (iii) posterior fusion with instrumentation without thoracoplasty; (iv) anterior fusion with instrumentation and without thoracoplasty; (v) video assisted anterior fusion with instrumentation without thoracoplasty; and (vi) any scoliosis surgery with additional thoracoplasty. Anterior spinal fusion with instrumentation, any scoliosis surgery with concomitant thoracoplasty, or video-assisted anterior fusion with instrumentation for AIS had similar absolute PFTs at their 2 year postoperative follow up compared with their preoperative PFTs (effect sizes ranging from -0.2-0.2 with all CI crossing "0"). Posterior spinal fusion with instrumentation (with or without an anterior release) demonstrated small to moderate increases in PFTs 2 years postoperatively (effect sizes ranging from 0.35-0.65 with all CI not crossing "0"). Anterior fusion with instrumentation, regardless of the approach, and any scoliosis surgery with concomitant thoracoplasty do not lead to significant change in pulmonary functions 2 year after surgery. Posterior spinal fusion with instrumentation (with or without an anterior release) resulted in small to moderate increases in PFTs. N/A.
Reames, Davis L; Kasliwal, Manish K; Smith, Justin S; Hamilton, D Kojo; Arlet, Vincent; Shaffrey, Christopher I
2015-03-01
A retrospective review. To study time to development, clinical and radiographic characteristics, and management of proximal junctional kyphosis (PJK) following thoracolumbar instrumented fusion for adult spinal deformity (ASD). PJK continues to be a common mode of failure following ASD surgery. Although literature exists on possible risk factors, data on management remain limited. A retrospective review of medical records of 289 consecutive ASD patients who underwent posterior segmental instrumentation incorporating at least 5 segments was conducted. PJK was defined as proximal kyphotic angle >10 degrees. PJK occurred in 32 patients (11%) at a mean follow-up of 34 months (range, 1.3-61.9±19 mo). Sixteen (50%) patients were revised (mean, 1.7 revisions; range, 1-3) at a mean follow-up of 9.6 months (range, 0.7-40 mo); primary indications for revision were pain (n=16), myelopathy (n=6), instability (n=4), and instrumentation protrusion (n=2). Comparison of preindex and postindex surgery radiographic parameters demonstrated significant improvement in mean lumbar lordosis (24 vs. 42 degrees, P<0.001), pelvic incidence-lumbar lordosis mismatch (30 vs. 11 degrees, P<0.001), and pelvic tilt (29 vs. 23 degrees, P<0.011). The mean T5-T12 kyphosis worsened (30 vs. 53 degrees, P<0.001) and the mean global sagittal spinal alignment failed to improve (9.6 vs. 8.0 cm, P=0.76). There was no apparent relationship between the absolute PJK angle and revision surgery (P>0.05). The patients in this series who developed PJK had substantial preoperative positive sagittal malalignment that remained inadequately corrected following surgery, likely resulting from a combination of inadequate surgical correction and a significant compensatory increase in thoracic kyphosis. In the absence of direct relationship between a greater PJK angle and worse clinical outcome, clinical symptoms and neurological status rather than absolute reliance on radiographic parameters should drive the decision to pursue revision surgery.
Kato, So; Fehlings, Michael G; Lewis, Stephen J; Lenke, Lawrence G; Shaffrey, Christopher I; Cheung, Kenneth M C; Carreon, Leah; Dekutoski, Mark B; Schwab, Frank J; Boachie-Adjei, Oheneba; Kebaish, Khaled M; Ames, Christopher P; Qiu, Yong; Matsuyama, Yukihiro; Dahl, Benny T; Mehdian, Hossein; Pellisé, Ferran; Berven, Sigurd H
2017-11-10
A sub-analysis from a prospective, multicenter, international cohort study in 15 sites (Scoli-RISK-1). To report detailed information regarding the severity of neurological decline related to complex adult spine deformity (ASD) surgery and to examine outcomes based on severity. The basis of post-operative neurological decline after ASD surgeries can occur due to nerve root(s) or spinal cord dysfunction. The impact of decline and the pattern of recovery may be related to the anatomic location and the severity of the injury. An investigation of 272 prospectively enrolled complex ASD surgical patients with neurological status measured by American Spinal Injury Association Lower Extremity Motor Scores (LEMS) was undertaken. Post-operative neurological decline was categorized into "major" (≥5 points loss) vs. "minor" (<5 points loss) deficits. Timing and extent of recovery in LEMS were investigated for each group. Among the 265 patients with LEMS available at discharge, 61 patients (23%) had neurological decline, with 20 (33%) experiencing major decline. Of note, 90% of the patients with major decline had deficits in 3 or more myotomes. Full recovery was seen in 24% at 6 weeks and increased to 65% at 6 months. However, 34% continued to experience some neurological decline at 24 months, with 6% demonstrating no improvement. Of 41 patients (67%) with minor decline, 73% had deficits in 1 or 2 myotomes. Full recovery was seen in 49% at 6 weeks and increased to 70% at 6 months. Of note, 26% had persistence of some neurological deficit at 24 months, with 18% demonstrating no recovery. In patients undergoing complex ASD correction, a rate of post-operative neurological decline of 23% was noted with 33% of these being "major". While most patients showed substantial recovery by 6 months, approximately one-third continued to experience neurological dysfunction. 2.
Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Yasuda, Tatsuya; Togawa, Daisuke; Arima, Hideyuki; Oe, Shin; Iida, Takahiro; Matsumura, Akira; Hosogane, Naobumi; Matsumoto, Morio; Matsuyama, Yukihiro
2016-02-01
This investigation consisted of a cross-sectional study and a retrospective multicenter case series. This investigation sought to identify the ideal lumbar lordosis (LL) angle for restoring an optimal pelvic tilt (PT) in patients with adult spinal deformity (ASD). To achieve successful corrective fusion in ASD patients with sagittal imbalance, it is essential to correct the sagittal spinal alignment and obtain a suitable pelvic inclination. We determined the LL angle that would restore the optimal PT following ASD surgery. The cross-sectional study included 184 elderly volunteers (mean age 64 years) with an Oswestry Disability Index score less than 20%. The relationship between PT or LL and the pelvic incidence (PI) in normal individuals was investigated. The second study included 116 ASD patients (mean age 66 years) who underwent thoracolumbar corrective fusion at 1 of 4 spine centers. The postoperative PT values were calculated using the parameters measured. On the basis of these studies, an ideal LL angle was determined. In the cross-sectional study, the linear regression equation for the optimal PT as a function of PI was "optimal PT = 0.47 × PI - 7.5." In the second study, the postoperative PT was determined as a function of PI and corrected LL, using the equation "postoperative PT = 0.7 × PI - 0.5 × corrected LL + 8.1." The target LL angle was determined by mathematically equalizing the PTs of these 2 equations: "target LL = 0.45 × PI + 31.8." The ideal LL angle can be determined using the equation "LL = 0.45 × PI + 31.8," which can be used as a reference during surgical planning in ASD cases. 4.
Yoshida, Go; Boissiere, Louis; Larrieu, Daniel; Bourghli, Anouar; Vital, Jean Marc; Gille, Olivier; Pointillart, Vincent; Challier, Vincent; Mariey, Remi; Pellisé, Ferran; Vila-Casademunt, Alba; Perez-Grueso, Francisco Javier Sánchez; Alanay, Ahmet; Acaroglu, Emre; Kleinstück, Frank; Obeid, Ibrahim
2017-03-15
Prospective multicenter study of adult spinal deformity (ASD) surgery. To clarify the effect of ASD surgery on each health-related quality of life (HRQOL) subclass/domain. For patients with ASD, surgery offers superior radiological and HRQOL outcomes compared with nonoperative care. HRQOL may, however, be affected by surgical advantages related to corrective effects, yielding adequate spinopelvic alignment and stability or disadvantages because of long segment fusion. The study included 170 consecutive patients with ASD from a multicenter database with more than 2-year follow-up period. We analyzed each HRQOL domain/subclass (short form-36 items, Oswestry Disability Index, Scoliosis Research Society-22 [SRS-22] questionnaire), and radiographic parameters preoperatively and at 1 and 2 years postoperatively. We divided the patients into two groups each based on lowest instrumented vertebra (LIV; above L5 or S1 to ilium) or surgeon-determined preoperative pathology (idiopathic or degenerative). Improvement rate (%) was calculated as follows: 100 × |pre.-post.|/preoperative points (%) (+, advantages; -, disadvantages). The scores of all short form-36 items and SRS-22 subclasses improved at 1 and 2 years after surgery, regardless of LIV location and preoperative pathology. Personal care and lifting in Oswestry Disability Index were, however, not improved after 1 year. These disadvantages were correlated to sagittal modifiers of SRS-Schwab classification similar to other HRQOL. The degree of personal care disadvantage mainly depended on LIV location and preoperative pathology. Although personal care improved after 2 years postoperatively, no noticeable improvements in lifting were recorded. HRQOL subclass analysis indicated two disadvantages of ASD surgery, which were correlated to sagittal radiographic measures. Fusion to the sacrum or ilium greatly restricted the ability to stretch or bend, leading to limited daily activities for at least 1 year postoperatively, although this effect may subside after another year. Consequently, spinal surgeons should note the effect of surgical treatment on each HRQOL domain and counsel patients about the implications of surgery. 4.
Wilkinson, John T; Songy, Chad E; Bumpass, David B; McCullough, Francis L; McCarthy, Richard E
2017-04-03
The Shilla procedure was designed to correct and control early-onset spinal deformity while harnessing a child's remaining spinal growth. It allows for controlled axial skeletal growth within the construct, avoiding the need for frequent surgeries to lengthen implants. We hypothesized that curve characteristics evolve over time after initial apex fusion and placement of the Shilla implants. The purpose of this study was to identify trends in curve evolution after Shilla implantation and understand how these changes influence ultimate outcome. A single-center, retrospective review of all patients with Shilla implants in place for ≥5 years yielded 21 patients. Charts and radiographs were reviewed to compare coronal curve characteristics preoperatively, postoperatively, and at last follow-up to note changes in the apex of the primary curve. Also noted were the development of adjacent compensatory curves, the overall vertical spinal growth, and the need for definitive spinal fusion once skeletal maturity was reached. Of the 21 patients, the curve apex migrated caudally in 12 patients (57%) and cephalad in 1 patient (5%), with a mean migration of 2.7 vertebral levels. Two patients (10%) developed new, significant compensatory curves (1 caudal and 1 cephalad). All patients demonstrated spinal growth in T1-S1 length following index surgery (mean, 45 mm). At skeletal maturity, 10 patients underwent definitive posterior spinal fusion and instrumentation, and 3 underwent implant removal alone. This study constitutes the longest follow-up of Shilla patients evaluating curve and implant behavior. Results of this review suggest that the apex of the fused primary curve shifts in approximately 62% of patients, with nearly all of these (92%) involving a distal migration. Compensatory curves did develop after Shilla placement as well. Overall, these findings represent adding-on distal to the apex after Shilla instrumentation rather than a crankshaft phenomenon about the apex. A better understanding of spinal growth mechanics and outcomes after Shilla placement may improve our ability to appropriately select patients and instrumentation levels. Level III.
Donnelly, Catherine; Eng, Janice J; Hall, Jill; Alford, Lindsay; Giachino, Rob; Norton, Kathy; Kerr, Debbie Scott
2011-01-01
Study Design Retrospective analysis. Objectives 1) describe the self-care, productivity and leisure problems identified by individuals with a spinal cord injury during rehabilitation, 2) describe the perceived level of satisfaction and performance with self-care, productivity and leisure activities following a spinal cord injury, 3) quantify the relationship between the Canadian Occupational Performance Measure (COPM), a client-centred, individualized measure of function, and the Functional Independence Measure (FIM). Setting Tertiary rehabilitation centre, spinal cord injury unit, GF Strong Rehabilitation Centre, Vancouver, Canada. Methods Health records from 41 individuals with a SCI admitted between 2000 and 2002 were reviewed. Information was obtained from assessments performed on admission and discharge. Self-care, productivity and leisure problems identified by individuals with a SCI were described and their perceived level of performance and satisfaction was calculated. The relationship between the COPM and the FIM was measured by the Pearson product correlation. Results Self-care goals were identified most frequently (79%) followed by productivity (12%) and leisure (9%) goals. The top three problems identified by individuals with a SCI were functional mobility (including transfers and wheelchair use), dressing and grooming. A fair relationship was found between the COPM and the FIM (r between .351 to .514, p<.05) Conclusions The results highlight the importance of including a client-centred outcome measure in the assessment of individual’s with a SCI. Initial support is provided for use of the COPM in individuals with a SCI. PMID:14993893
Drug therapy in spinal tuberculosis.
Rajasekaran, S; Khandelwal, Gaurav
2013-06-01
Although the discovery of effective anti-tuberculosis drugs has made uncomplicated spinal tuberculosis a medical disease, the advent of multi-drug-resistant Mycobacterium tuberculosis and the co-infection of HIV with tuberculosis have led to a resurgence of the disease recently. The principles of drug treatment of spinal tuberculosis are derived from our experience in treating pulmonary tuberculosis. Spinal tuberculosis is classified to be a severe form of extrapulmonary tuberculosis and hence is included in Category I of the WHO classification. The tuberculosis bacilli isolated from patients are of four different types with different growth kinetics and metabolic characteristics. Hence multiple drugs, which act on the different groups of the mycobacteria, are included in each anti-tuberculosis drug regimen. Prolonged and uninterrupted chemotherapy (which may be 'short course' and 'intermittent' but preferably 'directly observed') is effective in controlling the infection. Spinal Multi-drug-resistant TB and spinal TB in HIV-positive patients present unique problems in management and have much poorer prognosis. Failure of chemotherapy and emergence of drug resistance are frequent due to the failure of compliance hence all efforts must be made to improve patient compliance to the prescribed drug regimen.
'Full dose' reirradiation of human cervical spinal cord.
Ryu, S; Gorty, S; Kazee, A M; Bogart, J; Hahn, S S; Dalal, P S; Chung, C T; Sagerman, R H
2000-02-01
With the progress of modern multimodality cancer treatment, retreatment of late recurrences or second tumors became more commonly encountered in management of patients with cancer. Spinal cord retreatment with radiation is a common problem in this regard. Because radiation myelopathy may result in functional deficits, many oncologists are concerned about radiation-induced myelopathy when retreating tumors located within or immediately adjacent to the previous radiation portal. The treatment decision is complicated because it requires a pertinent assessment of prognostic factors with and without reirradiation, radiobiologic estimation of recovery of occult spinal cord damage from the previous treatment, as well as interactions because of multimodality treatment. Recent studies regarding reirradiation of spinal cord in animals using limb paralysis as an endpoint have shown substantial and almost complete recovery of spinal cord injury after a sufficient time after the initial radiotherapy. We report a case of "full" dose reirradiation of the entire cervical spinal cord in a patient who has not developed clinically detectable radiation-induced myelopathy on long-term follow-up of 17 years after the first radiotherapy and 5 years after the second radiotherapy.
Evaluation Of Back Shape Using The ISIS Scanner
NASA Astrophysics Data System (ADS)
Turner-Smith, Alan R.; Thomas, David C.
1989-04-01
The Integrated Shape Investigation System (ISIS) is a structured light scanner and shape analysis system, developed as a safe alternative to follow-up radiographs for the clinical assessment of deformities of the human back. The system is described and results presented of several clinic studies. These show a significant correlation between ISIS measures and conventional radiographic measures of spinal curvature, such as the Cobb angle. The development of a predictor for deterioration in adolescent idiopathic scoliosis, based on surface shape weasures, is discussed.
Mobbs, Ralph J; Coughlan, Marc; Thompson, Robert; Sutterlin, Chester E; Phan, Kevin
2017-04-01
OBJECTIVE There has been a recent renewed interest in the use and potential applications of 3D printing in the assistance of surgical planning and the development of personalized prostheses. There have been few reports on the use of 3D printing for implants designed to be used in complex spinal surgery. METHODS The authors report 2 cases in which 3D printing was used for surgical planning as a preoperative mold, and for a custom-designed titanium prosthesis: one patient with a C-1/C-2 chordoma who underwent tumor resection and vertebral reconstruction, and another patient with a custom-designed titanium anterior fusion cage for an unusual congenital spinal deformity. RESULTS In both presented cases, the custom-designed and custom-built implants were easily slotted into position, which facilitated the surgery and shortened the procedure time, avoiding further complex reconstruction such as harvesting rib or fibular grafts and fashioning these grafts intraoperatively to fit the defect. Radiological follow-up for both cases demonstrated successful fusion at 9 and 12 months, respectively. CONCLUSIONS These cases demonstrate the feasibility of the use of 3D modeling and printing to develop personalized prostheses and can ease the difficulty of complex spinal surgery. Possible future directions of research include the combination of 3D-printed implants and biologics, as well as the development of bioceramic composites and custom implants for load-bearing purposes.
Percutaneous vertebroplasty for multiple myeloma of the cervical spine.
Mont'Alverne, Francisco; Vallée, Jean-Noel; Guillevin, Remy; Cormier, Evelyne; Jean, Betty; Rose, Michelle; Caldas, José Guilherme; Chiras, Jacques
2009-04-01
Spinal involvement is a common presentation of multiple myeloma (MM); however, the cervical spine is the least common site of myelomatous involvement. Few studies evaluate the results of percutaneous vertebroplasty (PV) in the treatment of MM of the spine. The purpose of this series is to report on the use of PV in the treatment of MM of the cervical spine and to review the literature. From January 1994 to October 2007, four patients (three men and one woman; mean age, 45 years) who underwent five PV for painful MM in the cervical spine were retrospectively reviewed. The pain was estimated by the patient on a verbal analogic scale. Clinical follow-up was available for all patients (mean, 27.5 months; range, 1-96 months). The mean volume of cement injected per vertebral body was 2.3 +/- 0.8 mL (range, 1.0-4.0 mL) with a mean vertebral filling of 55.0 +/- 12.0% (range, 40.0-75.0%). Analgesic efficacy was achieved in all patients. One patient had a spinal instability due to a progression of spinal deformity noted on follow-up radiographs, without clinical symptoms. Cement leakage was detected in three (60%) of the five treated vertebrae. There was no clinical complication. The present series suggests that PV for MM of the cervical spine is safe and effective for pain control; nonetheless, the detrimental impact of the disease on bone quality should prompt close radiological follow-up after PV owing to the risk of spinal instability.
Pong, Ryan P; Leveque, Jean-Christophe A; Edwards, Alicia; Yanamadala, Vijay; Wright, Anna K; Herodes, Megan; Sethi, Rajiv K
2018-05-02
Antifibrinolytics such as tranexamic acid reduce operative blood loss and blood product transfusion requirements in patients undergoing surgical correction of scoliosis. The factors involved in the unrelenting coagulopathy seen in scoliosis surgery are not well understood. One potential contributor is activation of the fibrinolytic system during a surgical procedure, likely related to clot dissolution and consumption of fibrinogen. The addition of tranexamic acid during a surgical procedure may mitigate the coagulopathy by impeding the derangement in D-dimer and fibrinogen kinetics. We retrospectively studied consecutive patients who had undergone surgical correction of adult spinal deformity between January 2010 and July 2016 at our institution. Intraoperative hemostatic data, surgical time, estimated blood loss, and transfusion records were analyzed for patients before and after the addition of tranexamic acid to our protocol. Each patient who received tranexamic acid and met inclusion criteria was cohort-matched with a patient who underwent a surgical procedure without tranexamic acid administration. There were 17 patients in the tranexamic acid cohort, with a mean age of 60.7 years, and 17 patients in the control cohort, with a mean age of 60.9 years. Estimated blood loss (932 ± 539 mL compared with 1,800 ± 1,029 mL; p = 0.005) and packed red blood-cell transfusions (1.5 ± 1.6 units compared with 4.0 ± 2.1 units; p = 0.001) were significantly lower in the tranexamic acid cohort. In all single-stage surgical procedures that met inclusion criteria, the rise of D-dimer was attenuated from 8.3 ± 5.0 μg/mL in the control cohort to 3.3 ± 3.2 μg/mL for the tranexamic acid cohort (p < 0.001). The consumption of fibrinogen was 98.4 ± 42.6 mg/dL in the control cohort but was reduced in the tranexamic acid cohort to 60.6 ± 35.1 mg/dL (p = 0.004). In patients undergoing spinal surgery, intravenous administration of tranexamic acid is effective at reducing intraoperative blood loss. Monitoring of D-dimer and fibrinogen during spinal surgery suggests that tranexamic acid impedes the fibrinolytic pathway by decreasing consumption of fibrinogen and clot dissolution as evidenced by the reduced formation of D-dimer. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Fracture mechanics and parapsychology
NASA Astrophysics Data System (ADS)
Cherepanov, G. P.
2010-08-01
The problem of postcritical deformation of materials beyond the ultimate strength is considered a division of fracture mechanics. A simple example is used to show the relationship between this problem and parapsychology, which studies phenomena and processes where the causality principle fails. It is shown that the concept of postcritical deformation leads to problems with no solution
Zhou, Jianyong; Luo, Zu; Li, Chunquan; Deng, Mi
2018-01-01
When the meshless method is used to establish the mathematical-mechanical model of human soft tissues, it is necessary to define the space occupied by human tissues as the problem domain and the boundary of the domain as the surface of those tissues. Nodes should be distributed in both the problem domain and on the boundaries. Under external force, the displacement of the node is computed by the meshless method to represent the deformation of biological soft tissues. However, computation by the meshless method consumes too much time, which will affect the simulation of real-time deformation of human tissues in virtual surgery. In this article, the Marquardt's Algorithm is proposed to fit the nodal displacement at the problem domain's boundary and obtain the relationship between surface deformation and force. When different external forces are applied, the deformation of soft tissues can be quickly obtained based on this relationship. The analysis and discussion show that the improved model equations with Marquardt's Algorithm not only can simulate the deformation in real-time but also preserve the authenticity of the deformation model's physical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Krause, James S; Broderick, Lynne E; Broyles, Joy
2004-01-01
The purpose of this study was to identify gender differences in subjective well-being among 309 African-American participants with spinal cord injury (SCI). Cross-sectional. A Southeastern specialty hospital. There were a total of 309 participants, all of whom were African-Americans. All participants had traumatic SCI, were at least 18 years or older at the time of the study, and a minimum of one year had passed since SCI onset. Measures of subjective well-being included the Life Situation Questionnaire--Revised, Purpose in Life scale, and the Older Adult Health and Mood Questionnaire. Multiple gender differences were observed, with women reporting higher scores on depressive symptoms and negative affect, but lower scores on purpose in life. Other significant findings were observed related to self-reported problems, with men reporting greater problems with pressure ulcers and sexual issues and women reporting greater problems in several areas related to coping and affect. The only gender difference in life satisfaction indicated greater satisfaction with sex life among women. It is clear from the findings that differences do exist among male and female African-Americans with spinal cord injuries. More research is needed to definitively outline differences.
Calculating the mounting parameters for Taylor Spatial Frame correction using computed tomography.
Kucukkaya, Metin; Karakoyun, Ozgur; Armagan, Raffi; Kuzgun, Unal
2011-07-01
The Taylor Spatial Frame uses a computer program-based six-axis deformity analysis. However, there is often a residual deformity after the initial correction, especially in deformities with a rotational component. This problem can be resolved by recalculating the parameters and inputting all new deformity and mounting parameters. However, this may necessitate repeated x-rays and delay treatment. We believe that error in the mounting parameters is the main reason for most residual deformities. To prevent these problems, we describe a new calculation technique for determining the mounting parameters that uses computed tomography. This technique is especially advantageous for deformities with a rotational component. Using this technique, exact calculation of the mounting parameters is possible and the residual deformity and number of repeated x-rays can be minimized. This new technique is an alternative method to accurately calculating the mounting parameters.
Management of sexuality problem in quadriplegia: a brief summary.
Wiwanitkit, Viroj
2010-09-01
Quadriplegia is a serious group of spinal disability. Cases with quadriplegia usually present unsatisfactory sexual life. In male, the main problem is the ability to reach orgasm deficient. In female, pregnancy problem should be noted. Management of sexuality problem in quadriplegia is of interest. In this article, the author will briefly review on this topic.
