FAST TRACK COMMUNICATION: A closer look at arrested spinodal decomposition in protein solutions
NASA Astrophysics Data System (ADS)
Gibaud, Thomas; Schurtenberger, Peter
2009-08-01
Concentrated aqueous solutions of the protein lysozyme undergo a liquid-solid transition upon a temperature quench into the unstable spinodal region below a characteristic arrest temperature of Tf = 15 °C. We use video microscopy and ultra-small angle light scattering in order to investigate the arrested structures as a function of initial concentration, quench temperature and rate of the temperature quench. We find that the solid-like samples show all the features of a bicontinuous network that is formed through an arrested spinodal decomposition process. We determine the correlation length ξ and demonstrate that ξ exhibits a temperature dependence that closely follows the critical scaling expected for density fluctuations during the early stages of spinodal decomposition. These findings are in agreement with an arrest scenario based on a state diagram where the arrest or gel line extends far into the unstable region below the spinodal line. Arrest then occurs when during the early stage of spinodal decomposition the volume fraction phi2 of the dense phase intersects the dynamical arrest threshold phi2,Glass, upon which phase separation gets pinned into a space-spanning gel network with a characteristic length ξ.
Influence of high-pressure torsion on formation/destruction of nano-sized spinodal structures
NASA Astrophysics Data System (ADS)
Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji
2018-04-01
The microstructures and hardness of Al - 30 mol.% Zn are investigated after processing by high-pressure torsion (HPT) for different numbers of revolutions, N = 1, 3, 10 or 25, as well as after post-HPT annealing at different temperatures, T = 373 K, 473 K, 573 K and 673 K. It was found that a work softening occurs by decreasing the grain size to the submicrometer level and increasing the fraction of high-angle boundaries. As a result of HPT processing, a complete decomposition of supersaturated solid solution of Zn in Al occurs and the spinodal structure is destroyed. This suggests that softening of the Al-Zn alloys after HPT is due to the decomposition of the supersaturated solid solution and destruction of spinodal decomposition. After post-HPT annealing, ultrafine-grained Al-Zn alloys show an unusual mechanical properties and its hardness increased to 187 HV. Microstructural analysis showed that the high hardness after post-HPT annealing is due to the formation of spinodal structures.
NASA Astrophysics Data System (ADS)
Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Nishiyama, Y.; Onizawa, K.
2011-08-01
The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% δ-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M 23C 6 type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.
The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 deg. C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun; Zou Hong; Li Cong
2008-05-15
The influence of aging time on the microstructure evolution of 17-4 PH martensitic stainless steel was studied by transmission electron microscopy (TEM). Results showed that the martensite decomposed by a spinodal decomposition mechanism after the alloy was subjected to long-term aging at 350 deg. C. The fine scale spinodal decomposition of {alpha}-ferrite brought about a Cr-enriched bright stripe and a Fe-enriched dark stripe, i.e., {alpha}' and {alpha} phases, separately, which were perpendicular to the grain boundary. The spinodal decomposition started at the grain boundary. Then with prolonged aging time, the decomposition microstructure expanded from the grain boundary to interior. Themore » wavelength of the spinodally decomposed microstructure changed little with extended aging time.« less
Non-equilibrium theory of arrested spinodal decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno
The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whosemore » high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.« less
Nucleation and Spinodal Decomposition in Ternary-Component Alloys
2009-07-30
at a high temperature and then rapidly quenching or cooling the mixture to form a solid. During the process of quenching , the components undergo a...Barbara Stoth, and Thomas Wanner, Spinodal Decomposition for Multicomponent Cahn-Hilliard Systems, Journal of Statistical Physics 98 (1999), 871–895...Avenue, New York, New York, 1988. 12 C. ACKERMANN AND W. HARDESTY Department of Mathematics, Virgina Tech Department of Mathematics and Statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiang; Yang, Chao; State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190
2015-03-15
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracymore » (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.« less
Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.
Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua
2013-09-28
We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.
United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 2.
1987-12-01
the area of statistical inference, distribution theory and stochastic * •processes. I have taught courses in random processes and sample % j .functions...controlled phase separation of isotropic, binary mixtures, the theory of spinodal decomposition has been developed by Cahn and Hilliard.5 ,6 This theory is...peak and its initial rate of growth at a given temperature are predicted by the spinodal theory . The angle of maximum intensity is then determined by
Subcalcic diopsides from kimberlites: Chemistry, exsolution microstructures, and thermal history
McCallister, R.H.; Nord, G.L.
1981-01-01
Twenty-six subcalcic diopside megacrysts (Ca/(Ca+ Mg)) = 0.280-0.349, containing approximately 10 mol% jadeite, from 15 kimberlite bodies in South Africa, Botswana, Tanzania, and Lesotho, have been characterized by electron microprobe analysis, X-ray-precession photography, and transmission electron microscopy. Significant exsolution of pigeonite was observed only in those samples for which Ca/(Ca+Mg)???0.320. The exsolution microstructure consists of coherent (001) lamellae with wavelengths ranging from 20 to 31 nm and compositional differences between the hosts and lamellae ranging from 10 to 30 mol% wollastonite. These observations suggest that the exsolution reaction mechanism was spinodal decomposition and that the megacrysts have been quenched at various stages of completion of the decomposition process. Annealing experiments in evacuated SiO2 glass tubes at 1,150?? C for 128 hours failed to homogenize microstructure, whereas, at 5 kbar and 1,150?? C for only 7.25 hours, the two lattices were homogenized. This "pressure effect" suggests that spinodal decomposition in the kimberlitic subcalcic diopside megacrysts can only occur at depths less than ???15 km; the cause of the effect may be the jadeite component in the pyroxene. "Apparent quench" temperatures for the exsolution process in the megacrysts range from 1,250?? C to 990?? C, suggesting that decomposition must have commenced at temperatures of more than ???1,000?? C. These P-T limits lead to the conclusion that, in those kimberlites where spinodal decomposition has occurred in subcalcic diopside megacrysts, such decomposition occurred at shallow levels (<15 km) and, at the present erosion level, temperatures must have been greater than 1,000?? C. ?? 1981 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Dado, Boaz; Gelbstein, Yaniv; Mogilansky, Dimitri; Ezersky, Vladimir; Dariel, Moshe P.
2010-09-01
Pseudoternary (Ge,Sn,Pb)Te compounds display favorable thermoelectric properties. Spinodal decomposition in the quasiternary (Ge,Sn,Pb)Te system is at the origin of a wide solubility gap at low Sn concentrations. The structural evolution of the spinodal decomposition was investigated as a function of aging time at 500°C, using x-ray diffraction, electron microscopy, and scanning electron microscopy. The evolution of the structure at 500°C consists initially of a short diffusion-controlled demixing stage into Pb- and Ge-rich coherent areas, with compositions corresponding to the inflection points of the free-energy curve. The Pb-rich areas adopt configurations associated with the directions of the soft elastic moduli of the cubic compound. Both the Pb- and Ge-rich areas are supersaturated and undergo in a second stage a nucleation and growth process and give rise to a biphased structure with equilibrium compositions corresponding to the boundaries of the miscibility gap. The resulting Pb-rich areas display a relatively stable microstructure suggesting the presence of long-range interactions between the Pb-rich precipitates in the Ge-rich matrix.
Localized instabilities and spinodal decomposition in driven systems in the presence of elasticity
NASA Astrophysics Data System (ADS)
Meca, Esteban; Münch, Andreas; Wagner, Barbara
2018-01-01
We study numerically and analytically the instabilities associated with phase separation in a solid layer on which an external material flux is imposed. The first instability is localized within a boundary layer at the exposed free surface by a process akin to spinodal decomposition. In the limiting static case, when there is no material flux, the coherent spinodal decomposition is recovered. In the present problem, stability analysis of the time-dependent and nonuniform base states as well as numerical simulations of the full governing equations are used to establish the dependence of the wavelength and onset of the instability on parameter settings and its transient nature as the patterns eventually coarsen into a flat moving front. The second instability is related to the Mullins-Sekerka instability in the presence of elasticity and arises at the moving front between the two phases when the flux is reversed. Stability analyses of the full model and the corresponding sharp-interface model are carried out and compared. Our results demonstrate how interface and bulk instabilities can be analyzed within the same framework which allows us to identify and distinguish each of them clearly. The relevance for a detailed understanding of both instabilities and their interconnections in a realistic setting is demonstrated for a system of equations modeling the lithiation and delithiation processes within the context of lithium ion batteries.
High temperature phase decomposition in Ti{sub x}Zr{sub y}Al{sub z}N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lind, Hans; Pilemalm, Robert; Rogström, Lina
2014-12-15
Through a combination of theoretical and experimental observations we study the high temperature decomposition behavior of c-(Ti{sub x}Zr{sub y}Al{sub z}N) alloys. We show that for most concentrations the high formation energy of (ZrAl)N causes a strong tendency for spinodal decomposition between ZrN and AlN while other decompositions tendencies are suppressed. In addition we observe that entropic effects due to configurational disorder favor a formation of a stable Zr-rich (TiZr)N phase with increasing temperature. Our calculations also predict that at high temperatures a Zr rich (TiZrAl)N disordered phase should become more resistant against the spinodal decomposition despite its high and positivemore » formation energy due to the specific topology of the free energy surface at the relevant concentrations. Our experimental observations confirm this prediction by showing strong tendency towards decomposition in a Zr-poor sample while a Zr-rich alloy shows a greatly reduced decomposition rate, which is mostly attributable to binodal decomposition processes. This result highlights the importance of considering the second derivative of the free energy, in addition to its absolute value in predicting decomposition trends of thermodynamically unstable alloys.« less
Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.
2015-04-08
In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mburu, Sarah; Kolli, R. Prakash; Perea, Daniel E.
The microstructure and mechanical properties in unaged and thermally aged (at 280 °C, 320 °C, 360 °C, and 400 °C to 4300 h) CF–3 and CF–8 cast duplex stainless steels (CDSS) are investigated. The unaged CF–8 steel has Cr-rich M 23C 6 carbides located at the δ–ferrite/γ–austenite heterophase interfaces that were not observed in the CF–3 steel and this corresponds to a difference in mechanical properties. Both unaged steels exhibit incipient spinodal decomposition into Fe-rich α–domains and Cr-rich α’–domains. During aging, spinodal decomposition progresses and the mean wavelength (MW) and mean amplitude (MA) of the compositional fluctuations increase as amore » function of aging temperature. Additionally, G–phase precipitates form between the spinodal decomposition domains in CF–3 at 360 °C and 400 °C and in CF–8 at 400 °C. Finally, the microstructural evolution is correlated to changes in mechanical properties.« less
Mburu, Sarah; Kolli, R. Prakash; Perea, Daniel E.; ...
2017-03-06
The microstructure and mechanical properties in unaged and thermally aged (at 280 °C, 320 °C, 360 °C, and 400 °C to 4300 h) CF–3 and CF–8 cast duplex stainless steels (CDSS) are investigated. The unaged CF–8 steel has Cr-rich M 23C 6 carbides located at the δ–ferrite/γ–austenite heterophase interfaces that were not observed in the CF–3 steel and this corresponds to a difference in mechanical properties. Both unaged steels exhibit incipient spinodal decomposition into Fe-rich α–domains and Cr-rich α’–domains. During aging, spinodal decomposition progresses and the mean wavelength (MW) and mean amplitude (MA) of the compositional fluctuations increase as amore » function of aging temperature. Additionally, G–phase precipitates form between the spinodal decomposition domains in CF–3 at 360 °C and 400 °C and in CF–8 at 400 °C. Finally, the microstructural evolution is correlated to changes in mechanical properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mburu, Sarah; Kolli, R. Prakash; Perea, Daniel E.
The microstructure and mechanical properties in unaged and thermally aged (at 280 oC, 320 oC, 360 oC, and 400 oC to 4300 h) CF–3 and CF–8 cast duplex stainless steels (CDSS) are investigated. The unaged CF–8 steel has Cr-rich M23C6 carbides located at the δ–ferrite/γ– austenite heterophase interfaces that were not observed in the CF–3 steel and this corresponds to a difference in mechanical properties. Both unaged steels exhibit incipient spinodal decomposition into Fe-rich α–domains and Cr-rich α’–domains. During aging, spinodal decomposition progresses and the mean wavelength (MW) and mean amplitude (MA) of the compositional fluctuations increase as a functionmore » of aging temperature. Additionally, G–phase precipitates form between the spinodal decomposition domains in CF–3 at 360 oC and 400 oC and in CF–8 at 400 oC. The microstructural evolution is correlated to changes in mechanical properties.« less
Flash nano-precipitation of polymer blends: a role for fluid flow?
NASA Astrophysics Data System (ADS)
Grundy, Lorena; Mason, Lachlan; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Lee, Victoria; Prudhomme, Robert; Priestley, Rodney; Matar, Omar K.
2017-11-01
Porous structures can be formed by the controlled precipitation of polymer blends; ranging from porous matrices, with applications in membrane filtration, to porous nano-particles, with applications in catalysis, targeted drug delivery and emulsion stabilisation. Under a diffusive exchange of solvent for non-solvent, prevailing conditions favour the decomposition of polymer blends into multiple phases. Interestingly, dynamic structures can be `trapped' via vitrification prior to thermodynamic equilibrium. A promising mechanism for large-scale polymer processing is flash nano-precipitation (FNP). FNP particle formation has recently been modelled using spinodal decomposition theory, however the influence of fluid flow on structure formation is yet to be clarified. In this study, we couple a Navier-Stokes equation to a Cahn-Hilliard model of spinodal decomposition. The framework is implemented using Code BLUE, a massively scalable fluid dynamics solver, and applied to flows within confined impinging jet mixers. The present method is valid for a wide range of mixing timescales spanning FNP and conventional immersion precipitation processes. Results aid in the fabrication of nano-scale polymer particles with tuneable internal porosities. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM), PETRONAS.
Spinodal Decomposition in Multilayered Fe-Cr System: Kinetic Stasis and Wave Instability
NASA Astrophysics Data System (ADS)
Maugis, Philippe; Colignon, Yann; Mangelinck, Dominique; Hoummada, Khalid
2015-08-01
Used as fuel cladding in the Gen IV fission reactors, ODS steels would be held at temperatures in the range of 350°C to 600°C for several months. Under these conditions, spinodal decomposition is likely to occur in the matrix, resulting in an increase of material brittleness. In this study, thin films consisting of a modulated composition in Fe and in Cr in a given direction have been elaborated. The time evolution of the composition profiles during aging at 500°C has been characterized by atom probe tomography, indicating an apparent kinetic stasis of the initial microstructure. A computer model has been developed on the basis of the Cahn-Hilliard theory of spinodal decomposition, associated with the mobility form proposed by Martin (1990). We make the assumption that the initial profile is very close to the amplitude-dependent critical wavelength. Our calculations show that the thin film is unstable relative to wavelength modulations, resulting in the observed kinetic stasis.
NASA Astrophysics Data System (ADS)
Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.
2012-06-01
The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.
NASA Astrophysics Data System (ADS)
Elyukhin, Vyacheslav A.
2017-07-01
Considerable interest in highly mismatched semiconductor alloys as materials for device applications has recently been shown. However, the spinodal instability can be a serious obstacle to their use. Here, the spinodal decomposition regions of dilute nitride InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z quinary alloys lattice matched to III-V compounds are studied from 0 °C to 1000 °C. The alloys contain six types of chemical bonds corresponding to the constituent compounds, and rearrangement of atoms changes the bonds between them. Therefore, a size and location of the spinodal decomposition regions depend on the enthalpies of constituent compounds, internal strain energy, coherency strain energy and entropy. Among the considered alloys, InxGa1-xSbyAszN1-y-z lattice matched to InAs, InxGa1-xSbyPzN1-y-z lattice matched to GaP and InP and InxGa1-xAsyPzN1-y-z lattice matched to GaAs and InP are most suitable for device applications.
NASA Astrophysics Data System (ADS)
Kim, H.; McIntyre, P. C.
2002-11-01
Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.
Two-dimensional spinodal interface in one-step grown graphene-molybdenum carbide heterostructures
NASA Astrophysics Data System (ADS)
Qiao, Jia-Bin; Gong, Yue; Liu, Haiwen; Shi, Jin-An; Gu, Lin; He, Lin
2018-05-01
Heterostructures made by stacking different materials on top of each other are expected to exhibit unusual properties and new phenomena. Interface of the heterostructures plays a vital role in determining their properties. Here, we report the observation of a two-dimensional (2D) spinodal interface in graphene-molybdenum carbide (α -M o2C ) heterostructures, which arises from spinodal decomposition occurring at the heterointerface, by using scanning tunneling microscopy. Our experiment demonstrates that the 2D spinodal interface modulates graphene into whispering gallery resonant networks filled with quasibound states of massless Dirac fermions. Moreover, below the superconducting transition temperature of the underlying α -M o2C , the 2D spinodal interface behaves as disorders, resulting in the breakdown of the proximity-induced superconductivity in graphene. Our result sheds light on tuning properties of heterostructures based on interface engineering.
Phase segregation in multiphase turbulent channel flow
NASA Astrophysics Data System (ADS)
Bianco, Federico; Soldati, Alfredo
2014-11-01
The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.
Rudraraju, Shiva; Van der Ven, Anton; Garikipati, Krishna
2016-06-10
Here, we present a phenomenological treatment of diffusion-driven martensitic phase transformations in multi-component crystalline solids that arise from non-convex free energies in mechanical and chemical variables. The treatment describes diffusional phase transformations that are accompanied by symmetry-breaking structural changes of the crystal unit cell and reveals the importance of a mechanochemical spinodal, defined as the region in strain-composition space, where the free-energy density function is non-convex. The approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. The governing equations describing mechanochemical spinodal decomposition aremore » variationally derived from a free-energy density function that accounts for interfacial energy via gradients of the rapidly varying strain and composition fields. A robust computational framework for treating the coupled, higher-order diffusion and nonlinear strain gradient elasticity problems is presented. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. An evaluation of available experimental phase diagrams and first-principles free energies suggests that mechanochemical spinodal decomposition should occur in metal hydrides such as ZrH 2-2c. The rich physics that ensues is explored in several numerical examples in two and three dimensions, and the relevance of the mechanism is discussed in the context of important electrode materials for Li-ion batteries and high-temperature ceramics.« less
Chiappini, Massimiliano; Eiser, Erika; Sciortino, Francesco
2017-01-01
A new gel-forming colloidal system based on a binary mixture of fd-viruses and gold nanoparticles functionalized with complementary DNA single strands has been recently introduced. Upon quenching below the DNA melt temperature, such a system results in a highly porous gel state, that may be developed in a new functional material of tunable porosity. In order to shed light on the gelation mechanism, we introduce a model closely mimicking the experimental one and we explore via Monte Carlo simulations its equilibrium phase diagram. Specifically, we model the system as a binary mixture of hard rods and hard spheres mutually interacting via a short-range square-well attractive potential. In the experimental conditions, we find evidence of a phase separation occurring either via nucleation-and-growth or via spinodal decomposition. The spinodal decomposition leads to the formation of small clusters of bonded rods and spheres whose further diffusion and aggregation leads to the formation of a percolating network in the system. Our results are consistent with the hypothesis that the mixture of DNA-coated fd-viruses and gold nanoparticles undergoes a non-equilibrium gelation via an arrested spinodal decomposition mechanism.
NASA Astrophysics Data System (ADS)
Maier-Paape, Stanislaus; Wanner, Thomas
This paper is the first in a series of two papers addressing the phenomenon of spinodal decomposition for the Cahn-Hilliard equation
Spinodal Decomposition for theCahn-Hilliard Equation in Higher Dimensions:Nonlinear Dynamics
NASA Astrophysics Data System (ADS)
Maier-Paape, Stanislaus; Wanner, Thomas
This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation
NASA Astrophysics Data System (ADS)
Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu
2016-08-01
Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.
Spinodal decomposition of the gamma-phase upon quenching in the Ti-Al-Nb ternary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Ebrahimi, Fereshteh
2010-01-01
The {gamma}-TiAl with L1{sub 0} crystal structure shows extensive solubility for Nb at elevated temperatures. Recently (Rios et al., Acta materialia 2009; 57:6243), we have demonstrated that the high-Nb {gamma}-TiAl phase becomes unstable upon rapid cooling into a nano-scale two-phase microstructure. In this paper, using detailed compositional and microstructural analyses, we have demonstrated that this phase goes through a spinodal decomposition that results in the compositionally distinct phases identified as a lower-Nb {gamma}-phase and the h-phase, which is rich in Nb and forms by the ordering of this element in the {gamma}-phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H. L.; Shah, S. A. A.; Hao, Y. L.
It is well-known that the body centered cubic (bcc) crystal in titanium alloys reaches its stability limit as the electron-to-atom (e/a) ratio of the alloy drops down to ~4.24. This critical value, however, is much higher than that of a multifunctional bcc type alloy (e/a = 4.15). Here we demonstrate that a nano-scale concentration modulation created by spinodal decomposition is what stabilizes the bcc crystal of the alloy. Aided by such a nano-scale concentration heterogeneity, unexpected properties from its chemically homogeneous counterpart are obtained. This provides a new strategy to design functional titanium alloys by tuning the spinodal decomposition.
Gradient and size effects on spinodal and miscibility gaps
NASA Astrophysics Data System (ADS)
Tsagrakis, Ioannis; Aifantis, Elias C.
2018-05-01
A thermodynamically consistent model of strain gradient elastodiffusion is developed. Its formulation is based on the enhancement of a robust theory of gradient elasticity, known as GRADELA, to account for a Cahn-Hilliard type of diffusion. Linear stability analysis is employed to determine the influence of concentration and strain gradients on the spinodal decomposition. For finite domains, spherically symmetric conditions are considered, and size effects on spinodal and miscibility gaps are discussed. The theoretical predictions are in agreement with the experimental trends, i.e., both gaps shrink as the grain diameter decreases and they are completely eliminated for crystals smaller than a critical size.
NASA Astrophysics Data System (ADS)
Singh, Raghuvir; Das, Goutam; Mahato, B.; Singh, P. K.
2017-03-01
The present study discriminates the spinodal decomposition and G-phase precipitation in stainless steel welds by double loop electrochemical potentio-kinetic reactivation method and correlates it with the degradation in toughness property. The welds produced with different heat inputs were aged up to 10,000 hours at 673 K to 723 K (400 to 450 °C) and evaluated subsequently for the degree of sensitization (DOS) and impact toughness. The DOS values obtained were attributed to the spinodal decomposition and precipitation of G-phase. Study shows that the DOS correlates well with the impact toughness of the 304LN weld. Prolonged aging at 673 K and 723 K (400 °C and 450 °C) increased the DOS values while the impact toughness was decreased. The weld fabricated at 1 kJ/mm of heat input, produced higher DOS, compared to that at 3 kJ/mm. The geometrical location along the weld is shown to influence the DOS; higher values were obtained at the root than at the topside of the weld. Vermicular and columnar microstructure, in addition to the spinodal decomposition and G-phase precipitation, observed in the root side of the weld appear risky for the impact toughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir
An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less
Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing
NASA Astrophysics Data System (ADS)
Cheng, Wei-Chun
2014-09-01
Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.
Jammed Limit of Bijel Structure Formation
Welch, P. M.; Lee, M. N.; Parra-Vasquez, A. N. G.; ...
2017-11-02
Over the past decade, methods to control microstructure in heterogeneous mixtures by arresting spinodal decomposition via the addition of colloidal particles have led to an entirely new class of bicontinuous materials known as bijels. We present a new model for the development of these materials that yields to both numerical and analytical evaluation. This model reveals that a single dimensionless parameter that captures both chemical and environmental variables dictates the dynamics and ultimate structure formed in bijels. We also demonstrate that this parameter must fall within a fixed range in order for jamming to occur during spinodal decomposition, as wellmore » as show that known experimental trends for the characteristic domain sizes and time scales for formation are recovered by this model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Lin; Guo, Wei; Poplawsky, J. D.
Here, alnico is a prime example of a finely tuned nanostructure whose magnetic properties are intimately connected to magnetic annealing (MA) during spinodal transformation and subsequent lower temperature annealing (draw) cycles. Using a combination of transmission electron microscopy and atom probe tomography, we show how these critical processing steps affect the local composition and nanostructure evolution with impact on magnetic properties. The nearly 2-fold increase of intrinsic coercivity (H ci) during the draw cycle is not adequately explained by chemical refinement of the spinodal phases. Instead, increased Fe-Co phase (α 1) isolation, development of Cu-rich spheres/rods/blades and additional α 1more » rod precipitation that occurs during the MA and draw, likely play a key role in Hci enhancement. Chemical ordering of the Al-Ni-phase (α 2) and formation of Ni-rich (α 3) may also contribute. Unraveling of the subtle effect of these nano-scaled features is crucial to understanding on how to improve shape anisotropy in alnico magnets.« less
Zhou, Lin; Guo, Wei; Poplawsky, J. D.; ...
2018-04-26
Here, alnico is a prime example of a finely tuned nanostructure whose magnetic properties are intimately connected to magnetic annealing (MA) during spinodal transformation and subsequent lower temperature annealing (draw) cycles. Using a combination of transmission electron microscopy and atom probe tomography, we show how these critical processing steps affect the local composition and nanostructure evolution with impact on magnetic properties. The nearly 2-fold increase of intrinsic coercivity (H ci) during the draw cycle is not adequately explained by chemical refinement of the spinodal phases. Instead, increased Fe-Co phase (α 1) isolation, development of Cu-rich spheres/rods/blades and additional α 1more » rod precipitation that occurs during the MA and draw, likely play a key role in Hci enhancement. Chemical ordering of the Al-Ni-phase (α 2) and formation of Ni-rich (α 3) may also contribute. Unraveling of the subtle effect of these nano-scaled features is crucial to understanding on how to improve shape anisotropy in alnico magnets.« less
NASA Astrophysics Data System (ADS)
Cao, X. Y.; Zhu, P.; Ding, X. F.; Lu, Y. H.; Shoji, T.
2017-04-01
Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2-11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei; Sneed, Brian T.; Zhou, Lin
Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology andmore » volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. Lastly, we discuss the complementary benefits and challenges associated with correlative STEM-EDS and APT.« less
NASA Astrophysics Data System (ADS)
Han, Charles
Institute for Advanced Study, Shenzhen University, Shenzhen, China In memory of Professor John Kohn at this symposium, a time resolved SANS study for the early stage of spinodal decomposition kinetics of deuterated polycarbonate/poly(methylmethacrylate) blend will be reviewed which gives a clear proof of the Cahn-Hillard-Cook theory. This early stage of spinodal decomposition kinetics has been observed starting from the dimension (q-l) comparable to the single chain radius of gyration, Rg\\ , for a binary polymer mixture. The results provide an unequivocal quantitative measure of the virtual structure factor, S (q, ∞); the relationship of qm and qc through rate of growth, Cahn-plot analysis, and singularity in S (q, ∞); the growth of fluctuation of qRg <1 and intra-chain relaxation of qRg >1. More recent study of using mixed suspensions of polystyrene microspheres and poly(N-isopropylacrylamide) microgels as a molecular model system which has a long range repulsive interaction potential and a short range attractive potential, will also be discussed. In this model system, dynamic gelation, transition to soft glass state and cross-over to hard glass state will be demonstrated and compared with available theories for glass transition in structural materials. Acknowledgements go to: Polymers Division, and NCNR of NIST, and to ICCAS, Beijing, China. Also to my colleagues: M. Motowoka, H. Jinnai, T. Hashimoto, G.C. Yuan and H. Cheng.
NASA Astrophysics Data System (ADS)
Fan, Xiang; P H Diamond Collaboration; Luis Chacon Collaboration
2017-10-01
Spinodal decomposition is a second order phase transition for a binary liquid mixture to evolve from a miscible phase (e.g., water + alcohol) to two co-existing phases (e.g., water + oil). The Cahn-Hilliard model for spinodal decomposition is analogous to 2D MHD. We study the evolution of the concentration field in a single eddy in the 2D Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D MHD and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a ``jelly roll'' pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the isoconcentration bands align with stream lines. The results indicate that the target pattern is a metastable state. Band merger process continues on a time scale exponentially long relative to the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping
2016-03-23
Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance.
Formation of metastable phases by spinodal decomposition
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2016-01-01
Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science. PMID:27713406
Effect of applied strain on phase separation of Fe-28 at.% Cr alloy: 3D phase-field simulation
NASA Astrophysics Data System (ADS)
Zhu, Lihui; Li, Yongsheng; Liu, Chengwei; Chen, Shi; Shi, Shujing; Jin, Shengshun
2018-04-01
A quantitative simulation of the separation of the α‧ phase in Fe-28 at.% Cr alloy under the effects of applied strain is performed by utilizing a three-dimensional phase-field model. The elongation of the Cr-enriched α‧ phase becomes obvious with the influence of applied uniaxial strain for the phase separation transforms from spinodal decomposition of 700 K to nucleation and growth of 773 K. The applied strain shows a significant influence on the early stage phase separation, and the influence is enlarged with the elevated temperature. The steady-state coarsening with the mechanism of spinodal decomposition is substantially affected by the applied strain for low-temperature aging, while the influence is reduced as the temperature increases and as the phase separation mechanism changes to nucleation and growth. The peak value of particle size distribution decreases, and the PSD for 773 K becomes more widely influenced by the applied strain. The simulation results of separation of the Cr-enriched α‧ phase with the applied strain provide a further understanding of the strain effect on the phase separation of Fe-Cr alloys from the metastable region to spinodal regions.
