DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeda, Shuhei; Nakayama, Yuji, E-mail: nakayama@mb.kyoto-phu.ac.jp; Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414
Src-family tyrosine kinases are aberrantly activated in cancers, and this activation is associated with malignant tumor progression. v-Src, encoded by the v-src transforming gene of the Rous sarcoma virus, is a mutant variant of the cellular proto-oncogene c-Src. Although investigations with temperature sensitive mutants of v-Src have shown that v-Src induces many oncogenic processes, the effects on cell division are unknown. Here, we show that v-Src inhibits cellular proliferation of HCT116, HeLa S3 and NIH3T3 cells. Flow cytometry analysis indicated that inducible expression of v-Src results in an accumulation of 4N cells. Time-lapse analysis revealed that binucleation is induced throughmore » the inhibition of cytokinesis, a final step of cell division. The localization of Mklp1, which is essential for cytokinesis, to the spindle midzone is inhibited in v-Src-expressing cells. Intriguingly, Aurora B, which regulates Mklp1 localization at the midzone, is delocalized from the spindle midzone and the midbody but not from the metaphase chromosomes upon v-Src expression. Mklp2, which is responsible for the relocation of Aurora B from the metaphase chromosomes to the spindle midzone, is also lost from the spindle midzone. These results suggest that v-Src inhibits cytokinesis through the delocalization of Mklp1 and Aurora B from the spindle midzone, resulting in binucleation. -- Highlights: • v-Src inhibits cell proliferation of HCT116, HeLa S3 and NIH3T3 cells. • v-Src induces binucleation together with cytokinesis failure. • v-Src causes delocalization of Mklp1, Aurora B and INCENP from the spindle midzone.« less
Chen, Qian; Li, Hui; De Lozanne, Arturo
2006-01-01
Dictyostelium DdINCENP is a chromosomal passenger protein associated with centromeres, the spindle midzone, and poles during mitosis and the cleavage furrow during cytokinesis. Disruption of the single DdINCENP gene revealed important roles for this protein in mitosis and cytokinesis. DdINCENP null cells lack a robust spindle midzone and are hypersensitive to microtubule-depolymerizing drugs, suggesting that their spindles may not be stable. Furthermore DdCP224, a protein homologous to the microtubule-stabilizing protein TOGp/XMAP215, was absent from the spindle midzone of DdINCENP null cells. Overexpression of DdCP224 rescued the weak spindle midzone defect of DdINCENP null cells. Although not required for the localization of the myosin II contractile ring and subsequent formation of a cleavage furrow, DdINCENP is important for the abscission of daughter cells at the end of cytokinesis. Finally, we show that the localization of DdINCENP at the cleavage furrow is modulated by myosin II but it occurs by a mechanism different from that controlling the formation of the contractile ring. PMID:16339076
Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2
Gable, Alyssa; Qiu, Minhua; Titus, Janel; Balchand, Sai; Ferenz, Nick P.; Ma, Nan; Collins, Elizabeth S.; Fagerstrom, Carey; Ross, Jennifer L.; Yang, Ge; Wadsworth, Patricia
2012-01-01
Kinesin-5 is an essential mitotic motor. However, how its spatial–temporal distribution is regulated in mitosis remains poorly understood. We expressed localization and affinity purification–tagged Eg5 from a mouse bacterial artificial chromosome (this construct was called mEg5) and found its distribution to be tightly regulated throughout mitosis. Fluorescence recovery after photobleaching analysis showed rapid Eg5 turnover throughout mitosis, which cannot be accounted for by microtubule turnover. Total internal reflection fluorescence microscopy and high-resolution, single-particle tracking revealed that mEg5 punctae on both astral and midzone microtubules rapidly bind and unbind. mEg5 punctae on midzone microtubules moved transiently both toward and away from spindle poles. In contrast, mEg5 punctae on astral microtubules moved transiently toward microtubule minus ends during early mitosis but switched to plus end–directed motion during anaphase. These observations explain the poleward accumulation of Eg5 in early mitosis and its redistribution in anaphase. Inhibition of dynein blocked mEg5 movement on astral microtubules, whereas depletion of the Eg5-binding protein TPX2 resulted in plus end–directed mEg5 movement. However, motion of Eg5 on midzone microtubules was not altered. Our results reveal differential and precise spatial and temporal regulation of Eg5 in the spindle mediated by dynein and TPX2. PMID:22337772
Skop, Ahna R.; Bergmann, Dominique; Mohler, William A.; White, John G.
2013-01-01
Background The terminal phase of cytokinesis in eukaryotic cells involves breakage of the intercellular canal containing the spindle midzone and resealing of the daughter cells. Recent observations suggest that the spindle midzone is required for this process. In this study, we investigated the possibility that targeted secretion in the vicinity of the spindle midzone is required for the execution of the terminal phase of cytokinesis. Results We inhibited secretion in early C. elegans embryos by treatment with brefeldin A (BFA). Using 4D recordings of dividing cells, we showed that BFA induced stereotyped failures in the terminal phase of cytokinesis; although the furrow ingressed normally, after a few minutes the furrow completely regressed, even though spindle midzone and midbody microtubules appeared normal. In addition, using an FM1-43 membrane probe, we found that membrane accumulated locally at the apices of the late cleavage furrows that form the persisting intercellular canals between daughter cells. However, in BFA-treated embryos this membrane accumulation did not occur, which possibly accounts for the observed cleavage failures. Conclusions We have shown that BFA disrupts the terminal phase of cytokinesis in the embryonic blastomeres of C. elegans. We observed that membrane accumulates at the apices of the late cleavage furrow by means of a BFA-sensitive mechanism. We suggest that this local membrane accumulation is necessary for the completion of cytokinesis and speculate that the spindle midzone region of animal cells is functionally equivalent to the phragmoplast of plants and acts to target secretion to the equatorial plane of a cleaving cell. PMID:11378383
Su, Kuan-Chung; Bement, William M.; Petronczki, Mark; von Dassow, George
2014-01-01
Cytokinesis in animal cells depends on spindle-derived spatial cues that culminate in Rho activation, and thereby actomyosin assembly, in a narrow equatorial band. Although the nature, origin, and variety of such cues have long been obscure, one component is certainly the Rho activator Ect2. Here we describe the behavior and function of Ect2 in echinoderm embryos, showing that Ect2 migrates from spindle midzone to astral microtubules in anaphase and that Ect2 shapes the pattern of Rho activation in incipient furrows. Our key finding is that Ect2 and its binding partner Cyk4 accumulate not only at normal furrows, but also at furrows that form in the absence of associated spindle, midzone, or chromosomes. In all these cases, the cell assembles essentially the same cytokinetic signaling ensemble—opposed astral microtubules decorated with Ect2 and Cyk4. We conclude that if multiple signals contribute to furrow induction in echinoderm embryos, they likely converge on the same signaling ensemble on an analogous cytoskeletal scaffold. PMID:25298401
Vizeacoumar, Franco J.; van Dyk, Nydia; S.Vizeacoumar, Frederick; Cheung, Vincent; Li, Jingjing; Sydorskyy, Yaroslav; Case, Nicolle; Li, Zhijian; Datti, Alessandro; Nislow, Corey; Raught, Brian; Zhang, Zhaolei; Frey, Brendan; Bloom, Kerry
2010-01-01
We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double mutants lacking genes known to be involved in spindle function. We focused on a subset of genes that appear to define a highly conserved mitotic spindle disassembly pathway, which is known to involve Ipl1p, the yeast aurora B kinase, as well as the cell cycle regulatory networks mitotic exit network (MEN) and fourteen early anaphase release (FEAR). We also dissected the function of the kinetochore protein Mcm21p, showing that sumoylation of Mcm21p regulates the enrichment of Ipl1p and other chromosomal passenger proteins to the spindle midzone to mediate spindle disassembly. Although we focused on spindle disassembly in a proof-of-principle study, our integrated HCS-SGA method can be applied to virtually any pathway, making it a powerful means for identifying specific cellular functions. PMID:20065090
Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors
NASA Astrophysics Data System (ADS)
Johann, D.; Goswami, D.; Kruse, K.
2016-06-01
During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.
INPP5E Preserves Genomic Stability through Regulation of Mitosis.
Sierra Potchanant, Elizabeth A; Cerabona, Donna; Sater, Zahi Abdul; He, Ying; Sun, Zejin; Gehlhausen, Jeff; Nalepa, Grzegorz
2017-03-15
The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development. Copyright © 2017 Sierra Potchanant et al.
Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model
Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal
2014-01-01
The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952
Mechanisms of plant spindle formation.
Zhang, Han; Dawe, R Kelly
2011-04-01
In eukaryotes, the formation of a bipolar spindle is necessary for the equal segregation of chromosomes to daughter cells. Chromosomes, microtubules and kinetochores all contribute to spindle morphogenesis and have important roles during mitosis. A unique property of flowering plant cells is that they entirely lack centrosomes, which in animals have a major role in spindle formation. The absence of these important structures suggests that plants have evolved novel mechanisms to assure chromosome segregation. In this review, we highlight some of the recent studies on plant mitosis and argue that plants utilize a variation of "spindle self-organization" that takes advantage of the early polarity of plant cells and accentuates the role of kinetochores in stabilizing the spindle midzone in prometaphase.
Relocalization of human chromatin remodeling cofactor TIP48 in mitosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigala, Barbara; Edwards, Mina; Puri, Teena
2005-11-01
TIP48 is a highly conserved eukaryotic AAA{sup +} protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis,more » TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.« less
Price, Kari L.; Rose, Lesilee S.
2017-01-01
The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. PMID:28701343
Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis
Fink, Gero; Schuchardt, Isabel; Colombelli, Julien; Stelzer, Ernst; Steinberg, Gero
2006-01-01
Spindle elongation segregates chromosomes and occurs in anaphase, an essential step in mitosis. Dynein-mediated pulling forces position the spindle, but their role in anaphase is a matter of debate. Here, we demonstrate that dynein is responsible for rapid spindle elongation in the model fungus Ustilago maydis. We show that initial slow elongation is supported by kinesin-5, which is located in the spindle mid-zone. When the spindle reaches ∼2 μm in length, the elongation rate increases four-fold. This coincides with the appearance of long and less-dynamic microtubules (MTs) at each pole that accumulate dynein at their tips. Laser-mediated nanosurgery revealed that these MTs exert pulling forces in control cells, but not in dynein mutants. In addition, dynein mutants undergo initial slow anaphase, but fail to establish less-dynamic MTs and do not perform rapid spindle elongation, suggesting that dynein drives anaphase B. This is most likely mediated by cortical sliding of astral MTs along stationary dynein, which is off-loaded from the MT plus-end to the cortex. PMID:17024185
Price, Kari L; Rose, Lesilee S
2017-09-01
The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule-dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. © 2017 Price and Rose. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Scholey, Jonathan M.; Civelekoglu-Scholey, Gul; Brust-Mascher, Ingrid
2016-01-01
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical “modules” that cooperate to mediate pole–pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation. PMID:27941648
Stumpff, Jason; Wagenbach, Michael; Franck, Andrew; Asbury, Charles L.; Wordeman, Linda
2012-01-01
Summary Alignment of chromosomes at the metaphase plate is a signature of cell division in metazoan cells, yet the mechanisms controlling this process remain ambiguous. Here we use a combination of quantitative live cell imaging and reconstituted dynamic microtubule assays to investigate the molecular control of mitotic centromere movements. We establish that Kif18A (kinesin-8) attenuates centromere movement by directly promoting microtubule pausing in a concentration-dependent manner. This activity provides the dominant mechanism for restricting centromere movement to the spindle midzone. Furthermore, polar ejection forces spatially confine chromosomes via position-dependent regulation of kinetochore tension and centromere switch rates. We demonstrate that polar ejection forces are antagonistically modulated by chromokinesins. These pushing forces depend on Kid (kinesin-10) activity and are antagonized by Kif4A (kinesin-4), which functions to directly suppress microtubule growth. These data support a model in which Kif18A and polar ejection forces synergistically promote centromere alignment via spatial control of kinetochore-microtubule dynamics. PMID:22595673
Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression
Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz
2012-01-01
Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. PMID:22898780
Liu, Xue-song; Zhao, Xu-dong; Wang, Xiaoxing; Yao, Yi-xin; Zhang, Liang-liang; Shu, Run-zhe; Ren, Wei-hua; Huang, Ying; Huang, Lei; Gu, Ming-min; Kuang, Ying; Wang, Long; Lu, Shun-yuan; Chi, Jun; Fen, Jing-sheng; Wang, Yi-fei; Fei, Jian; Dai, Wei; Wang, Zhu-Gang
2010-01-01
Chromosomal instability during cell division frequently causes cell death or malignant transformation. Orderly chromosome congression at the metaphase plate, a paramount process to vertebrate mitosis and meiosis, is controlled by a number of molecular regulators, including kinesins. Kinesin-8 (Kif18A) functions to control mitotic chromosome alignment at the mid-zone by negative regulation of kinetochore oscillation. Here the authors report that disrupting Kif18a function results in complete sterility in male but not in female mice. Histological examination reveals that Kif18a−/− testes exhibit severe developmental impairment of seminiferous tubules. Testis atrophy in Kif18a−/− mice is caused by perturbation of microtubule dynamics and spindle pole integrity, leading to chromosome congression defects during mitosis and meiosis. Depletion of KIF18A via RNAi causes mitotic arrest accompanied by unaligned chromosomes and increased microtubule nucleating centers in both GC-1 and HeLa cells. Prolonged depletion of KIF18A causes apoptosis due to perturbed microtubule dynamics. Further studies reveal that KIF18A silencing results in degradation of CENP-E and BubR1, which is accompanied by premature sister chromatid separation. KIF18A physically interacts with BubR1 and CENP-E, and this interaction is modulated during mitosis. Combined, the studies indicate that KIF18A is essential for normal chromosome congression during cell division and that the absence of KIF18A function causes severe defects in microtubule dynamics, spindle integrity, and checkpoint activation, leading to germinal cell aplasia in mice. PMID:20981276
Amaral, Nuno; Vendrell, Alexandre; Funaya, Charlotta; Idrissi, Fatima-Zahra; Maier, Michael; Kumar, Arun; Neurohr, Gabriel; Colomina, Neus; Torres-Rosell, Jordi; Geli, María-Isabel; Mendoza, Manuel
2016-05-01
Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.
CGGBP1 is a nuclear and midbody protein regulating abscission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Umashankar, E-mail: umashankar.singh@genpat.uu.se; Westermark, Bengt
2011-01-15
Abscission marks the completion of cell division and its failure is associated with delayed cytokinesis and even tetraploidization. Aberrant abscission and consequential ploidy changes can underlie various diseases including cancer. Midbody, a transient structure formed in the intercellular bridge during telophase, contains several proteins including Aurora kinase B (AURKB), which participate in abscission. We report here an unexpected expression pattern and function of the transcription repressor protein CGG triplet repeat-binding protein 1 (CGGBP1), in normal human fibroblasts. We show that CGGBP1, a chromatin-associated protein, trans-localizes to spindle midzone and midbodies in a manner similar to that of AURKB. CGGBP1 depletionmore » resulted in a cell cycle block at G2, characterized by failure of cells to undergo mitosis and also reduced entry into S phase. Consistent with its presence in the midbodies, live microscopy showed that CGGBP1 deficiency caused mitotic failure at abscission resulting in tetraploidy, which could be rescued by CGGBP1 overexpression. These results show that CGGBP1 is a bona fide midbody protein required for normal abscission and mitosis in general.« less
Huang, Ying; Yao, Yixin; Xu, Han-Zhang; Wang, Zhu-Gang; Lu, Luo; Dai, Wei
2009-08-15
KIF18A, a molecular motor, is an essential component in the regulation of orderly chromosome congression by attenuation of the kinetochore oscillation amplitude at the midzone during mitosis in vertebrate cells. Here we report that KIF18A depletion resulted in mitotic arrest which was accompanied by the presence of unaligned chromosomes in HeLa cells. This resembles the phenotype induced by an impaired function of CENP-E, also a mitotic kinesin essential for the formation of the mitotic spindles. Our further analysis showed that KIF18A depletion caused specific downregulation of CENP-E. Downregulation of CENP-E as the result of KIF18A silencing was not due to reduced transcription but primarily due to the enhanced protein degradation. Co-immunoprecipitation revealed that KIF18A physically interacted with CENP-E and BubR1 during mitosis. Ectopic expression of the wild-type tail domain of CENP-E, but not a corresponding mutant, significantly suppressed chromosome congression defects in mitotic cells. Together, our studies strongly suggest that chromosome congression defects as the result of KIF18A depletion is at least in part mediated through destabilizing kinetochore CENP-E.
Kif4 Is Essential for Mouse Oocyte Meiosis.
Camlin, Nicole J; McLaughlin, Eileen A; Holt, Janet E
2017-01-01
Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age.
Yoshigaki, Tomoyoshi
2003-03-21
Three types of models have been proposed about how the mitotic apparatus determines the position of the cleavage furrow in animal cells. In the first and second types, the contractile ring appears in a cortical region that least and most astral microtubules reach, respectively. The third type is that the spindle midzone positions the contractile ring. In the previous study, a new model was proposed through analyses of cytokinesis in sand dollar and sea urchin eggs. Gradients of the surface density of microtubule plus ends are assumed to drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. In the present study, the validity of each model is examined by simulating the furrow formation in conical sand dollar eggs with the mitotic apparatus oriented perpendicular to the cone axis. The new model predicts that unilateral furrows with cleavage planes roughly parallel to the spindle axis appear between the mitotic apparatus and the vertex besides the normally positioned furrow. The predictions are consistent with the observations by Rappaport & Rappaport (1994, Dev. Biol.164, 258-266). The other three types of models do not predict the formation of the ectopic furrows. Furthermore, it is pointed out that only the new model has the ability to explain the geometrical relationship between the mitotic apparatus and the contractile ring under various experimental conditions. These results strongly suggest the real existence of the membrane proteins postulated in the model.
Cenp-E inhibitor GSK923295: Novel synthetic route and use as a tool to generate aneuploidy.
Bennett, Ailsa; Bechi, Beatrice; Tighe, Anthony; Thompson, Sarah; Procter, David J; Taylor, Stephen S
2015-08-28
Aneuploidy is a common feature of cancer, with human solid tumour cells typically harbouring abnormal chromosome complements. The aneuploidy observed in cancer is often caused by a chromosome instability phenotype, resulting in genomic heterogeneity. However, the role aneuploidy and chromosome instability play in tumour evolution and chemotherapy response remains poorly understood. In some contexts, aneuploidy has oncogenic effects, whereas in others it is anti-proliferative and tumour-suppressive. Dissecting fully the role aneuploidy plays in tumourigenesis requires tools and facile assays that allow chromosome missegregation to be induced experimentally in cells that are otherwise diploid and chromosomally stable. Here, we describe a chemical biology approach that induces low-level aneuploidy across a large population of cells. Specifically, cells are first exposed to GSK923295, an inhibitor targeting the mitotic kinesin Cenp-E; while the majority of chromosomes align at the cell's equator, a small number cluster near the spindle poles. By then driving these cells into anaphase using AZ3146, an inhibitor targeting the spindle checkpoint kinase Mps1, the polar chromosomes are missegregated. This results in, on average, two chromosome missegregation events per division, and avoids trapping chromosomes in the spindle midzone, which could otherwise lead to DNA damage. We also describe an efficient route for the synthesis of GSK923295 that employs a novel enzymatic resolution. Together, the approaches described here open up new opportunities for studying cellular responses to aneuploidy.
PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis.
Terzaghi, L; Tessaro, I; Raucci, F; Merico, V; Mazzini, G; Garagna, S; Zuccotti, M; Franciosi, F; Lodde, V
2016-08-02
Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.
Relation of pulmonary vessel size to transfer factor in subjects with airflow obstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musk, A.W.
In a group of 61 consecutive patients undergoing assessment of airflow obstruction, a significant linear relation was demonstrated between measurements of the diameter of the midzonal pulmonary vessels on the plain chest radiographs and transfer factor (diffusing capacity for carbon monoxide) (r = 0.46, p < 0.001). Since reduction in transfer factor has been shown to relate to structural emphysema, reduction in midzone vessel caliber implies the same. However, in the individual patient neither the transfer factor nor structural emphysema can be reliably predicted from midzone vessel diameters alone.
Le, Ly-Thuy-Tram; Couvet, Morgane; Favier, Bertrand; Coll, Jean-Luc; Nguyen, Chi-Hung; Molla, Annie
2015-09-08
Aurora kinases play an essential role in mitotic progression and are attractive targets in cancer therapy. The first generation of benzo[e]pyridoindole exhibited powerful aurora kinase inhibition but their low solubility limited further development. Grafting a pyperidine-ethoxy group gives rise to a hydrosoluble inhibitor: compound C5M.C5M could efficiently inhibit the proliferation of cells from different origins. C5M prevented cell cycling, induced a strong mitotic arrest then, cells became polyploid and finally died. C5M did not impair the spindle checkpoint, the separation of the sister chromatids and the transfer of aurora B on the mid-zone. C5M prevented histone H3 phosphorylation at mitotic entry and erased AMPK-Thr172 phosphorylation in late mitosis. With this unique profile of inhibition, C5M could be useful for understanding the role of phospho-Thr172-AMPK in abscission and the relationship between the chromosomal complex and the energy sensing machinery.C5M is a multikinase inhibitor with interesting preclinical characteristics: high hydro-solubility and a good stability in plasma. A single dose prevents the expansion of multicellular spheroids. C5M can safely be injected to mice and reduces significantly the development of xenograft. The next step will be to define the protocol of treatment and the cancer therapeutic field of this new anti-proliferative drug.
O-Linked N-Acetylglucosamine Cycling Regulates Mitotic Spindle Organization*
Tan, Ee Phie; Caro, Sarah; Potnis, Anish; Lanza, Christopher; Slawson, Chad
2013-01-01
Any defects in the correct formation of the mitotic spindle will lead to chromosomal segregation errors, mitotic arrest, or aneuploidy. We demonstrate that O-linked N-acetylglucosamine (O-GlcNAc), a post-translational modification of serine and threonine residues in nuclear and cytoplasmic proteins, regulates spindle function. In O-GlcNAc transferase or O-GlcNAcase gain of function cells, the mitotic spindle is incorrectly assembled. Chromosome condensation and centrosome assembly is impaired in these cells. The disruption in spindle architecture is due to a reduction in histone H3 phosphorylation by Aurora kinase B. However, gain of function cells treated with the O-GlcNAcase inhibitor Thiamet-G restored the assembly of the spindle and partially rescued histone phosphorylation. Together, these data suggest that the coordinated addition and removal of O-GlcNAc, termed O-GlcNAc cycling, regulates mitotic spindle organization and provides a potential new perspective on how O-GlcNAc regulates cellular events. PMID:23946484
Liro, Małgorzata J; Rose, Lesilee S
2016-11-01
Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism. Copyright © 2016 by the Genetics Society of America.
Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA
Liro, Małgorzata J.; Rose, Lesilee S.
2016-01-01
Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism. PMID:27672093
Decker, Franziska; Oriola, David; Dalton, Benjamin
2018-01-01
Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. PMID:29323637
Schlaitz, Anne-Lore; Srayko, Martin; Dammermann, Alexander; Quintin, Sophie; Wielsch, Natalie; MacLeod, Ian; de Robillard, Quentin; Zinke, Andrea; Yates, John R; Müller-Reichert, Thomas; Shevchenko, Andrei; Oegema, Karen; Hyman, Anthony A
2007-01-12
Microtubule behavior changes during the cell cycle and during spindle assembly. However, it remains unclear how these changes are regulated and coordinated. We describe a complex that targets the Protein Phosphatase 2A holoenzyme (PP2A) to centrosomes in C. elegans embryos. This complex includes Regulator of Spindle Assembly 1 (RSA-1), a targeting subunit for PP2A, and RSA-2, a protein that binds and recruits RSA-1 to centrosomes. In contrast to the multiple functions of the PP2A catalytic subunit, RSA-1 and RSA-2 are specifically required for microtubule outgrowth from centrosomes and for spindle assembly. The centrosomally localized RSA-PP2A complex mediates these functions in part by regulating two critical mitotic effectors: the microtubule destabilizer KLP-7 and the C. elegans regulator of spindle assembly TPXL-1. By regulating a subset of PP2A functions at the centrosome, the RSA complex could therefore provide a means of coordinating microtubule outgrowth from centrosomes and kinetochore microtubule stability during mitotic spindle assembly.
Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan
2018-01-11
Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.
Quaresma, Juarez A S; Duarte, Maria I S; Vasconcelos, Pedro F C
2006-01-01
Yellow fever is an acute infectious, non-contagious disease characterized by intense vasculopathy and lesions in different organs. In the liver, one of the main targets of the virus, the infection induces a characteristic midzonal injury characterized by hepatocyte necrosis, apoptosis and steatosis. This characteristics pattern of liver injury in yellow fever is also observed in conditions of low-flow hypoxia and other infections such as dengue and Rift Valley fever. There are no reports in the literature explaining the genesis of this peculiar histopathological pattern in yellow fever. Some hypotheses have been proposed to explain the mechanism of this midzonal distribution pattern observed in the liver such as low-flow hypoxia and tropism of the virus toward hepatocytes in this area. These hypotheses are discussed in view of more recent findings regarding the pathogenesis of yellow fever and regarding hepatic physiopathology, and a new hypothesis is proposed: the midzonal necrosis is consequence of action of combined factors mainly the direct cytopathic effect of YFV associated with a potent immune response in which CD4+ and CD8+ lymphocytes and the cytokines, especially TGF-beta, but also TNF-alpha and IFN-gamma play an important role.
Wong, Jim; Lerrigo, Robert; Jang, Chang-Young; Fang, Guowei
2008-05-01
HURP is a spindle-associated protein that mediates Ran-GTP-dependent assembly of the bipolar spindle and promotes chromosome congression and interkinetochore tension during mitosis. We report here a biochemical mechanism of HURP regulation by Aurora A, a key mitotic kinase that controls the assembly and function of the spindle. We found that HURP binds to microtubules through its N-terminal domain that hyperstabilizes spindle microtubules. Ectopic expression of this domain generates defects in spindle morphology and function that reduce the level of tension across sister kinetochores and activate the spindle checkpoint. Interestingly, the microtubule binding activity of this N-terminal domain is regulated by the C-terminal region of HURP: in its hypophosphorylated state, C-terminal HURP associates with the microtubule-binding domain, abrogating its affinity for microtubules. However, when the C-terminal domain is phosphorylated by Aurora A, it no longer binds to N-terminal HURP, thereby releasing the inhibition on its microtubule binding and stabilizing activity. In fact, ectopic expression of this C-terminal domain depletes endogenous HURP from the mitotic spindle in HeLa cells in trans, suggesting the physiological importance for this mode of regulation. We concluded that phosphorylation of HURP by Aurora A provides a regulatory mechanism for the control of spindle assembly and function.
Regulation of spindle integrity and mitotic fidelity by BCCIP
Huhn, S C; Liu, J; Ye, C; Lu, H; Jiang, X; Feng, X; Ganesan, S; White, E; Shen, Z
2017-01-01
Centrosomes together with the mitotic spindle ensure the faithful distribution of chromosomes between daughter cells, and spindle orientation is a major determinant of cell fate during tissue regeneration. Spindle defects are not only an impetus of chromosome instability but are also a cause of developmental disorders involving defective asymmetric cell division. In this work, we demonstrate BCCIP, especially BCCIPα, as a previously unidentified component of the mitotic spindle pole and the centrosome. We demonstrate that BCCIP localizes proximal to the mother centriole and participates in microtubule organization and then redistributes to the spindle pole to ensure faithful spindle architecture. We find that BCCIP depletion leads to morphological defects, disoriented mitotic spindles, chromosome congression defects and delayed mitotic progression. Our study identifies BCCIP as a novel factor critical for microtubule regulation and explicates a mechanism utilized by BCCIP in tumor suppression. PMID:28394342
Microtubule-dependent regulation of mitotic protein degradation
Song, Ling; Craney, Allison; Rape, Michael
2014-01-01
Accurate cell division depends on tightly regulated ubiquitylation events catalyzed by the anaphase-promoting complex. Among its many substrates, the APC/C triggers the degradation of proteins that stabilize the mitotic spindle, and loss or accumulation of such spindle assembly factors can result in aneuploidy and cancer. Although critical for cell division, it has remained poorly understood how the timing of spindle assembly factor degradation is established during mitosis. Here, we report that active spindle assembly factors are protected from APC/C-dependent degradation by microtubules. In contrast, those molecules that are not bound to microtubules are highly susceptible to proteolysis and turned over immediately after APC/C-activation. The correct timing of spindle assembly factor degradation, as achieved by this regulatory circuit, is required for accurate spindle structure and function. We propose that the localized stabilization of APC/C-substrates provides a mechanism for the selective disposal of cell cycle regulators that have fulfilled their mitotic roles. PMID:24462202
Self-Organization and Forces in the Mitotic Spindle.
Pavin, Nenad; Tolić, Iva M
2016-07-05
At the onset of division, the cell forms a spindle, a precise self-constructed micromachine composed of microtubules and the associated proteins, which divides the chromosomes between the two nascent daughter cells. The spindle arises from self-organization of microtubules and chromosomes, whose different types of motion help them explore the space and eventually approach and interact with each other. Once the interactions between the chromosomes and the microtubules have been established, the chromosomes are moved to the equatorial plane of the spindle and ultimately toward the opposite spindle poles. These transport processes rely on directed forces that are precisely regulated in space and time. In this review, we discuss how microtubule dynamics and their rotational movement drive spindle self-organization, as well as how the forces acting in the spindle are generated, balanced, and regulated.
NASA Astrophysics Data System (ADS)
Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian
2018-05-01
Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.
Taniguchi, Kiichiro; Kokuryo, Akihiko; Imano, Takao; Minami, Ryunosuke; Nakagoshi, Hideki; Adachi-Yamada, Takashi
2014-12-20
In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform Mud(PBD) and the two newly characterized isoforms Mud(L) and Mud(S) regulated them differently: Mud(L) repressed cell rounding, Mud(PBD) and Mud(S) oriented the spindle along the apico-basal axis, and Mud(S) and Mud(L) repressed central spindle assembly. Importantly, overexpression of Mud(S) induced binucleation even in standard proliferating cells such as those in imaginal discs. We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that Mud(S) is a key regulator triggering cytokinesis skipping in binucleation processes.
Colombié, Nathalie; Głuszek, A. Agata; Meireles, Ana M.; Ohkura, Hiroyuki
2013-01-01
In the oocytes of many animals including humans, the meiotic spindle assembles without centrosomes. It is still unclear how multiple pathways contribute to spindle microtubule assembly, and whether they are regulated differently in mitosis and meiosis. Augmin is a γ-tubulin recruiting complex which “amplifies” spindle microtubules by generating new microtubules along existing ones in mitosis. Here we show that in Drosophila melanogaster oocytes Augmin is dispensable for chromatin-driven assembly of bulk spindle microtubules, but is required for full microtubule assembly near the poles. The level of Augmin accumulated at spindle poles is well correlated with the degree of chromosome congression. Fluorescence recovery after photobleaching shows that Augmin stably associates with the polar regions of the spindle in oocytes, unlike in mitotic cells where it transiently and uniformly associates with the metaphase spindle. This stable association is enhanced by γ-tubulin and the kinesin-14 Ncd. Therefore, we suggest that meiosis-specific regulation of Augmin compensates for the lack of centrosomes in oocytes by actively biasing sites of microtubule generation within the spindle. PMID:23785300
Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes
Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A. Arockia
2015-01-01
Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression. PMID:26124292
EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.
Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming
2016-08-17
EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.
Sun, Shao-Chen; Xu, Yong-Nan; Li, Ying-Hua; Lee, Seung-Eun; Jin, Yong-Xun; Cui, Xiang-Shun; Kim, Nam-Hyung
2011-06-01
During oocyte meiotic maturation, meiotic spindles form in the central cytoplasm and then migrate to the cortex to extrude a small polar body, forming a highly polarized cell through a process involving actin and actin-related molecules. The mechanisms underlying oocyte polarization are still unclear. The Arp2/3 complex regulates oocyte polarization but it is not known whether the WASP family of proteins, a known regulator of the Arp2/3 complex, is involved in this context. In the present study, the role of WASP family member WAVE2 in mouse oocyte asymmetric division was investigated. (1) WAVE2 mRNA and protein were detected during mouse oocyte meiosis. (2) siRNA-mediated and antibody-mediated disruption of WAVE2 resulted in the failure of chromosome congression, spindle formation, spindle positioning and polar body extrusion. (3) WAVE2 regulated actin-driven chromosome migration since chromosomes were arrested in the central cytoplasm by WAVE2 RNAi in the absence of microtubules. (4) Localization of γ-tubulin and MAPK was disrupted after RNAi, confirming the effect of WAVE2 on spindle formation. (5) Actin cap and cortical granule-free domain (CGFD) formation was also disrupted, further confirming the failure of oocyte polarization. Our data suggest that WAVE2 regulates oocyte polarization by regulating meiotic spindle, peripheral positioning, probably via an actin-mediated pathway, and is involved in polar body emission during mouse oocyte meiotic maturation.
HDAC8 functions in spindle assembly during mouse oocyte meiosis
Shu, Jing; Chen, Xueqin; Shi, Yingjiao; Wang, Ensheng; Wang, Li; Hu, Qinbo; Dai, Yibo; Xiong, Bo
2017-01-01
HDAC8 is a class I histone deacetylase that functions in a variety of biological processes through its non-histone substrates. However, its roles during oocyte meiosis remain elusive. Here, we document that HDAC8 localizes at spindle poles and positively participates in the regulation of microtubule organization and spindle assembly in mouse oocytes. Depletion of HDAC8 by siRNA-based gene silencing results in various spindle defects and chromosome misalignment during oocyte meiotic maturation, accompanied by impaired kinetochore-microtubule attachments. Consequently, a higher incidence of aneuploidy is generated in HDAC8-depleted MII eggs. In addition, inhibition of HDAC8 activity with its selective inhibitor PCI-34051 phenocopies the spindle/chromosome defects resulting from HDAC8 depletion by siRNA injection. Finally, we find that HDAC8 is required for the correct localization of ϕ-tubulin to spindle poles. Collectively, these data reveal that HDAC8 plays a significant role in regulating spindle assembly and thus ensuring the euploidy in mouse eggs. PMID:28223544
AIRE is a critical spindle-associated protein in embryonic stem cells
Gu, Bin; Lambert, Jean-Philippe; Cockburn, Katie; Gingras, Anne-Claude; Rossant, Janet
2017-01-01
Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE’s mitotic function. Combined maternal and zygotic knockout further revealed Aire’s critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations. DOI: http://dx.doi.org/10.7554/eLife.28131.001 PMID:28742026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko
2009-10-23
The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint bymore » regulating Mad2p.« less
Almada, Evangelina; Tonucci, Facundo M; Hidalgo, Florencia; Ferretti, Anabela; Ibarra, Solange; Pariani, Alejandro; Vena, Rodrigo; Favre, Cristián; Girardini, Javier; Kierbel, Arlinet; Larocca, M Cecilia
2017-11-02
The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.
Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway
Mauser, Jonathon F.; Prehoda, Kenneth E.
2012-01-01
During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744
Meednu, Nida; Hoops, Harold; D'Silva, Sonia; Pogorzala, Leah; Wood, Schuyler; Farkas, David; Sorrentino, Mark; Sia, Elaine; Meluh, Pam; Miller, Rita K.
2008-01-01
Accurate positioning of the mitotic spindle is important for the genetic material to be distributed evenly in dividing cells, but little is known about the mechanisms that regulate this process. Here we report that two microtubule-associated proteins important for spindle positioning interact with several proteins in the sumoylation pathway. By two-hybrid analysis, Kar9p and Bim1p interact with the yeast SUMO Smt3p, the E2 enzyme Ubc9p, an E3 Nfi1p, as well as Wss1p, a weak suppressor of a temperature-sensitive smt3 allele. The physical interaction between Kar9p and Ubc9p was confirmed by in vitro binding assays. A single-amino-acid substitution in Kar9p, L304P disrupted its two-hybrid interaction with proteins in the sumoylation pathway, but retained its interactions with the spindle positioning proteins Bim1p, Stu2p, Bik1p, and Myo2p. The kar9-L304P mutant showed defects in positioning the mitotic spindle, with the spindle located more distally than normal. Whereas wild-type Kar9p-3GFP normally localizes to only the bud-directed spindle pole body (SPB), Kar9p-L304P-3GFP was mislocalized to both SPBs. Using a reconstitution assay, Kar9p was sumoylated in vitro. We propose a model in which sumoylation regulates spindle positioning by restricting Kar9p to one SPB. These findings raise the possibility that sumoylation could regulate other microtubule-dependent processes. PMID:18832349
Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit
Onishi, Masayuki; Yeong, Foong May
2016-01-01
Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488
The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation.
Mahale, Sagar; Kumar, Megha; Sharma, Amit; Babu, Aswini; Ranjan, Shashi; Sachidanandan, Chetana; Mylavarapu, Sivaram V S
2016-12-23
Cytoplasmic dynein 1 is a multi-protein intracellular motor essential for mediating several mitotic functions, including the establishment of proper spindle orientation. The functional relevance and mechanistic distinctions between two discrete dynein subpopulations distinguished only by Light Intermediate Chain (LIC) homologues, LIC1 and LIC2 is unknown during mitosis. Here, we identify LIC2-dynein as the major mediator of proper spindle orientation and uncover its underlying molecular mechanism. Cortically localized dynein, essential for maintaining correct spindle orientation, consists majorly of LIC2-dynein, which interacts with cortical 14-3-3 ε- ζ and Par3, conserved proteins required for orienting the spindle. LIC2-dynein is also responsible for the majority of dynein-mediated asymmetric poleward transport of NuMA, helping focus microtubule minus ends. In addition, LIC2-dynein dominates in equatorially aligning chromosomes at metaphase and in regulating mitotic spindle length. Key mitotic functions of LIC2 were remarkably conserved in and essential for early embryonic divisions and development in zebrafish. Thus LIC2-dynein exclusively engages with two major cortical pathways to govern spindle orientation. Overall, we identify a novel selectivity of molecular interactions between the two LICs in mitosis as the underlying basis for their uneven distribution of labour in ensuring proper spindle orientation.
Shields, Jerry A; Shields, Carol L
2017-01-01
Cysts of the iris pigment epithelium (IPE) can involve the pupillary margin, midzone, or peripheral location or can be free-floating in the aqueous or vitreous or lodged in the anterior chamber angle. Avariant of IPE cyst, known as iris flocculi, can be a marker for systemic thoracic aneurysm. Review of IPE cysts and description of new observations of the lesions. Review of IPE cysts. Lesions in 672 eyes were classified as of the pupillary margin (n = 49; 7%), midzone (n = 188; 28%), peripheral (n = 424; 63%), or dislodged/free-floating (n = 11; 2%). Cysts of the IPE occurred most often in young adults (21-40 years) (n = 229; 34%) manifesting with peripheral or midzonal cysts. The characteristic clinical features of pupillary margin cyst were teardrop configuration at the pupillary margin, midzonal cyst with fusiform brown appearance, peripheral cyst as iris stromal bulge, dislodged cyst as a brown lesion in the angle, and free-floating cyst with round mass moving by gravitational forces in the aqueous or vitreous. Ultrasound biomicroscopy and anterior segment optical coherence tomography demonstrated the lesions. Surgical intervention for drainage/resection was rarely necessary (<1%). Some (<1%) cysts were associated with iris nevus, iris melanoma, or ciliary body melanoma. Pupillary margin cysts (flocculi) can be found with dissecting thoracic aortic aneurysm, related to genetic mutation in smooth muscle of the iris and aorta. Cysts of the IPE most often affect the peripheral region (iridociliary) and rarely require intervention. These cysts can be associated with underlying iris or ciliary body nevus or melanoma. Patients with iris flocculi should be monitored for dissecting thoracic aneurysm. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.
Liu, Xia; Zheng, Hong; Li, Xiaobo; Wang, Siying; Meyerson, Howard J.; Yang, Wentian; Neel, Benjamin G.; Qu, Cheng-Kui
2016-01-01
Gain-of-function (GOF) mutations of protein tyrosine phosphatase nonreceptor type 11 Ptpn11 (Shp2), a protein tyrosine phosphatase implicated in multiple cell signaling pathways, are associated with childhood leukemias and solid tumors. The underlying mechanisms are not fully understood. Here, we report that Ptpn11 GOF mutations disturb mitosis and cytokinesis, causing chromosomal instability and greatly increased susceptibility to DNA damage-induced malignancies. We find that Shp2 is distributed to the kinetochore, centrosome, spindle midzone, and midbody, all of which are known to play critical roles in chromosome segregation and cytokinesis. Mouse embryonic fibroblasts with Ptpn11 GOF mutations show a compromised mitotic checkpoint. Centrosome amplification and aberrant mitosis with misaligned or lagging chromosomes are significantly increased in Ptpn11-mutated mouse and patient cells. Abnormal cytokinesis is also markedly increased in these cells. Further mechanistic analyses reveal that GOF mutant Shp2 hyperactivates the Polo-like kinase 1 (Plk1) kinase by enhancing c-Src kinase-mediated tyrosine phosphorylation of Plk1. This study provides novel insights into the tumorigenesis associated with Ptpn11 GOF mutations and cautions that DNA-damaging treatments in Noonan syndrome patients with germ-line Ptpn11 GOF mutations could increase the risk of therapy-induced malignancies. PMID:26755576
Hong, Kyung Uk; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae
2009-06-12
During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis.
Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae
2009-01-01
During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis. PMID:19369249
Human Nek7-interactor RGS2 is required for mitotic spindle organization.
de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg
2015-01-01
The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.
Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle.
Sawin, K E; Mitchison, T J
1995-01-01
Eg5, a member of the bimC subfamily of kinesin-like microtubule motor proteins, localizes to spindle microtubules in mitosis but not to interphase microtubules. We investigated the molecular basis for spindle localization by transient transfection of Xenopus A6 cells with myc-tagged derivatives of Eg5. Expressed at constitutively high levels from a cytomegalovirus promoter, mycEg5 protein is cytoplasmic throughout interphase, begins to bind microtubules in early prophase, and remains localized to spindle and/or midbody microtubules through mitosis to the end of telophase. Both N- and C-terminal regions of Eg5 are required for this cell-cycle-regulated targeting. Eg5 also contains within its C-terminal domain a sequence conserved among bimC subfamily proteins that includes a potential p34cdc2 phosphorylation site. We show that mutation of a single threonine (T937) within this site to nonphosphorylatable alanine abolishes localization of the mutant protein to the spindle, whereas mutation of T937 to serine preserves spindle localization. We hypothesize that phosphorylation of Eg5 may regulate its localization to the spindle in the cell cycle. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7753799
Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes.
Yi, Zi-Yun; Ma, Xue-Shan; Liang, Qiu-Xia; Zhang, Teng; Xu, Zhao-Yang; Meng, Tie-Gang; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan; Quan, Song
2016-12-19
Kif2a is a member of the Kinesin-13 microtubule depolymerases. Here, we report the expression, subcellular localization and functions of Kif2a during mouse oocyte meiotic maturation. Immunoblotting analysis showed that Kif2a was gradually increased form GV to the M I stages, and then decreased slightly at the M II stage. Confocal microscopy identified that Kif2a localized to the meiotic spindle, especially concentrated at the spindle poles and inner centromeres in metaphase and translocated to the midbody at telophase. Kif2a depletion by siRNA microinjection generated severely defective spindles and misaligned chromosomes, reduced microtubule depolymerization, which led to significant pro-M I/M Iarrest and failure of first polar body (PB1) extrusion. Kif2a-depleted oocytes were also defective in spindle pole localization of γ-tubulin and showed spindle assembly checkpoint (SAC) protein Bub3 at the kinetochores even after 10 hr extended culture. These results demonstrate that Kif2a may act as a microtubule depolymerase, regulating microtubule dynamics, spindle assembly and chromosome congression, and thus cell cycle progression during mouse oocyte meiotic maturation.
The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.
Scheuer, Jacob; Weiss, Ori
2011-06-06
We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.
Nap sleep spindle correlates of intelligence.
Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin
2015-11-26
Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.
A yeast gene essential for regulation of spindle pole duplication.
Baum, P; Yip, C; Goetsch, L; Byers, B
1988-01-01
In eucaryotic cells, duplication of spindle poles must be coordinated with other cell cycle functions. We report here the identification in Saccharomyces cerevisiae of a temperature-sensitive lethal mutation, esp1, that deregulates spindle pole duplication. Mutant cells transferred to the nonpermissive temperature became unable to continue DNA synthesis and cell division but displayed repeated duplication of their spindle pole bodies. Although entry into this state after transient challenge by the nonpermissive temperature was largely lethal, rare survivors were recovered and found to have become increased in ploidy. If the mutant cells were held in G0 or G1 during exposure to the elevated temperature, they remained viable and maintained normal numbers of spindle poles. These results suggest dual regulation of spindle pole duplication, including a mechanism that promotes duplication as cells enter the division cycle and a negative regulatory mechanism, controlled by ESP1, that limits duplication to a single occurrence in each cell division cycle. Tetrad analysis has revealed that ESP1 resides at a previously undescribed locus on the right arm of chromosome VII. Images PMID:3072479
Human Nek7-interactor RGS2 is required for mitotic spindle organization
de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg
2015-01-01
The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization. PMID:25664600
Counterbalance of cutting force for advanced milling operations
NASA Astrophysics Data System (ADS)
Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao
2010-05-01
The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.
Regulating positioning and orientation of mitotic spindles via cell size and shape
NASA Astrophysics Data System (ADS)
Li, Jingchen; Jiang, Hongyuan
2018-01-01
Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.
He, Zhimin; Wu, Junyu; Su, Xiaonan; Zhang, Ye; Pan, Lixia; Wei, Huimin; Fang, Qiang; Li, Haitao; Wang, Da-Liang; Sun, Fang-Lin
2016-02-26
Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Genetic Instability of Breast Cancer Cells Induced by Aberrant Expression of hMpS1
2004-09-01
and function of the mitotic spindle is dependent on the MpS1 protein kinase. The components of mitotic spindle checkpoints were first identified in...yeast and their homologs of higher organisms were then identified and characterized. These include Bubl, Bub2, Bub3, Madl, Mad2, Mad3 and MpS1 . MpS 1...spindle checkpoint and centrosome duplication (1-6). Although several recent reports demonstrated that vertebrate MpS1 proteins regulate the spindle
Pericentromere tension is self-regulated by spindle structure in metaphase
Chacón, Jeremy M.; Mukherjee, Soumya; Schuster, Breanna M.; Clarke, Duncan J.
2014-01-01
During cell division, a mitotic spindle is built by the cell and acts to align and stretch duplicated sister chromosomes before their ultimate segregation into daughter cells. Stretching of the pericentromeric chromatin during metaphase is thought to generate a tension-based signal that promotes proper chromosome segregation. However, it is not known whether the mitotic spindle actively maintains a set point tension magnitude for properly attached sister chromosomes to facilitate robust mechanochemical checkpoint signaling. By imaging and tracking the thermal movements of pericentromeric fluorescent markers in Saccharomyces cerevisiae, we measured pericentromere stiffness and then used the stiffness measurements to quantitatively evaluate the tension generated by pericentromere stretch during metaphase in wild-type cells and in mutants with disrupted chromosome structure. We found that pericentromere tension in yeast is substantial (4–6 pN) and is tightly self-regulated by the mitotic spindle: through adjustments in spindle structure, the cell maintains wild-type tension magnitudes even when pericentromere stiffness is disrupted. PMID:24821839
Pericentromere tension is self-regulated by spindle structure in metaphase.
Chacón, Jeremy M; Mukherjee, Soumya; Schuster, Breanna M; Clarke, Duncan J; Gardner, Melissa K
2014-05-12
During cell division, a mitotic spindle is built by the cell and acts to align and stretch duplicated sister chromosomes before their ultimate segregation into daughter cells. Stretching of the pericentromeric chromatin during metaphase is thought to generate a tension-based signal that promotes proper chromosome segregation. However, it is not known whether the mitotic spindle actively maintains a set point tension magnitude for properly attached sister chromosomes to facilitate robust mechanochemical checkpoint signaling. By imaging and tracking the thermal movements of pericentromeric fluorescent markers in Saccharomyces cerevisiae, we measured pericentromere stiffness and then used the stiffness measurements to quantitatively evaluate the tension generated by pericentromere stretch during metaphase in wild-type cells and in mutants with disrupted chromosome structure. We found that pericentromere tension in yeast is substantial (4-6 pN) and is tightly self-regulated by the mitotic spindle: through adjustments in spindle structure, the cell maintains wild-type tension magnitudes even when pericentromere stiffness is disrupted.