Pappou, Ioannis P; Papadopoulos, Elias C; Swanson, Andrew N; Mermer, Matthew J; Fantini, Gary A; Urban, Michael K; Russell, Linda; Cammisa, Frank P; Girardi, Federico P
2006-02-15
Case report. To report on a patient with Pott disease, progressive neurologic deficit, and severe kyphotic deformity, who had medical treatment fail and required posterior/anterior decompression with instrumented fusion. Treatment options will be discussed. Tuberculous spondylitis is an increasingly common disease worldwide, with an estimated prevalence of 800,000 cases. Surgical treatment consisting of extensive posterior decompression/instrumented fusion and 3-level posterior vertebral column resection, followed by anterior debridement/fusion with cage reconstruction. Neurologic improvement at 6-month follow-up (Frankel B to Frankel D), with evidence of radiographic fusion. A 70-year-old patient with progressive Pott paraplegia and severe kyphotic deformity, for whom medical treatment failed is presented. A posterior vertebral column resection, multiple level posterior decompression, and instrumented fusion, followed by an anterior interbody fusion with cage was used to decompress the spinal cord, restore sagittal alignment, and debride the infection. At 6-month follow-up, the patient obtained excellent pain relief, correction of deformity, elimination of the tuberculous foci, and significant recovery of neurologic function.
Kim, H R; Kim, H B; Lee, B S; Ko, H Y; Shin, H I
2014-11-01
To provide a Korean translation of the International Spinal Cord Injury Basic Pain Data Set (ISCIBPDS) and evaluate the interrater reliability of the translated version. Survey of community-dwelling people with spinal cord injury (SCI) in South Korea. The initial translation was performed by two translators with an in-depth knowledge of SCI, and was then checked by another person with a similar background. A total of 115 SCI participants (87 men, 28 women; 48.4±14.1 years) were evaluated using the Korean version of the ISCIBPDS by two different raters. Intraclass correlation coefficient (ICC) or Cohen's kappa (κ) was used for analysis. All 115 participants had at least one pain problem on both surveys. Seventeen (14.8%) participants described their pain as a single pain problem to one rater while reporting the same pain as two or more different pain problems to the other rater. Twenty-two (19.1%) other participants reported their pain problems in a different order of severity on the surveys. The Korean version of the ISCIBPDS had acceptable interrater reliability, except in the 'limit activities (how much do you limit your activities in order to keep your pain from getting worse?)' item (ICC=0.318). Provision of criteria for pain separation may facilitate the consistent application of ISCIBPDS. In addition, the ISCIBPDS, which evaluated pain problems separately, reflected the multiple and complex characteristics of SCI-related pain; this was a strength of this data set.
Rate of complications in scoliosis surgery – a systematic review of the Pub Med literature
Weiss, Hans-Rudolf; Goodall, Deborah
2008-01-01
Background Spinal fusion surgery is currently recommended when curve magnitude exceeds 40–45 degrees. Early attempts at spinal fusion surgery which were aimed to leave the patients with a mild residual deformity, failed to meet such expectations. These aims have since been revised to the more modest goals of preventing progression, restoring 'acceptability' of the clinical deformity and reducing curvature. In view of the fact that there is no evidence that health related signs and symptoms of scoliosis can be altered by spinal fusion in the long-term, a clear medical indication for this treatment cannot be derived. Knowledge concerning the rate of complications of scoliosis surgery may enable us to establish a cost/benefit relation of this intervention and to improve the standard of the information and advice given to patients. It is also hoped that this study will help to answer questions in relation to the limiting choice between the risks of surgery and the "wait and see – observation only until surgery might be recommended", strategy widely used. The purpose of this review is to present the actual data available on the rate of complications in scoliosis surgery. Materials and methods Search strategy for identification of studies; Pub Med and the SOSORT scoliosis library, limited to English language and bibliographies of all reviewed articles. The search strategy included the terms; 'scoliosis'; 'rate of complications'; 'spine surgery'; 'scoliosis surgery'; 'spondylodesis'; 'spinal instrumentation' and 'spine fusion'. Results The electronic search carried out on the 1st February 2008 with the key words "scoliosis", "surgery", "complications" revealed 2590 titles, which not necessarily attributed to our quest for the term "rate of complications". 287 titles were found when the term "rate of complications" was used as a key word. Rates of complication varied between 0 and 89% depending on the aetiology of the entity investigated. Long-term rates of complications have not yet been reported upon. Conclusion Scoliosis surgery has a varying but high rate of complications. A medical indication for this treatment cannot be established in view of the lack of evidence. The rate of complications may even be higher than reported. Long-term risks of scoliosis surgery have not yet been reported upon in research. Mandatory reporting for all spinal implants in a standardized way using a spreadsheet list of all recognised complications to reveal a 2-year, 5-year, 10-year and 20-year rate of complications should be established. Trials with untreated control groups in the field of scoliosis raise ethical issues, as the control group could be exposed to the risks of undergoing such surgery. PMID:18681956
Chen, Yi-Wen; Coxson, Harvey O; Coupal, Tyler M; Lam, Stephen; Munk, Peter L; Leipsic, Jonathon; Reid, W Darlene
2018-04-01
Pain, commonly localized to the trunk in individuals with COPD, may be due to osteoporosis-related vertebral deformity and chest wall hyper-expansion causing misalignment of joints between the ribs and vertebrae. The purpose of this study was to determine if thoracic vertebral deformity and arthropathy were independent contributors to trunk pain in COPD patients compared to people with a significant smoking history. Participants completed the Brief Pain Inventory (BPI) on the same day as chest CT scans and spirometry. Current and ex-smokers were separated into COPD (n = 91) or non-COPD (n = 80) groups based on spirometry. Subsequently, CT images were assessed for thoracic vertebral deformity, bone attenuation values, and arthropathy of thoracic vertebral joints. The trunk area was the most common pain location in both COPD and non-COPD groups. Thoracic vertebral deformity and costotransverse joint arthropathy were independent contributors to trunk pain in COPD patients (adjusted OR = 3.55 and 1.30, respectively) whereas alcohol consumption contributed to trunk pain in the non-COPD group (adjusted OR = 0.35 in occasional alcohol drinkers; 0.08 in non-alcohol drinkers). The spinal deformity index and the number of narrowed disc spaces were significantly positively related to the BPI intensity, interference, and total scores significantly in COPD patients. Trunk pain, at least in part, is caused by thoracic vertebral deformity, and costotransverse and intervertebral arthropathy in patients living with COPD. The results of this study provided the foundation for the management of pain, which requires further exploration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Done, Hansa Y; Halden, Rolf U
2015-01-23
Aquaculture production has nearly tripled in the last two decades, bringing with it a significant increase in the use of antibiotics. Using liquid chromatography/tandem mass spectrometry (LC-MS/MS), the presence of 47 antibiotics was investigated in U.S. purchased shrimp, salmon, catfish, trout, tilapia, and swai originating from 11 different countries. All samples (n=27) complied with U.S. FDA regulations and five antibiotics were detected above the limits of detection: oxytetracycline (in wild shrimp, 7.7ng/g of fresh weight; farmed tilapia, 2.7; farmed salmon, 8.6; farmed trout with spinal deformities, 3.9), 4-epioxytetracycline (farmed salmon, 4.1), sulfadimethoxine (farmed shrimp, 0.3), ormetoprim (farmed salmon, 0.5), and virginiamycin (farmed salmon marketed as antibiotic-free, 5.2). A literature review showed that sub-regulatory levels of antibiotics, as found here, can promote resistance development; publications linking aquaculture to this have increased more than 8-fold from 1991 to 2013. Although this study was limited in size and employed sample pooling, it represents the largest reconnaissance of antibiotics in U.S. seafood to date, providing data on previously unmonitored antibiotics and on farmed trout with spinal deformities. Results indicate low levels of antibiotic residues and general compliance with U.S. regulations. The potential for development of microbial drug resistance was identified as a key concern and research priority. Copyright © 2014 Elsevier B.V. All rights reserved.
Khani, Mohammadreza; Xing, Tao; Gibbs, Christina; Oshinski, John N; Stewart, Gregory R; Zeller, Jillynne R; Martin, Bryn A
2017-08-01
A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.
Viciano, Joan; López-Lázaro, Sandra; Pérez-Fernández, Ángela; Amores-Ampuero, Anabel; D'Anastasio, Ruggero; Jiménez-Triguero, José Miguel
2017-09-01
This study details a severe case of Scheuermann's disease (SD) in a well-preserved skeleton of a juvenile male (designated TOR302), dated to 3rd-4th century CE, from the late Roman necropolis of Torrenueva (Granada, Spain). Individual TOR302 shows an evident kyphotic curve in the thoraco-lumbar spine, which is characterised by: (i) vertebral bodies of thoracic vertebra T2, thoracic segment T4-T9, and thoraco-lumbar segment T12-L2 wedged at >5°; (ii) slight anterior extensions of the epiphyseal ring; (iii) Schmorl's nodes on the superior and/or inferior plates; and (iv) a Cobb angle of 75°, derived from thoracic segments T4-T9. In addition, TOR302 shows other skeletal malformations as the secondary results of abnormal growth, due to altered biomechanical forces imposed by the spinal deformity, including: (i) lateral distortion of the spine that causes a slight secondary scoliotic curve; (ii) pelvic obliquity; and (iii) discrepancy in the length of the limbs. We argue that the secondary skeletal abnormalities allowed the individual to adapt to his spinal deformity meaning he was able to walk without the aid of a stick. Despite SD being a common modern clinical finding, few cases have been reported in ancient skeletal remains. This case therefore represents an important contribution to the palaeopathological literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Smith, Lachlan J; Martin, John T; Szczesny, Spencer E; Ponder, Katherine P; Haskins, Mark E; Elliott, Dawn M
2010-01-01
Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disorder characterized by a deficiency in β-glucuronidase activity, leading to systemic accumulation of poorly degraded glycosaminoglycans (GAG). Along with other morbidities, MPS VII is associated with paediatric spinal deformity. The objective of this study was to examine potential associations between abnormal lumbar spine matrix structure and composition in MPS VII, and spine segment and tissue-level mechanical properties, using a naturally occurring canine model with a similar clinical phenotype to the human form of the disorder. Segments from juvenile MPS VII and unaffected dogs were allocated to: radiography, gross morphology, histology, biochemistry, and mechanical testing. MPS VII spines had radiolucent lesions in the vertebral body epiphyses. Histologically, this corresponded to a GAG-rich cartilaginous region in place of bone, and elevated GAG staining was seen in the annulus fibrosus. Biochemically, MPS VII samples had elevated GAG in the outer annulus fibrosus and epiphyses, low calcium in the epiphyses, and high water content in all regions except the nucleus pulposus. MPS VII spine segments had higher range of motion and lower stiffness than controls. Endplate indentation stiffness and failure loads were significantly lower in MPS VII samples, while annulus fibrosus tensile mechanical properties were normal. Vertebral body lesions in MPS VII spines suggest a failure to convert cartilage to bone during development. Low stiffness in these regions likely contributes to mechanical weakness in motion segments and is a potential factor in the progression of spinal deformity. PMID:19918911
2016-01-01
Objective To explore the experiences of athletes with spinal cord injury (SCI) in Korea with respect to dilemmas of participating in sports with regards to the facilitators and barriers, using the International Classification of Functioning, Disability and Health (ICF). Methods The facilitators and barriers to sports participation of individuals with SCI were examined using 112 ICF categories. A questionnaire in dichotomous scale was answered, which covered the subjects 'Body functions', 'Body structures', 'Activity and participation' and 'Environmental factors'. Data analysis included the use of descriptive statistics to examine the frequency and magnitude of reported issues. Results Sixty-two community-dwelling participants were recruited. Frequently addressed barriers in 'Body functions' were mobility related problems such as muscle and joint problems, bladder and bowel functions, pressure ulcers, and pain. In 'Activity and participation', most frequently reported were mobility and self-care problems. Highly addressed barriers in 'Environmental factors' were sports facilities, financial cost, transportation problems and lack of information. Relationships such as peer, family and friends were the most important facilitators. Conclusion Numerous barriers still exist for SCI survivors to participate in sports, especially in the area of health care needs and environmental factors. Our results support the need for a multidisciplinary approach to promote sports participation. PMID:27847720
Axial Plane Deformity of the Shoulder in Adolescent Idiopathic Scoliosis.
Menon, Venugopal K; Tahasildar, Naveen; Pillay, Haroon M; M, Anbuselvam
2017-05-01
Prospective observational study. To study axial plane deformation of the shoulder in adolescent idiopathic scoliosis (AIS) and try to correlate it with curve type and surgical correction. It is established that AIS is a 3-dimensional deformity. The rib hump is the most common manifestation of axial plane deformations; the least common manifestation seems to be upper trunk and shoulder rotation, which has been hitherto undescribed. Fourteen consecutive, operated cases of AIS were analyzed prospectively. Preoperative and postoperative x-rays of the spine and clinical photographs were studied. Clinical photographs (top view) were taken with patients in the sitting position, to show shoulder level in relation to the axis of the head and pelvis. Chest computed tomography scans were also studied to determine the direction of apical vertebra and trunk torsion. All 14 patients in this series had their right shoulders anteriorly rotated preoperatively (anticlockwise). The direction of rotation seemed unrelated to the curve type and shoulder elevation, although most had rib humps on the right. This shoulder rotation was corrected postoperatively by routine maneuvers done for scoliosis correction. Minor residual rotation was seen in 6 patients who also had minimal persisting rib hump. In 1 case the axial plane rotation worsened, although the shoulder level and trunk symmetry improved significantly. The apical vertebral rotation on computed tomography had little bearing on the direction of shoulder rotation. Axial plane rotation of the shoulder is a hitherto un-described dimension of AIS deformity complex. Much of it corrects spontaneously with correction of the thoracic spinal deformity.
Hell, A K; Campbell, R M; Hefti, F
2005-01-01
Children with congenital thoracic scoliosis associated with fused ribs and unilateral unsegmented bars adjacent to convex hemivertebrae will inevitably develop thoracic insufficiency syndrome and curve progression with hemithorax compression without treatment. It is assumed that the concave side of such curves and their unilateral unsegmented bars do not grow. In the past early spinal fusion was performed with consecutive short thoracic spines and loss of lung volume. Little attention has been paid to lung function. These patients often suffered from lung failure and early death due to a small thorax. A new surgical technique is based on an indirect deformity correction and enlargement of the thorax due to a longitudinal implant, the vertical expandable prosthetic titanium rib (VEPTR). The spine is not fused, thus promoting growth of the spine, the thorax and the lungs. Elongation of the implant is done every six months. Since 2002 this method has been performed on fifteen children in Basel as the first European center. Patients (mean age 6 years; 11 months to 12 years) were suffering from thoracic insufficiency syndrome due to unilateral unsegmented bars with fused ribs (n = 4), absent ribs (n = 2), bilaterally fused ribs (n = 2), hemivertebrae (n = 3) or neuromuscular scoliosis (n = 6). Doing fifteen primarily implantations and thirteen elongations there were three complications (two hook dislocations, one skin breakage). All patients improved cosmetically, functionally and radiologically which was shown on X-rays as a reduction of the Cobb angle from an average of 76 degrees (40-110 degrees ) to 55 degrees (30-67 degrees ). Expansion thoracoplasty and VEPTR implantation is a new treatment concept for children with thoracic insufficiency syndrome due to spinal deformities, which is based on distraction and expansion of the thorax thus allowing growth of the spine, the thorax and probably lungs. Presently it seems to be superior to any other method for the treatment of small children with progressive scoliosis and thoracic insufficiency syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B-T; Lu, J-Y
Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures weremore » transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.« less
Yang, Jingyan; Lafage, Virginie; Lafage, Renaud; Smith, Justin; Klineberg, Eric O; Shaffrey, Christopher I; Mundis, Gregory; Hostin, Richard; Burton, Douglas; Ames, Christopher P; Bess, Shay; Kim, Han Jo; Schwab, Frank
2018-06-21
Retrospective review of prospective multicenter database. To investigate the determinants of patient satisfaction with respect to changes in functional limitations two-year after spinal deformity surgery. For operatively treated adult spine deformity (ASD), patient satisfaction has become an important component of evaluating quality of care. 430 operative ASD patients with two-year follow-up were analyzed. Patient satisfaction was assessed using the Scoliosis Research Society 22-item (SRS-22r). Latent class analysis (LCA) was performed to assign individuals to classes based on the changes in pre- and 2-year post-operative functions, assessed using the Oswestry Disability Index (ODI). An ordered logistic regression was conducted to assess the association of class membership and satisfaction. LCA identified 4 classes. The worsened-condition class (WC: 1.4%) consisted of patients who were likely to experience worsened function, particularly in lifting and pain intensity. The remained-same class (RS: 13.0%) included patients who remained the same, as the majority reported approximately no change in walking, standing and sitting. The mild-improved class (Mild-I: 40.2%) included patients with mildly enhanced conditions, specifically, in standing, social life and employment. The most-improved class (Most-I: 45.3%) included patients with great improvement after surgery mainly in standing, followed by social life and employment. The odds of being satisfied were significantly increased by 3.91-(p < 0.001) and 16.99-fold (p < 0.001), comparing patients in Mild-I and Most-I to the RS/WC class, respectively, after controlling for confounders. Improvement in standing, social life and employment are the most important determinants of patient satisfaction post-surgery. Reduced pain intensity and enhanced walking ability also help to elevate patient satisfaction. However, lifting, personal care, sitting, sleeping and travelling may be of less importance. Examining the heterogeneity of patient-reported outcome in ASD patients allows the identification of classes with different patient characteristics and satisfaction, and thus, help to guide tailored provision of care. 4.
Kyrölä, Kati; Järvenpää, Salme; Ylinen, Jari; Mecklin, Jukka-Pekka; Repo, Jussi Petteri; Häkkinen, Arja
2017-06-15
A prospective clinical study to test and adapt a Finnish version of the Scoliosis Research Society 30 (SRS-30) questionnaire. The aim of this study was to perform cross-cultural adaptation and evaluate the validity of the adapted Finnish version of the SRS-30 questionnaire. The SRS-30 questionnaire has proved to be a valid instrument in evaluating health-related quality of life (HRQoL) in adolescent and adult population with spine deformities in the United States. Multinational availability requires cross-cultural and linguistic adaptation and validation of the instrument. The SRS-30 was translated into Finnish using accepted methods for translation of quality-of-life questionnaires. A total of 274 adult patients with degenerative radiographic sagittal spinal disorder answered the questionnaire with sociodemographic data, RAND 36-item health survey questionnaire (RAND Corp. Health, Santa Monica, CA, US), Oswestry disability index, DEPS depression scale, and Visual Analog Scale (VAS) back and leg pain scales within 2 weeks' interval. The cohort included patients with and without previous spine surgery. Internal consistency and validity were tested with Cronbach α, intraclass correlation (ICC), standard error of measurement, and Spearman correlation coefficient with 95% confidence intervals (CIs). The internal consistency of SRS-30 was good in both surgery and nonsurgery groups, with Cronbach α 0.853 (95% CI, 0.670 to 0.960) and 0.885 (95% CI, 0.854 to 0.911), respectively. The test-retest reproducibility ICC of the SRS-30 total and subscore domains of patients with stable symptoms was 0.905 (95% CI, 0.870-0.930) and 0.904 (95% CI, 0.871-0.929), respectively. The questionnaire had discriminative validity in the pain, self-image, and satisfaction with management domains compared with other questionnaires. The SRS-30 questionnaire proved to be valid and applicable in evaluating HRQoL in Finnish adult spinal deformity patients. It has two domains related to deformity that are not covered by other generally used questionnaires. 3.
Serum levels of nickel and chromium after instrumented posterior spinal arthrodesis.
Kim, Young-Jo; Kassab, Farid; Berven, Sigurd H; Zurakowski, David; Hresko, M Timothy; Emans, John B; Kasser, James R
2005-04-15
Cross-sectional study of 37 patients to measure serum levels of nickel and chromium after posterior spinal arthrodesis using stainless steel implants. To investigate the relationship between factors such as age, gender, pain, time from surgery, length of arthrodesis, and level of arthrodesis to serum metal ion levels after instrumented spinal arthrodesis. Measurable levels of metal ions in the serum can be detected after the use of stainless steel implants. There is some evidence to suggest that long-term exposure can potentially be toxic. Posterior spinal arthrodesis with stainless steel implants is a common procedure to treat spinal deformity in the adolescent population; however, the extent of metal ion exposure after posterior spinal arthrodesis is unknown. Patients that underwent posterior instrumented spinal arthrodesis with more than 6 months follow-up were recruited for this study. Patients with altered neurologic function were excluded. Serum levels of nickel and chromium were measured using inductively coupled plasma mass spectrometry. Pain was assessed using the Oswestry questionnaire. Spine radiographs were used to look for evidence of pseudarthrosis. Forty-five patients were approached, and 37 agreed to the questionnaire and blood test. Ten patients were men and 27 were women. Mean age at surgery was 14 years with mean follow-up of 6 years. Statistical correlations between serum metal ion levels and age at surgery, time from surgery, gender, number of segments fused, spinal instrument interfaces, pain, and instrumentation type were assessed. Abnormally high levels of nickel and chromium above normal levels (0.3 ng/mL for nickel, 0.15 ng/mL for chromium) could be detected in serum after posterior spinal arthrodesis using stainless steel implants. There was a significant inverse correlation between serum nickel (r = -0.61, P < 0.001) and chromium (r = -0.64, P < 0.001) levels and time from surgery. When patients were grouped based on lengths of time from surgery, 0 to 2 years (n = 7), 2 to 4 years (n = 11), and >4 years (n = 8), the mean +/- SD for nickel (ng/mL) was 3.8 +/- 2.6, 1.3 +/- 1.1, and 0.9 +/- 0.8, respectively. Analysis ofvariance revealed significant group differences (P =0.004). Similarly, the chromium levels were 2.7 +/- 2.7, 0.6 +/- 0.4, and 0.3 +/- 0.3, respectively (P = 0.018). Only time from surgery was a significant multivariate predictor of nickel and chromium serum levels. Pseudarthrosis was not seen in this cohort. Elevated levels of nickel and chromium can be measured after posterior instrumented spinal arthrodesis. The levels diminish rapidly with time from surgery but still remained above normal levels 4 years after surgery. Long-term implication of this metal ion exposure is unknown and should be studied further.
Chen, Zhong-hui; Chen, Xi; Zhu, Ze-zhang; Wang, Bin; Qian, Bang-ping; Zhu, Feng; Sun, Xu; Qiu, Yong
2015-07-01
Use of pedicle screws has been popularized in the treatment of pediatric spinal deformity. Despite many studies regarding the effect of pedicle screws on the immature spine, there is no study concerning the impact of addition of crosslink to pedicle-screw-based instrumentation on the development of the spinal canal in young children. This study aims to determine the influence of the screw-rod-crosslink complex on the development of the spinal canal. This study reviewed 34 patients with congenital scoliosis (14 boys and 20 girls) who were treated with posterior-only hemivertebrectomy and pedicle-screw-based short-segment instrumentation before the age of 5 years. The mean age at surgery in this cohort was 37 ± 11 months (range 21-57 months). They were followed up for at least 24 months. Of these patients, 10 underwent only pedicle screw instrumentation without crosslink, and 24 with additional crosslink placement. The vertebrae were divided into three regions as follows: (1) S-CL (screw-crosslink) region, in which the vertebrae were inserted with bilateral pedicle screws and two rods connected with the crosslink; (2) S (screw) region, in which the vertebrae were inserted with bilateral pedicle screws but without crosslink; (3) NS (no screws) region, which comprised vertebrae cephalad or caudal to the instrumented region. The area, anteroposterior and transverse diameters of the spinal canal were measured at all vertebrae on the postoperative and last follow-up computed tomography axial images. The instrumentation-related parameters were also measured, including the distance between the bilateral screws and the screw base angles. The changes in the above measurements were compared between each region to evaluate the instrumentation's effect on the spinal canal growth. The mean follow-up was 37 ± 13 months (range 24-68 months) and the mean age at the last follow-up was 74 ± 20 months (range 46-119 months). In each region, the spinal canal dimensions significantly increased during the follow-up period. There was no significant difference in the spinal canal growth rate between the S and NS regions or between the S-CL and NS regions. Besides, a comparison of the S-CL and S regions regarding the changes in the measurements of the instrumentation construct revealed no significant differences. Pedicle-screw-based instrumentation does not cause retardation of the development of the spinal canal in young children. Moreover, use of the crosslink added to the screw-rod instrumentation also demonstrates no negative effect on the growth of the spinal canal. Thus, the addition of the crosslink to short screw-based instrumentation is recommended as an alternative to increase fixation stability in growing patients, even in very young pediatric population.