Compositional partitioning during the spinodal decomposition in Cu-Ni-Sn alloy
NASA Astrophysics Data System (ADS)
Basak, C. B.; Poswal, A. K.
2018-05-01
Spinodal decomposition in Cu-9.4at%Ni-3.1at%Sn alloy was elucidated with the new insight from the experimental EXAFS analysis supported by ab initio total energy calculations suggesting the strong influence of the first near-neighbour atoms. Enthalpy of mixing was calculated for all crystallographically unique first near-neighbour configurations and finally an average positive enthalpy of mixing of 1604 J/mol was obtained. Combination of ab initio results, XRD and EXAFS analysis indicate that one of the daughter phase becomes rich in Ni and Sn than the other phase; in contrary to the earlier proposition that Cu/Ni ratio remains constant in both daughter phases. It is also shown that the present thermodynamic description requires further refinement to extend the miscibility gap towards lower Ni content in Cu-Ni-Sn system.
Phase transformation in SiOx/SiO₂ multilayers for optoelectronics and microelectronics applications.
Roussel, M; Talbot, E; Pratibha Nalini, R; Gourbilleau, F; Pareige, P
2013-09-01
Due to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO₂ multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO₂ multilayers by atom probe tomography. Influences of the silicon supersaturation, annealing temperature and SiO(x) and SiO₂ layer thicknesses on the final microstructure have been investigated. It is shown that supersaturation directly determines phase separation regime between nucleation/classical growth and spinodal decomposition. Annealing temperature controls size of the particles and interface with the surrounding matrix. Layer thicknesses directly control Si-nc shapes from spherical to spinodal-like structures. Copyright © 2012 Elsevier B.V. All rights reserved.
Guo, Wei; Sneed, Brian T; Zhou, Lin; Tang, Wei; Kramer, Matthew J; Cullen, David A; Poplawsky, Jonathan D
2016-12-01
Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology and volume fractions of Fe-Co-rich and Νi-Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2-4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.
Guo, Wei; Sneed, Brian T.; Zhou, Lin; ...
2016-12-21
Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology andmore » volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. Lastly, we discuss the complementary benefits and challenges associated with correlative STEM-EDS and APT.« less
NASA Astrophysics Data System (ADS)
Smith, Nathan; Provatas, Nikolas
Recent experimental work has shown that gold nanoparticles can precipitate from an aqueous solution through a non-classical, multi-step nucleation process. This multi-step process begins with spinodal decomposition into solute-rich and solute-poor liquid domains followed by nucleation from within the solute-rich domains. We present a binary phase-field crystal theory that shows the same phenomology and examine various cross-over regimes in the growth and coarsening of liquid and solid domains. We'd like to the thank Canada Research Chairs (CRC) program for funding this work.
Lee, Jiyoung; Boschen, Jeffery S.; Windus, Theresa L.; ...
2017-01-27
Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology andmore » volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.« less
NASA Astrophysics Data System (ADS)
Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen
2013-08-01
We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.
Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen
2013-08-09
We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.
Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal
NASA Astrophysics Data System (ADS)
Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif
2018-07-01
Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.
Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal
NASA Astrophysics Data System (ADS)
Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif
2018-04-01
Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.
Baral, Susil; Green, Andrew J; Livshits, Maksim Y; Govorov, Alexander O; Richardson, Hugh H
2014-02-25
The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.
Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren
To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less
Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel
Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; ...
2015-08-08
To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less
Spinodal assisted growing dynamics of critical nucleus in polymer blends
NASA Astrophysics Data System (ADS)
Zhang, Xinghua; Qi, Shuanhu; Yan, Dadong
2012-11-01
In metastable polymer blends, nonclassical critical nucleus is not a drop of stable phase in core wrapped with a sharp interface, but a diffuse structure depending on the metastability. Thus, forming a critical nucleus does not mean the birth of a new phase. In the present work, the nonclassical growing dynamics of the critical nucleus is addressed in the metastable polymer blends by incorporating self-consistent field theory and external potential dynamics theory, which leads to an intuitionistic description for the scattering experiments. The results suggest that the growth of nonclassical critical nucleus is controlled by the spinodal-decomposition which happens in the region surrounding the nucleus. This leads to forming the shell structures around the nucleus.
Sponge-like Si-SiO2 nanocomposite—Morphology studies of spinodally decomposed silicon-rich oxide
NASA Astrophysics Data System (ADS)
Friedrich, D.; Schmidt, B.; Heinig, K. H.; Liedke, B.; Mücklich, A.; Hübner, R.; Wolf, D.; Kölling, S.; Mikolajick, T.
2013-09-01
Sponge-like Si nanostructures embedded in SiO2 were fabricated by spinodal decomposition of sputter-deposited silicon-rich oxide with a stoichiometry close to that of silicon monoxide. After thermal treatment a mean feature size of about 3 nm was found in the phase-separated structure. The structure of the Si-SiO2 nanocomposite was investigated by energy-filtered transmission electron microscopy (EFTEM), EFTEM tomography, and atom probe tomography, which revealed a percolated Si morphology. It was shown that the percolation of the Si network in 3D can also be proven on the basis of 2D EFTEM images by comparison with 3D kinetic Monte Carlo simulations.
High T c layered ferrielectric crystals by coherent spinodal decomposition
Susner, Michael A.; Belianinov, Alex; Borisevich, Albina Y.; ...
2015-11-13
Research in the rapidly-developing field of 2D-electronic materials has thus far been focused on metallic and semiconducting materials. However, complementary dielectric materials such as non-linear dielectrics are needed to enable realistic device architectures. Candidate materials require tunable dielectric properties and pathways for heterostructure assembly. Here we report on a family of cation-deficient transition metal thiophosphates whose unique chemistry makes them a viable prospect for these applications. In these materials, naturally occurring ferrielectric heterostructures composed of centrosymmetric In 4/3P 2S 6 and ferrielectrically-active CuInP 2S 6 are realized by controllable chemical phase separation in van-der-Waals bonded single crystals. CuInP 2S 6more » by itself is a layered ferrielectric with Tc just over room-temperature which rapidly decreases with homogenous doping. Surprisingly, in our composite materials, the ferrielectric Tc of the polar CuInP 2S 6 phase increases. This effect is enabled by unique spinodal decomposition that retains the overall van-der-Waals layered morphology of the crystal, but chemically separates CuInP 2S 6 and In 4/3P 2S 6 within each layer. The average spatial periodicity of the distinct chemical phases can be finely controlled by altering the composition and/or synthesis conditions. One intriguing prospect for such layered spinodal alloys is large volume synthesis of 2D in-plane heterostructures with periodically alternating polar and non-polar phases.« less
Random scalar fields and hyperuniformity
NASA Astrophysics Data System (ADS)
Ma, Zheng; Torquato, Salvatore
2017-06-01
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.
Temperature driven evolution of thermal, electrical, and optical properties of Ti-Al-N coatings.
Rachbauer, Richard; Gengler, Jamie J; Voevodin, Andrey A; Resch, Katharina; Mayrhofer, Paul H
2012-03-01
Monolithic single phase cubic (c) Ti 1- x Al x N thin films are used in various industrial applications due to their high thermal stability, which beneficially effects lifetime and performance of cutting and milling tools, but also find increasing utilization in electronic and optical devices. The present study elucidates the temperature-driven evolution of heat conductivity, electrical resistivity and optical reflectance from room temperature up to 1400 °C and links them to structural and chemical changes in Ti 1- x Al x N coatings. It is shown that various decomposition phenomena, involving recovery and spinodal decomposition (known to account for the age hardening phenomenon in c-Ti 1- x Al x N), as well as the cubic to wurtzite phase transformation of spinodally formed AlN-enriched domains, effectively increase the thermal conductivity of the coatings from ∼3.8 W m -1 K -1 by a factor of three, while the electrical resistivity is reduced by one order of magnitude. A change in the coating color from metallic grey after deposition to reddish-golden after annealing to 1400 °C is related to the film structure and discussed in terms of film reflectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
We performed mechanical testing and microstructural characterization on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials–CF3, CF3M, CF8, and CF8M–were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α', precipitation of G-phase in the δ-ferrite,more » segregation of solute to the austenite/ferrite interphase boundary, and growth of M 23C 6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. Finally, the low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.« less
NASA Astrophysics Data System (ADS)
Cabral, Joao
Spinodal decomposition (SD) of partially miscible polymer blends can yield well-defined nanostructures with prescribed lengthscales and connectivity, and applications ranging from membranes and scaffolds to photovoltaics. Cahn-Hilliard-Cook (CHC) theory estimates the initial, dominant SD wavenumber to be qm =√{G''/4 k } , where G'' is the second derivative of the free energy of mixing with respect to concentration and k is a structural parameter which can be computed from the segment lengths and volumes of monomer units. Tuning G'', with quench depth into the two phase region, for instance, should thus provide a facile and precise means for designing polymeric bicontinuous structures. The fulfillment of this potential rests on the thermodynamics of available polymer systems, coarsening kinetics, as well as engineering constraints. We extensively review experimental measurements of G'' in both one- and two-phase blend systems, and critically examine the accuracy of this fundamental prediction against achievements over the past 4 decades of polymer blend demixing. Despite widespread misconceptions in detecting and describing SD, we find the CHC relation to be remarkably accurate and conclude with design considerations and limitations for polymer nanostructures via SD, reflecting on John Cahn's contributions to the field.
NASA Astrophysics Data System (ADS)
Stradner, Anna; Bucciarelli, Saskia; Casal, Lucia; Foffi, Giuseppe; Thurston, George; Farago, Bela; Schurtenberger, Peter
2014-03-01
The occurrence of an arrest transition in concentrated colloid suspensions and its dependence on the interaction potential is a hot topic in soft matter. Such arrest transitions can also occur in concentrated protein solutions, as they exist e.g. in biological cells or are increasingly used in pharmaceutical formulations. Here we demonstrate the applicability of concepts from colloid science to understand the dynamics of concentrated protein solutions. In this presentation we report a combination of 3D light scattering, small-angle X-ray scattering and neutron spin echo measurements to study the structural properties as well as the collective and self diffusion of proteins in highly concentrated solutions on the relevant length and time scales. We demonstrate that various arrest scenarios indeed exist for different globular proteins. The proteins chosen are different bovine lens crystallins. We report examples of hard and attractive glass transitions and arrested spinodal decomposition directly linked to the effective pair potentials determined in static scattering experiments for the different proteins. We discuss these different arrest scenarios in view of possible applications of dense protein solutions as well as in view of their possible relevance for living systems.
NASA Astrophysics Data System (ADS)
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
2017-12-01
Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials-CF3, CF3M, CF8, and CF8M-were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α‧, precipitation of G-phase in the δ-ferrite, segregation of solute to the austenite/ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. The low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
2017-07-31
We performed mechanical testing and microstructural characterization on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials–CF3, CF3M, CF8, and CF8M–were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α', precipitation of G-phase in the δ-ferrite,more » segregation of solute to the austenite/ferrite interphase boundary, and growth of M 23C 6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. Finally, the low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.« less
Dynamics of phase separation of binary fluids
NASA Technical Reports Server (NTRS)
Ma, Wen-Jong; Maritan, Amos; Banavar, Jayanth R.; Koplik, Joel
1992-01-01
The results of molecular-dynamics studies of surface-tension-dominated spinodal decomposition of initially well-mixed binary fluids in the absence and presence of gravity are presented. The growth exponent for the domain size and the decay exponent of the potential energy of interaction between the two species with time are found to be 0.6 +/- 0.1, inconsistent with scaling arguments based on dimensional analysis.
DRoplet and hAdron generator for nuclear collisions: An update
NASA Astrophysics Data System (ADS)
Tomášik, Boris
2016-10-01
The Monte Carlo generator DRAGON simulates hadron production in ultrarelativistic nuclear collisions. The underlying theoretical description is provided by the blast-wave model. DRAGON includes second-order angular anisotropy in transverse shape and the amplitude of the transverse expansion velocity. It also allows to simulate hadron production from a fragmented fireball, e.g. as resulting from spinodal decomposition happening at the first-order phase transition.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Shimizu, Keita; Watanabe, Yutaka
Thermal aging embrittlement of LWR components made of stainless cast (e.g. CF-8 and CF-8M) is a potential degradation issue, and careful attention has been paid on it. Although welds of austenitic stainless steels (SSs) have γ-δ duplex microstructure, which is similar to that of the stainless cast, examination on thermal aging characteristics of the SS welds is very limited. In order to evaluate thermal aging behavior of weld metal of austenitic stainless steel, the 316L SS weld metal has been prepared and changes in mechanical properties and in etching properties at isothermal aging at 335°C have been investigated. The hardness of the ferrite phase has increased with aging, while the hardness of austenite phase has stayed same. It has been suggested that spinodal decomposition has occurred in δ-ferrite by the 335°C aging. The etching rates of δ-ferrite at immersion test in 5wt% hydrochloric acid solution have been also investigated using an AFM technique. The etching rate of ferrite phase has decreased consistently with the increase in hardness of ferrite phase. It has been thought that this characteristic is also caused by spinodal decomposition of ferrite into chromium-rich (α') and iron-rich (α).
Temperature driven evolution of thermal, electrical, and optical properties of Ti–Al–N coatings
Rachbauer, Richard; Gengler, Jamie J.; Voevodin, Andrey A.; Resch, Katharina; Mayrhofer, Paul H.
2012-01-01
Monolithic single phase cubic (c) Ti1−xAlxN thin films are used in various industrial applications due to their high thermal stability, which beneficially effects lifetime and performance of cutting and milling tools, but also find increasing utilization in electronic and optical devices. The present study elucidates the temperature-driven evolution of heat conductivity, electrical resistivity and optical reflectance from room temperature up to 1400 °C and links them to structural and chemical changes in Ti1−xAlxN coatings. It is shown that various decomposition phenomena, involving recovery and spinodal decomposition (known to account for the age hardening phenomenon in c-Ti1−xAlxN), as well as the cubic to wurtzite phase transformation of spinodally formed AlN-enriched domains, effectively increase the thermal conductivity of the coatings from ∼3.8 W m−1 K−1 by a factor of three, while the electrical resistivity is reduced by one order of magnitude. A change in the coating color from metallic grey after deposition to reddish-golden after annealing to 1400 °C is related to the film structure and discussed in terms of film reflectivity. PMID:23482424
Intergranular Corrosion Behavior of 304LN Stainless Steel Heat Treated at 623 K (350 °C)
NASA Astrophysics Data System (ADS)
Singh, Raghuvir; Kumar, Mukesh; Ghosh, Mainak; Das, Gautam; Singh, P. K.; Chattoraj, I.
2013-01-01
Low temperature sensitization of 304LN stainless steel from the two pipes, differing slightly in chemical composition, has been investigated; specimens were aged at 623 K (350 °C) for 20,000 hours and evaluated for intergranular corrosion and degree of sensitization. The base and heat-affected zone (HAZ) of the 304LN-1 appear resistant to sensitization, while 304LN-2 revealed a "dual" type microstructure at the transverse section and HAZ. The microstructure at 5.0-mm distance from the fusion line indicates qualitatively less sensitization as compared to that at 2.0 mm. The 304LN-2 base alloy shows overall lower degree of sensitization values as compared to the 304LN-1. A similar trend of degree of sensitization was observed in the HAZ where it was higher in the 304LN-1 as compared to the 304LN-2. The weld zone of both the stainless steels suffered from cracking during ASTM A262 practice E, while the parent metals and HAZs did not show such fissures. A mottled image within the ferrite lamella showed spinodal decomposition. The practice E test and transmission electron microscopy results indicate that the interdendritic regions may suffer from failure due to carbide precipitation and due to the evolution of brittle phase from spinodal decomposition.
NASA Astrophysics Data System (ADS)
Masago, Akira; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi
2015-03-01
Eu-doped GaN has attracted much attention, because the red light luminescence ability provides us with expectations to realize monolithic full-color LEDs, which work on seamless conditions such as substrates, electrodes, and operating bias voltages. Toward implementation of multifunctional activity into the luminescent materials using the spinodal nano-structures, we investigate atomic configurations and magnetic structures of the GaN crystal codoped with Eu, Mg, Si, O, and/or the vacancies using the density functional method (DFT) calculations. Our calculations show that the impurity clusterized distributions are energetically favorable more than the homogeneous distribution. Moreover, analyses of the formation energy and binding energy suggest that the clusterized distributions are spontaneously formed by the nano-spinodal decomposition. Though the host matrix has no magnetic moments, the cluster has finite magnetic moments, where Zener's p-f exchange interaction works between the Eu f-state and the nearby N p-states.
Dynamics of polymerization induced phase separation in reactive polymer blends
NASA Astrophysics Data System (ADS)
Lee, Jaehyung
Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the composition variation. R45EPI itself can react with itself or with DGEBA without curing, therefore three-component system was considered in this mixture. For the numerical studies of this three- component mixture, a system that is composed of a reactive component-1 that is miscible with its growing molecules and another reactive component-2 that is not miscible with its growing molecules was considered with crosslinking reaction kinetics of the each component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qisheng; Corbett, John D.
2010-04-01
Synthetic explorations in the CaAu{sub 5}-CaAu{sub 4}Bi-BiAu{sub 2} system at 400 C reveal five separate solid solution regions that show three distinct substitution patterns in the CaAu{sub 5} parent: (I) CaAu{sub 4}(Au{sub 1-m}Bi{sub m}) with 0 {le} m {le} 0.15(1), (II) 0.33(1) {le} m {le} 0.64(1), (III) 0.85(4) {le} m {le} 0.90(2); (IV) (Ca{sub 1-r}Au{sub r})Au{sub 4}(Bi{sub 1-s}Au{sub s}) with 0 {le} r {le} 0.39(1) and 0 {le} s {le} 0.12(2); (V) (Ca{sub 1-p-q}Au{sub p}Bi{sub q})Au{sub 4}Bi with 0.09(2) {le} p {le} 0.13(1) and 0.31(2) {le} q {le} 0.72(4). Single crystal X-ray studies establish that all of these phase regionsmore » have common cubic symmetry F{sub 4}3m and that their structures (MgCu{sub 4}Sn-type, an ordered derivative of MgCu{sub 2}) all feature three-dimensional networks of Au{sub 4} tetrahedra, in which the truncated tetrahedra are centered and capped by Ca/Au, Au/Bi, or Ca/Au/Bi mixtures to give 16-atom Friauf polyhedra. TB-LMTO-ASA and -COHP calculations also reveal that direct interactions between Ca-Au and Ca-Bi pairs of atoms are relatively weak and that the Bi-Au interactions in the unstable ideal CaAu{sub 4}Bi are antibonding in character at E{sub F} but that their bonding is optimized at {+-}1 e. Compositions between the five nonstoichiometric phases appear to undergo spinodal decompositions. The last phenomenon has been confirmed by HRTEM, STEM-HAADF, EPMA, and XRD studies of the nominal composition CaAu{sub 4.25}Bi{sub 0.75}. Its DTA analyses suggest that the phases resulting from spinodal decomposition have nearly the same melting point ({approx}807 C), as expected, and that they are interconvertible through peritectic reactions at {approx}717 C.« less
2013-09-01
heat transfer coefficients due to the high heat of vapor- ization. Many authors ([ Mudawar (2001)], [ Mudawar and Bowers (1999)] and [Kandlikar (2005...Letters, 95, (2005), 1. [Rosales and Meneveau (2006)] C. Rosales and C. Meneveau. Physics of Fluids, 18, (2006), 075104. [ Mudawar and Bowers (1999)] I... Mudawar and M.B. Bowers, Ultra-high crit- ical heat flux (CHF) for subcooled water flow boiling-I: CHF data and parametric effects for small
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Woo-Young; Seol, Jae-Bok, E-mail: jb-seol@postech.ac.kr; Kwak, Chan-Min
The compositional distribution of In atoms in InGaN/GaN multiple quantum wells is considered as one of the candidates for carrier localization center, which enhances the efficiency of the light-emitting diodes. However, two challenging issues exist in this research area. First, an inhomogeneous In distribution is initially formed by spinodal decomposition during device fabrication as revealed by transmission electron microscopy. Second, electron-beam irradiation during microscopy causes the compositional inhomogeneity of In to appear as a damage contrast. Here, a systematic approach was proposed in this study: Electron-beam with current density ranging from 0 to 20.9 A/cm{sup 2} was initially exposed to themore » surface regions during microscopy. Then, the electron-beam irradiated regions at the tip surface were further removed, and finally, atom probe tomography was performed to run the samples without beam-induced damage and to evaluate the existence of local inhomegenity of In atoms. We proved that after eliminating the electron-beam induced damage regions, no evidence of In clustering was observed in the blue-emitting InGaN/GaN devices. In addition, it is concluded that the electron-beam induced localization of In atoms is a surface-related phenomenon, and hence spinodal decomposition, which is typically responsible for such In clustering, is negligible for biaxially strained blue-emitting InGaN/GaN devices.« less
Separation processes during binary monotectic alloy production
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.
1984-01-01
Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.
Phase stability in thermally-aged CASS CF8 under heavy ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Miller, Michael K.; Chen, Wei-Ying
2015-07-01
The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10 19 ions/m 2 at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.« less
Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites
NASA Technical Reports Server (NTRS)
Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp
2008-01-01
Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites
NASA Technical Reports Server (NTRS)
Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp
2008-01-01
Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
NASA Astrophysics Data System (ADS)
Ivanov, A. S.
2017-11-01
Experimental study was carried out to investigate the influence of particle size distribution function on the temperature dependent magneto-controllable first-order phase transition of the "gas-liquid" type in magnetic fluids. The study resolves one crisis situation in ferrohydrodynamic experiment made by several research groups in the 1980-1990s. It is shown that due to polydispersity magnetic fluids exhibit phase diagrams which are divided into three regions by vaporus and liquidus curves. Granulometric data states the primary role of the width of the particle size distribution function in the process of spinodal decomposition. New modified Langevin parameter is introduced for unification of liquidus curves of different ferrofluids despite the significant difference between the curves (one order of magnitude) in (H, T) coordinates.
Phase separation like dynamics during Myxococcus xanthus fruiting body formation
NASA Astrophysics Data System (ADS)
Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua
2015-03-01
Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.
Microcanonical model for interface formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucklidge, A.; Zaleski, S.
1988-04-01
We describe a new cellular automaton model which allows us to simulate separation of phases. The model is an extension of existing cellular automata for the Ising model, such as Q2R. It conserves particle number and presents the qualitative features of spinodal decomposition. The dynamics is deterministic and does not require random number generators. The spins exchange energy with small local reservoirs or demons. The rate of relaxation to equilibrium is investigated, and the results are compared to the Lifshitz-Slyozov theory.
Decomposition pathways in age hardening of Ti-Al-N films
NASA Astrophysics Data System (ADS)
Rachbauer, R.; Massl, S.; Stergar, E.; Holec, D.; Kiener, D.; Keckes, J.; Patscheider, J.; Stiefel, M.; Leitner, H.; Mayrhofer, P. H.
2011-07-01
The ability to increase the thermal stability of protective coatings under work load gives rise to scientific and industrial interest in age hardening of complex nitride coating systems such as ceramic-like Ti1-xAlxN. However, the decomposition pathway of these systems from single-phase cubic to the thermodynamically stable binary nitrides (cubic TiN and wurtzite AlN), which are essential for age hardening, are not yet fully understood. In particular, the role of decomposition kinetics still requires more detailed investigation. In the present work, the combined effect of annealing time and temperature upon the nano-structural development of Ti0.46Al0.54N thin films is studied, with a thermal exposure of either 1 min or 120 min in 100 °C steps from 500 °C to 1400 °C. The impact of chemical changes at the atomic scale on the development of micro-strain and mechanical properties is studied by post-annealing investigations using X-ray diffraction, nanoindentation, 3D-atom probe tomography and high-resolution transmission electron microscopy. The results clearly demonstrate that the spinodal decomposition process, triggering the increase of micro-strain and hardness, although taking place throughout the entire volume, is enhanced at high diffusivity paths such as grain or column boundaries and followed within the grains. Ab initio calculations further show that the early stages of wurtzite AlN precipitation are connected with increased strain formation, which is in excellent agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Watanabe, Yutaka
2008-06-01
Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, J. D.; Miller, M. K.; Young, G. A.
Duplex stainless steels are desirable for use in power generation systems due to their attractive combination of strength, corrosion resistance, and cost. However, thermal embrittlement at intermediate homologous temperatures of ~887°F (475°C) and below, via spinodal decomposition, limits upper service temperatures for many applications. New lean grade duplex alloys have improved thermal stability over standard grades and potentially increase the upper service temperature or the lifetime at a given temperature for this class of material. The present work compares the thermal stability of lean grade, alloy 2003 to standard grade, alloy 2205, through a series of isothermal agings between 500°Fmore » (260°C) and 900°F (482°C) for times between 1 and 10,000 hours. Aged samples were characterized by changes in microhardness and impact toughness. Additionally, atom probe tomography was performed to illustrate the evolution of the α-α' phase separation in both alloys at select conditions. Atom probe tomography confirmed that phase separation occurs via spinodal decomposition for both alloys and identified the formation of Ni-Cu-Si-Mn-P clusters in alloy 2205 that may contribute to embrittlement of this alloy. The impact toughness model predictions for upper service temperature show that alloy 2003 can be considered for use in 550°F applications for 80 year service lifetimes based on a Charpy V-notch criteria of 35 ft-lbs at 70°F. Alloy 2205 should be limited to 500°F applications.« less
FNAS modify matric and transparent experiments
NASA Technical Reports Server (NTRS)
Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.
1992-01-01
Monotectic alloy materials are created by rapid melt/rapid solidification processing on the NASA KC-135. Separation of the uniform liquid into two liquids may occur by either of two processes; spinodal decomposition or nucleation followed by growth. In the first case, the liquid is unstable to composition waves, which form and grow, giving liquids of two different compositions. In the latter process discrete particles of the second liquid phase form via thermal fluctuations and then grow by diffusion. The two processes are very different, with the determining process being dictated by temperature, composition, and thermodynamic characteristics of the alloy. The first two quantities are process variables, while the third is determined by electronic interactions between the atoms in the alloy. In either case the initial alloy decomposition is followed by coarsening, resulting in growth of the particle size at nearly constant volume fraction. In particular, reduced gravity experiments on monotectic solutions have shown a number of interesting results in the KC-135. Monotectic solutions exhibit a miscibility gap in the liquid state, and consequently, gravity driven forces can dominate the solidification parameters at 1 g. In reduced gravity however, the distribution of the phases is different, resulting in new and interesting microstructures. The Rapid Melt/Rapid Quench Furnace allows one to melt a sample and resolidify it in one parabola of the KC-135's flight path, thus eliminating any accumulative influence of multiple parabolas to affect the microstructure of the material.
Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun
2016-11-16
There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.
Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.
Chan, Kai Wang; Tjong, Sie Chin
2014-07-22
Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700-900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350-550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.
A New Approach to Kinetics of Spinodal Decomposition in the Linear Regime.
1980-08-28
HUE! 11111" . ~ 2 8 12.5~ III............... jjj 1111 .6 11111 -2 -6~ MICFR()({)py HI ’,,0[ tJII1(N IIS I HAR 1 SECuRi-Y CLASSIrl AT’ON QF THIS PAGE...When t)ars Entered) PREAD INSTRUCTIONS REPORT DOCUMEN~TATION PAGE BEFORE COMPLETING FORM I . REPCRT NUMBE , 12, GOVT ACCESSION NO. 3. RECIPIENT’S...MONITORING AGENCY NAME & ADORE (if r n Office) 1S. SECURITY CLASS. (of this report)’ , V i "’! Unclassified tea. DECL ASSI FIC ATION/ DOWN GRADING 1EM
The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Scott; Bridgewater, Jon S; Ward, John W
2010-01-01
Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; Peng, Haowei; Deml, Ann M.; Matthews, Bethany E.; Schelhas, Laura T.; Toney, Michael F.; Gordon, Roy G.; Tumas, William; Perkins, John D.; Ginley, David S.; Gorman, Brian P.; Tate, Janet; Zakutayev, Andriy; Lany, Stephan
2017-01-01
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region. PMID:28630928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the criticalmore » composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Furthermore, thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.« less
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.
Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan
2017-06-01
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; ...
2017-06-07
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the criticalmore » composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Furthermore, thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.« less
Spatially modulated structural colour in bird feathers.
Parnell, Andrew J; Washington, Adam L; Mykhaylyk, Oleksandr O; Hill, Christopher J; Bianco, Antonino; Burg, Stephanie L; Dennison, Andrew J C; Snape, Mary; Cadby, Ashley J; Smith, Andrew; Prevost, Sylvain; Whittaker, David M; Jones, Richard A L; Fairclough, J Patrick A; Parker, Andrew R
2015-12-21
Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.
Spatially modulated structural colour in bird feathers
Parnell, Andrew J.; Washington, Adam L.; Mykhaylyk, Oleksandr O.; Hill, Christopher J.; Bianco, Antonino; Burg, Stephanie L.; Dennison, Andrew J. C.; Snape, Mary; Cadby, Ashley J.; Smith, Andrew; Prevost, Sylvain; Whittaker, David M.; Jones, Richard A. L.; Fairclough, J. Patrick. A.; Parker, Andrew R.
2015-01-01
Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. PMID:26686280
Phase stability in thermally-aged CASS CF8 under heavy ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Miller, Michael K.; Chen, Wei-Ying
2015-07-01
The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite-austenite duplex alloy was thermally aged at 400 degrees C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich alpha and Cr-enriched alpha' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 x 10(19) ions/m(2) at 400 degrees C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the alpha-alpha' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the alpha-alpha' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation. (C) 2015 Elsevier B.V. All rights reserved« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westraadt, J.E., E-mail: johan.westraadt@nmmu.ac.za; Olivier, E.J.; Neethling, J.H.