P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring.
Bompard, G; Rabeharivelo, G; Cau, J; Abrieu, A; Delsert, C; Morin, N
2013-02-14
The oncogenic kinase PAK4 was recently found to be involved in the regulation of the G1 phase and the G2/M transition of the cell cycle. We have also identified that PAK4 regulates Ran GTPase activity during mitosis. Here, we show that after entering mitosis, PAK4-depleted cells maintain a prolonged metaphase-like state. In these cells, chromosome congression to the metaphase plate occurs with normal kinetics but is followed by an extended period during which membrane blebbing and spindle rotation are observed. These bipolar PAK4-depleted metaphase-like spindles have a defective astral microtubule (MT) network and are not centered in the cell but are in close contact with the cell cortex. As the metaphase-like state persists, centrosome fragmentation occurs, chromosomes scatter from the metaphase plate and move toward the spindle poles with an active spindle assembly checkpoint, a phenotype that is reminiscent of cohesion fatigue. PAK4 also regulates the acto-myosin cytoskeleton and we report that PAK4 depletion results in the induction of cortical membrane blebbing during prometaphase arrest. However, we show that membrane blebs, which are strongly enriched in phospho-cofilin, are not responsible for the poor anchoring of the spindle. As PAK4 depletion interferes with the localization of components of the dynein/dynactin complexes at the kinetochores and on the astral MTs, we propose that loss of PAK4 could induce a change in the activities of motor proteins.
Spatial signals link exit from mitosis to spindle position.
Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika
2016-05-11
In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT- bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.
Watanabe, Sadanori; Shioi, Go; Furuta, Yasuhide; Goshima, Gohta
2016-04-05
Errors during cell division in oocytes and early embryos are linked to birth defects in mammals. Bipolar spindle assembly in early mouse embryos is unique in that three or more acentriolar microtubule-organizing centers (MTOCs) are initially formed and are then clustered into two spindle poles. Using a knockout mouse and live imaging of spindles in embryos, we demonstrate that MTOC clustering during the blastocyst stage requires augmin, a critical complex for MT-dependent MT nucleation within the spindle. Functional analyses in cultured cells with artificially increased numbers of centrosomes indicate that the lack of intra-spindle MT nucleation, but not loss of augmin per se or overall reduction of spindle MTs, is the cause of clustering failure. These data suggest that onset of mitosis with three or more MTOCs is turned into a typical bipolar division through augmin-dependent intra-spindle MT assembly. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization
Okada, Naoyuki; Sato, Masamitsu
2015-01-01
Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057
Identification of small molecule inhibitors of cytokinesis and single cell wound repair
Clark, Andrew G.; Sider, Jenny R.; Verbrugghe, Koen; Fenteany, Gabriel; von Dassow, George; Bement, William M.
2013-01-01
Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used “low tech” in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The “diversity set”, an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in D. excentricus (sand dollar) embryos and single cell wound repair in X. laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processes. PMID:23125193
Bosveld, Floris; Ainslie, Anna; Bellaïche, Yohanns
2017-10-15
Centrosomes nucleate microtubules and are tightly coupled to the bipolar spindle to ensure genome integrity, cell division orientation and centrosome segregation. While the mechanisms of centrosome-dependent microtubule nucleation and bipolar spindle assembly have been the focus of numerous works, less is known about the mechanisms ensuring the centrosome-spindle coupling. The conserved NuMA protein (Mud in Drosophila ) is best known for its role in spindle orientation. Here, we analyzed the role of Mud and two of its interactors, Asp and Dynein, in the regulation of centrosome numbers in Drosophila epithelial cells. We found that Dynein and Mud mainly initiate centrosome-spindle coupling prior to nuclear envelope breakdown (NEB) by promoting correct centrosome positioning or separation, while Asp acts largely independently of Dynein and Mud to maintain centrosome-spindle coupling. Failure in the centrosome-spindle coupling leads to mis-segregation of the two centrosomes into one daughter cell, resulting in cells with supernumerary centrosomes during subsequent divisions. Altogether, we propose that Dynein, Mud and Asp operate sequentially during the cell cycle to ensure efficient centrosome-spindle coupling in mitosis, thereby preventing centrosome mis-segregation to maintain centrosome number. © 2017. Published by The Company of Biologists Ltd.
Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles.
Coelho, Paula A; Bury, Leah; Sharif, Bedra; Riparbelli, Maria G; Fu, Jingyan; Callaini, Giuliano; Glover, David M; Zernicka-Goetz, Magdalena
2013-12-09
During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Spatial signals link exit from mitosis to spindle position
Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika
2016-01-01
In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT– bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position. DOI: http://dx.doi.org/10.7554/eLife.14036.001 PMID:27166637
Xia, Frances; Richards, Blake A; Tran, Matthew M; Josselyn, Sheena A
2017-01-01
Following learning, increased coupling between spindle oscillations in the medial prefrontal cortex (mPFC) and ripple oscillations in the hippocampus is thought to underlie memory consolidation. However, whether learning-induced increases in ripple-spindle coupling are necessary for successful memory consolidation has not been tested directly. In order to decouple ripple-spindle oscillations, here we chemogenetically inhibited parvalbumin-positive (PV+) interneurons, since their activity is important for regulating the timing of spiking activity during oscillations. We found that contextual fear conditioning increased ripple-spindle coupling in mice. However, inhibition of PV+ cells in either CA1 or mPFC eliminated this learning-induced increase in ripple-spindle coupling without affecting ripple or spindle incidence. Consistent with the hypothesized importance of ripple-spindle coupling in memory consolidation, post-training inhibition of PV+ cells disrupted contextual fear memory consolidation. These results indicate that successful memory consolidation requires coherent hippocampal-neocortical communication mediated by PV+ cells. PMID:28960176
Matsuhara, Hirotada; Yamamoto, Ayumu
2016-01-01
Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Juranić, Martina; Srilunchang, Kanok-orn; Krohn, Nádia Graciele; Leljak-Levanić, Dunja; Sprunck, Stefanie; Dresselhaus, Thomas
2012-01-01
Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle–dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s). PMID:23250449
Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam
2012-11-01
Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.
Meiosis: An Overview of Key Differences from Mitosis
Ohkura, Hiroyuki
2015-01-01
Meiosis is the specialized cell division that generates gametes. In contrast to mitosis, molecular mechanisms and regulation of meiosis are much less understood. Meiosis shares mechanisms and regulation with mitosis in many aspects, but also has critical differences from mitosis. This review highlights these differences between meiosis and mitosis. Recent studies using various model systems revealed differences in a surprisingly wide range of aspects, including cell-cycle regulation, recombination, postrecombination events, spindle assembly, chromosome–spindle interaction, and chromosome segregation. Although a great degree of diversity can be found among organisms, meiosis-specific processes, and regulation are generally conserved. PMID:25605710
Qi, Shu-Tao; Wang, Zhen-Bo; Huang, Lin; Liang, Li-Feng; Xian, Ye-Xing; Ouyang, Ying-Chun; Hou, Yi; Sun, Qing-Yuan; Wang, Wei-Hua
2015-01-01
CK1 (casein kinase 1) is a family of serine/threonine protein kinase that is ubiquitously expressed in eukaryotic organism. CK1 members are involved in the regulation of many cellular processes. Particularly, CK1 was reported to phosphorylate Rec8 subunits of cohesin complex and regulate chromosome segregation in meiosis in budding yeast and fission yeast.1-3 Here we investigated the expression, subcellular localization and potential functions of CK1α, CK1δ and CK1ϵ during mouse oocyte meiotic maturation. We found that CK1α, CK1δ and CK1ϵ all concentrated at the spindle poles and co-localized with γ-tubulin in oocytes at both metaphase I (MI) and metaphase II (MII) stages. However, depletion of CK1 by RNAi or overexpression of wild type or kinase-dead CK1 showed no effects on either spindle organization or chromosome segregation during oocyte meiotic maturation. Thus, CK1 is not the kinase that phosphorylates Rec8 cohesin in mammalian oocytes, and CK1 may not be essential for spindle organization and meiotic progression although they localize at spindle poles. PMID:25927854
Ali, Aamir; Veeranki, Sailaja Naga; Chinchole, Akash; Tyagi, Shweta
2017-06-19
Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulators of spindle microtubules and their mechanisms: Living together matters.
Lakshmi, R Bhagya; Nair, Vishnu M; Manna, Tapas K
2018-02-01
Development and survival of all eukaryotic organisms depend on equal partitioning of their chromosomes between the two newly formed daughter cells during mitosis. The mitotic spindle performs the task of physically segregating the chromosomes through multiple stages of mitosis. During this process, kinetochore-microtubule attachment requires to be selectively stabilized to hold the chromosomes, but at the same time, it has to be flexible enough to allow kinetochore microtubule dynamicity and chromosome movements. Research during the last decade or so has identified a number of proteins associated with the spindle microtubule plus ends that regulate these processes and orchestrate forces to spatially organize and separate the chromosomes. In this review, we describe the molecular details of those regulators and their mechanisms of action at the kinetochore-microtubule interface. © 2018 IUBMB Life, 70(2):101-111, 2018. © 2018 International Union of Biochemistry and Molecular Biology.
Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles
McCoy, Kelsey M.; Tubman, Emily S.; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O’Toole, Eileen T.; Berman, Judith; Odde, David J.
2015-01-01
A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore microtubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to this limit, which may explain why it has the smallest known mitotic spindle that still manifests the classic congression architecture. PMID:26354423
Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D
2015-01-01
Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118
Chiu, Shao-Chih; Chen, Jo-Mei Maureen; Wei, Tong-You Wade; Cheng, Tai-Shan; Wang, Ya-Hui Candice; Ku, Chia-Feng; Lian, Chiao-Hsuan; Liu, Chun-Chih Jared; Kuo, Yi-Chun; Yu, Chang-Tze Ricky
2014-09-01
Cells display dramatic morphological changes in mitosis, where numerous factors form regulatory networks to orchestrate the complicated process, resulting in extreme fidelity of the segregation of duplicated chromosomes into two daughter cells. Astrin regulates several aspects of mitosis, such as maintaining the cohesion of sister chromatids by inactivating Separase and stabilizing spindle, aligning and segregating chromosomes, and silencing spindle assembly checkpoint by interacting with Src kinase-associated phosphoprotein (SKAP) and cytoplasmic linker-associated protein-1α (CLASP-1α). To understand how Astrin is regulated in mitosis, we report here that Astrin acts as a mitotic phosphoprotein, and Aurora-A phosphorylates Astrin at Ser(115). The phosphorylation-deficient mutant Astrin S115A abnormally activates spindle assembly checkpoint and delays mitosis progression, decreases spindle stability, and induces chromosome misalignment. Mechanistic analyses reveal that Astrin phosphorylation mimicking mutant S115D, instead of S115A, binds and induces ubiquitination and degradation of securin, which sequentially activates Separase, an enzyme required for the separation of sister chromatids. Moreover, S115A fails to bind mitosis regulators, including SKAP and CLASP-1α, which results in the mitotic defects observed in Astrin S115A-transfected cells. In conclusion, Aurora-A phosphorylates Astrin and guides the binding of Astrin to its cellular partners, which ensures proper progression of mitosis. Copyright © 2014 the American Physiological Society.
Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.
Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan
2018-02-05
Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors.
Prodon, François; Chenevert, Janet; Hébras, Céline; Dumollard, Rémi; Faure, Emmanuel; Gonzalez-Garcia, Jose; Nishida, Hiroki; Sardet, Christian; McDougall, Alex
2010-06-01
Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.
Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase
Mistry, Hitesh B.; MacCallum, David E.; Jackson, Robert C.; Chaplain, Mark A. J.; Davidson, Fordyce A.
2008-01-01
Faithful separation of chromosomes prior to cell division at mitosis is a highly regulated process. One family of serine/threonine kinases that plays a central role in regulation is the Aurora family. Aurora B plays a role in the spindle assembly checkpoint, in part, by destabilizing the localization of BubR1 and Mad2 at centrosomes and responds to changes in tension caused by aberrant microtubule kinetochore attachments. Aurora B is overexpressed in a subset of cancers and is required for mitosis, making it an attractive anticancer target. Here, we use mathematical modeling to extend a current model of the spindle assembly checkpoint to incorporate all signaling kinetochores within a cell rather than just one and the role of Aurora B within the resulting model. We find that the current model of the spindle assembly checkpoint is robust to variation in its key diffusion-limited parameters. Furthermore, when Aurora B inhibition is considered within the model, for a certain range of inhibitor concentrations, a prolonged prometaphase/metaphase is observed. This level of inhibitor concentrations has not yet been studied experimentally, to the authors' best knowledge. Therefore, experimental verification of the results discussed here could provide a deeper understanding of how kinetochores and Aurora B cooperate in the spindle assembly checkpoint. PMID:19091947
Duan, Xing; Zhang, Hao-Lin; Pan, Meng-Hao; Zhang, Yu; Sun, Shao-Chen
2018-02-01
Arf6 (ADP-ribosylation factor 6) is known to play important roles in membrane dynamics through the regulation of actin filament reorganization for multiple cellular processes such as cytokinesis, phagocytosis, cell migration and tumor cell invasion. However, the functions of Arf6 in mammalian oocyte meiosis have not been clarified. In present study we showed that Arf6 expressed in mouse oocytes and was mainly distributed around the spindle during meiosis. Depletion of Arf6 by morpholino microinjection caused oocytes failing to extrude first polar body. Further analysis indicated that Arf6 knock down caused the aberrant actin distribution, which further induced the failure of meiotic spindle movement. And the loss of oocyte polarity also confirmed this. The regulation of Arf6 on actin filaments in mouse oocytes might be due to its effects on the phosphorylation level of cofilin and the expression of Arp2/3 complex. Moreover, we found that the decrease of Arf6 caused the disruption of spindle formation, indicating the multiple roles of Arf6 on cytoskeleton dynamics in meiosis. In summary, our results indicated that Arf6 was involved in mouse oocyte meiosis through its functional roles in actin-mediated spindle movement and spindle organization. Copyright © 2017 Elsevier B.V. All rights reserved.
CENP-W Plays a Role in Maintaining Bipolar Spindle Structure
Kaczmarczyk, Agnieszka; Sullivan, Kevin F.
2014-01-01
The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. ‘Spindle free’ nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted by motor proteins during chromosome congression. Taken together, our findings are consistent with a model in which centrosome integrity is controlled by the pathways regulating kinetochore-microtubule attachment stability. PMID:25329824
Is cohesin required for spindle-pole-body/centrosome cohesion?
Jin, Hui; Avey, Martin
2012-01-01
Centrosomes are microtubule-organizing centers that nucleate spindle microtubules during cell division. In budding yeast, the centrosome, often referred to as the spindle pole body, shares structural components with the centriole, the central core of the animal centrosome. The parental centrosome is duplicated when DNA replication takes place. Like sister chromatids tethered together by cohesin, duplicated centrosomes are linked and then separate to form the bipolar spindle necessary for chromosome segregation. Recent studies have shown that cohesin is also localized to the animal centrosome and is perhaps directly involved in engaging paired centrioles. Here we discuss the potential role of cohesin in mediating spindle-pole-body cohesion in the context of yeast meiosis. We propose that the coordination of chromosome segregation with centrosome cohesion and duplication is mediated by the antagonistic interaction between the Aurora kinase and the Polo kinase and that the role of cohesin in centrosome regulation appears to be indirect in budding yeast. PMID:22482005
Havens, Kyle A.; Gardner, Melissa K.; Kamieniecki, Rebecca J.; Dresser, Michael E.; Dawson, Dean S.
2010-01-01
Slk19p is a member of the Cdc-14 early anaphase release (FEAR) pathway, a signaling network that is responsible for activation of the cell-cycle regulator Cdc14p in Saccharomyces cerevisiae. Disruption of the FEAR pathway results in defects in anaphase, including alterations in the assembly and behavior of the anaphase spindle. Many phenotypes of slk19Δ mutants are consistent with a loss of FEAR signaling, but other phenotypes suggest that Slk19p may have FEAR-independent roles in modulating the behavior of microtubules in anaphase. Here, a series of SLK19 in-frame deletion mutations were used to test whether Slk19p has distinct roles in anaphase that can be ascribed to specific regions of the protein. Separation-of-function alleles were identified that are defective for either FEAR signaling or aspects of anaphase spindle function. The data suggest that in early anaphase one region of Slk19p is essential for FEAR signaling, while later in anaphase another region is critical for maintaining the coordination between spindle elongation and the growth of interpolar microtubules. PMID:20923975
Xu, Quanbin; Zhu, Songcheng; Wang, Wei; Zhang, Xiaojuan; Old, William; Ahn, Natalie; Liu, Xuedong
2009-01-01
Mps1 is a protein kinase that plays essential roles in spindle checkpoint signaling. Unattached kinetochores or lack of tension triggers recruitment of several key spindle checkpoint proteins to the kinetochore, which delays anaphase onset until proper attachment or tension is reestablished. Mps1 acts upstream in the spindle checkpoint signaling cascade, and kinetochore targeting of Mps1 is required for subsequent recruitment of Mad1 and Mad2 to the kinetochore. The mechanisms that govern recruitment of Mps1 or other checkpoint proteins to the kinetochore upon spindle checkpoint activation are incompletely understood. Here, we demonstrate that phosphorylation of Mps1 at T12 and S15 is required for Mps1 recruitment to the kinetochore. Mps1 kinetochore recruitment requires its kinase activity and autophosphorylation at T12 and S15. Mutation of T12 and S15 severely impairs its kinetochore association and markedly reduces recruitment of Mad2 to the kinetochore. Our studies underscore the importance of Mps1 autophosphorylation in kinetochore targeting and spindle checkpoint signaling.
Mathematical modeling and numerical simulation of the mitotic spindle orientation system.
Ibrahim, Bashar
2018-05-21
The mitotic spindle orientation and position is crucial for the fidelity of chromosome segregation during asymmetric cell division to generate daughter cells with different sizes or fates. This mechanism is best understood in the budding yeast Saccharomyces cerevisiae, named the spindle position checkpoint (SPOC). The SPOC inhibits cells from exiting mitosis until the mitotic spindle is properly oriented along the mother-daughter polarity axis. Despite many experimental studies, the mechanisms underlying SPOC regulation remains elusive and unexplored theoretically. Here, a minimal mathematical is developed to describe SPOC activation and silencing having autocatalytic feedback-loop. Numerical simulations of the nonlinear ordinary differential equations (ODEs) model accurately reproduce the phenotype of SPOC mechanism. Bifurcation analysis of the nonlinear ODEs reveals the orientation dependency on spindle pole bodies, and how this dependence is altered by parameter values. These results provide for systems understanding on the molecular organization of spindle orientation system via mathematical modeling. The presented mathematical model is easy to understand and, within the above mentioned context, can be used as a base for further development of quantitative models in asymmetric cell-division. Copyright © 2018. Published by Elsevier Inc.
Phospho-Regulation of DDA3 Function in Mitosis
Jang, Chang-Young; Coppinger, Judith A.; Yates, John R.; Fang, Guowei
2010-01-01
DDA3 is a microtubule-associated protein that controls chromosome congression and segregation by regulating the mitotic spindle. Depletion of DDA3 alters spindle structure, generates unaligned chromosomes at metaphase, and delays the mitotic progression. Through a mass spectrometry analysis, we found that DDA3 is phosphorylated on Ser225 during mitosis. Phosphorylation of this residue is important for the mitotic function of DDA3, as the phospho-mimicking DDA3-S225D variant, but not the nonphosphorable DDA3-S225A mutant, rescues the DDA3-knockdown phenotype. We conclude that the mitotic function of DDA3 is regulated by phosphorylation on the Ser225 residue. PMID:20117088
Paluh, Janet L.; Nogales, Eva; Oakley, Berl R.; McDonald, Kent; Pidoux, Alison L.; Cande, W. Z.
2000-01-01
Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. γ-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in γ-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30°C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant γ-tubulin is like the wild-type protein. Prediction of γ-tubulin structure indicates that non-α/β-tubulin protein–protein interactions could be affected. The kinesin-like protein (klp) Pkl1p localizes to the spindle poles and spindle and is essential for viability of the γ-tubulin mutant and in multicopy for normal cell morphology at 30°C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for γ-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of γ-tubulin that involves non-tubulin protein–protein interactions, presumably with a second motor, MAP, or MTOC component. PMID:10749926
LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex
Moon, Hyang Mi; Youn, Yong Ha; Pemble, Hayley; Yingling, Jessica; Wittmann, Torsten; Wynshaw-Boris, Anthony
2014-01-01
Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore–microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1–dynein complex. Overexpression of NDEL1–dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1–NDEL1–dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division. PMID:24030547
Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae
2007-01-01
Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis. PMID:17339342
Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae
2007-05-01
Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G(1)/S and peaks at G(2)/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis.
Cdc2/cyclin B1 regulates centrosomal Nlp proteolysis and subcellular localization.
Zhao, Xuelian; Jin, Shunqian; Song, Yongmei; Zhan, Qimin
2010-11-01
The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.
Savoian, Matthew S; Glover, David M
2010-03-01
The kinesin-8 proteins are a family of microtubule-depolymerising motor molecules, which, despite their highly conserved roles in chromosome alignment and spindle dynamics, remain poorly characterised. Here, we report that the Drosophila kinesin-8 protein, Klp67A, exists in two spatially and functionally separable metaphase pools: at kinetochores and along the spindle. Fixed and live-cell analyses of different Klp67A recombinant variants indicate that this kinesin-8 first collects at kinetochores during prophase and, by metaphase, localises to the kinetochore outerplate. Although the catalytic motor activity of Klp67A is required for efficient kinetochore recruitment at all times, microtubules are entirely dispensable for this process. The tail of Klp67A does not play a role in kinetochore accumulation, but is both necessary and sufficient for spindle association. Using functional assays, we reveal that chromosome position and spindle length are determined by the microtubule-depolymerising motor activity of Klp67A exclusively when located at kinetochores, but not along the spindle. These data reveal that, unlike other metazoan kinesin-8 proteins, Klp67A binds the nascent prophase and mature metaphase kinetochore. From this location, Klp67A uses its motor activity to ensure chromosome alignment and proper spindle length.
The Msd1–Wdr8–Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies
Yukawa, Masashi; Ikebe, Chiho
2015-01-01
The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity. PMID:25987607
The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation
Magron, Audrey; Elowe, Sabine; Carreau, Madeleine
2015-01-01
The Fanconi anemia (FA) proteins are involved in a signaling network that assures the safeguard of chromosomes. To understand the function of FA proteins in cellular division events, we investigated the interaction between Stathmin-1 (STMN1) and the FA group C (FANCC) protein. STMN1 is a ubiquitous cytosolic protein that regulates microtubule dynamics. STMN1 activities are regulated through phosphorylation-dephosphorylation mechanisms that control assembly of the mitotic spindle, and dysregulation of STMN1 phosphorylation is associated with mitotic aberrancies leading to chromosome instability and cancer progression. Using different biochemical approaches, we showed that FANCC interacts and co-localizes with STMN1 at centrosomes during mitosis. We also showed that FANCC is required for STMN1 phosphorylation, as mutations in FANCC reduced serine 16- and 38-phosphorylated forms of STMN1. Phosphorylation of STMN1 at serine 16 is likely an event dependent on a functional FA pathway, as it is reduced in FANCA- and FANCD2-mutant cells. Furthermore, FA-mutant cells exhibited mitotic spindle anomalies such as supernumerary centrosomes and shorter mitotic spindles. These results suggest that FA proteins participate in the regulation of cellular division via the microtubule-associated protein STMN1. PMID:26466335
Cahu, Julie; Olichon, Aurelien; Hentrich, Christian; Schek, Henry; Drinjakovic, Jovana; Zhang, Cunjie; Doherty-Kirby, Amanda; Lajoie, Gilles; Surrey, Thomas
2008-01-01
Background Motor proteins from the kinesin-5 subfamily play an essential role in spindle assembly during cell division of most organisms. These motors crosslink and slide microtubules in the spindle. Kinesin-5 motors are phosphorylated at a conserved site by Cyclin-dependent kinase 1 (Cdk1) during mitosis. Xenopus laevis kinesin-5 has also been reported to be phosphorylated by Aurora A in vitro. Methodology/Principal Findings We investigate here the effect of these phosphorylations on kinesin-5 from Xenopus laevis, called Eg5. We find that phosphorylation at threonine 937 in the C-terminal tail of Eg5 by Cdk1 does not affect the velocity of Eg5, but strongly increases its binding to microtubules assembled in buffer. Likewise, this phosphorylation promotes binding of Eg5 to microtubules in Xenopus egg extract spindles. This enhancement of binding elevates the amount of Eg5 in spindles above a critical level required for bipolar spindle formation. We find furthermore that phosphorylation of Xenopus laevis Eg5 by Aurora A at serine 543 in the stalk is not required for spindle formation. Conclusions/Significance These results show that phosphorylation of Eg5 by Cdk1 has a direct effect on the interaction of this motor with microtubules. In egg extract, phosphorylation of Eg5 by Cdk1 ensures that the amount of Eg5 in the spindle is above a level that is required for spindle formation. This enhanced targeting to the spindle appears therefore to be, at least in part, a direct consequence of the enhanced binding of Eg5 to microtubules upon phosphorylation by Cdk1. These findings advance our understanding of the regulation of this essential mitotic motor protein. PMID:19079595
Dewey, Evan B.; Sanchez, Desiree; Johnston, Christopher A.
2015-01-01
SUMMARY Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily-conserved cell proliferation pathway. PMID:26592339
Dewey, Evan B; Sanchez, Desiree; Johnston, Christopher A
2015-11-02
Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Limited Resources Induce Bistability in Microtubule Length Regulation
NASA Astrophysics Data System (ADS)
Rank, Matthias; Mitra, Aniruddha; Reese, Louis; Diez, Stefan; Frey, Erwin
2018-04-01
The availability of protein is an important factor for the determination of the size of the mitotic spindle. Involved in spindle-size regulation is kinesin-8, a molecular motor and microtubule (MT) depolymerase, which is known to tightly control MT length. Here, we propose and analyze a theoretical model in which kinesin-induced MT depolymerization competes with spontaneous polymerization while supplies of both tubulin and kinesin are limited. In contrast to previous studies where resources were unconstrained, we find that, for a wide range of concentrations, MT length regulation is bistable. We test our predictions by conducting in vitro experiments and find that the bistable behavior manifests in a bimodal MT length distribution.
Sakai, Daisuke; Dixon, Jill; Dixon, Michael J; Trainor, Paul A
2012-01-01
The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1(+/-) mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly.
Sakai, Daisuke; Dixon, Jill; Dixon, Michael J.; Trainor, Paul A.
2012-01-01
The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1 +/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly. PMID:22479190
Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes
Ohsugi, Miho; Tokai-Nishizumi, Noriko; Shiroguchi, Katsuyuki; Toyoshima, Yoko Y.; Inoue, Jun-ichiro; Yamamoto, Tadashi
2003-01-01
The chromokinesin Kid is important in chromosome alignment at the metaphase plate. Here, we report that Kid function is regulated by phosphorylation. We identify Ser427 and Thr463 as M phase-specific phosphorylation sites and Cdc2–cyclin B as a Thr463 kinase. Kid with a Thr463 to alanine mutation fails to be localized on chromosomes and is only detected along spindles, although it retains the ability to bind DNA or chromosomes. Localization of rigor-type mutant Kid, which shows nucleotide-independent microtubule association, is also confined to the spindle, implying that strong association of Kid with the spindle can sequester it from chromosomes. T463A substitution in DNA-binding domain-truncated Kid consistently enhances its spindle localization. At physiological ionic strength, unphosphorylated Kid shows ATP-independent microtubule association, whereas Thr463-phosphorylated Kid shows ATP dependency. Moreover, the stalk region of unphosphorylated Kid interacts with microtubules and the interaction is weakened when Thr463 is phosphorylated. Our data suggest that phosphorylation on Thr463 of Kid downregulates its affinity for microtubules to ensure reversible association with spindles, allowing Kid to bind chromosomes and exhibit its function. PMID:12727876
Levesque, Aime A.; Compton, Duane A.
2001-01-01
Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression. PMID:11564754
Belzil, Camille; Asada, Naoyuki; Ishiguro, Kei-Ichiro; Nakaya, Takeo; Parsons, Kari; Pendolino, Valentina; Neumayer, Gernot; Mapelli, Marina; Nakatani, Yoshihiro; Sanada, Kamon; Nguyen, Minh Dang
2014-05-08
Apical neural progenitors (aNPs) drive neurogenesis by means of a program consisting of self-proliferative and neurogenic divisions. The balance between these two manners of division sustains the pool of apical progenitors into late neurogenesis, thereby ensuring their availability to populate the brain with terminal cell types. Using knockout and in utero electroporation mouse models, we report a key role for the microtubule-associated protein 600 (p600) in the regulation of spindle orientation in aNPs, a cellular event that has been associated with cell fate and neurogenesis. We find that p600 interacts directly with the neurogenic protein Ndel1 and that aNPs knockout for p600, depleted of p600 by shRNA or expressing a Ndel1-binding p600 fragment all display randomized spindle orientation. Depletion of p600 by shRNA or expression of the Ndel1-binding p600 fragment also results in a decreased number of Pax6-positive aNPs and an increased number of Tbr2-positive basal progenitors destined to become neurons. These Pax6-positive aNPs display a tilted mitotic spindle. In mice wherein p600 is ablated in progenitors, the production of neurons is significantly impaired and this defect is associated with microcephaly. We propose a working model in which p600 controls spindle orientation in aNPs and discuss its implication for neurogenesis. © 2014. Published by The Company of Biologists Ltd.
The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator
Dunajová, Lucia; Cash, Emily; Markus, Robert; Rochette, Sophie; Townley, Amelia R.
2016-01-01
ABSTRACT Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis. PMID:27246243
Kim, Jiyoung; Kim, Yeon-Soo
2018-06-06
Human immunodeficiency virus type 1 (HIV-1) Tat, an important regulator of viral transcription, interacts with diverse cellular proteins and promotes or inhibits cell proliferation. Here, we show that ribosomal protein S3 (RPS3) plays an important role in mitosis through an interaction with α-tubulin and that Tat binds to and inhibits the localization of RPS3 in the mitotic spindle during mitosis. RPS3 colocalized with α-tubulin around chromosomes in the mitotic spindle. Depletion of RPS3 promoted α-tubulin assembly, while overexpression of RPS3 impaired α-tubulin assembly. Depletion of RPS3 resulted in aberrant mitotic spindle formation, segregation failure, and defective abscission. Moreover, ectopic expression of RPS3 rescued the cell proliferation defect in RPS3-knockdown cells. HIV-1 Tat interacted with RPS3 through its basic domain and increased the level of RPS3 in the nucleus. Expression of Tat caused defects in mitotic spindle formation and chromosome assembly in mitosis. Moreover, the localization of RPS3 in the mitotic spindle was disrupted when HIV-1 Tat was expressed in HeLa and Jurkat cells. These results suggest that Tat inhibits cell proliferation via an interaction with RPS3 and thereby disrupts mitotic spindle formation during HIV-1 infection. These results might provide insight into the mechanism underlying lymphocyte pathogenesis during HIV-1 infection.
Rose, Lesilee S.
2016-01-01
PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in C. elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. PMID:26921457
Balboula, Ahmed Z; Nguyen, Alexandra L; Gentilello, Amanda S; Quartuccio, Suzanne M; Drutovic, David; Solc, Petr; Schindler, Karen
2016-10-01
Meiotic oocytes lack classic centrosomes and, therefore, bipolar spindle assembly depends on clustering of acentriolar microtubule-organizing centers (MTOCs) into two poles. However, the molecular mechanism regulating MTOC assembly into two poles is not fully understood. The kinase haspin (also known as GSG2) is required to regulate Aurora kinase C (AURKC) localization at chromosomes during meiosis I. Here, we show that inhibition of haspin perturbed MTOC clustering into two poles and the stability of the clustered MTOCs. Furthermore, we show that AURKC localizes to MTOCs in mouse oocytes. Inhibition of haspin perturbed the localization of AURKC at MTOCs, and overexpression of AURKC rescued the MTOC-clustering defects in haspin-inhibited oocytes. Taken together, our data uncover a role for haspin as a regulator of bipolar spindle assembly by regulating AURKC function at acentriolar MTOCs in oocytes. © 2016. Published by The Company of Biologists Ltd.
HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development
Jiang, Jihong; Kuan, Chia-Wei; Fotovati, Abbas; Chu, Tony LH; He, Zhengcheng; Lengyell, Tess C; Li, Huaibiao; Kroll, Torsten; Li, Amanda M; Goldowitz, Daniel; Frappart, Lucien; Ploubidou, Aspasia; Patel, Millan S; Pilarski, Linda M; Simpson, Elizabeth M; Lange, Philipp F; Allan, Douglas W
2017-01-01
Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development. PMID:28994651
Yi, Kexi; Rubinstein, Boris; Unruh, Jay R; Guo, Fengli; Slaughter, Brian D; Li, Rong
2013-03-04
Polar body extrusion during oocyte maturation is critically dependent on asymmetric positioning of the meiotic spindle, which is established through migration of the meiosis I (MI) spindle/chromosomes from the oocyte interior to a subcortical location. In this study, we show that MI chromosome migration is biphasic and driven by consecutive actin-based pushing forces regulated by two actin nucleators, Fmn2, a formin family protein, and the Arp2/3 complex. Fmn2 was recruited to endoplasmic reticulum structures surrounding the MI spindle, where it nucleated actin filaments to initiate an initially slow and poorly directed motion of the spindle away from the cell center. A fast and highly directed second migration phase was driven by actin-mediated cytoplasmic streaming and occurred as the chromosomes reach a sufficient proximity to the cortex to activate the Arp2/3 complex. We propose that decisive symmetry breaking in mouse oocytes results from Fmn2-mediated perturbation of spindle position and the positive feedback loop between chromosome signal-induced Arp2/3 activation and Arp2/3-orchestrated cytoplasmic streaming that transports the chromosomes.
Yi, Kexi; Rubinstein, Boris; Unruh, Jay R.; Guo, Fengli; Slaughter, Brian D.
2013-01-01
Polar body extrusion during oocyte maturation is critically dependent on asymmetric positioning of the meiotic spindle, which is established through migration of the meiosis I (MI) spindle/chromosomes from the oocyte interior to a subcortical location. In this study, we show that MI chromosome migration is biphasic and driven by consecutive actin-based pushing forces regulated by two actin nucleators, Fmn2, a formin family protein, and the Arp2/3 complex. Fmn2 was recruited to endoplasmic reticulum structures surrounding the MI spindle, where it nucleated actin filaments to initiate an initially slow and poorly directed motion of the spindle away from the cell center. A fast and highly directed second migration phase was driven by actin-mediated cytoplasmic streaming and occurred as the chromosomes reach a sufficient proximity to the cortex to activate the Arp2/3 complex. We propose that decisive symmetry breaking in mouse oocytes results from Fmn2-mediated perturbation of spindle position and the positive feedback loop between chromosome signal-induced Arp2/3 activation and Arp2/3-orchestrated cytoplasmic streaming that transports the chromosomes. PMID:23439682
Dou, Zhen; Liu, Xing; Wang, Wenwen; Zhu, Tongge; Wang, Xinghui; Xu, Leilei; Abrieu, Ariane; Fu, Chuanhai; Hill, Donald L.; Yao, Xuebiao
2015-01-01
The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C–MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression. PMID:26240331
Dou, Zhen; Liu, Xing; Wang, Wenwen; Zhu, Tongge; Wang, Xinghui; Xu, Leilei; Abrieu, Ariane; Fu, Chuanhai; Hill, Donald L; Yao, Xuebiao
2015-08-18
The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C-MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression.
TMAP/CKAP2 is essential for proper chromosome segregation.
Hong, Kyung Uk; Kim, Eunhee; Bae, Chang-Dae; Park, Joobae
2009-01-15
Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), is a novel mitotic spindle-associated protein which is frequently up-regulated in various malignances. However, its cellular functions remain unknown. Previous reports suggested that the cellular functions of TMAP/CKAP2 pertain to regulation of the dynamics and assembly of the mitotic spindle. To investigate its role in mitosis, we studied the effects of siRNA-mediated depletion of TMAP/CKAP2 in cultured mammalian cells. Unexpectedly, TMAP/CKAP2 knockdown did not result in significant alterations of the spindle apparatus. However, TMAP/CKAP2-depleted cells often exhibited abnormal nuclear morphologies, which were accompanied by abnormal organization of the nuclear lamina, and chromatin bridge formation between two daughter cell nuclei. Time lapse video microscopy revealed that the changes in nuclear morphology and chromatin bridge formations observed in TMAP/CKAP2-depleted cells are the result of defects in chromosome segregation. Consistent with this, the spindle checkpoint activity was significantly reduced in TMAP/CKAP2-depleted cells. Moreover, chromosome missegregation induced by depletion of TMAP/CKAP2 ultimately resulted in reduced cell viability and increased chromosomal instability. Our present findings demonstrate that TMAP/CKAP2 is essential for proper chromosome segregation and for maintaining genomic stability.
Lim, Gyubum
2017-01-01
Rad52 is well known as a key factor in homologous recombination. Here, we report that Rad52 has functions unrelated to homologous recombination in Saccharomyces cerevisiae; it plays a role in the recruitment of Mps1 to the kinetochores and the maintenance of spindle assembly checkpoint (SAC) activity. Deletion of RAD52 causes various phenotypes related to the dysregulation of chromosome biorientation. Rad52 directly affects efficient operation of the SAC and accurate chromosome segregation. Remarkably, by using an in vitro kinase assay, we found that Rad52 is a substrate of Ipl1/Aurora and Mps1 in yeast and humans. Ipl1-dependent phosphorylation of Rad52 facilitates the kinetochore accumulation of Mps1, and Mps1-dependent phosphorylation of Rad52 is important for the accurate regulation of the SAC under spindle damage conditions. Taken together, our data provide detailed insights into the regulatory mechanism of chromosome biorientation by mitotic kinases. PMID:29078282
Lim, Gyubum; Huh, Won-Ki
2017-10-31
Rad52 is well known as a key factor in homologous recombination. Here, we report that Rad52 has functions unrelated to homologous recombination in Saccharomyces cerevisiae ; it plays a role in the recruitment of Mps1 to the kinetochores and the maintenance of spindle assembly checkpoint (SAC) activity. Deletion of RAD52 causes various phenotypes related to the dysregulation of chromosome biorientation. Rad52 directly affects efficient operation of the SAC and accurate chromosome segregation. Remarkably, by using an in vitro kinase assay, we found that Rad52 is a substrate of Ipl1/Aurora and Mps1 in yeast and humans. Ipl1-dependent phosphorylation of Rad52 facilitates the kinetochore accumulation of Mps1, and Mps1-dependent phosphorylation of Rad52 is important for the accurate regulation of the SAC under spindle damage conditions. Taken together, our data provide detailed insights into the regulatory mechanism of chromosome biorientation by mitotic kinases. Published under the PNAS license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick
Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugationmore » to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.« less
Wang, Ruiwen; Burton, Janet L.; Solomon, Mark J.
2017-01-01
The anaphase-promoting complex (APC) is a ubiquitin ligase responsible for promoting the degradation of many cell cycle regulators. One of the activators and substrate-binding proteins for the APC is Cdc20. It has been shown previously that Cdc20 can promote its own degradation by the APC in normal cycling cells mainly through a cis-degradation mode (i.e. via an intramolecular mechanism). However, how Cdc20 is degraded during the spindle assembly checkpoint (SAC) is still not fully clear. In this study, we used a dual-Cdc20 system to investigate this issue and found that the cis-degradation mode is also the major pathway responsible for Cdc20 degradation during the SAC. In addition, we found that there is an inverse relationship between APCCdc20 activity and the transcriptional activity of the CDC20 promoter, which likely occurs through feedback regulation by APCCdc20 substrates, such as the cyclins Clb2 and Clb5. These findings contribute to our understanding of how the inhibition of APCCdc20 activity and enhanced Cdc20 degradation are required for proper spindle checkpoint arrest. PMID:28189585
Feitosa, Weber Beringui; Hwang, KeumSil; Morris, Patricia L
2018-02-15
During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization. Copyright © 2018 Elsevier Inc. All rights reserved.
Yeh, Pei-Chi; Yeh, Chang-Ching; Chen, Yi-Cheng; Juang, Yue-Li
2012-01-01
The spindle assembly checkpoint (SAC) is essential for ensuring the proper attachment of kinetochores to the spindle and, thus, the precise separation of paired sister chromatids during mitosis. The SAC proteins are recruited to the unattached kinetochores for activation of the SAC in prometaphase. However, it has been less studied whether activation of the SAC also requires the proteins that do not localize to the kinetochores. Here, we show that the nuclear protein RED, also called IK, a down-regulator of human leukocyte antigen (HLA) II, interacts with the human SAC protein MAD1. Two RED-interacting regions identified in MAD1 are from amino acid residues 301–340 and 439–480, designated as MAD1(301–340) and MAD1(439–480), respectively. Our observations reveal that RED is a spindle pole-associated protein that colocalizes with MAD1 at the spindle poles in metaphase and anaphase. Depletion of RED can cause a shorter mitotic timing, a failure in the kinetochore localization of MAD1 in prometaphase, and a defect in the SAC. Furthermore, the RED-interacting peptides MAD1(301–340) and MAD1(439–480), fused to enhanced green fluorescence protein, can colocalize with RED at the spindle poles in prometaphase, and their expression can abrogate the SAC. Taken together, we conclude that RED is required for kinetochore localization of MAD1, mitotic progression, and activation of the SAC. PMID:22351768
Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.
Lan, Ning; He, Xin
2012-01-01
Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS). The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ) motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor control of spindle sensitivity affects proprioceptive coding of joint position is not clear. Furthermore, what information is carried in the fusimotor signal from the motor cortex to the muscle spindle is largely unknown. In this study, we addressed the issue of communication between the central and peripheral sensorimotor systems using a computational approach based on the virtual arm (VA) model. In simulation experiments within the operational range of joint movements, the gamma static commands (γ(s)) to the spindles of both mono-articular and bi-articular muscles were hypothesized (1) to remain constant, (2) to be modulated with joint angles linearly, and (3) to be modulated with joint angles nonlinearly. Simulation results revealed a nonlinear landscape of Ia afferent with respect to both γ(s) activation and joint angle. Among the three hypotheses, the constant and linear strategies did not yield Ia responses that matched the experimental data, and therefore, were rejected as plausible strategies of spindle sensitivity control. However, if γ(s) commands were quadratically modulated with joint angles, a robust linear relation between Ia afferents and joint angles could be obtained in both mono-articular and bi-articular muscles. With the quadratic strategy of spindle sensitivity control, γ(s) commands may serve as the CNS outputs that inform the periphery of central coding of joint angles. The results suggest that the information of joint angles may be communicated between the CNS and muscles via the descending γ(s) efferent and Ia afferent signals.
Wu, Jui-Ching; Espiritu, Eugenel B; Rose, Lesilee S
2016-04-15
PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Akinori; Kikuguchi, Chisato; Morita, Masahiro
Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint,more » suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.« less
Spindle checkpoint–independent inhibition of mitotic chromosome segregation by Drosophila Mps1
Althoff, Friederike; Karess, Roger E.; Lehner, Christian F.
2012-01-01
Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation. PMID:22553353
Spindle checkpoint-independent inhibition of mitotic chromosome segregation by Drosophila Mps1.
Althoff, Friederike; Karess, Roger E; Lehner, Christian F
2012-06-01
Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.
Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling.
Sacristan, Carlos; Kops, Geert J P L
2015-01-01
Error-free chromosome segregation relies on stable connections between kinetochores and spindle microtubules. The spindle assembly checkpoint (SAC) monitors such connections and relays their absence to the cell cycle machinery to delay cell division. The molecular network at kinetochores that is responsible for microtubule binding is integrated with the core components of the SAC signaling system. Molecular-mechanistic understanding of how the SAC is coupled to the kinetochore-microtubule interface has advanced significantly in recent years. The latest insights not only provide a striking view of the dynamics and regulation of SAC signaling events at the outer kinetochore but also create a framework for understanding how that signaling may be terminated when kinetochores and microtubules connect. Copyright © 2014 Elsevier Ltd. All rights reserved.
14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression.
Mukhopadhyay, Amitabha; Sehgal, Lalit; Bose, Arunabha; Gulvady, Anushree; Senapati, Parijat; Thorat, Rahul; Basu, Srikanta; Bhatt, Khyati; Hosing, Amol S; Balyan, Renu; Borde, Lalit; Kundu, Tapas K; Dalal, Sorab N
2016-06-02
More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering.
Duan, Xing; Liu, Jun; Dai, Xiao-Xin; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Zhen-Bo; Wang, Qiang; Sun, Shao-Chen
2014-02-01
During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.
Novel phosphorylation states of the yeast spindle pole body.
Fong, Kimberly K; Zelter, Alex; Graczyk, Beth; Hoyt, Jill M; Riffle, Michael; Johnson, Richard; MacCoss, Michael J; Davis, Trisha N
2018-06-14
Phosphorylation regulates yeast spindle pole body (SPB) duplication and separation and likely regulates microtubule nucleation. We report a phosphoproteomic analysis using tandem mass spectrometry of enriched Saccharomyces cerevisiae SPBs for two cell cycle arrests, G1/S and the mitotic checkpoint, expanding on previously reported phosphoproteomic data sets. We present a novel phosphoproteomic state of SPBs arrested in G1/S by a cdc4-1 temperature sensitive mutation, with particular focus on phosphorylation events on the γ-tubulin small complex (γ-TuSC). The cdc4-1 arrest is the earliest arrest at which microtubule nucleation has occurred at the newly duplicated SPB. Several novel phosphorylation sites were identified in G1/S and during mitosis on the microtubule nucleating γ-TuSC. These sites were analyzed in vivo by fluorescence microscopy and were shown to be required for proper regulation of spindle length. Additionally, in vivo analysis of two mitotic sites in Spc97 found that phosphorylation of at least one of these sites is required for progression through the cell cycle. This phosphoproteomic data set not only broadens the scope of the phosphoproteome of SPBs, it also identifies several γ-TuSC phosphorylation sites that influence microtubule formation. © 2018. Published by The Company of Biologists Ltd.
Dilworth, David; Gudavicius, Geoff; Xu, Xiaoxue; Boyce, Andrew K J; O’Sullivan, Connor; Serpa, Jason J; Bilenky, Misha; Petrochenko, Evgeniy V; Borchers, Christoph H; Hirst, Martin; Swayne, Leigh Anne; Howard, Perry; Nelson, Christopher J
2018-01-01
Abstract FK506 binding proteins (FKBPs) catalyze the interconversion of cis-trans proline conformers in proteins. Importantly, FK506 drugs have anti-cancer and neuroprotective properties, but the effectors and mechanisms underpinning these properties are not well understood because the cellular function(s) of most FKBP proteins are unclear. FKBP25 is a nuclear prolyl isomerase that interacts directly with nucleic acids and is associated with several DNA/RNA binding proteins. Here, we show the catalytic FKBP domain binds microtubules (MTs) directly to promote their polymerization and stabilize the MT network. Furthermore, FKBP25 associates with the mitotic spindle and regulates entry into mitosis. This interaction is important for mitotic spindle dynamics, as we observe increased chromosome instability in FKBP25 knockdown cells. Finally, we provide evidence that FKBP25 association with chromatin is cell-cycle regulated by Protein Kinase C phosphorylation. This disrupts FKBP25–DNA contacts during mitosis while maintaining its interaction with the spindle apparatus. Collectively, these data support a model where FKBP25 association with chromatin and MTs is carefully choreographed to ensure faithful genome duplication. Additionally, they highlight that FKBP25 is a MT-associated FK506 receptor and potential therapeutic target in MT-associated diseases. PMID:29361176
Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores.