Fungal infections of the spine.
Kim, Choll W; Perry, Andrew; Currier, Brad; Yaszemski, Michael; Garfin, Steven R
2006-03-01
Fungal infections of the spine are relatively uncommon. Fungi such as Coccidioides immitis and Blastomyces dermatitidis are limited to specific geographical areas whereas cryptococcus, candida, and aspergillus are found worldwide. Candida and aspergillus are normal commensals of the body and produce disease in susceptible organisms when they gain access to the vascular system through intravenous lines, during implantation of prosthetic devices, or during surgery. For the other fungi, spinal involvement usually is the result of hematogenous or direct spread of organisms from an initial pulmonary source of infection. Involvement of the vertebral bodies can lead to vertebral compression fractures and gross deformity of the spine. Spread of infection along the anterior longitudinal ligament can lead to psoas or paravertebral abscesses. Early recognition of the disease requires a high index of suspicion, proper travel history, and a detailed physical examination. Treatment relies on the prompt institution of appropriate pharmacotherapy and constant monitoring of clinical progress. Resistance to medical therapy, spinal instability, and neurologic deficits are indications for débridement and stabilization with spinal fusion. Prognosis depends on the premorbid state of the patient, the type of fungal organism, and the timing of treatment. Level V (expert opinion). Please see the Guidelines for Authors for a complete description of levels of evidence.
Verma, Kushagra; Errico, Thomas J; Vaz, Kenneth M; Lonner, Baron S
2010-04-06
Multilevel spinal fusion surgery has typically been associated with significant blood loss. To limit both the need for transfusions and co-morbidities associated with blood loss, the use of anti-fibrinolytic agents has been proposed. While there is some literature comparing the effectiveness of tranexamic acid (TXA) to epsilon aminocaproic acid (EACA) in cardiac procedures, there is currently no literature directly comparing TXA to EACA in orthopedic surgery. Here we propose a prospective, randomized, double-blinded control study evaluating the effects of TXA, EACA, and placebo for treatment of adolescent idiopathic scoliosis (AIS), neuromuscular scoliosis (NMS), and adult deformity (AD) via corrective spinal surgery. Efficacy will be determined by intraoperative and postoperative blood loss. Other clinical outcomes that will be compared include transfusion rates, preoperative and postoperative hemodynamic values, and length of hospital stay after the procedure. The primary goal of the study is to determine perioperative blood loss as a measure of the efficacy of TXA, EACA, and placebo. Based on current literature and the mechanism by which the medications act, we hypothesize that TXA will be more effective at reducing blood loss than EACA or placebo and result in improved patient outcomes. ClinicalTrials.gov ID: NCT00958581.
Marques, Tanyse Bahia Carvalho; Neves, Juliana de Carvalho; Portes, Leslie Andrews; Salge, João Marcos; Zanoteli, Edmar; Reed, Umbertina Conti
2014-01-01
OBJECTIVE: Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD). The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA) and in patients with congenital muscular dystrophy (CMD), as well as to identify associations between spinal deformities and the effects of the maneuvers. METHODS: Eighteen NMD patients (ten with CMD and eight with SMA) were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC); and assisted and unassisted peak cough flow (APCF and UPCF, respectively) with insufflations. RESULTS: After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. CONCLUSIONS: Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis. PMID:25410841
Influence of Lumbar Lordosis on the Outcome of Decompression Surgery for Lumbar Canal Stenosis.
Chang, Han Soo
2018-01-01
Although sagittal spinal balance plays an important role in spinal deformity surgery, its role in decompression surgery for lumbar canal stenosis is not well understood. To investigate the hypothesis that sagittal spinal balance also plays a role in decompression surgery for lumbar canal stenosis, a prospective cohort study analyzing the correlation between preoperative lumbar lordosis and outcome was performed. A cohort of 85 consecutive patients who underwent decompression for lumbar canal stenosis during the period 2007-2011 was analyzed. Standing lumbar x-rays and 36-item short form health survey questionnaires were obtained before and up to 2 years after surgery. Correlations between lumbar lordosis and 2 parameters of the 36-item short form health survey (average physical score and bodily pain score) were statistically analyzed using linear mixed effects models. There was a significant correlation between preoperative lumbar lordosis and the 2 outcome parameters at postoperative, 6-month, 1-year, and 2-year time points. A 10° increase of lumbar lordosis was associated with a 5-point improvement in average physical scores. This correlation was not present in preoperative scores. This study showed that preoperative lumbar lordosis significantly influences the outcome of decompression surgery on lumbar canal stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Marques, Tanyse Bahia Carvalho; Neves, Juliana de Carvalho; Portes, Leslie Andrews; Salge, João Marcos; Zanoteli, Edmar; Reed, Umbertina Conti
2014-10-01
Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD). The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA) and in patients with congenital muscular dystrophy (CMD), as well as to identify associations between spinal deformities and the effects of the maneuvers. Eighteen NMD patients (ten with CMD and eight with SMA) were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC); and assisted and unassisted peak cough flow (APCF and UPCF, respectively) with insufflations. After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis.
Watanabe, Kei; Hasegawa, Kazuhiro; Hirano, Toru; Uchiyama, Seiji; Endo, Naoto
2005-05-15
This study clarifies the relation between the results of the Scoliosis Research Society Outcomes Instrument (SRS-24) and radiographic parameters of back deformity in Japanese idiopathic scoliosis patients. To investigate the relation between magnitude of back deformity and results of the SRS-24 in untreated patients. In idiopathic scoliosis, it is necessary to clarify the relation between patient-perceived outcomes of the deformity and magnitude of back deformity before considering treatment. The relation between the magnitude of spinal deformity and outcomes of untreated patients, however, has not been fully investigated. Patients (n = 166) under 30 years of age with untreated scoliosis were evaluated. Radiologic examination included Cobb angle, rotation angle of apical vertebrae, and translation of C7 vertebra from the central sacral line (C7 translation) on the coronal plane. Patient evaluation using section 1 (15 questions) of the SRS-24 was compared with radiologic findings using Spearman's correlation coefficient by rank (rs). The average pain domain score was 27.0 +/- 2.2 points, general self-image 9.9 +/- 1.7 points, general function 12.7 +/- 1.1 points, and overall level of activity 14.9 +/- 0.6 points. In radiologic deformity, the average Cobb angle and rotation angle of the thoracic curve were 35.8 degrees +/- 12.1 degrees (range, 17 degrees-73 degrees) and 13.9 degrees +/- 8.2 degrees (range, 0 degrees-38 degrees), respectively. The average Cobb and rotation angle of the lumbar curve were 31.4 degrees +/- 9.3 degrees (range, 13 degrees-56 degrees) and 15.4 degrees +/- 9.7 degrees (range, 2 degrees-36 degrees), respectively. The mean C7 translation was 12.4 +/- 9.7 mm (range, 0-48 mm). Comparison between individual domains and radiologic measurements revealed that the total pain (rs = -0.33; P < 0.0001) and general self-image (rs = -0.25; P = 0.0024) domain scores had a significant inverse correlation with thoracic curve Cobb angle. Comparison between the scores of individual questions and radiologic measurements revealed that the scores of question 3 (total pain domain) had a significant inverse correlation with thoracic curve Cobb angle (rs = -0.36; P < 0.0001). The scores of question 5 (general self-image domain) had a significant inverse correlation with thoracic curve Cobb angle (rs = -0.41; P < 0.0001) and rotation angle (rs = -0.30; P = 0.0006). The patients did not have negative self-image regarding back appearance when the thoracic curve Cobb angle was less than 30 degrees but had a negative self-image when the thoracic curve Cobb angle was more than 40 degrees and the rotation angle was more than 20 degrees. On the other hand, the lumbar curve Cobb angle and the rotation angle did not correlate with patient self-image. The results of the present study will help to define the parameters for the initiation of active treatment and physicians should maintain or reduce scoliotic deformity so that the thoracic curve Cobb angle is less than 40 degrees and the rotation angle is less than 20 degrees in idiopathic scoliosis.
Sexuality and sexual life in women with spinal cord injury: a controlled study.
Kreuter, Margareta; Siösteen, Agneta; Biering-Sørensen, Fin
2008-01-01
To describe sexual life in women with spinal cord injury. Controlled cross-sectional, questionnaire. Women, 18-65 years, treated at spinal cord centres in Sweden, Denmark, Norway, Finland and Iceland. 545 women (57%) completed the questionnaires. The age-matched control group consisted of 507 women. The 104-item Spinal Cord Injury Women Questionnaire, was designed to assess different dimensions of sexuality. 80% of the women with spinal cord injury had engaged in sex after the injury. Reasons for not wanting or not having the courage to be intimate and sexual were physical problems, low sexual desire, low self-esteem and feelings of being unattractive. The motivations of both the women with spinal cord injury and controls to engage in sexual activity were intimacy-based rather than primarily sexual. Being in the right mood both before and during sex to become receptive to sexual stimulation was important. For women who are able to overcome the physical restrictions and mental obstacles due to injury, it is possible to regain an active and positive sexual life together with a partner. Sexual information and counselling should be available both during initial rehabilitation and later when the women have returned to their homes.
Spasticity therapy reacts to astrocyte GluA1 receptor upregulation following spinal cord injury
Gómez-Soriano, Julio; Goiriena, Eider; Taylor, Julian
2010-01-01
For almost three decades intrathecal baclofen therapy has been the standard treatment for spinal cord injury spasticity when oral medication is ineffective or produces serious side effects. Although intrathecal baclofen therapy has a good clinical benefit-risk ratio for spinal spasticity, tolerance and the life-threatening withdrawal syndrome present serious problems for its management. Now, in an experimental model of spinal cord injury spasticity, AMPA receptor blockade with NGX424 (Tezampanel) has been shown to reduce stretch reflex activity alone and during tolerance to intrathecal baclofen therapy. These results stem from the observation that GluA1 receptors are overexpressed on reactive astrocytes following experimental ischaemic spinal cord injury. Although further validation is required, the appropriate choice of AMPA receptor antagonists for treatment of stretch hyperreflexia based on our recent understanding of reactive astrocyte neurobiology following spinal cord injury may lead to the development of a better adjunct clinical therapy for spasticity without the side effects of intrathecal baclofen therapy. LINKED ARTICLE This article is a commentary on Oshiro et al., pp. 976–985 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2010.00954.x PMID:20662840
Haudenschild, Dominik R.; Wegner, Adam M.; Klineberg, Eric O.
2017-01-01
Study Design: Review of literature. Objectives: This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. Methods: A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. Results: Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell–based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro–computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. Conclusions: It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion. PMID:29238646
Computation of forces from deformed visco-elastic biological tissues
NASA Astrophysics Data System (ADS)
Muñoz, José J.; Amat, David; Conte, Vito
2018-04-01
We present a least-squares based inverse analysis of visco-elastic biological tissues. The proposed method computes the set of contractile forces (dipoles) at the cell boundaries that induce the observed and quantified deformations. We show that the computation of these forces requires the regularisation of the problem functional for some load configurations that we study here. The functional measures the error of the dynamic problem being discretised in time with a second-order implicit time-stepping and in space with standard finite elements. We analyse the uniqueness of the inverse problem and estimate the regularisation parameter by means of an L-curved criterion. We apply the methodology to a simple toy problem and to an in vivo set of morphogenetic deformations of the Drosophila embryo.
Low-dose aspirin before spinal surgery: results of a survey among neurosurgeons in Germany.
Korinth, Marcus C; Gilsbach, Joachim M; Weinzierl, Martin R
2007-03-01
The main problem faced by the increasing numbers of patients presenting for spinal surgery are receiving concurrent medication with low-dose aspirin, leading to dysfunctional circulating platelets. The contribution of low-dose aspirin to increased peri-operative risk of bleeding and blood loss is a contentious issue with conflicting published results from different surgical groups. Data from neurosurgical spine patients is sparse, but aspirin has been identified as an important risk factor in the development of post-operative hematoma following intracranial surgery. We surveyed the opinions and working practices of the neurosurgical facilities performing spinal operations in Germany regarding patients who present for elective spinal surgery. Identical questionnaires were sent to 210 neurosurgical facilities and proffered five main questions: (1) the adherence of any policy of stopping aspirin pre-operatively, (2) the personal risk assessment for patients with spinal surgery under low-dose aspirin medication, (3) the preferred method of treatment for excessive bleeding in this context, (4) personal knowledge of hemorrhagic complications in this group of patients, and (5) the characteristics of the neurosurgical units concerned. There were 145 (69.1%) responses of which 142 (67.6%) were valid. Of the respondents, 114 (80.3%) had a (written) departmental policy for the discontinuation of pre-operative aspirin treatment, 28 (19.7%) were unaware of such a policy. The mean time suggested for discontinuation of aspirin pre-operatively was 6.9 days (range: 0-21 days), with seven respondents who perform the operations despite the ongoing aspirin medication. Ninety-four respondents (66.2%) considered that patients taking low-dose aspirin were at increased risk for excessive peri-operative hemorrhage or were indetermined (8.6%), and 73 (51.4%) reported having personal experience of such problems. Ninety-two respondents (65.5%) would use special medical therapy, preferably Desmopressin alone or in combination with other blood products or prohemostatic agents (46.1%), if hemorrhagic complications developed intra- or post-operatively. The average number of spinal operations per year in each service was 607.9 (range: 40-1,500). Despite the existence of distinct departmental policies concerning the discontinuation of low-dose aspirin pre-operatively in the majority of neurosurgical facilities performing spinal operations, there is a wide range of the moment of this interruption with an average of 7 days. Two-thirds of the respondents felt that aspirin was a risk factor for hemorrhagic complications associated with spinal procedures, and more than half of the interviewees reported having personal experience of such problems. Finally, various medicamentous methods of counteracting aspirin-induced platelet dysfunction and excessive bleeding in this context are elicited, discussed and evaluated.
NASA Technical Reports Server (NTRS)
Endo, T.; Oden, J. T.; Becker, E. B.; Miller, T.
1984-01-01
Finite element methods for the analysis of bifurcations, limit-point behavior, and unilateral frictionless contact of elastic bodies undergoing finite deformation are presented. Particular attention is given to the development and application of Riks-type algorithms for the analysis of limit points and exterior penalty methods for handling the unilateral constraints. Applications focus on the problem of finite axisymmetric deformations, snap-through, and inflation of thick rubber spherical shells.
Abelin-Genevois, K; Idjerouidene, A; Roussouly, P; Vital, J M; Garin, C
2014-07-01
To describe the normal cervical sagittal alignment of the pediatric spine in a normal population and to identify the changes during growth period. We randomly selected in PACS database 150 full-spine standing views. Exclusion criteria were: age >18 years, spinal deformity and any disease affecting the spine (medical charts reviewing). For cervical alignment we measured: OC-angle according to Mc Gregor, C1C7 angle, upper cervical angle, inferior cervical angle and C7 tilt. Spino pelvic parameters were analyzed: T1 tilt, thoracic kyphosis, lumbar lordosis, pelvic incidence, sacral slope and pelvic tilt. We compared two age subgroups (juvenile and adolescent). Differences between age groups and gender were tested using Student's t test. Correlations between sagittal spinal parameters were evaluated using Pearson's test. Cervical spine shape was correlated to cranio cervical orientation to maintain horizontal gaze (r = 0.60) and to thoracic kyphosis (r = -0.46). Cervical spine alignment was significantly different between the two age groups except for the global C1C7 cervical lordosis, which remained stable. A significant gender difference was found for all the cervical sagittal angles (p < 0.01) whereas no differences were demonstrated for the spino pelvic parameters, except the lumbar lordosis (p = 0.047). This study is the first to report the cervical spinal alignment in a normal pediatric Caucasian population. Even though cervical lordosis is the common shape, our results showed variability in cervical sagittal alignment. Cervical spine is a junctional area that adjusts its alignment to the head position and to the underlying spinal alignment.
Gordon, Zachary L; Son-Hing, Jochen P; Poe-Kochert, Connie; Thompson, George H
2013-01-01
Reducing perioperative blood loss and transfusion requirements is important in the operative treatment of idiopathic scoliosis. This can be achieved with special frames, cell saver systems, pharmacologic aspects, and other techniques. Recently there has been interest in bipolar sealer devices as an adjunct to traditional monopolar electrocautery. However, there is limited information on this device in pediatric spinal deformity surgery. We reviewed our experience with this device in a setting of a standard institutional operative carepath. Perioperative blood loss and transfusion requirements of 50 consecutive patients with adolescent idiopathic scoliosis undergoing a posterior spinal fusion and segmental spinal instrumentation and who had a bipolar sealer device used during their surgery was compared with a control group of the 50 preceding consecutive patients who did not. Anesthesia, surgical technique, use of intraoperative epsilon aminocaproic acid (Amicar), postoperative protocol, and indications for transfusions (hemoglobin≤7.0 g/dL) were identical in both groups. The preoperative demographics for the patients in both groups were statistically the same. The bipolar sealer group demonstrated a significant reduction in intraoperative estimated blood loss, total perioperative blood loss, volume of blood products transfused, and overall transfusion rate when compared with the control group. When subgroups consisting of only hybrid or all-pedicle screw constructs were considered individually, these findings remained consistent. There were no complications associated with the use of this device. Using the bipolar sealer device is a significant adjunct in decreasing perioperative blood loss and transfusion requirements in patients undergoing surgery for adolescent idiopathic scoliosis. Level III-retrospective comparative study.
The Lumbar Lordosis in Males and Females, Revisited.
Hay, Ori; Dar, Gali; Abbas, Janan; Stein, Dan; May, Hila; Masharawi, Youssef; Peled, Nathan; Hershkovitz, Israel
2015-01-01
Whether differences exist in male and female lumbar lordosis has been debated by researchers who are divided as to the nature of variations in the spinal curve, their origin, reasoning, and implications from a morphological, functional and evolutionary perspective. Evaluation of the spinal curvature is constructive in understanding the evolution of the spine, as well as its pathology, planning of surgical procedures, monitoring its progression and treatment of spinal deformities. The aim of the current study was to revisit the nature of lumbar curve in males and females. Our new automated method uses CT imaging of the spine to measure lumbar curvature in males and females. The curves extracted from 158 individuals were based on the spinal canal, thus avoiding traditional pitfalls of using bone features for curve estimation. The model analysis was carried out on the entire curve, whereby both local and global descriptors were examined in a single framework. Six parameters were calculated: segment length, curve length, curvedness, lordosis peak location, lordosis cranial peak height, and lordosis caudal peak height. Compared to males, the female spine manifested a statistically significant greater curvature, a caudally located lordotic peak, and greater cranial peak height. As caudal peak height is similar for males and females, the illusion of deeper lordosis among females is due partially to the fact that the upper part of the female lumbar curve is positioned more dorsally (more backwardly inclined). Males and females manifest different lumbar curve shape, yet similar amount of inward curving (lordosis). The morphological characteristics of the female spine were probably developed to reduce stress on the vertebral elements during pregnancy and nursing.
Incremental analysis of large elastic deformation of a rotating cylinder
NASA Technical Reports Server (NTRS)
Buchanan, G. R.
1976-01-01
The effect of finite deformation upon a rotating, orthotropic cylinder was investigated using a general incremental theory. The incremental equations of motion are developed using the variational principle. The governing equations are derived using the principle of virtual work for a body with initial stress. The governing equations are reduced to those for the title problem and a numerical solution is obtained using finite difference approximations. Since the problem is defined in terms of one independent space coordinate, the finite difference grid can be modified as the incremental deformation occurs without serious numerical difficulties. The nonlinear problem is solved incrementally by totaling a series of linear solutions.
Kim, Han Jo; Iyer, Sravisht
2016-05-01
Proximal junctional kyphosis (PJK) is a common complication following adult spinal deformity surgery. It is defined by two criteria: a proximal junctional sagittal Cobb angle (1) ≥ 10° and (2) at least 10° greater than the preoperative measurement. PJK is multifactorial in origin and likely stems from surgical, radiographic, and patient-related risk factors. The diagnosis of PJK represents a broad spectrum of disease ranging from asymptomatic patients with recurrence of deformity to those presenting with increased pain, functional deficit, and, in the most severe cases, neurologic deficits. Recent studies have demonstrated increased pain levels in select patients with PJK. In keeping with the broad spectrum of the disease, classification schemes are needed to better describe and stratify the severity of PJK. The most severe form is proximal junctional failure. A consensus on a uniform definition of proximal junctional failure is needed to allow for more systematic study of this phenomenon.
Nonsurgical Management of Adolescent Idiopathic Scoliosis.
Gomez, Jaime A; Hresko, M Timothy; Glotzbecker, Michael P
2016-08-01
Pediatric patient visits for spinal deformity are common. Most of these visits are for nonsurgical management of scoliosis, with approximately 600,000 visits for adolescent idiopathic scoliosis (AIS) annually. Appropriate management of scoliotic curves that do not meet surgical indication parameters is essential. Renewed enthusiasm for nonsurgical management of AIS (eg, bracing, physical therapy) exists in part because of the results of the Bracing in Adolescent Idiopathic Scoliosis Trial, which is the only randomized controlled trial available on the use of bracing for AIS. Bracing is appropriate for idiopathic curves between 20° and 40°, with successful control of these curves reported in >70% of patients. Patient adherence to the prescribed duration of wear is essential to maximize the effectiveness of the brace. The choice of brace type must be individualized according to the deformity and the patient's personality as well as the practice setting and brace availability.
Osteogenesis imperfecta in childhood: treatment strategies.
Engelbert, R H; Pruijs, H E; Beemer, F A; Helders, P J
1998-12-01
Osteogenesis imperfecta (OI) is a skeletal disorder of remarkable clinical variability characterized by bone fragility, osteopenia, variable degrees of short stature, and progressive skeletal deformities. Additional clinical manifestations such as blue sclerae, dentinogenesis imperfecta, joint laxity, and maturity onset deafness are described in the literature. OI occurs in about 1 in 20,000 births and is caused by quantitative and qualitative defects in the synthesis of collagen I. Depending on the severity of the disease, a large impact on motor development, range of joint motion, muscle strength, and functional ability may occur. Treatment strategies should primarily focus on the improvement of functional ability and the adoption of compensatory strategies, rather than merely improving range of joint motion and muscle strength. Surgical treatment of the extremities may be indicated to stabilize the long bones to optimize functional ability and walking capacity. Surgical treatment of the spine may be indicated in patients with progressive spinal deformity and in those with symptomatic basilar impression.
Daryabor, Alieh; Arazpour, Mokhtar; Samadian, Mohammad; Veiskarami, Masoumeh; Ahmadi Bani, Monireh
2017-05-01
Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. As a consequence, AIS can modify human gait. Spinal orthoses are a commonly used conservative method for the treatment of AIS. This review evaluated the AIS spinal orthosis literature that involved gait and energy consumption evaluations. Literature review. According to the population intervention comparison outcome measure methods and based on selected keywords, 10 studies met the inclusion criteria. People with AIS who wore a spinal orthosis, compared with able-bodied participants, walked slower with decreased hip and pelvic movements, decreased hip mediolateral forces, ground reaction force asymmetry, and excessive energy cost. Pelvis and hip frontal plane motion decreased when wearing an orthosis. Hip and pelvis movement symmetry improved when using an orthosis. Ankle and foot kinematics did not change with orthotic intervention. People with AIS continued to have excessive energy expenditure with an orthosis. Spinal orthoses may be considered for improving the walking style, although energy cost does not decline following the orthotic intervention. Implications for Rehabilitations Problems related to scoliosis include reduced quality of life, disability, pain, postural alterations, sensory perturbations, standing instability and gait modifications. Wearing corrective spinal orthoses in AIS subjects produce a reduction in walking speed and cadence, increase in stride length and reduction of gait load asymmetry compared to without brace condition. Spinal orthoses do not decline excessive energy expenditure to walk versus without it.
Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic
2017-10-01
their near anatomical inaccessibility. We have solved the accessibility problem with a strategic methodological advance. We will determine the extent...inaccessibility. We have solved the accessibility problem with a strategic methodological advance. We will determine the extent to which paravertebral
ERIC Educational Resources Information Center
Jewett, John W., Jr.