2015-11-15
Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we heremore » demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.« less
Preventing Thin Film Dewetting via Graphene Capping.
Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting
2017-09-01
A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tucker, J. D.; Miller, M. K.; Young, G. A.
2015-04-01
Duplex stainless steels are desirable for use in power generation systems due to their attractive combination of strength, corrosion resistance, and cost. However, thermal embrittlement at intermediate homologous temperatures of ~887°F (475°C) and below, via spinodal decomposition, limits upper service temperatures for many applications. New lean grade duplex alloys have improved thermal stability over standard grades and potentially increase the upper service temperature or the lifetime at a given temperature for this class of material. The present work compares the thermal stability of lean grade, alloy 2003 to standard grade, alloy 2205, through a series of isothermal agings between 500°Fmore » (260°C) and 900°F (482°C) for times between 1 and 10,000 hours. Aged samples were characterized by changes in microhardness and impact toughness. Additionally, atom probe tomography was performed to illustrate the evolution of the α-α' phase separation in both alloys at select conditions. Atom probe tomography confirmed that phase separation occurs via spinodal decomposition for both alloys and identified the formation of Ni-Cu-Si-Mn-P clusters in alloy 2205 that may contribute to embrittlement of this alloy. The impact toughness model predictions for upper service temperature show that alloy 2003 can be considered for use in 550°F applications for 80 year service lifetimes based on a Charpy V-notch criteria of 35 ft-lbs at 70°F. Alloy 2205 should be limited to 500°F applications.« less
Spatial and directional control of self-assembled wrinkle patterns by UV light absorption
NASA Astrophysics Data System (ADS)
Kortz, C.; Oesterschulze, E.
2017-12-01
Wrinkle formation on surfaces is a phenomenon that is observed in layered systems with a compressed elastic thin capping layer residing on a viscoelastic film. So far, the properties of the viscoelastic material could only be changed replacing it by another material. Here, we propose to use a photosensitive material whose viscoelastic properties, Young's modulus, and glass transition temperature can easily be adjusted by the absorption of UV light. Employing UV lithography masks during the exposure, we gain additionally spatial and directional control of the self-assembled wrinkle pattern formation that relies on a spinodal decomposition process. Inspired by the results on surface wrinkling and its dependence on the intrinsic stress, we also derive a method to avoid wrinkling locally by tailoring the mechanical stress distribution in the layered system choosing UV masks with convex patterns. This is of particular interest in technical applications where the buckling of surfaces is undesirable.
Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels
Chan, Kai Wang; Tjong, Sie Chin
2014-01-01
Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs. PMID:28788129
Topology-generating interfacial pattern formation during liquid metal dealloying
Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; ...
2015-11-19
Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less
Topology-generating interfacial pattern formation during liquid metal dealloying.
Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain
2015-11-19
Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.
NASA Astrophysics Data System (ADS)
Petta, V.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.
2008-06-01
We present a detailed dynamic light scattering study of the phase separation in the ocular lens emerging during cold cataract development. Cold cataract is a phase separation effect that proceeds via spinodal decomposition of the lens cytoplasm with cooling. The intensity autocorrelation functions of the lens protein content are analyzed with the aid of two methods, providing information on the populations and dynamics of the scattering elements associated with cold cataract. It is found that the temperature dependence of many measurable parameters changes appreciably at the characteristic temperature ˜16±1°C which is associated with the onset of cold cataract. By extending the temperature range of this work to previously inaccessible regimes, i.e., well below the phase separation or coexistence curve at Tcc , we have been able to accurately determine the temperature dependence of the collective and self-diffusion coefficients of proteins near the spinodal. The analysis showed that the dynamics of proteins bears some resemblance to the dynamics of structural glasses, where the apparent activation energy for particle diffusion increases below Tcc , indicating a highly cooperative motion. Application of ideas developed for studying the critical dynamics of binary protein-solvent mixtures, as well as the use of a modified Arrhenius equation, enabled us to estimate the spinodal temperature Tsp of the lens nucleus. The applicability of dynamic light scattering as a noninvasive, early-diagnostic tool for ocular diseases is also demonstrated in light of the findings of the present paper.
Mechanical model for filament buckling and growth by phase ordering.
Rey, Alejandro D; Abukhdeir, Nasser M
2008-02-05
A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.
Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys
NASA Astrophysics Data System (ADS)
Doak, Jeff W.; Wolverton, C.
2012-10-01
Nanostructures formed by phase separation improve the thermoelectric figure of merit in lead chalcogenide semiconductor alloys, with coherent nanostructures giving larger improvements than incoherent nanostructures. However, large coherency strains in these alloys drastically alter the thermodynamics of phase stability. Incoherent phase stability can be easily inferred from an equilibrium phase diagram, but coherent phase stability is more difficult to assess experimentally. Therefore, we use density functional theory calculations to investigate the coherent and incoherent phase stability of the IV-VI rocksalt semiconductor alloy systems Pb(S,Te), Pb(Te,Se), Pb(Se,S), (Pb,Sn)Te, (Sn,Ge)Te, and (Ge,Pb)Te. Here we use the term coherent to indicate that there is a common and unbroken lattice between the phases under consideration, and we use the term incoherent to indicate that the lattices of coexisting phases are unconstrained and allowed to take on equilibrium volumes. We find that the thermodynamic ground state of all of the IV-VI pseudobinary systems studied is incoherent phase separation. We also find that the coherency strain energy, previously neglected in studies of these IV-VI alloys, is lowest along [111] (in contrast to most fcc metals) and is a large fraction of the thermodynamic driving force for incoherent phase separation in all systems. The driving force for coherent phase separation is significantly reduced, and we find that coherent nanostructures can only form at low temperatures where kinetics may prohibit their precipitation. Furthermore, by calculating the energies of ordered structures for these systems we find that the coherent phase stability of most IV-VI systems favors ordering over spinodal decomposition. Our results suggest that experimental reports of spinodal decomposition in the IV-VI rocksalt alloys should be re-examined.
NASA Astrophysics Data System (ADS)
Forsén, R.; Ghafoor, N.; Odén, M.
2013-12-01
A concept to improve hardness and thermal stability of unstable multilayer alloys is presented based on control of the coherency strain such that the driving force for decomposition is favorably altered. Cathodic arc evaporated cubic TiCrAlN/Ti1-xCrxN multilayer coatings are used as demonstrators. Upon annealing, the coatings undergo spinodal decomposition into nanometer-sized coherent Ti- and Al-rich cubic domains which is affected by the coherency strain. In addition, the growth of the domains is restricted by the surrounding TiCrN layer compared to a non-layered TiCrAlN coating which together results in an improved thermal stability of the cubic structure. A significant hardness increase is seen during decomposition for the case with high coherency strain while a low coherency strain results in a hardness decrease for high annealing temperatures. The metal diffusion paths during the domain coarsening are affected by strain which in turn is controlled by the Cr-content (x) in the Ti1-xCrxN layers. For x = 0 the diffusion occurs both parallel and perpendicular to the growth direction but for x > =0.9 the diffusion occurs predominantly parallel to the growth direction. Altogether this study shows a structural tool to alter and fine-tune high temperature properties of multicomponent materials.
The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors
NASA Astrophysics Data System (ADS)
Treat, Neil D.; Westacott, Paul; Stingelin, Natalie
2015-07-01
The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.
Sagiyama, Koki; Rudraraju, Shiva; Garikipati, Krishna
2016-09-13
Here, we consider solid state phase transformations that are caused by free energy densities with domains of non-convexity in strain-composition space; we refer to the non-convex domains as mechano-chemical spinodals. The non-convexity with respect to composition and strain causes segregation into phases with different crystal structures. We work on an existing model that couples the classical Cahn-Hilliard model with Toupin’s theory of gradient elasticity at finite strains. Both systems are represented by fourth-order, nonlinear, partial differential equations. The goal of this work is to develop unconditionally stable, second-order accurate time-integration schemes, motivated by the need to carry out large scalemore » computations of dynamically evolving microstructures in three dimensions. We also introduce reduced formulations naturally derived from these proposed schemes for faster computations that are still second-order accurate. Although our method is developed and analyzed here for a specific class of mechano-chemical problems, one can readily apply the same method to develop unconditionally stable, second-order accurate schemes for any problems for which free energy density functions are multivariate polynomials of solution components and component gradients. Apart from an analysis and construction of methods, we present a suite of numerical results that demonstrate the schemes in action.« less
NASA Astrophysics Data System (ADS)
Kang, Shin-Woong; Kundu, Sudarshan; Park, Heung-Shik; Oh, Keun Chan; Lyu, Jae Jin
2017-02-01
We report the in situ creation of reactive polymer nanoparticles and resulting polymer networks formed at the interfaces of liquid crystals. It is known that polymerization-induced phase separation proceeds in two distinct regimes depending on the concentration of monomer. For a high monomer concentration, phase separation occurs mainly through the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particle. In this case, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly influenced by the diffusion of reactive polymer particles. The thin polymer layers localized at the surface of substrate are inevitably observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of reactive polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer. The detailed study has been performed for an extremely dilute condition (below 0.5 wt%) by employing systematic experimental approaches. Creation and growth of polymer nanoparticles have been measured by particle size analyzer. The interfacial localization of polymer aggregates and resulting interfacial layer formation with a tens of nanometer scale have been exploited at various interfaces such as liquid-solid, liquid-liquid, and liquid-gas interfaces. The resulting interfacial layers have been characterized by using fuorescent confocal microscope and field emission scanning electron microscope. The detailed processes of the polymer stabilized vertically aligned liquid crystals will be discussed in support of the reported study.
Dewetting of thin polymer films: an X-ray scattering study
NASA Astrophysics Data System (ADS)
Müller-Buschbaum, P.; Stamm, M.
1998-06-01
The surface morphology of different dewetting states of thin polymer films (polystyrene) on top of silicon substrates was investigated. With diffuse X-ray scattering in the region of total external reflection a high in-plane resolution was achieved. We observe a new nano-dewetting structure which coexists with the well known mesoscopic dewetting structures of holes, cellular pattern and drops. This nano-dewetting structure consists of small dimples with a diameter in the nanometer range. It results from the dewetting of a remaining ultra-thin polymer layer and can be explained with theoretical predictions of spinodal decomposition. The experimental results of the scattering study are confirmed with scanning-force microscopy measurements.
Nanoclusters first: a hierarchical phase transformation in a novel Mg alloy
NASA Astrophysics Data System (ADS)
Okuda, Hiroshi; Yamasaki, Michiaki; Kawamura, Yoshihito; Tabuchi, Masao; Kimizuka, Hajime
2015-09-01
The Mg-Y-Zn ternary alloy system contains a series of novel structures known as long-period stacking ordered (LPSO) structures. The formation process and its key concept from a viewpoint of phase transition are not yet clear. The current study reveals that the phase transformation process is not a traditional spinodal decomposition or structural transformation but, rather a novel hierarchical phase transformation. In this transformation, clustering occurs first, and the spatial rearrangement of the clusters induce a secondary phase transformation that eventually lead to two-dimensional ordering of the clusters. The formation process was examined using in situ synchrotron radiation small-angle X-ray scattering (SAXS). Rapid quenching from liquid alloy into thin ribbons yielded strongly supersaturated amorphous samples. The samples were heated at a constant rate of 10 K/min. and the scattering patterns were acquired. The SAXS analysis indicated that small clusters grew to sizes of 0.2 nm after they crystallized. The clusters distributed randomly in space grew and eventually transformed into a microstructure with two well-defined cluster-cluster distances, one for the segregation periodicity of LPSO and the other for the in-plane ordering in segregated layer. This transformation into the LPSO structure concomitantly introduces the periodical stacking fault required for the 18R structures.
Simulation of alnico coercivity
Ke, Liqin; Skomski, Ralph; Hoffmann, Todd D.; ...
2017-07-10
Micromagnetic simulations of alnico show substantial deviations from Stoner-Wohlfarth behavior due to the unique size and spatial distribution of the rod-like Fe-Co phase formed during spinodal decomposition in an external magnetic field. Furthemore, the maximum coercivity is limited by single-rod effects, especially deviations from ellipsoidal shape, and by interactions between the rods. In both the exchange interaction between connected rods and magnetostatic we consider the interaction between rods, and the results of our calculations show good agreement with recent experiments. Unlike systems dominated by magnetocrystalline anisotropy, coercivity in alnico is highly dependent on size, shape, and geometric distribution of themore » Fe-Co phase, all factors that can be tuned with appropriate chemistry and thermal-magnetic annealing.« less
Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia
2017-05-01
In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.
Stefik, Morgan
2016-07-07
The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the fine structure of meteoritical taenite/tetrataenite and its interpretation
NASA Astrophysics Data System (ADS)
Albertsen, J. F.; Nielsen, H. P.; Buchwald, V. F.
1983-04-01
TEM, electron microprobe, and Moessbauer spectroscopy are used in investigating taenite fields from several meteorites. A delicate pattern of antiphase domains is revealed in the tetrataenite, as is the presence of low-Ni taenite at the antiphase boundaries in what was hitherto believed to be pure tetrataenite. The observations suggest that the 'cloudy taenite' (cloudy zone II) was formed by a magnetically induced spinodal decomposition of the metastable taenite during slow cooling below 400 C. It is thought likely that decompositin occurs when the Curie temperature of the alloy changes rapidly with composition, as it does in f.c.c. iron-nickel alloys containing approximately 28-43 percent Ni (wt pct). The large contribution to Gibbs free energy from magnetic ordering leads to inflections in the Gibbs free energy curve, making the alloy unstable with regard to decomposition, in this case into a magnetically and atomically ordered Ni-rich alloy plus a magnetically and atomically disordered Ni-poor alloy. The model accounts well for the structure and composition of the two phases in the cloudy taenite.
Alling, B.; Högberg, H.; Armiento, R.; Rosen, J.; Hultman, L.
2015-01-01
Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M11–xM2xB2 alloys comprising MiB2 (Mi = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1–xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2. PMID:25970763
Spinodals with Disorder: From Avalanches in Random Magnets to Glassy Dynamics
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar; Biroli, Giulio; Tarjus, Gilles
2016-04-01
We revisit the phenomenon of spinodals in the presence of quenched disorder and develop a complete theory for it. We focus on the spinodal of an Ising model in a quenched random field (RFIM), which has applications in many areas from materials to social science. By working at zero temperature in the quasistatically driven RFIM, thermal fluctuations are eliminated and one can give a rigorous content to the notion of spinodal. We show that the latter is due to the depinning and the subsequent expansion of rare droplets. We work out the associated critical behavior, which, in any finite dimension, is very different from the mean-field one: the characteristic length diverges exponentially and the thermodynamic quantities display very mild nonanalyticities much like in a Griffith phenomenon. From the recently established connection between the spinodal of the RFIM and glassy dynamics, our results also allow us to conclusively assess the physical content and the status of the dynamical transition predicted by the mean-field theory of glass-forming liquids.
Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid
NASA Astrophysics Data System (ADS)
Takagi, Youhei; Okamoto, Sachiya
2015-11-01
When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criado-Sancho, M.; Casas-Vazquez, J.; Jou, D.
1997-08-01
In the literature, the shift of the spinodal line of polymer solutions under flow is attributed either to an actual shift of the spinodal due to a nonequilibrium modification of the equation of state for the chemical potential, or to an apparent shift due to an increase of hydrodynamic fluctuations owing to the flow. Here we see that both approaches are compatible and that both effects add up. {copyright} {ital 1997} {ital The American Physical Society}
Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; ...
2015-01-20
The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as “high-entropy alloys”. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al 1.3CoCrCuFeNi model alloy. Here we show that even when the material undergoes elemental segregation, precipitation, chemical ordering, and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. In addition, the results suggest that the high-entropy-alloy-design strategy may be applied to a wide rangemore » of complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less
Hu, Jinghang; Zhang, Jianchi; Fu, Zongyuan; Weng, Junhui; Chen, Weibo; Ding, Shijin; Jiang, Yulong; Zhu, Guodong
2015-03-25
Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. During film deposition from the blend solution, spinodal decomposition induced phase separation, resulting in discrete semiconducting phase whose electrical property could be modulated by the continuous ferroelectric phase. However, blend films processed by common spin coating method showed extremely rough surfaces, even comparable to the film thickness, which caused large electrical leakage and thus compromised the resistive switching performance. To improve film roughness and thus increase the productivity of these resistive devices, we developed temperature controlled spin coating technique to carefully adjust the phase separation process. Here we reported our experimental results from the blend films of ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and semiconducting poly(3-hexylthiophene) (P3HT). We conducted a series of experiments at various deposition temperatures ranging from 20 to 90 °C. The resulting films were characterized by AFM, SEM, and VPFM to determine their structure and roughness. Film roughness first decreased and then increased with the increase of deposition temperature. Electrical performance was also characterized and obviously improved insulating property was obtained from the films deposited between 50 and 70 °C. By temperature control during film deposition, it is convenient to efficiently fabricate ferroelectric/semiconducting blend films with good electrical bistability.
NASA Astrophysics Data System (ADS)
Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.
2017-08-01
We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).
The BCC/B2 morphologies in Al xNiCoFeCr high-entropy alloys
Ma, Yue; Jiang, Beibei; Li, Chunling; ...
2017-02-15
Here, the present work primarily investigates the morphological evolution of the body-centered-cubic (BCC)/B2 phases in Al xNiCoFeCr high-entropy alloys (HEAs) with increasing Al content. It is found that the BCC/B2 coherent morphology is closely related to the lattice misfit between these two phases, which is sensitive to Al. There are two types of microscopic BCC/B2 morphologies in this HEA series: one is the weave-like morphology induced by the spinodal decomposition, and the other is the microstructure of a spherical disordered BCC precipitation on the ordered B2 matrix that appears in HEAs with a much higher Al content. The mechanical properties,more » including the compressive yielding strength and microhardness of the Al xNiCoFeCr HEAs, are also discussed in light of the concept of the valence electron concentration (VEC).« less
New type of nonglossy image-receiving sheet
NASA Astrophysics Data System (ADS)
Aono, Toshiaki; Shibata, Takeshi; Nakamura, Yoshisada
1990-07-01
We have developed a new type of non-glossy surface of an image receiving sheet for a photothermographic color hardcopy system. There is a basic conflict in realizing uniform dye transfer with use of a receiving sheet having a matted surface, because when the degree of roughness exceeds a certain extent, uneven dye transfer readily takes place. It: has been solved by use of "microscopic" phase separation of a certain water-soluble polymer blend which constitutes the surface layer of the image receiving sheet. One of the preferable polymer blends for our purpose proved to be a ternary system, consisting of sodium salt of polymethacrylic acid (PMAA-Na), ammonium salt of polyacrylic acid (PAA-NH4) and water. Phase separation, which proceeded during the evaporation of water from the coated mixture, turned out to be of a spinodal decomposition type and thus capable of stably providing a desirable non-glossy surface.
Adiabatic burst evaporation from bicontinuous nanoporous membranes
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk
2015-01-01
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406
He, Mo-Rigen; Wang, Shuai; Shi, Shi; ...
2016-12-31
Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elementsmore » are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L1 0 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.« less
Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide
NASA Astrophysics Data System (ADS)
Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.
2015-02-01
A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.
Uphill diffusion in multicomponent mixtures.
Krishna, Rajamani
2015-05-21
Molecular diffusion is an omnipresent phenomena that is important in a wide variety of contexts in chemical, physical, and biological processes. In the majority of cases, the diffusion process can be adequately described by Fick's law that postulates a linear relationship between the flux of any species and its own concentration gradient. Most commonly, a component diffuses down the concentration gradient. The major objective of this review is to highlight a very wide variety of situations that cause the uphill transport of one constituent in the mixture. Uphill diffusion may occur in multicomponent mixtures in which the diffusion flux of any species is strongly coupled to that of its partner species. Such coupling effects often arise from strong thermodynamic non-idealities. For a quantitative description we need to use chemical potential gradients as driving forces. The transport of ionic species in aqueous solutions is coupled with its partner ions because of the electro-neutrality constraints; such constraints may accelerate or decelerate a specific ion. When uphill diffusion occurs, we observe transient overshoots during equilibration; the equilibration process follows serpentine trajectories in composition space. For mixtures of liquids, alloys, ceramics and glasses the serpentine trajectories could cause entry into meta-stable composition zones; such entry could result in phenomena such as spinodal decomposition, spontaneous emulsification, and the Ouzo effect. For distillation of multicomponent mixtures that form azeotropes, uphill diffusion may allow crossing of distillation boundaries that are normally forbidden. For mixture separations with microporous adsorbents, uphill diffusion can cause supra-equilibrium loadings to be achieved during transient uptake within crystals; this allows the possibility of over-riding adsorption equilibrium for achieving difficult separations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Núñez-Coavas, H.
As cast Cu{sub 90}Co{sub 10} ribbons rapidly solidified by twin-roller melt spinning, exhibit special microstructure features. This processing method provides scenarios where a different phase selection takes place; coherent Co precipitates form directly from solidification, with neither a spinodal-like composition oscillation nor a discontinuously precipitated laminar phase. Samples are processed at tangential wheel speeds of 10 m/s (V10), 15 m/s (V15), 20 m/s (V20) and 30 m/s (V30). Microstructures resulting from this single step process are characterized and the hysteresis properties and the magnetoresistance effects evaluated. Samples V30 have a quite uniform density of coherent precipitates, with a narrow sizemore » distribution around 4 nm. On contrary, non-uniform precipitate distributions are found in samples cooled at lower rates; zones with a high density of coherent Co-rich precipitates are found forming colonies. These colonies are consistent with the extended compositional fluctuations occurring during very early stages in the cooling process. Samples may exhibit wide (V10) and even bimodal (V15) size distributions. Only samples V30 behave close to the ideal superparamagnetism. Samples V20 present relatively large coercivity and relative remanence and behave as an interacting superparamagnet, while the hysteresis loops of ribbons cooled at lower rates exhibit a ferromagnetic contribution in addition to the superparamagnetic-like one. This ferromagnetic component arises from blocked precipitates, larger than the upper bound size for superparamagnetic behavior at 300 K (12 nm). Room temperature magnetoresistance values associated to granular scattering units decrease as the mean precipitate size increases, but they remain below 2%, which is lower than that measured in samples annealed after rapid solidification, indicating that in this latter case contributions from the spinodally segregated matrix take place in addition to that of Co granules. - Highlights: •Microstructures of twin-rolled Cu{sub 90}Cu{sub 10} alloys are for the first time characterized. •Coherent Co-rich precipitates distribute forming dense colonies inside the grains. •No coexisting multilayer-like structures (spinodal or laminar phases) are detected. •Magnetic hysteresis arises from inter-particle interaction in these dense colonies. •Magnetoresistance level in these purely granular systems is low (1.6% at 300 K).« less
Principles of Considering the Effect of the Limited Volume of a System on Its Thermodynamic State
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2018-01-01
The features of a system with a finite volume that affect its thermodynamic state are considered in comparison to describing small bodies in macroscopic phases. Equations for unary and pair distribution functions are obtained using difference derivatives of a discrete statistical sum. The structure of the equation for the free energy of a system consisting of an ensemble of volume-limited regions with different sizes and a full set of equations describing a macroscopic polydisperse system are discussed. It is found that the equations can be applied to molecular adsorption on small faces of microcrystals, to bound and isolated pores of a polydisperse material, and to describe the spinodal decomposition of a fluid in brief periods of time and high supersaturations of the bulk phase when each local region functions the same on average. It is shown that as the size of a system diminishes, corrections must be introduced for the finiteness of the system volume and fluctuations of the unary and pair distribution functions.
Effect of finite particle number sampling on baryon number fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinheimer, Jan; Koch, Volker
The effects of finite particle number sampling on the net baryon number cumulants, extracted from fluid dynamical simulations, are studied. The commonly used finite particle number sampling procedure introduces an additional Poissonian (or multinomial if global baryon number conservation is enforced) contribution which increases the extracted moments of the baryon number distribution. If this procedure is applied to a fluctuating fluid dynamics framework, one severely overestimates the actual cumulants. We show that the sampling of so-called test particles suppresses the additional contribution to the moments by at least one power of the number of test particles. We demonstrate this methodmore » in a numerical fluid dynamics simulation that includes the effects of spinodal decomposition due to a first-order phase transition. Furthermore, in the limit where antibaryons can be ignored, we derive analytic formulas which capture exactly the effect of particle sampling on the baryon number cumulants. These formulas may be used to test the various numerical particle sampling algorithms.« less
Effect of finite particle number sampling on baryon number fluctuations
Steinheimer, Jan; Koch, Volker
2017-09-28
The effects of finite particle number sampling on the net baryon number cumulants, extracted from fluid dynamical simulations, are studied. The commonly used finite particle number sampling procedure introduces an additional Poissonian (or multinomial if global baryon number conservation is enforced) contribution which increases the extracted moments of the baryon number distribution. If this procedure is applied to a fluctuating fluid dynamics framework, one severely overestimates the actual cumulants. We show that the sampling of so-called test particles suppresses the additional contribution to the moments by at least one power of the number of test particles. We demonstrate this methodmore » in a numerical fluid dynamics simulation that includes the effects of spinodal decomposition due to a first-order phase transition. Furthermore, in the limit where antibaryons can be ignored, we derive analytic formulas which capture exactly the effect of particle sampling on the baryon number cumulants. These formulas may be used to test the various numerical particle sampling algorithms.« less
NASA Astrophysics Data System (ADS)
Goyal, Abheeti; Toschi, Federico; van der Schoot, Paul
2017-11-01
We study the morphological evolution and dynamics of phase separation of multi-component mixture in thin film constrained by a substrate. Specifically, we have explored the surface-directed spinodal decomposition of multicomponent mixture numerically by Free Energy Lattice Boltzmann (LB) simulations. The distinguishing feature of this model over the Shan-Chen (SC) model is that we have explicit and independent control over the free energy functional and EoS of the system. This vastly expands the ambit of physical systems that can be realistically simulated by LB simulations. We investigate the effect of composition, film thickness and substrate wetting on the phase morphology and the mechanism of growth in the vicinity of the substrate. The phase morphology and averaged size in the vicinity of the substrate fluctuate greatly due to the wetting of the substrate in both the parallel and perpendicular directions. Additionally, we also describe how the model presented here can be extended to include an arbitrary number of fluid components.
Spontaneous symmetry breaking and phase coexistence in two-color networks
NASA Astrophysics Data System (ADS)
Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.
2016-01-01
We consider an equilibrium ensemble of large Erdős-Renyi topological random networks with fixed vertex degree and two types of vertices, black and white, prepared randomly with the bond connection probability p . The network energy is a sum of all unicolor triples (either black or white), weighted with chemical potential of triples μ . Minimizing the system energy, we see for some positive μ the formation of two predominantly unicolor clusters, linked by a string of Nb w black-white bonds. We have demonstrated that the system exhibits critical behavior manifested in the emergence of a wide plateau on the Nb w(μ ) curve, which is relevant to a spinodal decomposition in first-order phase transitions. In terms of a string theory, the plateau formation can be interpreted as an entanglement between baby universes in two-dimensional gravity. We conjecture that the observed classical phenomenon can be considered as a toy model for the chiral condensate formation in quantum chromodynamics.
Nanostructure and giant magnetoresistive properties of granular systems.
Kooi, B J; Vystavel, T; De Hosson, J T
2001-03-01
This article aims to make a connection between the microstructures of various nanostructured alloys and giant magnetoresistive (GMR) properties. The GMR behavior of nanoclusters embedded in a nonmagnetic matrix differs considerably from an alloy with the content of a magnetic phase above the percolation threshold; that is to say, an increase of GMR effect upon going from 300 to 10 K for the former and a decrease of the GMR effect for the latter. The following materials systems were examined with high-resolution transmission electron microscopy and magnetoelectrical resistance measurements: magnetic Co and CoFe nanoclusters in a Au matrix, NiFe clusters in a Cu matrix, and NiFe/Cu spinodal decomposition waves with interconnection of the magnetic phase. After annealing (> or = 300 degrees C), Co particles in Au become semi- or incoherent, whereas under other conditions and in all other systems, the interfaces remain coherent. This state of coherency at the interface between magnetic particles and a nonmagnetic matrix turned out to have a detectable influence on the GMR behavior.
Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants
Huang, Caili; Forth, Joe; Wang, Weiyu; ...
2017-09-25
Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil–water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. In this paper, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) thatmore » bind to one another at the oil–water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m -1. Finally, furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.« less
Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Caili; Forth, Joe; Wang, Weiyu
Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil–water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. In this paper, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) thatmore » bind to one another at the oil–water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m -1. Finally, furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.« less
Spontaneous symmetry breaking and phase coexistence in two-color networks.
Avetisov, V; Gorsky, A; Nechaev, S; Valba, O
2016-01-01
We consider an equilibrium ensemble of large Erdős-Renyi topological random networks with fixed vertex degree and two types of vertices, black and white, prepared randomly with the bond connection probability p. The network energy is a sum of all unicolor triples (either black or white), weighted with chemical potential of triples μ. Minimizing the system energy, we see for some positive μ the formation of two predominantly unicolor clusters, linked by a string of N_{bw} black-white bonds. We have demonstrated that the system exhibits critical behavior manifested in the emergence of a wide plateau on the N_{bw}(μ) curve, which is relevant to a spinodal decomposition in first-order phase transitions. In terms of a string theory, the plateau formation can be interpreted as an entanglement between baby universes in two-dimensional gravity. We conjecture that the observed classical phenomenon can be considered as a toy model for the chiral condensate formation in quantum chromodynamics.