London, Nitobe; Ceto, Steven; Ranish, Jeffrey A; Biggins, Sue
2012-05-22
Kinetochores are the macromolecular complexes that interact with microtubules to mediate chromosome segregation. Accurate segregation requires that kinetochores make bioriented attachments to microtubules from opposite poles. Attachments between kinetochores and microtubules are monitored by the spindle checkpoint, a surveillance system that prevents anaphase until every pair of chromosomes makes proper bioriented attachments. Checkpoint activity is correlated with the recruitment of checkpoint proteins to the kinetochore. Mps1 is a conserved protein kinase that regulates segregation and the spindle checkpoint, but few of the targets that mediate its functions have been identified. Here, we show that Mps1 is the major kinase activity that copurifies with budding yeast kinetochore particles and identify the conserved Spc105/KNL-1/blinkin kinetochore protein as a substrate. Phosphorylation of conserved MELT motifs within Spc105 recruits the Bub1 protein to kinetochores, and this is reversed by protein phosphatase I (PP1). Spc105 mutants lacking Mps1 phosphorylation sites are defective in the spindle checkpoint and exhibit growth defects. Together, these data identify Spc105 as a key target of the Mps1 kinase and show that the opposing activities of Mps1 and PP1 regulate the kinetochore localization of the Bub1 protein. Copyright © 2012 Elsevier Ltd. All rights reserved.
Do centrioles generate a polar ejection force?
Wells, Jonathan
2005-01-01
A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.
A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint
Miserey-Lenkei, Stéphanie; Couëdel-Courteille, Anne; Del Nery, Elaine; Bardin, Sabine; Piel, Matthieu; Racine, Victor; Sibarita, Jean-Baptiste; Perez, Franck; Bornens, Michel; Goud, Bruno
2006-01-01
The two isoforms of the Rab6 GTPase, Rab6A and Rab6A′, regulate a retrograde transport route connecting early endosomes and the endoplasmic reticulum via the Golgi complex in interphasic cells. Here we report that when Rab6A′ function is altered cells are unable to progress normally through mitosis. Such cells are blocked in metaphase, despite displaying a normal Golgi fragmentation and with the Mad2-spindle checkpoint activated. Furthermore, the Rab6 effector p150Glued, a subunit of the dynein/dynactin complex, remains associated with some kinetochores. A similar phenotype was observed when GAPCenA, a GTPase-activating protein of Rab6, was depleted from cells. Our results suggest that Rab6A′ likely regulates the dynamics of the dynein/dynactin complex at the kinetochores and consequently the inactivation of the Mad2-spindle checkpoint. Rab6A′, through its interaction with p150Glued and GAPCenA, may thus participate in a pathway involved in the metaphase/anaphase transition. PMID:16395330
Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.
2015-01-01
Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668
Steiner, Alexander; Rybak, Katarzyna; Altmann, Melina; McFarlane, Heather E; Klaeger, Susan; Nguyen, Ngoc; Facher, Eva; Ivakov, Alexander; Wanner, Gerhard; Kuster, Bernhard; Persson, Staffan; Braun, Pascal; Hauser, Marie-Theres; Assaad, Farhah F
2016-11-01
Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant-specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule-associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle-regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Park, Yun Yeon; Nam, Hyun-Ja; Do, Mihyang; Lee, Jae-Ho
2016-01-01
RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles. PMID:27491410
Fuchs, Margit; Lambert, Herman; Jetté, Alexandra; Elowe, Sabine; Landry, Jacques; Lavoie, Josée N.
2015-01-01
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation. PMID:26496431
Fuchs, Margit; Luthold, Carole; Guilbert, Solenn M; Varlet, Alice Anaïs; Lambert, Herman; Jetté, Alexandra; Elowe, Sabine; Landry, Jacques; Lavoie, Josée N
2015-10-01
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.
Bajaj, Swati; Alam, Sk Kayum; Roy, Kumar Singha; Datta, Arindam; Nath, Somsubhra; Roychoudhury, Susanta
2016-07-01
Spindle assembly checkpoint governs proper chromosomal segregation during mitosis to ensure genomic stability. At the cellular level, this event is tightly regulated by UBE2C, an E2 ubiquitin-conjugating enzyme that donates ubiquitin to the anaphase-promoting complex/cyclosome. This, in turn, facilitates anaphase-onset by ubiquitin-mediated degradation of mitotic substrates. UBE2C is an important marker of chromosomal instability and has been associated with malignant growth. However, the mechanism of its regulation is largely unexplored. In this study, we report that UBE2C is transcriptionally activated by the gain-of-function (GOF) mutant p53, although it is transcriptionally repressed by wild-type p53. We showed that wild-type p53-mediated inhibition of UBE2C is p21-E2F4-dependent and GOF mutant p53-mediated transactivation of UBE2C is NF-Y-dependent. We further explored that DNA damage-induced wild-type p53 leads to spindle assembly checkpoint arrest by repressing UBE2C, whereas mutant p53 causes premature anaphase exit by increasing UBE2C expression in the presence of 5-fluorouracil. Identification of UBE2C as a target of wild-type and GOF mutant p53 further highlights the contribution of p53 in regulation of spindle assembly checkpoint. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Radmis, a Novel Mitotic Spindle Protein that Functions in Cell Division of Neural Progenitors
Yumoto, Takahito; Nakadate, Kazuhiko; Nakamura, Yuki; Sugitani, Yoshinobu; Sugitani-Yoshida, Reiko; Ueda, Shuichi; Sakakibara, Shin-ichi
2013-01-01
Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs. PMID:24260314
Drosophila Mgr, a Prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability
Delgehyr, Nathalie; Wieland, Uta; Rangone, Hélène; Pinson, Xavier; Mao, Guojie; Dzhindzhev, Nikola S.; McLean, Doris; Riparbelli, Maria G.; Llamazares, Salud; Callaini, Giuliano; Gonzalez, Cayetano; Glover, David M.
2012-01-01
Mutations in Drosophila merry-go-round (mgr) have been known for over two decades to lead to circular mitotic figures and loss of meiotic spindle integrity. However, the identity of its gene product has remained undiscovered. We now show that mgr encodes the Prefoldin subunit counterpart of human von Hippel Lindau binding-protein 1. Depletion of Mgr from cultured cells also leads to formation of monopolar and abnormal spindles and centrosome loss. These phenotypes are associated with reductions of tubulin levels in both mgr flies and mgr RNAi-treated cultured cells. Moreover, mgr spindle defects can be phenocopied by depleting β-tubulin, suggesting Mgr function is required for tubulin stability. Instability of β-tubulin in the mgr larval brain is less pronounced than in either mgr testes or in cultured cells. However, expression of transgenic β-tubulin in the larval brain leads to increased tubulin instability, indicating that Prefoldin might only be required when tubulins are synthesized at high levels. Mgr interacts with Drosophila von Hippel Lindau protein (Vhl). Both proteins interact with unpolymerized tubulins, suggesting they cooperate in regulating tubulin functions. Accordingly, codepletion of Vhl with Mgr gives partial rescue of tubulin instability, monopolar spindle formation, and loss of centrosomes, leading us to propose a requirement for Vhl to promote degradation of incorrectly folded tubulin in the absence of functional Prefoldin. Thus, Vhl may play a pivotal role: promoting microtubule stabilization when tubulins are correctly folded by Prefoldin and tubulin destruction when they are not. PMID:22451918
The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles.
Fan, Denggui; Liao, Fucheng; Wang, Qingyun
2017-07-01
Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE→TC→Cortex. Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 →TC 1 →Cortex 1 and Cortex 1 →Cortex 2 →Cortex 3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.
The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles
NASA Astrophysics Data System (ADS)
Fan, Denggui; Liao, Fucheng; Wang, Qingyun
2017-07-01
Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE → TC → Cortex . Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 → TC 1 → Cortex 1 and Cortex 1 → Cortex 2 → Cortex 3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.
Afshar, Katayoun; Werner, Michael E.; Tse, Yu Chung; Glotzer, Michael; Gönczy, Pierre
2010-01-01
Modulation of the microtubule and the actin cytoskeleton is crucial for proper cell division. Protein phosphorylation is known to be an important regulatory mechanism modulating these cytoskeletal networks. By contrast, there is a relative paucity of information regarding how protein phosphatases contribute to such modulation. Here, we characterize the requirements for protein phosphatase PPH-6 and its associated subunit SAPS-1 in one-cell stage C. elegans embryos. We establish that the complex of PPH-6 and SAPS-1 (PPH-6/SAPS-1) is required for contractility of the actomyosin network and proper spindle positioning. Our analysis demonstrates that PPH-6/SAPS-1 regulates the organization of cortical non-muscle myosin II (NMY-2). Accordingly, we uncover that PPH-6/SAPS-1 contributes to cytokinesis by stimulating actomyosin contractility. Furthermore, we demonstrate that PPH-6/SAPS-1 is required for the proper generation of pulling forces on spindle poles during anaphase. Our results indicate that this requirement is distinct from the role in organizing the cortical actomyosin network. Instead, we uncover that PPH-6/SAPS-1 contributes to the cortical localization of two positive regulators of pulling forces, GPR-1/2 and LIN-5. Our findings provide the first insights into the role of a member of the PP6 family of phosphatases in metazoan development. PMID:20040490
Maternal SENP7 programs meiosis architecture and embryo survival in mouse.
Huang, Chun-Jie; Wu, Di; Jiao, Xiao-Fei; Khan, Faheem Ahmed; Xiong, Cheng-Liang; Liu, Xiao-Ming; Yang, Jing; Yin, Tai-Lang; Huo, Li-Jun
2017-07-01
Understanding the mechanisms underlying abnormal egg production and pregnancy loss is significant for human fertility. SENP7, a SUMO poly-chain editing enzyme, has been regarded as a mitotic regulator of heterochromatin integrity and DNA repair. Herein, we report the roles of SENP7 in mammalian reproductive scenario. Mouse oocytes deficient in SENP7 experienced meiotic arrest at prophase I and metaphase I stages, causing a substantial decrease of mature eggs. Hyperaceylation and hypomethylation of histone H3 and up-regulation of Cdc14B/C accompanied by down-regulation of CyclinB1 and CyclinB2 were further recognized as contributors to defective M-phase entry and spindle assembly in oocytes. The spindle assembly checkpoint activated by defective spindle morphogenesis, which was also caused by mislocalization and ubiquitylation-mediated proteasomal degradation of γ-tubulin, blocked oocytes at meiosis I stage. SENP7-depleted embryos exhibited severely defective maternal-zygotic transition and progressive degeneration, resulting in nearly no blastocyst production. The disrupted epigenetic landscape on histone H3 restricted Rad51C loading onto DNA lesions due to elevated HP1α euchromatic deposition, and reduced DNA 5hmC challenged the permissive status for zygotic DNA repair, which induce embryo death. Our study pinpoints SENP7 as a novel determinant in epigenetic programming and major pathways that govern oocyte and embryo development programs in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.
Capalbo, Luisa; D'Avino, Pier Paolo; Archambault, Vincent; Glover, David M.
2011-01-01
The small GTPase Rab5 is a conserved regulator of membrane trafficking; it regulates the formation of early endosomes, their transport along microtubules, and the fusion to the target organelles. Although several members of the endocytic pathway were recently implicated in spindle organization, it is unclear whether Rab5 has any role during mitosis. Here, we describe that Rab5 is required for proper chromosome alignment during Drosophila mitoses. We also found that Rab5 associated in vivo with nuclear Lamin and mushroom body defect (Mud), the Drosophila counterpart of nuclear mitotic apparatus protein (NuMA). Consistent with this finding, Rab5 was required for the disassembly of the nuclear envelope at mitotic entry and the accumulation of Mud at the spindle poles. Furthermore, Mud depletion caused chromosome misalignment defects that resembled the defects of Rab5 RNAi cells, and double-knockdown experiments indicated that the two proteins function in a linear pathway. Our results indicate a role for Rab5 in mitosis and reinforce the emerging view of the contributions made by cell membrane dynamics to spindle function. PMID:21987826
Zhu, Tongge; Dou, Zhen; Qin, Bo; Jin, Changjiang; Wang, Xinghui; Xu, Leilei; Wang, Zhaoyang; Zhu, Lijuan; Liu, Fusheng; Gao, Xinjiao; Ke, Yuwen; Wang, Zhiyong; Aikhionbare, Felix; Fu, Chuanhai; Ding, Xia; Yao, Xuebiao
2013-12-13
The spindle assembly checkpoint (SAC) is a quality control device to ensure accurate chromosome attachment to spindle microtubule for equal segregation of sister chromatid. Aurora B is essential for SAC function by sensing chromosome bi-orientation via spatial regulation of kinetochore substrates. However, it has remained elusive as to how Aurora B couples kinetochore-microtubule attachment to SAC signaling. Here, we show that Hec1 interacts with Mps1 and specifies its kinetochore localization via its calponin homology (CH) domain and N-terminal 80 amino acids. Interestingly, phosphorylation of the Hec1 by Aurora B weakens its interaction with microtubules but promotes Hec1 binding to Mps1. Significantly, the temporal regulation of Hec1 phosphorylation orchestrates kinetochore-microtubule attachment and Mps1 loading to the kinetochore. Persistent expression of phosphomimetic Hec1 mutant induces a hyperactivation of SAC, suggesting that phosphorylation-elicited Hec1 conformational change is used as a switch to orchestrate SAC activation to concurrent destabilization of aberrant kinetochore attachment. Taken together, these results define a novel role for Aurora B-Hec1-Mps1 signaling axis in governing accurate chromosome segregation in mitosis.
Zhu, Tongge; Dou, Zhen; Qin, Bo; Jin, Changjiang; Wang, Xinghui; Xu, Leilei; Wang, Zhaoyang; Zhu, Lijuan; Liu, Fusheng; Gao, Xinjiao; Ke, Yuwen; Wang, Zhiyong; Aikhionbare, Felix; Fu, Chuanhai; Ding, Xia; Yao, Xuebiao
2013-01-01
The spindle assembly checkpoint (SAC) is a quality control device to ensure accurate chromosome attachment to spindle microtubule for equal segregation of sister chromatid. Aurora B is essential for SAC function by sensing chromosome bi-orientation via spatial regulation of kinetochore substrates. However, it has remained elusive as to how Aurora B couples kinetochore-microtubule attachment to SAC signaling. Here, we show that Hec1 interacts with Mps1 and specifies its kinetochore localization via its calponin homology (CH) domain and N-terminal 80 amino acids. Interestingly, phosphorylation of the Hec1 by Aurora B weakens its interaction with microtubules but promotes Hec1 binding to Mps1. Significantly, the temporal regulation of Hec1 phosphorylation orchestrates kinetochore-microtubule attachment and Mps1 loading to the kinetochore. Persistent expression of phosphomimetic Hec1 mutant induces a hyperactivation of SAC, suggesting that phosphorylation-elicited Hec1 conformational change is used as a switch to orchestrate SAC activation to concurrent destabilization of aberrant kinetochore attachment. Taken together, these results define a novel role for Aurora B-Hec1-Mps1 signaling axis in governing accurate chromosome segregation in mitosis. PMID:24187132
Thalamic synchrony and dynamic regulation of global forebrain oscillations.
Huguenard, John R; McCormick, David A
2007-07-01
The circuitry within the thalamus creates an intrinsic oscillatory unit whose function depends critically on reciprocal synaptic connectivity between excitatory thalamocortical relay neurons and inhibitory thalamic reticular neurons along with a robust post-inhibitory rebound mechanism in relay neurons. Feedforward and feedback connections between cortex and thalamus reinforce the thalamic oscillatory activity into larger thalamocortical networks to generate sleep spindles and spike-wave discharge of generalized absence epilepsy. The degree of synchrony within the thalamic network seems to be crucial in determining whether normal (spindle) or pathological (spike-wave) oscillations occur, and recent studies show that regulation of excitability in the reticular nucleus leads to dynamical modulation of the state of the thalamic circuit and provide a basis for explaining how a variety of unrelated genetic alterations might lead to the spike-wave phenotype. In addition, given the central role of the reticular nucleus in generating spike-wave discharge, these studies have suggested specific interventions that would prevent seizures while still allowing normal spindle generation to occur. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).
Valencia, Miguel; Artieda, Julio; Bolam, J. Paul; Mena-Segovia, Juan
2013-01-01
Slow oscillations are a hallmark of slow wave sleep. They provide a temporal framework for a variety of phasic events to occur and interact during sleep, including the expression of high-frequency oscillations and the discharge of neurons across the entire brain. Evidence shows that the emergence of distinct high-frequency oscillations during slow oscillations facilitates the communication among brain regions whose activity was correlated during the preceding waking period. While the frequencies of oscillations involved in such interactions have been identified, their dynamics and the correlations between them require further investigation. Here we analyzed the structure and dynamics of these signals in anesthetized rats. We show that spindles and gamma oscillations coexist but have distinct temporal dynamics across the slow oscillation cycle. Furthermore, we observed that spindles and gamma are functionally coupled to the slow oscillations and between each other. Following the activation of ascending pathways from the brainstem by means of a carbachol injection in the pedunculopontine nucleus, we were able to modify the gain in the gamma oscillations that are independent of the spindles while the spindle amplitude was reduced. Furthermore, carbachol produced a decoupling of the gamma oscillations that are dependent on the spindles but with no effect on their amplitude. None of the changes in the high-frequency oscillations affected the onset or shape of the slow oscillations, suggesting that slow oscillations occur independently of the phasic events that coexist with them. Our results provide novel insights into the regulation, dynamics and homeostasis of cortical slow oscillations. PMID:23844020
Marquardt, Joseph R.; Perkins, Jennifer L.; Beuoy, Kyle J.; Fisk, Harold A.
2016-01-01
Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus. PMID:27339139
Marquardt, Joseph R; Perkins, Jennifer L; Beuoy, Kyle J; Fisk, Harold A
2016-07-12
Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus.
XMAP310: A Xenopus Rescue-promoting Factor Localized to the Mitotic Spindle
Andersen, Søren S.L.; Karsenti, Eric
1997-01-01
To understand the role of microtubule-associated proteins (MAPs) in the regulation of microtubule (MT) dynamics we have characterized MAPs prepared from Xenopus laevis eggs (Andersen, S.S.L., B. Buendia, J.E. Domínguez, A. Sawyer, and E. Karsenti. 1994. J. Cell Biol. 127:1289–1299). Here we report on the purification and characterization of a 310-kD MAP (XMAP310) that localizes to the nucleus in interphase and to mitotic spindle MTs in mitosis. XMAP310 is present in eggs, oocytes, a Xenopus tissue culture cell line, testis, and brain. We have purified XMAP310 to homogeneity from egg extracts. The purified protein cross-links pure MTs. Analysis of the effect of this protein on MT dynamics by time-lapse video microscopy has shown that it increases the rescue frequency 5–10-fold and decreases the shrinkage rate twofold. It has no effect on the growth rate or the catastrophe frequency. Microsequencing data suggest that XMAP230 and XMAP310 are novel MAPs. Although the three Xenopus MAPs characterized so far, XMAP215 (Vasquez, R.J., D.L. Gard, and L. Cassimeris. 1994. J. Cell Biol. 127:985–993), XMAP230, and XMAP310 are localized to the mitotic spindle, they have distinct effects on MT dynamics. While XMAP215 promotes rapid MT growth, XMAP230 decreases the catastrophe frequency and XMAP310 increases the rescue frequency. This may have important implications for the regulation of MT dynamics during spindle morphogenesis and chromosome segregation. PMID:9362515
DOE Office of Scientific and Technical Information (OSTI.GOV)
Era, Saho; Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501; Abe, Takuya
Highlights: Black-Right-Pointing-Pointer SENP1 knockout chicken DT40 cells are hypersensitive to spindle poisons. Black-Right-Pointing-Pointer Spindle poison treatment of SENP1{sup -/-} cells leads to increased mitotic slippage. Black-Right-Pointing-Pointer Mitotic slippage in SENP1{sup -/-} cells associates with apoptosis and endoreplication. Black-Right-Pointing-Pointer SENP1 counteracts sister chromatid separation during mitotic arrest. Black-Right-Pointing-Pointer Plk1-mediated cohesion down-regulation is involved in colcemid cytotoxicity. -- Abstract: SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockoutmore » chicken DT40 cells. SENP1{sup -/-} cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2{alpha}{sup +/-} mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2{alpha} is SUMOylated during mitosis, the TOP2{alpha}{sup +/-} mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1{sup -/-} cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.« less
Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro
2014-01-01
Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.
Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro
2014-06-18
Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.
Balboula, Ahmed Z; Blengini, Cecilia S; Gentilello, Amanda S; Takahashi, Masashi; Schindler, Karen
2017-06-01
During oocyte meiotic maturation, Aurora kinase C (AURKC) is required to accomplish many critical functions including destabilizing erroneous kinetochore-microtubule (K-MT)attachments and regulating bipolar spindle assembly. How localized activity of AURKC is regulated in mammalian oocytes, however, is not fully understood. Female gametes from many species, including mouse, contain stores of maternal transcripts that are required for downstream developmental events. We show here that depletion of maternal RNA in mouse oocytes resulted in impaired meiotic progression, increased incidence of chromosome misalignment and abnormal spindle formation at metaphase I (Met I), and cytokinesis defects. Importantly, depletion of maternal RNA perturbed the localization and activity of AURKC within the chromosomal passenger complex (CPC). These perturbations were not observed when translation was inhibited by cycloheximide (CHX) treatment. These results demonstrate a translation-independent function of maternal RNA to regulate AURKC-CPC function in mouse oocytes. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Centriole assembly and the role of Mps1: defensible or dispensable?
Pike, Amanda N; Fisk, Harold A
2011-04-14
The Mps1 protein kinase is an intriguing and controversial player in centriole assembly. Originally shown to control duplication of the budding yeast spindle pole body, Mps1 is present in eukaryotes from yeast to humans, the nematode C. elegans being a notable exception, and has also been shown to regulate the spindle checkpoint and an increasing number of cellular functions relating to genomic stability. While its function in the spindle checkpoint appears to be both universally conserved and essential in most organisms, conservation of its originally described function in spindle pole duplication has proven controversial, and it is less clear whether Mps1 is essential for centrosome duplication outside of budding yeast. Recent studies of Mps1 have identified at least two distinct functions for Mps1 in centriole assembly, while simultaneously supporting the notion that Mps1 is dispensable for the process. However, the fact that at least one centrosomal substrate of Mps1 is conserved from yeast to humans down to the phosphorylation site, combined with evidence demonstrating the exquisite control exerted over centrosomal Mps1 levels suggest that the notion of being essential may not be the most important of distinctions.
Cao, Yan; Du, Juan; Chen, Dandan; Wang, Qian; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Weng, Jing; Liang, Yuanjing; Ma, Wei
2016-01-01
ABSTRACT Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes. PMID:27433972
Cao, Yan; Du, Juan; Chen, Dandan; Wang, Qian; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Weng, Jing; Liang, Yuanjing; Ma, Wei
2016-10-01
Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes.
Zhang, Xiaojuan; Yin, Qingqing; Ling, Youguo; Zhang, Yanhong; Ma, Runlin; Ma, Qingjun; Cao, Cheng; Zhong, Hui; Liu, Xuedong; Xu, Quanbin
2011-08-15
Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G 2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses.
Zhang, Xiaojuan; Yin, Qingqing; Ling, Youguo; Zhang, Yanhong; Ma, Runlin; Ma, Qingjun; Cao, Cheng; Zhong, Hui
2011-01-01
Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses. PMID:21778823
Mitosis-specific phosphorylation of PML at T409 regulates spindle checkpoint.
Jin, J; Liu, J
2016-08-31
During mitosis, Promyelocytic leukemia nuclear bodies (PML NBs) change dramatically in morphology and composition, but little is known about function of PML in mitosis. Here, we show that PML is phosphorylated at T409 (PML p409) in a mitosis-specific manner. More importantly, PML p409 contributes to maintain the duration of pro-metaphase and regulates spindle checkpoint. Deficient PML p409 caused a shortening of pro-metaphase and challenged the nocodazole-triggered mitotic arrest. T409A mutation led to a higher frequency of misaligned chromosomes on metaphase plate, and subsequently death in late mitosis. In addition, inhibition of PML p409 repressed growth of tumor cells, suggesting that PML p409 is a potential target for cancer therapy. Collectively, our study demonstrated an important phosphorylated site of PML, which contributed to explore the role of PML in mitosis.
Plk1 and Mps1 Cooperatively Regulate the Spindle Assembly Checkpoint in Human Cells.
von Schubert, Conrad; Cubizolles, Fabien; Bracher, Jasmine M; Sliedrecht, Tale; Kops, Geert J P L; Nigg, Erich A
2015-07-07
Equal mitotic chromosome segregation is critical for genome integrity and is monitored by the spindle assembly checkpoint (SAC). We have previously shown that the consensus phosphorylation motif of the essential SAC kinase Monopolar spindle 1 (Mps1) is very similar to that of Polo-like kinase 1 (Plk1). This prompted us to ask whether human Plk1 cooperates with Mps1 in SAC signaling. Here, we demonstrate that Plk1 promotes checkpoint signaling at kinetochores through the phosphorylation of at least two Mps1 substrates, including KNL-1 and Mps1 itself. As a result, Plk1 activity enhances Mps1 catalytic activity as well as the recruitment of the SAC components Mad1:C-Mad2 and Bub3:BubR1 to kinetochores. We conclude that Plk1 strengthens the robustness of SAC establishment at the onset of mitosis and supports SAC maintenance during prolonged mitotic arrest. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing.
Moura, Margarida; Osswald, Mariana; Leça, Nelson; Barbosa, João; Pereira, António J; Maiato, Helder; Sunkel, Claudio E; Conde, Carlos
2017-05-02
Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.
LOX is a novel mitotic spindle-associated protein essential for mitosis.
Boufraqech, Myriem; Wei, Darmood; Weyemi, Urbain; Zhang, Lisa; Quezado, Martha; Kalab, Petr; Kebebew, Electron
2016-05-17
LOX regulates cancer progression in a variety of human malignancies. It is overexpressed in aggressive cancers and higher expression of LOX is associated with higher cancer mortality. Here, we report a new function of LOX in mitosis. We show that LOX co-localizes to mitotic spindles from metaphase to telophase, and p-H3(Ser10)-positive cells harbor strong LOX staining. Further, purification of mitotic spindles from synchronized cells show that LOX fails to bind to microtubules in the presence of nocodazole, whereas paclitaxel treated samples showed enrichment in LOX expression, suggesting that LOX binds to stabilized microtubules. LOX knockdown leads to G2/M phase arrest; reduced p-H3(Ser10), cyclin B1, CDK1, and Aurora B. Moreover, LOX knockdown significantly increased sensitivity of cancer cells to chemotherapeutic agents that target microtubules. Our findings suggest that LOX has a role in cancer cell mitosis and may be targeted to enhance the activity of microtubule inhibitors for cancer therapy.
A system for comparison of boring parameters of mini-HDD machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsaulis, F.R.
A system has been developed to accurately evaluate changes in performance of a mini-horizontal directional drilling (HDD) system in the backreaming/pullback portion of a bore as the parameters influencing the backream are changed. Parameters incorporated in the study include spindle rotation rate, rate of pull, fluid flow rate, and backreamer design. The boring system is able to run at variable, operator-determined rates of spindle rotation and pullback speed utilizing electronic feedback controls for regulation. Spindle torque and pullback force are continuously measured and recorded giving an indication of the performance of the unit. A method has also been developed tomore » measure the pull load on the installed service line to determine the effect of the boring parameters on the service line. Variability of soil along the bore path is measured and quantified using a soil sampling system developed for the study. Sample results obtained with the system are included in the report. 2 refs., 5 figs., 2 tabs.« less
A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends
Kern, David M.; Nicholls, Peter K.; Page, David C.
2016-01-01
The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257
Characterization of Topographically Specific Sleep Spindles in Mice
Kim, Dongwook; Hwang, Eunjin; Lee, Mina; Sung, Hokun; Choi, Jee Hyun
2015-01-01
Study Objective: Sleep spindles in humans have been classified as slow anterior and fast posterior spindles; recent findings indicate that their profiles differ according to pharmacology, pathology, and function. However, little is known about the generation mechanisms within the thalamocortical system for different types of spindles. In this study, we aim to investigate the electrophysiological behaviors of the topographically distinctive spindles within the thalamocortical system by applying high-density EEG and simultaneous thalamic LFP recordings in mice. Design: 32-channel extracranial EEG and 2-channel thalamic LFP were recorded simultaneously in freely behaving mice to acquire spindles during spontaneous sleep. Subjects: Hybrid F1 male mice of C57BL/6J and 129S4/svJae. Measurements and Results: Spindle events in each channel were detected by spindle detection algorithm, and then a cluster analysis was applied to classify the topographically distinctive spindles. All sleep spindles were successfully classified into 3 groups: anterior, posterior, and global spindles. Each spindle type showed distinct thalamocortical activity patterns regarding the extent of similarity, phase synchrony, and time lags between cortical and thalamic areas during spindle oscillation. We also found that sleep slow waves were likely to associate with all types of sleep spindles, but also that the ongoing cortical decruitment/recruitment dynamics before the onset of spindles and their relationship with spindle generation were also variable, depending on the spindle types. Conclusion: Topographically specific sleep spindles show distinctive thalamocortical network behaviors. Citation: Kim D, Hwang E, Lee M, Sung H, Choi JH. Characterization of topographically specific sleep spindles in mice. SLEEP 2015;38(1):85–96. PMID:25325451
Automated frequency analysis of synchronous and diffuse sleep spindles.
Huupponen, Eero; Saastamoinen, Antti; Niemi, Jukka; Virkkala, Jussi; Hasan, Joel; Värri, Alpo; Himanen, Sari-Leena
2005-01-01
Sleep spindles have different properties in different localizations in the cortex. First main objective was to develop an amplitude-independent multi-channel spindle detection method. Secondly the method was applied to study the anteroposterior frequency differences of pure synchronous (visible bilaterally, either frontopolarly or centrally) and diffuse (visible bilaterally both frontopolarly and centrally) sleep spindles. A previously presented spindle detector based on the fuzzy reasoning principle and a level detector were combined to form a multi-channel spindle detector. The spindle detector had a 76.17% true positive rate and 0.93% false-positive rate. Pure central spindles were faster and pure frontal spindles were slower than diffuse spindles measured simultaneously from both locations. The study of frequency relations of spindles might give new information about thalamocortical sleep spindle generating mechanisms. Copyright (c) 2005 S. Karger AG, Basel.
Crowder, Marina E.; Flynn, Jonathan R.; McNally, Karen P.; Cortes, Daniel B.; Price, Kari L.; Kuehnert, Paul A.; Panzica, Michelle T.; Andaya, Armann; Leary, Julie A.; McNally, Francis J.
2015-01-01
Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin. PMID:26133383
Larson, Matthew E.; Bement, William M.
2017-01-01
Proper spindle positioning at anaphase onset is essential for normal tissue organization and function. Here we develop automated spindle-tracking software and apply it to characterize mitotic spindle dynamics in the Xenopus laevis embryonic epithelium. We find that metaphase spindles first undergo a sustained rotation that brings them on-axis with their final orientation. This sustained rotation is followed by a set of striking stereotyped rotational oscillations that bring the spindle into near contact with the cortex and then move it rapidly away from the cortex. These oscillations begin to subside soon before anaphase onset. Metrics extracted from the automatically tracked spindles indicate that final spindle position is determined largely by cell morphology and that spindles consistently center themselves in the XY-plane before anaphase onset. Finally, analysis of the relationship between spindle oscillations and spindle position relative to the cortex reveals an association between cortical contact and anaphase onset. We conclude that metaphase spindles in epithelia engage in a stereotyped “dance,” that this dance culminates in proper spindle positioning and orientation, and that completion of the dance is linked to anaphase onset. PMID:28100633
Eichenlaub-Ritter, Ursula; Staubach, Nora; Trapphoff, Tom
2010-12-01
It has been known for more than half a century that the risk of conceiving a child with trisomy increases with advanced maternal age. However, the origin of the high susceptibility to nondisjunction of whole chromosomes and precocious separation of sister chromatids, leading to aneuploidy in aged oocytes and embryos derived from them, cannot be traced back to a single disturbance and mechanism. Instead, analysis of recombination patterns of meiotic chromosomes of spread oocytes from embryonal ovary, and of origins and exchange patterns of extra chromosomes in trisomies, as well as morphological and molecular studies of oocytes and somatic cells from young and aged females, show chromosome-specific risk patterns and cellular aberrations related to the chronological age of the female. In addition, analysis of the function of meiotic- and cell-cycle-regulating genes in oogenesis, and the study of the spindle and chromosomal status of maturing oocytes, suggest that several events contribute synergistically to errors in chromosome segregation in aged oocytes in a chromosome-specific fashion. For instance, loss of cohesion may differentially predispose chromosomes with distal or pericentromeric chiasmata to nondisjunction. Studies on expression in young and aged oocytes from human or model organisms, like the mouse, indicate that the presence and functionality/activity of gene products involved in cell-cycle regulation, spindle formation and organelle integrity may be altered in aged oocytes, thus contributing to a high risk of error in chromosome segregation in meiosis I and II. Genes that are often altered in aged mouse oocytes include MCAK (mitotic-centromere-associated protein), a microtubule depolymerase, and AURKB (Aurora kinase B), a protein of the chromosomal passenger complex that has many targets and can also phosphorylate and regulate MCAK localization and activity. Therefore we explored the role of MCAK in maturing mouse oocytes by immunofluorescence, overexpression of a MCAK-EGFP (enhanced green fluorescent protein) fusion protein, knockdown of MCAK by RNAi (RNA interference) and inhibition of AURKB. The observations suggest that MCAK is involved in spindle regulation, chromosome congression and cell-cycle control, and that reductions in mRNA and protein in a context of permissive SAC (spindle assembly checkpoint) predispose to aneuploidy. Failure to recruit MCAK to centromeres and low expression patterns, as well as disturbances in regulation of enzyme localization and activity, e.g. due to alterations in activity of AURKB, may therefore contribute to maternal age-related rises in aneuploidy in mammalian oocytes.
Mechanisms of Chromosome Congression during Mitosis
Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin
2017-01-01
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called “direct congression” pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called “tubulin code” might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed. PMID:28218637
Modulation of miR-21 signaling by MPS1 in human glioblastoma
Maachani, Uday B.; Tandle, Anita; Shankavaram, Uma; Kramp, Tamalee; Camphausen, Kevin A.
2016-01-01
Monopolar spindle 1 (MPS1) is an essential spindle assembly checkpoint (SAC) kinase involved in determining spindle integrity. Beyond its mitotic functions, it has been implicated in several other signaling pathways. Our earlier studies have elaborated on role of MPS1 in glioblastoma (GBM) radiosensitization. In this study using reverse phase protein arrays (RPPAs), we assessed MPS1 mediated cell signaling pathways and demonstrated that inhibiting MPS1 could upregulate the expression of the tumor suppressor PDCD4 and MSH2 genes, by down regulating micro RNA-21 (miR-21). In GBMs miR-21 expression is significantly elevated and is associated with chemo and radioresistance. Both MPS1 and miR-21 depletion suppressed GBM cell proliferation, whereas, ectopic expression of miR-21 rescued GBM cell growth from MPS1 inhibition. Further, we demonstrate that MPS1 mediates phosphorylation of SMAD3 but not SMAD2 in GBM cells; A possible mechanism behind miR-21 modulation by MPS1. Collectively, our results shed light onto an important role of MPS1 in TGF-β/SMAD signaling via miR-21 regulation. We also, show the prognostic effect of miR-21, PDCD4 and MSH2 levels to patient survival across different GBM molecular subtypes. This scenario in which miR-21 is modulated by MPS1 inhibition may be exploited as a potential target for effective GBM therapy. PMID:25991676
Modulation of miR-21 signaling by MPS1 in human glioblastoma.
Maachani, Uday B; Tandle, Anita; Shankavaram, Uma; Kramp, Tamalee; Camphausen, Kevin
2016-08-16
Monopolar spindle 1 (MPS1) is an essential spindle assembly checkpoint (SAC) kinase involved in determining spindle integrity. Beyond its mitotic functions, it has been implicated in several other signaling pathways. Our earlier studies have elaborated on role of MPS1 in glioblastoma (GBM) radiosensitization. In this study using reverse phase protein arrays (RPPAs), we assessed MPS1 mediated cell signaling pathways and demonstrated that inhibiting MPS1 could upregulate the expression of the tumor suppressor PDCD4 and MSH2 genes, by down regulating micro RNA-21 (miR-21). In GBMs miR-21 expression is significantly elevated and is associated with chemo and radioresistance. Both MPS1 and miR-21 depletion suppressed GBM cell proliferation, whereas, ectopic expression of miR-21 rescued GBM cell growth from MPS1 inhibition. Further, we demonstrate that MPS1 mediates phosphorylation of SMAD3 but not SMAD2 in GBM cells; A possible mechanism behind miR-21 modulation by MPS1. Collectively, our results shed light onto an important role of MPS1 in TGF-β/SMAD signaling via miR-21 regulation. We also, show the prognostic effect of miR-21, PDCD4 and MSH2 levels to patient survival across different GBM molecular subtypes. This scenario in which miR-21 is modulated by MPS1 inhibition may be exploited as a potential target for effective GBM therapy.
The crack effect on instability in a machine tool spindle with gas bearings
NASA Astrophysics Data System (ADS)
Huang, Bo-Wun
2005-09-01
Gas-bearing spindles are required for increased spindle speed in precise machining. Due to manufacturing flaws or cyclic loading, cracks frequently appear in a rotating spindle systems. Cracks markedly affect the dynamic characteristics of rotating machinery. Hence, in this study, high-speed spindles with gas bearings and the crack effect on the instability dynamics are considered. Most investigations on dynamic characteristics of the spindle system were confined to ball-bearing-type spindles. This work examines the dynamic instability in a cracked rotating spindle system with gas bearings. A round Euler-Bernoulli beam is used to approximate the spindle. The Hamilton principle is applied to derive the equation of motion for the spindle system. The effects of crack depth, rotation speed and provided air pressure on the dynamic instability of a rotating spindle system are studied
Micromanipulation studies of the mitotic apparatus in sand dollar eggs.
Hiramoto, Y; Nakano, Y
1988-01-01
Mechanical properties of the mitotic spindle and the effects of various operations of the mitotic apparatus on the chromosome movement and spindle elongation were investigated in fertilized eggs and blastomeres of the sand dollar, Clypeaster japonicus. On the basis of results with mechanical stretching and compression of the spindle with a pair of microneedles and the behavior of an oil drop microinjected into the spindle, it was concluded that the equatorial region of the spindle is mechanically weaker than the half-spindle region. Anaphase chromosome movement occurred in the spindle from which an aster had been removed or separated with its polar end and in the spindle in which the interzonal region had been removed. This fact indicates that chromosomes move poleward in anaphase by forces generated near the kinetochores in the half-spindle. Because of the effects of separation or removal of an aster from the spindle on the spindle elongation in anaphase and the behavior of the aster, it was concluded that the spindle elongation in anaphase is caused by pulling forces generated by asters attached to the ends of the spindle.
Latchoumane, Charles-Francois V; Ngo, Hong-Viet V; Born, Jan; Shin, Hee-Sup
2017-07-19
While the interaction of the cardinal rhythms of non-rapid-eye-movement (NREM) sleep-the thalamo-cortical spindles, hippocampal ripples, and the cortical slow oscillations-is thought to be critical for memory consolidation during sleep, the role spindles play in this interaction is elusive. Combining optogenetics with a closed-loop stimulation approach in mice, we show here that only thalamic spindles induced in-phase with cortical slow oscillation up-states, but not out-of-phase-induced spindles, improve consolidation of hippocampus-dependent memory during sleep. Whereas optogenetically stimulated spindles were as efficient as spontaneous spindles in nesting hippocampal ripples within their excitable troughs, stimulation in-phase with the slow oscillation up-state increased spindle co-occurrence and frontal spindle-ripple co-occurrence, eventually resulting in increased triple coupling of slow oscillation-spindle-ripple events. In-phase optogenetic suppression of thalamic spindles impaired hippocampus-dependent memory. Our results suggest a causal role for thalamic sleep spindles in hippocampus-dependent memory consolidation, conveyed through triple coupling of slow oscillations, spindles, and ripples. Copyright © 2017 Elsevier Inc. All rights reserved.
Mölle, Matthias; Bergmann, Til O.; Marshall, Lisa; Born, Jan
2011-01-01
Study Objectives: Thalamo-cortical spindles driven by the up-state of neocortical slow (< 1 Hz) oscillations (SOs) represent a candidate mechanism of memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Design: Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Measurements and Results: Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for “initial” SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. Conclusions: The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing. Citation: Mölle M; Bergmann TO; Marshall L; Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. SLEEP 2011;34(10):1411–1421. PMID:21966073
Sleep spindles in humans: insights from intracranial EEG and unit recordings
Andrillon, Thomas; Nir, Yuval; Staba, Richard J.; Ferrarelli, Fabio; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak
2012-01-01
Sleep spindles are an electroencephalographic (EEG) hallmark of non-rapid eye movement (NREM) sleep and are believed to mediate many sleep-related functions, from memory consolidation to cortical development. Spindles differ in location, frequency, and association with slow waves, but whether this heterogeneity may reflect different physiological processes and potentially serve different functional roles remains unclear. Here we utilized a unique opportunity to record intracranial depth EEG and single-unit activity in multiple brain regions of neurosurgical patients to better characterize spindle activity in human sleep. We find that spindles occur across multiple neocortical regions, and less frequently also in the parahippocampal gyrus and hippocampus. Most spindles are spatially restricted to specific brain regions. In addition, spindle frequency is topographically organized with a sharp transition around the supplementary motor area between fast (13-15Hz) centroparietal spindles often occurring with slow wave up-states, and slow (9-12Hz) frontal spindles occurring 200ms later on average. Spindle variability across regions may reflect the underlying thalamocortical projections. We also find that during individual spindles, frequency decreases within and between regions. In addition, deeper sleep is associated with a reduction in spindle occurrence and spindle frequency. Frequency changes between regions, during individual spindles, and across sleep may reflect the same phenomenon, the underlying level of thalamocortical hyperpolarization. Finally, during spindles neuronal firing rates are not consistently modulated, although some neurons exhibit phase-locked discharges. Overall, anatomical considerations can account well for regional spindle characteristics, while variable hyperpolarization levels can explain differences in spindle frequency. PMID:22159098
Mölle, Matthias; Bergmann, Til O; Marshall, Lisa; Born, Jan
2011-10-01
Thalamo-cortical spindles driven by the up-state of neocortical slow (< 1 Hz) oscillations (SOs) represent a candidate mechanism of memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.
Thalamocortical and intracortical laminar connectivity determines sleep spindle properties.
Krishnan, Giri P; Rosen, Burke Q; Chen, Jen-Yung; Muller, Lyle; Sejnowski, Terrence J; Cash, Sydney S; Halgren, Eric; Bazhenov, Maxim
2018-06-27
Sleep spindles are brief oscillatory events during non-rapid eye movement (NREM) sleep. Spindle density and synchronization properties are different in MEG versus EEG recordings in humans and also vary with learning performance, suggesting spindle involvement in memory consolidation. Here, using computational models, we identified network mechanisms that may explain differences in spindle properties across cortical structures. First, we report that differences in spindle occurrence between MEG and EEG data may arise from the contrasting properties of the core and matrix thalamocortical systems. The matrix system, projecting superficially, has wider thalamocortical fanout compared to the core system, which projects to middle layers, and requires the recruitment of a larger population of neurons to initiate a spindle. This property was sufficient to explain lower spindle density and higher spatial synchrony of spindles in the superficial cortical layers, as observed in the EEG signal. In contrast, spindles in the core system occurred more frequently but less synchronously, as observed in the MEG recordings. Furthermore, consistent with human recordings, in the model, spindles occurred independently in the core system but the matrix system spindles commonly co-occurred with core spindles. We also found that the intracortical excitatory connections from layer III/IV to layer V promote spindle propagation from the core to the matrix system, leading to widespread spindle activity. Our study predicts that plasticity of intra- and inter-cortical connectivity can potentially be a mechanism for increased spindle density as has been observed during learning.
Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.
Li, Mo; Bian, Chunjing; Yu, Xiaochun
2014-01-01
Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.
Ray, Laura B.; Sockeel, Stéphane; Soon, Melissa; Bore, Arnaud; Myhr, Ayako; Stojanoski, Bobby; Cusack, Rhodri; Owen, Adrian M.; Doyon, Julien; Fogel, Stuart M.
2015-01-01
A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing “background” sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11–16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles. PMID:26441604
The Clathrin-dependent Spindle Proteome*
Rao, Sushma R.; Flores-Rodriguez, Neftali; Page, Scott L.; Wong, Chin; Robinson, Phillip J.; Chircop, Megan
2016-01-01
The mitotic spindle is required for chromosome congression and subsequent equal segregation of sister chromatids. These processes involve a complex network of signaling molecules located at the spindle. The endocytic protein, clathrin, has a “moonlighting” role during mitosis, whereby it stabilizes the mitotic spindle. The signaling pathways that clathrin participates in to achieve mitotic spindle stability are unknown. Here, we assessed the mitotic spindle proteome and phosphoproteome in clathrin-depleted cells using quantitative MS/MS (data are available via ProteomeXchange with identifier PXD001603). We report a spindle proteome that consists of 3046 proteins and a spindle phosphoproteome consisting of 5157 phosphosites in 1641 phosphoproteins. Of these, 2908 (95.4%) proteins and 1636 (99.7%) phosphoproteins are known or predicted spindle-associated proteins. Clathrin-depletion from spindles resulted in dysregulation of 121 proteins and perturbed signaling to 47 phosphosites. The majority of these proteins increased in mitotic spindle abundance and six of these were validated by immunofluorescence microscopy. Functional pathway analysis confirmed the reported role of clathrin in mitotic spindle stabilization for chromosome alignment and highlighted possible new mechanisms of clathrin action. The data also revealed a novel second mitotic role for clathrin in bipolar spindle formation. PMID:27174698
The Clathrin-dependent Spindle Proteome.
Rao, Sushma R; Flores-Rodriguez, Neftali; Page, Scott L; Wong, Chin; Robinson, Phillip J; Chircop, Megan
2016-08-01
The mitotic spindle is required for chromosome congression and subsequent equal segregation of sister chromatids. These processes involve a complex network of signaling molecules located at the spindle. The endocytic protein, clathrin, has a "moonlighting" role during mitosis, whereby it stabilizes the mitotic spindle. The signaling pathways that clathrin participates in to achieve mitotic spindle stability are unknown. Here, we assessed the mitotic spindle proteome and phosphoproteome in clathrin-depleted cells using quantitative MS/MS (data are available via ProteomeXchange with identifier PXD001603). We report a spindle proteome that consists of 3046 proteins and a spindle phosphoproteome consisting of 5157 phosphosites in 1641 phosphoproteins. Of these, 2908 (95.4%) proteins and 1636 (99.7%) phosphoproteins are known or predicted spindle-associated proteins. Clathrin-depletion from spindles resulted in dysregulation of 121 proteins and perturbed signaling to 47 phosphosites. The majority of these proteins increased in mitotic spindle abundance and six of these were validated by immunofluorescence microscopy. Functional pathway analysis confirmed the reported role of clathrin in mitotic spindle stabilization for chromosome alignment and highlighted possible new mechanisms of clathrin action. The data also revealed a novel second mitotic role for clathrin in bipolar spindle formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Synchronization and Propagation of Global Sleep Spindles
de Souza, Rafael Toledo Fernandes; Gerhardt, Günther Johannes Lewczuk; Schönwald, Suzana Veiga; Rybarczyk-Filho, José Luiz; Lemke, Ney
2016-01-01
Sleep spindles occur thousands of times during normal sleep and can be easily detected by visual inspection of EEG signals. These characteristics make spindles one of the most studied EEG structures in mammalian sleep. In this work we considered global spindles, which are spindles that are observed simultaneously in all EEG channels. We propose a methodology that investigates both the signal envelope and phase/frequency of each global spindle. By analysing the global spindle phase we showed that 90% of spindles synchronize with an average latency time of 0.1 s. We also measured the frequency modulation (chirp) of global spindles and found that global spindle chirp and synchronization are not correlated. By investigating the signal envelopes and implementing a homogeneous and isotropic propagation model, we could estimate both the signal origin and velocity in global spindles. Our results indicate that this simple and non-invasive approach could determine with reasonable precision the spindle origin, and allowed us to estimate a signal speed of 0.12 m/s. Finally, we consider whether synchronization might be useful as a non-invasive diagnostic tool. PMID:26963102
Leal, Silvana Gomes; Romano, Alessandro Pecego Martins; Monteiro, Rafael Veríssimo; Melo, Cristiano Barros de; Vasconcelos, Pedro Fernando da Costa; Castro, Márcio Botelho de
2016-02-01
Due to the importance that Howler monkeys have on the yellow fever (YF) epidemiological sylvatic cycle in Brazil, more accurate morphological diagnostic criteria needs to be established, especially considering the differences that may exist between the genera of Brazilian non-human primates (NHPs) involved in yellow fever virus (YFV) epizootics. Records of YF epizootics in NHPs in Brazil between 2007 and 2009 were obtained from the Brazilian Ministry of Health database to select YF positive (n=98) Howler monkeys (Alouatta sp.) for this study. The changes described in the histopathological reports were categorized by organ and their frequencies calculated. The most frequent lesions observed in the animals with YF were hepatocyte apoptosis (Councilman body formation), midzonal hepatocyte necrosis, steatosis, liver hemorrhage, inflammatory mononuclear cell infiltration of the liver, renal acute tubular necrosis and interstitial nephritis. Midzonal hepatocyte necrosis, steatosis and hemorrhage presented positive correlations with apoptosis of hepatocytes, suggesting strong YFV pathogenic effect association; they were also the main histopathological changes in the Alouatta sp. A pronounced negative correlation between apoptosis of hepatocytes and hepatic mononuclear cell infiltration pointed to significant histopathological differences between YFV infection in Howler monkeys and humans. The results warn that NHPs may exhibit different response patterns following YFV infection and require a more careful diagnosis. Presumptive diagnosis based on primate histopathological lesions may contribute to public health service control.