2008-01-01
Energy is a critical concept in physics problem-solving, but is often a major source of confusion for students if the presentation is not carefully crafted by the instructor or the textbook. A common approach to problems involving deformable or rotating systems that has been discussed in the literature is to employ the work-kinetic energy theorem…
Influence of gravity on deformation of blocks in Earth's crust
NASA Astrophysics Data System (ADS)
Tataurova, A. A.; Stefanov, Yu. P.; Bakeev, R. A.
2017-12-01
The article presents the results of numerical calculations of deformation using an Earth's crust model fragment under the influence of gravitational force. It is shown that plastic deformation in low-strength blocks changes the stress-strain state in the medium and produces a surface deflection which is hundred meters deep. The deflection is defined by the properties of the medium, its extent, and conditions at the lateral boundaries. The order of load application beyond the elastic limit affects the development of deformation, which should be taken into account when formulating problems and performing numerical simulations. The problem has been solved using a two-dimensional elastoplastic approach.
Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications
NASA Technical Reports Server (NTRS)
Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.
2013-01-01
Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.
Wadhwa, Rishi K; Shaya, Mark R; Nanda, Anil
2006-02-01
The use of intrathecal morphine has been effective with few complications for chronic intractable pain of both benign and malignant origins. A rare but serious problem that exists is the formation of an inflammatory mass at the catheter tip of the pain pump. We report the case of a 67-year-old female patient with failed back syndrome who presented with sensory complaints and back pain. Magnetic resonance imaging revealed impingement on the thoracic cord by a mass. The mass was originally thought to be a spinal cord tumor; however, operation and chemical analysis of the mass showed that it was a bupivacaine precipitate at the tip of the catheter of the pain pump. This is the first such case, to our knowledge, of a bupivacaine precipitate mimicking a spinal cord tumor.
Alphabet Soup: Sagittal Balance Correction Osteotomies of the Spine-What Radiologists Should Know.
Takahashi, T; Kainth, D; Marette, S; Polly, D
2018-04-01
Global sagittal malalignment has been demonstrated to have correlation with clinical symptoms and is a key component to be restored in adult spinal deformity. In this article, various types of sagittal balance-correction osteotomies are reviewed primarily on the basis of the 3 most commonly used procedures: Smith-Petersen osteotomy, pedicle subtraction osteotomy, and vertebral column resection. Familiarity with the expected imaging appearance and commonly encountered complications seen on postoperative imaging studies following correction osteotomies is crucial for accurate image interpretation. © 2018 by American Journal of Neuroradiology.
Itshayek, Eyal
2013-12-01
In 2005, a Landmark study showed that direct decompressive surgery, followed by postoperative external beam radiotherapy (EBRT) is superior to EBRT alone in patients with metastatic epidural spinal cord compression (MESCC). Patients undergoing both surgery and EBRT had similar median survival but experienced longer ambulation than with EBRT alone. Additional studies have shown improvements in quality-of-life, higher cost-effectiveness, improved pain control, and higher functional status with surgery plus EBRT. Improved neurological outcome also improved the patients' ability to undergo postoperative adjuvant therapy. According to our experience, even patients over 65 or patients with aggressive primary tumors and additional metastases have benefited from surgical intervention, living longer than expected with preservation of ambulation and sphincter control until death or shortly before. Preserving ambulation is critical. With current surgical devices and techniques, patients with MESCC who present with a single area of cord compression, back pain, neurological deficit, or progressive deformity, may benefit from surgery prior to adjuvant radiation-based treatment or chemotherapy.
Lateral retroperitoneal transpsoas interbody fusion in a patient with achondroplastic dwarfism.
Staub, Blake N; Holman, Paul J
2015-02-01
The authors present the first reported use of the lateral retroperitoneal transpsoas approach for interbody arthrodesis in a patient with achondroplastic dwarfism. The inherent anatomical abnormalities of the spine present in achondroplastic dwarfism predispose these patients to an increased incidence of spinal deformity as well as neurogenic claudication and potential radicular symptoms. The risks associated with prolonged general anesthesia and intolerance of significant blood loss in these patients makes them ideal candidates for minimally invasive spinal surgery. The patient in this case was a 51-year-old man with achondroplastic dwarfism who had a history of progressive claudication and radicular pain despite previous extensive lumbar laminectomies. The lateral retroperitoneal transpsoas approach was used for placement of interbody cages at L1/2, L2/3, L3/4, and L4/5, followed by posterior decompression and pedicle screw instrumentation. The patient tolerated the procedure well with no complications. Postoperatively his claudicatory and radicular symptoms resolved and a CT scan revealed solid arthrodesis with no periimplant lucencies.
The process of confrontation with disability in patients with spinal cord injury
Ahmadzadeh, Gholamhossein; Kouchaki, Anahita; Malekian, Azadeh; Aminorro’aya, Mahin; Boroujeni, Ali Zargham
2010-01-01
BACKGROUND: Spinal injury can establish severe psychological outcomes for the patient and his/her family which requires high adjustment. Health system staff would be able to play their roles well in caring these patients provided with knowing what steps spinal injured people should pass to handle their disability and also what assistance they need in what stages from what sources. This study aimed to explain the process of confrontation with disability in spinal cord injured patients. METHODS: This was a qualitative study with grounded theory approach which was performed in Strauss and Corbin proposed method on twenty people with spinal cord injury who had past at least three months from their spinal injury. Sampling was done in purposive and theoretical method, and analysis of the results was also performed during constant comparative process. RESULTS: Central concept in the data was support which was associated with other concepts and affected them. The patients, with the help of internal and external support could overcome their main problem that was disability feeling and dependency on others and find a new definition for the self, and ultimately achieve the sense of independence and autonomy. CONCLUSIONS: Knowing the process of confrontation with disability along with better understanding of spinal cord injured people would help health system staff to actualize and support their potentials much better through strengthening internal resources and providing appropriate supportive services of each individual. PMID:22069411
Bejiqi, Ramush; Retkoceri, Ragip; Bejiqi, Hana; Zeka, Naim
2015-01-01
First time described in 1912, from Maurice Klippel and Andre Feil independently, Klippel-Feil syndrome (synonyms: cervical vertebra fusion syndrome, Klippel-Feil deformity, Klippel-Feil sequence disorder) is a bone disorder characterized by the abnormal joining (fusion) of two or more spinal bones in the neck (cervical vertebrae), which is present from birth. Three major features result from this abnormality: a short neck, a limited range of motion in the neck, and a low hairline at the back of the head. Most affected people have one or two of these characteristic features. Less than half of all individuals with Klippel-Feil syndrome have all three classic features of this condition. Since first classification from Feil in three categories (I – III) other classification systems have been advocated to describe the anomalies, predict the potential problems, and guide treatment decisions. Patients with Klippel-Feil syndrome usually present with the disease during childhood, but may present later in life. The challenge to the clinician is to recognize the associated anomalies that can occur with Klippel-Feil syndrome and to perform the appropriate workup for diagnosis. PMID:27275209
Clinical Response of 277 Patients with Spinal Cord Injury to Stem Cell Therapy in Iraq
Hammadi, Abdulmajeed Alwan; Marino, Andolina; Farhan, Saad
2012-01-01
Background and Objectives: Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. Methods and Results: 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. Conclusions: Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury. PMID:24298358
[Epidemiological aspects of spinal traumas: about 139 cases].
Bemora, Joseph Synèse; Rakotondraibe, Willy Francis; Ramarokoto, Mijoro; Ratovondrainy, Willy; Andriamamonjy, Clément
2017-01-01
Spinal trauma is one of the most common types of injuries among victims of traffic accidents, sports accidents, domestic accidents and workplace accidents. We conducted a 3-year retrospective study of 139 cases of spinal trauma hospitalized and treated in the Neurosurgery department of the CHUJRA, Madagascar. This study shows that 25.17% of injured patients were between 21 and 30 years of age, with a clear male predominance (69.78%; sex ratio 2.3). Falls were the dominating traumatic injury mechanism (33.09%) with risk factors including alcohol use (8.63%). Spinal injuries occurred in patients with polytrauma, of whom 34.63% had cranial trauma. Patients were admitted to the department within 1-5 hours after the trauma in 31.65% of cases, using private car as their means of transport 36.69% of cases. During the hospitalization 20 patients signed the discharge form and 6.34% of patients died. Spinal trauma is a public health problem requiring high intensity management, especially for patients with life-long disabilities. Any spine trauma requires a diligent search for cranial lesion.
Spinal Cord Injury After Extremity Surgery in Children With Thoracic Kyphosis.
Pruszczynski, Blazej; Mackenzie, William G; Rogers, Kenneth; White, Klane K
2015-10-01
Spinal cord injury is a rare complication after lower extremity surgery in children with skeletal dysplasia and thoracic kyphosis. We encountered two patients who had this complication, from among 51 (39 from Nemours/Alfred I. duPont Hospital for Children and 12 from Seattle Children's Hospital) who underwent lower extremity surgery during an 8.5-year period (June 2004 to December 2012). Because spinal cord injury is a devastating complication likely not known to most physicians treating patients with skeletal dysplasias, we sought to examine factors that may contribute to this rare complication. We performed a retrospective review of two patients with skeletal dysplasia who had paraplegia develop after extremity surgery. Outcome measures included operative time, vital signs, and postsurgery recovery of neurologic deficit. MR images were reviewed. Two patients were found-an 8.5-year-old boy with spondyloepiphyseal dysplasia congenita with a 76°-thoracic kyphosis apex at T4 and a 6.5-year-old boy with mucopolysaccharidosis type 1-H with an 80°-thoracic kyphosis apex at T2. Bilateral proximal femoral osteotomies or bilateral innominate and proximal femoral osteotomies had been performed. The spinal cord injuries occurred at the apex of the kyphosis as determined by clinical examination and MRI assessment. In both patients, the mean arterial blood pressure decreased below 50 mm Hg and might be a factor in the etiology of the paralysis. The first patient recovered motor function in 5 months; the second had no recovery. Paraplegia is extremely rare after nonspine operations. Many factors contribute to the risk for a spinal cord event: low mean arterial pressure, duration of the surgery, position on the operating table, the kyphotic spine deformity, or unappreciated vascular disease. Motor-evoked potentials and somatosensory-evoked potentials together potentially provide high sensitivity and specificity for predicting a postoperative neurologic deficit. Based on our two patients with skeletal dysplasia and a literature review of patients with hyperkyphosis undergoing extremity surgery, the surgeon must be aware of the risk of spinal cord injury. Careful preoperative assessment possibly including MRI of the spine is recommended. Mean arterial pressure should be maintained at a safe level; neuromonitoring should be considered.
Quantitative evaluation of the lumbosacral sagittal alignment in degenerative lumbar spinal stenosis
Makirov, Serik K.; Jahaf, Mohammed T.; Nikulina, Anastasia A.
2015-01-01
Goal of the study This study intends to develop a method of quantitative sagittal balance parameters assessment, based on a geometrical model of lumbar spine and sacrum. Methods One hundred eight patients were divided into 2 groups. In the experimental group have been included 59 patients with lumbar spinal stenosis on L1-5 level. Forty-nine healthy volunteers without history of any lumbar spine pathlogy were included in the control group. All patients have been examined with supine MRI. Lumbar lordosis has been adopted as circular arc and described either anatomical (lumbar lordosis angle), or geometrical (chord length, circle segment height, the central angle, circle radius) parameters. Moreover, 2 sacral parameters have been assessed for all patients: sacral slope and sacral deviation angle. Both parameters characterize sacrum disposition in horizontal and vertical axis respectively. Results Significant correlation was observed between anatomical and geometrical lumbo-sacral parameters. Significant differences between stenosis group and control group were observed in the value of the “central angle” and “sacral deviation” parameters. We propose additional parameters: lumbar coefficient, as ratio of the lordosis angle to the segmental angle (Kl); sacral coefficient, as ratio of the sacral tilt (ST) to the sacral deviation (SD) angle (Ks); and assessment modulus of the mathematical difference between sacral and lumbar coefficients has been used for determining lumbosacral balance (LSB). Statistically significant differences between main and control group have been obtained for all described coefficients (p = 0.006, p = 0.0001, p = 0.0001, accordingly). Median of LSB value of was 0.18 and 0.34 for stenosis and control groups, accordingly. Conclusion Based on these results we believe that that spinal stenosis is associated with an acquired deformity that is measureable by the described parameters. It's possible that spinal stenosis occurs in patients with an LSB of 0.2 or less, so this value can be predictable for its development. It may suggest that spinal stenosis is more likely to occur in patients with the spinal curvature of this type because of abnormal distribution of the spine loads. This fact may have prognostic significance for develop vertebral column disease and evaluation of treatment results. PMID:26767160
McAfee, Paul C.; Shucosky, Erin; Chotikul, Liana; Salari, Ben; Chen, Lun; Jerrems, Dan
2013-01-01
Background This is a retrospective review of 25 patients with severe lumbar nerve root compression undergoing multilevel anterior retroperitoneal lumbar interbody fusion and posterior instrumentation for deformity. The objective is to analyze the outcomes and clinical results from anterior interbody fusions performed through a lateral approach and compare these with traditional surgical procedures. Methods A consecutive series of 25 patients (78 extreme lateral interbody fusion [XLIF] levels) was identified to illustrate the primary advantages of XLIF in correcting the most extreme of the 3-dimensional deformities that fulfilled the following criteria: (1) a minimum of 40° of scoliosis; (2) 2 or more levels of translation, anterior spondylolisthesis, and lateral subluxation (subluxation in 2 planes), causing symptomatic neurogenic claudication and severe spinal stenosis; and (3) lumbar hypokyphosis or flat-back syndrome. In addition, the majority had trunks that were out of balance (central sacral vertical line ≥2 cm from vertical plumb line) or had sagittal imbalance, defined by a distance between the sagittal vertical line and S1 of greater than 3 cm. There were 25 patients who had severe enough deformities fulfilling these criteria that required supplementation of the lateral XLIF with posterior osteotomies and pedicle screw instrumentation. Results In our database, with a mean follow-up of 24 months, 85% of patients showed evidence of solid arthrodesis and no subsidence on computed tomography and flexion/extension radiographs. The complication rate remained low, with a perioperative rate of 2.4% and postoperative rate of 12.2%. The lateral listhesis and anterior spondylolisthetic subluxation were anatomically reduced with minimally invasive XLIF. The main finding in these 25 cases was our isolation of the major indication for supplemental posterior surgery: truncal decompensation in patients who are out of balance by 2 cm or more, in whom posterior spinal osteotomies and segmental pedicle screw instrumentation were required at follow up. No patients were out of sagittal balance (sagittal vertical line <3 cm from S1) postoperatively. Segmental instrumentation with osteotomies was also more effective for restoration of physiologic lumbar lordosis compared with anterior stand-alone procedures. Conclusions This retrospective study supports the finding that clinical outcomes (coronal/sagittal alignment) improve postoperatively after minimally invasive surgery with multilevel XLIF procedures and are improved compared with larger extensile thoracoabdominal anterior scoliosis procedures. PMID:25694908
BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra
NASA Astrophysics Data System (ADS)
Dayi, O. F.
1994-01-01
BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.
Miyazaki, Masashi; Kanezaki, Shozo; Notani, Naoki; Ishihara, Toshinobu; Tsumura, Hiroshi
2017-01-01
Abstract Rationale: Fixed thoracolumbar kyphosis with spinal stenosis in adult patients with achondroplasia presents a challenging issue. We describe the first case in which spondylectomy and minimally invasive lateral access interbody arthrodesis were used for the treatment of fixed severe thoracolumbar kyphosis and lumbar spinal canal stenosis in an adult with achondroplasia. Patient concerns: A 61-year-old man with a history of achondroplastic dwarfism presented with low back pain and radiculopathy and neurogenic claudication. Diagnoses: Plain radiographs revealed a high-grade thoracolumbar kyphotic deformity with diffuse degenerative changes in the lumbar spine. The apex was located at L2, the local kyphotic angle from L1 to L3 was 105°, and the anterior area was fused from the L1 to L3 vertebrae. MRI revealed significant canal and lateral recess stenosis secondary to facet hypertrophy. Interventions: We planned a front-back correction of the anterior and posterior spinal elements. We first performed anterior release at the fused part from L1 to L3 and XLIF at L3/4 and L4/5. Next, the patient was placed in the prone position. Spondylectomy at the L2 vertebra and posterior fusion from T10 to L5 were performed. Postoperative radiographs revealed L1 to L3 kyphosis of 32°. Outcomes: No complications occurred during or after surgery. Postoperatively, the patient's low back pain and neurological claudication were resolved. No worsening of kyphosis was observed 24 months postoperatively. Lessons: Circumferential decompression of the spinal cord at the apical vertebral level and decompression of lumbar canal stenosis were necessary. Front-back correction of the anterior and posterior spinal elements via spondylectomy and lateral lumbar interbody fusion is a reasonable surgical option for thoracolumbar kyphosis and developmental canal stenosis in patients with achondroplasia. PMID:29245270
Falk, Sarah; Bannister, Kirsty
2014-01-01
Mechanisms of inflammatory and neuropathic pains have been elucidated and translated to patient care by the use of animal models of these pain states. Cancer pain has lagged behind since early animal models of cancer-induced bone pain were based on the systemic injection of carcinoma cells. This precluded systematic investigation of specific neuronal and pharmacological alterations that occur in cancer-induced bone pain. In 1999, Schwei et al. described a murine model of cancer-induced bone pain that paralleled the clinical condition in terms of pain development and bone destruction, confined to the mouse femur. This model prompted related approaches, and we can now state that cancer pain may include elements of inflammatory and neuropathic pains but also unique changes in sensory processing. Cancer-induced bone pain results in progressive bone destruction, elevated osteoclast activity and distinctive nocifensive behaviours (indicating the triad of ongoing, spontaneous and movement-induced hyperalgesia). In addition, cancer cells induce an inflammatory infiltrate and release growth factors, cytokines, interleukins, chemokines, prostanoids and endothelins, resulting in a reduction of pH to below 5 and direct deformation of primary afferents within bone. These peripheral changes, in turn, drive hypersensitivity of spinal cord sensory neurons, many of which project to the parts of the brain involved in the emotional response to pain. Within the spinal cord, a unique neuronal function reorganization within segments of the dorsal horn of the spinal cord receiving nociceptive input from the bone are discussed. Changes in certain neurotransmitters implicated in brain modulation of spinal function are also altered with implications for the affective components of cancer pain. Treatments are described in terms of mechanistic insights and in the case of opioids, which modulate pain transmission at spinal and supraspinal sites, their use can be compromised by opioid-induced hyperalgesia. We discuss evidence for how this comes about and how it may be treated. PMID:26516549
Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M
2018-01-01
Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our results justify further investigations to potentially use local application of zoledronic acid in future clinical studies.
Van Straaten, Meegan G.; Cloud, Beth A.; Zhao, Kristin D.; Fortune, Emma; Morrow, Melissa M. B.
2017-01-01
Shoulder pain from overuse of the arm is common after spinal cord injury (SCI). This pain can be difficult to eliminate. There are many other complications after SCI; therefore, shoulder pain is sometimes not the first priority. However, if neglected for too long, shoulder pain could mean that more serious problems are happening inside the shoulder joint. Here we present the options available when treatment for shoulder pain is needed. PMID:28185640
Workshop: The Technical Requirements for Image-Guided Therapy (Focus: Spinal Cord and Spinal Column)
2000-02-01
degenerative disease, spondylosis , ligamental ossification, fractures, tumors, and other causes. Compression is a painful condition that may require...series of 7000 patients who underwent lumbar disk surgery, Long indicates three reasons for failed surgery: 1. Failure of the patient to meet the...validated outcomes measures in the lumbar area, is used for a 70-year-old patient with osteoarthritis of the knees and low back pain as well as problems
NASA Astrophysics Data System (ADS)
Bouter, Anton; Alderliesten, Tanja; Bosman, Peter A. N.
2017-02-01
Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of up to a factor of 1600 on the tested registration problems while achieving registration outcomes of similar quality.
Spinal analgesia and auditory functions: a comparison of two sizes of Quincke needle.
Malhotra, S K; Iyer, B A; Gupta, A K; Raghunathan, M; Nakra, D
2007-01-01
Spinal anaesthesia may produce complications ranging from minor problems such as pain on injection, backache and urinary retention to more serious consequences such as post-dural puncture headache (PDPH), neurological complications like meningitis, cranial and peripheral nerve palsies and even cardiac arrest. Impaired auditory function is a relatively lesser-recognized complication of spinal analgesia. The objective of this study was to investigate the effects of spinal analgesia on vestibular dysfunction, using different sizes of the same type of spinal needle. The study included 30 ASA I patients who had received spinal analgesia for lower abdominal surgery. Pure tone audiometry was performed before surgery and on postoperative day 2. In addition, any patient with hearing impairment of >15 dB was scheduled to undergo electrocochleography. Hearing levels were measured from 250 Hz to 8 kHz. In group 1 (n=15), a 26gauge Quincke needle was used. In group 2 (n=15), a 23-gauge Quincke needle was used. Comparison of hearing thresholds showed a significant reduction in the hearing level (P<0.05) in 2 patients in group 2 but none in group 1. The use of a 23-gauge Quincke needle is associated with a greater reduction in the mean hearing level compared to a 26-gauge needle of the same type.
Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help.
Thompson, Aiko K; Wolpaw, Jonathan R
2015-04-01
People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders. © The Author(s) 2014.
Infinitesimal deformations of Poisson bi-vectors using the Kontsevich graph calculus
NASA Astrophysics Data System (ADS)
Buring, Ricardo; Kiselev, Arthemy V.; Rutten, Nina
2018-02-01
Let \\mathscr{P} be a Poisson structure on a finite-dimensional affine real manifold. Can \\mathscr{P} be deformed in such a way that it stays Poisson? The language of Kontsevich graphs provides a universal approach - with respect to all affine Poisson manifolds - to finding a class of solutions to this deformation problem. For that reasoning, several types of graphs are needed. In this paper we outline the algorithms to generate those graphs. The graphs that encode deformations are classified by the number of internal vertices k; for k ≤ 4 we present all solutions of the deformation problem. For k ≥ 5, first reproducing the pentagon-wheel picture suggested at k = 6 by Kontsevich and Willwacher, we construct the heptagon-wheel cocycle that yields a new unique solution without 2-loops and tadpoles at k = 8.
Consensus statement for standard of care in spinal muscular atrophy.
Wang, Ching H; Finkel, Richard S; Bertini, Enrico S; Schroth, Mary; Simonds, Anita; Wong, Brenda; Aloysius, Annie; Morrison, Leslie; Main, Marion; Crawford, Thomas O; Trela, Anthony
2007-08-01
Spinal muscular atrophy is a neurodegenerative disease that requires multidisciplinary medical care. Recent progress in the understanding of molecular pathogenesis of spinal muscular atrophy and advances in medical technology have not been matched by similar developments in the care for spinal muscular atrophy patients. Variations in medical practice coupled with differences in family resources and values have resulted in variable clinical outcomes that are likely to compromise valid measure of treatment effects during clinical trials. The International Standard of Care Committee for Spinal Muscular Atrophy was formed in 2005, with a goal of establishing practice guidelines for clinical care of these patients. The 12 core committee members worked with more than 60 spinal muscular atrophy experts in the field through conference calls, e-mail communications, a Delphi survey, and 2 in-person meetings to achieve consensus on 5 care areas: diagnostic/new interventions, pulmonary, gastrointestinal/nutrition, orthopedics/rehabilitation, and palliative care. Consensus was achieved on several topics related to common medical problems in spinal muscular atrophy, diagnostic strategies, recommendations for assessment and monitoring, and therapeutic interventions in each care area. A consensus statement was drafted to address the 5 care areas according to 3 functional levels of the patients: nonsitter, sitter, and walker. The committee also identified several medical practices lacking consensus and warranting further investigation. It is the authors' intention that this document be used as a guideline, not as a practice standard for their care. A practice standard for spinal muscular atrophy is urgently needed to help with the multidisciplinary care of these patients.