Enhanced Hydrate Nucleation Near the Limit of Stability.
Jimenez-Angeles, Felipe; Firoozabadi, Abbas
2015-03-30
Clathrate hydrates are crystalline structures composed of small guest molecules trapped into cages formed by hydrogen-bonded water molecules. In hydrate nucleation, water and the guest molecules may stay in a metastable fluid mixture for a long period. Metastability is broken if the concentration of the guest is above certain limit. We perform molecular dynamics (MD) simulations of supersaturated water-propane solutions close to the limit of stability. We show that hydrate nucleation can be very fast in a very narrow range of composition at moderate temperatures. Propane density fluctuations near the fluid-fluid demixing are coupled with crystallization producing en- hanced nucleation rates. This is the first report of propane-hydrate nucleation by MD simulations. We observe motifs of the crystalline structure II in line with experiments and new hydrate cages not reported in the literature. Our study relates nucleation to the fluid-fluid spinodal decomposition and demonstration that the enhanced nucleation phenomenon is more general than short range attractive interactions as suggested in nucleation of proteins.
NASA Astrophysics Data System (ADS)
Örnek, Cem; Burke, M. G.; Hashimoto, T.; Engelberg, D. L.
2017-04-01
22Cr-5Ni duplex stainless steel (DSS) was aged at 748 K (475 °C) and the microstructure development correlated to changes in mechanical properties and fracture behavior. Tensile testing of aged microstructures confirmed the occurrence of 748 K (475 °C) embrittlement, which was accompanied by an increase of strength and hardness and loss of toughness. Aging caused spinodal decomposition of the ferrite phase, consisting of Cr-enriched α″ and Fe-rich α' and the formation of a large number of R-phase precipitates, with sizes between 50 and 400 nm. Fracture surface analyses revealed a gradual change of the fracture mode from ductile to brittle delamination fracture, associated with slip incompatibility between ferrite and austenite. Ferrite became highly brittle after 255 hours of aging, mainly due to the presence of precipitates, while austenite was ductile and accommodated most plastic strain. The fracture mechanism as a function of 748 K (475 °C) embrittlement is discussed in light of microstructure development.
Solid-liquid and liquid-solid transitions in metal nanoparticles.
Hou, M
2017-02-22
The melting and solidification temperatures of nanosystems may differ by several hundred Kelvin. To understand the origin of this difference, transitions in small metallic nanoparticles on the atomic scale were analyzed using molecular dynamics (MD). Palladium was used as a case study, which was then extended to a range of other elemental metals. It was argued that in realistic environments, such as gases at low pressure (of the order of 1 mbar), heat transfers allow the microcanonical thermal equilibrium evolution of the nanoparticles between successive collisions with gas atoms. This is shown to have no significant influence on the mechanism of melting, whereas in an isolated nanoparticle, solidification triggers a huge and rapid increase in temperature. A simple relationship between the melting and solidification temperatures was found, indicating that the magnitude of the latent heat of melting governs undercooling. Whereas melting occurs via heterogeneous nucleation, solidification displays characteristics of spinodal decomposition. Consistently, the melting temperature scales with the surface-to-volume ratio, whereas the solidification temperature displays no significant dependence on the particle size.
Kikkinides, E S; Monson, P A
2015-03-07
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikkinides, E. S.; Monson, P. A.
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van dermore » Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knuth, Eldon L.; Miller, David R.; Even, Uzi
2014-12-09
Data extracted from time-of-flight (TOF) measurements made on steady-state He free jets at Göttingen already in 1986 and for pulsed Ne free jets investigated recently at Tel Aviv have been added to an earlier plot of terminal condensed-phase mass fraction x{sub 2∞} as a function of the dimensionless scaling parameter Γ. Γ characterizes the source (fluid species, temperature, pressure and throat diameter); values of x{sub 2∞} are extracted from TOF measurements using conservation of energy in the free-jet expansion. For nozzles consisting of an orifice in a thin plate; the extracted data yield 22 data points which are correlated satisfactorilymore » by a single curve. The Ne free jets were expanded from a conical nozzle with a 20° half angle; the three extracted data points stand together but apart from the aforementioned curve, indicating that the presence of the conical wall influences significantly the expansion and hence the condensation. The 22 data points for the expansions via an orifice consist of 15 measurements with expansions from the gas-phase side of the binodal curve which crossed the binodal curve downstream from the sonic point and 7 measurements with expansions of the gas-phase product of the flashing which occurred after an expansion from the liquid-phase side of the binodal curve crossed the binodal curve upstream from the sonic point. The association of these 22 points with a single curve supports the alternating-phase model for flows with flashing upstream from the sonic point proposed earlier. In order to assess the role of the spinodal curve in such expansions, the spinodal curves for He and Ne were computed using general multi-parameter Helmholtz-free-energy equation-of-state formulations. Then, for the several sets of source-chamber conditions used in the free-jet measurements, thermodynamic states at key locations in the free-jet expansions (binodal curve, sonic point and spinodal curve) were evaluated, with the expansion presumed to be metastable from the binodal curve to the spinodal curve. TOF distributions with more than two peaks (interpreted earlier as superimposed alternating-state TOF distributions) indicated flashing of the metastable flow downstream from the binodal curve but upstream from the sonic point. This relatively early flashing is due apparently to destabilizing interactions with the walls of the source. If the expansion crosses the binodal curve downstream from the nozzle, the metastable fluid does not interact with surfaces and flashing might be delayed until the expansion reaches the spinodal curve. It is concluded that, if the expansion crosses the binodal curve before reaching the sonic point, the resulting metastable fluid downstream from the binodal curve interacts with the adjacent surfaces and flashes into liquid and vapor phases which expand alternately through the nozzle; the two associated alternating TOF distributions are superposed by the chopping process so that the result has the appearance of a single distribution with three peaks.« less
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-10-06
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting.
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-01-01
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting. PMID:25283744
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2018-05-01
This paper work presents the results of Monte Carlo simulation performed for ultra thin short chained polymer films near melt, under strong confinement. Thin polymer films get ruptured when annealed above their glass transition temperatures. The pattern formations are generally explained on the basis of spinodal mechanism, if the thickness of the film is of the order of few tens of nanometers i.e. <100 nm. In this case, the film seems to tear apart in strips. The free end segments of the chains are more dynamic and coalescence into one another. This process seems to dominate over the spinodal waves resulting into a different type of dynamics. Polymer chains with 30 monomers are taken. 160, 200 and 240 chains are taken for three different cases of the studies. The three cases correspond to three different thickness of the films with 8, 10 and 12 layers of chains along direction perpendicular to the confining substrates. The bottom surface has affinity to monomers, whereas the upper surface has hard wall interaction with the monomers. Different time micrographs of the films are plotted along with density distributions of the monomers to explore the process.
Kinetics of sub-spinodal dewetting of thin films of thickness dependent viscosity.
Kotni, Tirumala Rao; Khanna, Rajesh; Sarkar, Jayati
2017-05-04
An alternative explanation of the time varying and very low growth exponents in dewetting of polymer films like polystyrene films is presented based on non-linear simulations. The kinetics of these films is explored within the framework of experimentally observed thickness dependent viscosity. These films exhibit sub-spinodal dewetting via formation of satellite holes in between primary dewetted holes under favorable conditions of excess intermolecular forces and film thicknesses. We find that conditions responsible for sub-spinodal dewetting concurrently lead to remarkable changes in the kinetics of dewetting of even primary holes. For example, the radius of the hole grows in time with a power-law growth exponent sequence of [Formula: see text], in contrast to the usual ∼4/5. This is due to the cumulative effect of reduced rim mobility due to thickness dependent viscosity and hindrance created by satellite holes.
Structure and magnetic properties of Alnico ribbons
NASA Astrophysics Data System (ADS)
Zhang, Ce; Li, Ying; Han, Xu-Hao; Du, Shuai-long; Sun, Ji-bing; Zhang, Ying
2018-04-01
Al-Ni-Co alloy has been widely applied in various industrial fields due to its excellent thermal and magnetic stability. In this paper, new Al-Ni-Co ribbons are prepared by simple processes combining melt-spinning with annealing, and their phase transition, microstructure and magnetic properties are studied. The results show that after as-spun ribbons are annealed, the grain size of ribbons increases from 1.1 ± 0.3 μm to 4.8 ± 0.8 μm, but still much smaller than that of the bulk Al-Ni-Co alloy manufactured by traditional technologies. In addition, some rod-like Al70Co20Ni10-type, Al9Co2-type and Fe2Nb-type phases are precipitated at grain boundaries; simultaneously, the distinct spinodal decomposition microstructure with periodic ingredient variation is thoroughly formed in all grains by the reaction of α → α1 + α2. Furthermore, the α1 and α2 distribute alternately like a maze, the Fe-Co-rich α1 phase holds 35.9-47.3 vol%, while the Al-Ni-rich α2 phase occupies the rest. Finally, the coercivity of annealed ribbons can reach to 485.3 ± 76.6 Oe. If the annealed ribbons are further aged at 560 °C, their Hc even increases to 738.1 ± 81.0 Oe. The coercivity mechanism is discussed by the combination of microstructure and domain structure.
Vitrification and gelation in sticky spheres
NASA Astrophysics Data System (ADS)
Royall, C. Patrick; Williams, Stephen R.; Tanaka, Hajime
2018-01-01
Glasses and gels are the two dynamically arrested, disordered states of matter. Despite their importance, their similarities and differences remain elusive, especially at high density, where until now it has been impossible to distinguish them. We identify dynamical and structural signatures which distinguish the gel and glass transitions in a colloidal model system of hard and "sticky" spheres. It has been suggested that "spinodal" gelation is initiated by gas-liquid viscoelastic phase separation to a bicontinuous network and the resulting densification leads to vitrification of the colloid-rich phase, but whether this phase has sufficient density for arrest is unclear [M. A. Miller and D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003) and P. J. Lu et al., Nature 435, 499-504 (2008)]. Moreover alternative mechanisms for arrest involving percolation have been proposed [A. P. R. Eberle et al., Phys. Rev. Lett. 106, 105704 (2011)]. Here we resolve these outstanding questions, beginning by determining the phase diagram. This, along with demonstrating that percolation plays no role in controlling the dynamics of our system, enables us to confirm spinodal decomposition as the mechanism for gelation. We are then able to show that gels can be formed even at much higher densities than previously supposed, at least to a volume fraction of ϕ = 0.59. Far from being networks, these gels apparently resemble glasses but are still clearly distinguished by the "discontinuous" nature of the transition and the resulting rapid solidification, which leads to the formation of inhomogeneous (with small voids) and far-from-equilibrium local structures. This is markedly different from the glass transition, whose continuous nature leads to the formation of homogeneous and locally equilibrated structures. We further reveal that the onset of the attractive glass transition in the form of a supercooled liquid is in fact interrupted by gelation. Our findings provide a general thermodynamic, dynamic, and structural basis upon which we can distinguish gelation from vitrification.
NASA Astrophysics Data System (ADS)
Prakash, Sai Sivasankaran
2001-11-01
Time-sectioning cryogenic scanning electron microscopy (cryo-SEM) is a unique method of visualizing how the microstructure of liquid coatings evolves during processing. Time-sectioning means rapidly freezing (nearly) identical specimens at successively later stages of the process; doing this requires that coating and drying be well controlled in the dry phase inversion process, and solvents exchange likewise in the wet phase inversion process. With control, frozen specimens are fractured, etched by limited sublimation, sputter-coated, and imaged at temperatures of ca -175°C. The coatings examined were of cellulose acetate, of high and low molecular weights, and polysulfone in mixed solvents and nonsolvents: acetone and water with cellulose acetate undergoing dry phase inversion; and tetrahydrofuran, dimethylacetamide, ethanol with polysulfone undergoing dry-wet phase inversion. All coatings, cast on silicon substrates, were initially homogeneous. The initial compositions of the high and low molecular weight cellulose acetate ternary solutions were "off-critical" and "near-critical", respectively, connoting their proximities to the critical or plait point of the phase diagram. The initial composition of the polysulfone quaternary solution was located near the binodal of the pseudo-ternary phase diagram. It appeared that as the higher molecular weight cellulose acetate coating dries, it nucleates and grows polymer-poor droplets that coalesce into a bicontinuous structure underlying a thin, dense skin. Bicontinuity of structure was verified by stereomicroscopy of the dry sample. The lower molecular weight cellulose acetate coating phase-separates, seemingly spinodally, directly into a bicontinuous structure whose polymer-rich network, stressed by frustrated in-plane shrinkage, ruptures far beneath the skin in some locales to form macrovoids. When, after partial drying, the polysulfone coating was immersed in a bath of water, a nonsolvent, it appeared to swell in thickness as it phase-separates. A dense skin, thinner than a micron, appeared to overlie a two-phase substructure that is punctuated with pear-shaped macrovoids. At early immersion times, this substructure is visibly bicontinuous or open-celled near the bath-side, and dispersion-like (droplets dispersed in a polymeric matrix) or closed-celled near the substrate-side. Moreover, in the bicontinuous regions, length-scales of the individual phases seem to increase across the coating thickness from the bath-side to the substrate-side. After prolonged immersion, the substructure, excluding the macrovoids, is entirely bicontinuous. The bicontinuity presumably results from a combination of spinodal decomposition and nucleation and growth plus coalescence. Quite strikingly, macrovoids are present exclusively in regions where phases are bicontinuous, and are absent where droplets are dispersed in the polymeric matrix. Evidence suggests that macrovoids result from an instability caused by a progressive rupture of polymer-rich links deeper and deeper beneath the skin, aggravated by stress localization in the rupturing network and a buildup of pressure in the polymer-poor phase (the pore space), as suspected by Grobe and Meyer in 1959.
On spinodal points and Lee-Yang edge singularities
NASA Astrophysics Data System (ADS)
An, X.; Mesterházy, D.; Stephanov, M. A.
2018-03-01
We address a number of outstanding questions associated with the analytic properties of the universal equation of state of the φ4 theory, which describes the critical behavior of the Ising model and ubiquitous critical points of the liquid–gas type. We focus on the relation between spinodal points that limit the domain of metastability for temperatures below the critical temperature, i.e. T < Tc , and Lee-Yang edge singularities that restrict the domain of analyticity around the point of zero magnetic field H for T > Tc . The extended analyticity conjecture (due to Fonseca and Zamolodchikov) posits that, for T < Tc , the Lee-Yang edge singularities are the closest singularities to the real H axis. This has interesting implications, in particular, that the spinodal singularities must lie off the real H axis for d < 4 , in contrast to the commonly known result of the mean-field approximation. We find that the parametric representation of the Ising equation of state obtained in the \\renewcommandε{\\varepsilon} \
Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.
2017-01-01
The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells. PMID:28224984
Path-integral simulation of ice Ih: The effect of pressure
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.; Ramírez, Rafael
2011-12-01
The effect of pressure on structural and thermodynamic properties of ice Ih has been studied by means of path-integral molecular dynamics simulations at temperatures between 50 and 300 K. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Positive (compression) and negative (tension) pressures have been considered, which allowed us to approach the limits for the mechanical stability of this solid water phase. We have studied the pressure dependence of the crystal volume, bulk modulus, interatomic distances, atomic delocalization, and kinetic energy. The spinodal point at both negative and positive pressures is derived from the vanishing of the bulk modulus. For P<0, the spinodal pressure changes from -1.38 to - 0.73 GPa in the range from 50 to 300 K. At positive pressure the spinodal is associated with ice amorphization, and at low temperatures it is found to be between 1.1 and 1.3 GPa. Quantum nuclear effects cause a reduction of the metastability region of ice Ih.
Phase transition dynamics for hot nuclei
NASA Astrophysics Data System (ADS)
Borderie, B.; Le Neindre, N.; Rivet, M. F.; Désesquelles, P.; Bonnet, E.; Bougault, R.; Chbihi, A.; Dell'Aquila, D.; Fable, Q.; Frankland, J. D.; Galichet, E.; Gruyer, D.; Guinet, D.; La Commara, M.; Lombardo, I.; Lopez, O.; Manduci, L.; Napolitani, P.; Pârlog, M.; Rosato, E.; Roy, R.; St-Onge, P.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration
2018-07-01
An abnormal production of events with almost equal-sized fragments was theoretically proposed as a signature of spinodal instabilities responsible for nuclear multifragmentation in the Fermi energy domain. On the other hand finite size effects are predicted to strongly reduce this abnormal production. High statistics quasifusion hot nuclei produced in central collisions between Xe and Sn isotopes at 32 and 45 A MeV incident energies have been used to definitively establish, through the experimental measurement of charge correlations, the presence of spinodal instabilities. N/Z influence was also studied.
NASA Astrophysics Data System (ADS)
Hoffman, R.; Siegel, E.
2010-03-01
(So MIScalled) ``Fert"-``Grunberg"[PRL(1988;1989)] GMR 2007 physics Nobel/Wolf/Japan-Prizes VS. decade-earlier(1973-1977) KEY FIRST Siegel at:Westin"kl"ouse/PSEG/IAEA/ABB[google:``Martin Ebner"(94-04) in financial media]/Vattenfall/Wallenbergs/nuc"el"ar-DoE Labs[at flickr.com, search on ``Giant- Magnotoresistance''; find: Intl.Conf.Mag.Alloys & Oxides(ICMAO), Haifa(Aug./1977); J.Mag.Mag.Mtls,(JMMM)7,312(1978)``unavailable: not yet scanned''/modified(last R(H) GMR Figs(7;8) deleted!!!) on JMMM/Reed-Elsevier website until 7/29/08 conveniently one- half-year after last (Nobel)award(12/2007); conveniently effectively deleted!!!; google: ``If Leaks Could Kill''; many APS/MRS Mtgs(1970s)<<<1988/1989] decade-earlier GMR: (1978)<<< (1988); 1988-1978 =10 years = one full decadeprecedence!!!] first experimental discovery in (so MIScalled) ``super''alloys [182/82, Hastelloy-X, 600, 690(!!!), Stainless-Steels: ANY/ALL!!!] generic endemic Wigner's[JAP,17,857(1946)]- disease/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/ thermo-mechanical-INstability!
The effect of spontaneous curvature on a two-phase vesicle
Cox, Geoffrey; Lowengrub, John
2015-01-01
Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature’s propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. PMID:26097287
Ising-like patterns of spatial synchrony in population biology
NASA Astrophysics Data System (ADS)
Noble, Andrew; Hastings, Alan; Machta, Jon
2014-03-01
Systems of coupled dynamical oscillators can undergo a phase transition between synchronous and asynchronous phases. In the case of coupled map lattices, the spontaneous symmetry breaking of a temporal-phase order parameter is known to exhibit Ising-like critical behavior. Here, we investigate a noisy coupled map motivated by the study of spatial synchrony in ecological populations far from the extinction threshold. Ising-like patterns of criticality, as well as spinodal decomposition and homogeneous nucleation, emerge from the nonlinear interactions of environmental fluctuations in habitat quality, local density-dependence in reproduction, and dispersal. In the mean-field limit, the correspondence to the Ising model is exact: the fixed points of our dynamical system are given by the equation of state for Weiss mean-field theory under an appropriate mapping of parameters. We have strong evidence that a quantitative correspondence persists, both near and far from the critical point, in the presence of fluctuations. Our results provide a formal connection between equilibrium statistical physics and population biology. This work is supported by the National Science Foundation under Grant No. 1344187.
NASA Astrophysics Data System (ADS)
Wang, Heping; Li, Xiaoguang; Lin, Kejun; Geng, Xingguo
2018-05-01
This paper explores the effect of the shear frequency and Prandtl number ( Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couturier, Laurent, E-mail: laurent.couturier55@ho
The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniquesmore » is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.« less
Self Organization in Compensated Semiconductors
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
2004-03-01
In partially compensated semiconductor (PCS) Fermi level is pinned to donor sub-band. Due to positional randomness and almost isoenergetic hoppings, donor-spanned electronic subsystem in PCS forms fluid-like highly mobile collective state. This makes PCS playground for pattern formation, self-organization, complexity emergence, electronic neural networks, and perhaps even for origins of life, bioevolution and consciousness. Through effects of impact and/or Auger ionization of donor sites, whole PCS may collapse (spinodal decomposition) into microblocks potentially capable of replication and protobiological activity (DNA analogue). Electronic screening effects may act in RNA fashion by introducing additional length scale(s) to system. Spontaneous quantum computing on charged/neutral sites becomes potential generator of informationally loaded microstructures akin to "Carl Sagan Effect" (hidden messages in Pi in his "Contact") or informational self-organization of "Library of Babel" of J.L. Borges. Even general relativity effects at Planck scale (R.Penrose) may affect the dynamics through (e.g.) isotopic variations of atomic mass and local density (A.A.Berezin, 1992). Thus, PCS can serve as toy model (experimental and computational) at interface of physics and life sciences.
NASA Astrophysics Data System (ADS)
Kendon, Vivien M.; Cates, Michael E.; Pagonabarraga, Ignacio; Desplat, J.-C.; Bladon, Peter
2001-08-01
The late-stage demixing following spinodal decomposition of a three-dimensional symmetric binary fluid mixture is studied numerically, using a thermodynamically consistent lattice Boltzmann method. We combine results from simulations with different numerical parameters to obtain an unprecedented range of length and time scales when expressed in reduced physical units. (These are the length and time units derived from fluid density, viscosity, and interfacial tension.) Using eight large (2563) runs, the resulting composite graph of reduced domain size l against reduced time t covers 1 [less, similar] l [less, similar] 105, 10 [less, similar] t [less, similar] 108. Our data are consistent with the dynamical scaling hypothesis that l(t) is a universal scaling curve. We give the first detailed statistical analysis of fluid motion, rather than just domain evolution, in simulations of this kind, and introduce scaling plots for several quantities derived from the fluid velocity and velocity gradient fields. Using the conventional definition of Reynolds number for this problem, Re[phi] = ldl/dt, we attain values approaching 350. At Re[phi] [greater, similar] 100 (which requires t [greater, similar] 106) we find clear evidence of Furukawa's inertial scaling (l [similar] t2/3), although the crossover from the viscous regime (l [similar] t) is both broad and late (102 [less, similar] t [less, similar] 106). Though it cannot be ruled out, we find no indication that Re[phi] is self-limiting (l [similar] t1/2) at late times, as recently proposed by Grant & Elder. Detailed study of the velocity fields confirms that, for our most inertial runs, the RMS ratio of nonlinear to viscous terms in the Navier Stokes equation, R2, is of order 10, with the fluid mixture showing incipient turbulent characteristics. However, we cannot go far enough into the inertial regime to obtain a clear length separation of domain size, Taylor microscale, and Kolmogorov scale, as would be needed to test a recent ‘extended’ scaling theory of Kendon (in which R2 is self-limiting but Re[phi] not). Obtaining our results has required careful steering of several numerical control parameters so as to maintain adequate algorithmic stability, efficiency and isotropy, while eliminating unwanted residual diffusion. (We argue that the latter affects some studies in the literature which report l [similar] t2/3 for t [less, similar] 104.) We analyse the various sources of error and find them just within acceptable levels (a few percent each) in most of our datasets. To bring these under significantly better control, or to go much further into the inertial regime, would require much larger computational resources and/or a breakthrough in algorithm design.
Supersonic beams at high particle densities: model description beyond the ideal gas approximation.
Christen, Wolfgang; Rademann, Klaus; Even, Uzi
2010-10-28
Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankem, Sreeramamurthy; Perea, Daniel E.; Kolli, R. Prakash
This report details the research activities carried out under DOE-NEUP award number DE-NE0000724 concerning the evolution of structural and mechanical properties during thermal aging of CF–3 and CF–8 cast duplex stainless steels (CDSS). The overall objective of this project was to use state-of-the-art characterization techniques to elucidate trends and phenomena in the mechanical and structural evolution of cast duplex stainless steels (CDSS) during thermal aging. These steels are commonly used as structural materials in commercial light water nuclear power plants, undergoing aging for decades in operation as cooling water pipes, pump casings, valve bodies, etc. During extended exposure to thesemore » conditions, CDSS are known to undergo a change in mechanical properties resulting in a loss of ductility, i.e. embrittlement. While it is generally accepted that structural changes within the ferrite phase, such as decomposition into iron (Fe)-rich and chromium (Cr)-rich domains, lead to the bulk embrittlement of the steels, many questions remain as to the mechanisms of embrittlement at multiple length scales. This work is intended to shed insight into the atomic level composition changes, associated kinetic mechanisms, and effects of changing phase structure on micro- and nano-scale deformation that lead to loss of impact toughness and tensile ductility in these steels. In general, this project provides a route to answer some of these major questions using techniques such as 3-dimensional (3-D) atom probe tomography (APT) and real-microstructure finite element method (FEM) modeling, which were not readily available when these steels were originally selected for service in light water reactors. Mechanical properties evaluated by Charpy V-notch impact testing (CVN), tensile testing, and microhardness and nanohardness measurements were obtained for each condition and compared with the initial baseline properties to view trends in deformation behavior during aging. Concurrent analysis of the microstructure and nanostructure by atom probe tomography (APT) and transmission electron microscopy (TEM) provide mechanistic insight into the kinetic and mechanical behavior occurring on the nano-scale. The presence and morphology of the ferrite, austenite, and carbide phases have been characterized, and formation of new phases during aging, including spinodal decomposition products (α- and α'-ferrite) and G-phase, have been observed. The mechanical and structural characterization have been used to create accurate FEM models based on the real micro- and nano-structures of the systems. These models provide new insight into the local deformation behavior of these steels and the effects of each individual phase (including ferrite, austenite, carbides, and spinodal decomposition products) on the evolving bulk mechanical behavior of the system. The project was divided into three major tasks: 1. Initial Microstructure and Mechanical Property Survey and Initiate Heat Treatment; 2. Microstructural Characterization and Mechanical Property Testing During Aging; and 3. Microstructure-based Finite Element Modeling. Each of these tasks was successfully executed, resulting in reliable data and analysis that add to the overall body of work on the CDSS materials. Baseline properties and aging trends in mechanical data confirm prior observations and add new insights into the mechanical behavior of the steels. Structural characterization on multiple length scales provides new information on phase changes occurring during aging and sheds light on the kinetic processes occurring at the atomic scale. Furthermore, a combination of mechanical testing and microstructural characterization techniques was utilized to design FEM models of local deformation behavior of the ferrite and austenite phases, providing valuable new information regarding the effects of each of the microstructural components on the hardening and embrittlement processes. The data and analysis presented in this report and the publication associated with this project (§V) increase the understanding of aging and deformation in CF–3 and CF–8 steels. These results provide valuable information that can be utilized to aid in making informed decisions regarding the ongoing use of these steels in commercial nuclear infrastructure.« less
Heterogeneous nucleation on rough surfaces: Generalized Gibbs' approach.
Abyzov, Alexander S; Schmelzer, Jürn W P; Davydov, Leonid N
2017-12-07
Heterogeneous nucleation (condensation) of liquid droplets from vapor (gas) on a defective solid surface is considered. The vapor is described by the van der Waals equation of state. The dependence of nucleating droplet parameters on droplet size is accounted for within the generalized Gibbs approach. As a surface defect, a conic void is taken. This choice allows us to simplify the analysis and at the same time to follow the main aspects of the influence of the surface roughness on the nucleation process. Similar to condensation on ideal planar surfaces, the contact angle and catalytic factor for heterogeneous nucleation on a rough surface depend on the degree of vapor overcooling. In the case of droplet formation on a hydrophilic surface of a conic void, the nucleation rate considerably increases in comparison with the condensation on a planar interface. In fact, the presence of a defect on the hydrophilic surface leads to a considerable shift of the spinodal towards lower supersaturation in comparison with heterogeneous nucleation on a planar interface. With the decrease in the void cone angle, the heterogeneous spinodal approaches the binodal, and the region of metastability is diminished at the expense of the instability region.
Gauge-invariant effective potential: Equilibrium and nonequilibrium aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyanovsky, D.; Brahm, D.; Holman, R.
1996-07-01
We propose a gauge-invariant formulation of the effective potential in terms of a gauge-invariant order parameter, for the Abelian Higgs model. The one-loop contribution at zero and finite temperature is computed explicitly, and the leading terms in the high temperature expansion are obtained. The result is contrasted with the effective potential obtained in several covariant gauge-fixing schemes, and the gauge-invariant quantities that can be reliably extracted from these are identified. It is pointed out that the gauge-invariant effective potential in the one-loop approximation is complex for {ital all} {ital values} of the order parameter between the maximum and the minimummore » of the tree level potential, both at zero and nonzero temperatures. The imaginary part is related to long-wavelength instabilities towards phase separation. We study the real-time dynamics of initial states in the spinodal region, and relate the imaginary part of the effective potential to the growth rate of equal-time gauge-invariant correlation functions in these states. We conjecture that the spinodal instabilities may play a role in nonequilibrium processes {ital inside} the nucleating bubbles if the transition is first order. {copyright} {ital 1996 The American Physical Society.}« less
Thermodynamic and Dynamic Aspects of Ice Nucleation
NASA Technical Reports Server (NTRS)
Barahona, Donifan
2018-01-01
It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.