Choy, John S.; O'Toole, Eileen; Schuster, Breanna M.; Crisp, Matthew J.; Karpova, Tatiana S.; McNally, James G.; Winey, Mark; Gardner, Melissa K.; Basrai, Munira A.
2013-01-01
How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles. PMID:23825022
Choy, John S; O'Toole, Eileen; Schuster, Breanna M; Crisp, Matthew J; Karpova, Tatiana S; McNally, James G; Winey, Mark; Gardner, Melissa K; Basrai, Munira A
2013-09-01
How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.
Inversin modulates the cortical actin network during mitosis
Werner, Michael E.; Ward, Heather H.; Phillips, Carrie L.; Miller, Caroline; Gattone, Vincent H.
2013-01-01
Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv−/− mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv−/− mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin. PMID:23515530
Singh, Sudhir Kumar; Pandey, Himanshu; Al-Bassam, Jawdat; Gheber, Larisa
2018-05-01
Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.
Plante, D T; Goldstein, M R; Landsness, E C; Peterson, M J; Riedner, B A; Ferrarelli, F; Wanger, T; Guokas, J J; Tononi, G; Benca, R M
2013-03-20
Sleep spindles are believed to mediate several sleep-related functions including maintaining disconnection from the external environment during sleep, cortical development, and sleep-dependent memory consolidation. Prior studies that have examined sleep spindles in major depressive disorder (MDD) have not demonstrated consistent differences relative to control subjects, which may be due to sex-related variation and limited spatial resolution of spindle detection. Thus, this study sought to characterize sleep spindles in MDD using high-density electroencephalography (hdEEG) to examine the topography of sleep spindles across the cortex in MDD, as well as sex-related variation in spindle topography in the disorder. All-night hdEEG recordings were collected in 30 unipolar MDD participants (19 women) and 30 age and sex-matched controls. Topography of sleep spindle density, amplitude, duration, and integrated spindle activity (ISA) were assessed to determine group differences. Spindle parameters were compared between MDD and controls, including analysis stratified by sex. As a group, MDD subjects demonstrated significant increases in frontal and parietal spindle density and ISA compared to controls. When stratified by sex, MDD women demonstrated increases in frontal and parietal spindle density, amplitude, duration, and ISA; whereas MDD men demonstrated either no differences or decreases in spindle parameters. Given the number of male subjects, this study may be underpowered to detect differences in spindle parameters in male MDD participants. This study demonstrates topographic and sex-related differences in sleep spindles in MDD. Further research is warranted to investigate the role of sleep spindles and sex in the pathophysiology of MDD. Copyright © 2012 Elsevier B.V. All rights reserved.
Demanuele, Charmaine; Bartsch, Ullrich; Baran, Bengi; Khan, Sheraz; Vangel, Mark G; Cox, Roy; Hämäläinen, Matti; Jones, Matthew W; Stickgold, Robert; Manoach, Dara S
2017-01-01
Schizophrenia patients have correlated deficits in sleep spindle density and sleep-dependent memory consolidation. In addition to spindle density, memory consolidation is thought to rely on the precise temporal coordination of spindles with slow waves (SWs). We investigated whether this coordination is intact in schizophrenia and its relation to motor procedural memory consolidation. Twenty-one chronic medicated schizophrenia patients and 17 demographically matched healthy controls underwent two nights of polysomnography, with training on the finger tapping motor sequence task (MST) on the second night and testing the following morning. We detected SWs (0.5-4 Hz) and spindles during non-rapid eye movement (NREM) sleep. We measured SW-spindle phase-amplitude coupling and its relation with overnight improvement in MST performance. Patients did not differ from controls in the timing of SW-spindle coupling. In both the groups, spindles peaked during the SW upstate. For patients alone, the later in the SW upstate that spindles peaked and the more reliable this phase relationship, the greater the overnight MST improvement. Regression models that included both spindle density and SW-spindle coordination predicted overnight improvement significantly better than either parameter alone, suggesting that both contribute to memory consolidation. Schizophrenia patients show intact spindle-SW temporal coordination, and these timing relationships, together with spindle density, predict sleep-dependent memory consolidation. These relations were seen only in patients suggesting that their memory is more dependent on optimal spindle-SW timing, possibly due to reduced spindle density. Interventions to improve memory may need to increase spindle density while preserving or enhancing the coordination of NREM oscillations. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Lack of Diaph3 relaxes the spindle checkpoint causing the loss of neural progenitors
Damiani, Devid; Goffinet, André M.; Alberts, Arthur; Tissir, Fadel
2016-01-01
The diaphanous homologue Diaph3 (aka mDia2) is a major regulator of actin cytoskeleton. Loss of Diaph3 has been constantly associated with cytokinesis failure ascribed to impaired accumulation of actin in the cleavage furrow. Here we report that Diaph3 is required before cell fission, to ensure the accurate segregation of chromosomes. Inactivation of the Diaph3 gene causes a massive loss of cortical progenitor cells, with subsequent depletion of intermediate progenitors and neurons, and results in microcephaly. In embryonic brain extracts, Diaph3 co-immunoprecipitates with BubR1, a key regulator of the spindle assembly checkpoint (SAC). Diaph3-deficient cortical progenitors have decreased levels of BubR1 and fail to properly activate the SAC. Hence, they bypass mitotic arrest and embark on anaphase in spite of incorrect chromosome segregation, generating aneuploidy. Our data identify Diaph3 as a major guard of cortical progenitors, unravel novel functions of Diaphanous formins and add insights into the pathobiology of microcephaly. PMID:27848932
Dual personality of Mad1: regulation of nuclear import by a spindle assembly checkpoint protein.
Cairo, Lucas V; Ptak, Christopher; Wozniak, Richard W
2013-01-01
Nuclear transport is a dynamic process that can be modulated in response to changes in cellular physiology. We recently reported that the transport activity of yeast nuclear pore complexes (NPCs) is altered in response to kinetochore-microtubule (KT-MT) interaction defects. Specifically, KT detachment from MTs activates a signaling pathway that prevents the nuclear import of cargos by the nuclear transport factor Kap121p. This loss of Kap121p-mediated import is thought to influence the nuclear environment, including the phosphorylation state of nuclear proteins. A key regulator of this process is the spindle assembly checkpoint protein Mad1p. In response to unattached KTs, Mad1p dynamically cycles between NPCs and KTs. This cycling appears to induce NPC molecular rearrangements that prevent the nuclear import of Kap121p-cargo complexes. Here, we discuss the underlying mechanisms and the physiological relevance of Mad1p cycling and the inhibition of Kap121p-mediated nuclear import, focusing on outstanding questions within the pathway.
Shimizu, Hiroyuki; Nagamori, Ippei; Yabuta, Norikazu; Nojima, Hiroshi
2009-09-01
Cyclin G-associated kinase (GAK) is an association partner of clathrin heavy chain (CHC) and is essential for clathrin-mediated membrane trafficking. Here, we report two novel functions of GAK: maintenance of proper centrosome maturation and of mitotic chromosome congression. Indeed, GAK knockdown by siRNA caused cell-cycle arrest at metaphase, which indicates that GAK is required for proper mitotic progression. We found that this impaired mitotic progression was due to activation of the spindle-assembly checkpoint, which senses protruded, misaligned or abnormally condensed chromosomes in GAK-siRNA-treated cells. GAK knockdown also caused multi-aster formation, which was due to abnormal fragmentation of pericentriolar material, but not of the centrioles. Moreover, GAK and CHC cooperated in the same pathway and interacted in mitosis to regulate the formation of a functional spindle. Taken together, we conclude that GAK and clathrin function cooperatively not only in endocytosis, but also in mitotic progression.
Flattop regulates basal body docking and positioning in mono- and multiciliated cells
Gegg, Moritz; Böttcher, Anika; Burtscher, Ingo; Hasenoeder, Stefan; Van Campenhout, Claude; Aichler, Michaela; Walch, Axel; Grant, Seth G N; Lickert, Heiko
2014-01-01
Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. In this study, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3, and Fltp localize directly adjacent to the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease, and asymmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.03842.001 PMID:25296022
BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression.
Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin
2009-08-21
Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.
BRCA1 Interaction of Centrosomal Protein Nlp Is Required for Successful Mitotic Progression*♦
Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin
2009-01-01
Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability. PMID:19509300
Yukawa, Masashi; Kawakami, Tomoki; Okazaki, Masaki; Kume, Kazunori; Tang, Ngang Heok; Toda, Takashi
2017-01-01
Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly. PMID:29021344
The Spindle Cell Neoplasms of the Oral Cavity.
Shamim, Thorakkal
2015-01-01
Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology.
The Spindle Cell Neoplasms of the Oral Cavity
Shamim, Thorakkal
2015-01-01
Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology. PMID:26351482
FANCA safeguards interphase and mitosis during hematopoiesis in vivo
Abdul-Sater, Zahi; Cerabona, Donna; Sierra Potchanant, Elizabeth; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz
2015-01-01
Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in non-hematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material (PCM) to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA cross-linking and antimitotic chemotherapeutics in primary FANCA−/− cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that the FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers. PMID:26366677
Min, Yoo Hong; Kim, Wootae; Kim, Ja-Eun
2016-01-01
Mitotic progression is crucial for the maintenance of chromosomal stability. A proper progression is ensured by the activities of multiple kinases. One of these enzymes, the serine/threonine kinase Aurora A, is required for proper mitosis through the regulation of centrosome and spindle assembly. In this study, we functionally characterized a newly developed Aurora kinase A inhibitor, TC-A2317. In human lung cancer cells, TC-A2317 slowed proliferation by causing aberrant formation of centrosome and microtubule spindles and prolonging the duration of mitosis. Abnormal mitotic progression led to accumulation of cells containing micronuclei or multinuclei. Furthermore, TC-A2317–treated cells underwent apoptosis, autophagy or senescence depending on cell type. In addition, TC-A2317 inactivated the spindle assembly checkpoint triggered by paclitaxel, thereby exacerbating mitotic catastrophe. Consistent with this, the expression level of Aurora A in tumors was inversely correlated with survival in lung cancer patients. Collectively, these data suggest that inhibition of Aurora kinase A using TC-A2317 is a promising target for anti-cancer therapeutics. PMID:27713168
Conde, Carlos; Osswald, Mariana; Barbosa, João; Moutinho-Santos, Tatiana; Pinheiro, Diana; Guimarães, Sofia; Matos, Irina; Maiato, Helder; Sunkel, Claudio E
2013-06-12
Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.
Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing
Moura, Margarida; Osswald, Mariana; Leça, Nelson; Barbosa, João; Pereira, António J; Maiato, Helder; Sunkel, Claudio E; Conde, Carlos
2017-01-01
Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit. DOI: http://dx.doi.org/10.7554/eLife.25366.001 PMID:28463114
Conde, Carlos; Osswald, Mariana; Barbosa, João; Moutinho-Santos, Tatiana; Pinheiro, Diana; Guimarães, Sofia; Matos, Irina; Maiato, Helder; Sunkel, Claudio E
2013-01-01
Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function. PMID:23685359
TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching
Ye, Qiaozhen; Rosenberg, Scott C.; Moeller, Arne; ...
2015-04-28
The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from amore » signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.« less
Wang, Dong-Hui; Han, Zhe; Kong, Xiang-Wei; Ma, Yu-Zhen; Yun, Zhi-Zhong; Liang, Cheng-Guang
2017-01-01
Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation. PMID:28177917
Physiological and ultrastructural analysis of elongating mitotic spindles reactivated in vitro
1986-01-01
We have developed a simple procedure for isolating mitotic spindles from the diatom Stephanopyxis turris and have shown that they undergo anaphase spindle elongation in vitro upon addition of ATP. The isolated central spindle is a barrel-shaped structure with a prominent zone of microtubule overlap. After ATP addition greater than 75% of the spindle population undergoes distinct structural rearrangements: the spindles on average are longer and the two half-spindles are separated by a distinct gap traversed by only a small number of microtubules, the phase-dense material in the overlap zone is gone, and the peripheral microtubule arrays have depolymerized. At the ultrastructural level, we examined serial cross-sections of spindles after 1-, 5-, and 10-min incubations in reactivation medium. Microtubule depolymerization distal to the poles is confirmed by the increased number of incomplete, i.e., c-microtubule profiles specifically located in the region of overlap. After 10 min we see areas of reduced microtubule number which correspond to the gaps seen in the light microscope and an overall reduction in the number of half-spindle microtubules to about one-third the original number. The changes in spindle structure are highly specific for ATP, are dose-dependent, and do not occur with nonhydrolyzable nucleotide analogues. Spindle elongation and gap formation are blocked by 10 microM vanadate, equimolar mixtures of ATP and AMPPNP, and by sulfhydryl reagents. This process is not affected by nocodazole, erythro-9-[3-(2-hydroxynonyl)]adenine, cytochalasin D, and phalloidin. In the presence of taxol, the extent of spindle elongation is increased; however, distinct gaps still form between the two half- spindles. These results show that the response of isolated spindles to ATP is a complex process consisting of several discrete steps including initiation events, spindle elongation mechanochemistry, controlled central spindle microtubule plus-end depolymerization, and loss of peripheral microtubules. They also show that the microtubule overlap zone is an important site of ATP action and suggest that spindle elongation in vitro is best explained by a mechanism of microtubule- microtubule sliding. Spindle elongation in vitro cannot be accounted for by cytoplasmic forces pulling on the poles or by microtubule polymerization. PMID:3733882
A defect-driven diagnostic method for machine tool spindles
Vogl, Gregory W.; Donmez, M. Alkan
2016-01-01
Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition. PMID:28065985
Differential Diagnosis of Benign Spindle Cell Lesions.
Magro, Gaetano
2018-03-01
Spindle cell lesions of the breast cover a wide spectrum of diseases ranging from reactive tumor-like lesions to high-grade malignant tumors. The recognition of the benign spindle cell tumor-like lesions (nodular fasciitis; reactive spindle cell nodule after biopsy, inflammatory pseudotumor/inflammatory myofibroblastic tumor; fascicular variant of pseudoangiomatous stromal hyperplasia) and tumors (myofibroblastoma, benign fibroblastic spindle cell tumor, leiomyoma, schwannoma, spindle cell lipoma, solitary fibrous tumor, myxoma) is crucial to avoid confusion with morphologically similar but more aggressive bland-appearing spindle cell tumors, such as desmoid-type fibromatosis, low-grade (fibromatosis-like) spindle cell carcinoma, low-grade fibrosarcoma/myofibroblastic sarcoma and dermatofibrosarcoma protuberans. Copyright © 2017 Elsevier Inc. All rights reserved.
Sompallae, Ramakrishna; Stavropoulou, Vaia; Houde, Mathieu; Masucci, Maria G.
2008-01-01
Tripeptidyl-peptidase II (TPPII) is a serine peptidase highly expressed in malignant Burkitt’s lymphoma cells (BL). We have previously shown that overexpression of TPPII correlates with chromosomal instability, centrosomal and mitotic spindle abnormalities and resistance to apoptosis induced by spindle poisons. Furthermore, TPPII knockdown by RNAi was associated with endoreplication and the accumulation of polynucleated cells that failed to complete cell division, indicating a role of TPPII in the cell cycle. Here we have applied a global approach of gene expression analysis to gain insights on the mechanism by which TPPII regulates this phenotype. mRNA profiling of control and TPPII knockdown BL cells identified one hundred and eighty five differentially expressed genes. Functional categorization of these genes highlighted major physiological functions such as apoptosis, cell cycle progression, cytoskeleton remodeling, proteolysis, and signal transduction. Pathways and protein interactome analysis revealed a significant enrichment in components of MAP kinases signaling. These findings suggest that TPPII influences a wide network of signaling pathways that are regulated by MAPKs and exerts thereby a pleiotropic effect on biological processes associated with cell survival, proliferation and genomic instability. PMID:19787088
Heterogeneous Origins of Human Sleep Spindles in Different Cortical Layers.
Hagler, Donald J; Ulbert, István; Wittner, Lucia; Erőss, Loránd; Madsen, Joseph R; Devinsky, Orrin; Doyle, Werner; Fabó, Dániel; Cash, Sydney S; Halgren, Eric
2018-03-21
Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis. Spindles (10-16 Hz) were largest and most common in upper and middle channels, with limited involvement of deep channels. Many spindles were observed in only upper or only middle channels, but approximately half occurred in both. In spindles involving both middle and upper channels, the spindle envelope onset in middle channels led upper by ∼25-50 ms on average. The phase relationship between spindle waves in upper and middle channels varied dynamically within spindle epochs, and across individuals. Current source density analysis demonstrated that upper and middle channel spindles were both generated by an excitatory supragranular current sink while an additional deep source was present for middle channel spindles only. Only middle channel spindles were accompanied by deep low (25-50 Hz) and high (70-170 Hz) gamma activity. These results suggest that upper channel spindles are generated by supragranular pyramids, and middle channel by infragranular. Possibly, middle channel spindles are generated by core thalamocortical afferents, and upper channel by matrix. The concurrence of these patterns could reflect engagement of cortical circuits in the integration of more focal (core) and distributed (matrix) aspects of memory. These results demonstrate that at least two distinct intracortical systems generate human sleep spindles. SIGNIFICANCE STATEMENT Bursts of ∼14 Hz oscillations, lasting ∼1 s, have been recognized for over 80 years as cardinal features of mammalian sleep. Recent findings suggest that they play a key role in organizing cortical activity during memory consolidation. We used linear microelectrode arrays to study their intracortical organization in humans. We found that spindles could be divided into two types. One mainly engages upper layers of the cortex, which are considered to be specialized for associative activity. The other engages both upper and middle layers, including those devoted to sensory input. The interaction of these two spindle types may help organize the interaction of sensory and associative aspects of memory consolidation. Copyright © 2018 the authors 0270-6474/18/383013-13$15.00/0.
Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast
Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.
2017-01-01
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355
Self-organization mechanisms in the assembly and maintenance of bipolar spindles
NASA Astrophysics Data System (ADS)
Burbank, Kendra Stewart
Anastral, meiotic spindles are thought to be organized differently from astral, mitotic spindles, but the field has lacked basic structural information required to describe and model them, including the location of microtubule nucleating sites and minus ends. How the various components of spindles act together to establish and maintain the dynamic bipolar structure of spindles is not understood. We measure the distributions of oriented microtubules (MTs) in metaphase anastral spindles in Xenopus extracts by fluorescence speckle microscopy and cross-correlation analysis. We localized plus ends by tubulin incorporation and combined this with the orientation data to infer the localization of minus ends. We find that minus ends are localized throughout the spindle, sparsely at the equator and at higher concentrations near the poles. This dads to the surprising conclusion that spindles contained many short MTs, not connected to the spindle poles. Based on these data, we propose a slide-and-cluster model based on four known molecular activities: MT nucleation near chromosomes, the sliding of MTs by a plus-enddirected motor, the clustering of their minus ends by a minus-end-directed motor, and the loss of MTs by dynamic instability. This work demonstrates how the interplay between two types of motors together with continual nucleation of MTs by chromosomes could organize the MTs into spindles. Our model applies to overlapping, nonkinetochore MTs in anastral spindles, and perhaps also to interpolar MTs in astral spindles. We show mathematically that the slide-and-cluster mechanism robustly forms bipolar spindles a stable steady-state length, sometimes with sharp poles. This model accounts for several experimental observations that were difficult to explain with existing models, and is the first self contained model for anastral spindle assembly, MT sliding (known as poleward flux), and spindle bistability. Our experimental results support the slide-and-cluster scenario; most significantly, we find that MT sliding slows near spindle poles, confirming the models primary prediction.
Analysis and topology optimization design of high-speed driving spindle
NASA Astrophysics Data System (ADS)
Wang, Zhilin; Yang, Hai
2018-04-01
The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.
Electronically controlled cable wrapper
Young, Thomas M.
1984-01-01
A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.
Electronically controlled cable wrapper
Young, T.M.
1982-08-17
A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.
Goldstein, Michael R.; Cook, Jesse D.; Plante, David T.
2015-01-01
Objective Endogenous neurosteroids that potentiate the GABAA receptor are thought to enhance the generation of sleep spindles. This study tested the hypothesis that the 5α-reductase inhibitor finasteride, an agent associated with reductions in neurosteroids, would be associated with reduced sleep spindles in men referred for polysomnography. Methods Spectral analysis and spindle waveform detection were performed on electroencephalographic (EEG) sleep data in the 11–16Hz sigma band, as well as several subranges, from 27 men taking finasteride and 27 matched comparison patients (ages 18 to 81 years). Results No significant differences between groups were observed for spectral power or sleep spindle morphology measures, including spindle density, amplitude, duration, and integrated spindle activity. Conclusions Contrary to our hypothesis, these findings demonstrate that finasteride is not associated with alterations in sleep spindle range activity or spindle morphology parameters. PMID:26494125
Sleep spindles and intelligence in early childhood-developmental and trait-dependent aspects.
Ujma, Péter P; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert
2016-12-01
Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our previous work in older subjects revealed sex differences in the sleep spindle correlates of IQ, which was never investigated in small children before. We investigated the relationship between age, Raven Colored Progressive Matrices (CPM) scores and sleep spindles in 28 young children (age 4-8 years, 15 girls). We specifically investigated sex differences in the psychometric correlates of sleep spindles. We also aimed to separate the correlates of sleep spindles that are because of age-related maturation from other effects that reflect an age-independent relationship between sleep spindles and general intelligence. Our results revealed a modest positive correlation between fast spindle amplitude and age. Raven CPM scores positively correlated with both slow and fast spindle amplitude, but this effect remained a tendency in males and vanished after correcting for the effects of age. Age-corrected correlations between Raven CPM scores and both slow and fast spindle amplitude were only significant in females. Overall, our results show that in male children sleep spindles are a maturational marker, but in female children they indicate trait-like intelligence, in line with previous studies in adolescent and adult subjects. Thalamocortical white matter connectivity may be the underlying mechanism behind both higher spindle amplitude and higher intelligence in female, but not male subjects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Kim, Do-Kyun; Kim, Soo-Ji; Kang, Dong-Hyun
2015-07-01
This study was undertaken to compare the effect of the spindle and stomacher for detaching microorganisms from fresh vegetables. The spindle is an apparatus for detaching microorganisms from food surfaces, which was developed in our laboratory. When processed with the spindle, food samples were barely disrupted, the original shape was maintained, and the diluent was clear, facilitating further detection analysis more easily than with stomacher treatment. The four-section spindle consists of four sample bag containers (A, B, C, and D) to economize time and effort by simultaneously processing four samples. The aerobic plate counts (APC) of 50 fresh vegetable samples were measured following spindle and stomacher treatment. Correlations between the two methods for each section of the spindle and stomacher were very high (R(2) = 0.9828 [spindle compartment A; Sp A], 0.9855 [Sp B], 0.9848 [Sp C], and 0.9851 [Sp D]). One-tenth milliliter of foodborne pathogens suspensions was inoculated onto surfaces of food samples, and ratios of spindle-to-stomacher enumerations were close to 1.00 log CFU/g between every section of the spindle and stomacher. One of the greatest features of the spindle is that it can treat large-sized samples that exceed 200 g. Uncut whole apples, green peppers, potatoes, and tomatoes were processed by the spindle and by hand massaging by 2 min. Large-sized samples were also assayed for aerobic plate count and recovery of the three foodborne pathogens, and the difference between each section of the spindle and hand massaging was not significant (P > 0.05). This study demonstrated that the spindle apparatus can be an alternative device for detaching microorganisms from all fresh vegetable samples for microbiological analysis by the food processing industry.
The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.
Walsh, Charles J
2012-01-01
Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.
Rincon, Sergio A.; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D.; Tran, Phong T.
2017-01-01
Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors. PMID:28513584
Cellular abundance of Mps1 and the role of its carboxyl terminal tail in substrate recruitment.
Sun, Tingting; Yang, Xiaomei; Wang, Wei; Zhang, Xiaojuan; Xu, Quanbin; Zhu, Songcheng; Kuchta, Robert; Chen, Guanjun; Liu, Xuedong
2010-12-03
Mps1 is a protein kinase that regulates normal mitotic progression and the spindle checkpoint in response to spindle damage. The levels of Mps1 are relatively low in cells during interphase but elevated in mitosis or upon activation of the spindle checkpoint, although the dynamic range of Mps1 expression and the Mps1 catalytic mechanism have not been carefully characterized. Our recent structural studies of the Mps1 kinase domain revealed that the carboxyl-terminal tail region of Mps1 is unstructured, raising the question of whether this region has any functional role in Mps1 catalysis. Here we first determined the cellular abundance of Mps1 during cell cycle progression and found that Mps1 levels vary between 60,000 per cell in early G(1) and 110,000 per cell during mitosis. We studied phosphorylation of a number of Mps1 substrates in vitro and in culture cells. Unexpectedly, we found that the unstructured carboxyl-terminal region of Mps1 plays an essential role in substrate recruitment. Kinetics studies using the purified recombinant wild type and mutant kinases indicate that the carboxyl-terminal tail is largely dispensable for autophosphorylation of Mps1 but critical for trans-phosphorylation of substrates in vitro and in cultured cells. Mps1 mutant without the unstructured tail region is defective in mediating spindle assembly checkpoint activation. Our results underscore the importance of the unstructured tail region of Mps1 in kinase activation.
Yukawa, Masashi; Kawakami, Tomoki; Okazaki, Masaki; Kume, Kazunori; Tang, Ngang Heok; Toda, Takashi
2017-12-01
Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end-directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end-directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly. © 2017 Yukawa et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Levesque, Aime A.; Howard, Louisa; Gordon, Michael B.; Compton, Duane A.
2003-01-01
We examined spindle morphology and chromosome alignment in vertebrate cells after simultaneous perturbation of the chromokinesin Kid and either NuMA, CENP-E, or HSET. Spindle morphology and chromosome alignment after simultaneous perturbation of Kid and either HSET or CENP-E were no different from when either HSET or CENP-E was perturbed alone. However, short bipolar spindles with organized poles formed after perturbation of both Kid and NuMA in stark contrast to splayed spindle poles observed after perturbation of NuMA alone. Spindles were disorganized if Kid, NuMA, and HSET were perturbed, indicating that HSET is sufficient for spindle organization in the absence of Kid and NuMA function. In addition, chromosomes failed to align efficiently at the spindle equator after simultaneous perturbation of Kid and NuMA despite appropriate kinetochore-microtubule interactions that generated chromosome movement at normal velocities. These data indicate that a functional relationship between the chromokinesin Kid and the spindle pole organizing protein NuMA influences spindle morphology, and we propose that this occurs because NuMA forms functional linkages between kinetochore and nonkinetochore microtubules at spindle poles. In addition, these data show that both Kid and NuMA contribute to chromosome alignment in mammalian cells. PMID:12972545
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.
Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien
2018-05-21
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. Copyright © 2018 Elsevier Inc. All rights reserved.
Validation of the plain chest radiograph for epidemiologic studies of airflow obstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musk, A.W.
The chest radiographs of 125 industrial workers from rural New South Wales were examined for overinflated lungs, with and without attenuated midzonal vessels. Although the mean values of a comprehensive range of pulmonary function tests in the whole group were within normal limits, the nine subjects whose radiographs showed overinflated lungs and attenuated vessels had significantly impaired pulmonary function in comparison with 85 subjects with normal radiographs. The mean values for these nine subjects, expressed as a percentage of the mean value for subjects with normal radiographs, were: forced expiratory volume in 1 second, 75%; total lung capacity, 107%; residualmore » volume, 143%; transpulmonary pressure at maximum inspiration, 60%; static deflation compliance, 158%; lung volume at transpulmonary pressure 10 cm H/sub 2/O, 132%; transfer factor, 79%; and transfer factor/alveolar volume, 77%. Similar results were obtained by a second observer. Those subjects with overinflation but no vascular attenuation had significantly larger mean values for vital capacity and alveolar volume but no significant difference in total lung capacity or other tests of the mechanical properties of the lungs. Agreement on the presence of a positive sign between the two observers expressed as a percentage of those considered positive by either was 81% for overinflation and 62% for attenuated midzonal vessels. The results indicate that in groups of subjects with normal-average values of pulmonary function, the plain chest radiograph may provide information concerning pulmonary structure that is reflected in tests of function.« less
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Sitnikova, Evgenija Y.; Pavlov, Alexey N.; Grubov, Vadim V.; Koronovskii, Alexey A.; Khramova, Marina V.
2015-03-01
Sleep spindles are known to appear spontaneously in the thalamocortical neuronal network of the brain during slow-wave sleep; pathological processes in the thalamocortical network may be the reason of the absence epilepsy. The aim of the present work is to study developed changes in the time-frequency structure of sleep spindles during the progressive development of the absence epilepsy in WAG/Rij rats. EEG recordings were made at age 7 and 9 months. Automatic recognition and subsequent analysis of sleep spindles on the EEG were performed using the continuous wavelet transform. The duration of epileptic discharges and the total duration of epileptic activity were found to increase with age, while the duration of sleep spindles, conversely, decreased. In terms of the mean frequency, sleep spindles could be divided into three classes: `slow' (mean frequency 9.3Hz), `medium' (11.4Hz), and `fast' (13.5Hz). Slow and medium (transitional) spindles in five-month-old animals showed increased frequency from the beginning to the end of the spindle. The more intense the epilepsy is, the shorter are the durations of spindles of all types. The mean frequencies of `medium' and `fast' spindles were higher in rats with more intense signs of epilepsy. Overall, high epileptic activity in WAG/Rij rats was linked with significant changes in spindles of the transitional type, with less marked changes in the two traditionally identified types of spindle, slow and fast.
Mechanical design principles of a mitotic spindle.
Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François
2014-12-18
An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.
Optimal design of high-speed loading spindle based on ABAQUS
NASA Astrophysics Data System (ADS)
Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai
2017-12-01
The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed
Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast
NASA Astrophysics Data System (ADS)
Betterton, Meredith; Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary; O'Toole, Eileen; Crapo, Ammon; Hough, Loren; McIntosh, J. Richard; Glaser, Matthew
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and crosslinkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. Here we describe a physical model that exhibits de novo bipolar spindle formation. We began with previously published data on fission-yeast spindle-pole-body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive crosslinkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self assembly. By varying features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive crosslinkers alone. We also identify characteristic failed states of spindle assembly, which are avoided by creation and maintenance of antiparallel microtubule overlaps. DMR-0847685, DMR-1551095, DMR-1420736, K25GM110486, R01GM104976, R01GM033787.
Relationship between focal penicillin spikes and cortical spindles in the cerveau isolé cat.
McLachlan, R S; Kaibara, M; Girvin, J P
1983-01-01
Using the unanesthetized, cerveau isolé preparation in the cat, the association between artificially induced penicillin (PCN) spikes and spontaneously occurring electrocorticographic (ECoG) spindles was investigated. Spikes were elicited by surface application of small pledgets of PCN. After the application of PCN, there was a decrease in spindle amplitude but no change in frequency, duration, or spindle wave frequency in the area of the focus. Examination of the times of occurrence of the spikes and spindles disclosed that in the majority of cases, within a few minutes of the initiation of the foci, there was very high simultaneity, usually 100% between the occurrences of these two events. Examination of the times of occurrence of the spikes within the ECoG spindles failed to disclose any compelling evidence which would favor either the hypothesis that spikes "trigger" spindles or the hypothesis that spindles predispose to focal spikes. Thus, whether spikes trigger spindles, or spikes simply occur in a nonspecific manner during the occurrence of the spindle, or whether it is a combination of both these explanations, must remain an open question on the basis of the data available.
Topographical distribution of fast and slow sleep spindles in medicated depressive patients.
Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru
2014-10-01
To compare the properties of sleep spindles between healthy subjects and medicated patients with major depressive episode, including frequency range, spectra power, and spatial distribution of spindle power. Continuous 16-channel EEG was used to record nocturnal sleep in healthy control subjects and medicated depressive patients. Recordings were analyzed for changes in EEG power spectra and power topography. Additionally, we graphically demonstrated the pattern of spatial distribution of each type of sleep spindle, divided into fast (12.5-14 Hz) and slow spindles (11-12.5 Hz). Sleep EEG records of depressive subjects exhibited a significantly higher amplitude of slow spindles in the prefrontal region, compared with the healthy controls (P < 0.01). Fast spindles were dominant in the centroparietal region in both depressive patients and the control group. Enhanced slow spindles in the prefrontal region were observed in the medicated depressive patients and not in the healthy controls. The frequency of fast spindles in depressive patients was globally higher than that in healthy participants. The alteration in sleep spindles seen in medicated depressive subjects may reflect a pharmacological modulation of synaptic function involving the thalamic-reticular and thalamocortical mechanisms.
Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis
NASA Astrophysics Data System (ADS)
Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping
2013-05-01
The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.
Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration
Bernis, Cyril; Swift-Taylor, Beth; Nord, Matthew; Carmona, Sarah; Chook, Yuh Min; Forbes, Douglass J.
2014-01-01
The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel. PMID:24478460
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Mei-Hua; Liu, Chin-Yu; Lin, Chiao-Min
2012-03-01
2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1), a 2-phenyl-1,8-naphthyridin-4-one (2-PN) derivative, was synthesized and evaluated as an effective antimitotic agent in our laboratory. However, the molecular mechanisms are uncertain. In this study, HKL-1 was demonstrated to induce multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human leukemia HL-60 cells. Western blotting showed that HKL-1 induces mitotic catastrophe in HL-60 cells through regulating mitotic phase-specific kinases (down-regulating CDK1, cyclin B1, CENP-E, and aurora B) and regulating the expression of Bcl-2 family proteins (down-regulating Bcl-2 and up-regulating Bax and Bak), followed by caspase-9/-3 cleavage. These findings suggest that HKL-1more » appears to exert its cytotoxicity toward HL-60 cells in culture by inducing mitotic catastrophe. Highlights: ► HKL-1 is a potential antimitotic agent against HL-60 cells. ► HKL-1 induces spindle disruption and sustained resulted in mitotic catastrophe. ► CENP-E and aurora B protein expressions significantly reduced. ► Bcl-2 family protein expressions altered and caspase-9/-3 activation. ► HKL-1 is an attractive candidate for possible use as a novel antimitotic agent.« less
Ververis, Antonis; Christodoulou, Andri; Christoforou, Maria; Kamilari, Christina; Lederer, Carsten W; Santama, Niovi
2016-01-01
Katanins are microtubule (MT)-severing AAA proteins with high phylogenetic conservation throughout the eukaryotes. They have been functionally implicated in processes requiring MT remodeling, such as spindle assembly in mitosis and meiosis, assembly/disassembly of flagella and cilia and neuronal morphogenesis. Here, we uncover a novel family of katanin-like 2 proteins (KATNAL2) in mouse, consisting of five alternatively spliced isoforms encoded by the Katnal2 genomic locus. We further demonstrate that in vivo these isoforms are able to interact with themselves, with each other and moreover directly and independently with MRP/MinD-type P-loop NTPases Nubp1 and Nubp2, which are integral components of centrioles, negative regulators of ciliogenesis and implicated in centriole duplication in mammalian cells. We find KATNAL2 localized on interphase MTs, centrioles, mitotic spindle, midbody and the axoneme and basal body of sensory cilia in cultured murine cells. shRNAi of Katnal2 results in inefficient cytokinesis and severe phenotypes of enlarged cells and nuclei, increased numbers of centrioles and the manifestation of aberrant multipolar mitotic spindles, mitotic defects, chromosome bridges, multinuclearity, increased MT acetylation and an altered cell cycle pattern. Silencing or stable overexpression of KATNAL2 isoforms drastically reduces ciliogenesis. In conclusion, KATNAL2s are multitasking enzymes involved in the same cell type in critically important processes affecting cytokinesis, MT dynamics, and ciliogenesis and are also implicated in cell cycle progression.
Sleep spindles and intelligence: evidence for a sexual dimorphism.
Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin
2014-12-03
Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males. Copyright © 2014 the authors 0270-6474/14/3416358-11$15.00/0.
NASA Astrophysics Data System (ADS)
Feng, Jianjun; Li, Chengzhe; Wu, Zhi
2017-08-01
As an important part of the valve opening and closing controller in engine, camshaft has high machining accuracy requirement in designing. Taking the high-speed camshaft grinder spindle system as the research object and the spindle system performance as the optimizing target, this paper firstly uses Solidworks to establish the three-dimensional finite element model (FEM) of spindle system, then conducts static analysis and the modal analysis by applying the established FEM in ANSYS Workbench, and finally uses the design optimization function of the ANSYS Workbench to optimize the structure parameter in the spindle system. The study results prove that the design of the spindle system fully meets the production requirements, and the performance of the optimized spindle system is promoted. Besides, this paper provides an analysis and optimization method for other grinder spindle systems.
Jiang, Hua; Wang, Fen-Fei; Wu, Yu-Ting; Zhou, Xi; Huang, Xue-Yong; Zhu, Jun; Gao, Ju-Fang; Dong, Rui-Bin; Cao, Kai-Ming; Yang, Zhong-Nan
2009-09-01
The spindle is essential for chromosome segregation during meiosis, but the molecular mechanism of meiotic spindle organization in higher plants is still not well understood. Here, we report on the identification and characterization of a plant-specific protein, MULTIPOLAR SPINDLE 1 (MPS1), which is involved in spindle organization in meiocytes of Arabidopsis thaliana. The homozygous mps1 mutant exhibits male and female sterility. Light microscopy showed that mps1 mutants produced multiple uneven spores during anther development, most of which aborted in later stages. Cytological analysis showed that chromosome segregation was abnormal in mps1 meiocytes. Immunolocalization showed unequal bipolar or multipolar spindles in mps1 meiocytes, which indicated that aberrant spindles resulted in disordered chromosome segregation. MPS1 encodes a 377-amino-acid protein with putative coiled-coil motifs. In situ hybridization analysis showed that MPS1 is strongly expressed in meiocytes.
Video Views and Reviews: Cytokinesis--A Phenomenon Overlooked Too Often
ERIC Educational Resources Information Center
Watters, Christopher
2005-01-01
In this paper, the author reviews recently published videos that depict the roles played by myosin II in contraction of the cortical ring during cellularization and cytokinesis in early development (Royou et al., 2004), by spindle and astral microtubules in regulating the formation of cleavage furrows during the cleavage of primary spermatocytes…
Currie, Joshua D; Stewman, Shannon; Schimizzi, Gregory; Slep, Kevin C; Ma, Ao; Rogers, Stephen L
2011-11-01
Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.
Sattayakhom, Apsorn; Chunglok, Warangkana; Ittarat, Wanida; Chamulitrat, Walee
2014-01-01
To investigate the role of NADPH oxidase homolog Nox1 at an early step of cell transformation, we utilized human gingival mucosal keratinocytes immortalized by E6/E7 of human papillomavirus (HPV) type 16 (GM16) to generate progenitor cell lines either by chronic ethanol exposure or overexpression with Nox1. Among several cobblestone epithelial cell lines obtained, two distinctive spindle cell lines - FIB and NuB1 cells were more progressively transformed exhibiting tubulogenesis and anchorage-independent growth associated with increased invasiveness. These spindle cells acquired molecular markers of epithelial mesenchymal transition (EMT) including mesenchymal vimentin and simple cytokeratins (CK) 8 and 18 as well as myogenic alpha-smooth muscle actin and caldesmon. By overexpression and knockdown experiments, we showed that Nox1 on a post-translational level regulated the stability of CK18 in an ROS-, phosphorylation- and PKCepilon-dependent manner. PKCepilon may thus be used as a therapeutic target for EMT inhibition. Taken together, Nox1 accelerates neoplastic progression by regulating structural intermediate filaments leading to EMT of immortalized human gingival epithelial cells.
Roostalu, Johanna; Cade, Nicholas I.; Surrey, Thomas
2016-01-01
Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilises growing microtubule ends and stimulates microtubule nucleation by stabilising early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homolog) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking TPX2’s interaction with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells. PMID:26414402
Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas
2015-11-01
Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.
The spindle protein CHICA mediates localization of the chromokinesin Kid to the mitotic spindle.
Santamaria, Anna; Nagel, Susanna; Sillje, Herman H W; Nigg, Erich A
2008-05-20
Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA-depleted cells form shorter spindles and fail to organize a proper metaphase plate, highly reminiscent of the phenotype observed upon depletion of the chromokinesin Kid, a key mediator of polar ejection forces [2-6]. We further show that CHICA coimmunoprecipitates with Kid and is required for the spindle localization of Kid without affecting its chromosome association. Moreover, upon depletion of either CHICA or Kid (or both proteins simultaneously), chromosomes collapse onto the poles of monastrol-induced monopolar spindles. We conclude that CHICA represents a novel interaction partner of the chromokinesin Kid that is required for the generation of polar ejection forces and chromosome congression.
Monitoring Method of Cutting Force by Using Additional Spindle Sensors
NASA Astrophysics Data System (ADS)
Sarhan, Ahmed Aly Diaa; Matsubara, Atsushi; Sugihara, Motoyuki; Saraie, Hidenori; Ibaraki, Soichi; Kakino, Yoshiaki
This paper describes a monitoring method of cutting forces for end milling process by using displacement sensors. Four eddy-current displacement sensors are installed on the spindle housing of a machining center so that they can detect the radial motion of the rotating spindle. Thermocouples are also attached to the spindle structure in order to examine the thermal effect in the displacement sensing. The change in the spindle stiffness due to the spindle temperature and the speed is investigated as well. Finally, the estimation performance of cutting forces using the spindle displacement sensors is experimentally investigated by machining tests on carbon steel in end milling operations under different cutting conditions. It is found that the monitoring errors are attributable to the thermal displacement of the spindle, the time lag of the sensing system, and the modeling error of the spindle stiffness. It is also shown that the root mean square errors between estimated and measured amplitudes of cutting forces are reduced to be less than 20N with proper selection of the linear stiffness.
Dokos, J.A.
1997-12-30
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.
Ganguly, D K; Nath, D N; Ross, H G; Vedasiromoni, J R
1978-01-01
1. Muscle spindle afferent discharges exhibiting an approximately linear length-frequency relation could be recorded from the phrenic nerve in the isolated phrenic nerve-diaphragm preparation of the rat. 2. Muscle spindle afferent discharges could be identified by their characteristic "spindle pause" during muscle contraction and by their response to succinylcholine. 3. Cholinergic influence on spontaneous and stretch-induced afferent discharges was indicated by the augmentation produced by physostigmine and acetylcholine. (+)-Tubocurarine, but not atropine, prevented this augmentation indicating the presence of curariform cholinoceptors in muscle spindles. 4. Acetylcholine did not appear to be involved in the genesis of spindle afferent discharges as incubation with hemicholinium-3 and (+)-tubocurarine failed to affect the rate of spontaneous and stretch-induced spindle discharges. 5. Oxotremorine markedly increased the rate of spontaneous and stretch-induced spindle afferent discharges and this effect was prevented in the presence of hemicholinium-3 and (+)-tubocurarine. 6. These results with oxotremorine are of interest in connection with the observation that muscle spindle afferents and hyperactive in Parkinsonian patients. PMID:151569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokos, James A.
A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotationmore » of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokos, J.A.
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.« less
Deevi, Ravi Kiran; Javadi, Arman; McClements, Jane; Vohhodina, Jekaterina; Savage, Kienan; Loughrey, Maurice Bernard; Evergren, Emma
2018-01-01
Abstract Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi‐lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low‐grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high‐grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high‐grade morphology in formalin‐fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of mitotic slippage that shape the development of low‐ or high‐grade CRC phenotypes. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:29520890
Deevi, Ravi Kiran; Javadi, Arman; McClements, Jane; Vohhodina, Jekaterina; Savage, Kienan; Loughrey, Maurice Bernard; Evergren, Emma; Campbell, Frederick Charles
2018-04-01
Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi-lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low-grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high-grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high-grade morphology in formalin-fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of mitotic slippage that shape the development of low- or high-grade CRC phenotypes. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Duran, Edward L.; Lundin, Ralph L.
1989-01-01
Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.
Duran, E.L.; Lundin, R.L.
1988-06-20
Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.
Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry
2016-01-01
Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568
Zhou, Xuhong; Mo, Xijun; Gui, Min; Wu, Xuewei; Jiang, Yalian; Ma, Lulin; Shi, Ziming; Luo, Ying; Tang, Wenru
2015-12-01
In plant evolution, because of its key role in sexual polyploidization or whole genome duplication events, diploid gamete formation is considered as an important component in diversification and speciation. Environmental stress often triggers unreduced gamete production. However, the molecular, cellular mechanisms and adverse temperature regulating diplogamete production in carnation remain poorly understood. Here, we investigate the cytological basis for 2n male gamete formation and describe the isolation and characterization of the first gene, DcPS1 (Dianthus Caryophyllus Parallel Spindle 1). In addition, we analyze influence of temperature stress on diploid gamete formation and transcript levels of DcPS1. Cytological evidence indicated that 2n male gamete formation is attributable to abnormal spindle orientation at male meiosis II. DcPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. DcPS1 expression analysis show DcPS1 gene probably have a role in 2n pollen formation. Unreduced pollen formation in various cultivation was sensitive to high or low temperature which was probably regulated by the level of DcPS1 transcripts. In a broader perspective, these findings can have potential applications in fundamental polyploidization research and plant breeding programs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Structural and mechanistic insights into Mps1 kinase activation.
Wang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong
2009-08-01
Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.
The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond
Cavazza, Tommaso; Vernos, Isabelle
2016-01-01
The small GTPase Ran regulates the interaction of transport receptors with a number of cellular cargo proteins. The high affinity binding of the GTP-bound form of Ran to import receptors promotes cargo release, whereas its binding to export receptors stabilizes their interaction with the cargo. This basic mechanism linked to the asymmetric distribution of the two nucleotide-bound forms of Ran between the nucleus and the cytoplasm generates a switch like mechanism controlling nucleo-cytoplasmic transport. Since 1999, we have known that after nuclear envelope breakdown (NEBD) Ran and the above transport receptors also provide a local control over the activity of factors driving spindle assembly and regulating other aspects of cell division. The identification and functional characterization of RanGTP mitotic targets is providing novel insights into mechanisms essential for cell division. Here we review our current knowledge on the RanGTP system and its regulation and we focus on the recent advances made through the characterization of its mitotic targets. We then briefly review the novel functions of the pathway that were recently described. Altogether, the RanGTP system has moonlighting functions exerting a spatial control over protein interactions that drive specific functions depending on the cellular context. PMID:26793706
Assessing EEG sleep spindle propagation. Part 1: theory and proposed methodology.