Kobayashi, Kazuyoshi; Imagama, Shiro; Ito, Zenya; Ando, Kei; Hida, Tetsuro; Ito, Kenyu; Tsushima, Mikito; Ishikawa, Yoshimoto; Matsumoto, Akiyuki; Nishida, Yoshihiro; Ishiguro, Naoki
2017-01-01
OBJECTIVE Corrective surgery for spinal deformities can lead to neurological complications. Several reports have described spinal cord monitoring in surgery for spinal deformity, but only a few have included patients younger than 20 years with adolescent idiopathic scoliosis (AIS). The goal of this study was to evaluate the characteristics of cases with intraoperative transcranial motor evoked potential (Tc-MEP) waveform deterioration during posterior corrective fusion for AIS. METHODS A prospective database was reviewed, comprising 68 patients with AIS who were treated with posterior corrective fusion in a prospective database. A total of 864 muscles in the lower extremities were chosen for monitoring, and acceptable baseline responses were obtained from 819 muscles (95%). Intraoperative Tc-MEP waveform deterioration was defined as a decrease in intraoperative amplitude of ≥ 70% of the control waveform. Age, Cobb angle, flexibility, operative time, estimated blood loss (EBL), intraoperative body temperature, blood pressure, number of levels fused, and correction rate were examined in patients with and without waveform deterioration. RESULTS The patients (3 males and 65 females) had an average age of 14.4 years (range 11-19 years). The mean Cobb angles before and after surgery were 52.9° and 11.9°, respectively, giving a correction rate of 77.4%. Fourteen patients (20%) exhibited an intraoperative waveform change, and these occurred during incision (14%), after screw fixation (7%), during the rotation maneuver (64%), during placement of the second rod after the rotation maneuver (7%), and after intervertebral compression (7%). Most waveform changes recovered after decreased correction or rest. No patient had a motor deficit postoperatively. In multivariate analysis, EBL (OR 1.001, p = 0.085) and number of levels fused (OR 1.535, p = 0.045) were associated with waveform deterioration. CONCLUSIONS Waveform deterioration commonly occurred during rotation maneuvers and more frequently in patients with a larger preoperative Cobb angle. The significant relationships of EBL and number of levels fused with waveform deterioration suggest that these surgical invasions may be involved in waveform deterioration.
Pulmonary function improvement after vertebral column resection for severe spinal deformity.
Bumpass, David B; Lenke, Lawrence G; Bridwell, Keith H; Stallbaumer, Jeremy J; Kim, Yongjung J; Wallendorf, Michael J; Min, Woo-Kie; Sides, Brenda A
2014-04-01
Retrospective review of prospectively accrued cohorts. We hypothesized that posterior-only vertebral column resection (PVCR) would result in improved postoperative pulmonary function, avoiding pulmonary insults from combined anterior/posterior approaches. Pulmonary function after PVCR for severe spinal deformity has not been previously studied. Previous studies have demonstrated impaired pulmonary performance after combined anterior/posterior fusions. Serial pulmonary function testing (PFTs) in 49 patients (27 pediatric, 22 adult) who underwent PVCR at a single institution was reviewed. Mean age at surgery was 28.7 years (range, 8-74 yr), and mean follow-up was 32 months (range, 23-64 mo). Thoracic PVCRs (T5-T11) were performed in 31 patients and thoracolumbar PVCRs (T12-L5) in 18 patients. Pediatric patients who underwent PVCR experienced both increased mean forced vital capacity (FVC) (2.10-2.43 L, P = 0.0005) and forced expiratory volume in 1 second (FEV1) (1.71-1.98 L, P = 0.001). There were no significant differences in percent-predicted values for FVC (69%-66%, P = 0.51) or FEV1 (64%-63%, P = 0.77). In adult patients, there were no significant changes in FVC (2.73-2.61 L, P = 0.35) or FEV1 (2.22-2.07 L, P = 0.51) after PVCR; also, changes in adult percent-predicted values for FVC (79%-76%, P = 0.47) and FEV1 (78%-74%, P = 0.40) were not significant. In pediatric patients who underwent PVCR, improved PFTs were correlated with younger age (P = 0.02), diagnosis of angular kyphosis (P ≤ 0.0001), no previous spine surgery (P = 0.04), and preoperative halo-gravity traction (P = 0.02). Comparison of PFT changes between patients who underwent PVCR and a control group who underwent combined anterior/posterior approaches revealed no significant differences. In pediatric patients, PVCR resulted in small but significant improvements in postoperative FVC and FEV1. In adult patients, no significant increases in PFTs were found. Patients who have the greatest potential for lung and thoracic cage growth after spinal correction are most likely to have improved pulmonary function after PVCR.
Diebo, Bassel G; Lavian, Joshua D; Murray, Daniel P; Liu, Shian; Shah, Neil V; Beyer, George A; Segreto, Frank A; Bloom, Lee; Vasquez-Montes, Dennis; Day, Louis M; Hollern, Douglas A; Horn, Samantha R; Naziri, Qais; Cukor, Daniel; Passias, Peter G; Paulino, Carl B
2018-02-06
Retrospective analysis OBJECTIVE.: To compare long-term outcomes between patients with and without mental health comorbidities who are undergoing surgery for adult spinal deformity (ASD). Recent literature reveals that one in three patients admitted for surgical treatment for ASD has comorbid mental health disorder. Currently, impacts of baseline mental health status on long-term outcomes following ASD surgery have not been thoroughly investigated. Patients admitted from 2009-2013 with diagnoses of ASD who underwent ≥4-level thoracolumbar fusion with minimum two-year follow-up were retrospectively reviewed using New York State's Statewide Planning and Research Cooperative System (SPARCS). Patients were stratified by fusion length (Short: 4-8-level; Long: ≥9 level). Patients with comorbid mental health disorder (MHD) at time of admission were selected for analysis (MHD) and compared against those without MHD (no-MHD). Univariate analysis compared demographics, complications, readmissions and revisions between cohorts for each fusion length. Multivariate binary logistic regression models identified independent predictors of outcomes (covariates: fusion length, age, female gender, and Deyo score). 6,020 patients (MHD: n = 1,631; no-MHD: n = 4,389) met inclusion criteria. Mental health diagnoses included disorders of depression (59.0%), sleep (28.0%), anxiety (24.0%), and stress (2.3%). At two-year follow-up, MHD patients with short fusion had significantly higher complication rates (p = 0.001). MHD patients with short or long fusion also had significantly higher rates of any readmission and revision (all p ≤ 0.002). Regression modeling revealed that comorbid MHD was a significant predictor of any complication (OR: 1.17, p = 0.01) and readmission (OR: 1.32, p < 0.001). MHD was the strongest predictor of any revision (OR: 1.56, p < 0.001). Long fusion most strongly predicted any complication (OR: 1.87, p < 0.001). ASD patients with comorbid depressive, sleep, anxiety, and stress disorders were more likely to experience surgical complications and revision at minimum of two years following spinal fusion surgery. Proper patient counseling and psychological screening/support is recommended to complement ASD treatment. 3.
Sharma, Shallu; Bünger, Cody Eric; Andersen, Thomas; Sun, Haolin; Wu, Chunsen; Hansen, Ebbe Stender
2015-07-01
To examine correlation between postoperative radiographic and cosmetic improvements in Lenke 1C adolescent idiopathic scoliosis (AIS) with patients' self-rated outcomes of health and disability at follow-up as determined by the Scoliosis Research Society questionnaire (SRS-30), Oswestry Disability Index score (ODI) and measure of overall health quality Euroqol-5d (EQ-5D). 24 Lenke 1C scoliosis patients, mean age 16.5 (12.8-38.1) years, treated with posterior pedicle screw-only construct, were included. The coronal profile indices (radiographic and cosmetic) regarding magnitude of spinal deformity and truncal balance were measured preoperatively, postoperatively and at final follow-up. A comprehensive index of overall back symmetry was also measured by means of the Posterior Trunk Symmetry Index (POTSI). Pearson's correlation analysis determined the association between the radiographic-cosmetic indices and patient-rated outcomes. Mean follow-up for the cohort was 4.4 (±1.86) years. The thoracic apical vertebra-first thoracic vertebra horizontal distance (AV-TI) correction had significant correlation with function, self-image, and mental health SRS-30 scores (0.55, 0.54, 0.66). Similarly, thoracic apical vertebra horizontal translation from central sacral vertical line (AV-CSVL) correction at follow-up had significant correlation with self-image and management domains (0.57, 0.50). Follow-up POTSI correlated well with SRS-30 and EQ-5D scores (r = -0.64, -0.54). Postoperative leftward trunk shift/spinal imbalance did not influence overall cosmesis and outcomes; significant spinal realignment was evident in follow-up resulting in physiological balance and acceptable cosmesis and outcomes. Significant, but less than "perfect" correlations were observed between the radiographic, cosmetic measures and patient-rated outcomes. Thoracic AV-CSVL, AV-T1 correction and POTSI associated significantly with SRS-30 scores. Whereas, thoracic Cobb angle, Cobb correction, and coronal balance did not correlate with any patient-rated outcome measure. It is, therefore, inferred that the patients-rated subjective outcomes are only poorly reflected by the objectively measured radiographic and cosmetic measures of deformity correction.
Lafage, Renaud; Schwab, Frank; Challier, Vincent; Henry, Jensen K; Gum, Jeffrey; Smith, Justin; Hostin, Richard; Shaffrey, Christopher; Kim, Han J; Ames, Christopher; Scheer, Justin; Klineberg, Eric; Bess, Shay; Burton, Douglas; Lafage, Virginie
2016-01-01
Retrospective review of prospective, multicenter database. The aim of the study was to determine age-specific spino-pelvic parameters, to extrapolate age-specific Oswestry Disability Index (ODI) values from published Short Form (SF)-36 Physical Component Score (PCS) data, and to propose age-specific realignment thresholds for adult spinal deformity (ASD). The Scoliosis Research Society-Schwab classification offers a framework for defining alignment in patients with ASD. Although age-specific changes in spinal alignment and patient-reported outcomes have been established in the literature, their relationship in the setting of ASD operative realignment has not been reported. ASD patients who received operative or nonoperative treatment were consecutively enrolled. Patients were stratified by age, consistent with published US-normative values (Norms) of the SF-36 PCS (<35, 35-44, 45-54, 55-64, 65-74, >75 y old). At baseline, relationships between between radiographic spino-pelvic parameters (lumbar-pelvic mismatch [PI-LL], pelvic tilt [PT], sagittal vertical axis [SVA], and T1 pelvic angle [TPA]), age, and PCS were established using linear regression analysis; normative PCS values were then used to establish age-specific targets. Correlation analysis with ODI and PCS was used to determine age-specific ideal alignment. Baseline analysis included 773 patients (53.7 y old, 54% operative, 83% female). There was a strong correlation between ODI and PCS (r = 0.814, P < 0.001), allowing for the extrapolation of US-normative ODI by age group. Linear regression analysis (all with r > 0.510, P < 0.001) combined with US-normative PCS values demonstrated that ideal spino-pelvic values increased with age, ranging from PT = 10.9 degrees, PI-LL = -10.5 degrees, and SVA = 4.1 mm for patients under 35 years to PT = 28.5 degrees, PI-LL = 16.7 degrees, and SVA = 78.1 mm for patients over 75 years. Clinically, older patients had greater compensation, more degenerative loss of lordosis, and were more pitched forward. This study demonstrated that sagittal spino-pelvic alignment varies with age. Thus, operative realignment targets should account for age, with younger patients requiring more rigorous alignment objectives.
Chaube, Radha; Gautam, Geeta J; Joy, Keerikattil P
2013-05-01
Alkylphenol polyethoxylates (APEs), which are widely used in detergents, paints, herbicides, insecticides, and in many other formulations, have been widely detected in aquatic environments. 4-Nonylphenol (NP) is an important APE detected at microgram levels per litre (0.1-336 μg/L) in water. The objective of the present study was to evaluate NP's toxic effects at low and high sublethal concentrations (0.1 and 1 μg/L) on embryonic development of the catfish Heteropneustes fossilis at different time intervals. The data show that fertilization rate was decreased and cleavage and blastula were severely affected leading to complete mortality of embryos. NP exposure resulted in various body malformations in larvae, such as vertebral deformations, e.g., fin blistering/necrosis, axial deformities (lordosis, kyphosis, and scoliosis) of the spine in the abdominal and caudal region, tail curved completely backward, shortened body, severe spinal and yolk sac malformations, C-shaped severe spinal curvature, cranial malformation with undeveloped head, and failure of eye development. The level of body malformations increased with the concentration and exposure time. After 72 h of exposure, all larvae were dead at both concentrations. Scanning electron microscope study showed that epidermal cells (keratinocytes) were severely damaged in both low- and high-dose treatments throughout development, leading to development of numerous depressions representing sinking holes on the skin. Mucous glands increased significantly in treatment groups compared with control groups. The present study highlights the severe teratogenic effects of NP. The prevalence of the contaminant, if not checked, can lead to decreased population and ultimate disappearance of the species.
Yanni, Daniel S; Cruz, Aurora S; Halim, Alexander Y; Gill, Amandip S; Muhonen, Michael G; Heary, Robert F; Goldstein, Ira M
2018-05-04
Pediatric spinal trauma can present a surgeon with difficult management decisions given the rarity of these cases, pediatric anatomy, and a growing spine. The need to stabilize a traumatically unstable pediatric spine can be an operative challenge given the lack of instrumentation available. The authors present a surgical technique and an illustrative case that may offer a novel, less disruptive method of stabilization. A 2-year-old girl presented after an assault with an L1-2 fracture subluxation with lateral listhesis and fractured jumped facets exhibited on CT scans. CT also showed intact growth plates at the vertebral body, pedicles, and posterior elements. MRI showed severe ligamentous injury, conus medullaris compression, and an epidural hematoma. Neurologically, the patient moved both lower extremities asymmetrically. Given the severity of the deformity and neurological examination and disruption of the stabilizing structures, the authors made the decision to surgically decompress the L-1 and L-2 segments with bilateral laminotomies, evacuate the epidural hematoma, and reduce the deformity with sublaminar stabilization using braided polyester cables bilaterally, thus preserving the growth plates. They also performed a posterolateral onlay fusion at L-1 and L-2 using autograft and allograft placed due to the facet disruption. At the 42-month follow-up, imaging showed fusion of L-1 and L-2 with good alignment, and the hardware was subsequently explanted. The patient was neurologically symmetric in strength, ambulating, and had preserved alignment. Her bones and spinal canal continued to grow in relation to the other levels.
Nunley, Pierce D; Mundis, Gregory M; Fessler, Richard G; Park, Paul; Zavatsky, Joseph M; Uribe, Juan S; Eastlack, Robert K; Chou, Dean; Wang, Michael Y; Anand, Neel; Frank, Kelly A; Stone, Marcus B; Kanter, Adam S; Shaffrey, Christopher I; Mummaneni, Praveen V
2017-12-01
OBJECTIVE The aim of this study was to educate medical professionals about potential financial impacts of improper diagnosis-related group (DRG) coding in adult spinal deformity (ASD) surgery. METHODS Medicare's Inpatient Prospective Payment System PC Pricer database was used to collect 2015 reimbursement data for ASD procedures from 12 hospitals. Case type, hospital type/location, number of operative levels, proper coding, length of stay, and complications/comorbidities (CCs) were analyzed for effects on reimbursement. DRGs were used to categorize cases into 3 types: 1) anterior or posterior only fusion, 2) anterior fusion with posterior percutaneous fixation with no dorsal fusion, and 3) combined anterior and posterior fixation and fusion. RESULTS Pooling institutions, cases were reimbursed the same for single-level and multilevel ASD surgery. Longer stay, from 3 to 8 days, resulted in an additional $1400 per stay. Posterior fusion was an additional $6588, while CCs increased reimbursement by approximately $13,000. Academic institutions received higher reimbursement than private institutions, i.e., approximately $14,000 (Case Types 1 and 2) and approximately $16,000 (Case Type 3). Urban institutions received higher reimbursement than suburban institutions, i.e., approximately $3000 (Case Types 1 and 2) and approximately $3500 (Case Type 3). Longer stay, from 3 to 8 days, increased reimbursement between $208 and $494 for private institutions and between $1397 and $1879 for academic institutions per stay. CONCLUSIONS Reimbursement is based on many factors not controlled by surgeons or hospitals, but proper DRG coding can significantly impact the financial health of hospitals and availability of quality patient care.
Grotto, Sarah; Cuisset, Jean-Marie; Marret, Stéphane; Drunat, Séverine; Faure, Patricia; Audebert-Bellanger, Séverine; Desguerre, Isabelle; Flurin, Vincent; Grebille, Anne-Gaëlle; Guerrot, Anne-Marie; Journel, Hubert; Morin, Gilles; Plessis, Ghislaine; Renolleau, Sylvain; Roume, Joëlle; Simon-Bouy, Brigitte; Touraine, Renaud; Willems, Marjolaine; Frébourg, Thierry; Verspyck, Eric; Saugier-Veber, Pascale
2016-11-29
Spinal muscular atrophy (SMA) is caused by homozygous inactivation of the SMN1 gene. The SMN2 copy number modulates the severity of SMA. The 0SMN1/1SMN2 genotype, the most severe genotype compatible with life, is expected to be associated with the most severe form of the disease, called type 0 SMA, defined by prenatal onset. The aim of the study was to review clinical features and prenatal manifestations in this rare SMA subtype. SMA patients with the 0SMN1/1SMN2 genotype were retrospectively collected using the UMD-SMN1 France database. Data from 16 patients were reviewed. These 16 patients displayed type 0 SMA. At birth, a vast majority had profound hypotonia, severe muscle weakness, severe respiratory distress, and cranial nerves involvement (inability to suck/swallow, facial muscles weakness). They showed characteristics of fetal akinesia deformation sequence and congenital heart defects. Recurrent episodes of bradycardia were observed. Death occurred within the first month. At prenatal stage, decreased fetal movements were frequently reported, mostly only by mothers, in late stages of pregnancy; increased nuchal translucency was reported in about half of the cases; congenital heart defects, abnormal amniotic fluid volume, or joint contractures were occasionally reported. Despite a prenatal onset attested by severity at birth and signs of fetal akinesia deformation sequence, prenatal manifestations of type 0 SMA are not specific and not constant. As illustrated by the frequent association with congenital heart defects, type 0 SMA physiopathology is not restricted to motor neuron, highlighting that SMN function is critical for organogenesis.
Kantelhardt, Sven R; Neulen, Axel; Keric, Naureen; Gutenberg, Angelika; Conrad, Jens; Giese, Alf
2017-10-01
Image-guided pedicle screw placement in the cervico-thoracic region is a commonly applied technique. In some patients with deformed cervico-thoracic segments, conventional or 3D fluoroscopy based registration of image-guidance might be difficult or impossible because of the anatomic/pathological conditions. Landmark based registration has been used as an alternative, mostly using separate registration of each vertebra. We here investigated a routine for landmark based registration of rigid spinal segments as single objects, using cranial image-guidance software. Landmark based registration of image-guidance was performed using cranial navigation software. After surgical exposure of the spinous processes, lamina and facet joints and fixation of a reference marker array, up to 26 predefined landmarks were acquired using a pointer. All pedicle screws were implanted using image guidance alone. Following image-guided screw placement all patients underwent postoperative CT scanning. Screw positions as well as intraoperative and clinical parameters were retrospectively analyzed. Thirteen patients received 73 pedicle screws at levels C6 to Th8. Registration of spinal segments, using the cranial image-guidance succeeded in all cases. Pedicle perforations were observed in 11.0%, severe perforations of >2 mm occurred in 5.4%. One patient developed a transient C8 syndrome and had to be revised for deviation of the C7 pedicle screw. No other pedicle screw-related complications were observed. In selected patients suffering from pathologies of the cervico-thoracic region, which impair intraoperative fluoroscopy or 3D C-arm imaging, landmark based registration of image-guidance using cranial software is a feasible, radiation-saving and a safe alternative.
Kaspiris, Angelos; Chronopoulos, Efstathios; Grivas, Theodoros B; Vasiliadis, Elias; Khaldi, Lubna; Lamprou, Margarita; Lelovas, Pavlos P; Papaioannou, Nikolaos; Dontas, Ismene A; Papadimitriou, Evangelia
2016-02-01
Mechanical loading of the spine is a major causative factor of degenerative changes and causes molecular and structural changes in the intervertebral disc (IVD) and the vertebrae end plate (EP). Pleiotrophin (PTN) is a growth factor with a putative role in bone remodeling through its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ). The present study investigates the effects of strain on PTN and RPTPβ/ζ protein expression in vivo. Tails of eight weeks old Sprague-Dawley rats were subjected to mechanical loading using a mini Ilizarov external apparatus. Rat tails untreated (control) or after 0 degrees of compression and 10°, 30° and 50° of angulation (groups 0, I, II and III respectively) were studied. PTN and RPTPβ/ζ expression were evaluated using immunohistochemistry and Western blot analysis. In the control group, PTN was mostly expressed by the EP hypertrophic chondrocytes. In groups 0 to II, PTN expression was increased in the chondrocytes of hypertrophic and proliferating zones, as well as in osteocytes and osteoblast-like cells of the ossification zone. In group III, only limited PTN expression was observed in osteocytes. RPTPβ/ζ expression was increased mainly in group 0, but also in group I, in all types of cells. Low intensity RPTPβ/ζ immunostaining was observed in groups II and III. Collectively, PTN and RPTPβ/ζ are expressed in spinal deformities caused by mechanical loading, and their expression depends on the type and severity of the applied strain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quality of life and the related factors in spouses of veterans with chronic spinal cord injury
2013-01-01
Background The quality of life (QOL) of caregivers of individuals with chronic spinal cord injuries may be affected by several factors. Moreover, this issue is yet to be documented fully in the literature. The purpose of this study was to evaluate the health related quality of life of spouses who act as primary caregivers of veterans with chronic spinal cord injuries in Iran. Methods The study consisted of 72 wives of 72 veterans who were categorized as spinal cord injured patients based on the American Spinal Injury Association (ASIA) classification. Health related quality of life was assessed by the Short Form (SF-36) Health Survey. Pearson's correlation was carried out to find any correlation between demographic variables with SF-36 dimensions. To find the effect of the factors like age, employment status, duration of care giving, education, presence or absence of knee osteoarthritis, and mechanical back pain on different domains of the SF-36 health survey, Multivariate analysis of variance (MANOVA) was used. Results The mean age of the participants was 44.7 years. According to the ASIA classification 88.9% and 11.1% of the veterans were paraplegic and tetraplegic respectively. Fifty percent of them had a complete injury (ASIA A) and 85% of the spouses were exclusive care givers. All of the SF-36 scores of the spouses were significantly lower than the normal population. Pearson's correlation demonstrated a negative significant correlation between both age and duration of caring with the PF domain. The number of children had a negative correlation with RE and VT. Conclusion The burden of caregiving can impact the QOL of caregivers and cause health problems. These problems can cause limitations for caregiver spouses and it can lead to a decrease in the quality of given care. PMID:23506336
A position-dependent mass harmonic oscillator and deformed space
NASA Astrophysics Data System (ADS)
da Costa, Bruno G.; Borges, Ernesto P.
2018-04-01
We consider canonically conjugated generalized space and linear momentum operators x^ q and p^ q in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation (x ^ ,p ^ ) →(x^ q,p^ q ) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (xq, pq) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation.
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Zubareva, O. V.
2017-06-01
The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.
Linear solver performance in elastoplastic problem solution on GPU cluster
NASA Astrophysics Data System (ADS)
Khalevitsky, Yu. V.; Konovalov, A. V.; Burmasheva, N. V.; Partin, A. S.
2017-12-01
Applying the finite element method to severe plastic deformation problems involves solving linear equation systems. While the solution procedure is relatively hard to parallelize and computationally intensive by itself, a long series of large scale systems need to be solved for each problem. When dealing with fine computational meshes, such as in the simulations of three-dimensional metal matrix composite microvolume deformation, tens and hundreds of hours may be needed to complete the whole solution procedure, even using modern supercomputers. In general, one of the preconditioned Krylov subspace methods is used in a linear solver for such problems. The method convergence highly depends on the operator spectrum of a problem stiffness matrix. In order to choose the appropriate method, a series of computational experiments is used. Different methods may be preferable for different computational systems for the same problem. In this paper we present experimental data obtained by solving linear equation systems from an elastoplastic problem on a GPU cluster. The data can be used to substantiate the choice of the appropriate method for a linear solver to use in severe plastic deformation simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussin, V.; Kiselev, A. V.; Krutov, A. O.