Au particle formation on the electron beam induced membrane
NASA Astrophysics Data System (ADS)
Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Sae-Joong; Kim, Sung-In; Park, Nam Kyou; Park, Doo-Jae; Choi, Soo Bong; Kim, Yong-Sang
2017-02-01
Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized by using a portable solidstate nanopore (MinION) with an electrical detection technique. However, there have been several reports about the high error rates of the fabricated nanopore device, possibly due to an electrical double layer formed inside the pore channel. The current DNA sequencing technology utilized is based on the optical detection method. In order to utilize the current optical detection technique, we will present the formation of the Au nano-pore with Au particle under the various electron beam irradiations. In order to provide the diffusion of Au atoms, a 2 keV electron beam irradiation has been performed During electron beam irradiations by using field emission scanning electron microscopy (FESEM), Au and C atoms would diffuse together and form the binary mixture membrane. Initially, the Au atoms diffused in the membrane are smaller than 1 nm, below the detection limit of the transmission electron microscopy (TEM), so that we are unable to observe the Au atoms in the formed membrane. However, after several months later, the Au atoms became larger and larger with expense of the smaller particles: Ostwald ripening. Furthermore, we also observe the Au crystalline lattice structure on the binary Au-C membrane. The formed Au crystalline lattice structures were constantly changing during electron beam imaging process due to Spinodal decomposition; the unstable thermodynamic system of Au-C binary membrane. The fabricated Au nanopore with an Au nanoparticle can be utilized as a single molecule nanobio sensor.
NASA Astrophysics Data System (ADS)
Abedi, Mohammad; Abdollah-zadeh, Amir; Bestetti, Massimiliano; Vicenzo, Antonello; Serafini, Andrea; Movassagh-Alanagh, Farid
2018-06-01
In the present study, the effects of phase transformations on the structure and mechanical properties of TiSiCN coatings were investigated. TiSiCN nanocomposite coatings were deposited on AISI H13 hot-work tool steel by a pulsed direct current plasma-enhanced chemical vapor deposition process at 350 or 500 °C, using TiCl4 and SiCl4 as the precursors of Ti and Si, respectively, in a CH4/N2/H2/Ar plasma as the source of carbon and nitrogen and reducing environment. Some samples deposited at 350 °C were subsequently annealed at 500 °C under Ar atmosphere. Super hard self-lubricant TiSiCN coatings, having nanocomposite structure consisting of TiCN nanocrystals and amorphous carbon particles embedded in an amorphous SiCNx matrix, formed through spinodal decomposition in the specimens deposited or annealed at 500 °C. In addition, it was revealed that either uncomplete or relatively coarse phase segregation of titanium compounds was achieved during deposition at 350 °C and 500 °C, respectively. On the contrary, by deposition at 350 °C followed by annealing at 500 °C, a finer structure was obtained with a sensible improvement of the mechanical properties of coatings. Accordingly, the main finding of this work is that significant enhancement in key properties of TiSiCN coatings, such as hardness, adhesion and friction coefficient, can be obtained by deposition at low temperature and subsequent annealing at higher temperature, thanks to the formation of a fine grained nanocomposite structure.
NASA Astrophysics Data System (ADS)
Asphahani, Aziz; Siegel, Sidney; Siegel, Edward
2010-03-01
Siegel [[J.Mag.Mag.Mtls.7,312(78); PSS(a)11,45(72); Semis.& Insuls.5(79)] (at: ORNL, ANS, Westin``KL"ouse, PSEG, IAEA, ABB) warning of old/new nuclear-reactors/spent-fuel-casks/refineries/ jet/missile/rocket-engines austenitic/FCC Ni/Fe-based (so MIS- called)``super"alloys(182/82;Hastelloy-X; 600;304/304L-SSs; 690 !!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's- diseas(WD)[J.Appl.Phys.17,857(46)]; Ostwald-ripening; spinodal- decomposition; overageing-embrittlement; thermomechanical- INstability: Mayo[Google: ``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: [Siegel<<<``Fert"(88) 2007-Nobel/Wolf/Japan-prizes]necessitating NRC inspections on 40+25=65 Westin``KL"ouse PWRs(12/06)]; Lai[Met.Trans.AIME,9A,827 (78)]-Sabol-Stickler[PSS(70)]; Ashpahani[Intl.Conf. H in Metals (77)]; Russell[Prog. Mtls.Sci.(83)]; Pollard[last UCS rept. (9/95)]; Lofaro[BNL/DOE/NRC Repts.]; Pringle[Nuclear-Power:From Physics to Politics(79)]; Hoffman[animatedsoftware.com],...what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrit- tlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n``u''tional-la``v''atories sabotage!!!
NASA Astrophysics Data System (ADS)
Asphahani, Aziz; Siegel, Sidney; Siegel, Edward
2010-03-01
Carbides solid-state chemistry domination of old/new nuclear- reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe-based(so miscalled)``super"alloys(182/82; Hastelloy-X,600,304/304L-SSs,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-diseas(WD)[J.Appl.Phys.17,857 (1946)]/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google:``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: Siegel[J.Mag.Mag.Mtls.7,312 (1978)]<<<``Fert"-"Gruenberg"(1988/89)2007-physics Nobel/Wolf/ Japan-prizes]necessitating NRC-inspections of 40+25 = 65 Westin- ``KLouse PWRs(12/2006)]-Lai[Met.Trans.AIME,9A,827(1978)]-Sabol- Stickler[Phys.Stat.Sol.(1970)]-Ashpahani[Intl.Conf. H in Metals, Paris(1977]-Russell[Prog.Mtls.Sci.(1983)]-Pollard[last UCS rept. (9/1995)]-Lofaro[BNL/DOE/NRC Repts.]-Pringle[Nuclear-Power:From Physics to Politics(1979)]-Hoffman[animatedsoftware.com], what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embritt- lement caused brittle-fracture cracking from early/ongoing AEC/ DOE-n"u"tional-la"v"atories sabotage!!!
NASA Astrophysics Data System (ADS)
O'Grady, Joseph; Bument, Arlden; Siegel, Edward
2011-03-01
Carbides solid-state chemistry domination of old/new nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines is austenitic/FCC Ni/Fe-based (so miscalled)"super"alloys(182/82;Hastelloy-X,600,304/304L-SSs,...690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-disease(WD) [J.Appl.Phys.17,857 (46)]/Ostwald-ripening/spinodal-decomposition/overageing-embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google: fLeaksCouldKill > ; - Siegel [ J . Mag . Mag . Mtls . 7 , 312 (78) = atflickr . comsearchonGiant - Magnotoresistance [Fert" [PRL(1988)]-"Gruenberg"[PRL(1989)] 2007-Nobel]necessitating NRC inspections on 40+25=65 Westin"KL"ouse PWRs(12/2006)]-Lai [Met.Trans.AIME, 9A,827(78)]-Sabol-Stickler[Phys.Stat.Sol.(70)]-Ashpahani[ Intl.Conf. Hydrogen in Metals, Paris(1977]-Russell [Prog.Mtls.Sci.(1983)]-Pollard [last UCS rept.(9/1995)]-Lofaro [BNL/DOE/NRC Repts.]-Pringle [ Nuclear-Power:From Physics to Politics(1979)]-Hoffman [animatedsoftware.com], what DOE/NRC MISlabels as "butt-welds" "stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrittlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n"u"tional-la"v"atories sabotage!!!
Structuring of Fluid Adlayers upon Ongoing Unimolecular Adsorption
NASA Astrophysics Data System (ADS)
Schaefer, C.
2018-01-01
Fluids with spatial density variations of single or mixed molecules play a key role in biophysics, soft matter, and materials science. The fluid structures usually form via spinodal decomposition or nucleation following an instantaneous destabilization of the initially disordered fluid. However, in practice, an instantaneous quench is often not viable, and the rate of destabilization may be gradual rather than instantaneous. In this work we show that the commonly used phenomenological descriptions of fluid structuring are inadequate under these conditions. We come to that conclusion in the context of surface catalysis, where we employ kinetic Monte Carlo simulations to describe the unimolecular adsorption of gaseous molecules onto a metal surface. The adsorbates diffuse at the surface and, as a consequence of lateral interactions and due to an ongoing increase of the surface coverage, phase separate into coexisting low- and high-density regions. The typical size of these regions turns out to depend much more strongly on the rate of adsorption than predicted from recently reported phenomenological models. We discuss how this finding contributes to the fundamental understanding of the crossover from liquid-liquid to liquid-solid demixing of solution-cast polymer blends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials – CF3, CF3M, CF8, and CF8M – were thermally aged for 1500 hours at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/ α`, precipitationmore » of G-phase in the δ-ferrite, segregation of solute to the austenite/ ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. A comprehensive model is being developed to correlate the microstructural evolution with mechanical behavior and simulation for predictive evaluations of LWR coolant system components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun; Zou Hong; Li Cong
2006-12-15
The effect of microstructural evolution on hardening behavior of 17-4PH stainless steel in long-term aging at 350 deg. C was studied by X-ray diffraction and transmission electron microscopy. The results showed that there is the matrix of lath martensite and nanometer-sized particles of {epsilon}-Cu precipitated from the matrix after the alloy is solution treated and tempered. When the alloy was aged 350 deg. C for 9 months, {alpha}-{alpha}' spinodal decomposition occurred along the grain boundaries and caused an increase in hardness which compensated for the weakening effect due to ripening of the {epsilon}-copper precipitates. Upon further aging to 12 months,more » the Cr-rich {alpha}'-phase and M{sub 23}C{sub 6} precipitated, both of which strengthened the alloy considerably and led to enhanced hardening despite the continued softening by overaging of the {epsilon}-copper precipitates. With the aging time extended to 15 months, substantial reversed austenite transformed and precipitation of the intermetallic G-phase occurred near the {epsilon}-Cu precipitates in the matrix. The abundant amount of reversed austenite that transformed led to rapid softening.« less
Physical limit of stability in supercooled D2O and D2O+H2O mixtures
NASA Astrophysics Data System (ADS)
Kiselev, S. B.; Ely, J. F.
2003-01-01
The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.
Nano/macro porous bioactive glass scaffold
NASA Astrophysics Data System (ADS)
Wang, Shaojie
Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.
Self-assembled structural color in nature
NASA Astrophysics Data System (ADS)
Parnell, Andrew
The vibrancy and variety of structural color found in nature has long been well-known; what has only recently been discovered is the sophistication of the physics that underlies these effects. In the talk I will discuss some of our recent studies of the structures responsible for color in bird feathers and beetle elytra, based on structural characterization using small angle x-ray scattering, x-ray tomography and optical modeling. These have enabled us to study a large number of structural color exhibiting materials and look for trends in the structures nature uses to provide these optical effects. In terms of creating the optical structure responsible for the color of the Eurasian Jay feathers (Garrulus glandarius) the nanostructure is produced by a phase-separation process that is arrested at a late stage; mastery of the color is achieved by control over the duration of this phase-separation process. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. AJP acknowledges financial support via the APS/DPOLY exchange lectureship 2017.
Rank-based decompositions of morphological templates.
Sussner, P; Ritter, G X
2000-01-01
Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techniques in the nonlinear domain with applications in image processing. The mathematical basis for these investigations is the new theory of rank within minimax algebra. Thus far, only minimax decompositions of rank 1 and rank 2 matrices into outer product expansions are known to the image processing community. We derive a heuristic algorithm for the decomposition of matrices having arbitrary rank.
Processing of alnico permanent magnets by advanced directional solidification methods
Zou, Min; Johnson, Francis; Zhang, Wanming; ...
2016-07-05
Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (H ci) of 2.0 kOe, a remanence (B r) of 10.2 kG, and an energy product (BH) max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of highermore » Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m 2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti composition. As a result, higher Ti compositions did not display the preferred spinodal microstructure, explaining their inferior magnetic properties.« less
NASA Astrophysics Data System (ADS)
Sanz, Eduardo
2009-03-01
We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.
Mechanisms for Non-Linear Optical Behaviour in Molecular Fluids
NASA Astrophysics Data System (ADS)
McEwan, Kenneth J.
Available from UMI in association with The British Library. Requires signed TDF. This thesis describes a study of the non-linear optical mechanisms that allow high power laser radiation to interact and change the optical properties of fluid based media. Attention is focused on understanding the finite time-scale of the microscopic response and its influence on the experimental observation. Two classes of material are studied: liquid crystalline fluids in their isotropic phase and suspensions of particles capable of absorbing the laser radiation. In the former case a quantitative description of the optical transients seen in two experiments, degenerate four wave mixing and "z-scan" (self-focusing), is obtained. This description is based upon an analysis of refractive index changes associated with laser-induced molecular reorientation and with thermal effects, for molecules that absorb the laser radiation. Material parameters for a large range of nematogens are obtained by applying this description to experimental data. In the absorbing colloidal suspensions a novel mechanism for degenerate four wave mixing is identified and studied. The experimental results are suggestive of a mechanism in which vapour bubbles nucleate explosively around the colloidal particles and drive a coherent sound -wave excitation of the fluid. Theoretical studies confirm that rapid bubble nucleation is possible by a process of spinodal decomposition under the experimental conditions and it is shown that this mechanism can be expected to give rise to transient behaviour of the type observed. Finally laser-induced refractive index changes in a colloidal suspension in a solid matrix are studied. The dynamics of the formation of refractive index gratings is examined and correlated with microscopically observed structural changes in the matrix. ftn*Funded by DRA, Electronics Division (formerly RSRE).
Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology
NASA Astrophysics Data System (ADS)
Davis, Ryan Scott
The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.
Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena
NASA Astrophysics Data System (ADS)
Jin, Yongmei M.; Wang, Yu U.; Ren, Yang
2015-12-01
Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.
NASA Astrophysics Data System (ADS)
Perlekar, Prasad; Pal, Nairita; Pandit, Rahul
2017-03-01
We study two-dimensional (2D) binary-fluid turbulence by carrying out an extensive direct numerical simulation (DNS) of the forced, statistically steady turbulence in the coupled Cahn-Hilliard and Navier-Stokes equations. In the absence of any coupling, we choose parameters that lead (a) to spinodal decomposition and domain growth, which is characterized by the spatiotemporal evolution of the Cahn-Hilliard order parameter ϕ, and (b) the formation of an inverse-energy-cascade regime in the energy spectrum E(k), in which energy cascades towards wave numbers k that are smaller than the energy-injection scale kin j in the turbulent fluid. We show that the Cahn-Hilliard-Navier-Stokes coupling leads to an arrest of phase separation at a length scale Lc, which we evaluate from S(k), the spectrum of the fluctuations of ϕ. We demonstrate that (a) Lc ~ LH, the Hinze scale that follows from balancing inertial and interfacial-tension forces, and (b) Lc is independent, within error bars, of the diffusivity D. We elucidate how this coupling modifies E(k) by blocking the inverse energy cascade at a wavenumber kc, which we show is ≃2π/Lc. We compare our work with earlier studies of this problem.
Perlekar, Prasad; Pal, Nairita; Pandit, Rahul
2017-03-21
We study two-dimensional (2D) binary-fluid turbulence by carrying out an extensive direct numerical simulation (DNS) of the forced, statistically steady turbulence in the coupled Cahn-Hilliard and Navier-Stokes equations. In the absence of any coupling, we choose parameters that lead (a) to spinodal decomposition and domain growth, which is characterized by the spatiotemporal evolution of the Cahn-Hilliard order parameter ϕ, and (b) the formation of an inverse-energy-cascade regime in the energy spectrum E(k), in which energy cascades towards wave numbers k that are smaller than the energy-injection scale kin j in the turbulent fluid. We show that the Cahn-Hilliard-Navier-Stokes coupling leads to an arrest of phase separation at a length scale Lc, which we evaluate from S(k), the spectrum of the fluctuations of ϕ. We demonstrate that (a) Lc ~ LH, the Hinze scale that follows from balancing inertial and interfacial-tension forces, and (b) Lc is independent, within error bars, of the diffusivity D. We elucidate how this coupling modifies E(k) by blocking the inverse energy cascade at a wavenumber kc, which we show is ≃2π/Lc. We compare our work with earlier studies of this problem.
Role of PO4 tetrahedron in LiFePO4 and FePO4 system.
Zeng, Yuewu
2015-06-01
Using high resolution transmission electron microscopy with image simulation and Fourier analysis, the Li1- x FePO4 (x < 0.01), Li1- x FePO4 (x ∼ 0.5), and FePO4 particles, prepared by charging or discharging the 053048 electrochemical cells (thickness: 5 mm, width: 30 mm, height: 48 mm) and dismantled inside an Ar-filled dry box, were investigated. The high resolution images reveal: (1) the solid solution of Li1- x FePO4 (x < 0.01) contains some missing Li ions leading PO4 group distorted around M1 tunnel of the unit cell; (2) the texture of the particles of Li1- x FePO4 (x ∼0.5) has homogeneously distributed compositional domains of LiFePO4 and FePO4 resulting from spinodal decomposition which promote Li ion easily getting into the particle due to uphill diffusion, (3) the particles of FePO4 formed in charging have heavily distorted lattice and contain some isolated LiFePO4 , (4) interface between LiFePO4 and FePO4 and between amorphous and crystal region provides the lattice distortion of small polarons. © 2015 Wiley Periodicals, Inc.
Kinetics and Equilibrium of Age-Induced Precipitation in Cu-4 At. Pct Ti Binary Alloy
NASA Astrophysics Data System (ADS)
Semboshi, Satoshi; Amano, Shintaro; Fu, Jie; Iwase, Akihiro; Takasugi, Takayuki
2017-03-01
Transformation kinetics and phase equilibrium of metastable and stable precipitates in age-hardenable Cu-4 at. pct Ti binary alloy have been investigated by monitoring the microstructural evolution during isothermal aging at temperatures between 693 K (420 °C) and 973 K (700 °C). The microstructure of the supersaturated solid solution evolves in four stages: compositional modulation due to spinodal decomposition, continuous precipitation of the needle-shaped metastable β'-Cu4Ti with a tetragonal structure, discontinuous precipitation of cellular components containing stable β-Cu4Ti lamellae with an orthorhombic structure, and eventually precipitation saturation at equilibrium. In specimens aged below 923 K (650 °C), the stable β-Cu4Ti phase is produced only due to the cellular reaction, whereas it can be also directly obtained from the intergranular needle-shaped β'-Cu4Ti precipitates in specimens aged at 973 K (700 °C). The precipitation kinetics and phase equilibrium observed for the specimens aged between 693 K (420 °C) and 973 K (700 °C) were characterized in accordance with a time-temperature-transformation (TTT) diagram and a Cu-Ti partial phase diagram, which were utilized to determine the alloy microstructure, strength, and electrical conductivity.
Soft matter: rubber and networks
NASA Astrophysics Data System (ADS)
McKenna, Gregory B.
2018-06-01
Rubber networks are important and form the basis for materials with properties ranging from rubber tires to super absorbents and contact lenses. The development of the entropy ideas of rubber deformation thermodynamics provides a powerful framework from which to understand and to use these materials. In addition, swelling of the rubber in the presence of small molecule liquids or solvents leads to materials that are very soft and ‘gel’ like in nature. The review covers the thermodynamics of polymer networks and gels from the perspective of the thermodynamics and mechanics of the strain energy density function. Important relationships are presented and experimental results show that the continuum ideas contained in the phenomenological thermodynamics are valid, but that the molecular bases for some of them remain to be fully elucidated. This is particularly so in the case of the entropic gels or swollen networks. The review is concluded with some perspectives on other networks, ranging from entropic polymer networks such as thermoplastic elastomers to physical gels in which cross-link points are formed by glassy or crystalline domains. A discussion is provided for other physical gels in which the network forms a spinodal-like decomposition, both in thermoplastic polymers that form a glassy network upon phase separation and for colloidal gels that seem to have a similar behavior.
Low-temperature spin dynamics of Mn-rich Mn(Ga)As nanoclusters embedded in a GaAs matrix
NASA Astrophysics Data System (ADS)
Wang, Weizhu; Deng, Jiajun; Lu, Jun; Sun, Baoquan; Zhao, Jianhua
2008-03-01
Recently, the composite systems of Mn-rich Mn(Ga)As nanoclusters embedded in GaAs matrices have received an increasing attention due to the large magneto-optical and magneto-resistance effects at room temperature which could be applied to spin-electronic devices. In this work, we report the low-temperature spin dynamic behaviours including memory effects and slow magnetic relaxation of such composite systems. The systems can be formed by in situ postgrowth annealing of (Ga,Mn)As films at 650 ^oC for 10 min because of spinodal decomposition. High-resolution TEM images show zincblende Mn-rich Mn(Ga)As nanoclusters with a diameter in the range of 10-20 nm embedded in a GaAs matrix. From zero-field cooled and field cooled measurements, we can observe a clear bifurcation of the two curves demonstrating the existence of the spin-glass-like phase below the blocking temperature in the systems with high Mn concentration. Memory effects and slow magnetic relaxation, the typical characteristics of spin-glass-like phases, are also detected, and the hierarchical model is confirmed to be in accordance with such low-temperature behaviours. On the other hand, for samples with low Mn content, ferromagnetic order remains up to 360K.
Collapse kinetics of vibrated granular chains
NASA Astrophysics Data System (ADS)
Jeng, Pei-Ren; Chen, Kuan Hua; Hwang, Gwo-jen; Lien, Chenhsin; To, Kiwing; Chou, Y. C.
2011-12-01
The kinetics of the collapse of the coil state into condensed states is studied with vibrated granular chain composed of N metal beads partially immersed in water. The radius of gyration of the chain, Rg is measured. For short chains (N < 140), disk-like condensed state is formed and Rg decreases with time such that the function ΔRg2 (≡ Rg2 - Rg2(∞)) = A e-t/τ, where the relaxation time τ follows a power-law dependence on the chain length N with an exponent γ = 1.9 ± 0.2. For the chains with length N ≥ 300, rod-like clusters are observed during the initial stage of collapse and Rg2 = Rg2(0) - Btβ, with β = 0.6 ± 0.1. In the coarsening stage, the exponential dependence of ΔRg2 on time still holds, however, the relaxation time τ fluctuates and has no simple dependence on N. Furthermore, the time dependence of the averaged radius of gyration of the individual clusters, Rg,cl can be described by the theory of Lifshitz and Slyozov. A peak in the structure function of long chains is observed in the initial stage of the collapse transition. The collapse transition in the bead chains is a first order phase transition. However, features of the spinodal decomposition are also observed.
Perlekar, Prasad; Pal, Nairita; Pandit, Rahul
2017-01-01
We study two-dimensional (2D) binary-fluid turbulence by carrying out an extensive direct numerical simulation (DNS) of the forced, statistically steady turbulence in the coupled Cahn-Hilliard and Navier-Stokes equations. In the absence of any coupling, we choose parameters that lead (a) to spinodal decomposition and domain growth, which is characterized by the spatiotemporal evolution of the Cahn-Hilliard order parameter ϕ, and (b) the formation of an inverse-energy-cascade regime in the energy spectrum E(k), in which energy cascades towards wave numbers k that are smaller than the energy-injection scale kin j in the turbulent fluid. We show that the Cahn-Hilliard-Navier-Stokes coupling leads to an arrest of phase separation at a length scale Lc, which we evaluate from S(k), the spectrum of the fluctuations of ϕ. We demonstrate that (a) Lc ~ LH, the Hinze scale that follows from balancing inertial and interfacial-tension forces, and (b) Lc is independent, within error bars, of the diffusivity D. We elucidate how this coupling modifies E(k) by blocking the inverse energy cascade at a wavenumber kc, which we show is ≃2π/Lc. We compare our work with earlier studies of this problem. PMID:28322219
Microstructural evolution in a 17-4 PH stainless steel after aging at 400 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murayama, M.; Hono, K.; Katayama, Y.
1999-02-01
The microstructure of 17-4 PH stainless steel at various stages of heat treatment, i.e., after solution heat treatment, tempering at 580 C, and long-term aging at 400 C, have been studied by atom probe field ion microscopy (APFIM) and transmission electron microscopy (TEM). The solution-treated specimen consists largely of martensite with a small fraction of {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. After tempering for 4 hours as 580 C, coherent Cumore » particles precipitate in the martensite phase. At this stage, the Cr concentration in the martensite phase is still uniform. After 5000 hours aging at 400 C, the martensite spinodaly decomposes into Fe-rich {alpha} and Cr-enriched {alpha}{prime}. In addition, fine particles of the G-phase (structure type D8{sub a}, space group Fm{bar 3}m) enriched in Si, Ni, and Mn have been found in intimate contact with the Cu precipitates. Following spinodal decomposition of the martensite phase, G-phase precipitation occurs after long-term aging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.
Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn 1–yMnyTe 1–xSe x phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments andmore » predict significantly higher spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn 1–yMn yTe 1–xSe x indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less
Method for producing microchannels in drawn material
D'urso, Brian R [Clinton, TN; Simpson, John T [Clinton, TN
2009-12-29
A microchannel glass article includes a glass body having a porous, spinodal nanostructure and defining at least one microchannel extending from a surface of the article substantially through the article.
Nano-defect management in directed self-assembly of block copolymers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Azuma, Tsukasa; Seino, Yuriko; Sato, Hironobu; Kasahara, Yusuke; Kodera, Katsuyoshi; Jiravanichsakul, Phubes; Hayakawa, Teruaki; Yoshimoto, Kenji; Takenaka, Mikihito
2017-03-01
Directed self-assembly (DSA) of block copolymers (BCPs) has been expected to become one of the most promising next generation lithography candidates for sub-15 nm line patterning and sub-20 nm contact hole patterning. In order to provide the DSA lithography to practical use in advanced semiconductor device manufacturing, defect mitigation in the DSA materials and processes is the primary challenge. We need to clarify the defect generation mechanism using in-situ measurement of self-assembling processes of BCPs in cooperation with modeling approaches to attain the DSA defect mitigation. In this work, we thus employed in-situ atomic force microscope (AFM) and grazing-incidence small angle X-ray scattering (GI-SAXS) and investigated development of surface morphology as well as internal structure during annealing processes. Figure 1 shows series of the AFM images of PMAPOSS-b-PTFEMA films during annealing processes. The images clearly show that vitrified sponge-like structure without long-range order in as-spun film transforms into lamellar structure and that the long range order of the lamellar structure increases with annealing temperature. It is well-known that ordering processes of BCPs from disordered state in bulk progress via nucleation and growth. In contrary to the case of bulk, the observed processes seem to be spinodal decomposition. This is because the structure in as-spun film is not the concentration fluctuation of disordered state but the vitrified sponge-like structure. The annealing processes induce order-order transition from non-equilibrium ordered-state to the lamellar structure. The surface tension assists the transition and directs the orientation. Figure 2 shows scattering patterns of (a) vicinity of film top and (b) whole sample of the GI-SAXS. We can find vertically oriented lamellar structure in the vicinity of film top while horizontally oriented lamellar structures in the vicinity of film bottom, indicating that the GI-SAXS measurement can clarify the variation of the morphologies in depth direction and that the surface tension affects the orientation of the lamellar structure. Finally a combination of the time development data in the in-situ AFM and the GI-SAXS is used to develop a kinetic modeling for prediction of dynamical change in three-dimensional nano-structures. A part of this work was funded by the New Energy and Industrial Technology Development Organization (NEDO) in Japan under the EIDEC project.
Zhou, Lin; Tang, Wei; Ke, Liqin; ...
2017-05-08
Further property enhancement of alnico, an attractive near-term, non-rare-earth permanent magnet alloy system, primarily composed of Al, Ni, Co, and Fe, relies on improved morphology control and size refinement of its complex spinodally decomposed nanostructure that forms during heat-treatment. Using a combination of transmission electron microscopy and atom probe tomography techniques, this study evaluates the magnetic properties and microstructures of an isotropic 32.4Fe-38.1Co-12.9Ni-7.3Al-6.4Ti-3.0Cu (wt.%) alloy in terms of processing parameters such as annealing temperature, annealing time, application of an external magnetic field, as well as low-temperature “draw” annealing. Optimal spinodal morphology and spacing is formed within a narrow temperature andmore » time range (~840 °C and 10 min) during thermal-magnetic annealing (MA). The ideal morphology is a mosaic structure consisting of periodically arrayed ~40 nm diameter (Fe-Co)-rich rods (α 1 phase) embedded in an (Al-Ni)-rich (α 2 phase) matrix. A Cu-enriched phase with a size of ~3–5 nm is located at the corners of two adjacent {110} facets of the α 1 phase. The MA process significantly increased remanence (B r) (~40–70%) of the alloy due to biased elongation of the α 1 phase along the <100> crystallographic direction, which is closest in orientation to the applied magnetic field. As a result, the optimum magnetic properties of the alloy with an intrinsic coercivity (H cj) of 1845 Oe and a maximum energy product (BH max) of 5.9 MGOe were attributed to the uniformity of the mosaic structure.« less
NASA Astrophysics Data System (ADS)
Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng
2017-08-01
Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.
Self-assembled metal nano-multilayered film prepared by co-sputtering method
NASA Astrophysics Data System (ADS)
Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping
2018-03-01
Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.
Thermal decomposition behavior of nano/micro bimodal feedstock with different solids loading
NASA Astrophysics Data System (ADS)
Oh, Joo Won; Lee, Won Sik; Park, Seong Jin
2018-01-01
Debinding is one of the most critical processes for powder injection molding. The parts in debinding process are vulnerable to defect formation, and long processing time of debinding decreases production rate of whole process. In order to determine the optimal condition for debinding process, decomposition behavior of feedstock should be understood. Since nano powder affects the decomposition behavior of feedstock, nano powder effect needs to be investigated for nano/micro bimodal feedstock. In this research, nano powder effect on decomposition behavior of nano/micro bimodal feedstock has been studied. Bimodal powders were fabricated with different ratios of nano powder, and the critical solids loading of each powder was measured by torque rheometer. Three different feedstocks were fabricated for each powder depending on solids loading condition. Thermogravimetric analysis (TGA) experiment was carried out to analyze the thermal decomposition behavior of the feedstocks, and decomposition activation energy was calculated. The result indicated nano powder showed limited effect on feedstocks in lower solids loading condition than optimal range. Whereas, it highly influenced the decomposition behavior in optimal solids loading condition by causing polymer chain scission with high viscosity.