O'Reilly, Christian; Nielsen, Tore
2014-01-15
A convergence of studies has revealed sleep spindles to be associated with sleep-related cognitive processing and even with fundamental waking state capacities such as intelligence. However, some spindle characteristics, such as propagation direction and delay, may play a decisive role but are only infrequently investigated because of technical complexities. A new methodology for assessing sleep spindle propagation over the human scalp using noninvasive electroencephalography (EEG) is described. This approach is based on the alignment of time-frequency representations of spindle activity across recording channels. This first of a two-part series concentrates on framing theoretical considerations related to EEG spindle propagation and on detailing the methodology. A short example application is provided that illustrates the repeatability of results obtained with the new propagation measure in a sample of 32 night recordings. A more comprehensive experimental investigation is presented in part two of the series. Compared to existing methods, this approach is particularly well adapted for studying the propagation of sleep spindles because it estimates time delays rather than phase synchrony and it computes propagation properties for every individual spindle with windows adjusted to the specific spindle duration. The proposed methodology is effective in tracking the propagation of spindles across the scalp and may thus help in elucidating the temporal aspects of sleep spindle dynamics, as well as other transient EEG and MEG events. A software implementation (the Spyndle Python package) is provided as open source software. Copyright © 2013 Elsevier B.V. All rights reserved.
Mechanical design principles of a mitotic spindle
Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François
2014-01-01
An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This ‘pushing’ mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length. DOI: http://dx.doi.org/10.7554/eLife.03398.001 PMID:25521247
Brownian dynamics simulation of fission yeast mitotic spindle formation
NASA Astrophysics Data System (ADS)
Edelmaier, Christopher
2014-03-01
The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.
Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, B. Frazier; McNeely, Samuel C.; Miller, Heather L.
2008-07-15
Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of {alpha}-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of {alpha}-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. {gamma}-tubulin staining showed that cellsmore » treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.« less
Syndecan defines precise spindle orientation by modulating Wnt signaling in C. elegans.
Dejima, Katsufumi; Kang, Sukryool; Mitani, Shohei; Cosman, Pamela C; Chisholm, Andrew D
2014-11-01
Wnt signals orient mitotic spindles in development, but it remains unclear how Wnt signaling is spatially controlled to achieve precise spindle orientation. Here, we show that C. elegans syndecan (SDN-1) is required for precise orientation of a mitotic spindle in response to a Wnt cue. We find that SDN-1 is the predominant heparan sulfate (HS) proteoglycan in the early C. elegans embryo, and that loss of HS biosynthesis or of the SDN-1 core protein results in misorientation of the spindle of the ABar blastomere. The ABar and EMS spindles both reorient in response to Wnt signals, but only ABar spindle reorientation is dependent on a new cell contact and on HS and SDN-1. SDN-1 transiently accumulates on the ABar surface as it contacts C, and is required for local concentration of Dishevelled (MIG-5) in the ABar cortex adjacent to C. These findings establish a new role for syndecan in Wnt-dependent spindle orientation. © 2014. Published by The Company of Biologists Ltd.
Modal identification of spindle-tool unit in high-speed machining
NASA Astrophysics Data System (ADS)
Gagnol, Vincent; Le, Thien-Phu; Ray, Pascal
2011-10-01
The accurate knowledge of high-speed motorised spindle dynamic behaviour during machining is important in order to ensure the reliability of machine tools in service and the quality of machined parts. More specifically, the prediction of stable cutting regions, which is a critical requirement for high-speed milling operations, requires the accurate estimation of tool/holder/spindle set dynamic modal parameters. These estimations are generally obtained through Frequency Response Function (FRF) measurements of the non-rotating spindle. However, significant changes in modal parameters are expected to occur during operation, due to high-speed spindle rotation. The spindle's modal variations are highlighted through an integrated finite element model of the dynamic high-speed spindle-bearing system, taking into account rotor dynamics effects. The dependency of dynamic behaviour on speed range is then investigated and determined with accuracy. The objective of the proposed paper is to validate these numerical results through an experiment-based approach. Hence, an experimental setup is elaborated to measure rotating tool vibration during the machining operation in order to determine the spindle's modal frequency variation with respect to spindle speed in an industrial environment. The identification of natural frequencies of the spindle under rotating conditions is challenging, due to the low number of sensors and the presence of many harmonics in the measured signals. In order to overcome these issues and to extract the characteristics of the system, the spindle modes are determined through a 3-step procedure. First, spindle modes are highlighted using the Frequency Domain Decomposition (FDD) technique, with a new formulation at the considered rotating speed. These extracted modes are then analysed through the value of their respective damping ratios in order to separate the harmonics component from structural spindle natural frequencies. Finally, the stochastic properties of the modes are also investigated by considering the probability density of the retained modes. Results show a good correlation between numerical and experiment-based identified frequencies. The identified spindle-tool modal properties during machining allow the numerical model to be considered as representative of the real dynamic properties of the system.
Hopkins, David James [Livermore, CA
2008-05-13
A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.
REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.
O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore
2015-12-01
To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. © 2015 European Sleep Research Society.
Assessing the Contributions of Motor Enzymes and Microtubule Dynamics to Mitotic Chromosome Motions.
McIntosh, J Richard
2017-10-06
During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.
Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas
2013-01-01
Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258
NASA Astrophysics Data System (ADS)
Sutradhar, S.; Basu, S.; Paul, R.
2015-10-01
Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.
The muscle spindle as a feedback element in muscle control
NASA Technical Reports Server (NTRS)
Andrews, L. T.; Iannone, A. M.; Ewing, D. J.
1973-01-01
The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.
Spatiotemporal characteristics of sleep spindles depend on cortical location.
Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S
2017-02-01
Since their discovery almost one century ago, sleep spindles, 0.5-2s long bursts of oscillatory activity at 9-16Hz during NREM sleep, have been thought to be global and relatively uniform throughout the cortex. Recent work, however, has brought this concept into question but it remains unclear to what degree spindles are global or local and if their properties are uniform or location-dependent. We addressed this question by recording sleep in eight patients undergoing evaluation for epilepsy with intracranial electrocorticography, which combines high spatial resolution with extensive cortical coverage. We find that spindle characteristics are not uniform but are strongly influenced by the underlying cortical regions, particularly for spindle density and fundamental frequency. We observe both highly isolated and spatially distributed spindles, but in highly skewed proportions: while most spindles are restricted to one or very few recording channels at any given time, there are spindles that occur over widespread areas, often involving lateral prefrontal cortices and superior temporal gyri. Their co-occurrence is affected by a subtle but significant propagation of spindles from the superior prefrontal regions and the temporal cortices towards the orbitofrontal cortex. This work provides a brain-wide characterization of sleep spindles as mostly local graphoelements with heterogeneous characteristics that depend on the underlying cortical area. We propose that the combination of local characteristics and global organization reflects the dual properties of the thalamo-cortical generators and provides a flexible framework to support the many functions ascribed to sleep in general and spindles specifically. Copyright © 2016 Elsevier Inc. All rights reserved.
Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific
ERIC Educational Resources Information Center
Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.
2012-01-01
Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…
Meyer, Régis E; Kim, Seoyoung; Obeso, David; Straight, Paul D; Winey, Mark; Dawson, Dean S
2013-03-01
The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules so that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. We imaged live yeast cells to elucidate the stages of chromosome-microtubule interactions and their regulation by Ipl1 and Mps1 through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations after meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections, whereas Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle could prevent catastrophic chromosome segregation errors in meiosis.
Tang, Ngang Heok; Okada, Naoyuki; Fong, Chii Shyang; Arai, Kunio; Sato, Masamitsu; Toda, Takashi
2014-01-01
The conserved TACC protein family localises to the centrosome (the spindle pole body, SPB in fungi) and mitotic spindles, thereby playing a crucial role in bipolar spindle assembly. However, it remains elusive how TACC proteins are recruited to the centrosome/SPB. Here, using fission yeast Alp7/TACC, we have determined clustered five amino acid residues within the TACC domain required for SPB localisation. Critically, these sequences are essential for the functions of Alp7, including proper spindle formation and mitotic progression. Moreover, we have identified pericentrin-like Pcp1 as a loading factor to the mitotic SPB, although Pcp1 is not a sole platform. PMID:24937146
Sleep Spindles and Intelligence in Early Childhood--Developmental and Trait-Dependent Aspects
ERIC Educational Resources Information Center
Ujma, Péter P.; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert
2016-01-01
Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our…
Fogel, Stuart M; Smith, Carlyle T
2011-04-01
Until recently, the electrophysiological mechanisms involved in strengthening new memories into a more permanent form during sleep have been largely unknown. The sleep spindle is an event in the electroencephalogram (EEG) characterizing Stage 2 sleep. Sleep spindles may reflect, at the electrophysiological level, an ideal mechanism for inducing long-term synaptic changes in the neocortex. Recent evidence suggests the spindle is highly correlated with tests of intellectual ability (e.g.; IQ tests) and may serve as a physiological index of intelligence. Further, spindles increase in number and duration in sleep following new learning and are correlated with performance improvements. Spindle density and sigma (14-16Hz) spectral power have been found to be positively correlated with performance following a daytime nap, and animal studies suggest the spindle is involved in a hippocampal-neocortical dialogue necessary for memory consolidation. The findings reviewed here collectively provide a compelling body of evidence that the function of the sleep spindle is related to intellectual ability and memory consolidation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sec66-Dependent Regulation of Yeast Spindle-Pole Body Duplication Through Pom152
Katta, Santharam S.; Chen, Jingjing; Gardner, Jennifer M.; Friederichs, Jennifer M.; Smith, Sarah E.; Gogol, Madelaine; Unruh, Jay R.; Slaughter, Brian D.; Jaspersen, Sue L.
2015-01-01
In closed mitotic systems such as Saccharomyces cerevisiae, the nuclear envelope (NE) does not break down during mitosis, so microtubule-organizing centers such as the spindle-pole body (SPB) must be inserted into the NE to facilitate bipolar spindle formation and chromosome segregation. The mechanism of SPB insertion has been linked to NE insertion of nuclear pore complexes (NPCs) through a series of genetic and physical interactions between NPCs and SPB components. To identify new genes involved in SPB duplication and NE insertion, we carried out genome-wide screens for suppressors of deletion alleles of SPB components, including Mps3 and Mps2. In addition to the nucleoporins POM152 and POM34, we found that elimination of SEC66/SEC71/KAR7 suppressed lethality of cells lacking MPS2 or MPS3. Sec66 is a nonessential subunit of the Sec63 complex that functions together with the Sec61 complex in import of proteins into the endoplasmic reticulum (ER). Cells lacking Sec66 have reduced levels of Pom152 protein but not Pom34 or Ndc1, a shared component of the NPC and SPB. The fact that Sec66 but not other subunits of the ER translocon bypass deletion mutants in SPB genes suggests a specific role for Sec66 in the control of Pom152 levels. Based on the observation that sec66∆ does not affect the distribution of Ndc1 on the NE or Ndc1 binding to the SPB, we propose that Sec66-mediated regulation of Pom152 plays an NPC-independent role in the control of SPB duplication. PMID:26510791
Mountain, Vicki; Simerly, Calvin; Howard, Louisa; Ando, Asako; Schatten, Gerald; Compton, Duane A.
1999-01-01
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes. PMID:10525540
Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia.
Ferrarelli, Fabio; Tononi, Giulio
2017-02-01
Sleep disturbances have been reliably reported in patients with schizophrenia, thus suggesting that abnormal sleep may represent a core feature of this disorder. Traditional electroencephalographic studies investigating sleep architecture have found reduced deep non-rapid eye movement (NREM) sleep, or slow wave sleep (SWS), and increased REM density. However, these findings have been inconsistently observed, and have not survived meta-analysis. By contrast, several recent EEG studies exploring brain activity during sleep have established marked deficits in sleep spindles in schizophrenia, including first-episode and early-onset patients, compared to both healthy and psychiatric comparison subjects. Spindles are waxing and waning, 12-16Hz NREM sleep oscillations that are generated within the thalamus by the thalamic reticular nucleus (TRN), and are then synchronized and sustained in the cortex. While the functional role of sleep spindles still needs to be fully established, increasing evidence has shown that sleep spindles are implicated in learning and memory, including sleep dependent memory consolidation, and spindle parameters have been associated to general cognitive ability and IQ. In this article we will review the EEG studies demonstrating sleep spindle deficits in patients with schizophrenia, and show that spindle deficits can predict their reduced cognitive performance. We will then present data indicating that spindle impairments point to a TRN-MD thalamus-prefrontal cortex circuit deficit, and discuss about the possible molecular mechanisms underlying thalamo-cortical sleep spindle abnormalities in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Duan, Xunbao; Zhong, Zhisheng; Potireddy, Santhi; Moncada, Camilo; Merali, Salim; Latham, Keith E.
2015-01-01
Embryos produced by somatic cell nuclear transfer (SCNT) display low term developmental potential. This is associated with deficiencies in spindle composition prior to activation and at early mitotic divisions, including failure to assemble certain proteins on the spindle. The protein-deficient spindles are accompanied by chromosome congression defects prior to activation and during the first mitotic divisions of the embryo. The molecular basis for these deficiencies and how they might be avoided are unknown. Proteomic analyses of spindles isolated from normal metaphase II (MII) stage oocytes and SCNT constructs, along with a systematic immunofluorescent survey of known spindle-associated proteins were undertaken. This was the first proteomics study of mammalian oocyte spindles. The study revealed four proteins as being deficient in spindles of SCNT embryos in addition to those previously identified; these were clathrin heavy chain (CLTC), aurora B kinase, dynactin 4, and casein kinase 1 alpha. Due to substantial reduction in CLTC abundance after spindle removal, we undertook functional studies to explore the importance of CLTC in oocyte spindle function and in chromosome congression defects of cloned embryos. Using siRNA knockdown we demonstrated an essential role for CLTC in chromosome congression during oocyte maturation. We also demonstrated rescue of chromosome congression defects in SCNT embryos at the first mitosis using CLTC mRNA injection. These studies are the first to employ proteomics analyses coupled to functional interventions to rescue a specific molecular defect in cloned embryos. PMID:20883044
Tsanas, Athanasios; Clifford, Gari D
2015-01-01
Sleep spindles are critical in characterizing sleep and have been associated with cognitive function and pathophysiological assessment. Typically, their detection relies on the subjective and time-consuming visual examination of electroencephalogram (EEG) signal(s) by experts, and has led to large inter-rater variability as a result of poor definition of sleep spindle characteristics. Hitherto, many algorithmic spindle detectors inherently make signal stationarity assumptions (e.g., Fourier transform-based approaches) which are inappropriate for EEG signals, and frequently rely on additional information which may not be readily available in many practical settings (e.g., more than one EEG channels, or prior hypnogram assessment). This study proposes a novel signal processing methodology relying solely on a single EEG channel, and provides objective, accurate means toward probabilistically assessing the presence of sleep spindles in EEG signals. We use the intuitively appealing continuous wavelet transform (CWT) with a Morlet basis function, identifying regions of interest where the power of the CWT coefficients corresponding to the frequencies of spindles (11-16 Hz) is large. The potential for assessing the signal segment as a spindle is refined using local weighted smoothing techniques. We evaluate our findings on two databases: the MASS database comprising 19 healthy controls and the DREAMS sleep spindle database comprising eight participants diagnosed with various sleep pathologies. We demonstrate that we can replicate the experts' sleep spindles assessment accurately in both databases (MASS database: sensitivity: 84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%, specificity: 92%, false discovery rate: 67%), outperforming six competing automatic sleep spindle detection algorithms in terms of correctly replicating the experts' assessment of detected spindles.
Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex.
Fabritius, Amy S; Flynn, Jonathan R; McNally, Francis J
2011-11-01
Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole. 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brugués, Jan; Needleman, Daniel J.
2010-02-01
Metaphase spindles are highly dynamic, nonequilibrium, steady-state structures. We study the internal fluctuations of spindles by computing spatio-temporal correlation functions of movies obtained from quantitative polarized light microscopy. These correlation functions are only physically meaningful if corrections are made for the net motion of the spindle. We describe our image registration algorithm in detail and we explore its robustness. Finally, we discuss the expression used for the estimation of the correlation function in terms of the nematic order of the microtubules which make up the spindle. Ultimately, studying the form of these correlation functions will provide a quantitative test of the validity of coarse-grained models of spindle structure inspired from liquid crystal physics.
Mitosis-Specific Mechanosensing and Contractile Protein Redistribution Control Cell Shape
Effler, Janet C.; Kee, Yee-Seir; Berk, Jason M.; Tran, Minhchau N.; Iglesias, Pablo A.; Robinson, Douglas N.
2008-01-01
Summary Because cell division failure is deleterious, promoting tumorigenesis in mammals [1], cells utilize numerous mechanisms to control their cell-cycle progression [2–4]. Though cell division is considered a well-ordered sequence of biochemical events [5], cytokinesis, an inherently mechanical process, must also be mechanically controlled to ensure that two equivalent daughter cells are produced with high fidelity. Since cells respond to their mechanical environment [6, 7], we hypothesized that cells utilize mechanosensing and mechanical feedback to sense and correct shape asymmetries during cytokinesis. Because the mitotic spindle and myosin-II are vital to cell division [8, 9], we explored their roles in responding to shape perturbations during cell division. We demonstrate that the contractile proteins, myosin-II and cortexillin-I, redistribute in response to intrinsic and externally induced shape asymmetries. In early cytokinesis, mechanical load overrides spindle cues and slows cytokinesis progression while contractile proteins accumulate and correct shape asymmetries. In late cytokinesis, mechanical perturbation also directs contractile proteins but without apparently disrupting cytokinesis. Significantly, this response only occurs during anaphase through cytokinesis, does not require microtubules, is independent of spindle orientation, but is dependent on myosin-II. Our data provide evidence for a mechanosensory system that directs contractile proteins to regulate cell shape during mitosis. PMID:17027494
Srivastava, D; Chakrabarti, O
2014-01-01
Mahogunin ring finger-1 (MGRN1) is a cytosolic ubiquitin ligase whose disruption or interaction with some isoforms of cytosolically exposed prion protein leads to spongiform neurodegeneration and also lack of which results in reduced embryonic viability due to mispatterning of the left–right (LR) axis during development. Here we demonstrate an interaction between the cytoskeletal protein α-tubulin and MGRN1. In cultured cell systems, loss of the ubiquitin E3 ligase activity of MGRN1 results in spindle misorientation and decreased α-tubulin polymerization, an effect also seen in primary cells. α-Tubulin was post-translationally modified by MGRN1 via noncanonical K6-linked polyubiquitination. This was significant because expression of catalytically inactive MGRN1 and/or ubiquitin mutant capable of only monoubiquitination resulted in similar mitotic spindle misorientation. The modulatory effect of MGRN1 was specific for α-tubulin and similar changes could not be detected in β- or γ-tubulin. However, catalytic inactivation of MGRN1 did not abrogate monoubiquitination of α-tubulin, thus unraveling a unique dual mode of ubiquitination by an unknown E3 ligase and MGRN1. MGRN1-mediated α-tubulin modification, and hence its stability, may highlight a key event in the LR patterning during embryogenesis. PMID:24556679
Das, Tania; Roy, Kumar Singha; Chakrabarti, Tulika; Mukhopadhyay, Sibabrata; Roychoudhury, Susanta
2014-09-01
Withania somnifera L. Dunal (Ashwagandha) is used over centuries in the ayurvedic medicines in India. Withaferin A, a withanolide, is the major compound present in leaf extract of the plant which shows anticancer activity against leukemia, breast cancer and colorectal cancer. It arrests the ovarian cancer cells in the G2/M phase in dose dependent manner. In the current study we show the effect of Withaferin A on cell cycle regulation of colorectal cancer cell lines HCT116 and SW480 and its effect on cell fate. Treatment of these cells with this compound leads to apoptosis in a dose dependent manner. It causes the G2/M arrest in both the cell lines. We show that Withaferin A (WA) causes mitotic delay by blocking Spindle assembly checkpoint (SAC) function. Apoptosis induced by Withaferin A is associated with proteasomal degradation of Mad2 and Cdc20, an important constituent of the Spindle Checkpoint Complex. Further overexpression of Mad2 partially rescues the deleterious effect of WA by restoring proper anaphase initiation and keeping more number of cells viable. We hypothesize that Withaferin A kills cancer cells by delaying the mitotic exit followed by inducing chromosome instability. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, HaiYang; Jo, Yu-Jin; Sun, Tian-Yi; Namgoong, Suk; Cui, Xiang-Shun; Oh, Jeong Su; Kim, Nam-Hyung
2016-12-01
To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) delays anaphase onset by preventing the premature activation of anaphase-promoting complex/cyclosome (APC/C) until all kinetochores are attached to the spindle. Although an escape from mitosis in the presence of unsatisfied SAC has been shown in several cancer cells, it has not been reported in oocyte meiosis. Here, we show that CDK7 activity is required to prevent a bypass of SAC during meiosis I in mouse oocytes. Inhibition of CDK7 using THZ1 accelerated the first meiosis, leading to chromosome misalignment, lag of chromosomes during chromosome segregation, and a high incidence of aneuploidy. Notably, this acceleration occurred in the presence of SAC proteins including Mad2 and Bub3 at the kinetochores. However, inhibition of APC/C-mediated cyclin B degradation blocked the THZ1-induced premature polar body extrusion. Moreover, chromosomal defects mediated by THZ1 were rescued when anaphase onset was delayed. Collectively, our results show that CDK7 activity is required to prevent premature anaphase onset by suppressing the bypass of SAC, thus ensuring chromosome alignment and proper segregation. These findings reveal new roles of CDK7 in the regulation of meiosis in mammalian oocytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Molecular basis of APC/C regulation by the spindle assembly checkpoint
Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David
2016-01-01
In the dividing eukaryotic cell the spindle assembly checkpoint (SAC) ensures each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), a multimeric assembly that inhibits the APC/C, delaying chromosome segregation. Here, using cryo-electron microscopy we determined the near-atomic resolution structure of an APC/C-MCC complex (APC/CMCC). We reveal how degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit (Cdc20APC/C) responsible for substrate interactions. BubR1 also obstructs binding of UbcH10 (APC/C’s initiating E2) to repress APC/C ubiquitination activity. Conformational variability of the complex allows for UbcH10 association, and we show from a structure of APC/CMCC in complex with UbcH10 how the Cdc20 subunit intrinsic to the MCC (Cdc20MCC) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced. PMID:27509861
Wamsley, Erin J; Shinn, Ann K; Tucker, Matthew A; Ono, Kim E; McKinley, Sophia K; Ely, Alice V; Goff, Donald C; Stickgold, Robert; Manoach, Dara S
2013-09-01
In schizophrenia there is a dramatic reduction of sleep spindles that predicts deficient sleep-dependent memory consolidation. Eszopiclone (Lunesta), a non-benzodiazepine hypnotic, acts on γ-aminobutyric acid (GABA) neurons in the thalamic reticular nucleus where spindles are generated. We investigated whether eszopiclone could increase spindles and thereby improve memory consolidation in schizophrenia. In a double-blind design, patients were randomly assigned to receive either placebo or 3 mg of eszopiclone. Patients completed Baseline and Treatment visits, each consisting of two consecutive nights of polysomnography. On the second night of each visit, patients were trained on the motor sequence task (MST) at bedtime and tested the following morning. Academic research center. Twenty-one chronic, medicated schizophrenia outpatients. We compared the effects of two nights of eszopiclone vs. placebo on stage 2 sleep spindles and overnight changes in MST performance. Eszopiclone increased the number and density of spindles over baseline levels significantly more than placebo, but did not significantly enhance overnight MST improvement. In the combined eszopiclone and placebo groups, spindle number and density predicted overnight MST improvement. Eszopiclone significantly increased sleep spindles, which correlated with overnight motor sequence task improvement. These findings provide partial support for the hypothesis that the spindle deficit in schizophrenia impairs sleep-dependent memory consolidation and may be ameliorated by eszopiclone. Larger samples may be needed to detect a significant effect on memory. Given the general role of sleep spindles in cognition, they offer a promising novel potential target for treating cognitive deficits in schizophrenia.
Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep.
Huupponen, E; Maksimow, A; Lapinlampi, P; Särkelä, M; Saastamoinen, A; Snapir, A; Scheinin, H; Scheinin, M; Meriläinen, P; Himanen, S-L; Jääskeläinen, S
2008-02-01
Dexmedetomidine, a selective alpha(2)-adrenoceptor agonist, induces a unique, sleep-like state of sedation. The objective of the present work was to study human electroencephalogram (EEG) sleep spindles during dexmedetomidine sedation and compare them with spindles during normal physiological sleep, to test the hypothesis that dexmedetomidine exerts its effects via normal sleep-promoting pathways. EEG was continuously recorded from a bipolar frontopolar-laterofrontal derivation with Entropy Module (GE Healthcare) during light and deep dexmedetomidine sedation (target-controlled infusions set at 0.5 and 3.2 ng/ml) in 11 healthy subjects, and during physiological sleep in 10 healthy control subjects. Sleep spindles were visually scored and quantitatively analyzed for density, duration, amplitude (band-pass filtering) and frequency content (matching pursuit approach), and compared between the two groups. In visual analysis, EEG activity during dexmedetomidine sedation was similar to physiological stage 2 (S2) sleep with slight to moderate amount of slow-wave activity and abundant sleep spindle activity. In quantitative EEG analyses, sleep spindles were similar during dexmedetomidine sedation and normal sleep. No statistically significant differences were found in spindle density, amplitude or frequency content, but the spindles during dexmedetomidine sedation had longer duration (mean 1.11 s, SD 0.14 s) than spindles in normal sleep (mean 0.88 s, SD 0.14 s; P=0.0014). Analysis of sleep spindles shows that dexmedetomidine produces a state closely resembling physiological S2 sleep in humans, which gives further support to earlier experimental evidence for activation of normal non-rapid eye movement sleep-promoting pathways by this sedative agent.
Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto
2015-07-01
Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Sleep laboratory. Twenty healthy male subjects (age: 23.3 ± 2.1 y). Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. © 2015 Associated Professional Sleep Societies, LLC.
Slow Sleep Spindle Activity, Declarative Memory, and General Cognitive Abilities in Children
Hoedlmoser, Kerstin; Heib, Dominik P.J.; Roell, Judith; Peigneux, Philippe; Sadeh, Avi; Gruber, Georg; Schabus, Manuel
2014-01-01
Study Objectives: Functional interactions between sleep spindle activity, declarative memory consolidation, and general cognitive abilities in school-aged children. Design: Healthy, prepubertal children (n = 63; mean age 9.56 ± 0.76 y); ambulatory all-night polysomnography (2 nights); investigating the effect of prior learning (word pair association task; experimental night) versus nonlearning (baseline night) on sleep spindle activity; general cognitive abilities assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV). Measurements and Results: Analysis of spindle activity during nonrapid eye movement sleep (N2 and N3) evidenced predominant peaks in the slow (11-13 Hz) but not in the fast (13-15 Hz) sleep spindle frequency range (baseline and experimental night). Analyses were restricted to slow sleep spindles. Changes in spindle activity from the baseline to the experimental night were not associated with the overnight change in the number of recalled words reflecting declarative memory consolidation. Children with higher sleep spindle activity as measured at frontal, central, parietal, and occipital sites during both baseline and experimental nights exhibited higher general cognitive abilities (WISC-IV) and declarative learning efficiency (i.e., number of recalled words before and after sleep). Conclusions: Slow sleep spindles (11-13 Hz) in children age 8–11 y are associated with inter-individual differences in general cognitive abilities and learning efficiency. Citation: Hoedlmoser K, Heib DPJ, Roell J, Peigneux P, Sadeh A, Gruber G, Schabus M. Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. SLEEP 2014;37(9):1501-1512. PMID:25142558
An allometric analysis of the number of muscle spindles in mammalian skeletal muscles
Banks, R W
2006-01-01
An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g−1 of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg. PMID:16761976
Spindle-shaped Microstructures: Potential Models for Planktonic Life Forms on Other Worlds
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Walsh, Maud M.; Sugitani, Kenichiro; House, Christopher H.
2014-01-01
Spindle-shaped, organic microstructures ("spindles") are now known from Archean cherts in three localities (Figs. 1-4): The 3 Ga Farrel Quartzite from the Pilbara of Australia [1]; the older, 3.3-3.4 Ga Strelley Pool Formation, also from the Pilbara of Australia [2]; and the 3.4 Ga Kromberg Formation of the Barberton Mountain Land of South Africa [3]. Though the spindles were previously speculated to be pseudofossils or epigenetic organic contaminants, a growing body of data suggests that these structures are bona fide microfossils and further, that they are syngenetic with the Archean cherts in which they occur [1-2, 4-10]. As such, the spindles are among some of the oldest-known organically preserved microfossils on Earth. Moreover, recent delta C-13 study of individual spindles from the Farrel Quartzite (using Secondary Ion Mass Spectrometry [SIMS]) suggests that the spindles may have been planktonic (living in open water), as opposed to benthic (living as bottom dwellers in contact with muds or sediments) [9]. Since most Precambrian microbiotas have been described from benthic, matforming communities, a planktonic lifestyle for the spindles suggests that these structures could represent a segment of the Archean biosphere that is poorly known. Here we synthesize the recent work on the spindles, and we add new observations regarding their geographic distribution, robustness, planktonic habit, and long-lived success. We then discuss their potential evolutionary and astrobiological significance.
Michalopoulos, Ioannis; Sideridou, Maria; Tsimaratou, Katerina; Christodoulou, Ioannis; Pyrillou, Katerina; Gorgoulis, Vassilis; Vlahopoulos, Spiros; Zoumpourlis, Vassilis
2012-01-01
Estrogen receptors (ER), namely ERα and ERβ, are hormone-activated transcription factors with an important role in carcinogenesis. In the present study, we aimed at elucidating the implication of ERα in skin cancer, using chemically-induced mouse skin tumours, as well as cell lines representing distinct stages of mouse skin oncogenesis. First, using immunohistochemical staining we showed that ERα is markedly increased in aggressive mouse skin tumours in vivo as compared to the papilloma tumours, whereas ERβ levels are low and become even lower in the aggressive spindle tumours of carcinogen-treated mice. Then, using the multistage mouse skin carcinogenesis model, we showed that ERα gradually increases during promotion and progression stages of mouse skin carcinogenesis, peaking at the most aggressive stage, whereas ERβ levels only slightly change throughout skin carcinogenesis. Stable transfection of the aggressive, spindle CarB cells with a dominant negative form of ERα (dnERα) resulted in reduced ERα levels and reduced binding to estrogen responsive elements (ERE)-containing sequences. We characterized two highly conserved EREs on the mouse ERα promoter through which dnERα decreased endogenous ERα levels. The dnERα-transfected CarB cells presented altered protein levels of cytoskeletal and cell adhesion molecules, slower growth rate and impaired anchorage-independent growth in vitro, whereas they gave smaller tumours with extended latency period of tumour onset in vivo. Our findings suggest an implication of ERα in the aggressiveness of spindle mouse skin cancer cells, possibly through regulation of genes affecting cell shape and adhesion, and they also provide hints for the effective targeting of spindle cancer cells by dnERα. PMID:22870269
Palumbo, Valeria; Pellacani, Claudia; Heesom, Kate J; Rogala, Kacper B; Deane, Charlotte M; Mottier-Pavie, Violaine; Gatti, Maurizio; Bonaccorsi, Silvia; Wakefield, James G
2015-06-29
Mitotic spindles are primarily composed of microtubules (MTs), generated by polymerization of α- and β-Tubulin hetero-dimers. Tubulins undergo a series of protein folding and post-translational modifications in order to fulfill their functions. Defects in Tubulin polymerization dramatically affect spindle formation and disrupt chromosome segregation. We recently described a role for the product of the conserved misato (mst) gene in regulating mitotic MT generation in flies, but the molecular function of Mst remains unknown. Here, we use affinity purification mass spectrometry (AP-MS) to identify interacting partners of Mst in the Drosophila embryo. We demonstrate that Mst associates stoichiometrically with the hetero-octameric Tubulin Chaperone Protein-1 (TCP-1) complex, with the hetero-hexameric Tubulin Prefoldin complex, and with proteins having conserved roles in generating MT-competent Tubulin. We show that RNAi-mediated in vivo depletion of any TCP-1 subunit phenocopies the effects of mutations in mst or the Prefoldin-encoding gene merry-go-round (mgr), leading to monopolar and disorganized mitotic spindles containing few MTs. Crucially, we demonstrate that Mst, but not Mgr, is required for TCP-1 complex stability and that both the efficiency of Tubulin polymerization and Tubulin stability are drastically compromised in mst mutants. Moreover, our structural bioinformatic analyses indicate that Mst resembles the three-dimensional structure of Tubulin monomers and might therefore occupy the TCP-1 complex central cavity. Collectively, our results suggest that Mst acts as a co-factor of the TCP-1 complex, playing an essential role in the Tubulin-folding processes required for proper assembly of spindle MTs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Complex regulation of sister kinetochore orientation in meiosis-I.
Bardhan, Amit
2010-09-01
Kinetochores mediate chromosome movement during cell division by interacting with the spindle microtubules. Sexual reproduction necessitates the daunting task of reducing ploidy (number of chromosome sets) in the gametes, which depends upon the specialized properties of meiosis. Kinetochores have a central role in the reduction process. In this review, we discuss the complexity of this role of kinetochores in meiosis-I.
Centrioles: duplicating precariously.
Pelletier, Laurence
2007-09-04
To assemble a mitotic spindle and accurately segregate chromosomes to progeny, a cell needs to precisely regulate its centrosome number, a feat largely accomplished through the tight control of centriole duplication. Recent work showing that the overexpression of centriolar proteins can lead to the formation of multiple centrioles in the absence of pre-existing centrioles challenges the idea that it is a self-replicating organelle.
Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons
NASA Astrophysics Data System (ADS)
De Luca, C. J.; Kline, J. C.
2012-02-01
We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0% to 10%) voluntary contractions, muscle fibres of recruited motor units produce force twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution.
Qi, Shu-Tao; Tong, Jing-Shan; Wei, Liang; Li, Mo; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan
2010-01-01
MAPK-activated protein kinase 2 (MK2), a direct substrate of p38 MAPK, plays key roles in multiple physiological functions in mitosis. Here, we show for the first time the unique distribution pattern of MK2 in meiosis. Phospho-MK2 was localized on bipolar spindle minus ends and along the interstitial axes of homologous chromosomes extending over centromere regions and arm regions at metaphase of first meiosis (MI stage) in mouse oocytes. At metaphase of second meiosis (MII stage), p-MK2 was localized on the bipolar spindle minus ends and at the inner centromere region of sister chromatids as dots. Knockdown or inhibition of MK2 resulted in spindle defects. Spindles were surrounded by irregular nondisjunction chromosomes, which were arranged in an amphitelic or syntelic/monotelic manner, or chromosomes detached from the spindles. Kinetochore–microtubule attachments were impaired in MK2-deficient oocytes because spindle microtubules became unstable in response to cold treatment. In addition, homologous chromosome segregation and meiosis progression were inhibited in these oocytes. Our data suggest that MK2 may be essential for functional meiotic bipolar spindle formation, chromosome segregation and proper kinetochore–microtubule attachments. PMID:20596525
The chromokinesin Kid is required for maintenance of proper metaphase spindle size.
Tokai-Nishizumi, Noriko; Ohsugi, Miho; Suzuki, Emiko; Yamamoto, Tadashi
2005-11-01
The human chromokinesin Kid/kinesin-10, a plus end-directed microtubule (MT)-based motor with both microtubule- and DNA-binding domains, is required for proper chromosome alignment at the metaphase plate. Here, we performed RNA interference experiments to deplete endogenous Kid from HeLa cells and confirmed defects in metaphase chromosome arm alignment in Kid-depleted cells. In addition, we noted a shortening of the spindle length, resulting in a pole-to-pole distance only 80% of wild type. The spindle microtubule-bundles with which Kid normally colocalize became less robust. Rescue of the two Kid deficiency phenotypes-imprecise chromosome alignment at metaphase and shortened spindles- exhibited distinct requirements. Mutants lacking either the DNA-binding domain or the MT motor ATPase failed to rescue the former defect, whereas rescue of the shortened spindle phenotype required neither activity. Kid also exhibits microtubule bundling activity in vitro, and rescue of the shortened spindle phenotype and the bundling activity displayed similar domain requirements, except that rescue required a coiled-coil domain not needed for bundling. These results suggest that distinct from its role in chromosome movement, Kid contributes to spindle morphogenesis by mediating spindle microtubules stabilization.
1979-01-01
The degree of mechanical coupling of chromosomes to the spindles of Nephrotoma and Trimeratropis primary spermatocytes varies with the stage of meiosis and the birefringent retardation of the chromosomal fibers. In early prometaphase, before birefringent chromosomal fibers have formed, a bivalent can be displaced toward a spindle pole by a single, continuous pull with a microneedle. Resistance to poleward displacement increases with increased development of the chromosomal fibers, reaching a maximum at metaphase. At this stage kinetochores cannot be displaced greater than 1 micrometer toward either spindle pole, even by a force which is sufficient to displace the entire spindle within the cell. The abolition of birefringence with either colcemid or vinblastine results in the loss of chromosome-spindle attachment. In the absence of birefringent fibers a chromosome can be displaced anywhere within the cell. The photochemical inactivation of colcemid by irradiation with 366-nm light results in the reformation of birefringent chromosomal fibers and the concomitant re-establishment of chromosome attachment to the spindle. These results support the hypothesis that the birefringent chromosomal fibers anchor the chromosomes to the spindle and transmit the force for anaphase chromosome movement. PMID:479316
Mucinous breast carcinoma with myoepithelial-like spindle cells.
Miyake, Yasuyuki; Hirokawa, Mitsuyoshi; Norimatsu, Yoshiaki; Kanahara, Takuo; Monobe, Yasumasa; Ohno, Setsuyo; Miyamoto, Tomoyuki; Yakushiji, Hiromasa; Sakaguchi, Takuya; Aratake, Yatsuki; Ohno, Eiji
2009-06-01
Appearance of spindle cells has been believed as a benign index of breast cytology. But, we have frequently observed the spindle cells in smears from mucinous carcinoma of the breast. Here, we characterized the biochemical nature of the spindle cells, so as to clarify their identity in cytology. Nineteen cases of breast mucinous carcinoma were used for cytological examination. The spindle cells were located at edges of tumor cell nests and in the backgrounds of cytological specimens. Immunohistological examination revealed that the spindle cells exhibited both immunoreactivity against carcinoembryonic antigen (CEA) and epithelial membrane antigen (EMA). Immunoreactivity against vimentin, cytokeratin, or alpha-smooth muscle actin was, however, not observed. The mode of distribution of biochemical markers suggests that the positive cells for anti-CEA antibody and anti-EMA antibody are tumor cells compressed by mucin, while the vimentin-positive cells are fibroblasts. We assert that the presence of spindle cells can be a characteristic feature of mucinous carcinoma of the breast. Discrimination of the spindle cells in mucinous carcinoma from myoepithelial cells and naked bipolar nuclei in benign lesions was established here. It should facilitate precise diagnosis of breast cancer. (c) 2009 Wiley-Liss, Inc.
Maciejowski, John; George, Kelly A; Terret, Marie-Emilie; Zhang, Chao; Shokat, Kevan M; Jallepalli, Prasad V
2010-07-12
The spindle assembly checkpoint (SAC) in mammals uses cytosolic and kinetochore-based signaling pathways to inhibit anaphase. In this study, we use chemical genetics to show that the protein kinase Mps1 regulates both aspects of the SAC. Human MPS1-null cells were generated via gene targeting and reconstituted with either the wild-type kinase (Mps1(wt)) or a mutant version (Mps1(as)) sensitized to bulky purine analogues. Mps1 inhibition sharply accelerated anaphase onset, such that cells completed mitosis in 12 min, and prevented Cdc20's association with either Mad2 or BubR1 during interphase, i.e., before the appearance of functional kinetochores. Furthermore, intramitotic Mps1 inhibition evicted Bub1 and all other known SAC transducers from the outer kinetochore, but contrary to a recent study, did not perturb aurora B-dependent phosphorylation. We conclude that Mps1 has two complementary roles in SAC regulation: (1) initial cytoplasmic activation of Cdc20 inhibitors and (2) recruitment of factors that promote sustained anaphase inhibition and chromosome biorientation to unattached kinetochores.
Maciejowski, John; Drechsler, Hauke; Grundner-Culemann, Kathrin; Ballister, Edward R; Rodriguez-Rodriguez, Jose-Antonio; Rodriguez-Bravo, Veronica; Jones, Mathew J K; Foley, Emily; Lampson, Michael A; Daub, Henrik; McAinsh, Andrew D; Jallepalli, Prasad V
2017-04-24
The spindle assembly checkpoint kinase Mps1 not only inhibits anaphase but also corrects erroneous attachments that could lead to missegregation and aneuploidy. However, Mps1's error correction-relevant substrates are unknown. Using a chemically tuned kinetochore-targeting assay, we show that Mps1 destabilizes microtubule attachments (K fibers) epistatically to Aurora B, the other major error-correcting kinase. Through quantitative proteomics, we identify multiple sites of Mps1-regulated phosphorylation at the outer kinetochore. Substrate modification was microtubule sensitive and opposed by PP2A-B56 phosphatases that stabilize chromosome-spindle attachment. Consistently, Mps1 inhibition rescued K-fiber stability after depleting PP2A-B56. We also identify the Ska complex as a key effector of Mps1 at the kinetochore-microtubule interface, as mutations that mimic constitutive phosphorylation destabilized K fibers in vivo and reduced the efficiency of the Ska complex's conversion from lattice diffusion to end-coupled microtubule binding in vitro. Our results reveal how Mps1 dynamically modifies kinetochores to correct improper attachments and ensure faithful chromosome segregation. Copyright © 2017 Elsevier Inc. All rights reserved.
Montaville, Pierre; Jégou, Antoine; Pernier, Julien; Compper, Christel; Guichard, Bérengère; Mogessie, Binyam; Schuh, Melina; Romet-Lemonne, Guillaume; Carlier, Marie-France
2014-02-01
In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a "ping-pong" mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase-independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle.
Woo Seo, Dong; Yeop You, Seung; Chung, Woo-Jae; Cho, Dong-Hyung; Kim, Jae-Sung; Su Oh, Jeong
2015-10-21
The key step for faithful chromosome segregation during meiosis is kinetochore assembly. Defects in this process result in aneuploidy, leading to miscarriages, infertility and various birth defects. However, the roles of kinetochores in homologous chromosome segregation during meiosis are ill-defined. Here we found that Zwint-1 is required for homologous chromosome segregation during meiosis. Knockdown of Zwint-1 accelerated the first meiosis by abrogating the kinetochore recruitment of Mad2, leading to chromosome misalignment and a high incidence of aneuploidy. Although Zwint-1 knockdown did not affect Aurora C kinase activity, the meiotic defects following Zwint-1 knockdown were similar to those observed with ZM447439 treatment. Importantly, the chromosome misalignment following Aurora C kinase inhibition was not restored after removing the inhibitor in Zwint-1-knockdown oocytes, whereas the defect was rescued after the inhibitor washout in the control oocytes. These results suggest that Aurora C kinase-mediated correction of erroneous kinetochore-microtubule attachment is primarily regulated by Zwint-1. Our results provide the first evidence that Zwint-1 is required to correct erroneous kinetochore-microtubule attachment and regulate spindle checkpoint function during meiosis.
Hu, Xiangjing; Shen, Bin; Liao, Shangying; Ning, Yan; Ma, Longfei; Chen, Jian; Lin, Xiwen; Zhang, Daoqin; Li, Zhen; Zheng, Chunwei; Feng, Yanmin; Huang, Xingxu; Han, Chunsheng
2017-06-29
ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.
Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation
Fennell, Alex; Fernández-Álvarez, Alfonso; Tomita, Kazunori
2015-01-01
Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks. PMID:25688135
SLK-dependent activation of ERMs controls LGN–NuMA localization and spindle orientation
Machicoane, Mickael; de Frutos, Cristina A.; Fink, Jenny; Rocancourt, Murielle; Lombardi, Yannis; Garel, Sonia; Piel, Matthieu
2014-01-01
Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation. PMID:24958772
Structural and mechanistic insights into Mps1 kinase activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Yang, Yuting; Gao, Yuefeng
2010-11-05
Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-{angstrom}-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the {alpha}C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation.more » Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices {alpha}EF and {alpha}F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.« less
A Chimeric Kinesin-1 Head/Kinesin-5 Tail Motor Switches between Diffusive and Processive Motility
Thiede, Christina; Lakämper, Stefan; Wessel, Alok D.; Kramer, Stefanie; Schmidt, Christoph F.
2013-01-01
Homotetrameric kinesin-5 motors are essential for chromosome separation and assembly of the mitotic spindle. These kinesins bind between two microtubules (MTs) and slide them apart, toward the spindle poles. This process must be tightly regulated in mitosis. In in vitro assays, Eg5 moves diffusively on single MTs and switches to a directed mode between MTs. How allosteric communication between opposing motor domains works remains unclear, but kinesin-5 tail domains may be involved. Here we present a single-molecule fluorescence study of a tetrameric kinesin-1 head/kinesin-5 tail chimera, DK4mer. This motor exhibited fast processive motility on single MTs interrupted by pauses. Like Eg5, DK4mer diffused along MTs with ADP, and slid antiparallel MTs apart with ATP. In contrast to Eg5, diffusive and processive periods were clearly distinguishable. This allowed us to measure transition rates among states and for unbinding as a function of buffer ionic strength. These data, together with results from controls using tail-less dimers, indicate that there are two modes of interaction with MTs, separated by an energy barrier. This result suggests a scheme of motor regulation that involves switching between two bound states, possibly allosterically controlled by the opposing tetramer end. Such a scheme is likely to be relevant for the regulation of native kinesin-5 motors. PMID:23442865
Mounting arrangement for the drive system of an air-bearing spindle on a machine tool
Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.
1987-12-07
The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.
Combination spindle-drive system for high precision machining
Gerth, Howard L.
1977-07-26
A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.
Mahe, Karan; Ou, Tingyoung; Castro, Noemi M; Christensen, Lana N; Cheung, Lee; Jiang, Xueer; Yoon, Daniel; Huang, Bo
2018-01-01
As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. PMID:29708497
Medina-Arellano, María de Jesús
2017-01-01
Abstract News about the first baby born after a mitochondrial replacement technique (MRT; specifically maternal spindle transfer) broke on September 27, 2016 and, in a matter of hours, went global. Of special interest was the fact that the mitochondrial replacement procedure happened in Mexico. One of the scientists behind this world first was quoted as having said that he and his team went to Mexico to carry out the procedure because, in Mexico, there are no rules. In this paper, we explore Mexico's rule of law in relation to mitochondrial replacement techniques and show that, in fact, certain instances of MRTs are prohibited at the federal level and others are prohibited at the state level. According to our interpretation of the law, the scientists behind this first successful MRT procedure broke federal regulations regarding assisted fertilization research. PMID:28852557
Age-dependent seizures of absence epilepsy and sleep spindles dynamics in WAG/Rij rats
NASA Astrophysics Data System (ADS)
Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.
2015-03-01
In the given paper, a relation between time-frequency characteristics of sleep spindles and the age-dependent epileptic activity in WAG/Rij rats is discussed. Analysis of sleep spindles based on the continuous wavelet transform is performed for rats of different ages. It is shown that the epileptic activity affects the time-frequency intrinsic dynamics of sleep spindles.
Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto
2015-01-01
Study Objectives: Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Design: Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Setting: Sleep laboratory. Participants: Twenty healthy male subjects (age: 23.3 ± 2.1 y) Measurements and Results: Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Conclusion: Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. Citation: Lustenberger C, Wehrle F, Tüshaus L, Achermann P, Huber R. The multidimensional aspects of sleep spindles and their relationship to word-pair memory consolidation. SLEEP 2015;38(7):1093–1103. PMID:25845686
Measuring mitotic spindle dynamics in budding yeast
NASA Astrophysics Data System (ADS)
Plumb, Kemp
In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Eun-Jung; Hur, Shin-Kyoung; Lee, Han-Sae
2011-12-16
Highlights: Black-Right-Pointing-Pointer The N-terminal domain of hIno80 is important for binding to the spindle. Black-Right-Pointing-Pointer The hIno80 N-terminal domain binds to tubulin and microtubule in vitro. Black-Right-Pointing-Pointer The E-hook of tubulin is critical for hIno80 binding to tubulin and microtubule. Black-Right-Pointing-Pointer Tip49a does not bind to microtubule and dispensable for spindle formation. -- Abstract: The human INO80 chromatin remodeling complex, comprising the Ino80 ATPase (hIno80) and the associated proteins such as Tip49a, has been implicated in a variety of nuclear processes other than transcription. We previously have found that hIno80 interacts with tubulin and co-localizes with the mitotic spindle andmore » is required for spindle formation. To better understand the role of hIno80 in spindle formation, we further investigated the interaction between hIno80 and microtubule. Here, we show that the N-terminal domain, dispensable for the nucleosome remodeling activity, is important for hIno80 to interact with tubulin and co-localize with the spindle. The hIno80 N-terminal domain binds to monomeric tubulin and polymerized microtubule in vitro, and the E-hook of tubulin, involved in the polymerization of microtubule, is critical for this binding. Tip49a, which has been reported to associate with the spindle, does not bind to microtubule in vitro and dispensable for spindle formation in vivo. These results suggest that hIno80 can play a direct role in the spindle assembly independent of its chromatin remodeling activity.« less
Zheng, Thomas W; O'Brien, Terence J; Kulikova, Sofya P; Reid, Christopher A; Morris, Margaret J; Pinault, Didier
2014-03-01
A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Sidorchuk, Yuriy Vladimirovich; Deineko, Elena Victorovna
2017-06-01
Microsporogenesis patterns of the polyploid (2n = 4x = 96) and diploid (2n = 2x = 48) Nicotiana tabacum L. (cv. Havana Petit line SR1) plants have been analyzed and compared. Four types of abnormal positions of the second-division spindles-tripolar, parallel, proximal, and fused-have been observed. Of these abnormalities, only tripolar (2.4%) and parallel (1.4%) spindles are observable in diploid plants. As for polyploids, the increased ploidy is accompanied by an increase in the incidence of tripolar (22.8%) and parallel (8.1%) spindle orientations and emergence of two remaining abnormalities (proximal and fused spindles, 3.3%). As has been shown, the spindle position abnormalities in diploid plants have no effect on the meiotic products, whereas both dyads and triads are detectable among the tetrads in polyploid plants. Analysis of cytoskeletal remodeling has allowed for the insight into the role of interzonal radial microtubule system in spindle positioning during the second division. The reason underlying the change in spindle positioning is disturbed polymerization-depolymerization processes and interdigitation of microtubule plus ends within the interzonal cytoskeleton system in late telophase I-interkinesis and prophase II. As has been demonstrated, fused second-division spindles are formed as a result of fused cytoskeletal structures in prophase-prometaphase II in the case when the nuclei are drawn abnormally close to one another. © 2017 International Federation for Cell Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongbo; Sheng, Ye; Zhao, Huan
2012-12-15
Graphical abstract: This picture illustration for the formation process of TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles. Display Omitted Highlights: ► TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles were prepared. ► The nanotubes could transform to nanorods and spindle-shaped nanoparticles. ► The luminescence properties are dependent on the increases of the bandgap. -- Abstract: TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles have been successfully prepared through simple calcination and hydrothermal process respectively using titanate as the precursors. On the basis of X-ray diffraction results, the as-obtained precursors are titanate (H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O), while nanorods and spindle-shaped nanoparticles aremore » pure anatase phase of TiO{sub 2}. TEM and SEM images show that the as-formed precursor could be transformed from nanotubes into nanorods and spindle-shaped nanoparticles by the calcination and hydrothermal process respectively. Under UV light excitation, both the TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles exhibit the strong red emission. In addition, the luminescence intensity of TiO{sub 2}:Eu{sup 3+} nanorods is higher than that of TiO{sub 2}:Eu{sup 3+} spindle-shaped nanoparticles due to the increases of the bandgap of the TiO{sub 2} nanorods.« less
On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System
NASA Astrophysics Data System (ADS)
Wang, Joseph
Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.
Sato, Masamitsu; Vardy, Leah; Angel Garcia, Miguel; Koonrugsa, Nirada; Toda, Takashi
2004-01-01
The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules. PMID:14742702
Sato, Masamitsu; Vardy, Leah; Angel Garcia, Miguel; Koonrugsa, Nirada; Toda, Takashi
2004-04-01
The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.
Zhang, Lei; Hou, Yubin; Li, Zhiyuan; Ji, Xinmiao; Wang, Ze; Wang, Huizhen; Tian, Xiaofei; Yu, Fazhi; Yang, Zhenye; Pi, Li; Mitchison, Timothy J; Lu, Qingyou; Zhang, Xin
2017-01-01
Purified microtubules have been shown to align along the static magnetic field (SMF) in vitro because of their diamagnetic anisotropy. However, whether mitotic spindle in mammalian cells can be aligned by magnetic field has not been experimentally proved. In particular, the biological effects of SMF of above 20 T (Tesla) on mammalian cells have never been reported. Here we found that in both CNE-2Z and RPE1 human cells spindle orients in 27 T SMF. The direction of spindle alignment depended on the extent to which chromosomes were aligned to form a planar metaphase plate. Our results show that the magnetic torque acts on both microtubules and chromosomes, and the preferred direction of spindle alignment relative to the field depends more on chromosome alignment than microtubules. In addition, spindle morphology was also perturbed by 27 T SMF. This is the first reported study that investigated the mammalian cellular responses to ultra-high magnetic field of above 20 T. Our study not only found that ultra-high magnetic field can change the orientation and morphology of mitotic spindles, but also provided a tool to probe the role of spindle orientation and perturbation in developmental and cancer biology. DOI: http://dx.doi.org/10.7554/eLife.22911.001 PMID:28244368
Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons
De Luca, C J; Kline, J C
2012-01-01
We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0 to 10%) voluntary contractions, muscle fibres of recruited motor units produce force-twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution. PMID:22183300
Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast
Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.
2016-01-01
Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110
Measurement of Spindle Rigidity by using a Magnet Loader
NASA Astrophysics Data System (ADS)
Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki
The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.
Sleep spindle activity and cognitive performance in healthy children.
Chatburn, Alex; Coussens, Scott; Lushington, Kurt; Kennedy, Declan; Baumert, Mathias; Kohler, Mark
2013-02-01
To investigate the association between indices of sleep spindle activity and cognitive performance in a sample of healthy children. Correlational. Intelligence (Stanford-Binet) and neurocognitive functioning (NEPSY) were assessed, with sleep variables being measured during overnight polysomnography. Hospital sleep laboratory. Twenty-seven healthy children (mean age 8.19 y; 14 female, 13 male). N/A. Participants underwent a single night of overnight polysomnography after completing measures of intelligence and neurocognitive functioning. Sleep spindles were visually identified by an experienced sleep scoring technician and separated algorithmically into fast (> 13 Hz) and slow spindle (< 13 Hz) categories. The number of fast spindles was significantly correlated with narrative memory (r(s) = 0.38) and sensorimotor functioning (-0.43). Mean central frequency of spindles was also significantly correlated with sensorimotor functioning (-0.41), planning ability (-0.41), and working memory (-0.54). Basal sleep spindle activity is associated with different aspects of cognitive performance in children. To the extent that these associations in a pediatric population are different from what is known in adult sleep may play an important role in development.
Cao, Dong-Yuan; Pickar, Joel G.
2014-01-01
We determined whether spinal manipulation could prevent and/or reverse the decrease and increase in paraspinal muscle spindle responsiveness caused respectively by lengthening and shortening histories of the lumbar muscles. Single unit spindle activity from multifidus and longissimus muscles was recorded in the L6 dorsal root in anesthetized cats. Muscle history was created and spinal manipulation delivered (thrust amplitude: 1.0mm, duration: 100ms) using a feedback-controlled motor attached to the L6 spinous process. Muscle spindle discharge to a fixed vertebral position (static test) and to vertebral movement (dynamic test) was evaluated following the lengthening and shortening histories. For the static test, changes in muscle spindle responsiveness were significantly less when spinal manipulation followed muscle history (p<0.01), but not when spinal manipulation preceded it (p>0.05). For the dynamic test, spinal manipulation did not significantly affect the history-induced change in muscle spindle responsiveness. Spinal manipulation may partially reverse the effects of muscle history on muscle spindle signaling of vertebral position. PMID:24932019
Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Bag, Indira; Hunt, Clayton R; Ramaiah, M Janaki; Pandita, Tej K; Bhadra, Utpal; Pal-Bhadra, Manika
2014-02-01
The role of Ago-1 in microRNA (miRNA) biogenesis has been thoroughly studied, but little is known about its involvement in mitotic cell cycle progression. In this study, we established evidence of the regulatory role of Ago-1 in cell cycle control in association with the G2/M cyclin, cyclin B. Immunostaining of early embryos revealed that the maternal effect gene Ago-1 is essential for proper chromosome segregation, mitotic cell division, and spindle fiber assembly during early embryonic development. Ago-1 mutation resulted in the up-regulation of cyclin B-Cdk1 activity and down-regulation of p53, grp, mei-41, and wee1. The increased expression of cyclin B in Ago-1 mutants caused less stable microtubules and probably does not produce enough force to push the nuclei to the cortex, resulting in a decreased number of pole cells. The role of cyclin B in mitotic defects was further confirmed by suppressing the defects in the presence of one mutant copy of cyclin B. We identified involvement of 2 novel embryonic miRNAs--miR-981 and miR--317-for spatiotemporal regulation of cyclin B. In summary, our results demonstrate that the haploinsufficiency of maternal Ago-1 disrupts mitotic chromosome segregation and spindle fiber assembly via miRNA-guided control during early embryogenesis in Drosophila. The increased expression of cyclin B-Cdk1 and decreased activity of the Cdk1 inhibitor and cell cycle checkpoint proteins (mei-41 and grp) in Ago-1 mutant embryos allow the nuclei to enter into mitosis prematurely, even before completion of DNA replication. Thus, our results have established a novel role of Ago-1 as a regulator of the cell cycle.
USDA-ARS?s Scientific Manuscript database
The Mps1 family of protein kinases contributes to cell cycle control by regulating multiple microtubule cytoskeleton activities. We have uncovered a new Mps1 substrate that provides a novel link between Mps1 and the actin cytoskeleton. We have identified a conserved human Mps1 (hMps1) interacting pr...
Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riparbelli, Maria Giovanna; Callaini, Giuliano
2008-04-15
Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regionsmore » or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules.« less
Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants
NASA Astrophysics Data System (ADS)
Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.
2014-03-01
Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.
Marroig, Bruno; Favorito, Luciano Alves; Fortes, Marco A; Sampaio, Francisco J B
2015-12-01
The aim of this study was to analyze the anatomy of the inferior pole collecting system and the mid-renal-zone classification in human endocasts applied to flexible ureteroscopy. 170 three-dimensional polyester resin endocasts of the kidney collecting system were obtained from 85 adult cadavers. We divided the endocasts into four groups: A1--kidney midzone (KM), drained by minor calices (mc) that are dependent on the superior or the inferior caliceal groups; A2--KM drained by crossed calices; B1--KM drained by a major caliceal group independent of both the superior and inferior groups; and B2--KM drained by mc entering directly into the renal pelvis. We studied the number of calices, the angle between the lower infundibulum and renal pelvis and the angle between the lower infundibulum and the inferior mc (LIICA). Means were statistically compared using ANOVA and the unpaired T test (p < 0.05). We found 57 (33.53 %) endocasts of group A1; 23 (13.53 %) of group A2; 59 (34.71 %) of group B1; and 31 (18.23 %) of group B2. The inferior pole was drained by four or more calices in 84 cases (49.41 %), distributed into groups as follows: A1 = 35 cases (41.67 %); A2 = 18 (21.43 %); B1 = 22 (26.19 %); and B2 = 9 (10.71 %). Perpendicular mc were observed in 15 cases (8.82 %). We did not observe statistical differences between the LIICA in the groups studied. Collector systems with kidney midzone drained by minor calices that are dependent on the superior or on the inferior caliceal groups presented at least two restrictive anatomical features. The mid-renal-zone classification was predictive of anatomical risk factors for lower pole ureteroscopy difficulties.
Quaresma, Juarez A S; Barros, Vera L R S; Pagliari, Carla; Fernandes, Elaine R; Guedes, Fernanda; Takakura, Cleusa F H; Andrade, Heitor F; Vasconcelos, Pedro F C; Duarte, Maria I S
2006-02-05
Flavivirus infection as dengue and yellow fever persists as a terrible menace to pandemics, due to Aedes prevalence in the Americas. Yellow fever is characterized by hepatocyte damage, with steatosis, apoptosis and necrosis, mainly in the midzonal region of the liver, but the injury mechanism has not been studied at the light of recent knowledge, such as the advances in cell death mechanisms, inflammatory response and cytokine cell expression tools. We studied 53 human liver paraffin embedded blocks from patients who died with yellow fever, all with histological demonstration of higher prevalence of apoptosis over necrosis and mild disproportionate inflammatory response. Viral antigens were found most frequently in hepatocytes from the midzonal area than other lobule areas, as detected by specific immunohistochemistry. Infiltrating cell subpopulations showed mainly CD4+ T lymphocytes, with small numbers of CD8+ cytotoxic lymphocytes, CD20+ B lymphocytes, NKT+ cells and S100+ dendritic cells in the sites of inflammation, as compared to normal and leptospirosis liver blocks. Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever. Most affected hepatocyte presented apoptosis markers that appear at the cell death main pathway in this infection. Viral antigens, which production could interfere in hepatocyte biology, could induce the activation of apoptosis cascade, but TGF-beta was also an apoptosis promoter. Our finding supports the key effect of the yellow fever virus in hepatocyte injury, resulting in prevalence of apoptosis over necrosis, aside from a TGF-beta action induced by the inflammatory response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokos, J.A.
1996-12-31
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.« less
Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder.
Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru
2016-01-01
Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5-16 Hz) and slow-frequency spindle activity (10.5-12.5 Hz). Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep.
Yordanova, Juliana; Kolev, Vasil; Bruns, Eike; Kirov, Roumen; Verleger, Rolf
2017-11-01
The present study explored the sleep mechanisms which may support awareness of hidden regularities. Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].
Very High Load Capacity Air Bearing Spindle for Large Diamond Turning Machines
2010-06-08
testing and a surplus air bearing rotary table has been located. A prototype spindle has been designed to work with the table. 15. SUBJECT TERMS...MSFC) • PROTOTYPE SPINDLE DESIGN June 8, 2010Mirror Technology Workshop 3 Introduction • DT is a proven method of manufacturing aspheric off-axis... designed to hold in a strain-free condition. This spindle development is aimed at producing 3 meter diameter components. This requirement results in the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zvaritch, Elena; MacLennan, David H., E-mail: david.maclennan@utoronto.ca
Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmedmore » for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.« less
Kinesin-5–dependent Poleward Flux and Spindle Length Control in Drosophila Embryo Mitosis
Brust-Mascher, Ingrid; Sommi, Patrizia; Cheerambathur, Dhanya K.
2009-01-01
We used antibody microinjection and genetic manipulations to dissect the various roles of the homotetrameric kinesin-5, KLP61F, in astral, centrosome-controlled Drosophila embryo spindles and to test the hypothesis that it slides apart interpolar (ip) microtubules (MT), thereby controlling poleward flux and spindle length. In wild-type and Ncd null mutant embryos, anti-KLP61F dissociated the motor from spindles, producing a spatial gradient in the KLP61F content of different spindles, which was visible in KLP61F-GFP transgenic embryos. The resulting mitotic defects, supported by gene dosage experiments and time-lapse microscopy of living klp61f mutants, reveal that, after NEB, KLP61F drives persistent MT bundling and the outward sliding of antiparallel MTs, thereby contributing to several processes that all appear insensitive to cortical disruption. KLP61F activity contributes to the poleward flux of both ipMTs and kinetochore MTs and to the length of the metaphase spindle. KLP61F activity maintains the prometaphase spindle by antagonizing Ncd and another unknown force-generator and drives anaphase B, although the rate of spindle elongation is relatively insensitive to the motor's concentration. Finally, KLP61F activity contributes to normal chromosome congression, kinetochore spacing, and anaphase A rates. Thus, a KLP61F-driven sliding filament mechanism contributes to multiple aspects of mitosis in this system. PMID:19158379
Combes, Guillaume; Barysz, Helena; Garand, Chantal; Gama Braga, Luciano; Alharbi, Ibrahim; Thebault, Philippe; Murakami, Luc; Bryne, Dominic P; Stankovic, Stasa; Eyers, Patrick A; Bolanos-Garcia, Victor M; Earnshaw, William C; Maciejowski, John; Jallepalli, Prasad V; Elowe, Sabine
2018-03-19
Monopolar spindle 1 (Mps1) is a conserved apical kinase in the spindle assembly checkpoint (SAC) that ensures accurate segregation of chromosomes during mitosis. Mps1 undergoes extensive auto- and transphosphorylation, but the regulatory and functional consequences of these modifications remain unclear. Recent findings highlight the importance of intermolecular interactions between the N-terminal extension (NTE) of Mps1 and the Hec1 subunit of the NDC80 complex, which control Mps1 localization at kinetochores and activation of the SAC. Whether the NTE regulates other mitotic functions of Mps1 remains unknown. Here, we report that phosphorylation within the NTE contributes to Mps1 activation through relief of catalytic autoinhibition that is mediated by the NTE itself. Moreover, we find that this regulatory NTE function is independent of its role in Mps1 kinetochore recruitment. We demonstrate that the NTE autoinhibitory mechanism impinges most strongly on Mps1-dependent SAC functions and propose that Mps1 activation likely occurs sequentially through dimerization of a "prone-to-autophosphorylate" Mps1 conformer followed by autophosphorylation of the NTE prior to maximal kinase activation segment trans-autophosphorylation. Our observations underline the importance of autoregulated Mps1 activity in generation and maintenance of a robust SAC in human cells. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Mander, Bryce A; Zhu, Alyssa H; Lindquist, John R; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P
2017-11-29
Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of degeneration determines whether sleep spindles can promote motor memory consolidation. Therefore, white matter integrity in the human brain, more than age per se, determines the magnitude of decline in sleep spindles in later life and, with it, the success (or lack thereof) of sleep-dependent motor memory consolidation in older adults. Copyright © 2017 the authors 0270-6474/17/3711675-13$15.00/0.
Zhu, Alyssa H.; Lindquist, John R.; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Ancoli-Israel, Sonia
2017-01-01
Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical–cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of degeneration determines whether sleep spindles can promote motor memory consolidation. Therefore, white matter integrity in the human brain, more than age per se, determines the magnitude of decline in sleep spindles in later life and, with it, the success (or lack thereof) of sleep-dependent motor memory consolidation in older adults. PMID:29084867
Pickar, Joel G.; Ge, Weiqing
2008-01-01
Background Context In neutral spinal postures with low loading moments the lumbar spine is not inherently stable. Small compromises in paraspinal muscle activity may affect lumbar spinal biomechanics. Proprioceptive feedback from muscle spindles is considered important for control of muscle activity. Because skeletal muscle and muscle spindles are thixotropic, their length history changes their physical properties. The present study explores a mechanism that can affect the responsiveness of paraspinal muscle spindles in the lumbar spine. Purpose This study had two aims: to extend our previous findings demonstrating the history dependent effects of vertebral position on the responsiveness of lumbar paraspinal muscle spindles; and to determine the time course for these effects. Based upon previous studies, if a crossbridge mechanism underlies these thixotropic effects, then the relationship between the magnitude of spindle discharge and the duration of the vertebral position will be one of exponential decay or growth. Study Design/Setting A neurophysiological study using the lumbar spine of a feline model. Methods The discharge from individual muscle spindles afferents innervating lumbar paraspinal muscles in response to the duration and direction of vertebral position were obtained from teased filaments in the L6 dorsal roots of 30 Nembutal-anesthetized cats. The L6 vertebra was controlled using a displacement-controlled feedback motor and was held in each of 3 different conditioning positions for durations of 0, 0.5, 1, 1.5, and 2 seconds. Two of the conditioning positions stretched or shortened the lumbar muscles relative to an intermediate conditioning position. Conditioning positions for all cats ranged from 0.9 – 2.0 mm dorsal and ventralward relative to the intermediate position. These magnitudes were determined based upon the displacement that loaded the L6 vertebra to 50–60% of the cat’s body weight. Conditioning was thought to simulate a motion segment’s position that might be passively maintained due to fixation, external load, a prolonged posture, or structural change. Following conditioning positions that stretched (hold-long) and shortened (hold-short) the spindle, the vertebra was repositioned identically and muscle spindle discharge at rest and to movement was compared with conditioning at the intermediate position. Results Lumbar vertebral positions maintained for less than 2 seconds were capable of evoking different discharge rates from lumbar paraspinal muscle spindles despite the vertebra having been returned to identical locations. Both resting spindle discharge and their responsiveness to movement were altered. Conditioning vertebral positions that stretched the spindles decreased spindle activity and positions that unloaded the spindles increased spindle activity upon returning the vertebra to identical original (intermediate) positions. The magnitude of these effects increased as conditioning duration increased to 2 seconds. These effects developed with a time course following a first order exponential reaching a maximal value after approximately 4 seconds of history. The time constant for a hold-short history was 2.6 seconds and for a hold-long history was approximately half of that at 1.1 seconds. Conclusions Thixotropic contributions to the responsiveness of muscles spindles in the low back are caused by the rapid, spontaneous formation of stable crossbridges. These sensory alterations due to vertebral history would represent a proprioceptive input not necessarily representative of the current state of intersegmental positioning. As such, they would constitute a source of inaccurate sensory feedback. Examples are presented suggesting ways in which this novel finding may affect spinal physiology. PMID:17938002
Cluet, David; Spichty, Martin; Delattre, Marie
2014-01-01
The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes) can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed and the accuracy of the automated tracking matches the precision of the human eye. PMID:24763198
The Chromokinesin Kid Is Required for Maintenance of Proper Metaphase Spindle SizeD⃞
Tokai-Nishizumi, Noriko; Ohsugi, Miho; Suzuki, Emiko; Yamamoto, Tadashi
2005-01-01
The human chromokinesin Kid/kinesin-10, a plus end-directed microtubule (MT)-based motor with both microtubule- and DNA-binding domains, is required for proper chromosome alignment at the metaphase plate. Here, we performed RNA interference experiments to deplete endogenous Kid from HeLa cells and confirmed defects in metaphase chromosome arm alignment in Kid-depleted cells. In addition, we noted a shortening of the spindle length, resulting in a pole-to-pole distance only 80% of wild type. The spindle microtubule-bundles with which Kid normally colocalize became less robust. Rescue of the two Kid deficiency phenotypes—imprecise chromosome alignment at metaphase and shortened spindles— exhibited distinct requirements. Mutants lacking either the DNA-binding domain or the MT motor ATPase failed to rescue the former defect, whereas rescue of the shortened spindle phenotype required neither activity. Kid also exhibits microtubule bundling activity in vitro, and rescue of the shortened spindle phenotype and the bundling activity displayed similar domain requirements, except that rescue required a coiled-coil domain not needed for bundling. These results suggest that distinct from its role in chromosome movement, Kid contributes to spindle morphogenesis by mediating spindle microtubules stabilization. PMID:16176979
Kim, S-J; Kim, D-K; Kang, D-H
2016-04-01
We investigated and compared the efficacy of a new apparatus for detaching micro-organisms from meat samples. The efficacy of Spindle and stomacher in detaching micro-organisms from meat samples was evaluated. Also, evaluation of appropriateness of suspensions generated by both methods for carrying out molecular biological analysis was implemented. A nearly identical correlation and high R(2) were obtained between Spindle and stomacher in Aerobic Plate Count (APC), and no significant differences were observed in detachment of three major foodborne pathogens. The suspension generated by the Spindle showed lower turbidity and total protein concentration. Also, significantly different threshold cycles were observed in Real-time PCR analysis using suspensions generated by both methods. The Spindle shows nearly identical efficacy with stomacher treatment in detaching micro-organisms from meat samples. Furthermore, the high quality of suspensions generated by the Spindle, in terms of turbidity and total protein assay, allows for a lower threshold cycle than stomached suspension in Real-time PCR. The Spindle could be an alternative method for detaching micro-organisms, yielding a higher quality of suspensions which may be better suited for further molecular microbiological analysis. © 2016 The Society for Applied Microbiology.
Sonnleitner, Andreas; Treder, Matthias Sebastian; Simon, Michael; Willmann, Sven; Ewald, Arne; Buchner, Axel; Schrauf, Michael
2014-01-01
Driver distraction is responsible for a substantial number of traffic accidents. This paper describes the impact of an auditory secondary task on drivers' mental states during a primary driving task. N=20 participants performed the test procedure in a car following task with repeated forced braking on a non-public test track. Performance measures (provoked reaction time to brake lights) and brain activity (EEG alpha spindles) were analyzed to describe distracted drivers. Further, a classification approach was used to investigate whether alpha spindles can predict drivers' mental states. Results show that reaction times and alpha spindle rate increased with time-on-task. Moreover, brake reaction times and alpha spindle rate were significantly higher while driving with auditory secondary task opposed to driving only. In single-trial classification, a combination of spindle parameters yielded a median classification error of about 8% in discriminating the distracted from the alert driving. Reduced driving performance (i.e., prolonged brake reaction times) during increased cognitive load is assumed to be indicated by EEG alpha spindles, enabling the quantification of driver distraction in experiments on public roads without verbally assessing the drivers' mental states. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wise, Merrill S.
2016-01-01
Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646
The Physics of the Metaphase Spindle.
Oriola, David; Needleman, Daniel J; Brugués, Jan
2018-05-20
The assembly of the mitotic spindle and the subsequent segregation of sister chromatids are based on the self-organized action of microtubule filaments, motor proteins, and other microtubule-associated proteins, which constitute the fundamental force-generating elements in the system. Many of the components in the spindle have been identified, but until recently it remained unclear how their collective behaviors resulted in such a robust bipolar structure. Here, we review the current understanding of the physics of the metaphase spindle that is only now starting to emerge.
Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication
2006-03-01
AD Award Number: W81XWH-05-1-0310 TITLE: Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication PRINCIPAL...Feb 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication Sb. GRANT...Degradation, Cell Cycle, Spindle Pole Body 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF
Sleep spindles may predict response to cognitive-behavioral therapy for chronic insomnia.
Dang-Vu, Thien Thanh; Hatch, Benjamin; Salimi, Ali; Mograss, Melodee; Boucetta, Soufiane; O'Byrne, Jordan; Brandewinder, Marie; Berthomier, Christian; Gouin, Jean-Philippe
2017-11-01
While cognitive-behavioral therapy for insomnia constitutes the first-line treatment for chronic insomnia, only few reports have investigated how sleep architecture relates to response to this treatment. In this pilot study, we aimed to determine whether pre-treatment sleep spindle density predicts treatment response to cognitive-behavioral therapy for insomnia. Twenty-four participants with chronic primary insomnia participated in a 6-week cognitive-behavioral therapy for insomnia performed in groups of 4-6 participants. Treatment response was assessed using the Pittsburgh Sleep Quality Index and the Insomnia Severity Index measured at pre- and post-treatment, and at 3- and 12-months' follow-up assessments. Secondary outcome measures were extracted from sleep diaries over 7 days and overnight polysomnography, obtained at pre- and post-treatment. Spindle density during stage N2-N3 sleep was extracted from polysomnography at pre-treatment. Hierarchical linear modeling analysis assessed whether sleep spindle density predicted response to cognitive-behavioral therapy. After adjusting for age, sex, and education level, lower spindle density at pre-treatment predicted poorer response over the 12-month follow-up, as reflected by a smaller reduction in Pittsburgh Sleep Quality Index over time. Reduced spindle density also predicted lower improvements in sleep diary sleep efficiency and wake after sleep onset immediately after treatment. There were no significant associations between spindle density and changes in the Insomnia Severity Index or polysomnography variables over time. These preliminary results suggest that inter-individual differences in sleep spindle density in insomnia may represent an endogenous biomarker predicting responsiveness to cognitive-behavioral therapy. Insomnia with altered spindle activity might constitute an insomnia subtype characterized by a neurophysiological vulnerability to sleep disruption associated with impaired responsiveness to cognitive-behavioral therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder
Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru
2016-01-01
Introduction Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Methods Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants’ brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz) and slow-frequency spindle activity (10.5–12.5 Hz). Result Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Conclusion Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep. PMID:26869818
Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong
2013-01-01
High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.
Frequency Response Studies using Receptance Coupling Approach in High Speed Spindles
NASA Astrophysics Data System (ADS)
Shaik, Jakeer Hussain; Ramakotaiah, K.; Srinivas, J.
2018-01-01
In order to assess the stability of high speed machining, estimate the frequency response at the end of tool tip is of great importance. Evaluating dynamic response of several combinations of integrated spindle-tool holder-tool will consume a lot of time. This paper presents coupled field dynamic response at tool tip for the entire integrated spindle tool unit. The spindle unit is assumed to be relying over the front and rear bearings and investigated using the Timoshenko beam theory to arrive the receptances at different locations of the spindle-tool unit. The responses are further validated with conventional finite element model as well as with the experiments. This approach permits quick outputs without losing accuracy of solution and further these methods are utilized to analyze the various design variables on system dynamics. The results obtained through this analysis are needed to design the better spindle unit in an attempt to reduce the frequency amplitudes at the tool tip to improvise the milling stability during cutting process.
Howard, Jonathon; Garzon-Coral, Carlos
2017-11-01
Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.
Bonjean, Maxime; Baker, Tanya; Bazhenov, Maxim; Cash, Sydney; Halgren, Eric; Sejnowski, Terrence
2012-01-01
Sleep spindles, which are bursts of 11–15 Hz that occur during non-REM sleep, are highly synchronous across the scalp when measured with EEG, but have low spatial coherence and exhibit low correlation with EEG signals when simultaneously measured with MEG spindles in humans. We developed a computational model to explore the hypothesis that the spatial coherence of the EEG spindle is a consequence of diffuse matrix projections of the thalamus to layer 1 compared to the focal projections of the core pathway to layer 4 recorded by the MEG. Increasing the fanout of thalamocortical connectivity in the matrix pathway while keeping the core pathway fixed led to increased synchrony of the spindle activity in the superficial cortical layers in the model. In agreement with cortical recordings, the latency for spindles to spread from the core to the matrix was independent of the thalamocortical fanout but highly dependent on the probability of connections between cortical areas. PMID:22496571
Ase1/Prc1-dependent spindle elongation corrects merotely during anaphase in fission yeast
Courtheoux, Thibault; Gay, Guillaume; Tournier, Sylvie
2009-01-01
Faithful segregation of sister chromatids requires the attachment of each kinetochore (Kt) to microtubules (MTs) that extend from opposite spindle poles. Merotelic Kt orientation is a Kt–MT misattachment in which a single Kt binds MTs from both spindle poles rather than just one. Genetic induction of merotelic Kt attachment during anaphase in fission yeast resulted in intra-Kt stretching followed by either correction or Kt disruption. Laser ablation of spindle MTs revealed that intra-Kt stretching and merotelic correction were dependent on MT forces. The presence of multiple merotelic chromosomes linearly antagonized the spindle elongation rate, and this phenomenon could be solved numerically using a simple force balance model. Based on the predictions of our mechanical model, we provide in vivo evidence that correction of merotelic attachment in anaphase is tension dependent and requires an Ase1/Prc1-dependent mechanism that prevents spindle collapse and thus asymmetric division and/or the appearance of the cut phenotype. PMID:19948483
Tumor Cell Plasticity in Uveal Melanoma
Folberg, Robert; Arbieva, Zarema; Moses, Jonas; Hayee, Amin; Sandal, Tone; Kadkol, ShriHari; Lin, Amy Y.; Valyi-Nagy, Klara; Setty, Suman; Leach, Lu; Chévez-Barrios, Patricia; Larsen, Peter; Majumdar, Dibyen; Pe’er, Jacob; Maniotis, Andrew J.
2006-01-01
The histological detection of laminin-rich vasculogenic mimicry patterns in human primary uveal melanomas is associated with death from metastases. We therefore hypothesized that highly invasive uveal melanoma cells forming vasculogenic mimicry patterns after exposure to a laminin-rich three-dimensional microenvironment would differentially express genes associated with invasive and metastatic behavior. However, we discovered that genes associated with differentiation (GDF15 and ATF3) and suppression of proliferation (CDKNa1/p21) were up-regulated in highly invasive uveal melanoma cells forming vasculogenic mimicry patterns, and genes associated with promotion of invasive and metastatic behavior such as CD44, CCNE2 (cyclin E2), THBS1 (thrombospondin 1), and CSPG2 (chondroitin sulfate proteoglycan; versican) were down-regulated. After forming vasculogenic mimicry patterns, uveal melanoma cells invaded only short distances, failed to replicate, and changed morphologically from the invasive epithelioid to the indolent spindle A phenotype. In human tissue samples, uveal melanoma cells within vasculogenic mimicry patterns assumed the spindle A morphology, and the expression of Ki67 was significantly reduced in adjacent melanoma cells. Thus, the generation of vasculogenic mimicry patterns is accompanied by dampening of the invasive and metastatic uveal melanoma genotype and phenotype and underscores the plasticity of these cells in response to cues from the microenvironment. PMID:17003493
Montaville, Pierre; Jégou, Antoine; Pernier, Julien; Compper, Christel; Guichard, Bérengère; Mogessie, Binyam; Schuh, Melina; Romet-Lemonne, Guillaume; Carlier, Marie-France
2014-01-01
In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a “ping-pong” mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase–independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle. PMID:24586110
Pramila, Tata; Wu, Wei; Miles, Shawna; Noble, William Stafford; Breeden, Linda L
2006-08-15
Transcription patterns shift dramatically as cells transit from one phase of the cell cycle to another. To better define this transcriptional circuitry, we collected new microarray data across the cell cycle of budding yeast. The combined analysis of these data with three other cell cycle data sets identifies hundreds of new highly periodic transcripts and provides a weighted average peak time for each transcript. Using these data and phylogenetic comparisons of promoter sequences, we have identified a late S-phase-specific promoter element. This element is the binding site for the forkhead protein Hcm1, which is required for its cell cycle-specific activity. Among the cell cycle-regulated genes that contain conserved Hcm1-binding sites, there is a significant enrichment of genes involved in chromosome segregation, spindle dynamics, and budding. This may explain why Hcm1 mutants show 10-fold elevated rates of chromosome loss and require the spindle checkpoint for viability. Hcm1 also induces the M-phase-specific transcription factors FKH1, FKH2, and NDD1, and two cell cycle-specific transcriptional repressors, WHI5 and YHP1. As such, Hcm1 fills a significant gap in our understanding of the transcriptional circuitry that underlies the cell cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elangbam, C.S.; Qualls, C.W.; Confer, A.W.
1991-08-01
Hepatic lobules are composed of hepatocytes organized in three microcirculatory zones (periportal, midzonal, and centrilobular). The hepatocytes in each of these zones contain enzymes which are involved in various biochemical reactions. The predominant location of the mixed-function oxidation system in the liver lobule is the centrilobular zone. Ultrastructural changes in the hepatocytes not only correlate with biochemical events of detoxification but also with toxic effects of a parent compound or its metabolites. The objectives of this study was to characterize the ultrastructural alterations in the liver of wild cotton rats (Sigmodon hispidus) following exposure to polychlorinated biphenyls (PCB) contaminated habitat.
Yi, Kexi; Unruh, Jay R.; Deng, Manqi; Slaughter, Brian D.; Rubinstein, Boris; Li, Rong
2012-01-01
Mature mammalian oocytes are poised for the completion of second polar body extrusion upon fertilization by positioning the metaphase spindle in close proximity to an actomyosin-rich cortical cap. Loss of this spindle position asymmetry is often associated with poor oocyte quality and infertility 1–3. Here, we report a novel role for the Arp2/3 actin nucleation complex in the maintenance of asymmetric spindle position in mature mouse oocytes. The Arp2/3 complex localizes to the cortical cap in a Ran GTPase-dependent manner and accounts for the nucleation of the majority of actin filaments in both the cortical cap and a cytoplasmic actin network. Inhibition of Arp2/3 complex activity or localization leads to rapid dissociation of the spindle from the cortex. High resolution live imaging and spatiotemporal image correlation spectroscopy (STICS) analysis reveal that in normal oocytes actin filaments flow continuously away from the Arp2/3-rich cortex, generating a cytoplamic streaming that results in a net pushing force on the spindle toward the actomyosin cap. Arp2/3 inhibition not only diminishes this actin flow and cytoplamic streaming but also enables a reverse streaming driven by myosin-II-based cortical contraction, leading to spindle movement away from the cortex. We conclude that the Arp2/3 complex maintains asymmetric meiotic spindle position by generating an actin polymerization-driven cytoplamic streaming and by suppressing a counteracting force from myosin-II-based contractility. PMID:21874009
EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions.
Simon, Michael; Schmidt, Eike A; Kincses, Wilhelm E; Fritzsche, Martin; Bruns, Andreas; Aufmuth, Claus; Bogdan, Martin; Rosenstiel, Wolfgang; Schrauf, Michael
2011-06-01
The purpose of this study is to show the effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions. An algorithm for the identification of alpha spindles is described. The performance of the algorithm is tested based on simulated data. The method is applied to real data recorded under real traffic conditions and compared with the performance of traditional EEG fatigue measures, i.e. alpha-band power. As a highly valid fatigue reference, the last 20 min of driving from participants who aborted the drive due to heavy fatigue were used in contrast to the initial 20 min of driving. Statistical analysis revealed significant increases from the first to the last driving section of several alpha spindle parameters and among all traditional EEG frequency bands, only of alpha-band power; with larger effect sizes for the alpha spindle based measures. An increased level of fatigue over the same time periods for drop-outs, as compared to participants who did not abort the drive, was observed only by means of alpha spindle parameters. EEG alpha spindle parameters increase both fatigue detection sensitivity and specificity as compared to EEG alpha-band power. It is demonstrated that alpha spindles are superior to EEG band power measures for assessing driver fatigue under real traffic conditions. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
JANG, G. H.; LEE, S. H.; JUNG, M. S.
2002-03-01
Free vibration of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft is analyzed by using Hamilton's principle, FEM and substructure synthesis. The spinning disk is described by using the Kirchhoff plate theory and von Karman non-linear strain. The rotating spindle and stationary shaft are modelled by Rayleigh beam and Euler beam respectively. Using Hamilton's principle and including the rigid body translation and tilting motion, partial differential equations of motion of the spinning flexible disk and spindle are derived consistently to satisfy the geometric compatibility in the internal boundary between substructures. FEM is used to discretize the derived governing equations, and substructure synthesis is introduced to assemble each component of the disk-spindle-bearing-shaft system. The developed method is applied to the spindle system of a computer hard disk drive with three disks, and modal testing is performed to verify the simulation results. The simulation result agrees very well with the experimental one. This research investigates critical design parameters in an HDD spindle system, i.e., the non-linearity of a spinning disk and the flexibility and boundary condition of a stationary shaft, to predict the free vibration characteristics accurately. The proposed method may be effectively applied to predict the vibration characteristics of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft in the various forms of computer storage device, i.e., FDD, CD, HDD and DVD.
A new method to measure circular runout of end-milling spindle based on cutting mark
NASA Astrophysics Data System (ADS)
Zhou, Jianlai; Liu, Shuchun
2008-12-01
A practical method is introduced to measure the circular runout of a end-milling spindle system at high speed rotations without the need of a reference sphere. A workpiece is held on a linear slide which moves along the axial direction of the spindle. The spindle is then programmed to run at a specific speed. A very sharp edge cutter must be used and the depth of cut will be very shallow in order to keep the cutting force very small. The workpiece is then fed into the end mill in order to make a cutting mark of teens μm in depth. The cutting marks are circular, and their diameters are related to the circular runout of the spindle system. The cutting mark that is generated at a specific speed is expected to contain information about the spindle circular runout at this speed. In practice the cutting marks are not perfectly circular. Therefore, a best-fit circle of a cutting mark is needed to determine its diameter. A high-resolution edge detector machine is used for this purpose. Quantitative precision analysis was carried out to confirm the accuracy and repeatability of this new measurement technique. It is demonstrated that this technique for the measurement of spindle circular runout is an effective tool in verifying the actual running accuracy of spindles at their actual operating speeds and can be accomplished without the need for a reference sphere.
Elek, J; Prochazka, A; Hulliger, M; Vincent, S
1990-01-01
1. It has been claimed that stretch in the non-contractile (extramysial) portion of muscles is substantial, and may produce large discrepancies between the origin-to-insertion muscle length and the internal length variations 'seen' by muscle spindle endings. 2. In eight pentobarbitone-anaesthetized cats, we estimated stretch in the extramysial portion of medial gastrocnemius (MG) muscle with a method similar to the spindle null technique. 3. Length variations of MG previously monitored in a normal step cycle were reproduced with a computer-controlled length servo. The responses of test MG spindle endings were monitored in dorsal root filaments. Distributed stimulation of ventral root filaments, rate-modulated by the step-cycle EMG envelope, served to reproduce step-cycle forces. The filaments were selected so as to have no fusimotor action on the test spindle. 4. Spindle responses in active cycles were compared with those in passive cycles (stretch, but no distributed stimulation). In some cases concomitant tonic fusimotor stimulation was used to maintain spindle responsiveness throughout the cycle, both in active and passive trials. Generally, small discrepancies in spindle firing were seen. The passive trials were now repeated, with iterative adjustments of the length function, until the response matched the spindle firing profile in the active trial. The spindle 'saw' the same internal length change in the final passive trial as in the active trial. Any difference between the corresponding length profiles was attributed to extramysial displacement. 5. Extramysial displacement estimated in this was was maximal at short mean muscle lengths, reaching about 0.5 mm in a typical step cycle (force rising from 0 to 10 N). At longer mean muscle lengths where muscle force rose from say 2 to 12 N in the cycle, extramysial displacement was in the range 0.2-0.4 mm. 6. Except at very short lengths, the displacement was probably mainly tendinous. On this assumption, our results suggested that the stiffness of the MG tendinous compartment was force related, and about double that of cat soleus muscle at any given force. Calculations indicated that though the stretch was small, the MG tendon would store and release enough strain energy per cycle to contribute significantly to the E3 phase of the step cycle. The discrepancies in spindle firing were generally quite subtle, so we reject the claim that extramysial stretch poses a serious difficulty for inferences about fusimotion from chronic spindle afferent recordings. PMID:2148952
Intramedullary spindle cell hemangioma: case report.
Nasser, Rani; Ashayeri, Kimberly; Legatt, Alan D; Houten, John K
2016-09-01
The authors describe the case of a 48-year-old man found to have the first reported intramedullary spinal cord spindle cell hemangioma. Previous research indicates that spindle cell hemangiomas are rarely found in the spine. Only 3 previous cases exist, all in the intradural, extramedullary space. In the present case, gross-total resection of the tumor was possible with no loss of function from baseline. This report presents the successful resection of the first reported intramedullary spindle cell hemangioma and reports 4-month follow-up, demonstrating the biological behavior of this rare tumor.
Design and Delivery of HMT Half-Shaft Prototype
2012-11-01
spindle welded to the outer joint output is ease of Design and Delivery of HMT Half‐ Shaft Prototype 24 assembly. Flange 1 contains threaded... spindle , and splined shafts . Also, the spindle of the production design is splined to match the splines of the hub internals. 2.2. Analysis The...inner-joint (Figure 33). Design and Delivery of HMT Half‐ Shaft Prototype 27 Figure 33: FBD of Flange/ Spindle Applying Newton’s Laws to the
X-43A Rudder Spindle Fatigue Life Estimate and Testing
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Dawicke, David S.; Johnston, William M.; James, Mark A.; Simonsen, Micah; Mason, Brian H.
2005-01-01
Fatigue life analyses were performed using a standard strain-life approach and a linear cumulative damage parameter to assess the effect of a single accidental overload on the fatigue life of the Haynes 230 nickel-base superalloy X-43A rudder spindle. Because of a limited amount of information available about the Haynes 230 material, a series of tests were conducted to replicate the overload and in-service conditions for the spindle and corroborate the analysis. Both the analytical and experimental results suggest that the spindle will survive the anticipated flight loads.
Inflammatory myofibroblastic tumors in two dogs.
Knight, C; Fan, E; Riis, R; McDonough, S
2009-03-01
Two soft tissue masses from different locations in 2 dogs were submitted for histopathologic examination. Each was well demarcated and consisted of interweaving streams of bland spindle cells among which numerous plasma cells and lymphocytes were scattered. All the spindle cells reacted strongly to antibodies against vimentin and calponin, whereas a subset of the spindle cells expressed smooth muscle actin and desmin. Immunohistochemistry results were consistent with a myofibroblastic derivation for the spindle-cell population and the diagnosis of inflammatory myofibroblastic tumor (IMT) was made. This is the second report of IMT in the veterinary literature.
Biophysical Aspects of Spindle Evolution
NASA Astrophysics Data System (ADS)
Farhadifar, Reza; Baer, Charlie; Needleman, Daniel
2011-03-01
The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.
Achilles tendon shape and echogenicity on ultrasound among active badminton players.
Malliaras, P; Voss, C; Garau, G; Richards, P; Maffulli, N
2012-04-01
The relationship between Achilles tendon ultrasound abnormalities, including a spindle shape and heterogeneous echogenicity, is unclear. This study investigated the relationship between these abnormalities, tendon thickness, Doppler flow and pain. Sixty-one badminton players (122 tendons, 36 men, and 25 women) were recruited. Achilles tendon thickness, shape (spindle, parallel), echogenicity (heterogeneous, homogeneous) and Doppler flow (present or absent) were measured bilaterally with ultrasound. Achilles tendon pain (during or after activity over the last week) and pain and function [Victorian Institute of Sport Achilles Assessment (VISA-A)] were measured. Sixty-eight (56%) tendons were parallel with homogeneous echogenicity (normal), 22 (18%) were spindle shaped with homogeneous echogenicity, 16 (13%) were parallel with heterogeneous echogenicity and 16 (13%) were spindle shaped with heterogeneous echogenicity. Spindle shape was associated with self-reported pain (P<0.05). Heterogeneous echogenicity was associated with lower VISA-A scores than normal tendon (P<0.05). There was an ordinal relationship between normal tendon, parallel and heterogeneous and spindle shaped and heterogeneous tendons with regard to increasing thickness and likelihood of Doppler flow. Heterogeneous echogenicity with a parallel shape may be a physiological phase and may develop into heterogeneous echogenicity with a spindle shape that is more likely to be pathological. © 2010 John Wiley & Sons A/S.
Baumann, Claudia; Wang, Xiaotian; Yang, Luhan; Viveiros, Maria M
2017-04-01
Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly. © 2017. Published by The Company of Biologists Ltd.
Clathrin heavy chain 1 is required for spindle assembly and chromosome congression in mouse oocytes.
Zhao, Jie; Wang, Lu; Zhou, Hong-Xia; Liu, Li; Lu, Angeleem; Li, Guang-Peng; Schatten, Heide; Liang, Cheng-Guang
2013-10-01
Clathrin heavy chain 1 (CLTC) has been considered a “moonlighting protein” which acts in membrane trafficking during interphase and in stabilizing spindle fibers during mitosis. However, its roles in meiosis, especially in mammalian oocyte maturation, remain unclear. This study investigated CLTC expression and function in spindle formation and chromosome congression during mouse oocyte meiotic maturation. Our results showed that the expression level of CLTC increased after germinal vesicle breakdown (GVBD) and peaked in the M phase. Immunostaining results showed CLTC distribution throughout the cytoplasm in a cell cycle-dependent manner. Appearance and disappearance of CLTC along with β-tubulin (TUBB) could be observed during spindle dynamic changes. To explore the relationship between CLTC and microtubule dynamics, oocytes at metaphase were treated with taxol or nocodazole. CLTC colocalized with TUBB at the enlarged spindle and with cytoplasmic asters after taxol treatment; it disassembled and distributed into the cytoplasm along with TUBB after nocodazole treatment. Disruption of CLTC function using stealth siRNA caused a decreased first polar body extrusion rate and extensive spindle formation and chromosome congression defects. Taken together, these results show that CLTC plays an important role in spindle assembly and chromosome congression through a microtubule correlation mechanism during mouse oocyte maturation.