2010-08-15
We consider the problem of constructing Gardner's deformations for the N=2 supersymmetric a=4-Korteweg-de Vries (SKdV) equation; such deformations yield recurrence relations between the super-Hamiltonians of the hierarchy. We prove the nonexistence of supersymmetry-invariant deformations that retract to Gardner's formulas for the Korteweg-de Vries (KdV) with equation under the component reduction. At the same time, we propose a two-step scheme for the recursive production of the integrals of motion for the N=2, a=4-SKdV. First, we find a new Gardner's deformation of the Kaup-Boussinesq equation, which is contained in the bosonic limit of the superhierarchy. This yields the recurrence relation between themore » Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of the full N=2, a=4-SKdV hierarchy. Our method is applicable toward the solution of Gardner's deformation problems for other supersymmetric KdV-type systems.« less
2010-01-01
Background Multilevel spinal fusion surgery has typically been associated with significant blood loss. To limit both the need for transfusions and co-morbidities associated with blood loss, the use of anti-fibrinolytic agents has been proposed. While there is some literature comparing the effectiveness of tranexamic acid (TXA) to epsilon aminocaproic acid (EACA) in cardiac procedures, there is currently no literature directly comparing TXA to EACA in orthopedic surgery. Methods/Design Here we propose a prospective, randomized, double-blinded control study evaluating the effects of TXA, EACA, and placebo for treatment of adolescent idiopathic scoliosis (AIS), neuromuscular scoliosis (NMS), and adult deformity (AD) via corrective spinal surgery. Efficacy will be determined by intraoperative and postoperative blood loss. Other clinical outcomes that will be compared include transfusion rates, preoperative and postoperative hemodynamic values, and length of hospital stay after the procedure. Discussion The primary goal of the study is to determine perioperative blood loss as a measure of the efficacy of TXA, EACA, and placebo. Based on current literature and the mechanism by which the medications act, we hypothesize that TXA will be more effective at reducing blood loss than EACA or placebo and result in improved patient outcomes. Trial Registration ClinicalTrials.gov ID: NCT00958581 PMID:20370916
A preliminary investigation of shape memory alloys in the surgical correction of scoliosis.
Sanders, J O; Sanders, A E; More, R; Ashman, R B
1993-09-15
Nitinol, a shape memory alloy, is flexible at low temperatures but retains its original shape when heated. This offers interesting possibilities for scoliosis correction. Of the shape memory alloys, nitinol is the most promising medically because of biocompatibility and the ability to control transition temperature. In vivo: Six goats with experimental scoliosis were instrumented with 6-mm nitinol rods. The rods were transformed, and the scoliosis corrected, in the awakened goats by 450-kHz radio frequency induction heating. The curves averaged 41 degrees before instrumentation, 33 degrees after instrumentation, and 11 degrees after rod transformation. The animals tolerated the heating without discomfort, neurologic injury, or evidence of thermal injury to the tissues or the spinal cord. In vitro: Nitinol rods were tested under both constant deflection and constant loading conditions and plotted temperature versus either force or displacement. The 6-mm rod generated forces of 200 N. The 9-mm rod generated up to 500 N. We safely coupled shape memory alloy transformation to the spine and corrected an experimental spinal deformity in awake animals. The forces generated can be estimated by the rod's curvature and temperature. The use of shape memory alloys allows continuous neurologic monitoring during awake correction, true rotational correction by rod torsion, and the potential option of periodic correction to take advantage of spinal viscoelasticity and the potential of true rotational correction by rod torsion.
Toquart, A; Graillon, T; Mansouri, N; Adetchessi, T; Blondel, B; Fuentes, S
2016-06-01
Spinal metastasis are getting more frequent. This raises the question of pain and neurological complications, which worsen the functional and survival prognosis of this oncological population patients. The surgical treatment must be the most complete as possible: to decompress and stabilize without delaying the management of the oncological disease. Minimal invasive surgery techniques are by definition, less harmful on musculocutaneous plan than opened ones, with a comparable efficiency demonstrated in degenerative and traumatic surgery. So they seem to be applicable and appropriate to this patient population. We detailed different minimal invasive techniques proposed in the management of spinal metastasis. For this, we used our experience developed in degenerative and traumatic pathologies, and we also referred to many authors, establishing a literature review thanks to Pubmed, Embase. Thirty eight articles were selected and allowed us to describe different techniques: percutaneous methods such as vertebro-/kyphoplasty and osteosynthesis, as well as mini-opened surgery, through a posterior or anterior way. We propose a surgical approach using these minimal invasive techniques, first according to the predominant symptom (pain or neurologic failure), then characteristics of the lesions (number, topography, type…) and the deformity degree. Whatever the technique, the main goal is to stabilize and decompress, in order to maintain a good quality of life for these fragile patients, without delaying the medical management of the oncological disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Hegewald, Aldemar A; Knecht, Sven; Baumgartner, Daniel; Gerber, Hans; Endres, Michaela; Kaps, Christian; Stüssi, Edgar; Thomé, Claudius
2009-01-01
Background Surgery for disc herniations can be complicated by two major problems: painful degeneration of the spinal segment and re-herniation. Therefore, we examined an absorbable poly-glycolic acid (PGA) biomaterial, which was lyophilized with hyaluronic acid (HA), for its utility to (a) re-establish spinal stability and to (b) seal annulus fibrosus defects. The biomechanical properties range of motion (ROM), neutral zone (NZ) and a potential annulus sealing capacity were investigated. Methods Seven bovine, lumbar spinal units were tested in vitro for ROM and NZ in three consecutive stages: (a) intact, (b) following nucleotomy and (c) after insertion of a PGA/HA nucleus-implant. For biomechanical testing, spinal units were mounted on a loading-simulator for spines. In three cycles, axial loading was applied in an excentric mode with 0.5 Nm steps until an applied moment of ± 7.5 Nm was achieved in flexion/extension. ROM and NZ were assessed. These tests were performed without and with annulus sealing by sewing a PGA/HA annulus-implant into the annulus defect. Results Spinal stability was significantly impaired after nucleotomy (p < 0.001). Intradiscal implantation of a PGA-HA nucleus-implant, however, restored spinal stability (p < 0.003). There was no statistical difference between the stability provided by the nucleus-implant and the intact stage regarding flexion/extension movements (p = 0.209). During the testing sequences, herniation of biomaterial through the annulus defect into the spinal canal regularly occurred, resulting in compression of neural elements. Sewing a PGA/HA annulus-implant into the annulus defect, however, effectively prevented herniation. Conclusion PGA/HA biomaterial seems to be well suited for cell-free and cell-based regenerative treatment strategies in spinal surgery. Its abilities to restore spinal stability and potentially close annulus defects open up new vistas for regenerative approaches to treat intervertebral disc degeneration and for preventing implant herniation. PMID:19604373
Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.
Kozera, Katarzyna; Ciszek, Bogdan
2016-01-01
The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.
Noninvasive Optoelectronic Assessment of Induced Sagittal Imbalance Using the Vicon System.
Ould-Slimane, Mourad; Latrobe, Charles; Michelin, Paul; Chastan, Nathalie; Dujardin, Franck; Roussignol, Xavier; Gauthé, Rémi
2017-06-01
Spinal diseases often induce gait disorders with multifactorial origins such as lumbar pain, radicular pain, neurologic complications, or spinal deformities. However, radiography does not permit an analysis of spinal dynamics; therefore, sagittal balance dynamics during gait remain largely unexplored. This prospective and controlled pilot study assessed the Vicon system for detecting sagittal spinopelvic imbalance, to determine the correlations between optoelectronic and radiographic parameters. Reversible anterior sagittal imbalance was induced in 24 healthy men using a thoracolumbar corset. Radiographic, optoelectronic, and comparative analyses were conducted. Corset wearing induced significant variations in radiographic parameters indicative of imbalance; the mean C7-tilt and d/D ratio increased by 15° ± 7.4° and 359%, respectively, whereas the mean spinosacral angle decreased by 16.8° ± 8° (all P < 0.001). The Vicon system detected the imbalance; the mean spinal angle increased by 15.4° ± 5.6° (P < 0.01), the mean floor projection of the C7S1 vector (C7'S1') increased by 126.3 ± 51.9 mm (P < 0.001), and the mean C7-T10-S1 angle decreased by 9.8° ± 3° (P < 0.001). Variations in C7'S1' were significantly correlated with d/D ratio (ρ = 0.58; P < 0.05) and C7-tilt (ρ = 0.636; P < 0.05) variations. Corset wearing induced radiographically confirmed anterior sagittal imbalance detected using the Vicon system. Optoelectronic C7'S1' correlated with radiographic C7-tilt and d/D ratio. Copyright © 2017 Elsevier Inc. All rights reserved.
The Lumbar Lordosis in Males and Females, Revisited
Hay, Ori; Dar, Gali; Abbas, Janan; Stein, Dan; May, Hila; Masharawi, Youssef; Peled, Nathan; Hershkovitz, Israel
2015-01-01
Background Whether differences exist in male and female lumbar lordosis has been debated by researchers who are divided as to the nature of variations in the spinal curve, their origin, reasoning, and implications from a morphological, functional and evolutionary perspective. Evaluation of the spinal curvature is constructive in understanding the evolution of the spine, as well as its pathology, planning of surgical procedures, monitoring its progression and treatment of spinal deformities. The aim of the current study was to revisit the nature of lumbar curve in males and females. Methods Our new automated method uses CT imaging of the spine to measure lumbar curvature in males and females. The curves extracted from 158 individuals were based on the spinal canal, thus avoiding traditional pitfalls of using bone features for curve estimation. The model analysis was carried out on the entire curve, whereby both local and global descriptors were examined in a single framework. Six parameters were calculated: segment length, curve length, curvedness, lordosis peak location, lordosis cranial peak height, and lordosis caudal peak height. Principal Findings Compared to males, the female spine manifested a statistically significant greater curvature, a caudally located lordotic peak, and greater cranial peak height. As caudal peak height is similar for males and females, the illusion of deeper lordosis among females is due partially to the fact that the upper part of the female lumbar curve is positioned more dorsally (more backwardly inclined). Conclusions Males and females manifest different lumbar curve shape, yet similar amount of inward curving (lordosis). The morphological characteristics of the female spine were probably developed to reduce stress on the vertebral elements during pregnancy and nursing. PMID:26301782
Kravtsova, E Yu; Murav'ev, S V; Kravtsov, Yu I
The relevance of the problem arises from the lack of substantiation for the inclusion of transcutaneous spinal direct current stimulation (tSDCS) in the comprehensive spa and health resort-based treatment of back pain syndrome in the adolescents presenting with juvenile idiopathic scoliosis. The objective of the present study was to demonstrate the effectiveness of transcutaneous spinal direct current stimulation for the comprehensive spa and health resort-based treatment of back pain syndrome in the adolescents presenting with juvenile idiopathic scoliosis. A total of 18 patients with scoliosis forming the study group 1 received the traditional comprehensive spa and health resort-based treatment. The course of transcutaneous spinal direct current stimulation was prescribed to 38 other patients (comprising group 2) in addition to the standard procedures. Another control group was comprised of 15 practically healthy adolescents having no signs of spinal deformations. The visual analog scale for pain, the McGill questionnaire, the scale for the assessment of the situational and personal uneasiness levels (Spilberger Ch.D., Khanin Yu.L.), and the Beck and Tsung depression scales were used, beside the routine clinical methods. Statistical data processing was carried out with the use of the Statistica 6.0 software package. In the group of patients treated with the use of transcutaneous spinal direct current stimulation, regression of pain syndrome was well apparent. In the boys with the severity of pain estimated at 2 points based on the visual analog scale who received the standard course of the spa and health resort-based treatment, the pain rank index and the index of the number of the selected descriptors decreased significantly but nonetheless remained higher than in the patients treated by means of tSDCS as a component of the combined therapy (p=0.039). Simultaneously, the significantly lower level of situational (Q1=25.00; Me=36.50; Q3=45.00; p=0.036) and personal (Q1=26.00; Me=36.50; Q3=44.00; p=0.07) anxiety was observed in the group of girls in comparison with the group of those given only the standard course of the spa and health resort-based treatment. In addition, the level of trait anxiety in the female patients treated with the use of tSDCS was lower than in the girls of the control group (Q1=46.00; Me=49.00; Q3=51.5; p=0.001). In the boys undergoing the course the of tSDCS treatment, the levels of trait anxiety (Q1=29.00 ; Me=37.00 ; Q3=42.00; p=0.021) and depression estimated from the Tsung scale (Q1=2.85; Me=3.00; Q3=3.60; p=0.014) and the cognitive-affective scale of Beck (Q1=0.50; Me=2.00; Q3=5.50; p=0.041) were significantly lower than in the boys of the control group. The level of depression based on the Tsung scale was significantly lower (p=0.020) in the boys and after the standard spa and health resort-based treatment (Q1=2.50; Me=2.90; Q3=3.60) was comparable with that in the boys of the control group (Q1=4.00; Me=4.60; Q3=4.80). The present study has demonstrated the expediency of inclusion of a course of transcutaneous spinal direct current stimulation in the programs of the combined spa and health resort-based treatment for the adolescents presenting with scoliosis.
Wang, Yingsong; Xie, Jingming; Zhao, Zhi; Zhang, Ying; Li, Tao; Si, Yongyu
2013-05-01
Phase contrast-cine MRI (PC-cine MRI) studies in patients with syringomyelia and Chiari malformation Type I (CM-I) have demonstrated abnormal CSF flow across the foramen magnum, which can revert to normal after craniocervical decompression with syrinx shrinkage. In order to investigate the mechanisms leading to postoperative syringomyelia shrinkage, the authors studied the hydrodynamic changes of CSF flow in the craniocervical junction and spinal canal in patients with scoliosis associated with syringomyelia after one-stage deformity correction by posterior vertebral column resection. Preoperative and postoperative CSF flow dynamics at the levels of the foramen magnum, C-7, T-7 (or apex), and L-1 were assessed by electrocardiogram-synchronized cardiac-gated PC-cine MRI in 8 adolescent patients suffering from severe scoliosis with syringomyelia and CM-I (scoliosis group) and undergoing posterior vertebral column resection. An additional 8 patients with syringomyelia and CM-I without spinal deformity (syrinx group) and 8 healthy volunteers (control group) were also enrolled. Mean values were obtained for the following parameters: the duration of a CSF cycle, the duration of caudad CSF flow (CSF downflow [DF]) and cephalad CSF flow (CSF upflow [UF]), the ratio of DF duration to CSF cycle duration (DF%), and the ratio of UF duration to CSF cycle duration (UF%). The ratio of the stationary phase (SP) duration to CSF cycle duration was calculated (SP%). The maximum downflow velocities (VD max) and maximum upflow velocities (VU max) were measured. SPSS (version 14.0) was used for all statistical analysis. Patients in the scoliosis group underwent one-stage posterior vertebral column resection for deformity correction without suboccipital decompression. The mean preoperative coronal Cobb angle was 102.4° (range 76°-138°). The mean postoperative Cobb angle was 41.7° (range 12°-75°), with an average correction rate of 59.3%. During the follow-up, 1 patient with hypermyotonia experienced a significant decrease of muscle tension and 1 patient with reduced anal sphincter tone manifested recovery. A total of 5 patients demonstrated a significant decrease (> 30%) in syrinx size. With respect to changes in CSF flow dynamics, the syrinx group was characterized by slower and shorter downflow than the control group, and the difference was more significant at the foramen magnum and C-7 levels. In patients with scoliosis, CSF downflow at the foramen magnum level was significantly restricted, and a prolonged stationary phase indicated increased obstruction of CSF flow. After posterior vertebral column resection, the peak velocity of CSF flow at the foramen magnum increased, and the downflow phase duration was markedly prolonged. The parameters showed a return to almost normal CSF dynamics at the craniocervical region, and this improvement was maintained for 6-12 months of follow-up. There were distinct abnormalities of CSF flow at the craniocervical junction in patients with syringomyelia. Abnormal dynamics of downflow could be aggravated by associated severe spinal deformity and improved by correction via posterior vertebral column resection.
Solution of elastic-plastic stress analysis problems by the p-version of the finite element method
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Actis, Ricardo L.; Holzer, Stefan M.
1993-01-01
The solution of small strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus. Numerical examples which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors are presented.
2011-01-01
Background In view of the limited data available on the conservative treatment of patients with congenital scoliosis (CS), early surgery is suggested in mild cases with formation failures. Patients with segmentation failures will not benefit from conservative treatment. The purpose of this review is to identify the mid- or long-term results of spinal fusion surgery in patients with congenital scoliosis. Methods Retrospective and prospective studies were included, reporting on the outcome of surgery in patients with congenital scoliosis. Studies concerning a small numbers of cases treated conservatively were included too. We analyzed mid-term (5 to 7 years) and long-term results (7 years or more), both as regards the maintenance of the correction of scoliosis and the safety of instrumentation, the early and late complications of surgery and their effect on quality of life. Results A small number of studies of surgically treated patients were found, contained follow-up periods of 4-6 years that in the most cases, skeletal maturity was not yet reached, and few with follow-up of 36-44 years. The results of bracing in children with congenital scoliosis, mainly in cases with failure of formation, were also studied. Discussion Spinal surgery in patients with congenital scoliosis is regarded in short as a safe procedure and should be performed. On the other hand, early and late complications are also described, concerning not only intraoperative and immediate postoperative problems, but also the safety and efficacy of the spinal instrumentation and the possibility of developing neurological disorders and the long-term effect these may have on both lung function and the quality of life of children. Conclusions Few cases indicate the long-term results of surgical techniques, in the natural progression of scoliosis. Similarly, few cases have been reported on the influence of conservative treatment. In conclusion, patients with segmentation failures should be treated surgically early, according to the rate of deformity formation and certainly before the pubertal growth spurt to try to avoid cor- pulmonale, even though there is lack of evidence for that in the long-term. Furthermore, in patients with formation failures, further investigation is needed to document where a conservative approach would be necessary. PMID:21639924
SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J; Zhang, L; Balter, P
2015-06-15
Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points.more » It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and research applications. This work was partially supported by Cancer Prevention & Research Institute of Texas (CPRIT) RP110562.« less
Fratini, Michela; Bukreeva, Inna; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spanò, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia
2015-01-01
Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system. PMID:25686728
Chandran, Jonathan James; Anderson, Gail; Kennedy, Andrew; Kohn, Michael; Clarke, Simon
2015-12-01
Avoidant/restrictive food intake disorder (ARFID) is a potentially lethal eating disorder. This case example of a male, G, aged 17 years with ARFID illustrates the multiplicity of health problems related to nutritional deficiencies which may develop in an adolescent of normal weight. Of particular concern was the diagnosis of subacute combined degeneration (SCD) of the spinal cord and the real possibility that G may have irreversible damage to his spinal cord. To our knowledge, this is the first reported case of a patient with SCD of the spinal cord due to ARFID. The adolescent was found to be deficient in Vitamin A, E, K, D, B12, and folate. Management required vitamin replacement, initial nasogastric feeding and the slow introduction of a varied diet. This patient will require long term rehabilitation. Medical practitioners need to be attuned to abnormal eating patterns in children and adolescents and refer for specialist care early. © 2015 Wiley Periodicals, Inc.
Fontes, Ricardo B; Fessler, Richard G
2017-07-01
Surgery for adult spinal deformity (ASD) has emerged as an efficient treatment alternative, but it is fraught with potential perioperative morbidity, incompletely mitigated by emerging minimally invasive surgical techniques. In mild-to-moderate ASD balanced in the sagittal plane, there are situations in which the counterintuitive simple decompression through a foraminotomy or laminectomy, or even a short-segment fusion may be an attractive treatment. This article presents a case example and the authors' treatment rationale and reviews the limited available literature supporting it. Copyright © 2017 Elsevier Inc. All rights reserved.
Yilgor, Caglar; Sogunmez, Nuray; Boissiere, Louis; Yavuz, Yasemin; Obeid, Ibrahim; Kleinstück, Frank; Pérez-Grueso, Francisco Javier Sánchez; Acaroglu, Emre; Haddad, Sleiman; Mannion, Anne F; Pellise, Ferran; Alanay, Ahmet
2017-10-04
The restoration of normal sagittal alignment is a critical goal in adult spinal deformity surgery to achieve favorable outcomes and prevent mechanical complications. Schwab sagittal modifiers have been accepted as targets for appropriate alignment, but addressing these targets does not always prevent high mechanical complication or revision rates. This may be because the linear absolute numerical parameters do not cover the whole pelvic incidence spectrum and the distribution of lordosis, pelvic anteversion, and negative malalignment are not considered as potential causes of failure. The aim of the present study was to develop and validate a score based on pelvic-incidence-based proportional parameters to better predict mechanical complications. Two hundred and twenty-two patients (168 women and 54 men) followed for ≥2 years after posterior fusion at ≥4 levels were included in the study. The mean age (and standard deviation) was 52.2 ± 19.3 years (range, 18 to 84 years), and the mean duration of follow-up was 28.8 ± 8.2 months (range, 24 to 62 months). The global alignment and proportion (GAP) score was developed and validated in groups of patients randomly assigned to derivation (n = 148, 66.7%) and validation (n = 74, 33.3%) cohorts. GAP score parameters were relative pelvic version (the measured minus the ideal sacral slope), relative lumbar lordosis (the measured minus the ideal lumbar lordosis), lordosis distribution index (the L4-S1 lordosis divided by the L1-S1 lordosis multiplied by 100), relative spinopelvic alignment (the measured minus the ideal global tilt), and an age factor. Proximal and distal junctional kyphosis and/or failure, rod breakage, and other implant-related complications were considered mechanical complications. The predictive accuracy of the GAP score was analyzed using receiver operating characteristic (ROC) analyses. Associations between GAP categories and mechanical complications and revisions were analyzed using Cochran-Armitage tests. In the validation cohort, 32 patients (43%) experienced mechanical complications and 17 (23%) underwent mechanical revision. The area under curve for the GAP score predicting mechanical complications was 0.92 (standard error [SE] = 0.034, p < 0.001, 95% [confidence interval [CI] = 0.85 to 0.98). Postoperatively, patients with a proportioned spinopelvic state according to the GAP score had a mechanical complication rate of 6% while those with a moderately or severely disproportioned spinopelvic state had rates of 47% and 95%, respectively. The GAP score is a new pelvic-incidence-based proportional method of analyzing the sagittal plane that predicts mechanical complications in patients undergoing surgery for adult spinal deformity. Setting surgical goals according to the GAP score may decrease the prevalence of mechanical complications.
Xie, Jingming; Lenke, Lawrence G; Li, Tao; Si, Yongyu; Zhao, Zhi; Wang, Yingsong; Zhang, Ying; Xiao, Jie
2015-04-01
With a significant increase in the number and complexity of spinal deformity corrective surgeries, blood loss, often requiring massive intraoperative transfusions, becomes a major limiting factor during surgery. This scenario is particularly during posterior vertebral column resection (PVCR), where extensive intraoperative blood loss may pose a major risk to the patient, preventing smooth execution of the procedure. Tranexamic Acid (TXA) has been used in cardiac and orthopedic surgeries, including major spinal surgeries, to reduce blood loss and transfusion requirements for decades. To assess the efficacy and safety of high doses of TXA in posterior spinal deformity corrective surgery, including PVCR procedures. A retrospective study from a single institution. Fifty-nine patients (age range 7 to 46 years old) with spinal deformities undergoing spinal corrective surgeries were included. The patients were divided into two groups: the TXA group (total of 26 patients, including 8 PVCR patients) and the control group (total of 33 patients, including 9 PVCR patients). The analyzed outcome measures included estimated intraoperative blood loss, real blood loss (RBL; blood loss/blood volume×100%), blood transfusion requirements, coagulation parameters, complete blood count, liver function, and renal function. Lower limb vein thrombus, symptomatic pulmonary embolism, symptomatic myocardial infarction, seizures, and acute renal failure were also recorded. Before skin incision, the patients in the TXA group received an intravenous loading dose of 100 mg/Kg over a 20-minute period, followed by a maintenance infusion of 10 mg/Kg/h until skin closure was completed. The patients in the control group received saline infusion of a similar volume. Statistics included estimated intraoperative blood loss, RBL, blood transfusion requirements, coagulation parameters, complete blood count, liver function, and renal function. All patients in this study were also carefully monitored for consciousness level, breathing status, chest tightness or pain, and urine output after surgery. These were done to detect the presence or absence of pulmonary embolism, myocardial infarction, seizures, and acute renal failure. Patients treated with TXA were examined via vascular ultrasound before and after surgery. There were no significant differences in the demographic or surgical traits between the two groups. The blood loss of the patients in the TXA group was 2,441±1,666 mL, whereas that of the control group patients was 4,789±4,719 mL. The difference was statistically significant (p<.05). The average RBL of the patients in the TXA group was 80.6%±49.6% versus 160.8%±163.1% in the control group (p<.05). The blood transfusion requirements for the patients in the TXA group were significantly less than that in the control group (p<.05). Blood loss, RBL, and blood transfusion requirements were all significantly lower in the TXA group, compared with the control group among both PVCR patients and non-PVCR patients. In the TXA group, there was an average of 57.4% reduced blood loss in patients who received PVCR and 39.8% in patients not receiving PVCR. There were no differences in liver and renal functions between the TXA and control groups. There was no lower limb vein thrombus, symptomatic myocardial infarction, symptomatic pulmonary embolism, seizures, or acute renal failure reported in the TXA group. In our study, high doses of TXA have been shown to effectively control blood loss and reduce the transfusion requirement. This effect was more apparent in patients receiving PVCR. No adverse drug reaction was recorded in the study. In the future, prospective randomized controlled trials to validate our results will be necessary. Future studies conducted on older patient cohort may also be necessary to confirm the safety of extending the use of TXA to the older patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Hemi-wedge osteotomy in the management of large angular deformities around the knee joint.