Invar alloys: information from the study of iron meteorites.
NASA Astrophysics Data System (ADS)
Goldstein, J. I.; Williams, D. B.; Zhang, J.; Clarke, R.
The iron meteorites were slow cooled (<108years) in their asteroidal bodies and are useful as indicators of the phase transformations which occur in Fe-Ni alloys. In the invar composition range, the iron meteorites contain a cloudy zone structure composed of an ordered tetrataenite phase and a surrounding honeycomb phase either of gamma or alpha phase. This structure is the result of a spinodal reaction below 350°C. The Santa Catharina iron meteorite has the typical invar composition of 36 wt% Ni and its structure is entirely cloudy zone although some of the honeycomb phase has been oxidized by terrestrial corrosion. Invar alloys would contain such a cloudy zone structure if more time was available for cooling. A higher temperature spinodal in the Fe-Ni phase diagram may be operative in invar alloys but has not been observed in the structure of the iron meteorites.
Data-driven process decomposition and robust online distributed modelling for large-scale processes
NASA Astrophysics Data System (ADS)
Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou
2018-02-01
With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
Michaud, Jean-Philippe; Moreau, Gaétan
2011-01-01
Using pig carcasses exposed over 3 years in rural fields during spring, summer, and fall, we studied the relationship between decomposition stages and degree-day accumulation (i) to verify the predictability of the decomposition stages used in forensic entomology to document carcass decomposition and (ii) to build a degree-day accumulation model applicable to various decomposition-related processes. Results indicate that the decomposition stages can be predicted with accuracy from temperature records and that a reliable degree-day index can be developed to study decomposition-related processes. The development of degree-day indices opens new doors for researchers and allows for the application of inferential tools unaffected by climatic variability, as well as for the inclusion of statistics in a science that is primarily descriptive and in need of validation methods in courtroom proceedings. © 2010 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Heping, Wang; Xiaoguang, Li; Duyang, Zang; Rui, Hu; Xingguo, Geng
2017-11-01
This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.
Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows
NASA Astrophysics Data System (ADS)
Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang
2018-03-01
In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.
Self-Organization of Polymer Brush Layers in a Poor Solvent
NASA Astrophysics Data System (ADS)
Karim, A.; Tsukruk, V. V.; Douglas, J. F.; Satija, S. K.; Fetters, L. J.; Reneker, D. H.; Foster, M. D.
1995-10-01
Synthesis of densely grafted polymer brushes from good solvent polymer solutions is difficult when the surface interaction is only weakly attractive because of the strong steric repulsion between the polymer chains. To circumvent this difficulty we graft polymer layers in a poor solvent to exploit attractive polymer-polymer interactions which largely nullify the repulsive steric interactions. This simple strategy gives rise to densely grafted and homogeneous polymer brush layers. Model end-grafted polystyrene chains (M_w = 105,000) are prepared in the poor solvent cyclohexane (9.5 °C) where the chains are chemically attached to the surface utilizing a trichlorosilane end-group. Polished silicon wafers were then exposed to the reactive polymer solutions for a series of “induction times” tau_I and the evolving layer was characterized by X-ray reflectivity and atomic force microscopy. Distinct morphologies were found depending on tau_I. For short tau_I, corresponding to a grafting density less than 5 mg/m^2, the grafted layer forms an inhomogeneous island-like structure. At intermediate tau_I, where the coverage becomes percolating, a surface pattern develops which appears similar to spinodal decomposition in bulk solution. Finally, after sufficiently long tau_I, a dense and nearly homogeneous layer with a sharp interface is formed which does not exhibit surface pattern formation. The stages of brush growth are discussed qualitatively in terms of a random deposition model.
Process for remediation of plastic waste
Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD
2012-04-10
A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.
NASA Astrophysics Data System (ADS)
Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.
2011-10-01
Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.
Reaction behaviors of decomposition of monocrotophos in aqueous solution by UV and UV/O processes.
Ku, Y; Wang, W; Shen, Y S
2000-02-01
The decomposition of monocrotophos (cis-3-dimethoxyphosphinyloxy-N-methyl-crotonamide) in aqueous solution by UV and UV/O(3) processes was studied. The experiments were carried out under various solution pH values to investigate the decomposition efficiencies of the reactant and organic intermediates in order to determine the completeness of decomposition. The photolytic decomposition rate of monocrotophos was increased with increasing solution pH because the solution pH affects the distribution and light absorbance of monocrotophos species. The combination of O(3) with UV light apparently promoted the decomposition and mineralization of monocrotophos in aqueous solution. For the UV/O(3) process, the breakage of the >C=C< bond of monocrotophos by ozone molecules was found to occur first, followed by mineralization by hydroxyl radicals to generate CO(3)(2-), PO4(3-), and NO(3)(-) anions in sequence. The quasi-global kinetics based on a simplified consecutive-parallel reaction scheme was developed to describe the temporal behavior of monocrotophos decomposition in aqueous solution by the UV/O(3) process.
Process for remediation of plastic waste
Pol, Vilas G; Thiyagarajan, Pappannan
2013-11-12
A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.
Biddle, John W; Singh, Rakesh S; Sparano, Evan M; Ricci, Francesco; González, Miguel A; Valeriani, Chantal; Abascal, José L F; Debenedetti, Pablo G; Anisimov, Mikhail A; Caupin, Frédéric
2017-01-21
One of the most promising frameworks for understanding the anomalies of cold and supercooled water postulates the existence of two competing, interconvertible local structures. If the non-ideality in the Gibbs energy of mixing overcomes the ideal entropy of mixing of these two structures, a liquid-liquid phase transition, terminated at a liquid-liquid critical point, is predicted. Various versions of the "two-structure equation of state" (TSEOS) based on this concept have shown remarkable agreement with both experimental data for metastable, deeply supercooled water and simulations of molecular water models. However, existing TSEOSs were not designed to describe the negative pressure region and do not account for the stability limit of the liquid state with respect to the vapor. While experimental data on supercooled water at negative pressures may shed additional light on the source of the anomalies of water, such data are very limited. To fill this gap, we have analyzed simulation results for TIP4P/2005, one of the most accurate classical water models available. We have used recently published simulation data, and performed additional simulations, over a broad range of positive and negative pressures, from ambient temperature to deeply supercooled conditions. We show that, by explicitly incorporating the liquid-vapor spinodal into a TSEOS, we are able to match the simulation data for TIP4P/2005 with remarkable accuracy. In particular, this equation of state quantitatively reproduces the lines of extrema in density, isothermal compressibility, and isobaric heat capacity. Contrary to an explanation of the thermodynamic anomalies of water based on a "retracing spinodal," the liquid-vapor spinodal in the present TSEOS continues monotonically to lower pressures upon cooling, influencing but not giving rise to density extrema and other thermodynamic anomalies.
Supersaturated Electrolyte Solutions: Theory and Experiment
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.; Na, Han-Soo
1995-01-01
Highly supersaturated electrolyte solutions can be prepared and studied employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. In the approach suggested the metastable state for electrolyte solutions is described in terms of the conserved order parameter omega(r,t) associated with fluctuations of the mean solute concentration n(sub 0). Parameters of the corresponding Ginzburg-Landau free energy functional which defines the dynamics of metastable state relaxation are determined and expressed through the experimentally measured quantities. A correspondence of 96-99 % between theory and experiment for all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin), and its calculation for various electrolyte solutions at 298 K. The assumption that subcritical solute clusters consist of the electrically neutral Bjerrum pairs has allowed both analytical and numerical investigation of the number-size N(sub c) of nucleation monomers (aggregates of the Bjerrum pairs) which are elementary units of the solute critical clusters. This has also allowed estimations for the surface tension Alpha, and equilibrium bulk energy Beta per solute molecule in the nucleation monomers. The dependence of these properties on the temperature T and on the solute concentration n(sub 0) through the entire metastable zone (from saturation concentration n(sub sat) to spinodal n(sub spin) is examined. It has been demonstrated that there are the following asymptotics: N(sub c), = I at spinodal concentration and N(sub c) = infinity at saturation.
Application of decomposition techniques to the preliminary design of a transport aircraft
NASA Technical Reports Server (NTRS)
Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.
1986-01-01
A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.
Challenges of including nitrogen effects on decomposition in earth system models
NASA Astrophysics Data System (ADS)
Hobbie, S. E.
2011-12-01
Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Nevertheless, resolving such uncertainties is critical for mechanistic inclusion of such processes in earth system models, towards predicting the ecosystem consequences of increased anthropogenic reactive N. Towards that end, we have conducted a series of experiments examining nitrogen effects on litter decomposition. We found that both substrate N and externally supplied N (regardless of form) accelerated the initial decomposition rate. Faster initial decomposition rates were linked to the higher activity of carbohydrate-degrading enzymes associated with externally supplied N and the greater relative abundances of Gram negative and Gram positive bacteria associated with green leaves and externally supplied organic N (assessed using phospholipid fatty acid analysis, PLFA). By contrast, later in decomposition, externally supplied N slowed decomposition, increasing the fraction of slowly decomposing litter and reducing lignin-degrading enzyme activity and relative abundances of Gram negative and Gram positive bacteria. Our results suggest that elevated atmospheric N deposition may have contrasting effects on the dynamics of different soil carbon pools, decreasing mean residence times of active fractions comprising very fresh litter, while increasing those of more slowly decomposing fractions including more processed litter. Incorporating these contrasting effects of N on decomposition processes into models is complicated by lingering uncertainties about how these effects generalize across ecosystems and substrates.
Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization
NASA Astrophysics Data System (ADS)
Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Li, Hua
2011-10-01
We investigate thermal and isothermal symmetric liquid-vapor separations via a fast Fourier transform thermal lattice Boltzmann (FFT-TLB) model. Structure factor, domain size, and Minkowski functionals are employed to characterize the density and velocity fields, as well as to understand the configurations and the kinetic processes. Compared with the isothermal phase separation, the freedom in temperature prolongs the spinodal decomposition (SD) stage and induces different rheological and morphological behaviors in the thermal system. After the transient procedure, both the thermal and isothermal separations show power-law scalings in domain growth, while the exponent for thermal system is lower than that for isothermal system. With respect to the density field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while the thermal system presents more likely configurations with scattered bubbles. Heat creation, conduction, and lower interfacial stresses are the main reasons for the differences in thermal system. Different from the isothermal case, the release of latent heat causes the changing of local temperature, which results in new local mechanical balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium much more quickly. The increasing of mean temperature makes the interfacial stress lower in the following way: σ=σ0[(Tc-T)/(Tc-T0)]3/2, where Tc is the critical temperature and σ0 is the interfacial stress at a reference temperature T0, which is the main reason for the prolonged SD stage and the lower growth exponent in the thermal case. Besides thermodynamics, we probe how the local viscosities influence the morphology of the phase separating system. We find that, for both the isothermal and thermal cases, the growth exponents and local flow velocities are inversely proportional to the corresponding viscosities. Compared with the isothermal case, the local flow velocity depends not only on viscosity but also on temperature.
NASA Astrophysics Data System (ADS)
Fan, Xiang
2017-10-01
Concerns central to understanding turbulence and transport include: 1) Dynamics of dual cascades in EM turbulence; 2) Understanding `negative viscosity phenomena' in drift-ZF systems; 3) The physics of blobby turbulence (re: SOL). Here, we present a study of a simple model - that of Cahn-Hilliard Navier-Stokes (CHNS) Turbulence - which sheds important new light on these issues. The CHNS equations describe the motion of binary fluid undergoing a second order phase transition and separation called spinodal decomposition. The CHNS system and 2D MHD are analogous, as they both contain a vorticity equation and a ``diffusion'' equation. The CHNS system differs from 2D MHD by the appearance of negative diffusivity, and a nonlinear dissipative flux. An analogue of the Alfven wave exists in the 2D CHNS system. DNS shows that mean square concentration spectrum Hkψ scales as k - 7 / 3 in the elastic range. This suggests an inverse cascade of Hψ . However, the kinetic energy spectrum EkK scales as k-3 , as in the direct enstrophy cascade range for a 2D fluid (not MHD!). The resolution is that the feedback of capillarity acts only at blob interfaces. Thus, as blob merger progresses, the packing fraction of interfaces decreases, thus explaining the weakened surface tension feedback and the outcome for EkK. We also examine the evolution of scalar concentration in a single eddy in the Cahn-Hilliard system. This extends the classic problem of flux expulsion in 2D MHD. The simulation results show that a target pattern is formed. Target pattern is a meta stable state, since the band merger process continues on a time scale exponentially long relative to the eddy turnover time. Band merger resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
NASA Astrophysics Data System (ADS)
Greyber, Howard D.
2011-01-01
The author's "Strong” Magnetic Field model (SMF), created in 1961, is an approach identical to that urged for study by Zel'dovich in 1983. SMF is described in my 2005 paper, published in the CD of the Proceedings of the 22nd Texas Relativistic Astrophysics Symposium (also existing in Astro-ph0509223). A first order phase transition called the Spinodal Decomposition Instability causes a rapid exponential growth of the fluctuations at Combination Time. One of several important results from SMF is the very early generation, soon after Combination Time, of an intense, relativistic stable "storage current loop” in most active galaxies and quasars that was formed by gravitational collapse of the huge pre-galactic plasma cloud in the presence of the primordial magnetic field. This suggests that gamma ray bursts (GRB) are created, similar to what happens on Earth at an accelerator, by a beam on target (BOT) process. A dense target, like a white dwarf, neutron star, planet, et al, crossing the beam, causes the optical transient or "fireball” that is observed at the site of a gamma ray burst (GRB). The extremely powerful "storage current ring", or loop current, heats the target into a plasma blob. The plasma blob is accelerated, exits the current ring, passing through the enormous ordered magnetic field around the current loop, thus inducing the polarization that has been observed. An Appendix explains the Origin of Dark Energy according to the SMF model, which, uniquely, derives the Origin of Magnetic Fields occurring at Combination Time, (NOT far later when galaxies form, as believed by most astrophysicists for over eight decades), and also uses a comment by Albert Einstein. That result produces the unique Supercluster Topology where almost all the mass is on a shell surrounding an extremely high vacuum, explaining the current Accelerating Expansion observed in our universe.
Thermal Decomposition of Nd3(+), Sr2(+) and Pb2(+) Exchanged Beta’’ Aluminas,
1987-07-01
reconstructive recrystallization process is responsible for the formation of the MP phase; this perhaps is a surprising result. The decomposition processes of Nd3... eutectics may be present. A general trend for all decompositions of metastable substituted " aluminas would therefore seem to be that when occurring
NASA Astrophysics Data System (ADS)
Tobler, M.; White, D. A.; Abbene, M. L.; Burst, S. L.; McCulley, R. L.; Barnes, P. W.
2016-02-01
Decomposition is a crucial component of global biogeochemical cycles that influences the fate and residence time of carbon and nutrients in organic matter pools, yet the processes controlling litter decomposition in coastal marshes are not fully understood. We conducted a series of field studies to examine what role photodegradation, a process driven in part by solar UV radiation (280-400 nm), plays in the decomposition of the standing dead litter of Sagittaria lancifolia and Spartina patens, two common species in marshes of intermediate salinity in southern Louisiana, USA. Results indicate that the exclusion of solar UV significantly altered litter mass loss, but the magnitude and direction of these effects varied depending on species, height of the litter above the water surface and the stage of decomposition. Over one growing season, S. lancifolia litter exposed to ambient solar UV had significantly less mass loss compared to litter exposed to attenuated UV over the initial phase of decomposition (0-5 months; ANOVA P=0.004) then treatment effects switched in the latter phase of the study (5-7 months; ANOVA P<0.001). Similar results were found in S. patens over an 11-month period. UV exposure reduced total C, N and lignin by 24-33% in remaining tissue with treatment differences most pronounced in S. patens. Phospholipid fatty-acid analysis (PFLA) indicated that UV also significantly altered microbial (bacterial) biomass and bacteria:fungi ratios of decomposing litter. These findings, and others, indicate that solar UV can have positive and negative net effects on litter decomposition in marsh plants with inhibition of biotic (microbial) processes occurring early in the decomposition process then shifting to enhancement of decomposition via abiotic (photodegradation) processes later in decomposition. Photodegradation of standing litter represents a potentially significant pathway of C and N loss from these coastal wetland ecosystems.
Residue decomposition of submodel of WEPS
USDA-ARS?s Scientific Manuscript database
The Residue Decomposition submodel of the Wind Erosion Prediction System (WEPS) simulates the decrease in crop residue biomass due to microbial activity. The decomposition process is modeled as a first-order reaction with temperature and moisture as driving variables. Decomposition is a function of ...
Application of decomposition techniques to the preliminary design of a transport aircraft
NASA Technical Reports Server (NTRS)
Rogan, J. E.; Kolb, M. A.
1987-01-01
A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.
Variable diffusion rates during exsolution coarsening in the presence of fluids.
NASA Astrophysics Data System (ADS)
Putnis, Andrew; Prent, Alexander
2017-04-01
The scale of exsolution textures in mineral solid solutions has long been used as an indicator of thermal history during cooling. The theory of spinodal decomposition in an anisotropic solid and subsequent coarsening of exsolution textures as a function of temperature and cooling rate is well developed (see Petrishcheva et al., 2009 and Abart et al., 2009 for a review of the Cahn-Hilliard theory). For the case of exsolution in the alkali feldspar solid solution [(Na,K)AlSi3O8] the characteristic texture shows compositional fluctuations in Na,K with a wavelength that depends on the cooling rate. The cooling rate is determined from knowledge of the Na-K interdiffusion coefficient, assuming that the unmixing is simply due to the interdiffusion of Na and K in an otherwise fixed tetrahedral Al,Si framework. Cryptoperthites and mesoperthites with a periodic lamellar microstructure are considered to be the end-result of such a solid-state exsolution process. Later-stage fluid infiltration results in patch perthites that are formed at a sharp replacement front by a dissolution-precipitation mechanism (Parsons et al., 2015). Patch perthites have an easily recognizable texture and are clear indicators of a reaction with an aqueous solution. The distinction is thus drawn between crypto- and meso-perthite showing periodic lamellae, associated with a solid-state exsolution process, and the patch perthite showing irregular domains of Na-rich and K-rich feldspars associated with a fluid mediated reprecipitation process. However, the presence of fluids can also enhance the coarsening of lamellar exsolution textures, retaining an apparently solid-state microstructure but with a length scale that is dependent on local recrystallization driven by fluid infiltration. Examples will be given from alkali feldspars in granitic rocks where it is clearly demonstrable that cooling rates cannot be inferred from such exsolution textures. The variability in Na,K diffusion rates and thus different length scales of exsolution are likely to be due to the efficiency of diffusional transport through a fluid phase, which is influenced by differences in fluid-induced micro- and nano-porosity. Abart R. et al. (2009) Am. J. Sci. 309, 450-475. Petrishcheva E. and Abart R. (2009) Am. J. Sci, 309, 431-449. Parsons I. et al., (2015) Am. Min. 100, 1277-1303.
Yan, Yingjie; Liao, Qi-Nan; Ji, Feng; Wang, Wei; Yuan, Shoujun; Hu, Zhen-Hu
2017-02-01
3,5-Dinitrobenzamide has been widely used as a feed additive to control coccidiosis in poultry, and part of the added 3,5-dinitrobenzamide is excreted into wastewater and surface water. The removal of 3,5-dinitrobenzamide from wastewater and surface water has not been reported in previous studies. Highly reactive hydroxyl radicals from UV/hydrogen peroxide (H 2 O 2 ) and UV/titanium dioxide (TiO 2 ) advanced oxidation processes (AOPs) can decompose organic contaminants efficiently. In this study, the decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H 2 O 2 and UV/TiO 2 oxidation processes was investigated. The decomposition of 3,5-dinitrobenzamide fits well with a fluence-based pseudo-first-order kinetics model. The decomposition in both two oxidation processes was affected by solution pH, and was inhibited under alkaline conditions. Inorganic anions such as NO 3 - , Cl - , SO 4 2- , HCO 3 - , and CO 3 2- inhibited the degradation of 3,5-dinitrobenzamide during the UV/H 2 O 2 and UV/TiO 2 oxidation processes. After complete decomposition in both oxidation processes, approximately 50% of 3,5-dinitrobenzamide was decomposed into organic intermediates, and the rest was mineralized to CO 2 , H 2 O, and other inorganic anions. Ions such as NH 4 + , NO 3 - , and NO 2 - were released into aqueous solution during the degradation. The primary decomposition products of 3,5-dinitrobenzamide were identified using time-of-flight mass spectrometry (LCMS-IT-TOF). Based on these products and ions release, a possible decomposition pathway of 3,5-dinitrobenzamide in both UV/H 2 O 2 and UV/TiO 2 processes was proposed.
Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.; ...
2017-05-09
Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn 1–yMnyTe 1–xSe x phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments andmore » predict significantly higher spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn 1–yMn yTe 1–xSe x indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less
Thermal Aging Phenomena in Cast Duplex Stainless Steels
Byun, T. S.; Yang, Y.; Overman, N. R.; ...
2015-11-12
We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less
Thermal Aging Phenomena in Cast Duplex Stainless Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, T. S.; Yang, Y.; Overman, N. R.
Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr–rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This articlemore » intends to provide an introductory overview on the thermal aging phenomena in LWR relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less
Active Brownian agents with concentration-dependent chemotactic sensitivity.
Meyer, Marcel; Schimansky-Geier, Lutz; Romanczuk, Pawel
2014-02-01
We study a biologically motivated model of overdamped, autochemotactic Brownian agents with concentration-dependent chemotactic sensitivity. The agents in our model move stochastically and produce a chemical ligand at their current position. The ligand concentration obeys a reaction-diffusion equation and acts as a chemoattractant for the agents, which bias their motion towards higher concentrations of the dynamically altered chemical field. We explore the impact of concentration-dependent response to chemoattractant gradients on large-scale pattern formation, by deriving a coarse-grained macroscopic description of the individual-based model, and compare the conditions for emergence of inhomogeneous solutions for different variants of the chemotactic sensitivity. We focus primarily on the so-called receptor-law sensitivity, which models a nonlinear decrease of chemotactic sensitivity with increasing ligand concentration. Our results reveal qualitative differences between the receptor law, the constant chemotactic response, and the so-called log law, with respect to stability of the homogeneous solution, as well as the emergence of different patterns (labyrinthine structures, clusters, and bubbles) via spinodal decomposition or nucleation. We discuss two limiting cases, where the model can be reduced to the dynamics of single species: (I) the agent density governed by a density-dependent effective diffusion coefficient and (II) the ligand field with an effective bistable, time-dependent reaction rate. In the end, we turn to single clusters of agents, studying domain growth and determining mean characteristics of the stationary inhomogeneous state. Analytical results are confirmed and extended by large-scale GPU simulations of the individual based model.
Wetting in a phase separating polymer blend film: quench depth dependence
Geoghegan; Ermer; Jungst; Krausch; Brenn
2000-07-01
We have used 3He nuclear reaction analysis to measure the growth of the wetting layer as a function of immiscibility (quench depth) in blends of deuterated polystyrene and poly(alpha-methylstyrene) undergoing surface-directed spinodal decomposition. We are able to identify three different laws for the surface layer growth with time t. For the deepest quenches, the forces driving phase separation dominate (high thermal noise) and the surface layer grows with a t(1/3) coarsening behavior. For shallower quenches, a logarithmic behavior is observed, indicative of a low noise system. The crossover from logarithmic growth to t(1/3) behavior is close to where a wetting transition should occur. We also discuss the possibility of a "plating transition" extending complete wetting to deeper quenches by comparing the surface field with thermal noise. For the shallowest quench, a critical blend exhibits a t(1/2) behavior. We believe this surface layer growth is driven by the curvature of domains at the surface and shows how the wetting layer forms in the absence of thermal noise. This suggestion is reinforced by a slower growth at later times, indicating that the surface domains have coalesced. Atomic force microscopy measurements in each of the different regimes further support the above. The surface in the region of t(1/3) growth is initially somewhat rougher than that in the regime of logarithmic growth, indicating the existence of droplets at the surface.
Benchmark problems for numerical implementations of phase field models
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; ...
2016-10-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verifymore » new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.« less
Self-assembly of amorphous biophotonic nanostructures by phase separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar
2009-04-23
Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important rolesmore » in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.« less
Kinetics of Thermal Decomposition of Ammonium Perchlorate by TG/DSC-MS-FTIR
NASA Astrophysics Data System (ADS)
Zhu, Yan-Li; Huang, Hao; Ren, Hui; Jiao, Qing-Jie
2014-01-01
The method of thermogravimetry/differential scanning calorimetry-mass spectrometry-Fourier transform infrared (TG/DSC-MS-FTIR) simultaneous analysis has been used to study thermal decomposition of ammonium perchlorate (AP). The processing of nonisothermal data at various heating rates was performed using NETZSCH Thermokinetics. The MS-FTIR spectra showed that N2O and NO2 were the main gaseous products of the thermal decomposition of AP, and there was a competition between the formation reaction of N2O and that of NO2 during the process with an iso-concentration point of N2O and NO2. The dependence of the activation energy calculated by Friedman's iso-conversional method on the degree of conversion indicated that the AP decomposition process can be divided into three stages, which are autocatalytic, low-temperature diffusion and high-temperature, stable-phase reaction. The corresponding kinetic parameters were determined by multivariate nonlinear regression and the mechanism of the AP decomposition process was proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallenstein, Matthew
The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, butmore » will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.« less
Decomposition of gas-phase trichloroethene by the UV/TiO2 process in the presence of ozone.
Shen, Y S; Ku, Y
2002-01-01
The decomposition of gas-phase trichloroethene (TCE) in air streams by direct photolysis, the UV/TiO2 and UV/O3 processes was studied. The experiments were carried out under various UV light intensities and wavelengths, ozone dosages, and initial concentrations of TCE to investigate and compare the removal efficiency of the pollutant. For UV/TiO2 process, the individual contribution to the decomposition of TCE by direct photolysis and hydroxyl radicals destruction was differentiated to discuss the quantum efficiency with 254 and 365 nm UV lamps. The removal of gaseous TCE was found to reduce by UV/TiO2 process in the presence of ozone possibly because of the ozone molecules could scavenge hydroxyl radicals produced from the excitation of TiO2 by UV radiation to inhibit the decomposition of TCE. A photoreactor design equation for the decomposition of gaseous TCE by the UV/TiO2 process in air streams was developed by combining the continuity equation of the pollutant and the surface catalysis reaction rate expression. By the proposed design scheme, the temporal distribution of TCE at various operation conditions by the UV/TiO2 process can be well modeled.
Soil fauna and plant litter decomposition in tropical and subalpine forests
G. Gonzalez; T.R. Seastedt
2001-01-01
The decomposition of plant residues is influenced by their chemical composition, the physical-chemical environment, and the decomposer organisms. Most studies interested in latitudinal gradients of decomposition have focused on substrate quality and climate effects on decomposition, and have excluded explicit recognition of the soil organisms involved in the process....
Stefanuto, Pierre-Hugues; Perrault, Katelynn A; Stadler, Sonja; Pesesse, Romain; LeBlanc, Helene N; Forbes, Shari L; Focant, Jean-François
2015-06-01
In forensic thanato-chemistry, the understanding of the process of soft tissue decomposition is still limited. A better understanding of the decomposition process and the characterization of the associated volatile organic compounds (VOC) can help to improve the training of victim recovery (VR) canines, which are used to search for trapped victims in natural disasters or to locate corpses during criminal investigations. The complexity of matrices and the dynamic nature of this process require the use of comprehensive analytical methods for investigation. Moreover, the variability of the environment and between individuals creates additional difficulties in terms of normalization. The resolution of the complex mixture of VOCs emitted by a decaying corpse can be improved using comprehensive two-dimensional gas chromatography (GC × GC), compared to classical single-dimensional gas chromatography (1DGC). This study combines the analytical advantages of GC × GC coupled to time-of-flight mass spectrometry (TOFMS) with the data handling robustness of supervised multivariate statistics to investigate the VOC profile of human remains during early stages of decomposition. Various supervised multivariate approaches are compared to interpret the large data set. Moreover, early decomposition stages of pig carcasses (typically used as human surrogates in field studies) are also monitored to obtain a direct comparison of the two VOC profiles and estimate the robustness of this human decomposition analog model. In this research, we demonstrate that pig and human decomposition processes can be described by the same trends for the major compounds produced during the early stages of soft tissue decomposition.
Tracking Hierarchical Processing in Morphological Decomposition with Brain Potentials
ERIC Educational Resources Information Center
Lavric, Aureliu; Elchlepp, Heike; Rastle, Kathleen
2012-01-01
One important debate in psycholinguistics concerns the nature of morphological decomposition processes in visual word recognition (e.g., darkness = {dark} + {-ness}). One theory claims that these processes arise during orthographic analysis and prior to accessing meaning (Rastle & Davis, 2008), and another argues that these processes arise through…
Singularity-free interpretation of the thermodynamics of supercooled water
NASA Astrophysics Data System (ADS)
Sastry, Srikanth; Debenedetti, Pablo G.; Sciortino, Francesco; Stanley, H. E.
1996-06-01
The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the existence of singularities associated with diverging density fluctuations at low temperature. We show that the increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic analysis for an anomalous liquid (i.e., one that expands when cooled) in the absence of a retracing spinodal and show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular behavior, while capturing qualitative aspects of the thermodynamics of water.
Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.