Liu, Xing; Song, Zhenwei; Huo, Yuda; Zhang, Jiahai; Zhu, Tongge; Wang, Jianyu; Zhao, Xuannv; Aikhionbare, Felix; Zhang, Jiancun; Duan, Hequan; Wu, Jihui; Dou, Zhen; Shi, Yunyu; Yao, Xuebiao
2014-01-01
Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1α (HP1α) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1α. This borealin-HP1α interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1α interaction, demonstrating the spatial requirement of HP1α in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1α and CPC localization in the centromere and illustrate the critical role of borealin-HP1α interaction in orchestrating an accurate cell division. PMID:24917673
Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator
Du, Zhe; Mei, Xue-Song; Xu, Mu-Xun
2012-01-01
In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation. PMID:23202182
Computational model for chromosomal instabilty
NASA Astrophysics Data System (ADS)
Zapperi, Stefano; Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina
2015-03-01
Faithful segregation of genetic material during cell division requires alignment of the chromosomes between the spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated into a coherent picture. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compares well with early observations in mammalian cell spindles. Our results shed new light on the origin of several pathological conditions related to chromosomal instability.
The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion.
Sing, Tina L; Hung, Minnie P; Ohnuki, Shinsuke; Suzuki, Godai; San Luis, Bryan-Joseph; McClain, Melainia; Unruh, Jay R; Yu, Zulin; Ou, Jiongwen; Marshall-Sheppard, Jesse; Huh, Won-Ki; Costanzo, Michael; Boone, Charles; Ohya, Yoshikazu; Jaspersen, Sue L; Brown, Grant W
2018-06-06
Ploidy is tightly regulated in eukaryotic cells and is critical for cell function and survival. Cells coordinate multiple pathways to ensure replicated DNA is segregated accurately to prevent abnormal changes in chromosome number. In this study, we characterize an unanticipated role for the Saccharomyces cerevisiae "remodels the structure of chromatin" (RSC) complex in ploidy maintenance. We show that deletion of any of six nonessential RSC genes causes a rapid transition from haploid to diploid DNA content because of nondisjunction events. Diploidization is accompanied by diagnostic changes in cell morphology and is stably maintained without further ploidy increases. We find that RSC promotes chromosome segregation by facilitating spindle pole body (SPB) duplication. More specifically, RSC plays a role in distributing two SPB insertion factors, Nbp1 and Ndc1, to the new SPB. Thus, we provide insight into a role for a SWI/SNF family complex in SPB duplication and ploidy maintenance. © 2018 Sing et al.
Robust control of mitotic spindle orientation in the developing epidermis
Poulson, Nicholas D.
2010-01-01
Progenitor cells must balance self-amplification and production of differentiated progeny during development and homeostasis. In the epidermis, progenitors divide symmetrically to increase surface area and asymmetrically to promote stratification. In this study, we show that individual epidermal cells can undergo both types of division, and therefore, the balance is provided by the sum of individual cells’ choices. In addition, we define two control points for determining a cell’s mode of division. First is the expression of the mouse Inscuteable gene, which is sufficient to drive asymmetric cell division (ACD). However, there is robust control of division orientation as excessive ACDs are prevented by a change in the localization of NuMA, an effector of spindle orientation. Finally, we show that p63, a transcriptional regulator of stratification, does not control either of these processes. These data have uncovered two important regulatory points controlling ACD in the epidermis and allow a framework for analysis of how external cues control this important choice. PMID:21098114
Bioinspired Fabrication of one dimensional graphene fiber with collection of droplets application.
Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan
2017-09-21
We designed a kind of smart bioinspired fiber with multi-gradient and multi-scale spindle knots by combining polydimethylsiloxane (PDMS) and graphene oxide (GO). Multilayered graphene structures can produce obvious wettability change after laser etching due to increased roughness. We demonstrate that the cooperation between curvature and the controllable wettability play an important role in water gathering, which regulate effectively the motion of tiny water droplets. In addition, due to the effective cooperation of multi-gradient and multi-scale hydrophilic spindle knots, the length of the three-phase contact line (TCL) can be longer, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. This study offers a novel insight into the design of smart materials that may control the transport of tiny drops reversibly in directions, which could potentially be extended to the realms of in microfluidics, fog harvesting filtration and condensers designs, and further increase water collection efficiency and hanging ability.
Watanabe, Nobumoto; Sekine, Tomomi; Takagi, Masatoshi; Iwasaki, Jun-ichi; Imamoto, Naoko; Kawasaki, Hisashi; Osada, Hiroyuki
2009-01-23
Polo-like kinase 1 (Plk1) is one of the key regulators of mitotic cell division. In addition to an N-terminal protein kinase catalytic domain, Plk1 possesses a phosphopeptide binding domain named polo box domain (PBD) at its C terminus. PBD is postulated to be essential for Plk1 localization and substrate targeting. Here, we developed a high-throughput screening system to identify inhibitors of PBD-dependent binding and screened a chemical library. We isolated a benzotropolone-containing natural compound derived from nutgalls (purpurogallin (PPG)) that inhibited PBD-dependent binding in vitro and in vivo. PPG not only delayed the onset of mitosis but also prolonged the progression of mitosis in HeLa cells. Although apparently normal bipolar spindles were formed even in the presence of PPG, the perturbation of chromosome alignment at metaphase plates activated the spindle assembly checkpoint pathway. These results demonstrate the predominant role of PBD-dependent binding on smooth chromosome congression at metaphase.
A neuronal morphologic type unique to humans and great apes
Nimchinsky, Esther A.; Gilissen, Emmanuel; Allman, John M.; Perl, Daniel P.; Erwin, Joseph M.; Hof, Patrick R.
1999-01-01
We report the existence and distribution of an unusual type of projection neuron, a large, spindle-shaped cell, in layer Vb of the anterior cingulate cortex of pongids and hominids. These spindle cells were not observed in any other primate species or any other mammalian taxa, and their volume was correlated with brain volume residuals, a measure of encephalization in higher primates. These observations are of particular interest when considering primate neocortical evolution, as they reveal possible adaptive changes and functional modifications over the last 15–20 million years in the anterior cingulate cortex, a region that plays a major role in the regulation of many aspects of autonomic function and of certain cognitive processes. That in humans these unique neurons have been shown previously to be severely affected in the degenerative process of Alzheimer’s disease suggests that some of the differential neuronal susceptibility that occurs in the human brain in the course of age-related dementing illnesses may have appeared only recently during primate evolution. PMID:10220455
Du, Juan; Cao, Yan; Wang, Qian; Zhang, Nana; Liu, Xiaoyu; Chen, Dandan; Liu, Xiaoyun; Xu, Qunyuan; Ma, Wei
2015-01-01
Polo-like kinase 1 (Plk1) is pivotal for proper mitotic progression, its targeting activity is regulated by precise subcellular positioning and phosphorylation. Here we assessed the protein expression, subcellular localization and possible functions of phosphorylated Plk1 (pPlk1(Ser137) and pPlk1(Thr210)) in mouse oocytes during meiotic division. Western blot analysis revealed a peptide of pPlk1(Ser137) with high and stable expression from germinal vesicle (GV) until metaphase II (MII), while pPlk1(Thr210) was detected as one large single band at GV stage and 2 small bands after germinal vesicle breakdown (GVBD), which maintained stable up to MII. Immunofluorescence analysis showed pPlk1(Ser137) was colocalized with microtubule organizing center (MTOC) proteins, γ-tubulin and pericentrin, on spindle poles, concomitantly with persistent concentration at centromeres and dynamic aggregation between chromosome arms. Differently, pPlk1(Thr210) was persistently distributed across the whole body of chromosomes after meiotic resumption. The specific Plk1 inhibitor, BI2536, repressed pPlk1(Ser137) accumulation at MTOCs and between chromosome arms, consequently disturbed γ-tubulin and pericentrin recruiting to MTOCs, destroyed meiotic spindle formation, and delayed REC8 cleavage, therefore arresting oocytes at metaphase I (MI) with chromosome misalignment. BI2536 completely reversed the premature degradation of REC8 and precocious segregation of chromosomes induced with okadaic acid (OA), an inhibitor to protein phosphatase 2A. Additionally, the protein levels of pPlk1(Ser137) and pPlk1(Thr210), as well as the subcellular distribution of pPlk1(Thr210), were not affected by BI2536. Taken together, our results demonstrate that Plk1 activity is required for meiotic spindle assembly and REC8 cleavage, with pPlk1(Ser137) is the action executor, in mouse oocytes during meiotic division.
Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko; Kanai, Yae
2015-12-01
CpG-island methylator phenotype (CIMP)-positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP-positive renal carcinogenesis. Genome (whole-exome and copy number), transcriptome and proteome (two-dimensional image converted analysis of liquid chromatography-mass spectrometry) analyses were performed using tissue specimens of 87 CIMP-negative and 14 CIMP-positive clear cell RCCs and corresponding specimens of non-cancerous renal cortex. Genes encoding microtubule-associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non-synonymous single-nucleotide mutations and insertions/deletions) in CIMP-positive RCCs, whereas CIMP-negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP-positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the "The metaphase checkpoint (p = 1.427 × 10(-6))," "Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10(-6))" and "Spindle assembly and chromosome separation (p = 9.260 × 10(-6))" pathways. Quantitative RT-PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP-positive than in CIMP-negative RCCs. All CIMP-positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP-positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP-positive RCCs. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.
Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko
2015-01-01
CpG‐island methylator phenotype (CIMP)‐positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP‐positive renal carcinogenesis. Genome (whole‐exome and copy number), transcriptome and proteome (two‐dimensional image converted analysis of liquid chromatography‐mass spectrometry) analyses were performed using tissue specimens of 87 CIMP‐negative and 14 CIMP‐positive clear cell RCCs and corresponding specimens of non‐cancerous renal cortex. Genes encoding microtubule‐associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non‐synonymous single‐nucleotide mutations and insertions/deletions) in CIMP‐positive RCCs, whereas CIMP‐negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP‐positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the “The metaphase checkpoint (p = 1.427 × 10−6),” “Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10−6)” and “Spindle assembly and chromosome separation (p = 9.260 × 10−6)” pathways. Quantitative RT‐PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP‐positive than in CIMP‐negative RCCs. All CIMP‐positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP‐positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP‐positive RCCs. PMID:26061684
Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations
Sela, Yaniv; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Tononi, Giulio; Nir, Yuval
2016-01-01
Study Objectives: Sleep is defined as a reversible state of reduction in sensory responsiveness and immobility. A long-standing hypothesis suggests that a high arousal threshold during non-rapid eye movement (NREM) sleep is mediated by sleep spindle oscillations, impairing thalamocortical transmission of incoming sensory stimuli. Here we set out to test this idea directly by examining sensory-evoked neuronal spiking activity during natural sleep. Methods: We compared neuronal (n = 269) and multiunit activity (MUA), as well as local field potentials (LFP) in rat core auditory cortex (A1) during NREM sleep, comparing responses to sounds depending on the presence or absence of sleep spindles. Results: We found that sleep spindles robustly modulated the timing of neuronal discharges in A1. However, responses to sounds were nearly identical for all measured signals including isolated neurons, MUA, and LFPs (all differences < 10%). Furthermore, in 10% of trials, auditory stimulation led to an early termination of the sleep spindle oscillation around 150–250 msec following stimulus onset. Finally, active ON states and inactive OFF periods during slow waves in NREM sleep affected the auditory response in opposite ways, depending on stimulus intensity. Conclusions: Responses in core auditory cortex are well preserved regardless of sleep spindles recorded in that area, suggesting that thalamocortical sensory relay remains functional during sleep spindles, and that sensory disconnection in sleep is mediated by other mechanisms. Citation: Sela Y, Vyazovskiy VV, Cirelli C, Tononi G, Nir Y. Responses in rat core auditory cortex are preserved during sleep spindle oscillations. SLEEP 2016;39(5):1069–1082. PMID:26856904
Sleep Spindles and Intellectual Ability: Epiphenomenon or Directly Related?
Fang, Zhuo; Sergeeva, Valya; Ray, Laura B; Viczko, Jeremy; Owen, Adrian M; Fogel, Stuart M
2017-01-01
Sleep spindles-short, phasic, oscillatory bursts of activity that characterize non-rapid eye movement sleep-are one of the only electrophysiological oscillations identified as a biological marker of human intelligence (e.g., cognitive abilities commonly assessed using intelligence quotient tests). However, spindles are also important for sleep maintenance and are modulated by circadian factors. Thus, the possibility remains that the relationship between spindles and intelligence quotient may be an epiphenomenon of a putative relationship between good quality sleep and cognitive ability or perhaps modulated by circadian factors such as morningness-eveningness tendencies. We sought to ascertain whether spindles are directly or indirectly related to cognitive abilities using mediation analysis. Here, we show that fast (13.5-16 Hz) parietal but not slow (11-13.5 Hz) frontal spindles in both non-rapid eye movement stage 2 sleep and slow wave sleep are directly related to reasoning abilities (i.e., cognitive abilities that support "fluid intelligence," such as the capacity to identify complex patterns and relationships and the use of logic to solve novel problems) but not verbal abilities (i.e., cognitive abilities that support "crystalized intelligence"; accumulated knowledge and experience) or cognitive abilities that support STM (i.e., the capacity to briefly maintain information in an available state). The relationship between fast spindles and reasoning abilities is independent of the indicators of sleep maintenance and circadian chronotype, thus suggesting that spindles are indeed a biological marker of cognitive abilities and can serve as a window to further explore the physiological and biological substrates that give rise to human intelligence.
Boekhout, Michiel; Wolthuis, Rob
2015-04-15
Nek2 isoform A (Nek2A) is a presumed substrate of the anaphase-promoting complex/cyclosome containing Cdc20 (APC/C(Cdc20)). Nek2A, like cyclin A, is degraded in mitosis while the spindle checkpoint is active. Cyclin A prevents spindle checkpoint proteins from binding to Cdc20 and is recruited to the APC/C in prometaphase. We found that Nek2A and cyclin A avoid being stabilized by the spindle checkpoint in different ways. First, enhancing mitotic checkpoint complex (MCC) formation by nocodazole treatment inhibited the degradation of geminin and cyclin A, whereas Nek2A disappeared at a normal rate. Second, depleting Cdc20 effectively stabilized cyclin A but not Nek2A. Nevertheless, Nek2A destruction crucially depended on Cdc20 binding to the APC/C. Third, in contrast to cyclin A, Nek2A was recruited to the APC/C before the start of mitosis. Interestingly, the spindle checkpoint very effectively stabilized an APC/C-binding mutant of Nek2A, which required the Nek2A KEN box. Apparently, in cells, the spindle checkpoint primarily prevents Cdc20 from binding destruction motifs. Nek2A disappearance marks the prophase-to-prometaphase transition, when Cdc20, regardless of the spindle checkpoint, activates the APC/C. However, Mad2 depletion accelerated Nek2A destruction, showing that spindle checkpoint release further increases APC/C(Cdc20) catalytic activity. © 2015. Published by The Company of Biologists Ltd.
Do All Dinoflagellates have an Extranuclear Spindle?
Moon, Eunyoung; Nam, Seung Won; Shin, Woongghi; Park, Myung Gil; Coats, D Wayne
2015-11-01
The syndinean dinoflagellates are a diverse assemblage of alveolate endoparasites that branch basal to the core dinoflagellates. Because of their phylogenetic position, the syndineans are considered key model microorganisms in understanding early evolution in the dinoflagellates. Closed mitosis with an extranuclear spindle that traverses the nucleus in cytoplasmic grooves or tunnels is viewed as one of the morphological features shared by syndinean and core dinoflagellates. Here we describe nuclear morphology and mitosis in the syndinean dinoflagellate Amoebophrya sp. from Akashiwo sanguinea, a member of the A. ceratii complex, as revealed by protargol silver impregnation, DNA specific fluorochromes, and transmission electron microscopy. Our observations show that not all species classified as dinoflagellates have an extranuclear spindle. In Amoebophrya sp. from A. sanguinea, an extranuclear microtubule cylinder located in a depression in the nuclear surface during interphase moves into the nucleoplasm via sequential membrane fusion events and develops into an entirely intranuclear spindle. Results suggest that the intranuclear spindle of Amoebophrya spp. may have evolved from an ancestral extranuclear spindle and indicate the need for taxonomic revision of the Amoebophryidae. Copyright © 2015 Elsevier GmbH. All rights reserved.
Direct kinetochore–spindle pole connections are not required for chromosome segregation
Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B.; He, Jie; Le Berre, Maël; Tikhonenko, Irina; Ault, Jeffrey G.; McEwen, Bruce F.; Chen, James K.; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M.
2014-01-01
Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes′ kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells. PMID:25023516
Sleep spindles and cognitive performance across adolescence: A meta-analytic review.
Reynolds, C M; Short, M A; Gradisar, M
2018-07-01
Higher sleep spindle activity generally relates to better cognitive performance in adults, while studies in children often show the opposite. As children become young adults, there is rapid brain maturation and development of higher-order cognitive functions, and therefore investigations within this age group may elucidate the relationship between spindles and cognition in this developmental period. Twelve studies published between 2009 and 2016 were identified. Meta-analyses revealed a positive relationship between spindles and cognition overall (r = 0.27), however effects varied depending on cognitive domain. Moderate positive relationships were seen for fluid IQ (r = 0.44), working memory/executive function (r = 0.40) and speed/accuracy (r = 0.33), while full IQ/verbal IQ was not significantly associated (r = -0.05). Meta-regressions indicated cognitive domain and spindle characteristic had a small influence over effect sizes, while age and gender did not have a significant influence. The relationship between spindles and cognition in adolescents is likely influenced by individual neural makeup and brain maturation. Copyright © 2018 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Direct kinetochore-spindle pole connections are not required for chromosome segregation.
Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B; He, Jie; Le Berre, Maël; Tikhonenko, Irina; Ault, Jeffrey G; McEwen, Bruce F; Chen, James K; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M; Khodjakov, Alexey
2014-07-21
Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes' kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells.
Directional tuning of human forearm muscle afferents during voluntary wrist movements
Jones, Kelvin E; Wessberg, Johan; Vallbo, Åke B
2001-01-01
Single unit activity was recorded with the microneurography technique from sixteen spindle afferents and one Golgi tendon organ afferent originating from the forearm extensor muscles. Impulse rates were studied while subjects performed unobstructed aiming movements at the wrist in eight different directions 45 deg apart. In addition, similar imposed movements were performed while the subject was instructed to remain relaxed. Movement amplitudes were about 5 deg and the speed 10–30 deg s−1. Joint movements were translated to movements of a cursor on a monitor to provide visual feedback. Individual spindle afferents modulated their activity over a number of targets, i.e. were broadly tuned, during these aiming movements. The preferred direction for a spindle afferent was the same during both passive and active movements, indicating that the fusimotor effects associated with active contractions had little or no effect on the direction of tuning. The direction of tuning of individual spindle afferents could be predicted from the biomechanically inferred length changes of the parent muscle. Thus spindle afferents responded as stretch receptors, i.e. impulse rates increased with lengthening and decreased with shortening, in active as well as passive movements. Spindles from muscles, which continuously counteracted gravity exhibited a stretch response and directional tuning during the phase of movement alone whereas their position sensitivity was poor. In contrast, spindle afferents from the muscles that had no or minimal antigravity role were directionally tuned during both the dynamic and the static phase of the aiming task and their position sensitivity was substantially higher. In spite of the limited data base from three extensor muscles it could be demonstrated that wrist joint position was remarkably well encoded in the ensemble muscle spindle data. In some cases the ensemble muscle spindle data encoded the instantaneous trajectory of movement as well. PMID:11600696
A quantitative study of skeletofusimotor innervation in the cat peroneus tertius muscle.
Jami, L; Murthy, K S; Petit, J
1982-01-01
1. Physiological tests were used to identify skeletofusimotor or beta axons to the cat peroneus tertius muscle in order to assess the proportion of beta axons in the motor supply to this muscle. 2. Static beta axons (beta S) were identified by: (a) observation of a delay between the complete block of extrafusal contraction and the failure of spindle activation upon prolonged stimulation, (b) increase of spindle excitation with stimulation frequencies above that eliciting maximal extrafusal contraction, (c) observation of 'unfused' frequencygram of spindle primary afferent discharge during stimulation of the axon at frequencies above that eliciting complete fusion of extrafusal contraction and (d) static action exerted on the response of the spindle afferent to ramp stretch. 3. Dynamic beta axons (beta D) were identified by the persistence of spindle activation after selective block of extrafusal neuromuscular junctions and by their dynamic action on spindle primary endings. 4. The actions of 116 motor axons (conduction velocity 56-104 m/sec) on ninety-five spindle afferents (fifty-seven from primary and thirty-eight from secondary endings) were examined in ten experiments. Thirty-six beta axons (31% of the total sample) were identified: twenty-four beta S (conduction velocity 69-104 m/sec) and twelve beta D (conduction velocity 56-91 m/sec). 5. Twenty (35%) primary endings were activated by a beta S and sixteen (28%) by a beta D axon. Nineteen (45%) secondary endings were activated by a beta S and five (13%) by a beta D axon. Convergence of beta D and beta S axons on the same spindle occurred in 10% of instances. beta-innervated spindles were also supplied by gamma axons. 6. Most of the beta S motor units were of the fast-fatigue resistant (FR) type, with a few units of the fast-fatigable (FF) type, and nearly all the beta D motor units were of the slow (S) type. PMID:6213764
Force encoding in muscle spindles during stretch of passive muscle
Blum, Kyle P.; Zytnicki, Daniel
2017-01-01
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position. PMID:28945740
Force encoding in muscle spindles during stretch of passive muscle.
Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H
2017-09-01
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.
Molk, Jeffrey N.; Schuyler, Scott C.; Liu, Jenny Y.; Evans, James G.; Salmon, E. D.; Pellman, David; Bloom, Kerry
2004-01-01
In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade. PMID:14718561
Ethics of Mitochondrial Replacement Techniques: A Habermasian Perspective.
Palacios-González, César
2017-01-01
Jürgen Habermas is regarded as a central bioconservative commentator in the debate on the ethics of human prenatal genetic manipulations. While his main work on this topic, The Future of Human Nature, has been widely examined in regard to his position on prenatal genetic enhancement, his arguments regarding prenatal genetic therapeutic interventions have for the most part been overlooked. In this work I do two things. First, I present the three necessary conditions that Habermas establishes for a prenatal genetic manipulation to be regarded as morally permissible. Second, I examine if mitochondrial replacement techniques meet these necessary conditions. I investigate, specifically, the moral permissibility of employing pronuclear transfer and maternal spindle transfer. I conclude that, according to a Habermasian perspective on prenatal genetic manipulation, maternal spindle transfer (without using a preselected sperm and egg) and pronuclear transfer are morally impermissible. Maternal spindle transfer is, in principle, morally permissible, but only when we have beforehand preselected a sperm and an egg for our reproductive purpose. These findings are relevant for bioconservatives, both for those who hold a Habermasian stance and for those who hold something akin to a Habermasian stance, because they answer the question: what should bioconservatives do regarding mitochondrial replacement techniques? In fact, the answer to this question does not only normatively prescribe what bioconservatives should do in terms of their personal morality, but it also points towards what kind of legislation regulating mitochondrial replacement techniques they should aim at. © 2017 The Authors Bioethics Published by John Wiley & Sons Ltd.
Ethics of Mitochondrial Replacement Techniques: A Habermasian Perspective
2016-01-01
Abstract Jürgen Habermas is regarded as a central bioconservative commentator in the debate on the ethics of human prenatal genetic manipulations. While his main work on this topic, The Future of Human Nature, has been widely examined in regard to his position on prenatal genetic enhancement, his arguments regarding prenatal genetic therapeutic interventions have for the most part been overlooked. In this work I do two things. First, I present the three necessary conditions that Habermas establishes for a prenatal genetic manipulation to be regarded as morally permissible. Second, I examine if mitochondrial replacement techniques meet these necessary conditions. I investigate, specifically, the moral permissibility of employing pronuclear transfer and maternal spindle transfer. I conclude that, according to a Habermasian perspective on prenatal genetic manipulation, maternal spindle transfer (without using a preselected sperm and egg) and pronuclear transfer are morally impermissible. Maternal spindle transfer is, in principle, morally permissible, but only when we have beforehand preselected a sperm and an egg for our reproductive purpose. These findings are relevant for bioconservatives, both for those who hold a Habermasian stance and for those who hold something akin to a Habermasian stance, because they answer the question: what should bioconservatives do regarding mitochondrial replacement techniques? In fact, the answer to this question does not only normatively prescribe what bioconservatives should do in terms of their personal morality, but it also points towards what kind of legislation regulating mitochondrial replacement techniques they should aim at. PMID:27973714
Lee, Kyunghee; Kenny, Alison E.
2010-01-01
Although p38 activity is reported to be required as cells enter mitosis for proper spindle assembly and checkpoint function, its role during the division process remains controversial in lieu of direct data. We therefore conducted live cell studies to determine the effect on mitosis of inhibiting or depleting p38. We found that in the absence of p38 activity the duration of mitosis is prolonged by ∼40% in nontransformed human RPE-1, ∼80% in PtK2 (rat kangaroo), and ∼25% in mouse cells, and this prolongation leads to an elevated mitotic index. However, under this condition chromatid segregation and cytokinesis are normal. Using Mad2/YFP-expressing cells, we show the prolongation of mitosis in the absence of p38 activity is directly due to a delay in satisfying the mitotic checkpoint. Inhibiting p38 did not affect the rate of chromosome motion; however, it did lead to the formation of significantly (10%) longer metaphase spindles. From these data we conclude that normal p38 activity is required for the timely stable attachment of all kinetochores to spindle microtubules, but not for the fidelity of the mitotic process. We speculate that p38 activity promotes timely checkpoint satisfaction by indirectly influencing those motor proteins (e.g., Klp10, Klp67A) involved in regulating the dynamics of kinetochore microtubule ends. PMID:20462950
Kawamura, K. I.; Grabowski, D.; Weizer, K.; Bukowski, R.; Ganapathi, R.
1996-01-01
Cellular insensitivity to vinca alkaloids is suggested to be primarily due to drug efflux by P-glycoprotein (P-gp). The anti-epileptic phenytoin (DPH), which does not bind to P-gp, can selectively enhance vincristine (VCR) cytotoxicity in wild-type (WT) or multidrug-resistant (MDR) cells. We now demonstrate that the protein phosphatase inhibitor okadaic acid (OKA) can mimic the effect of DPH by selectively enhancing cytotoxicity of vinblastine (VBL), but not taxol and doxorubicin, in human leukaemia HL-60 cells. Both DPH and OKA potentiate the anti-mitotic effects of VBL by enhanced damage to the mitotic spindle, resulting in prolonged growth arrest. Also, unlike VBL alone, in human leukaemia or non-small-cell lung carcinoma cells treated with VBL plus DPH, recovery from damage to the mitotic spindle is compromised in drug-free medium and cell death by apoptosis in interphase ensues. Since protein phosphatases are involved with the regulation of metaphase to anaphase transit of cells during the mitotic cycle, enhanced VBL cytotoxicity in the presence of DPH or OKA may involve effects during metaphase on the mitotic spindle tubulin leading to growth arrest and apoptosis in interphase. These novel results suggest that DPH or OKA could be powerful tools to study cellular effects of vinca alkaloids and possibly for the development of novel therapeutic strategies. Images Figure 6 PMID:8546904
Schetter, Aaron; Askjaer, Peter; Piano, Fabio; Mattaj, Iain; Kemphues, Kenneth
2006-01-01
Nucleoporins are components of the nuclear pore, which is required for nucleo-cytoplasmic transport. We report a role for a subclass of nucleoporins in orienting the mitotic spindle in C. elegans embryos. RNAi-mediated depletion of any of five putative nucleoporins npp-1, npp-3, npp-4, npp-11, and npp-13 leads to indistinguishable spindle orientation defects. Transgenic worms expressing NPP-1::GFP or NPP-11::GFP show GFP localization at the nuclear envelope, consistent with their predicted function. NPP-1 interacts with the other nucleoporins in yeast two-hybrid assays suggesting that the proteins affect spindle orientation by a common process. The failed orientation phenotype of npp-1(RNAi) is at least partially epistatic to the ectopic spindle rotation in the AB blastomere of par-3 mutant embryos. This suggests that NPP-1 contributes to the mechanics of spindle orientation. However, NPP-1 is also required for PAR-6 asymmetry at the two-cell stage, indicating that nucleoporins may be required to define cortical domains in the germ line blasotmere P1. Nuclear envelope structure is abnormal in npp-1(RNAi) embryos but the envelope maintains its integrity and most nuclear proteins we assayed accumulate normally. These findings raise the possibility that these nucleoporins may have direct roles in orienting the mitotic spindle and the maintenance of cell polarity. PMID:16325795
Amphiastral Mitotic Spindle Assembly in Vertebrate Cells Lacking Centrosomes
Hornick, Jessica E.; Mader, Christopher C.; Tribble, Emily K.; Bagne, Cydney C.; Vaughan, Kevin T.; Shaw, Sidney L.; Hinchcliffe, Edward H.
2011-01-01
Summary The role of centrosomes/centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles [1, 2, 3]. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays – termed an amphiaster (“a star on both sides” [4]) – that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB) [5]. Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC re-assembled, and prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split/separate before NEB, and these entered mitosis with persistent monastral spindles. The chromatin-mediated RAN-GTP pathway could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but in its absence, the fidelity of bipolar spindle assembly is highly compromised. PMID:21439826
Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation
Markus, Steven M.; Lee, Wei-Lih
2011-01-01
During animal development, microtubules (MTs) play a major role in directing cellular and subcellular patterning, impacting cell polarization and subcellular organization, thereby affecting cell fate determination and tissue architecture. In particular, when progenitor cells divide asymmetrically along an anterior-posterior or apical-basal axis, MTs must coordinate the position of the mitotic spindle with the site of cell division to ensure normal distribution of cell fate determinants and equal sequestration of genetic material into the two daughter cells. Emerging data from diverse model systems have led to the prevailing view that, during mitotic spindle positioning, polarity cues at the cell cortex signal for the recruitment of NuMA and the minus-end directed MT motor cytoplasmic dynein.1 The NuMA/dynein complex is believed to connect, in turn, to the mitotic spindle via astral MTs, thus aligning and tethering the spindle, but how this connection is achieved faithfully is unclear. Do astral MTs need to search for and then capture cortical NuMA/dynein? How does dynein capture the astral MTs emanating from the correct spindle pole? Recently, using the classical model of asymmetric cell division—budding yeast S. cerevisiae—we successfully demonstrated that astral MTs assume an active role in cortical dynein targeting, in that astral MTs utilize their distal plus ends to deliver dynein to the daughter cell cortex, the site where dynein activity is needed to perform its spindle alignment function. This observation introduced the novel idea that, during mitotic spindle orientation processes, polarity cues at the cell cortex may actually signal to prime the cortical receptors for MT-dependent dynein delivery. This model is consistent with the observation that dynein/dynactin accumulate prominently at the astral MT plus ends during metaphase in a wide range of cultured mammalian cells. PMID:22754610
Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano
2015-01-01
Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z < 0.05), and neurophysiological data tested with the Mann-Whitney t test and binomial distribution test (P or Z < 0.05). An improvement in declarative (P = 0.05) and visuospatial memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.
Enhanced polarizing microscopy as a new tool in aneuploidy research in oocytes.
Shen, Ying; Betzendahl, Ilse; Tinneberg, Hans-Rudolf; Eichenlaub-Ritter, Ursula
2008-03-12
Chromosomal non-disjunction in female meiosis gives rise to reduced fertility and trisomy in humans. Human oocytes, especially from aged women, appear especially susceptible to non-disjunction. The oocyte spindle is crucial for high fidelity of chromosome segregation at meiotic divisions, and alterations in spindle morphology are therefore indicators of adverse conditions during oocyte development that may result in meiotic aneuploidy. In the past, oocytes had to be fixed for spindle analysis, precluding direct non-invasive identification of aneugens and adverse maturation conditions that affect spindle integrity and chromosome behaviour. Aneuploidy research for detection of spindle aberrations was therefore mainly focused on in vivo or in vitro exposed, fixed animal oocytes or cytogenetic analysis of spread oocytes. Orientation independent enhanced polarizing microscopy with nearly circularly polarized light and electronically controlled liquid crystal compensator optics is a new tool to study spindle morphology non-invasively in vivo for qualitative as well as quantitative analysis. Image generation by polarization microscopy depends on the intrinsic optical properties of the spindle with its paracrystalline microtubule lattice. When polarized light passes through such a lattice it induces a splitting of the beam and shift in the plane of vibration and retardation of light (termed birefringence and retardance). Studies of animal oocytes and follicle-cell denuded human oocytes fertilized by intracytoplasmic sperm injection for assisted conception have demonstrated the safety and efficacy of enhanced polarization microscopy. The method can be employed in aneuploidy research for non-invasive dose-response studies to detect spindle aberrations, for instance, in combination with cytogenetic analysis. Due to the non-invasive nature of the technique it may be employed in routine analysis of human oocytes to assess risks by lifestyle factors, and occupational and adverse environmental exposures.
Ro, J Y; Capra, N F
2001-05-01
Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.
Liu, Min-Yin; Huang, Adam; Huang, Norden E.
2017-01-01
Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz) measured by electroencephalography (EEG) mostly during non-rapid eye movement (NREM) stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1) the lack of common benchmark databases, and (2) the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA), the Strength Pareto Evolutionary Algorithm (SPEA2), to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT), and two Hilbert-Huang transform (HHT) based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737. PMID:28572762
F-actin mechanics control spindle centring in the mouse zygote
NASA Astrophysics Data System (ADS)
Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie
2016-01-01
Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.
Declarative memory performance is associated with the number of sleep spindles in elderly women.
Seeck-Hirschner, Mareen; Baier, Paul Christian; Weinhold, Sara Lena; Dittmar, Manuela; Heiermann, Steffanie; Aldenhoff, Josef B; Göder, Robert
2012-09-01
Recent evidence suggests that the sleep-dependent consolidation of declarative memory relies on the nonrapid eye movement rather than the rapid eye movement phase of sleep. In addition, it is known that aging is accompanied by changes in sleep and memory processes. Hence, the purpose of this study was to investigate the overnight consolidation of declarative memory in healthy elderly women. Sleep laboratory of University. Nineteen healthy elderly women (age range: 61-74 years). We used laboratory-based measures of sleep. To test declarative memory, the Rey-Osterrieth Complex Figure Test was performed. Declarative memory performance in elderly women was associated with Stage 2 sleep spindle density. Women characterized by high memory performance exhibited significantly higher numbers of sleep spindles and higher spindle density compared with women with generally low memory performance. The data strongly support theories suggesting a link between sleep spindle activity and declarative memory consolidation.
Extensive Crosstalk Between O-GlcNAcylation and Phosphorylation Regulates Cytokinesis
Wang, Zihao; Udeshi, Namrata D.; Slawson, Chad; Compton, Philip D.; Sakabe, Kaoru; Cheung, Win D.; Shabanowitz, Jeffrey; Hunt, Donald F.; Hart, Gerald W.
2010-01-01
Like phosphorylation, the addition of O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous, reversible process that modifies serine and threonine residues on nuclear and cytoplasmic proteins. Overexpression of the enzyme that adds O-GlcNAc to target proteins, O-GlcNAc transferase (OGT), perturbs cytokinesis and promotes polyploidy, but the molecular targets of OGT that are important for its cell cycle functions are unknown. Here, we identify 141 previously unknown O-GlcNAc sites on proteins that function in spindle assembly and cytokinesis. Many of these O-GlcNAcylation sites are either identical to known phosphorylation sites or in close proximity to them. Furthermore, we found that O-GlcNAcylation altered the phosphorylation of key proteins associated with the mitotic spindle and midbody. Forced overexpression of OGT increased the inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1) and reduced the phosphorylation of CDK1 target proteins. The increased phosphorylation of CDK1 is explained by increased activation of its upstream kinase, MYT1, and by a concomitant reduction in the transcript for the CDK1 phosphatase, CDC25C. OGT overexpression also caused a reduction in both messenger RNA expression and protein abundance of Polo-like kinase 1, which is upstream of both MYT1 and CDC25C. The data not only illustrate the crosstalk between O-GlcNAcylation and phosphorylation of proteins that are regulators of crucial signaling pathways, but also uncover a mechanism for the role of O-GlcNAcylation in regulation of cell division. PMID:20068230
Spinal spindle cell haemangioma: an atypical location.
Talan-Hranilović, J; Vucić, M; Sajko, T; Bedek, D; Tomić, K; Lupret, V
2007-03-01
We present a case of the 31-year-old male patient who complained of weakness in both legs and progressed slowly. Neuroimagine of the thoracic spine showed an intraspinal, extradural mass lesion, measuring 5.3 x 1.2 cm at the Th1-Th3 level. Histologically the lesion was a spindle cell haemangioma composed of dilated vascular spaces and a proliferation of bland appearing interspersed spindle cells. Immunohistochemical analysis was diffusely positive for VIM, SMA and focally for CD34. This lesion is uncommon and shows a predilection for distal extremities. Spindle cell haemangioma within the spine has not been previously reported in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmfeldt, Per; Sellin, Mikael E.; Gullberg, Martin, E-mail: Martin.Gullberg@molbiol.umu.se
2010-07-15
Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18{yields}E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis,more » conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.« less
NASA Technical Reports Server (NTRS)
Hepler, P.
1983-01-01
Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.
Winnicki, Konrad; Żabka, Aneta; Bernasińska, Joanna; Matczak, Karolina; Maszewski, Janusz
2015-06-01
In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.
Coexistence of proguanylin (1-15) and somatostatin in the gastrointestinal tract.
Ieda, H; Naruse, S; Furuya, S; Ozaki, T; Ando, E; Nokihara, K; Hori, S; Kitagawa, M; Hayakawa, T
1998-12-01
In order to identify proguanylin-secreting cells, we have raised an antiserum against the synthetic fragment of human proguanylin (1-15) and have examined the proguanylin-positive cells in the human and rat gastrointestinal tract by immunohistochemical methods. Numerous proguanylin (1-15)-immunoreactive cells were found in the gastrointestinal tract. They were either pyramidal or spindle shaped in the stomach. Spindle-shaped cells, frequently possessing long slender processes, were located at the base of the pyloric epithelium and did not extend to the lumen. In the duodenum and jejunum, these cells were mostly pyramidal in shape and often had a slender process towards the lumen. The immunostaining was completely blocked by the human proguanylin (1-15) fragment. Paneth and goblet cells were negative against this antiserum. The number of serotonin-positive cells was much larger than that of proguanylin-positive cells in all the segments tested. The number of proguanylin-positive cells decreased from the jejunum to the ileum and very few cells were observed in the colon. In contrast to serotonin-positive cells, most somatostatin-positive cells were also positive for proguanylin. Thus, proguanylin (1-15) or its related protein appears to coexist with somatostatin in intestinal endocrine D cells which may be a source of circulating proguanylin. Proguanylin, like somatostatin, may also regulate intestinal function as a local regulator.
Xu, Xianfeng Morgan; Rose, Annkatrin; Muthuswamy, Sivaramakrishnan; Jeong, Sun Yong; Venkatakrishnan, Sowmya; Zhao, Qiao; Meier, Iris
2007-01-01
Vertebrate Tpr and its yeast homologs Mlp1/Mlp2, long coiled-coil proteins of nuclear pore inner basket filaments, are involved in mRNA export, telomere organization, spindle pole assembly, and unspliced RNA retention. We identified Arabidopsis thaliana NUCLEAR PORE ANCHOR (NUA) encoding a 237-kD protein with similarity to Tpr. NUA is located at the inner surface of the nuclear envelope in interphase and in the vicinity of the spindle in prometaphase. Four T-DNA insertion lines were characterized, which comprise an allelic series of increasing severity for several correlating phenotypes, such as early flowering under short days and long days, increased abundance of SUMO conjugates, altered expression of several flowering regulators, and nuclear accumulation of poly(A)+ RNA. nua mutants phenocopy mutants of EARLY IN SHORT DAYS4 (ESD4), an Arabidopsis SUMO protease concentrated at the nuclear periphery. nua esd4 double mutants resemble nua and esd4 single mutants, suggesting that the two proteins act in the same pathway or complex, supported by yeast two-hybrid interaction. Our data indicate that NUA is a component of nuclear pore-associated steps of sumoylation and mRNA export in plants and that defects in these processes affect the signaling events of flowering time regulation and additional developmental processes. PMID:17513499
Shen, Kuo-Fang; Osmani, Stephen A.
2013-01-01
The NIMA kinase is required for mitotic nuclear pore complex disassembly and potentially controls other mitotic-specific events. To investigate this possibility, we imaged NIMA–green fluorescent protein (GFP) using four-dimensional spinning disk confocal microscopy. At mitosis NIMA-GFP locates to spindle pole bodies (SPBs), which contain Cdk1/cyclin B, followed by Aurora, TINA, and the BimC kinesin. NIMA promotes NPC disassembly in a spatially regulated manner starting near SPBs. NIMA is also required for TINA, a NIMA-interacting protein, to locate to SPBs during initiation of mitosis, and TINA is then necessary for locating NIMA back to SPBs during mitotic progression. To help expand the NIMA-TINA pathway, we affinity purified TINA and found it to uniquely copurify with An-WDR8, a WD40-domain protein conserved from humans to plants. Like TINA, An-WDR8 accumulates within nuclei during G2 but disperses from nuclei before locating to mitotic SPBs. Without An-WDR8, TINA levels are greatly reduced, whereas TINA is necessary for mitotic targeting of An-WDR8. Finally, we show that TINA is required to anchor mitotic microtubules to SPBs and, in combination with An-WDR8, for successful mitosis. The findings provide new insights into SPB targeting and indicate that the mitotic microtubule-anchoring system at SPBs involves WDR8 in complex with TINA. PMID:24152731
Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung
2015-11-01
Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. © 2015 Wiley Periodicals, Inc.
A curved edge diffraction-utilized displacement sensor for spindle metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, ChaBum, E-mail: clee@tntech.edu; Zhao, Rui; Jeon, Seongkyul
This paper presents a new dimensional metrological sensing principle for a curved surface based on curved edge diffraction. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the spindle with non-contact sensors, typically a capacitive sensor (CS) or an eddy current sensor, pointed at the artifact. However, these sensors are designed for flat surface measurement. Therefore, measuring a target with a curved surface causes error. This is due to electric fields behaving differently between a flat and curved surface than between two flat surfaces. In this study, a laser is positioned incident to the cylindrical surfacemore » of the spindle, and a photodetector collects the total field produced by the diffraction around the target surface. The proposed sensor was compared with a CS within a range of 500 μm. The discrepancy between the proposed sensor and CS was 0.017% of the full range. Its sensing performance showed a resolution of 14 nm and a drift of less than 10 nm for 7 min of operation. This sensor was also used to measure dynamic characteristics of the spindle system (natural frequency 181.8 Hz, damping ratio 0.042) and spindle runout (22.0 μm at 2000 rpm). The combined standard uncertainty was estimated as 85.9 nm under current experiment conditions. It is anticipated that this measurement technique allows for in situ health monitoring of a precision spindle system in an accurate, convenient, and low cost manner.« less
Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.
Tuder, R M; Karasek, M A; Bensch, K G
1990-02-01
The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.
Chang, Liang-Cheng; Lee, Da-Sheng
2012-01-01
Installation of a Wireless and Powerless Sensing Node (WPSN) inside a spindle enables the direct transmission of monitoring signals through a metal case of a certain thickness instead of the traditional method of using connecting cables. Thus, the node can be conveniently installed inside motors to measure various operational parameters. This study extends this earlier finding by applying this advantage to the monitoring of spindle systems. After over 2 years of system observation and optimization, the system has been verified to be superior to traditional methods. The innovation of fault diagnosis in this study includes the unmatched assembly dimensions of the spindle system, the unbalanced system, and bearing damage. The results of the experiment demonstrate that the WPSN provides a desirable signal-to-noise ratio (SNR) in all three of the simulated faults, with the difference of SNR reaching a maximum of 8.6 dB. Following multiple repetitions of the three experiment types, 80% of the faults were diagnosed when the spindle revolved at 4,000 rpm, significantly higher than the 30% fault recognition rate of traditional methods. The experimental results of monitoring of the spindle production line indicated that monitoring using the WPSN encounters less interference from noise compared to that of traditional methods. Therefore, this study has successfully developed a prototype concept into a well-developed monitoring system, and the monitoring can be implemented in a spindle production line or real-time monitoring of machine tools. PMID:22368456
Chang, Liang-Cheng; Lee, Da-Sheng
2012-01-01
Installation of a Wireless and Powerless Sensing Node (WPSN) inside a spindle enables the direct transmission of monitoring signals through a metal case of a certain thickness instead of the traditional method of using connecting cables. Thus, the node can be conveniently installed inside motors to measure various operational parameters. This study extends this earlier finding by applying this advantage to the monitoring of spindle systems. After over 2 years of system observation and optimization, the system has been verified to be superior to traditional methods. The innovation of fault diagnosis in this study includes the unmatched assembly dimensions of the spindle system, the unbalanced system, and bearing damage. The results of the experiment demonstrate that the WPSN provides a desirable signal-to-noise ratio (SNR) in all three of the simulated faults, with the difference of SNR reaching a maximum of 8.6 dB. Following multiple repetitions of the three experiment types, 80% of the faults were diagnosed when the spindle revolved at 4,000 rpm, significantly higher than the 30% fault recognition rate of traditional methods. The experimental results of monitoring of the spindle production line indicated that monitoring using the WPSN encounters less interference from noise compared to that of traditional methods. Therefore, this study has successfully developed a prototype concept into a well-developed monitoring system, and the monitoring can be implemented in a spindle production line or real-time monitoring of machine tools.
Autonomous Environment-Monitoring Networks
NASA Technical Reports Server (NTRS)
Hand, Charles
2004-01-01
Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius is denoted by h. It is the final value of h, reached before beginning construction on the next spindle, that is denoted by r. During construction of a spindle, if a new vector falls between C and the inner boundary, the vector is regarded as completely familiar and no action is taken. If the new vector falls into the region between the inner and outer boundaries, it is considered unusual enough to warrant the adjustment of C and r by use of the aforementioned algorithms, but not unusual enough to be considered novel. If a vector falls outside the outer boundary, it is considered novel, in which case one of several appropriate responses could be initiation of construction of a new spindle.
Locking mechanism for indexing device
Lindemeyer, Carl W.
1984-01-01
Disclosed is a locking mechanism for an indexing spindle. A conventional r gear having outwardly extending teeth is affixed to the spindle. Also included is a rotatably mounted camshaft whose axis is arranged in skewed relationship with the axis of the spindle. A disk-like wedge having opposing camming surfaces is eccentrically mounted on the camshaft. As the camshaft is rotated, the camming surfaces of the disc-like member are interposed between adjacent gear teeth with a wiping action that wedges the disc-like member between the gear teeth. A zero backlash engagement between disc-like member and gear results, with the engagement having a high mechanical advantage so as to effectively lock the spindle against bidirectional rotation.
Single-bunch synchrotron shutter
Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion
1993-01-01
An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.
Methods for making radially anisotropic thin-film magnetic torroidal cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Jizheng; Sullivan, Charles R.
2017-05-23
A method of forming a radially anisotropic toroidal magnetic core includes providing apparatus having a first magnet for providing a radial magnetic field extending across a cavity from an axial spindle to a surrounding second magnetic element, placing a substrate in the cavity, the substrate having a hole fitting around the head of the spindle; and sputter-depositing a film of ferromagnetic material onto the substrate. In an embodiment, the spindle is magnetically coupled to a first pole of the first magnet, the second magnetic element is coupled to a second pole of the first magnet, and a thermally conductive, nonmagnetic,more » insert separates the spindle and the second magnetic element.« less
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-07-16
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.
Dashti, Nooshin K; Wehrs, Rebecca N; Thomas, Brittany C; Nair, Asha; Davila, Jaime; Buckner, Jan C; Martinez, Anthony P; Sukov, William R; Halling, Kevin C; Howe, Benjamin M; Folpe, Andrew L
2018-05-14
Rhabdomyosarcomas of bone are extremely rare, with fewer than 10 reported cases. A very rare subtype of spindle cell/sclerosing rhabdomyosarcoma harboring a FUS-TFCP2 fusion and involving both soft tissue and bone locations has very recently been reported. We report only the fourth case of this unusual, clinically aggressive rhabdomyosarcoma. A previously-well 72-year old male presented with a destructive lesion of the mandible. Morphological and immunohistochemical study of a needle biopsy and the subsequent resection showed a spindle cell rhabdomyosarcoma. RNA-seq, RT-PCR and FISH confirmed the presence of the FUS-TFCP2 fusion. Spindle cell rhabdomyosarcomas carrying the FUS-TFCP2 fusion are very rare rhabdomyosarcoma variants with osseous predilection. The classification and differential diagnosis of this unusual molecular variant of spindle cell/ sclerosing rhabdomyosarcoma are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fogel, Stuart; Vien, Catherine; Karni, Avi; Benali, Habib; Carrier, Julie; Doyon, Julien
2017-01-01
Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults. Copyright © 2016 Elsevier Inc. All rights reserved.