El-Alfy, Barakat Sayed
2016-08-01
Angular deformity around the knee joint is a common orthopedic problem. Many options are available for the management of such problem with varying degrees of success and failure. The aim of the present study was to assess the results of hemi-wedge osteotomy in the management of big angular deformities about the knee joint. Twenty-eight limbs in 21 patients with large angular deformities around the knee joint were treated by the hemi-wedge osteotomy technique. The ages ranged from 12 to 43 years with an average of 19.8 years. The deformity ranged from 20° to 40° with a mean of 30.39° ± 5.99°. The deformities were genu varum in 12 cases and genu valgum in 9 cases. Seven cases had bilateral deformities. Small wedge was removed from the convex side of the bone and put in the gap created in the other side after correction of the deformity. At the final follow-up, the deformity was corrected in all cases except two. Full range of knee movement was regained in all cases. The complications included superficial wound infection in two cases, overcorrection in one case, pain along the lateral aspect of the knee in one case and recurrence of the deformity in one case. No cases were complicated by nerve injury or vascular injury. Hemi-wedge osteotomy is a good method for treatment of deformities around the knee joint. It can correct large angular deformities without major complications.
Risk factors of non-specific spinal pain in childhood.
Szita, Julia; Boja, Sara; Szilagyi, Agnes; Somhegyi, Annamaria; Varga, Peter Pal; Lazary, Aron
2018-05-01
Non-specific spinal pain can occur at all ages and current evidence suggests that pediatric non-specific spinal pain is predictive for adult spinal conditions. A 5-year long, prospective cohort study was conducted to identify the lifestyle and environmental factors leading to non-specific spinal pain in childhood. Data were collected from school children aged 7-16 years, who were randomly selected from three different geographic regions in Hungary. The risk factors were measured with a newly developed patient-reported questionnaire (PRQ). The quality of the instrument was assessed by the reliability with the test-retest method. Test (N = 952) and validity (N = 897) datasets were randomly formed. Risk factors were identified with uni- and multivariate logistic regression models and the predictive performance of the final model was evaluated using the receiver operating characteristic (ROC) method. The final model was built up by seven risk factors for spinal pain for days; age > 12 years, learning or watching TV for more than 2 h/day, uncomfortable school-desk, sleeping problems, general discomfort and positive familiar medical history (χ 2 = 101.07; df = 8; p < 0.001). The probabilistic performance was confirmed with ROC analysis on the test and validation cohorts (AUC = 0.76; 0.71). A simplified risk scoring system showed increasing possibility for non-specific spinal pain depending on the number of the identified risk factors (χ 2 = 65.0; df = 4; p < 0.001). Seven significant risk factors of non-specific spinal pain in childhood were identified using the new, easy to use and reliable PRQ which makes it possible to stratify the children according to their individual risk. These slides can be retrieved under Electronic Supplementary Material.
Spinal Anesthesia with Isobaric Tetracaine in Patients with Previous Lumbar Spinal Surgery
Kim, Soo Hwan; Jeon, Dong-Hyuk; Chang, Chul Ho; Lee, Sung-Jin
2009-01-01
Purpose Previous lumbar spinal surgery (PLSS) is not currently considered as a contraindication for regional anesthesia. However, there are still problems that make spinal anesthesia more difficult with a possibility of worsening the patient's back pain. Spinal anesthesia using combined spinal-epidural anesthesia (CSEA) in elderly patients with or without PLSS was investigated and the anesthetic characteristics, success rates, and possible complications were evaluated. Materials and Methods Fifty patients without PLSS (Control group) and 45 patients with PLSS (PLSS group) who were scheduled for total knee arthroplasty were studied prospectively. A CSEA was performed with patients in the left lateral position, and 10 mg of 0.5% isobaric tetracaine was injected through a 27 G spinal needle. An epidural catheter was then inserted for patient controlled analgesia. Successful spinal anesthesia was defined as adequate sensory block level more than T12. The number of skin punctures and the onset time were recorded, and maximal sensory block level (MSBL), time to 2-segment regression, success rate and complications were observed. Results The success rate of CSEA in Control group and PLSS group was 98.0%, and 93.3%, respectively. The median MSBL in PLSS group was higher than Control group [T4 (T2-L1) vs. T6 (T3-T12)] (p < 0.001). There was a significant difference in the number of patients who required ephedrine for the treatment of hypotension in PLSS group (p = 0.028). Conclusion The success rate of CSEA in patients with PLSS was 93.3%, and patients experienced no significant neurological complications. The MSBL can be higher in PLSS group than Control group. PMID:19430559
Spinal cord lesions in Bangladesh: an epidemiological study 1994 - 1995.
Hoque, M F; Grangeon, C; Reed, K
1999-12-01
Spinal Cord Lesions are a major public health problem in Bangladesh. This epidemiological study was undertaken in order to identify the causes of spinal cord lesions and thus to allow prevention and control programs to be developed. The records of 247 patients with spinal cord lesions admitted to The Centre for the Rehabilitation of the Paralysed (CRP), Savar, Dhaka from January 1994 to June 1995 were reviewed retrospectively. Comparisons were made with the reports of studies from other countries, both developing and developed. The most common cause of traumatic lesions was a fall from a height followed by falling when carrying a heavy weight on the head and road traffic accidents. Most of the patients were between 20 - 40 years old and the overall age group ranged from 10 - 70 years. The male:female ratio was 7.5 : 1.0. Among the traumatic spinal cord lesions, 60% were paraplegics and 40% tetraplegics. Among the non-traumatic spinal cord lesions cases 84% were paraplegics and 16% tetraplegics. The leading cause of death resulted from respiratory complications and these deaths occurred in the very early period of admission. From the results it can be deduced that the high incidence of spinal cord lesion as a result from falls from a height, and from falling when carrying a heavy weight on the head, can be explained by the mainly agricultural based economy of Bangladesh. The most common age group (10 - 40 years) of patients reflects the socio-economic conditions of Bangladesh. The male:female ratio (7.5 : 1.0) of patients with a spinal cord lesion is due to the socio-economic status and to the traditional culture of the society.
Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna
2017-01-01
Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (P<0.05). MRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some positive effects for the regeneration of the white matter. PMID:29201191
... neurosurgeons, who treat diseases of the nervous system. Orthopedic surgeons, who treat problems with the bones, joints, ... and Musculoskeletal and Skin Diseases is to support research into the causes, treatment, and prevention of arthritis ...
Rintala, D H; Herson, L; Hudler-Hull, T
2000-01-01
This study compared the parenting styles of 62 individuals with spinal cord injury (SCI) and 62 individuals without disabilities and the behavior of their children aged 6 through 13 years. The relationship between parenting style and children's behavior was assessed. Pairs were matched by gender of parent and age and gender of child. The Parenting Dimensions Inventory and the Child Behavior Checklist were administered via telephone. After controlling for income, the 2 groups did not differ in the parenting factors of warmth/structure and strictness. Their children did not differ in social competence or behavior problems. Regardless of disability status, warmth and structure were found to be the aspects of parenting that were related to children's outcomes.
Bakare, Adewale A; Weyhenmeyer, Jonathan; Lee, Albert
2018-02-01
Perhaps the most disabling condition seen in patients with spinal cord injury (SCI) is spasticity. Spasticity is characterized as hyperreflexia and hypertonicity as a result of damage to the supraspinal tracts in the aftermath of SCI. Intrathecal baclofen (ITB) is the mainstay therapy for spasticity unresponsive to oral baclofen. One of the problems associated with post-SCI spasticity unresponsive to ITB is the development of scar tissue that prevents the diffusion of baclofen in the desired spinal cord area. This case offers a unique strategy to deal with multilevel scar tissue. This 46-year-old paraplegic male with a T8 SCI whose spasticity had been well managed with ITB therapy for many years recently suffered intractable spasticity necessitating multiple reoperations for a nonfunctioning ITB catheter secondary to extensive scar tissue and intrathecal adhesions. Placement of a subarachnoid-to-subarachnoid shunt eliminated the problem of extensive scar tissue preventing adequate baclofen therapy. After undergoing multilevel thoracic and lumbar laminectomies with subarachnoid-to-subarachnoid spinal shunt, the patient's spasticity was finally brought under control with adequate daily baclofen infusion. This case demonstrates a creative way to address ITB catheter failure before considering other measures, such as neuroablative procedures (e.g., rhizotomy, myelotomy). This case reinforces the recommendation that ablative procedures, which have far greater complications, should be reserved for patients who have failed medical or other nonablative therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
Return to work following spinal cord injury: a review.
Lidal, Ingeborg Beate; Huynh, Tuan Khai; Biering-Sørensen, Fin
2007-09-15
To review literature on return to work (RTW) and employment in persons with spinal cord injury (SCI), and present employment rates, factors influencing employment, and interventions aimed at helping people with SCI to obtain and sustain productive work. A systematic review for 2000 - 2006 was carried out in PubMed/Medline, AMED, (ISI) Web of Science, EMBASE, CINAHL, PsycInfo and Sociological abstracts database. The keywords 'spinal cord injuries', 'spinal cord disorder', 'spinal cord lesion' or 'spinal cord disease' were cross-indexed with 'employment', 'return to work', 'occupation' or 'vocational'. Out of approximately 270 hits, 110 references were used, plus 13 more found elsewhere. Among individuals with SCI working at the time of injury 21 - 67% returned to work after injury. RTW was higher in persons injured at a younger age, had less severe injuries and higher functional independence. Employment rate improved with time after SCI. Persons with SCI employed ranged from 11.5% to 74%. Individuals who sustained SCI during childhood or adolescence had higher adult employment rates. Most common reported barriers to employment were problems with transportation, health and physical limitations, lack of work experience, education or training, physical or architectural barriers, discrimination by employers, and loss of benefits. Individuals with SCI discontinue working at younger age. This review confirmed low employment rates after SCI. Future research should explore interventions aimed at helping people with SCI to obtain and sustain productive work.
Computerized lateral endoscopic approach to invertebral bodies
NASA Astrophysics Data System (ADS)
Abbasi, Hamid R.; Hariri, Sanaz; Kim, Daniel; Shahidi, Ramin; Steinberg, Gary
2001-05-01
Spinal surgery is often necessary to ease back pain symptoms. Neuronavigation (NN) allows the surgeon to localize the position of his instruments in 3D using pre- operative CT scans registered to intra-operative marker positions in cranial surgeries. However, this tool is unavailable in spinal surgeries for a variety of reasons. For example, because of the spine's many degrees of freedom and flexibility, the geometric relationship of the skin to the internal spinal anatomy is not fixed. Guided by the currently available imperfect 2D images, it is difficult for the surgeon to correct a patient's spinal anomaly; thus surgical relief of back pain is often only temporary. The Image Guidance Laborator's (IGL) goal is to combine the direct optical control of traditional endoscopy with the 3D orientation of NN. This powerful tool requires registration of the patient's anatomy to the surgical navigation system using internal landmarks rather than skin markers. Pre- operative CT scans matched with intraoperative fluoroscopic images can overcome the problem of spinal movement in NN registration. The combination of endoscopy with fluoroscopic registration of vertebral bodies in a NN system provides a 3D intra-operative navigational system for spinal neurosurgery to visualize the internal surgical environment from any orientation in real time. The accuracy of this system integration is being evaluated by assessing the success of nucleotomies and marker implantations guided by NN-registered endoscopy.
Practical solution of plastic deformation problems in elastic-plastic range
NASA Technical Reports Server (NTRS)
Mendelson, A; Manson, S
1957-01-01
A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.
Workshop on Advancing Experimental Rock Deformation Research: Scientific and Technical Needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tullis, Terry E.
A workshop for the experimental rock deformation community was held in Boston on August 16-19, 2012, following some similar but smaller preliminary meetings. It was sponsored primarily by the NSF, with additional support from the DOE, the SCEC, and in-kind support by the USGS. A white paper summarizing the active discussions at the workshop and the outcomes is available (https://brownbox.brown.edu/download.php?hash=0b854d11). Those attending included practitioners of experimental rock deformation, i.e., those who conduct laboratory experiments, as well as users of the data provided by practitioners, namely field geologists, seismologists, geodynamicists, earthquake modelers, and scientists from the oil and gas industry. Amore » considerable fraction of those attending were early-career scientists. The discussion initially focused on identifying the most important unsolved scientific problems in all of the research areas represented by the users that experiments would help solve. This initial session was followed by wide-ranging discussions of the most critical problems faced by practitioners, particularly by early-career scientists. The discussion also focused on the need for designing and building the next generation of experimental rock deformation equipment required to meet the identified scientific challenges. The workshop participants concluded that creation of an experimental rock deformation community organization is needed to address many of the scientific, technical, and demographic problems faced by this community. A decision was made to hold an organizational meeting of this new organization in San Francisco on December 1-2, 2012, just prior to the Fall Meeting of the AGU. The community has decided to name this new organization “Deformation Experimentation at the Frontier Of Rock and Mineral research” or DEFORM. As of May 1, 2013, 64 institutions have asked to be members of DEFORM.« less
Krause, James S; Reed, Karla S
2009-08-01
Evaluate the utility of the current 7-scale structure of the Life Situation Questionnaire-Revised (LSQ-R) using confirmatory factor analysis (CFA) and explore the factor structure of each set of items. Adults (N = 1,543) with traumatic spinal cord injury (SCI) were administered the 20 satisfaction and 30 problems items from the LSQ-R. CFA suggests that the existing 7-scale structure across the 50 items was within the acceptable range (root-mean-square error of approximation [RMSEA] = 0.078), although it fell just outside of this range for women. Factor analysis revealed 3 satisfaction factors and 6 problems factors. The overall fit of the problems items (RMSEA = 0.070) was superior to that of the satisfaction items (RMSEA = 0.80). RMSEA fell just outside of the acceptable range for Whites and men on the satisfaction scales. All scales had acceptable internal consistency. Results suggest the original scoring of the LSQ-R remains viable, although individual results should be reviewed for special population. Factor analysis of subsets of items allows satisfaction and problems items to be used independently, depending on the study purpose. (c) 2009 APA
Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Sobhani, H.; Chung, W. S.; Hassanabadi, H.
2018-04-01
In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.
... include: Abnormal development of bones, including the spine Bell-shaped chest with ribs flared out at the ... may slip and damage the spinal cord, causing paralysis. Surgery to correct such problems should be done ...
... classroom, laboratory, and clinical experience. The education provides students with an in-depth understanding of the structure ... people with muscle and bone problems, such as neck pain, low back pain, osteoarthritis, and spinal disk conditions. ...
PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De
2013-05-20
We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two opticalmore » telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.« less
Theologis, Alexander A; Miller, Liane; Callahan, Matt; Lau, Darryl; Zygourakis, Corinna; Scheer, Justin K; Burch, Shane; Pekmezci, Murat; Chou, Dean; Tay, Bobby; Mummaneni, Praveen; Berven, Sigurd; Deviren, Vedat; Ames, Christopher P
2016-08-15
Retrospective cohort analysis. To evaluate the economic impact of revision surgery for proximal junctional failures (PJF) after thoracolumbar fusions for adult spinal deformity (ASD). PJF after fusions for ASD is a major cause of disability. Although clinical sequelae are described, PJF-revision operation costs are incompletely defined. Consecutive adults who underwent thoracolumbar fusions for ASD (August, 2003 to January, 2013) were evaluated. Inclusion criteria include construct from pelvis to L2 or above and minimum 6 months follow-up after the index ASD operation. Direct costs (surgical supplies/implants, room/care, pharmacy, services) were identified from medical billing data and calculated for index ASD operations and subsequent surgeries for PJF. Not included in direct cost data were indirect costs, charges, surgeon fees, or revision operations for indications other than PJF (i.e., pseudarthrosis). Patients were compared based on the construct's upper-instrumented vertebra: upper thoracic (UT: T1-6) versus thoracolumbar junction (TLjxn: T9-L2). Of 501 patients, 382 met inclusion criteria. Fifty-one patients [UT:14; TLjxn: 40 at index; average follow-up 32.6 months (6-92 months)] had revisions for PJF, which summed to $3.2 million total direct cost. Average direct cost of index operations for the cohort ($68,294) was significantly greater than PJF-revisions ($55,547). Compared with TLjxn, UT had a significantly higher average cost for index operations ($79,860 vs. $65,868). However, PJF-revision cases were similar in average cost (UT:$60,103; TLjxn:$53,920; P = 0.09). Costs of PJF amounted to an additional 12.1% of the total index surgical cost in 382 patients. Revision operations for PJF after long thoracolumbar fusions for ASD are associated with an average direct cost of $55,547 per case. Revision costs for PJF are similar based on the index procedure's upper-instrumented vertebra level. At a major tertiary center over a 10-year period, PJF came at a very significant economic expense amounting to $3.2 million for 57 cases. 3.
Shillingford, Jamal N; Laratta, Joseph L; Tan, Lee A; Sarpong, Nana O; Lin, James D; Fischer, Charla R; Lehman, Ronald A; Kim, Yongjung J; Lenke, Lawrence G
2018-02-21
Spinopelvic fixation is an integral part of achieving solid fusion across the lumbosacral junction, especially in deformity procedures requiring substantial correction or long-segment constructs. Traditional S2-alar-iliac (S2AI) screw-placement techniques utilize fluoroscopy, increasing operative time and radiation exposure to the patient and surgeon. We describe a novel free-hand technique for S2AI screw placement in patients with adult spinal deformity. We reviewed the records of 45 consecutive patients who underwent spinopelvic fixation performed with use of S2AI screws by the senior surgeon and various fellows or residents over a 12-month period (2015 to 2016). In each case, the S2AI screws were placed utilizing a free-hand technique without fluoroscopic or image guidance. Screw position and accuracy were assessed by intraoperative O-arm imaging and analyzed using 3-dimensional interactive manipulation of computed tomography images. A total of 100 screws were placed, 51 by the senior surgeon and 49 by trainees. The mean patient age was 57.4 ± 12.7 years at the time of surgery; 37 (82.2%) of the patients were female. Preoperative diagnoses included adult idiopathic scoliosis (n = 19), adult degenerative scoliosis (n = 15), flatback syndrome (n = 2), fixed sagittal imbalance (n = 6), and distal junctional kyphosis (n = 3). Five (5%) of the screws were placed with moderate to severe cortical breaches, all of which perforated the pelvis posteriorly, with no clinically notable neurovascular or visceral complications. The breach rate did not differ significantly between the senior surgeon and trainees. The free-hand technique for S2AI screw placement, when performed in a standardized manner, was demonstrated to be safe and reliable in constructs requiring spinopelvic fixation. The accuracy of screw placement relies on visible and palpable anatomic landmarks that obviate the need for intraoperative fluoroscopy or image guidance, potentially reducing operative time and radiation exposure. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Gold, Meryl; Dombek, Michael; Miller, Patricia E; Emans, John B; Glotzbecker, Michael P
2014-01-01
Retrospective review. To validate the pelvic inlet width (PIW) measurement obtained on radiograph as an independent standard used to correlate with thoracic dimensions (TDs) in treated and untreated patients with early-onset scoliosis. In children with early-onset scoliosis, the change in TD and spine length is a key treatment goal. Quantifying this change is confounded by varied growth rates and differing diagnoses. PIW measured on computed tomographic (CT) scan in patients without scoliosis has been shown to correlate with TD in an age-independent manner. The first arm included 49 patients with scoliosis who had both a CT scan and pelvic radiograph. Agreement between PIW measurements on CT scan and radiograph was analyzed. The second arm consisted of 163 patients (age, 0.2-18.7 yr), with minimal spinal deformity (mean Cobb, 9.0°) and radiographs in which PIW was measurable. PIW was compared with previously published CT-based TD measurements; maximal chest width, T1-T12 height, and T1-S1 height. Linear regression analysis was used to develop and validate sex-specific predictive equations for each TD measurement on the basis of PIW. Interobserver reliability was evaluated for all measurements. Bland-Altman analysis indicated agreement with no dependence on observed value, but a consistent 8.5 mm (95% CI: 7.2-9.9 mm) difference in CT scan measurement compared with radiographical PIW measurement. Sex and PIW were significantly correlated to each TD measurement (P < 0.01). Predictive models were validated and may be used to estimate TD measurements on the basis of sex and radiographical PIW. Intraclass correlation coefficients for all measurements were between 0.978 and 0.997. PIW on radiographs and CT scan correlate in patients with deformity and with spine and TD in patients with minimal deformity. It is a fast, reliable method of assessing growth while lowering patient's radiation exposure. It can be reliably used to assess patients with early-onset scoliosis and the impact surgical treatment has on chest and spinal growth. 3.
Daubs, Michael D; Lenke, Lawrence G; Bridwell, Keith H; Kim, Yongjung J; Hung, Man; Cheh, Gene; Koester, Linda A
2013-03-15
Retrospective study with prospectively collected outcomes data. Determine the significance of coronal balance on spinal deformity surgery outcomes. Sagittal balance has been confirmed as an important radiographic parameter correlating with adult deformity treatment outcomes. The significance of coronal balance on functional outcomes is less clear. Eighty-five patients with more than 4 cm of coronal imbalance who underwent reconstructive spinal surgery were evaluated to determine the significance of coronal balance on functional outcomes as measured with the Oswestry Disability Index (ODI) and Scoliosis Research Society outcomes questionnaires. Sixty-two patients had combined coronal (>4 cm) and sagittal imbalance (>5 cm), while 23 patients had coronal imbalance alone. Postoperatively, 85% of patients demonstrated improved coronal balance. The mean improvement in the coronal C7 plumb line was 26 mm for a mean correction of 42%. The mean preoperative sagittal C7 plumb line in patients with combined coronal and sagittal imbalance was 118 mm (range, 50-310 mm) and improved to a mean 49 mm. The mean preoperative and postoperative ODI scores were 42 (range, 0-90) and 27 (range, 0-78), for a mean improvement of 15 (36%) (P = 0.00001; 95% CI, 12-20). The mean Scoliosis Research Society scores improved by 17 points (29%) (P = 0.00). Younger age (P = 0.008) and improvement in sagittal balance (P = 0.014) were positive predictors for improved ODI scores. Improvement in sagittal balance (P = 0.010) was a positive predictor for improved Scoliosis Research Society scores. In patients with combined coronal and sagittal imbalance, improvement in sagittal balance was the most significant predictor for improved ODI scores (P = 0.009). In patients with preoperative coronal imbalance alone, improvement in coronal balance trended toward, but was not a significant predictor for improved ODI (P = 0.092). Sagittal balance improvement is the strongest predictor of improved outcomes in patients with combined coronal and sagittal imbalance. In patients with coronal imbalance alone, improvement in coronal balance was not a factor for predicting improved functional outcomes.
Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft
NASA Technical Reports Server (NTRS)
Waszak, Martin R. (Technical Monitor); Meirovitch, Leonard; Tuzcu, Ilhan
2003-01-01
This work uses a fundamental approach to the problem of simulating the flight of flexible aircraft. To this end, it integrates into a single formulation the pertinent disciplines, namely, analytical dynamics, structural dynamics, aerodynamics, and controls. It considers both the rigid body motions of the aircraft, three translations (forward motion, sideslip and plunge) and three rotations (roll, pitch and yaw), and the elastic deformations of every point of the aircraft, as well as the aerodynamic, propulsion, gravity and control forces. The equations of motion are expressed in a form ideally suited for computer processing. A perturbation approach yields a flight dynamics problem for the motions of a quasi-rigid aircraft and an 'extended aeroelasticity' problem for the elastic deformations and perturbations in the rigid body motions, with the solution of the first problem entering as an input into the second problem. The control forces for the flight dynamics problem are obtained by an 'inverse' process and the feedback controls for the extended aeroservoelasticity problem are determined by the LQG theory. A numerical example presents time simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and 2) a level steady turn maneuver.
Tulip deformity with Cera atrial septal defect devices: a report of 3 cases.
Kohli, Vikas
2015-02-01
Device closure of secundum atrial septal defect (ASD) is the treatment of choice when anatomy is favourable. Amplatzer device has remained the gold standard for closure of ASD. Cobra deformity is a well-reported problem with devices. Recently, Tulip deformity has been reported in a single case. We report a series of cases where we noted Tulip deformity along with inability to retract the device in the sheath in Cera Lifetech devices. This resulted in prolongation of procedure, excessive fluoroscopic exposure and additional interventional procedures not usually anticipated in ASD device closure. We believe that the problem is due to the stiffness of the device resulting in its inability to be retracted into the sheath. We also report a unique way of retrieving the device.
The International Research Society of Spinal Deformities (IRSSD) and its contribution to science
2009-01-01
From the time of its initial, informal meetings starting in 1980 to its formal creation in 1990, the IRSSD has met on a bi-annual basis to discuss all aspects of the spine and associated deformities. It has encouraged open discussion on all topics and, in particular, has tried to be the seed-bed for new ideas. The members are spread around the world and include people from all areas of academia as well as the most important people, the patients themselves. Most notably, application of the ideas and results of the research has always been at the forefront of the discussions. This paper was conceived with the idea of evaluating the impact made by the IRSSD over the last 30 years in the various areas and is intended to create discussion for the upcoming meeting in Montreal regarding future focus: "We are lost over the Atlantic Ocean but we are making good time." PMID:20025783
Nyberg, Richard Edward; Russell Smith, A
2013-01-01
Spinal motion palpation (SMP) is a standard component of a manual therapy examination despite questionable reliability. The present research is inconclusive as to the relevance of the findings from SMP, with respect to the patient’s pain complaints. Differences in the testing methods and interpretation of spinal mobility testing are problematic. If SMP is to be a meaningful component of a spinal examination, the methods for testing and interpretation must be carefully scrutinized. The intent of this narrative review is to facilitate a better understanding of how SMP should provide the examiner with relevant information for assessment and treatment of patients with spinal pain disorders. The concept of just noticeable difference is presented and applied to SMP as a suggestion for determining the neutral zone behavior of a spinal segment. In addition, the use of a lighter, or more passive receptive palpation technique, is considered as a means for increasing tactile discrimination of spinal movement behavior. Further understanding of the scientific basis of testing SMP may improve intra- and inter-examiner reliability. The significance of the findings from SMP should be considered in context of the patient’s functional problem. Methodological changes may be indicated for the performance of SMP techniques, such as central posterior-anterior (PA) pressure and passive intervertebral motion tests, in order to improve reliability. Instructors of manual therapy involved in teaching SMP should be knowledgeable of the neurophysiological processes of touch sensation so as to best advise students in the application of the various testing techniques. PMID:24421627
Vaishampayan, Ashwini; Clark, Florence; Carlson, Mike; Blanche, Erna Imperatore
2012-01-01
Purpose To sensitize practitioners working with individuals with spinal cord injury to the complex life circumstances that are implicated in the development of pressure ulcers, and to document the ways that interventions can be adapted to target individual needs. Methods Content analysis of weekly fidelity/ quality control meetings that were undertaken as part of a lifestyle intervention for pressure ulcer prevention in community-dwelling adults with spinal cord injury. Results Four types of lifestyle-relevant challenges to ulcer prevention were identified: risk-elevating life circumstances, communication difficulties, equipment problems, and individual personality issues. Intervention flexibility was achieved by changing the order of treatment modules, altering the intervention content or delivery approach, or going beyond the stipulated content. Conclusion Attention to recurrent types of individual needs, along with explicit strategies for tailoring manualized interventions, has potential to enhance pressure ulcer prevention efforts for adults with spinal cord injury. Target audience This continuing education article is intended for practitioners interested in learning about a comprehensive, context-sensitive, community-based pressure ulcer prevention program for people with spinal cord injury. Objectives After reading this article, the reader should be able to: Describe some of the contextual factors that increase pressure ulcer risk in people with spinal cord injury living in the community.Distinguish between tailored and individualized intervention approaches.Identify the issues that must be taken into account to design context-sensitive, community-based pressure ulcer prevention programs for people with spinal cord injury.Describe approaches that can be used to individualize manualized interventions. PMID:21586911
Chhabra, H S; Sharma, S; Arora, M
2018-01-01
Online survey. To understand the prevailing scenario of the comprehensive management of spinal cord injuries (SCI) in India and in the Asian Spinal Cord Network (ASCoN) region, especially with a view to document the challenges faced and its impact. Indian Spinal Injuries Centre. A questionnaire was designed which covered various aspects of SCI management. Patients, consumers (spinal injured patients discharged since at least 1 year) and experts in SCI management from different parts of India and the ASCoN region were approached to complete the survey. Sixty patients, 66 consumers and 34 experts completed the survey. Difference of opinion was noticed among the three groups. Disposable Nelaton catheters were used by 57% consumers and 47% patients. For reusable catheter, 31% experts recommended processing with soap and running water and 45% recommended clean cotton cloth bag for storage. Pre-hospital care and community inclusion pose the biggest challenges in management of SCI. More than 75% of SCI faced problems of access and mobility in the community. Awareness about SCI, illiteracy and inadequate patient education are the most important factors hindering pre- and in-hospital care. Inadequate physical as well as vocational rehabilitation and financial barriers are thought to be the major factors hindering integration of spinal injured into mainstream society. Strong family support helped in rehabilitation. Our study brought out that SCI in India and ASCoN region face numerous challenges that affect access to almost all aspects of comprehensive management of SCI.
Evidence-based management of deep wound infection after spinal instrumentation.
Lall, Rishi R; Wong, Albert P; Lall, Rohan R; Lawton, Cort D; Smith, Zachary A; Dahdaleh, Nader S
2015-02-01
In this study, evidence-based medicine is used to assess optimal surgical and medical management of patients with post-operative deep wound infection following spinal instrumentation. A computerized literature search of the PubMed database was performed. Twenty pertinent studies were identified. Studies were separated into publications addressing instrumentation retention versus removal and publications addressing antibiotic therapy regimen. The findings were classified based on level of evidence (I-III) and findings were summarized into evidentiary tables. No level I or II evidence was identified. With regards to surgical management, five studies support instrumentation retention in the setting of early deep infection. In contrast, for delayed infection, the evidence favors removal of instrumentation at the time of initial debridement. Surgeons should be aware that for deformity patients, even if solid fusion is observed, removal of instrumentation may be associated with significant loss of correction. A course of intravenous antibiotics followed by long-term oral suppressive therapy should be pursued if instrumentation is retained. A shorter treatment course may be appropriate if hardware is removed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Tamosaityte, Sandra; Galli, Roberta; Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Koch, Maria; Later, Robert; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias
2016-06-01
Spinal cord injury (SCI) triggers several lipid alterations in nervous tissue. It is characterized by extensive demyelination and the inflammatory response leads to accumulation of activated microglia/macrophages, which often transform into foam cells by accumulation of lipid droplets after engulfment of the damaged myelin sheaths. Using an experimental rat model, Raman microspectroscopy was applied to retrieve the modifications of the lipid distribution following SCI. Coherent anti-Stokes Raman scattering (CARS) and endogenous two-photon fluorescence (TPEF) microscopies were used for the detection of lipid-laden inflammatory cells. The Raman mapping of CH2 deformation mode intensity at 1440 cm-1 retrieved the lipid-depleted injury core. Preserved white matter and inflammatory regions with myelin fragmentation and foam cells were localized by specifically addressing the distribution of esterified lipids, i.e., by mapping the intensity of the carbonyl Raman band at 1743 cm-1, and were in agreement with CARS/TPEF microscopy. Principal component analysis revealed that the inflammatory regions are notably rich in saturated fatty acids. Therefore, Raman spectroscopy enabled to specifically detect inflammation after SCI and myelin degradation products.
Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming
2015-01-01
The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.
Cogniet, A; Aunoble, S; Rigal, J; Demezon, H; Sadikki, R; Le Huec, J C
2016-08-01
Pedicle subtraction osteotomy (PSO) is one of the surgical options for treating alignment disorders of the fused spine (due to post-surgical fusion or related to arthritis). It enables satisfactory sagittal realignment and improved function due to economic sagittal balance. The aim of this study was to analyze clinical and radiological results of PSO after a minimum follow-up of 2 years and demonstrate the benefit of sub-group analysis as a function of pelvic incidence (PI). A descriptive prospective single center study of 63 patients presenting with spinal global malalignment who underwent correction by PSO. Function was assessed by the Oswestry disability index (ODI), a visual analog scale of lumbar pain (VAS) and a SF-36 questionnaire. Radiographic analyses of pre- and post-operative pelvic-spinal parameters were performed on X-rays obtained by EOS(®) imaging after 3D modeling. Global analysis and analysis of sub-groups as a function of pelvic incidence were performed and the full balance integrated index (FBI) was calculated. this series showed a marked clinical improvement and significant progress of functional scores. Global post-operative radiological analysis showed a significant improvement in all pelvic and spinal parameters. The mean correction obtained after PSO was 31.7° ± 8.4°, hence global improvement of lumbar lordosis of 22°. The sagittal vertical angle (SVA) decreased from +9 cm before surgery to +4.3 cm after surgery. Sub-group analysis demonstrated greater improvement in pelvic tilt, sacral slope and spinal parameters of patients with a small or moderate pelvic incidence; all had an FBI index <10°. Most of the pelvic and spinal parameters of patients with a large pelvic incidence were insufficiently corrected and they had an FBI index >10° PSO is a surgical procedure enabling correction of multiplane rigid spinal deformities that require major sagittal correction. It was seen to be highly effective in patients with a small or moderate pelvic incidence (PI <60°) but was sometimes less effective in patients with large pelvic incidence due to insufficient lordosis correction. Clinical results were highly correlated with the value of the FBI index.
Kim, Han Jo; Iyer, Sravisht; Diebo, Basel G; Kelly, Michael P; Sciubba, Daniel; Schwab, Frank; Lafage, Virginie; Mundis, Gregory M; Shaffrey, Christopher I; Smith, Justin S; Hart, Robert; Burton, Douglas; Bess, Shay; Klineberg, Eric O
2018-05-01
Retrospective cohort study. Describe the rate and risk factors for venous thromboembolic events (VTEs; defined as deep venous thrombosis [DVT] and/or pulmonary embolism [PE]) in adult spinal deformity (ASD) surgery. ASD patients with VTE were identified in a prospective, multicenter database. Complications, revision, and mortality rate were examined. Patient demographics, operative details, and radiographic and clinical outcomes were compared with a non-VTE group. Multivariate binary regression model was used to identify predictors of VTE. A total of 737 patients were identified, 32 (4.3%) had VTE (DVT = 14; PE = 18). At baseline, VTE patients were less likely to be employed in jobs requiring physical labor (59.4% vs 79.7%, P < .01) and more likely to have osteoporosis (29% vs 15.1%, P = .037) and liver disease (6.5% vs 1.4%, P = .027). Patients with VTE had a larger preoperative sagittal vertical axis (SVA; 93 mm vs 55 mm, P < .01) and underwent larger SVA corrections. VTE was associated with a combined anterior/posterior approach (45% vs 25%, P = .028). VTE patients had a longer hospital stay (10 vs 7 days, P < .05) and higher mortality rate (6.3% vs 0.7%, P < .01). Multivariate analysis demonstrated osteoporosis, lack of physical labor, and increased SVA correction were independent predictors of VTE ( r 2 = .11, area under the curve = 0.74, P < .05). The incidence of VTE in ASD is 4.3% with a DVT rate of 1.9% and PE rate of 2.4%. Osteoporosis, lack of physical labor, and increased SVA correction were independent predictors of VTE. Patients with VTE had a higher mortality rate compared with non-VTE patients.
Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie
2018-05-09
Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.
Prevalence and Consequences of the Proximal Junctional Kyphosis After Spinal Deformity Surgery
Yan, Chunda; Li, Yong; Yu, Zhange
2016-01-01
Abstract The aim of this study was to estimate the prevalence and patient outcomes of proximal junctional kyphosis (PJK) in pediatric patients and adolescents who received surgical interventions for the treatment of a spinal deformity. Literature was searched in electronic databases, and studies were selected by following précised eligibility criteria. Percent prevalence values of the PJK in individual studies were pooled to achieve a weighted effect size under the random effects model. Subgroup and meta-regression analyses were performed to appraise the factors affecting PJK prevalence. Twenty-six studies (2024 patients) were included in this meta-analysis. Average age of the patients was 13.8 ± 2.75 years of which 32 ± 20 % were males. Average follow-up was 51.6 ± 38.8 (range 17 ± 13 to 218 ± 60) months. Overall, the percent prevalence of PJK (95% confidence interval) was 11.02 (10.5, 11.5) %; P < 0.00001 which was inversely associated with age (meta-regression coefficient: –1.607 [–2.86, –0.36]; 0.014). Revision surgery rate in the patients with PJK was 10%. The prevalence of PJK was positively associated with the proximal junctional angle at last follow-up (coefficient: 2.248; P = 0.012) and the change in the proximal junctional angle from surgery to last follow-up (coefficient: 2.139; P = 0.014) but not with preoperative proximal junctional angle. The prevalence of PJK in the children and adolescent patients is 11%. About 10% of those affected require revision surgery. PMID:27196453
Handedness and spinal deformity.
Goldberg, C J; Moore, D P; Fogarty, E E; Dowling, F E
2006-01-01
Biological lateralisation is clearly manifest in scoliosis, yet its relevance is unclear. Goldberg et al. (Spine. 15(2):61-64. 1990) found an association between curve pattern and hand-preference in a screened population, but no increase in sinistrality. Milenkovic et al, (European Journal of Epidemiology, 19:969-972,2004) concluded left-handedness was a risk factor in a screened group. The database was reassessed to determine whether clinically significant scoliosis was associated with sinistrality or differed from the population norm of 10%. Patients attending the scoliosis clinic were asked their preferred writing hand. 1,636 patients were identified with complete data. Overall, left handedness occurred in 11.5%, greater than the general population (p=0.04) Left hand preference was found to be increased in boys with infantile idiopathic scoliosis and in girls with infantile, juvenile, congenital and syndromic scoliosis, but was reduced in girls with adolescent idiopathic scoliosis. Scoliosis lateralisation was random in infantile and congenital scoliosis, while left curve patterns were decreased in girls with juvenile idiopathic scoliosis and increased in boys with syndromic scoliosis. Curve pattern and handedness correlated in asymmetry in boys and girls and in girls with radiologically confirmed adolescent idiopathic scoliosis, but not in any other type. This study cannot confirm findings of left-handedness as a risk factor for spinal deformity. Its incidence is reduced in girls with adolescent idiopathic scoliosis, and the increased sinistrality in infantile scoliosis is not a new finding (Rauterberg & Tonnis Ger. Z.Orthop. 109(14):676-689. 1971). Lateralisation is undoubtedly a factor in scoliosis, but does not have a simple causal relationship, probably deriving from the underlying scoliotic process, rather than contributing to it.
Ileus Following Adult Spinal Deformity Surgery.
Durand, Wesley M; Ruddell, Jack H; Eltorai, Adam E M; DePasse, J Mason; Daniels, Alan H
2018-05-23
Postoperative ileus (POI) is a common complication after spine surgery, with particularly high rates after adult spinal deformity surgery (ASD). Few investigations have been conducted, however, on predictors of POI following ASD. The objective of this investigation was to determine risk factors for POI in patients undergoing ASD. We also sought to determine the association between POI and in-hospital mortality, length of stay, and total charges. Data were obtained from the National/Nationwide Inpatient Sample, years 2010 - 2014. ASD patients aged ≥26 years-old were selected using ICD-9-CM codes. Multiple logistic and linear regression were utilized. In total, 59,410 patients were included in the analysis. 7.4% of patients experienced POI. On adjusted analysis, the following variables were associated with increased risk of POI: male sex (OR 1.43, CI 1.10 - 1.85), anterior surgical approach (OR 1.78, CI 1.22 - 2.60), 9+ levels fused (OR 1.84, CI 1.24 - 2.73), electrolyte disorders (OR 2.70, CI 2.15 - 3.39), and pathologic weight loss (OR 1.94, CI 1.08 - 3.46). POI was associated with significantly longer length of stay (+39%, CI 29% - 51%) and higher total charges (+23%, CI 14% - 31%). Risk factors for POI were identified. Patients suffering from ileus exhibited 2.9 days longer length of stay and ∼$80,000 higher total charges. These results may be applied clinically to identify patients at risk of POI and to consider addressing modifiable risk factors preoperatively. Future studies should be conducted with additional data to develop models capable of accurately predicting and preventing POI. Copyright © 2018 Elsevier Inc. All rights reserved.
Quality of life in children and adolescents undergoing spinal deformity surgery.
McKean, Greg M; Tsirikos, Athanasios I
2017-01-01
Quality of life measurements evaluate surgical results from patients' reported outcomes. To assess the impact of spinal deformity treatment using the Scoliosis Research Society-22 questionnaire. SRS-22 data was collected in 545 consecutive patients (425 females-120 males) pre-operatively, 6-, 12- and 24-months post-operatively. Variables included type and age of surgery (mean: 15.14 ± 2.07 years), gender, diagnosis and year of surgery. Age at surgery was divided in: 10-12, 13-15, and 15-19 years. Mean pre-operative SRS-22 scores for the whole group were: function 3.77 ± 0.75; pain 3.7 ± 0.97; self-image 3.14 ± 0.66; mental health 3.86 ± 0.77; total 3.62 ± 0.66. Mean 2-year post-operative scores were: function 4.39 ± 0.42; pain 4.59 ± 0.56; self-image 4.39 ± 0.51; mental health 4.43 ± 0.56; satisfaction 4.81 ± 0.40; total 4.52 ± 0.37 (p< 0.0001). Males performed better at 2-years post-surgery (4.62 ± 0.25) compared to females (4.49 ± 0.39), (p= 0.004). Patients with spondylolisthesis performed worse pre-operatively (2.93 ± 0.26) compared to other diagnoses (p< 0.0001). This did not impact 2-year post-operative outcomes. There were no significant changes regarding age or year of surgery, type of operation or between the 3 age groups. All individual domains and total SRS-22 scores improved significantly with incremental change during post-operative follow-up. Patient satisfaction was very high for all individual diagnosis. 2-year post-operative outcomes compared favorably to reported SRS-22 scores in healthy adolescents.
Buell, Thomas J; Buchholz, Avery L; Quinn, John C; Mullin, Jeffrey P; Garces, Juanita; Mazur, Marcus D; Shaffrey, Mark E; Yen, Chun-Po; Shaffrey, Christopher I; Smith, Justin S
2018-06-16
Pedicle subtraction osteotomy (PSO) is an effective technique to correct fixed sagittal malalignment. A variation of this technique, the "trans-discal" or "extended" PSO (Schwab grade IV osteotomy), involves extending the posterior wedge resection of the index vertebra to include the superior adjacent disc for radical discectomy. The posterior wedge may be resected in asymmetric fashion to correct concurrent global coronal malalignment.This video illustrates the technical nuances of an extended asymmetrical lumbar PSO for adult spinal deformity. A 62-yr-old female with multiple prior lumbar fusions presented with worsening back pain and posture. Preoperative scoliosis X-rays demonstrated severe global sagittal and coronal malalignment (sagittal vertical axis [SVA, C7-plumbline] of 13.5 cm, pelvic incidence [PI] of 60°, lumbar lordosis [LL] of 14° [in kyphosis], pelvic tilt [PT] of 61°, thoracic kyphosis [TK] of 18°, and rightward coronal shift of 9.3 cm). The patient gave informed consent to surgery and for use of her imaging for medical publication. Briefly, surgery first involved transpedicular instrumentation from T10 to S1 with bilateral iliac screw fixation, and then T11-12 and T12-L1 Smith-Petersen osteotomies were performed. Next, an extended asymmetrical L4 PSO was performed and a 12° lordotic cage (9 × 14 × 40 mm) was placed at the PSO defect. Rods were placed from T10 to iliac bilaterally, and accessory supplemental rods spanning the PSO were attached. Postoperative scoliosis X-rays demonstrated improved alignment: SVA 5.5 cm, PI 60°, LL 55°, PT 36°, TK 37°, and 3.7 cm of rightward coronal shift. The patient had uneventful recovery.
Faraj, Sayf S A; van Hooff, Miranda L; Holewijn, Roderick M; Polly, David W; Haanstra, Tsjitske M; de Kleuver, Marinus
2017-08-01
Adult spinal deformity (ASD) causes severe disability, reduces overall quality of life, and results in a substantial societal burden of disease. As healthcare is becoming more value based, and to facilitate global benchmarking, it is critical to identify and standardize patient-reported outcome measures (PROMs). This study aims to identify the current strengths, weaknesses, and gaps in PROMs used for ASD. Studies were included following a systematic search in multiple bibliographic databases between 2000 and 2015. PROMs were extracted and linked to the outcome domains of WHO's International Classification of Functioning and Health (ICF) framework. Subsequently, the clinimetric quality of identified PROMs was evaluated. The literature search identified 144 papers that met the inclusion criteria, and nine frequently used PROMs were identified. These covered 29 ICF outcome domains, which could be grouped into three of the four main ICF chapters: body function (n = 7), activity and participation (n = 19), environmental factors (n = 3), and body structure (n = 0). A low quantity (n = 3) of papers was identified that studied the clinimetric quality of PROMs. The Scoliosis Research Society (SRS)-22 has the highest level of clinimetric quality for ASD. Outcome domains related to mobility and pain were well represented. We identified a gap in current outcome measures regarding neurological and pulmonary function. In addition, no outcome domains were measured in the ICF chapter body structure. These results will serve as a foundation for the process of seeking international consensus on a standard set of outcome domains, accompanied PROMs and contributing factors to be used in future clinical trials and spine registries.
Zhao, Zhihui; Liu, Zhen; Hu, Zongshan; Tseng, Changchun; Li, Jie; Pan, Wei; Qiu, Yong; Zhu, Zezhang
2018-03-16
The purpose of this study was to analyze the occurrence of PE after intra-operative O-arm navigation-assisted surgery and determine whether the post-operative PE incidence could be decreased by using O-arm navigation as compared to conventional free-hand technique. A cohort of 27 patients with spinal deformity who were operated upon with an O-arm navigated system (group A) between 2013 and 2016 were enrolled in the study. A total of 27 curve-matched patients treated by conventional free-hand technique were included as the control group (group B). Whole spine posterior-anterior and lateral radiographs, and CT scans were taken pre and post-operation. Radiologic parameters and volume of PE were measured and compared between the two groups. There were no significant differences in age, Cobb angle, and sagittal contour between the two groups pre-operatively. The mean total volume of post-operative PE was significantly larger in the free-hand group (p < 0.001). In the O-arm group, 59 malpositioned screws were identified in 22 patients. In the free-hand group, 88 malpositioned screws were found among 26 patients. The screw perforation rate was higher in the free-hand group than in the O-arm group (p = 0.007). In the O-arm group, the mean volume of PE was significantly larger among patients with malpositioned screws than those without malpositioned screws (p < 0.001), as well as in the free-hand group. The volume of PE after correction surgery can be significantly decreased by application of O-arm navigation system as compared to conventional free-hand technique. We ascribed the improvement to the accuracy of screw implantation navigated by O-arm.