Henze Bancroft, Leah C; Strigel, Roberta M; Hernando, Diego; Johnson, Kevin M; Kelcz, Frederick; Kijowski, Richard; Block, Walter F
2016-03-01
Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time. © 2015 Wiley Periodicals, Inc.
Termites promote resistance of decomposition to spatiotemporal variability in rainfall.
Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P
2017-02-01
The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.
Mlyniec, A; Ekiert, M; Morawska-Chochol, A; Uhl, T
2016-06-01
In this work, we investigate the influence of the surrounding environment and the initial density on the decomposition kinetics of polylactide (PLA). The decomposition of the amorphous PLA was investigated by means of reactive molecular dynamics simulations. A computational model simulates the decomposition of PLA polymer inside the bulk, due to the assumed lack of removal of reaction products from the polymer matrix. We tracked the temperature dependency of the water and carbon monoxide production to extract the activation energy of thermal decomposition of PLA. We found that an increased density results in decreased activation energy of decomposition by about 50%. Moreover, initiation of decomposition of the amorphous PLA is followed by a rapid decline in activation energy caused by reaction products which accelerates the hydrolysis of esters. The addition of water molecules decreases initial energy of activation as well as accelerates the decomposition process. Additionally, we have investigated the dependency of density on external loading. Comparison of pressures needed to obtain assumed densities shows that this relationship is bilinear and the slope changes around a density equal to 1.3g/cm(3). The conducted analyses provide an insight into the thermal decomposition process of the amorphous phase of PLA, which is particularly susceptible to decomposition in amorphous and semi-crystalline PLA polymers. Copyright © 2016 Elsevier Inc. All rights reserved.
A density functional theory study of the decomposition mechanism of nitroglycerin.
Pei, Liguan; Dong, Kehai; Tang, Yanhui; Zhang, Bo; Yu, Chang; Li, Wenzuo
2017-08-21
The detailed decomposition mechanism of nitroglycerin (NG) in the gas phase was studied by examining reaction pathways using density functional theory (DFT) and canonical variational transition state theory combined with a small-curvature tunneling correction (CVT/SCT). The mechanism of NG autocatalytic decomposition was investigated at the B3LYP/6-31G(d,p) level of theory. Five possible decomposition pathways involving NG were identified and the rate constants for the pathways at temperatures ranging from 200 to 1000 K were calculated using CVT/SCT. There was found to be a lower energy barrier to the β-H abstraction reaction than to the α-H abstraction reaction during the initial step in the autocatalytic decomposition of NG. The decomposition pathways for CHOCOCHONO 2 (a product obtained following the abstraction of three H atoms from NG by NO 2 ) include O-NO 2 cleavage or isomer production, meaning that the autocatalytic decomposition of NG has two reaction pathways, both of which are exothermic. The rate constants for these two reaction pathways are greater than the rate constants for the three pathways corresponding to unimolecular NG decomposition. The overall process of NG decomposition can be divided into two stages based on the NO 2 concentration, which affects the decomposition products and reactions. In the first stage, the reaction pathway corresponding to O-NO 2 cleavage is the main pathway, but the rates of the two autocatalytic decomposition pathways increase with increasing NO 2 concentration. However, when a threshold NO 2 concentration is reached, the NG decomposition process enters its second stage, with the two pathways for NG autocatalytic decomposition becoming the main and secondary reaction pathways.
NASA Astrophysics Data System (ADS)
Orr, R. M.; Sims, H. E.; Taylor, R. J.
2015-10-01
Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.
De Meester, N; Gingold, R; Rigaux, A; Derycke, S; Moens, T
2016-10-01
Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and ecosystem functioning. The role of cryptic (morphologically identical but genetically distinct) species in this biodiversity-ecosystem functioning link is unclear and has not yet been formally tested. We tested if there is a differential effect of four cryptic species of the bacterivorous nematode Litoditis marina on the decomposition process of macroalgae. Bacterivorous nematodes can stimulate or slow down bacterial activity and modify the bacterial assemblage composition. Moreover, we tested if interspecific interactions among the four cryptic species influence the decomposition process. A laboratory experiment with both mono- and multispecific nematode cultures was conducted, and loss of organic matter and the activity of two key extracellular enzymes for the degradation of phytodetritus were assessed. L. marina mainly influenced qualitative aspects of the decomposition process rather than its overall rate: an effect of the nematodes on the enzymatic activities became manifest, although no clear nematode effect on bulk organic matter weight loss was found. We also demonstrated that species-specific effects on the decomposition process existed. Combining the four cryptic species resulted in high competition, with one dominant species, but without complete exclusion of other species. These interspecific interactions translated into different effects on the decomposition process. The species-specific differences indicated that each cryptic species may play an important and distinct role in ecosystem functioning. Functional differences may result in coexistence among very similar species.
Aridity and decomposition processes in complex landscapes
NASA Astrophysics Data System (ADS)
Ossola, Alessandro; Nyman, Petter
2015-04-01
Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally decreased with increasing aridity with k going from 0.0025 day-1 on equatorial (dry) facing slopes to 0.0040 day-1 on polar (wet) facing slopes. However, differences in temperature as a result of morning vs afternoon sun on east and west aspects, respectively, (not captured in the aridity metric) resulted in poor prediction of decomposition for the sites located in the intermediate aridity range. Overall the results highlight that relatively small differences in microclimate due to slope orientation can have large effects on decomposition. Future research will aim to refine the aridity metric to better resolve small scale variation in surface temperature which is important when up-scaling decomposition processes to landscapes.
The processing of aluminum gasarites via thermal decomposition of interstitial hydrides
NASA Astrophysics Data System (ADS)
Licavoli, Joseph J.
Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.
Decomposition of energetic chemicals contaminated with iron or stainless steel.
Chervin, Sima; Bodman, Glenn T; Barnhart, Richard W
2006-03-17
Contamination of chemicals or reaction mixtures with iron or stainless steel is likely to take place during chemical processing. If energetic and thermally unstable chemicals are involved in a manufacturing process, contamination with iron or stainless steel can impact the decomposition characteristics of these chemicals and, subsequently, the safety of the processes, and should be investigated. The goal of this project was to undertake a systematic approach to study the impact of iron or stainless steel contamination on the decomposition characteristics of different chemical classes. Differential scanning calorimetry (DSC) was used to study the decomposition reaction by testing each chemical pure, and in mixtures with iron and stainless steel. The following classes of energetic chemicals were investigated: nitrobenzenes, tetrazoles, hydrazines, hydroxylamines and oximes, sulfonic acid derivatives and monomers. The following non-energetic groups were investigated for contributing effects: halogens, hydroxyls, amines, amides, nitriles, sulfonic acid esters, carbonyl halides and salts of hydrochloric acid. Based on the results obtained, conclusions were drawn regarding the sensitivity of the decomposition reaction to contamination with iron and stainless steel for the chemical classes listed above. It was demonstrated that the most sensitive classes are hydrazines and hydroxylamines/oximes. Contamination of these chemicals with iron or stainless steel not only destabilizes them, leading to decomposition at significantly lower temperatures, but also sometimes causes increased severity of the decomposition. The sensitivity of nitrobenzenes to contamination with iron or stainless steel depended upon the presence of other contributing groups: the presence of such groups as acid chlorides or chlorine/fluorine significantly increased the effect of contamination on decomposition characteristics of nitrobenzenes. The decomposition of sulfonic acid derivatives and tetrazoles was not impacted by presence of iron or stainless steel.
Mark E. Harmon; Whendee L. Silver; Becky Fasth; Hua Chen; Ingrid C. Burke; William J. Parton; Stephen C. Hart; William S. Currie; Ariel E. Lugo
2009-01-01
Decomposition is a critical process in global carbon cycling. During decomposition, leaf and fine root litter may undergo a later, relatively slow phase; past long-term experiments indicate this phase occurs, but whether it is a general phenomenon has not been examined. Data from Long-term Intersite Decomposition Experiment Team, representing 27 sites and nine litter...
Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora
2011-04-01
The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.
Multidisciplinary optimization for engineering systems - Achievements and potential
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.
Multidisciplinary optimization for engineering systems: Achievements and potential
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.
NASA Astrophysics Data System (ADS)
Sridhar, J.
2015-12-01
The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.
A simple method for decomposition of peracetic acid in a microalgal cultivation system.
Sung, Min-Gyu; Lee, Hansol; Nam, Kibok; Rexroth, Sascha; Rögner, Matthias; Kwon, Jong-Hee; Yang, Ji-Won
2015-03-01
A cost-efficient process devoid of several washing steps was developed, which is related to direct cultivation following the decomposition of the sterilizer. Peracetic acid (PAA) is known to be an efficient antimicrobial agent due to its high oxidizing potential. Sterilization by 2 mM PAA demands at least 1 h incubation time for an effective disinfection. Direct degradation of PAA was demonstrated by utilizing components in conventional algal medium. Consequently, ferric ion and pH buffer (HEPES) showed a synergetic effect for the decomposition of PAA within 6 h. On the contrary, NaNO3, one of the main components in algal media, inhibits the decomposition of PAA. The improved growth of Chlorella vulgaris and Synechocystis PCC6803 was observed in the prepared BG11 by decomposition of PAA. This process involving sterilization and decomposition of PAA should help cost-efficient management of photobioreactors in a large scale for the production of value-added products and biofuels from microalgal biomass.
Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C
2011-03-01
The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. © 2011 Blackwell Publishing Ltd/CNRS.
Zhang, Lisha; Zhang, Songhe; Lv, Xiaoyang; Qiu, Zheng; Zhang, Ziqiu; Yan, Liying
2018-08-15
This study investigated the alterations in biomass, nutrients and dissolved organic matter concentration in overlying water and determined the bacterial 16S rRNA gene in biofilms attached to plant residual during the decomposition of Myriophyllum verticillatum. The 55-day decomposition experimental results show that plant decay process can be well described by the exponential model, with the average decomposition rate of 0.037d -1 . Total organic carbon, total nitrogen, and organic nitrogen concentrations increased significantly in overlying water during decomposition compared to control within 35d. Results from excitation emission matrix-parallel factor analysis showed humic acid-like and tyrosine acid-like substances might originate from plant degradation processes. Tyrosine acid-like substances had an obvious correlation to organic nitrogen and total nitrogen (p<0.01). Decomposition rates were positively related to pH, total organic carbon, oxidation-reduction potential and dissolved oxygen but negatively related to temperature in overlying water. Microbe densities attached to plant residues increased with decomposition process. The most dominant phylum was Bacteroidetes (>46%) at 7d, Chlorobi (20%-44%) or Proteobacteria (25%-34%) at 21d and Chlorobi (>40%) at 55d. In microbes attached to plant residues, sugar- and polysaccharides-degrading genus including Bacteroides, Blvii28, Fibrobacter, and Treponema dominated at 7d while Chlorobaculum, Rhodobacter, Methanobacterium, Thiobaca, Methanospirillum and Methanosarcina at 21d and 55d. These results gain the insight into the dissolved organic matter release and bacterial community shifts during submerged macrophytes decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.
Nuclear driven water decomposition plant for hydrogen production
NASA Technical Reports Server (NTRS)
Parker, G. H.; Brecher, L. E.; Farbman, G. H.
1976-01-01
The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.
Here, we report how the superconducting phase forms in pseudo-single-crystal K xFe 2-ySe 2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition.more » It should be emphasized that the phase separation in pseudo-single-crystal K xFe 2-ySe 2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less
Persistent dopants and phase segregation in organolead mixed-halide perovskites
Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...
2016-07-25
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Persistent dopants and phase segregation in organolead mixed-halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales, Bryan A.; Men, Long; Cady, Sarah D.
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Phase separation, crystallization and polyamorphism in the Y2O3 Al2O3 system
NASA Astrophysics Data System (ADS)
Skinner, Lawrie B.; Barnes, Adrian C.; Salmon, Philip S.; Crichton, Wilson A.
2008-05-01
A detailed study of glass formation from aerodynamically levitated liquids in the (Y2O3)x(Al2O3)1-x system for the composition range 0.21<=x<=0.41 was undertaken by using pyrometric, optical imaging and x-ray diffraction methods. Homogeneous and clear single-phase glasses were produced over the composition range 0.27 \\lesssim x \\lesssim 0.33 . For Y2O3-rich compositions (0.33 \\lesssim x \\le 0.375 ), cloudy materials were produced which contain inclusions of crystalline yttrium aluminium garnet (YAG) of diameter up to 40 µm in a glassy matrix. For Y2O3-poor compositions around x = 0.24, cloudy materials were also produced, but it was not possible to deduce whether this resulted from (i) sub-micron inclusions of a nano-crystalline or glassy material in a glassy matrix or (ii) a glass formed by spinodal decomposition. For x = 0.21, however, the sample cloudiness results from crystallization into at least two phases comprising yttrium aluminium perovskite and alumina. The associated pyrometric cooling curve shows slow recalescence events with a continuous and slow evolution of excess heat which contrasts with the sharp recalescence events observed for the crystallization of YAG at compositions near x = 0.375. The materials that are the most likely candidates for demonstrating homogeneous nucleation of a second liquid phase occur around x = 0.25, which corresponds to the limit for formation of a continuous random network of corner-shared AlO4 tetrahedra.
Early stage litter decomposition across biomes
Ika Djukic; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alberto Humber; Alejandro Valdecantos; Alessandro Petraglia; Heather Alexander; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; André-Jean Francez; Andrea Fischer; Andreas Bohner; Andrey Malyshev; Andrijana Andrić; Andy Smith; Angela Stanisci; Anikó Seres; Anja Schmidt; Anna Avila; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Arely N. Palabral-Aguilera; Artur Stefanski; Aurora Gaxiola; Bart Muys; Bernard Bosman; Bernd Ahrends; Bill Parker; Birgit Sattler; Bo Yang; Bohdan Juráni; Brigitta Erschbamer; Carmen Eugenia Rodriguez Ortiz; Casper T. Christiansen; E. Carol Adair; Céline Meredieu; Cendrine Mony; Charles A. Nock; Chi-Ling Chen; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dana Polyanskaya; David Fuentes Delgado; Dirk Wundram; Diyaa Radeideh; Eduardo Ordóñez-Regil; Edward Crawford; Elena Preda; Elena Tropina; Elli Groner; Eric Lucot; Erzsébet Hornung; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Evy Ampoorter; Fabio Padilha Bolzan; Felipe Varela; Ferdinand Kristöfel; Fernando T. Maestre; Florence Maunoury-Danger; Florian Hofhansl; Florian Kitz; Flurin Sutter; Francisco Cuesta; Francisco de Almeida Lobo; Franco Leandro de Souza; Frank Berninger; Franz Zehetner; Georg Wohlfahrt; George Vourlitis; Geovana Carreño-Rocabado; Gina Arena; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Hanna Lee; Hans Verbeeck; Harald Auge; Harald Pauli; Hassan Bismarck Nacro; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena C. Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hideaki Shibata; Hiroko Kurokawa; Hugo López Rosas; Hugo L. Rojas Villalobos; Ian Yesilonis; Inara Melece; Inge Van Halder; Inmaculada García Quirós; Isaac Makelele; Issaka Senou; István Fekete; Ivan Mihal; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Shoqeir; Jean-Christophe Lata; Jean-Paul Theurillat; Jean-Luc Probst; Jess Zimmerman; Jeyanny Vijayanathan; Jianwu Tang; Jill Thompson; Jiří Doležal; Joan-Albert Sanchez-Cabeza; Joël Merlet; Joh Henschel; Johan Neirynck; Johannes Knops; John Loehr; Jonathan von Oppen; Jónína Sigríður Þorláksdóttir; Jörg Löffler; José-Gilberto Cardoso-Mohedano; José-Luis Benito-Alonso; Jose Marcelo Torezan; Joseph C. Morina; Juan J. Jiménez; Juan Dario Quinde; Juha Alatalo; Julia Seeber; Jutta Stadler; Kaie Kriiska; Kalifa Coulibaly; Karibu Fukuzawa; Katalin Szlavecz; Katarína Gerhátová; Kate Lajtha; Kathrin Käppeler; Katie A. Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Lambiénou Yé; Laryssa Helena Ribeiro Pazianoto; Laura Dienstbach; Laura Williams; Laura Yahdjian; Laurel M. Brigham; Liesbeth van den Brink; Lindsey Rustad; al. et
2018-01-01
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies...
USDA-ARS?s Scientific Manuscript database
Litter decomposition in wetlands is an important component of ecosystem function in these detrital systems. In oligotrophic wetlands, such as the Florida Everglades, litter decomposition processes are dependent on nutrient availability and litter quality. However, not much is known about how the che...
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ripmeester, J. A.
2010-04-01
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
Alavi, Saman; Ripmeester, J A
2010-04-14
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Efficient material decomposition method for dual-energy X-ray cargo inspection system
NASA Astrophysics Data System (ADS)
Lee, Donghyeon; Lee, Jiseoc; Min, Jonghwan; Lee, Byungcheol; Lee, Byeongno; Oh, Kyungmin; Kim, Jaehyun; Cho, Seungryong
2018-03-01
Dual-energy X-ray inspection systems are widely used today for it provides X-ray attenuation contrast of the imaged object and also its material information. Material decomposition capability allows a higher detection sensitivity of potential targets including purposely loaded impurities in agricultural product inspections and threats in security scans for example. Dual-energy X-ray transmission data can be transformed into two basis material thickness data, and its transformation accuracy heavily relies on a calibration of material decomposition process. The calibration process in general can be laborious and time consuming. Moreover, a conventional calibration method is often challenged by the nonuniform spectral characteristics of the X-ray beam in the entire field-of-view (FOV). In this work, we developed an efficient material decomposition calibration process for a linear accelerator (LINAC) based high-energy X-ray cargo inspection system. We also proposed a multi-spot calibration method to improve the decomposition performance throughout the entire FOV. Experimental validation of the proposed method has been demonstrated by use of a cargo inspection system that supports 6 MV and 9 MV dual-energy imaging.
Detecting the Extent of Cellular Decomposition after Sub-Eutectoid Annealing in Rolled UMo Foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautz, Elizabeth J.; Jana, Saumyadeep; Devaraj, Arun
2017-07-31
This report presents an automated image processing approach to quantifying microstructure image data, specifically the extent of eutectoid (cellular) decomposition in rolled U-10Mo foils. An image processing approach is used here to be able to quantitatively describe microstructure image data in order to relate microstructure to processing parameters (time, temperature, deformation).
Developing Higher-Order Materials Knowledge Systems
NASA Astrophysics Data System (ADS)
Fast, Anthony Nathan
2011-12-01
Advances in computational materials science and novel characterization techniques have allowed scientists to probe deeply into a diverse range of materials phenomena. These activities are producing enormous amounts of information regarding the roles of various hierarchical material features in the overall performance characteristics displayed by the material. Connecting the hierarchical information over disparate domains is at the crux of multiscale modeling. The inherent challenge of performing multiscale simulations is developing scale bridging relationships to couple material information between well separated length scales. Much progress has been made in the development of homogenization relationships which replace heterogeneous material features with effective homogenous descriptions. These relationships facilitate the flow of information from lower length scales to higher length scales. Meanwhile, most localization relationships that link the information from a from a higher length scale to a lower length scale are plagued by computationally intensive techniques which are not readily integrated into multiscale simulations. The challenge of executing fully coupled multiscale simulations is augmented by the need to incorporate the evolution of the material structure that may occur under conditions such as material processing. To address these challenges with multiscale simulation, a novel framework called the Materials Knowledge System (MKS) has been developed. This methodology efficiently extracts, stores, and recalls microstructure-property-processing localization relationships. This approach is built on the statistical continuum theories developed by Kroner that express the localization of the response field at the microscale using a series of highly complex convolution integrals, which have historically been evaluated analytically. The MKS approach dramatically improves the accuracy of these expressions by calibrating the convolution kernels in these expressions to results from previously validated physics-based models. These novel tools have been validated for the elastic strain localization in moderate contrast dual-phase composites by direct comparisons with predictions from finite element model. The versatility of the approach is further demonstrated by its successful application to capturing the structure evolution during spinodal decomposition of a binary alloy. Lastly, some key features in the future application of the MKS approach are developed using the Portevin-le Chaterlier effect. It has been shown with these case studies that the MKS approach is capable of accurately reproducing the results from physics based models with a drastic reduction in computational requirements.
Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...
Optimal cost design of water distribution networks using a decomposition approach
NASA Astrophysics Data System (ADS)
Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon
2016-12-01
Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.
Hens, Abhiram; Mondal, Kartick; Biswas, Gautam; Bandyopadhyay, Dipankar
2016-03-01
Transitions from spinodal to pattern-guided dewetting of a bilayer of ultrathin films (<10nm) confined between a pair of patterned surfaces have been explored employing molecular dynamic (MD) simulations. The physical or chemical defects of different sizes and shapes are decorated on the confining substrates by either removal or addition of multiple layers of similar or dissimilar atoms. The simulations are performed to identify the transition from spinodal pathway to the heterogeneous nucleation route, with the variation in the size of the substrate patterns. The MD simulations reveal the limits beyond which the defects can guide the dewetting to generate ordered patterns of nanoscopic size and periodicity. Comparing the results obtained from the MD simulations with the more widely employed continuum dynamics approach highlights the importance of the MD approach in quantitatively analyzing the dynamics of the dewetting of ultrathin films. The study demonstrates that the pattern-guided dewetting of confined bilayers can lead to ordered holes, droplets, and stripes with size and periodicity less than 10nm, which are yet to be realized experimentally and can be of significance for a number of future applications. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Feldman, E. P.; Stefanovich, L. I.; Gumennyk, K. V.
2008-08-01
Kinetics of polydomain spinodal ordering is studied in alloys of AuCu3 type. We introduce four non-conserved long-range order parameters whose sum, however, is conserved and, using the statistical approach, follow the temporal evolution of their random spatial distribution after a rapid temperature quench. A system of nonlinear differential equations for correlators of second and third order is derived. Asymptotical analysis of this system allows to investigate the scaling regime, which develops on the late stages of evolution and to extract additional information concerning the rate of decrease of the specific volume of disordered regions and the rate of decrease of the average thickness of antiphase boundaries. Comparison of these results to experimental data is given. The quench below the spinodal and the onset of long-range order may be separated by the incubation time, whose origin is different from that in first-order phase transitions. Numerical integration of equations for correlators shows also, that it is possible to prepare a sample in such a way that its further evolution will go with formation of transient kinetically slowed polydomain structures different from the final L12 structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altabet, Y. Elia; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu; Stillinger, Frank H.
In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρ{sub S}. The tensile limit at ρ{sub S} is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρ{sub S} is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherentmore » structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.« less
A phase-plane analysis of localized frictional waves
NASA Astrophysics Data System (ADS)
Putelat, T.; Dawes, J. H. P.; Champneys, A. R.
2017-07-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.
A phase-plane analysis of localized frictional waves
Dawes, J. H. P.; Champneys, A. R.
2017-01-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick–slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types. PMID:28804255
A phase-plane analysis of localized frictional waves.
Putelat, T; Dawes, J H P; Champneys, A R
2017-07-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.
Instability in bacterial populations and the curvature tensor
NASA Astrophysics Data System (ADS)
Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia
2016-09-01
In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.
Conception of discrete systems decomposition algorithm using p-invariants and hypergraphs
NASA Astrophysics Data System (ADS)
Stefanowicz, Ł.
2016-09-01
In the article author presents an idea of decomposition algorithm of discrete systems described by Petri Nets using pinvariants. Decomposition process is significant from the point of view of discrete systems design, because it allows separation of the smaller sequential parts. Proposed algorithm uses modified Martinez-Silva method as well as author's selection algorithm. The developed method is a good complement of classical decomposition algorithms using graphs and hypergraphs.
Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N
2017-01-25
This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.
Placement-aware decomposition of a digital standard cells library for double patterning lithography
NASA Astrophysics Data System (ADS)
Wassal, Amr G.; Sharaf, Heba; Hammouda, Sherif
2012-11-01
To continue scaling the circuit features down, Double Patterning (DP) technology is needed in 22nm technologies and lower. DP requires decomposing the layout features into two masks for pitch relaxation, such that the spacing between any two features on each mask is greater than the minimum allowed mask spacing. The relaxed pitches of each mask are then processed on two separate exposure steps. In many cases, post-layout decomposition fails to decompose the layout into two masks due to the presence of conflicts. Post-layout decomposition of a standard cells block can result in native conflicts inside the cells (internal conflict), or native conflicts on the boundary between two cells (boundary conflict). Resolving native conflicts requires a redesign and/or multiple iterations for the placement and routing phases to get a clean decomposition. Therefore, DP compliance must be considered in earlier phases, before getting the final placed cell block. The main focus of this paper is generating a library of decomposed standard cells to be used in a DP-aware placer. This library should contain all possible decompositions for each standard cell, i.e., these decompositions consider all possible combinations of boundary conditions. However, the large number of combinations of boundary conditions for each standard cell will significantly increase the processing time and effort required to obtain all possible decompositions. Therefore, an efficient methodology is required to reduce this large number of combinations. In this paper, three different reduction methodologies are proposed to reduce the number of different combinations processed to get the decomposed library. Experimental results show a significant reduction in the number of combinations and decompositions needed for the library processing. To generate and verify the proposed flow and methodologies, a prototype for a placement-aware DP-ready cell-library is developed with an optimized number of cell views.
Li, Liangliang; Wang, Jiangfeng; Wang, Yu
2016-08-01
Analysis of the process of decomposition is essential in establishing the postmortem interval. However, despite the fact that insects are important players in body decomposition, their exact function within the decay process is still unclear. There is also limited knowledge as to how the decomposition process occurs in the absence of insects. In the present study, we compared the decomposition of a pig carcass in open air with that of one placed in a methyl methacrylate box to prevent insect contact. The pig carcass in the methyl methacrylate box was in the fresh stage for 1 day, the bloated stage from 2 d to 11 d, and underwent deflated decay from 12 d. In contrast, the pig carcass in open air went through the fresh, bloated, active decay and post-decay stages; and 22.3 h (0.93 d), 62.47 h (2.60 d), 123.63 h (5.15 d) and 246.5 h (10.27 d) following the start of the experiment respectively, prior to entering the skeletonization stage. A large amount of soft tissue were remained on the pig carcass in the methyl methacrylate box on 26 d, while only scattered bones remained on the pig carcass in open air. The results indicate that insects greatly accelerate the decomposition process. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.
Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans
2015-05-01
Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.
Kinetics of non-isothermal decomposition of cinnamic acid
NASA Astrophysics Data System (ADS)
Zhao, Ming-rui; Qi, Zhen-li; Chen, Fei-xiong; Yue, Xia-xin
2014-07-01
The thermal stability and kinetics of decomposition of cinnamic acid were investigated by thermogravimetry and differential scanning calorimetry at four heating rates. The activation energies of this process were calculated from analysis of TG curves by methods of Flynn-Wall-Ozawa, Doyle, Distributed Activation Energy Model, Šatava-Šesták and Kissinger, respectively. There are only one stage of thermal decomposition process in TG and two endothermic peaks in DSC. For this decomposition process of cinnamic acid, E and log A[s-1] were determined to be 81.74 kJ mol-1 and 8.67, respectively. The mechanism was Mampel Power law (the reaction order, n = 1), with integral form G(α) = α (α = 0.1-0.9). Moreover, thermodynamic properties of Δ H ≠, Δ S ≠, Δ G ≠ were 77.96 kJ mol-1, -90.71 J mol-1 K-1, 119.41 kJ mol-1.
Yao, Shengnan; Zeng, Weiming; Wang, Nizhuan; Chen, Lei
2013-07-01
Independent component analysis (ICA) has been proven to be effective for functional magnetic resonance imaging (fMRI) data analysis. However, ICA decomposition requires to optimize the unmixing matrix iteratively whose initial values are generated randomly. Thus the randomness of the initialization leads to different ICA decomposition results. Therefore, just one-time decomposition for fMRI data analysis is not usually reliable. Under this circumstance, several methods about repeated decompositions with ICA (RDICA) were proposed to reveal the stability of ICA decomposition. Although utilizing RDICA has achieved satisfying results in validating the performance of ICA decomposition, RDICA cost much computing time. To mitigate the problem, in this paper, we propose a method, named ATGP-ICA, to do the fMRI data analysis. This method generates fixed initial values with automatic target generation process (ATGP) instead of being produced randomly. We performed experimental tests on both hybrid data and fMRI data to indicate the effectiveness of the new method and made a performance comparison of the traditional one-time decomposition with ICA (ODICA), RDICA and ATGP-ICA. The proposed method demonstrated that it not only could eliminate the randomness of ICA decomposition, but also could save much computing time compared to RDICA. Furthermore, the ROC (Receiver Operating Characteristic) power analysis also denoted the better signal reconstruction performance of ATGP-ICA than that of RDICA. Copyright © 2013 Elsevier Inc. All rights reserved.