Spiridonov, Ilia S.; McIntosh, J. Richard
2007-01-01
Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end–directed, microtubule-dependent motors: two related kinesin 14s (Pkl1p and Klp2p) and dynein. None of these deletions abolished biorientation, but fewer chromosomes segregated normally without Pkl1p, and to a lesser degree without dynein, than in wild-type cells. In the absence of Pkl1p, which normally localizes to the spindle and its poles, the checkpoint that monitors chromosome biorientation was defective, leading to frequent precocious anaphase. Ultrastructural analysis of mutant mitotic spindles suggests that Pkl1p contributes to error-free biorientation by promoting normal spindle pole organization, whereas dynein helps to anchor a focused bundle of spindle microtubules at the pole. PMID:17409356
Theory of meiotic spindle assembly
NASA Astrophysics Data System (ADS)
Furthauer, Sebastian; Foster, Peter; Needleman, Daniel; Shelley, Michael
2016-11-01
The meiotic spindle is a biological structure that self assembles from the intracellular medium to separate chromosomes during meiosis. It consists of filamentous microtubule (MT) proteins that interact through the fluid in which they are suspended and via the associated molecules that orchestrate their behavior. We aim to understand how the interplay between fluid medium, MTs, and regulatory proteins allows this material to self-organize into the spindle's highly stereotyped shape. To this end we develop a continuum model that treats the spindle as an active liquid crystal with MT turnover. In this active material, molecular motors, such as dyneins which collect MT minus ends and kinesins which slide MTs past each other, generate active fluid and material stresses. Moreover nucleator proteins that are advected with and transported along MTs control the nucleation and depolymerization of MTs. This theory captures the growth process of meiotic spindles, their shapes, and the essential features of many perturbation experiments. It thus provides a framework to think about the physics of this complex biological suspension.
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-01-01
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189
Averkin, Robert G; Szemenyei, Viktor; Bordé, Sándor; Tamás, Gábor
2016-11-23
Ultra-high-frequency network events in the hippocampus are instrumental in a dialogue with the neocortex during memory formation, but the existence of transient ∼200 Hz network events in the neocortex is not clear. Our recordings from neocortical layer II/III of freely behaving rats revealed field potential events at ripple and high-gamma frequencies repeatedly occurring at troughs of spindle oscillations during sleep. Juxtacellular recordings identified subpopulations of fast-spiking, parvalbumin-containing basket cells with epochs of firing at ripple (∼200 Hz) and high-gamma (∼120 Hz) frequencies detected during spindles and centered with millisecond precision at the trough of spindle waves in phase with field potential events but phase shifted relative to pyramidal cell firing. The results suggest that basket cell subpopulations are involved in spindle-nested, high-frequency network events that hypothetically provide repeatedly occurring neocortical temporal reference states potentially involved in mnemonic processes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Goshima, G; Yanagida, M
2000-03-17
Sister kinetochores are bioriented toward the spindle poles in higher eukaryotic prometaphase before chromosome segregation. We show that, in budding yeast, the sister kinetochores are separated in the very early spindle, while the sister arms remain associated. Biorientation of the separated kinetochores is achieved already after replication. Mtw1p, a homolog of fission yeast Mis12 required for biorientation, locates at the centromeres in an Ndc10p-dependent manner. Mtw1p and the sequences 1.8 and 3.8 kb from CEN3 and CEN15, respectively, behave like the precociously separated kinetochores, whereas the sequences 23 and 35 kb distant from CEN3 and CEN5 previously used as the centromere markers behave like a part of the arm. Mtw1p and Ndc10p are identically located except for additional spindle localization of Ndc10p. A model explaining small centromeres and early spindle formation in budding yeast is proposed.
Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.
Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E
2017-09-25
How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.
Marroig, Bruno; Frota, Rodrigo; Fortes, Marco A; Sampaio, Francisco J; Favorito, Luciano Alves
2016-04-01
The aim of this paper is to analyze if the anatomy type of the collector system (CS) limits the accessibility of flexible ureteroscopy (FUR) in the lower pole. We analyzed the pyelographies of 51 patients submitted to FUR and divided the CS into four groups: A1-kidney midzone (KM) drained by minor calices (Mc) that are dependent on the superior or on the inferior caliceal groups; A2-KM drained by crossed calices; B1-KM drained by a major caliceal group independent both of the superior and inferior groups, and B2-KM drained by Mc entering directly into the renal pelvis. We studied the number of calices, the angle between the lower infundibulum and renal pelvis, and the angle between the lower infundibulum and the inferior Mc. With the use of a flexible ureteroscope, the access attempt was made to all of lower pole calices. Averages were statistically compared using the ANOVA and Unpaired T test (p < 0.05). We found 14 kidneys of A1 (27.45 %); 4 of A2 (7.84 %); 17 of B1 (33.33 %); and 16 of B2 (31.37 %). The LIP was >90° in 31 kidneys (60.78 %) and between 61° and 90° in 20 kidneys (39.22 %). We did not find angles smaller than 60°. The group A1 presented 48 Mc and the UF was able to access 42 (87.5 %); the group A2 had 11 Mc and the UF was able to access 7 (63.64 %); the group B1 had 48 Mc and the UF was able to access 41 (85.42 %) and in group B2 we observed 41 Mc and the UF could access 35 (85.36 %). There was no statistical difference in the accessibility between the groups (p = 0.2610). Collecting system with kidney midzone drained by crossed calices presented the lower accessibility rate during FUR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-04-04
Spindle is software infrastructure that solves file system scalabiltiy problems associated with starting dynamically linked applications in HPC environments. When an HPC applications starts up thousands of pricesses at once, and those processes simultaneously access a shared file system to look for shared libraries, it can cause significant performance problems for both the application and other users. Spindle scalably coordinates the distribution of shared libraries to an application to avoid hammering the shared file system.
Studies on Axonal Transport in an Animal Model for Gulf War Syndrome
2008-07-01
designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of...therapeutic strategies. With regard to kinesin-5, a homotetrameric motor protein that interacts with adjacent microtubules in the mitotic spindle , we...sets of antiparallel motor domains (Kashina et al., 1996). In the mitotic spindle , the primary func- tion of kinesin-5 is to maintain spindle bipolarity
Boutin, Arnaud; Pinsard, Basile; Boré, Arnaud; Carrier, Julie; Fogel, Stuart M; Doyon, Julien
2018-04-01
Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions. Copyright © 2018 Elsevier Inc. All rights reserved.
Response to apatinib in chemotherapy-failed advanced spindle cell breast carcinoma.
Zhou, Na; Liu, Congmin; Hou, Helei; Zhang, Chuantao; Liu, Dong; Wang, Guanqun; Liu, Kewei; Zhu, Jingjuan; Lv, Hongying; Li, Tianjun; Zhang, Xiaochun
2016-11-01
Spindle cell carcinoma of the breast is a rare subtype of metaplastic carcinoma, and no effective chemotherapy special for metaplastic carcinoma exists until now. As spindle cell carcinomas of the breast are typically "Triple Negative", endocrine therapy and molecular therapy targeted to Her2 might not be favorable, resulting in poor prognosis. Apatinib is currently being tested in patients with breast or lung cancers. Here we report a successful case using Apatinib to treat spindle cell carcinoma of breast.A 52- year- old woman presented with a gradually enlarged lump in left breast, which was revealed to be a triple-negative spindle cell carcinoma, underwent a modified radical mastectomy. After the first line chemotherapy with Cyclophosphamide and Epirubicin, multiple metastases in bilateral lung and left anterior thoracic wall appeared. After disease progressed with therapy of Bevacizumab combined with Albumin-bound Paclitaxel and Cisplatin, we treated the patient with Apatinib according to her VEGFR expression, which showed nearly complete response and controllable and tolerated side effects. Next-generation sequencing analysis of the tumor specimen and real time ctDNA was performed to observe the mutated gene numbers matched with therapeutic effect. The present case can help to provide a new and effective therapy strategy to treat advanced spindle cell carcinoma.
Response to apatinib in chemotherapy-failed advanced spindle cell breast carcinoma
Zhou, Na; Liu, Congmin; Hou, Helei; Zhang, Chuantao; Liu, Dong; Wang, Guanqun; Liu, Kewei; Zhu, Jingjuan; Lv, Hongying; Li, Tianjun; Zhang, Xiaochun
2016-01-01
Spindle cell carcinoma of the breast is a rare subtype of metaplastic carcinoma, and no effective chemotherapy special for metaplastic carcinoma exists until now. As spindle cell carcinomas of the breast are typically “Triple Negative”, endocrine therapy and molecular therapy targeted to Her2 might not be favorable, resulting in poor prognosis. Apatinib is currently being tested in patients with breast or lung cancers. Here we report a successful case using Apatinib to treat spindle cell carcinoma of breast. A 52- year- old woman presented with a gradually enlarged lump in left breast, which was revealed to be a triple-negative spindle cell carcinoma, underwent a modified radical mastectomy. After the first line chemotherapy with Cyclophosphamide and Epirubicin, multiple metastases in bilateral lung and left anterior thoracic wall appeared. After disease progressed with therapy of Bevacizumab combined with Albumin-bound Paclitaxel and Cisplatin, we treated the patient with Apatinib according to her VEGFR expression, which showed nearly complete response and controllable and tolerated side effects. Next-generation sequencing analysis of the tumor specimen and real time ctDNA was performed to observe the mutated gene numbers matched with therapeutic effect. The present case can help to provide a new and effective therapy strategy to treat advanced spindle cell carcinoma. PMID:27738308
Mitosis in Barbulanympha. I. Spindle structure, formation, and kinetochore engagement
1978-01-01
Successful culture of the obligatorily anaerobic symbionts residing in the hindgut of the wood-eating cockroach Cryptocercus punctulatus now permits continuous observation of mitosis in individual Barbulanympha cells. In Part I of this two-part paper, we report methods for culture of the protozoa, preparation of microscope slide cultures in which Barbulanympha survived and divided for up to 3 days, and an optical arrangement which permits observation and through-focus photographic recording of dividing cells, sequentially in differential interference contrast and rectified polarized light microscopy. We describe the following prophase events and structures: development of the astral rays and large extranuclear central spindle from the tips of the elongate-centrioles; the fine structure of spindle fibers and astral rays which were deduced in vivo from polarized light microscopy and seen as a particular array of microtubules in thin-section electron micrographs; formation of chromosomal spindle fibers by dynamic engagement of astral rays to the kinetochores embedded in the persistent nuclear envelope; and repetitive shortening of chromosomal spindle fibers which appear to hoist the nucleus to the spindle surface, cyclically jostle the kinetochores within the nuclear envelope, and churn the prophase chromosomes. The observations described here and in Part II have implications both for the evolution of mitosis and for understanding the mitotic process generally. PMID:681451
Retention of Pax3 expression in satellite cells of muscle spindles.
Kirkpatrick, Lisa J; Yablonka-Reuveni, Zipora; Rosser, Benjamin W C
2010-04-01
Intrafusal fibers within muscle spindles retain features characteristic of immaturity, unlike the larger and more numerous extrafusal fibers constituting the bulk of skeletal muscle. Satellite cells (SCs), myogenic progenitors, are detected on the surfaces of both intrafusal and extrafusal fibers, but little is known of spindle SCs. We have recently demonstrated that, like their extrafusal counterparts, SCs in muscle spindles of posthatch chickens express paired box transcription factor 7 (Pax7) protein. During vertebrate embryogenesis, myogenic progenitors express both Pax7 and Pax3 proteins. In postnatal mice, Pax3 appears in rare SC subsets, whereas Pax7 is expressed by all SCs within extrafusal fibers. Here we test the hypothesis that Pax3 protein maintains localized expression within SCs of muscle spindles. Immunohistochemical techniques were used to identify SCs by their Pax7 expression within anterior latissimus dorsi muscle excised from posthatch chickens of various ages. A greater percentage of SCs express Pax3 within intrafusal than extrafusal fibers at each age, and the proportion of SCs expressing Pax3 declines with aging. This is the first study to localize Pax3 expression in posthatch avian muscle and within SCs of muscle spindles. We suggest that Pax3-positive SCs are involved in fiber maintenance.
Dewey, Evan B.; Johnston, Christopher A.
2017-01-01
Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila. Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial–mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. PMID:28747439
Rungaldier, Stefanie; Heiligenbrunner, Stefan; Mayer, Regina; Hanefl-Krivanek, Christiane; Lipowec, Marietta; Streicher, Johannes; Blumer, Roland
2009-12-01
To analyze and compare the structural and molecular features of classic proprioceptors like muscle spindles and Golgi tendon organs (GTOs) and putative proprioceptors (palisade endings) in sheep extraocular muscle (EOMs). The EOMs of four sheep were analyzed. Frozen sections or wholemount preparations of the samples were immunohistochemically labeled and analyzed by confocal laser scanning microscopy. Triple labeling with different combinations of antibodies against neurofilament, synaptophysin, and choline acetyltransferase (ChAT), as well as alpha-bungarotoxin and phalloidin, was performed. Microscopic anatomy of the nerve end organs was analyzed by transmission electron microscopy. The microscopic anatomy demonstrated that muscle spindles and GTOs had a perineural capsule and palisade endings a connective tissue capsule. Sensory nerve terminals in muscle spindles and GTOs contained only a few vesicles, whereas palisade nerve terminals were full of clear vesicles. Likewise, motor terminals in the muscle spindles' polar regions were full of clear vesicles. Immunohistochemistry showed that sensory nerve fibers as well as their sensory nerve terminals in muscle spindles and GTOs were ChAT-negative. Palisade endings were supplied by ChAT-positive nerve fibers, and the palisade complexes including palisade nerve terminals were also ChAT-immunoreactive. Motor terminals in muscle spindles were ChAT and alpha-bungarotoxin positive. The present study demonstrated in sheep EOMs that palisade endings are innervated by cholinergic axons exhibiting characteristics typical of motoneurons, whereas muscle spindles (except the polar regions) and GTOs are supplied by noncholinergic axons. These results raise the question of whether palisade endings are candidates for proprioceptors in EOMs.
Reed, William R; Pickar, Joel G; Sozio, Randall S; Liebschner, Michael A K; Little, Joshua W; Gudavalli, Maruti R
The purpose of this preliminary study is to determine muscle spindle response characteristics related to the use of 2 solenoid powered clinical mechanically assisted manipulation (MAM) devices. L6 muscle spindle afferents with receptive fields in paraspinal muscles were isolated in 6 cats. Neural recordings were made during L7 MAM thrusts using the Activator V (Activator Methods Int. Ltd., Phoenix, AZ) and/or Pulstar (Sense Technology Inc., Pittsburgh, PA) devices at their 3 lowest force settings. Mechanically assisted manipulation response measures included (a) the time required post-thrust until the first action potential, (b) differences in mean frequency (MF) and mean instantaneous frequency (MIF) 2 seconds before and after MAM, and (c) the time required for muscle spindle discharge (MF and MIF) to return to 95% of baseline after MAM. Depending on device setting, between 44% to 80% (Pulstar) and 11% to 63% (Activator V) of spindle afferents required >6 seconds to return to within 95% of baseline MF values; whereas 66% to 89% (Pulstar) and 75% to 100% (Activator V) of spindle responses returned to within 95% of baseline MIF in <6 seconds after MAM. Nonparametric comparisons between the 22 N and 44 N settings of the Pulstar yielded significant differences for the time required to return to baseline MF and MIF. Short duration (<10 ms) MAM thrusts decrease muscle spindle discharge with a majority of afferents requiring prolonged periods (>6 seconds) to return to baseline MF activity. Physiological consequences and clinical relevance of described MAM mechanoreceptor responses will require additional investigation. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Lee, Kendall H.; Hitti, Frederick L.; Chang, Su-Youne; Lee, Dongchul C.; Roberts, David W.; McIntyre, Cameron C.; Leiter, James C.
2011-08-01
Deep brain stimulation (DBS) of the thalamus has been demonstrated to be effective for the treatment of epilepsy. To investigate the mechanism of action of thalamic DBS, we examined the effects of high frequency stimulation (HFS) on spindle oscillations in thalamic brain slices from ferrets. We recorded intracellular and extracellular electrophysiological activity in the nucleus reticularis thalami (nRt) and in thalamocortical relay (TC) neurons in the lateral geniculate nucleus, stimulated the slice using a concentric bipolar electrode, and recorded the level of glutamate within the slice. HFS (100 Hz) of TC neurons generated excitatory post-synaptic potentials, increased the number of action potentials in both TC and nRt neurons, reduced the input resistance, increased the extracellular glutamate concentration, and abolished spindle wave oscillations. HFS of the nRt also suppressed spindle oscillations. In both locations, HFS was associated with significant and persistent elevation in extracellular glutamate levels and suppressed spindle oscillations for many seconds after the cessation of stimulation. We simulated HFS within a computational model of the thalamic network, and HFS also disrupted spindle wave activity, but the suppression of spindle activity was short-lived. Simulated HFS disrupted spindle activity for prolonged periods of time only after glutamate release and glutamate-mediated activation of a hyperpolarization-activated current (Ih) was incorporated into the model. Our results suggest that the mechanism of action of thalamic DBS as used in epilepsy may involve the prolonged release of glutamate, which in turn modulates specific ion channels such as Ih, decreases neuronal input resistance, and abolishes thalamic network oscillatory activity.
NASA Astrophysics Data System (ADS)
Roos, U.-P.
1984-03-01
Based on the assumption that the ancestral proto-eukaryote evolved from an ameboid prokarybte I propose the hypothesis that nuclear division of the proto-eukaryote was effected by the same system of contractile filaments it used for ameboid movement and cytosis. When the nuclear membranes evolved from the cell membrane, contractile filaments remained associated with them. The attachment site of the genome in the nuclear envelope was linked to the cell membrane by specialized contractile filaments. During protomitosis, i.e., nuclear and cell division of the proto-eukaryote, these filaments performed segregation of the chromosomes, whereas others constricted and cleaved the nucleus and the mother cell. When microtubules (MTs) had evolved in the cytoplasm, they also became engaged in nuclear division. Initially, an extranuolear bundle of MTs assisted chromosome segregation by establishing a defined axis. The evolutionary tendency then was towards an increasingly important role for MTs. Spindle pole bodies (SPBs) developed from the chromosomal attachment sites in the nuclear envelope and organized an extranuclear central spindle. The chromosomes remained attached to the SPBs during nuclear division. In a subsequent step the spindle became permanently lodged inside the nucleus. Chromosomes detached from the SPBs and acquired kinetochores and kinetochore-MTs. At first, this spindle segregated chromosomes by elongation, the kinetochore-MTs playing the role of static anchors. Later, spindle elongation was supplemented by poleward movement of the chromosomes. When dissolution of the nuclear envelope at the beginning of mitosis became a permanent feature, the open spindle of higher eukaryotes was born.
Intelligence measures and stage 2 sleep in typically-developing and autistic children.
Tessier, Sophie; Lambert, Andréane; Chicoine, Marjolaine; Scherzer, Peter; Soulières, Isabelle; Godbout, Roger
2015-07-01
The relationship between intelligence measures and 2 EEG measures of non-rapid eye movement sleep, sleep spindles and Sigma activity, was examined in 13 typically-developing (TD) and 13 autistic children with normal IQ and no complaints of poor sleep. Sleep spindles and Sigma EEG activity were computed for frontal (Fp1, Fp2) and central (C3, C4) recording sites. Time in stage 2 sleep and IQ was similar in both groups. Autistic children presented less spindles at Fp2 compared to the TD children. TD children showed negative correlation between verbal IQ and sleep spindle density at Fp2. In the autistic group, verbal and full-scale IQ scores correlated negatively with C3 sleep spindle density. The duration of sleep spindles at Fp1 was shorter in the autistic group than in the TD children. The duration of sleep spindles at C4 was positively correlated with verbal IQ only in the TD group. Fast Sigma EEG activity (13.25-15.75 Hz) was lower at C3 and C4 in autistic children compared to the TD children, particularly in the latter part of the night. Only the TD group showed positive correlation between performance IQ and latter part of the night fast Sigma activity at C4. These results are consistent with a relationship between EEG activity during sleep and cognitive processing in children. The difference between TD and autistic children could derive from dissimilar cortical organization and information processing in these 2 groups. Copyright © 2015. Published by Elsevier B.V.
Lustenberger, Caroline; O’Gorman, Ruth L.; Pugin, Fiona; Tüshaus, Laura; Wehrle, Flavia; Achermann, Peter; Huber, Reto
2015-01-01
Background: Schizophrenia is a severe mental disorder affecting approximately 1% of the worldwide population. Yet, schizophrenia-like experiences (schizotypy) are very common in the healthy population, indicating a continuum between normal mental functioning and the psychosis found in schizophrenic patients. A continuum between schizotypy and schizophrenia would be supported if they share the same neurobiological origin. Two such neurobiological markers of schizophrenia are: (1) a reduction of sleep spindles (12–15 Hz oscillations during nonrapid eye movement sleep), likely reflecting deficits in thalamo-cortical circuits and (2) increased glutamine and glutamate (Glx) levels in the thalamus. Thus, this study aimed to investigate whether sleep spindles and Glx levels are related to schizotypal personality traits in healthy subjects. Methods: Twenty young male subjects underwent 2 all-night sleep electroencephalography recordings (128 electrodes). Sleep spindles were detected automatically. After those 2 nights, thalamic Glx levels were measured by magnetic resonance spectroscopy. Subjects completed a magical ideation scale to assess schizotypy. Results: Sleep spindle density was negatively correlated with magical ideation (r = −.64, P < .01) and thalamic Glx levels (r = −.70, P < .005). No correlation was found between Glx levels in the thalamus and magical ideation (r = .12, P > .1). Conclusions: The common relationship of sleep spindle density with schizotypy and thalamic Glx levels indicates a neurobiological overlap between nonclinical schizotypy and schizophrenia. Thus, sleep spindle density and magical ideation may reflect the anatomy and efficiency of the thalamo-cortical system that shows pronounced impairment in patients with schizophrenia. PMID:25074975
Zerouali, Younes; Lina, Jean-Marc; Sekerovic, Zoran; Godbout, Jonathan; Dube, Jonathan; Jolicoeur, Pierre; Carrier, Julie
2014-01-01
Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging the synchronous oscillatory cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles on the EEG and extracted the corresponding frequency-locked MEG activity under the form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013). Secondly, we performed source reconstruction of the ridge signal within the Maximum Entropy on the Mean framework (Amblard et al., 2004), yielding a robust estimate of the cortical sources producing observed oscillations. Lastly, we quantified functional connectivity among cortical sources using phase-locking values. The main innovations of this methodology are (1) to reveal the dynamic behavior of functional networks resolved in the time-frequency plane and (2) to characterize functional connectivity among MEG sources through phase interactions. We showed, for the first time, that the switch from fast to slow oscillatory mode during sleep spindles is required for the emergence of specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles was associated with mainly intra-hemispheric connectivity whereas later synchrony was associated with global long-range connectivity. We propose that our methodology can be a valuable tool for studying the connectivity underlying neural processes involving sleep spindles, such as memory, plasticity or aging. PMID:25389381
De La Fuente, Rabindranath; Viveiros, Maria M; Wigglesworth, Karen; Eppig, John J
2004-08-01
ATRX is a centromeric heterochromatin binding protein belonging to the SNF2 family of helicase/ATPases with chromatin remodeling activity. Mutations in the human ATRX gene result in X-linked alpha-thalassaemia with mental retardation (ATRX) syndrome and correlate with changes in methylation of repetitive DNA sequences. We show here that ATRX also functions to regulate key stages of meiosis in mouse oocytes. At the germinal vesicle (GV) stage, ATRX was found associated with the perinucleolar heterochromatin rim in transcriptionally quiescent oocytes. Phosphorylation of ATRX during meiotic maturation is dependent upon calcium calmodulin kinase (CamKII) activity. Meiotic resumption also coincides with deacetylation of histone H4 at lysine 5 (H4K5 Ac) while ATRX and histone H3 methylated on lysine 9 (H3K9) remained bound to the centromeres and interstitial regions of condensing chromosomes, respectively. Inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) disrupted ATRX binding to the centromeres of hyperacetylated chromosomes resulting in abnormal chromosome alignments at metaphase II (MII). Similarly, while selective ablation of ATRX by antibody microinjection and RNA interference (RNAi) had no effect on the progression of meiosis, it had severe consequences for the alignment of chromosomes on the metaphase II spindle. These results suggest that genome-wide epigenetic modifications such as global histone deacetylation are essential for the binding of ATRX to centromeric heterochromatin. Moreover, centromeric ATRX is required for correct chromosome alignment and organization of a bipolar meiotic metaphase II spindle.
Nagata, Yuka; Muro, Yoshinao; Todokoro, Kazuo
1997-01-01
Megakaryocytes undergo a unique differentiation program, becoming polyploid through repeated cycles of DNA synthesis without concomitant cell division. However, the mechanism underlying this polyploidization remains totally unknown. It has been postulated that polyploidization is due to a skipping of mitosis after each round of DNA replication. We carried out immunohistochemical studies on mouse bone marrow megakaryocytes during thrombopoietin- induced polyploidization and found that during this process megakaryocytes indeed enter mitosis and progress through normal prophase, prometaphase, metaphase, and up to anaphase A, but not to anaphase B, telophase, or cytokinesis. It was clearly observed that multiple spindle poles were formed as the polyploid megakaryocytes entered mitosis; the nuclear membrane broke down during prophase; the sister chromatids were aligned on a multifaced plate, and the centrosomes were symmetrically located on either side of each face of the plate at metaphase; and a set of sister chromatids moved into the multiple centrosomes during anaphase A. We further noted that the pair of spindle poles in anaphase were located in close proximity to each other, probably because of the lack of outward movement of spindle poles during anaphase B. Thus, the reassembling nuclear envelope may enclose all the sister chromatids in a single nucleus at anaphase and then skip telophase and cytokinesis. These observations clearly indicate that polyploidization of megakaryocytes is not simply due to a skipping of mitosis, and that the megakaryocytes must have a unique regulatory mechanism in anaphase, e.g., factors regulating anaphase such as microtubule motor proteins might be involved in this polyploidization process. PMID:9334347
Ruhela, Deepa; Kamthan, Ayushi; Maiti, Protiti; Datta, Asis
2014-01-01
In Saccharomyces cerevisiae MPS1 is one of the major protein kinase that governs the spindle checkpoint pathway. The S. cerevisiae structural homolog of opportunistic pathogen Candida albicans CaMPS1, is indispensable for the cell viability. The essentiality of Mps1 was confirmed by Homozygote Trisome test. To determine its biological function in this pathogen conditional mutant was generated through regulatable MET3 promoter. Examination of heterozygous and conditional (+Met/Cys) mps1 mutants revealed a mitosis specific arrest phenotype, where mutants showed large buds with undivided nuclei. Flowcytometry analysis revealed abnormal ploidy levels in mps1mutant. In presence of anti-microtubule drug Nocodazole, mps1 mutant showed a dramatic loss of viability suggesting a role of Mps1 in Spindle Assembly Checkpoint (SAC) activation. These mutants were also defective in microtubule organization. Moreover, heterozygous mutant showed defective in-vitro yeast to hyphae morphological transition. Growth defect in heterozygous mutant suggest haploinsufficiency of this gene. qRT PCR analysis showed around 3 fold upregulation of MPS1 in presence of serum. This expression of MPS1 is dependent on Efg1and is independent of other hyphal regulators like Ras1 and Tpk2. Furthermore, mps1 mutants were also sensitive to oxidative stress. Heterozygous mps1 mutant did not undergo morphological transition and showed 5-Fold reduction in colony forming units in response to macrophage. Thus, the vital checkpoint kinase, Mps1 besides cell division also has a role in morphogenesis and oxidative stress tolerance, in this pathogenic fungus. PMID:25025778
Mps1 as a link between centrosomes and genomic instability.
Kasbek, Christopher; Yang, Ching-Hui; Fisk, Harold A
2009-10-01
Centrosomes are microtubule-organizing centers that must be precisely duplicated before mitosis. Centrosomes regulate mitotic spindle assembly, and the presence of excess centrosomes leads to the production of aberrant mitotic spindles which generate chromosome segregation errors. Many human tumors possess excess centrosomes that lead to the production of abnormal spindles in situ. In some tumors, these extra centrosomes appear before aneuploidy, suggesting that defects in centrosome duplication might promote genomic instability and tumorigenesis. The Mps1 protein kinase is required for centrosome duplication, and preventing the proteasome-dependent degradation of Mps1 at centrosomes increases its local concentration and causes the production of excess centrosomes during a prolonged S-phase. Here, we show that Mps1 degradation is misregulated in two tumor-derived cell lines, and that the failure to appropriately degrade Mps1 correlates with the ability of these cells to produce extra centrosomes during a prolonged S-phase. In the 21NT breast-tumor derived cell line, a mutant Mps1 protein that is normally constitutively degraded can accumulate at centrosomes and perturb centrosome duplication, suggesting that these cells have a defect in the mechanisms that target Mps1 to the proteasome. In contrast, the U2OS osteosarcoma cell line expresses a nondegradable form of Mps1, which we show causes the dose-dependent over duplication of centrioles even at very low levels of expression. Our data demonstrate that defects in Mps1 degradation can occur through multiple mechanisms, and suggest that Mps1 may provide a link between the control of centrosome duplication and genomic instability. (c) 2009 Wiley-Liss, Inc.
Kamthan, Mohan; Nalla, Vijaya Kumar; Ruhela, Deepa; Kamthan, Ayushi; Maiti, Protiti; Datta, Asis
2014-01-01
In Saccharomyces cerevisiae MPS1 is one of the major protein kinase that governs the spindle checkpoint pathway. The S. cerevisiae structural homolog of opportunistic pathogen Candida albicans CaMPS1, is indispensable for the cell viability. The essentiality of Mps1 was confirmed by Homozygote Trisome test. To determine its biological function in this pathogen conditional mutant was generated through regulatable MET3 promoter. Examination of heterozygous and conditional (+Met/Cys) mps1 mutants revealed a mitosis specific arrest phenotype, where mutants showed large buds with undivided nuclei. Flowcytometry analysis revealed abnormal ploidy levels in mps1 mutant. In presence of anti-microtubule drug Nocodazole, mps1 mutant showed a dramatic loss of viability suggesting a role of Mps1 in Spindle Assembly Checkpoint (SAC) activation. These mutants were also defective in microtubule organization. Moreover, heterozygous mutant showed defective in-vitro yeast to hyphae morphological transition. Growth defect in heterozygous mutant suggest haploinsufficiency of this gene. qRT PCR analysis showed around 3 fold upregulation of MPS1 in presence of serum. This expression of MPS1 is dependent on Efg1 and is independent of other hyphal regulators like Ras1 and Tpk2. Furthermore, mps1 mutants were also sensitive to oxidative stress. Heterozygous mps1 mutant did not undergo morphological transition and showed 5-Fold reduction in colony forming units in response to macrophage. Thus, the vital checkpoint kinase, Mps1 besides cell division also has a role in morphogenesis and oxidative stress tolerance, in this pathogenic fungus.
Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z.; Hong, J.; Zhang, J.
2013-12-15
The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results onmore » axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.« less
Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing.
Yang, Z; Hong, J; Zhang, J; Wang, M Y; Zhu, Y
2013-12-01
The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.
Vallbo, Å. B.
1971-01-01
1. Impulses in single muscle afferents were recorded from the median nerves of waking human subjects with percutaneously inserted tungsten needle electrodes. During isometric voluntary contractions, unitary discharges were analysed from muscle spindle endings in the wrist and finger flexor muscles and the electromyographic activity from these muscles was recorded simultaneously. 2. When the subject activated the muscle portion in which a spindle was located, the afferent discharge increased in spite of the mechanical unloading effects of the skeletomotor contraction indicating a concomitant fusimotor activation. This was valid for slowly rising contractions as well as small fast rising twitches. 3. The time of onset of spindle acceleration was determined in relation to the time of onset of the electromyographic activity for thirty-one units studied altogether in more than seven hundred contractions. It was found that spindle acceleration regularly occurred after the onset of the electromyographic activity. 4. There was a considerable variation from one test to the other, for the individual units, with regard to the exact time of onset of spindle acceleration, although spindle acceleration occurred mostly within 0·5 sec after the onset of the electromyographic activity in sustained contractions and within 0·1 sec in small fast rising twitches. It was not possible to assess to what extent this variation was accounted for by variations in the mechanical unloading effects of the skeletomotor contraction or variations in the timing of the fusimotor outflow. 5. For many units, spindle acceleration did not occur until 10-50 msec after the onset of the skeletomotor contraction. This time is of the same order of magnitude as the time difference in latency from the spinal cord to the recording points in the two systems, as estimated from reasonable assumptions. 6. It was concluded that the fusimotor system does not participate in the initiation of voluntary contractions in man, but that the skeletomotor activity is initiated by descending impulses from supraspinal structures and their effects on the neuronal organization within the spinal cord. 7. The fact that fusimotor activation occurs also in very small and short lasting twitches, when spindle acceleration must have a negligible influence on the skeletomotor outflow, suggests that the fusimotor and the skeletomotor systems are rigidly co-activated in voluntary contractions. 8. The finding that spindle acceleration does not occur until 10-50 msec after the onset of the electromyographic activity suggests that there is an approximately simultaneous onset of the fusimotor and the skeletomotor outflows from the spinal cord. PMID:4256547
2008-08-01
their microtu- bules re-grown. In addition, the add-back cells had regained their spindle-like shape (Fig. 6C, D; 240 min). This implies that the normal...We show that merlin directly binds tubulin and regulates microtu- bule dynamics in vitro and in vivo. Our results show that merlin contains two...also APC and VHL show only limited colocalization with microtu- bules , but yet affect their dynamics in vivo (35,36). Here, we show that also merlin
Polyoma small T antigen triggers cell death via mitotic catastrophe
Fernando, Arun T Pores; Andrabi, Shaida; Cizmecioglu, Onur; Zhu, Cailei; Livingston, David M.; Higgins, Jonathan M.G; Schaffhausen, Brian S; Roberts, Thomas M
2014-01-01
Polyoma small T antigen (PyST), an early gene product of the polyoma virus, has been shown to cause cell death in a number of mammalian cells in a protein phosphatase 2A (PP2A)-dependent manner. In the current study, using a cell line featuring regulated expression of PyST, we found that PyST arrests cells in mitosis. Live-cell and immunofluorescence studies showed that the majority of the PyST-expressing cells were arrested in prometaphase with almost no cells progressing beyond metaphase. These cells exhibited defects in chromosomal congression, sister chromatid cohesion and spindle positioning, resulting in the activation of the Spindle Assembly Checkpoint (SAC). Prolonged mitotic arrest then led to cell death via mitotic catastrophe. Cell cycle inhibitors that block cells in G1/S prevented PyST-induced death. PyST-induced cell death that occurs during M is not dependent on p53 status. These data suggested, and our results confirmed that, PP2A inhibition could be used to preferentially kill cancer cells with p53 mutations that proliferate normally in the presence of cell cycle inhibitors. PMID:24998850
Rattani, Ahmed; Wolna, Magda; Ploquin, Mickael; Helmhart, Wolfgang; Morrone, Seamus; Mayer, Bernd; Godwin, Jonathan; Xu, Wenqing; Stemmann, Olaf; Pendas, Alberto; Nasmyth, Kim
2013-01-01
Accurate chromosome segregation depends on coordination between cohesion resolution and kinetochore-microtubule interactions (K-fibers), a process regulated by the spindle assembly checkpoint (SAC). How these diverse processes are coordinated remains unclear. We show that in mammalian oocytes Shugoshin-like protein 2 (Sgol2) in addition to protecting cohesin, plays an important role in turning off the SAC, in promoting the congression and bi-orientation of bivalents on meiosis I spindles, in facilitating formation of K-fibers and in limiting bivalent stretching. Sgol2’s ability to protect cohesin depends on its interaction with PP2A, as is its ability to silence the SAC, with the latter being mediated by direct binding to Mad2. In contrast, its effect on bivalent stretching and K-fiber formation is independent of PP2A and mediated by recruitment of MCAK and inhibition of Aurora C kinase activity respectively. By virtue of its multiple interactions, Sgol2 links many of the processes essential for faithful chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.01133.001 PMID:24192037
The tumor suppressor CDKN3 controls mitosis
Nalepa, Grzegorz; Barnholtz-Sloan, Jill; Enzor, Rikki; Dey, Dilip; He, Ying; Gehlhausen, Jeff R.; Lehmann, Amalia S.; Park, Su-Jung; Yang, Yanzhu; Yang, Xianlin; Chen, Shi; Guan, Xiaowei; Chen, Yanwen; Renbarger, Jamie; Yang, Feng-Chun; Parada, Luis F.
2013-01-01
Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2pThr-161 at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics. PMID:23775190
Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E
Kim, Yumi; Holland, Andrew J.; Lan, Weijie; Cleveland, Don W.
2010-01-01
Summary Opposing roles of Aurora kinases and protein phosphatase 1 (PP1) during mitosis have long been suggested. Here we demonstrate that Aurora kinases A and B phosphorylate a single residue on the kinetochore motor CENP-E. PP1 binds CENP-E via a motif overlapping this phosphorylation site and binding is disrupted by Aurora phosphorylation. Phosphorylation of CENP-E by the Auroras is enriched at spindle poles, disrupting binding of PP1 and reducing CENP-E’s affinity for individual microtubules. This phosphorylation is required for CENP-E-mediated towing of initially polar chromosomes toward the cell center. Kinetochores on such chromosomes cannot make subsequent stable attachment to spindle microtubules when dephosphorylation of CENP-E or rebinding of PP1 to CENP-E is blocked. Thus, an Aurora/PP1 phosphorylation switch modulates CENP-E motor activity as an essential feature of chromosome congression from poles and localized PP1 delivery by CENP-E to the outer kinetochore is necessary for stable microtubule capture by those chromosomes. PMID:20691903
MPS1 kinase as a potential therapeutic target in medulloblastoma
Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev
2016-01-01
Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003
MPS1 kinase as a potential therapeutic target in medulloblastoma.
Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D; Foreman, Nicholas K; Venkataraman, Sujatha; Vibhakar, Rajeev
2016-11-01
Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma.
Axin localizes to mitotic spindles and centrosomes in mitotic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Shi-Mun; Choi, Eun-Jin; Song, Ki-Joon
2009-04-01
Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3{beta}) without producing any notable changes inmore » cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3{beta} in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor.« less
NASA Astrophysics Data System (ADS)
Veksler, Alexander; Vavylonis, Dimitrios
2011-03-01
The formation and constriction of the contractile ring during cytokinesis, the final step of cell division, depends on the recruitment of motor protein myosin to the cell's equatorial region. During animal cell cytokinesis, cortical myosin filaments (MF) disassemble at the flanking regions and concentrate in the equator. This recruitment depends on myosin motor activity and the Rho proteins that regulate MF assembly and disassembly. Central spindle and astral microtubules help establish a spatial pattern of differential Rho activity. We propose a reaction-diffusion model for the dynamics of MF recruitment to the equatorial region. In the model, the central spindle and mechanical stress promote self-reinforcing MF assembly. Negative feedback is introduced by MF-induced recruitment of inhibitor myosin phosphatase. Our model yields various dynamical regimes and explains both the recruitment of MF to the cleavage furrow and the observed damped MF oscillations in the flanking regions, as well as steady MF assembly. Space and time parameters of MF oscillations are calculated. We predict oscillatory relaxation of cortical MF upon removal of locally-applied external stress.
Eot-Houllier, Grégory; Magnaghi-Jaulin, Laura; Fulcrand, Géraldine; Moyroud, François-Xavier; Monier, Solange; Jaulin, Christian
2018-05-14
Sustained spindle tension applied to sister centromeres during mitosis eventually leads to uncoordinated loss of sister chromatid cohesion, a phenomenon known as "cohesion fatigue." We report that Aurora A-dependent phosphorylation of serine 7 of the centromere histone variant CENP-A (p-CENP-AS7) protects bioriented chromosomes against cohesion fatigue. Expression of a non-phosphorylatable version of CENP-A (CENP-AS7A) weakens sister chromatid cohesion only when sister centromeres are under tension, providing the first evidence of a regulated mechanism involved in protection against passive cohesion loss. Consistent with this observation, p-CENP-AS7 is detected at the inner centromere where it forms a discrete domain. The depletion or inhibition of Aurora A phenocopies the expression of CENP-AS7A and we show that Aurora A is recruited to centromeres in a Bub1-dependent manner. We propose that Aurora A-dependent phosphorylation of CENP-A at the inner centromere protects chromosomes against tension-induced cohesion fatigue until the last kinetochore is attached to spindle microtubules.
RNA as a structural and regulatory component of the centromere.
Gent, Jonathan I; Dawe, R Kelly
2012-01-01
Despite many challenges, great progress has been made in identifying kinetochore proteins and understanding their overall functions relative to spindles and centromeric DNA. In contrast, less is known about the specialized centromeric chromatin environment and how it may be involved in regulating the assembly of kinetochore proteins. Multiple independent lines of evidence have implicated transcription and the resulting RNA as an important part of this process. Here, we summarize recent literature demonstrating the roles of centromeric RNA in regulating kinetochore assembly and maintenance. We also review literature suggesting that the process of centromeric transcription may be as important as the resulting RNA and that such transcription may be involved in recruiting the centromeric histone variant CENH3.
Tamada, Masako; Zallen, Jennifer A.
2015-01-01
Summary Cells display dynamic and diverse morphologies during development, but the strategies by which differentiated tissues achieve precise shapes and patterns are not well understood. Here we identify a developmental program that generates a highly ordered square cell grid in the Drosophila embryo through sequential and spatially regulated cell alignment, oriented cell division, and apicobasal cell elongation. The basic leucine zipper transcriptional regulator Cnc is necessary and sufficient to produce a square cell grid in the presence of a midline signal provided by the EGF receptor ligand, Spitz. Spitz orients cell divisions through a Pins/LGN-dependent spindle positioning mechanism and controls cell shape and alignment through a transcriptional pathway that requires the Pointed ETS domain protein. These results identify a strategy for producing ordered square cell packing configurations in epithelia and reveal a molecular mechanism by which organized tissue structure is generated through spatiotemporally regulated responses to EGF receptor activation. PMID:26506305
6. FLOOR 1; LOOKING WEST; SHOWS UNDERDRIFT SYSTEM, FOUR POSTS ...
6. FLOOR 1; LOOKING WEST; SHOWS UNDERDRIFT SYSTEM, FOUR POSTS SUPPORT BRIDGE BEAM FOR FOOT BEARING OF UPRIGHT SHAFT, SPUR PINION STONE NUTS SLIDE DOWN STONE SPINDLE TO ENGAGE, CENTRIFUGAL GOVERNOR IS MOUNTED ON A SEPARATE SPINDLE DRIVEN BY A BELT FROM THE STONE SPINDLE; ALSO SHOWN ARE THE GREAT SPUR WHEEL AND A LAYSHAFT RUNNING OFF A CROWN WHEEL JUST ABOVE THE GREAT SPUR WHEEL - Gardiner Windmill, East Hampton, Suffolk County, NY
Microtubule dynamics in cell division: exploring living cells with polarized light microscopy.
Inoué, Shinya
2008-01-01
This Perspective is an account of my early experience while I studied the dynamic organization and behavior of the mitotic spindle and its submicroscopic filaments using polarized light microscopy. The birefringence of spindle filaments in normally dividing plant and animal cells, and those treated by various agents, revealed (a) the reality of spindle fibers and fibrils in healthy living cells; (b) the labile, dynamic nature of the molecular filaments making up the spindle fibers; (c) the mode of fibrogenesis and action of orienting centers; and (d) force-generating properties based on the disassembly and assembly of the fibrils. These studies, which were carried out directly on living cells using improved polarizing microscopes, in fact predicted the reversible assembly properties of microtubules.
Method for automated building of spindle thermal model with use of CAE system
NASA Astrophysics Data System (ADS)
Kamenev, S. V.
2018-03-01
The spindle is one of the most important units of the metal-cutting machine tool. Its performance is critical to minimize the machining error, especially the thermal error. Various methods are applied to improve the thermal behaviour of spindle units. One of the most important methods is mathematical modelling based on the finite element analysis. The most common approach for its realization is the use of CAE systems. This approach, however, is not capable to address the number of important effects that need to be taken into consideration for proper simulation. In the present article, the authors propose the solution to overcome these disadvantages using automated thermal model building for the spindle unit utilizing the CAE system ANSYS.
Ling, Youguo; Zhang, Xiaojuan; Bai, Yuanyuan; Li, Ping; Wei, Congwen; Song, Ting; Zheng, Zirui; Guan, Kai; Zhang, Yanhong; Zhang, Buchang; Liu, Xuedong; Ma, Runlin Z; Cao, Cheng; Zhong, Hui; Xu, Quanbin
2014-08-08
The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint. Copyright © 2014 Elsevier Inc. All rights reserved.
Exclusive destruction of mitotic spindles in human cancer cells.
Visochek, Leonid; Castiel, Asher; Mittelman, Leonid; Elkin, Michael; Atias, Dikla; Golan, Talia; Izraeli, Shai; Peretz, Tamar; Cohen-Armon, Malka
2017-03-28
We identified target proteins modified by phenanthrenes that cause exclusive eradication of human cancer cells. The cytotoxic activity of the phenanthrenes in a variety of human cancer cells is attributed by these findings to post translational modifications of NuMA and kinesins HSET/kifC1 and kif18A. Their activity prevented the binding of NuMA to α-tubulin and kinesins in human cancer cells, and caused aberrant spindles. The most efficient cytotoxic activity of the phenanthridine PJ34, caused significantly smaller aberrant spindles with disrupted spindle poles and scattered extra-centrosomes and chromosomes. Concomitantly, PJ34 induced tumor growth arrest of human malignant tumors developed in athymic nude mice, indicating the relevance of its activity for cancer therapy.
Wang, Zhen-Bo; Ma, Xue-Shan; Hu, Meng-Wen; Jiang, Zong-Zhe; Meng, Tie-Gang; Dong, Ming-Zhe; Fan, Li-Hua; Ouyang, Ying-Chun; Snapper, Scott B; Schatten, Heide; Sun, Qing-Yuan
2016-09-01
There is an unexplored physiological role of N-WASP (neural Wiskott-Aldrich syndrome protein) in oocyte maturation that prevents completion of second meiosis. In mice, N-WASP deletion did not affect oocyte polarity and asymmetric meiotic division in first meiosis, but did impair midbody formation and second meiosis completion. N-WASP regulates actin dynamics and participates in various cell activities through the RHO-GTPase-Arp2/3 (actin-related protein 2/3 complex) pathway, and specifically the Cdc42 (cell division cycle 42)-N-WASP-Arp2/3 pathway. Differences in the functions of Cdc42 have been obtained from in vitro compared to in vivo studies. By conditional knockout of N-WASP in mouse oocytes, we analyzed its in vivo functions by employing a variety of different methods including oocyte culture, immunofluorescent staining and live oocyte imaging. Each experiment was repeated at least three times, and data were analyzed by paired-samples t-test. Oocyte-specific deletion of N-WASP did not affect the process of oocyte maturation including spindle formation, spindle migration, polarity establishment and maintenance, and homologous chromosome or sister chromatid segregation, but caused failure of cytokinesis completion during second meiosis (P < 0.001 compared to control). Further analysis showed that a defective midbody may be responsible for the failure of cytokinesis completion. The present study did not include a detailed analysis of the mechanisms underlying the results, which will require more extensive further investigations. N-WASP may play an important role in mediating and co-ordinating the activity of the spindle (midbody) and actin (contractile ring constriction) when cell division occurs. The findings are important for understanding the regulation of oocyte meiosis completion and failures in this process that affect oocyte quality. None. This work was supported by the National Basic Research Program of China (No. 2012CB944404) and the National Natural Science Foundation of China (Nos 30930065, 31371451, 31272260 and 31530049). There are no potential conflicts of interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mps1 kinase regulates tumor cell viability via its novel role in mitochondria
Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z
2016-01-01
Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells. PMID:27383047