Paving the way to a full chip gate level double patterning application
NASA Astrophysics Data System (ADS)
Haffner, Henning; Meiring, Jason; Baum, Zachary; Halle, Scott
2007-10-01
Double patterning lithography processes can offer significant yield enhancement for challenging circuit designs. Many decomposition (i.e. the process of dividing the layout design into first and second exposures) techniques are possible, but the focus of this paper is on the use of a secondary "cut" mask to trim away extraneous features left from the first exposure. This approach has the advantage that each exposure only needs to support a subset of critical features (e.g. dense lines with the first exposure, isolated spaces with the second one). The extraneous features ("printing assist features" or PrAFs) are designed to support the process window of critical features much like the role of the subresolution assist features (SRAFs) in conventional processes. However, the printing nature of PrAFs leads to many more design options, and hence a greater process and decomposition parameter exploration space, than are available for SRAFs. A decomposition scheme using PRAFs was developed for a gate level process. A critical driver of the work was to deliver improved across-chip linewidth variation (ACLV) performance versus an optimized single exposure process while providing support for a larger range of critical features. A variety of PRAF techniques were investigated by simulation, with a PrAF scheme similar to standard SRAF rules being chosen as the optimal solution [1]. This paper discusses aspects of the code development for an automated PrAF generation and placement scheme and the subsequent decomposition of a layout into two mask levels. While PrAF placement and decomposition is straightforward for layouts with pitch and orientation restrictions, it becomes rather complex for unrestricted layout styles. Because this higher complexity yields more irregularly shaped PrAFs, mask making becomes another critical driver of the optimum placement and clean-up strategies. Examples are given of how those challenges are met or can be successfully circumvented. During subsequent decomposition of the PrAF-enhanced layout into two independent mask levels, various geometric decomposition parameters have to be considered. As an example, the removal of PrAFs has to be guaranteed by a minimum required overlap of the cut mask opening past any PrAF edge. It is discussed that process assumptions such as CD tolerances and overlay as well as inter-level relationship ground rules need to be considered to successfully optimize the final decomposition scheme. Furthermore, simulation and experimental results regarding not only ACLV but also across-device linewidth variation (ADLV) are analyzed.
Carlton, Connor D; Mitchell, Samantha; Lewis, Patrick
2018-01-01
Over the past decade, Structure from Motion (SfM) has increasingly been used as a means of digital preservation and for documenting archaeological excavations, architecture, and cultural material. However, few studies have tapped the potential of using SfM to document and analyze taphonomic processes affecting burials for forensic sciences purposes. This project utilizes SfM models to elucidate specific post-depositional events that affected a series of three human cadavers deposited at the South East Texas Applied Forensic Science Facility (STAFS). The aim of this research was to test the ability for untrained researchers to employ spatial software and photogrammetry for data collection purposes. For a series of three months a single lens reflex (SLR) camera was used to capture a series of overlapping images at periodic stages in the decomposition process of each cadaver. These images are processed through photogrammetric software that creates a 3D model that can be measured, manipulated, and viewed. This project used photogrammetric and geospatial software to map changes in decomposition and movement of the body from original deposition points. Project results indicate SfM and GIS as a useful tool for documenting decomposition and taphonomic processes. Results indicate photogrammetry is an efficient, relatively simple, and affordable tool for the documentation of decomposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Parallel processing for pitch splitting decomposition
NASA Astrophysics Data System (ADS)
Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris
2009-10-01
Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.
Gas-liquid nucleation at large metastability: unusual features and a new formalism
NASA Astrophysics Data System (ADS)
Santra, Mantu; Singh, Rakesh S.; Bagchi, Biman
2011-03-01
Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order to understand the large numerical discrepancy between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interactions of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for the Lennard-Jones potential, both in two and three dimensions. The value of surface tension and also the free energy difference between the gas and the liquid phase increase significantly and converge only when the range of interaction is extended beyond 6-7 molecular diameters. We find, with the full range of interaction potential, that the surface tension shows only a weak dependence on supersaturation, so the reason for the breakdown of CNT (with simulated values of surface tension and free energy gap) cannot be attributed to the supersaturation dependence of surface tension. This remains an unsettled issue at present because of the use of the value of surface tension obtained at coexistence.
Cai, Qinqing; Hu, Jiangyong
2017-02-05
In this study, continuous LED/UVA/TiO 2 photocatalytic decomposition of sulfamethoxazole (SMX) and trimethoprim (TMP) was investigated. More than 90% of SMX and TMP were removed within 20min by the continuous photoreactor (with the initial concentration of 400ppb for each). The removal rates of SMX and TMP decreased with higher initial antibiotics loadings. SMX was much easier decomposed in acidic condition, while pH affected little on TMP's decomposition. 0.003% was found to be the optimum H 2 O 2 dosage to enhance SMX photocatalytic decomposition. Decomposition pathways of SMX and TMP were proposed based on the intermediates identified by using LC-MS-MS and GC-MS. Aniline was identified as a new intermediate generated during SMX photocatalytic decomposition. Antibacterial activity study with a reference Escherichia coli strain was also conducted during the photocatalytic process. Results indicated that with every portion of TMP removed, the residual antibacterial activity decreased by one portion. However, the synergistic effect between SMX and TMP tended to slow down the antibacterial activity removal of SMX and TMP mixture. Chronic toxicity studies conducted with Vibrio fischeri exhibited 13-20% bioluminescence inhibition during the decomposition of 1ppm SMX and 1ppm TMP, no acute toxicity to V. fischeri was observed during the photocatalytic process. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, Suqing; He, Shengbing; Zhou, Weili; Gu, Jianya; Huang, Jungchen; Gao, Lei; Zhang, Xu
2017-12-01
Decomposition of aquatic macrophytes usually generates significant influence on aquatic environment. Study on the aquatic macrophytes decomposition may help reusing the aquatic macrophytes litters, as well as controlling the water pollution caused by the decomposition process. This study verified that the decomposition processes of three different kinds of aquatic macrophytes (water hyacinth, hydrilla and cattail) could exert significant influences on water quality of the receiving water, including the change extent of pH, dissolved oxygen (DO), the contents of carbon, nitrogen and phosphorus, etc. The influence of decomposition on water quality and the concentrations of the released chemical materials both followed the order of water hyacinth > hydrilla > cattail. Greater influence was obtained with higher dosage of plant litter addition. The influence also varied with sediment addition. Moreover, nitrogen released from the decomposition of water hyacinth and hydrilla were mainly NH 3 -N and organic nitrogen while those from cattail litter included organic nitrogen and NO 3 - -N. After the decomposition, the average carbon to nitrogen ratio (C/N) in the receiving water was about 2.6 (water hyacinth), 5.3 (hydrilla) and 20.3 (cattail). Therefore, cattail litter might be a potential plant carbon source for denitrification in ecological system of a constructed wetland. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermoelectric Properties in the TiO2/SnO2 System
NASA Technical Reports Server (NTRS)
Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.
2009-01-01
Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.
Yamashita, Satoshi; Masuya, Hayato; Abe, Shin; Masaki, Takashi; Okabe, Kimiko
2015-01-01
We examined the relationship between the community structure of wood-decaying fungi, detected by high-throughput sequencing, and the decomposition rate using 13 years of data from a forest dynamics plot. For molecular analysis and wood density measurements, drill dust samples were collected from logs and stumps of Fagus and Quercus in the plot. Regression using a negative exponential model between wood density and time since death revealed that the decomposition rate of Fagus was greater than that of Quercus. The residual between the expected value obtained from the regression curve and the observed wood density was used as a decomposition rate index. Principal component analysis showed that the fungal community compositions of both Fagus and Quercus changed with time since death. Principal component analysis axis scores were used as an index of fungal community composition. A structural equation model for each wood genus was used to assess the effect of fungal community structure traits on the decomposition rate and how the fungal community structure was determined by the traits of coarse woody debris. Results of the structural equation model suggested that the decomposition rate of Fagus was affected by two fungal community composition components: one that was affected by time since death and another that was not affected by the traits of coarse woody debris. In contrast, the decomposition rate of Quercus was not affected by coarse woody debris traits or fungal community structure. These findings suggest that, in the case of Fagus coarse woody debris, the fungal community structure is related to the decomposition process of its host substrate. Because fungal community structure is affected partly by the decay stage and wood density of its substrate, these factors influence each other. Further research on interactive effects is needed to improve our understanding of the relationship between fungal community structure and the woody debris decomposition process. PMID:26110605
Forbes, Shari L.; Perrault, Katelynn A.; Stefanuto, Pierre-Hugues; Nizio, Katie D.; Focant, Jean-François
2014-01-01
The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC×GC-TOFMS were demonstrated for detecting and identifying trace levels of VOCs, particularly ethers, which are rarely reported as decomposition VOCs. PMID:25412504
Forbes, Shari L; Perrault, Katelynn A; Stefanuto, Pierre-Hugues; Nizio, Katie D; Focant, Jean-François
2014-01-01
The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry (GC × GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC × GC-TOFMS were demonstrated for detecting and identifying trace levels of VOCs, particularly ethers, which are rarely reported as decomposition VOCs.
Dossa, Gbadamassi G. O.; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D.
2016-01-01
Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11–1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition. PMID:27698461
Dossa, Gbadamassi G O; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D
2016-10-04
Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11-1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition.
NASA Astrophysics Data System (ADS)
Janković, Bojan
2009-10-01
The decomposition process of sodium bicarbonate (NaHCO3) has been studied by thermogravimetry in isothermal conditions at four different operating temperatures (380 K, 400 K, 420 K, and 440 K). It was found that the experimental integral and differential conversion curves at the different operating temperatures can be successfully described by the isothermal Weibull distribution function with a unique value of the shape parameter ( β = 1.07). It was also established that the Weibull distribution parameters ( β and η) show independent behavior on the operating temperature. Using the integral and differential (Friedman) isoconversional methods, in the conversion (α) range of 0.20 ≤ α ≤ 0.80, the apparent activation energy ( E a ) value was approximately constant ( E a, int = 95.2 kJmol-1 and E a, diff = 96.6 kJmol-1, respectively). The values of E a calculated by both isoconversional methods are in good agreement with the value of E a evaluated from the Arrhenius equation (94.3 kJmol-1), which was expressed through the scale distribution parameter ( η). The Málek isothermal procedure was used for estimation of the kinetic model for the investigated decomposition process. It was found that the two-parameter Šesták-Berggren (SB) autocatalytic model best describes the NaHCO3 decomposition process with the conversion function f(α) = α0.18(1-α)1.19. It was also concluded that the calculated density distribution functions of the apparent activation energies ( ddfE a ’s) are not dependent on the operating temperature, which exhibit the highly symmetrical behavior (shape factor = 1.00). The obtained isothermal decomposition results were compared with corresponding results of the nonisothermal decomposition process of NaHCO3.
Layout compliance for triple patterning lithography: an iterative approach
NASA Astrophysics Data System (ADS)
Yu, Bei; Garreton, Gilda; Pan, David Z.
2014-10-01
As the semiconductor process further scales down, the industry encounters many lithography-related issues. In the 14nm logic node and beyond, triple patterning lithography (TPL) is one of the most promising techniques for Metal1 layer and possibly Via0 layer. As one of the most challenging problems in TPL, recently layout decomposition efforts have received more attention from both industry and academia. Ideally the decomposer should point out locations in the layout that are not triple patterning decomposable and therefore manual intervention by designers is required. A traditional decomposition flow would be an iterative process, where each iteration consists of an automatic layout decomposition step and manual layout modification task. However, due to the NP-hardness of triple patterning layout decomposition, automatic full chip level layout decomposition requires long computational time and therefore design closure issues continue to linger around in the traditional flow. Challenged by this issue, we present a novel incremental layout decomposition framework to facilitate accelerated iterative decomposition. In the first iteration, our decomposer not only points out all conflicts, but also provides the suggestions to fix them. After the layout modification, instead of solving the full chip problem from scratch, our decomposer can provide a quick solution for a selected portion of layout. We believe this framework is efficient, in terms of performance and designer friendly.
Suseela, Vidya; Tharayil, Nishanth
2018-04-01
Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a postsenescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter that is available for decomposition, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition, and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins, and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final chemical composition of plant litter that forms the substrate of decomposition is a combined product of presenescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition, and localization of the molecular construct of the litter could enhance or hinder tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities, and the activity of microbial exo-enzymes via various complexation reactions. Also, the climate-induced changes in the molecular composition of litter could differentially influence litter decomposition and soil nutrient cycling. Compared with temperate ecosystems, the indirect effects of climate on litter decomposition in the tropics are not well understood, which underscores the need to conduct additional studies in tropical biomes. We also emphasize the need to focus on how climatic stress affects the root chemistry as roots contribute significantly to biogeochemical cycling, and on utilizing more robust analytical approaches to capture the molecular composition of tissue matrix that fuel microbial metabolism. © 2017 John Wiley & Sons Ltd.
Multilevel decomposition of complete vehicle configuration in a parallel computing environment
NASA Technical Reports Server (NTRS)
Bhatt, Vinay; Ragsdell, K. M.
1989-01-01
This research summarizes various approaches to multilevel decomposition to solve large structural problems. A linear decomposition scheme based on the Sobieski algorithm is selected as a vehicle for automated synthesis of a complete vehicle configuration in a parallel processing environment. The research is in a developmental state. Preliminary numerical results are presented for several example problems.
Interacting effects of insects and flooding on wood decomposition.
Michael Ulyshen
2014-01-01
Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L.) decomposition rates...
Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*
Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang
2017-01-01
Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839
Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.
Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang
Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.
NASA Astrophysics Data System (ADS)
Mazali, Italo Odone; Alves, Oswaldo Luiz
2005-01-01
This work reports the preparation of TiO2 by decomposition of a metallo-organic precursor (MOD process) in the pores of an α-NbPO5 glass-ceramic monolith (PGC-NbP) and the study of the TiO2 anatase-rutile transition phase. The impregnation of titanium di-(propoxy)-di-(2-ethylhexanoate) in the PGC-NbP was confirmed by diffuse reflectance infrared spectroscopy. In the restrictive porous environment the decomposition of the metallo-organic compound exhibits a lower initial decomposition temperature but a higher final decomposition temperature, in comparison to the free precursor. The pure TiO2 rutile phase is formed only above 700 °C when the titanium precursor is decomposed outside the pores. The TiO2 anatase obtained inside the PGC-NbP was stabilized up to 750 °C and exhibits a smaller average crystallite size in comparison with the MOD process performed without PGC-NbP. Furthemore, the temperature of the TiO2 anatase-rutile transformation depends on crystallite size, which was provided by XRD and Raman spectroscopy. The precursor impregnation-decomposition cycle revealed a linear mass increment inside PGC-NbP. Micro-Raman spectroscopy shows the presence of a gradient concentration of the TiO2 inside the PGC-NbP. The use of the MOD process in the PGC-NbP pores has several advantages: control of the amount and the nature of the phase formed and preservation of the pore structure of PGC-NbP for subsequent treatments and reactions.
Marais-Werner, Anátulie; Myburgh, J; Becker, P J; Steyn, M
2018-01-01
Several studies have been conducted on decomposition patterns and rates of surface remains; however, much less are known about this process for buried remains. Understanding the process of decomposition in buried remains is extremely important and aids in criminal investigations, especially when attempting to estimate the post mortem interval (PMI). The aim of this study was to compare the rates of decomposition between buried and surface remains. For this purpose, 25 pigs (Sus scrofa; 45-80 kg) were buried and excavated at different post mortem intervals (7, 14, 33, 92, and 183 days). The observed total body scores were then compared to those of surface remains decomposing at the same location. Stages of decomposition were scored according to separate categories for different anatomical regions based on standardised methods. Variation in the degree of decomposition was considerable especially with the buried 7-day interval pigs that displayed different degrees of discolouration in the lower abdomen and trunk. At 14 and 33 days, buried pigs displayed features commonly associated with the early stages of decomposition, but with less variation. A state of advanced decomposition was reached where little change was observed in the next ±90-183 days after interment. Although the patterns of decomposition for buried and surface remains were very similar, the rates differed considerably. Based on the observations made in this study, guidelines for the estimation of PMI are proposed. This pertains to buried remains found at a depth of approximately 0.75 m in the Central Highveld of South Africa.
Microbial community assembly and metabolic function during mammalian corpse decomposition
Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R.; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C.; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob
2016-01-01
Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.
Microbial community assembly and metabolic function during mammalian corpse decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalf, J. L.; Xu, Z. Z.; Weiss, S.
2015-12-10
Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in lowmore » abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.« less
Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the newmore » assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.« less
PROCESS OF COATING WITH NICKEL BY THE DECOMPOSITION OF NICKEL CARBONYL
Hoover, T.B.
1959-04-01
An improved process is presented for the deposition of nickel coatings by the thermal decomposition of nickel carbonyl vapor. The improvement consists in incorporating a small amount of hydrogen sulfide gas in the nickel carbonyl plating gas. It is postulated that the hydrogen sulfide functions as a catalyst. i
A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction
NASA Astrophysics Data System (ADS)
Valdés, Cristian; Alzate-Morales, Jans; Osorio, Edison; Villaseñor, Jorge; Navarro-Retamal, Carlos
2015-11-01
Phenol is one of the worst contaminants at date, and its degradation has been a crucial task over years. Here, the decomposition process of phenol, in a Fenton reaction, is described. Using scavengers, it was observed that decomposition of phenol was mainly influenced by production of hydroxyl radicals. Experimental and theoretical activation energies (Ea) for phenol oxidation intermediates were calculated. According to these Ea, phenol decomposition is a two-step reaction mechanism mediated predominantly by hydroxyl radicals, producing a decomposition yield order given as hydroquinone > catechol > resorcinol. Furthermore, traces of reaction derived acids were detected by HPLC and GS-MS.
Middleton, Beth A.
2014-01-01
A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.
Possibility of H2O2 decomposition in thin liquid films on Mars
NASA Astrophysics Data System (ADS)
Kereszturi, Akos; Gobi, Sandor
2014-11-01
In this work the pathways and possibilities of H2O2 decomposition on Mars in microscopic liquid interfacial water were analyzed by kinetic calculations. Thermal and photochemical driven decomposition, just like processes catalyzed by various metal oxides, is too slow compared to the annual duration while such microscopic liquid layers exist on Mars today, to produce substantial decomposition. The most effective analyzed process is catalyzed by Fe ions, which could decompose H2O2 under pH<4.5 with a half life of 1-2 days. This process might be important during volcanically influenced periods when sulfur release produces acidic pH, and rotational axis tilt change driven climatic changes also influence the volatile circulation and spatial occurrence just like the duration of thin liquid layer. Under current conditions, using the value of 200 K as the temperature in interfacial water (at the southern hemisphere), and applying Phoenix lander's wet chemistry laboratory results, the pH is not favorable for Fe mobility and this kind of decomposition. Despite current conditions (especially pH) being unfavorable for H2O2 decomposition, microscopic scale interfacial liquid water still might support the process. By the reaction called heterogeneous catalysis, without acidic pH and mobile Fe, but with minerals surfaces containing Fe decomposition of H2O2 with half life of 20 days can happen. This duration is still longer but not several orders than the existence of springtime interfacial liquid water on Mars today. This estimation is relevant for activation energy controlled reaction rates. The other main parameter that may influence the reaction rate is the diffusion speed. Although the available tests and theoretical calculations do not provide firm values for the diffusion speed in such a “2-dimensional” environment, using relevant estimations this parameter in the interfacial liquid layer is smaller than in bulk water. But the 20 days' duration mentioned above is still relevant, as the activation energy driven reaction rate is the main limiting factor in the decomposition and not the diffusion speed. The duration of dozen(s) days is still longer but not with orders of magnitude than the expected duration for the existence of springtime interfacial liquid water on Mars today. The results suggest such decomposition may happen today, however, because of our limited knowledge on chemical processes in thin interfacial liquid layers, this possibility waits for confirmation - and also points to the importance of conducting laboratory tests to validate the possible process. Although some tests were already realized for diffusion in an almost 2-dimensional liquid, the same is not true for activation energy, where only the value from the “normal” measurements was applied. Even if H2O2 decomposition is too slow today, the analysis of such a process is important, as under volcanic influence more effective decomposition might take place in thin interfacial liquids close to the climate of today if released sulfur produces pH<4.5. Large quantity and widespread occurrence of bulk liquid phase are not expected in the Amazonian period, but interfacial liquid water probably appeared regularly, and its locations, especially during volcanically active periods, might make certain sites than others more interesting for astrobiology with the lower concentration of oxidizing H2O2.
Biogeochemistry of Decomposition and Detrital Processing
NASA Astrophysics Data System (ADS)
Sanderman, J.; Amundson, R.
2003-12-01
Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and <1% of phosphorus, internal nutrient recycling is the source for >95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant external input (1) and output (2) from neighboring ecosystems (such as erosion), weathering of primary minerals (3), loss of secondary minerals (4), atmospheric deposition and N-fixation (5) and volatilization (6), the majority of plant-available nutrients are supplied by internal recycling through decomposition. Nutrients that are taken up by plants (7) are either consumed by fauna (8) and returned to the soil through defecation and mortality (10) or returned to the soil through litterfall and mortality (9). Detritus and humus can be immobilized into microbial biomass (11 and 13). Humus is formed by the transformation and stabilization of detrital (12) and microbial (14) compounds. During these transformations, SOM is being continually mineralized by the microorganisms (15) replenishing the inorganic nutrient pool (after Swift et al., 1979). The second major ecosystem role of decomposition is in the formation and stabilization of humus. The cycling and stabilization of SOM in the litter-soil system is presented in a conceptual model in Figure 2. Parallel with litterfall and most root turnover, detrital processing is concentrated at or near the soil surface. As labile SOM is preferentially degraded, there is a progressive shift from labile to passive SOM with increasing depth. There are three basic mechanisms for SOM accumulation in the mineral soil: bioturbation or physical mixing of the soil by burrowing animals (e.g., earthworms, gophers, etc.), in situ decomposition of roots and root exudates, and the leaching of soluble organic compounds. In the absence of bioturbation, distinct litter layers often accumulate above the mineral soil. In grasslands where the majority of net primary productivity (NPP) is allocated belowground, root inputs will dominate. In sandy soils with ample rainfall, leaching may be the major process incorporating carbon into the soil. (11K)Figure 2. Conceptual model of carbon cycling in the litter-soil system. In each horizon or depth increment, SOM is represented by three pools: labile SOM, slow SOM, and passive SOM. Inputs include aboveground litterfall and belowground root turnover and exudates, which will be distributed among the pools based on the biochemical nature of the material. Outputs from each pool include mineralization to CO2 (dashed lines), humification (labile→slow→passive), and downward transport due to leaching and physical mixing. Communition by soil fauna will accelerate the decomposition process and reveal previously inaccessible materials. Soil mixing and other disturbances can also make physically protected passive SOM available to microbial attack (passive→slow). There exists an amazing body of literature on the subject of decomposition that draws from many disciplines - including ecology, soil science, microbiology, plant physiology, biochemistry, and zoology. In this chapter, we have attempted to draw information from all of these fields to present an integrated analysis of decomposition in a biogeochemical context. We begin by reviewing the composition of detrital resources and SOM (Section 8.07.2), the organisms responsible for decomposition ( Section 8.07.3), and some methods for quantifying decomposition rates ( Section 8.07.4). This is followed by a discussion of the mechanisms behind decomposition ( Section 8.07.5), humification ( Section 8.07.6), and the controls on these processes ( Section 8.07.7). We conclude the chapter with a brief discussion on how current biogeochemical models incorporate this information ( Section 8.07.8).
ENVIRONMENTAL ASSESSMENT OF THE BASE CATALYZED DECOMPOSITION (BCD) PROCESS
This report summarizes laboratory-scale, pilot-scale, and field performance data on BCD (Base Catalyzed Decomposition) and technology, collected to date by various governmental, academic, and private organizations.
Aligning observed and modelled behaviour based on workflow decomposition
NASA Astrophysics Data System (ADS)
Wang, Lu; Du, YuYue; Liu, Wei
2017-09-01
When business processes are mostly supported by information systems, the availability of event logs generated from these systems, as well as the requirement of appropriate process models are increasing. Business processes can be discovered, monitored and enhanced by extracting process-related information. However, some events cannot be correctly identified because of the explosion of the amount of event logs. Therefore, a new process mining technique is proposed based on a workflow decomposition method in this paper. Petri nets (PNs) are used to describe business processes, and then conformance checking of event logs and process models is investigated. A decomposition approach is proposed to divide large process models and event logs into several separate parts that can be analysed independently; while an alignment approach based on a state equation method in PN theory enhances the performance of conformance checking. Both approaches are implemented in programmable read-only memory (ProM). The correctness and effectiveness of the proposed methods are illustrated through experiments.
Chapman, Samantha K.; Newman, Gregory S.; Hart, Stephen C.; Schweitzer, Jennifer A.; Koch, George W.
2013-01-01
To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate. PMID:23658639
Characteristic of root decomposition in a tropical rainforest in Sarawak, Malaysi
NASA Astrophysics Data System (ADS)
Ohashi, Mizue; Makita, Naoki; Katayam, Ayumi; Kume, Tomonori; Matsumoto, Kazuho; Khoon Kho, L.
2016-04-01
Woody roots play a significant role in forest carbon cycling, as up to 60 percent of tree photosynthetic production can be allocated to belowground. Root decay is one of the main processes of soil C dynamics and potentially relates to soil C sequestration. However, much less attention has been paid for root litter decomposition compared to the studies of leaf litter because roots are hidden from view. Previous studies have revealed that physico-chemical quality of roots, climate, and soil organisms affect root decomposition significantly. However, patterns and mechanisms of root decomposition are still poorly understood because of the high variability of root properties, field environment and potential decomposers. For example, root size would be a factor controlling decomposition rates, but general understanding of the difference between coarse and fine root decompositions is still lacking. Also, it is known that root decomposition is performed by soil animals, fungi and bacteria, but their relative importance is poorly understood. In this study, therefore, we aimed to characterize the root decomposition in a tropical rainforest in Sarawak, Malaysia, and clarify the impact of soil living organisms and root sizes on root litter decomposition. We buried soil cores with fine and coarse root litter bags in soil in Lambir Hills National Park. Three different types of soil cores that are covered by 1.5 cm plastic mesh, root-impermeable sheet (50um) and fungi-impermeable sheet (1um) were prepared. The soil cores were buried in February 2013 and collected 4 times, 134 days, 226 days, 786 days and 1151 days after the installation. We found that nearly 80 percent of the coarse root litter was decomposed after two years, whereas only 60 percent of the fine root litter was decomposed. Our results also showed significantly different ratio of decomposition between different cores, suggesting the different contribution of soil living organisms to decomposition process.
Michele L. Renschin; Hal O. Liechty; Michael G. Shelton
2002-01-01
Abstract - Although fire has long been an important forest management tool in the southern United States, little is known concerning the effects of long-term fire use on nutrient cycling and decomposition. To better understand the effects of fire on these processes, decomposition rates, and foliage litter quality were quantified in a study...
1990-02-01
Decomposition ................ 165 Part IV. Thermal Decomposition - Analytical Methodologies .............. 167 Part V. Miscellaneous...500C ................... 45 12 Differential Scanning Calorimetry Curve for the Decomposition of a Smokeless-Grade Nitrocellulose .......... 62 13 Process...cellulose backbone with nitrating acids of high water content resulted in hydrolysis of the pentosans without the desired 3 result of nitration. Furthermore
NASA Astrophysics Data System (ADS)
Osono, Takashi; Matsuoka, Shunsuke; Hirose, Dai; Uchida, Masaki; Kanda, Hiroshi
2014-06-01
Fungal colonization, succession, and decomposition of leaves and stems of Salix arctica were studied to estimate the roles of fungi in the decomposition processes in the high Arctic. The samples were collected from five moraines with different periods of development since deglaciation to investigate the effects of ecosystem development on the decomposition processes during the primary succession. The total hyphal lengths and the length of darkly pigmented hyphae increased during decomposition of leaves and stems and were not varied with the moraines. Four fungal morphotaxa were frequently isolated from both leaves and stems. The frequencies of occurrence of two morphotaxa varied with the decay class of leaves and/or stems. The hyphal lengths and the frequencies of occurrence of fungal morphotaxa were positively or negatively correlated with the contents of organic chemical components and nutrients in leaves and stems, suggesting the roles of fungi in chemical changes in the field. Pure culture decomposition tests demonstrated that the fungal morphotaxa were cellulose decomposers. Our results suggest that fungi took part in the chemical changes in decomposing leaves and stems even under the harsh environment of the high Arctic.
Keough, Natalie; Myburgh, Jolandie; Steyn, Maryna
2017-07-01
Decomposition studies often use pigs as proxies for human cadavers. However, differences in decomposition sequences/rates relative to humans have not been scientifically examined. Descriptions of five main decomposition stages (humans) were developed and refined by Galloway and later by Megyesi. However, whether these changes/processes are alike in pigs is unclear. Any differences can have significant effects when pig models are used for human PMI estimation. This study compared human decomposition models to the changes observed in pigs. Twenty pigs (50-90 kg) were decomposed over five months and decompositional features recorded. Total body scores (TBS) were calculated. Significant differences were observed during early decomposition between pigs and humans. An amended scoring system to be used in future studies was developed. Standards for PMI estimation derived from porcine models may not directly apply to humans and may need adjustment. Porcine models, however, remain valuable to study variables influencing decomposition. © 2016 American Academy of Forensic Sciences.
Theoretical studies of the decomposition mechanisms of 1,2,4-butanetriol trinitrate.
Pei, Liguan; Dong, Kehai; Tang, Yanhui; Zhang, Bo; Yu, Chang; Li, Wenzuo
2017-12-06
Density functional theory (DFT) and canonical variational transition-state theory combined with a small-curvature tunneling correction (CVT/SCT) were used to explore the decomposition mechanisms of 1,2,4-butanetriol trinitrate (BTTN) in detail. The results showed that the γ-H abstraction reaction is the initial pathway for autocatalytic BTTN decomposition. The three possible hydrogen atom abstraction reactions are all exothermic. The rate constants for autocatalytic BTTN decomposition are 3 to 10 40 times greater than the rate constants for the two unimolecular decomposition reactions (O-NO 2 cleavage and HONO elimination). The process of BTTN decomposition can be divided into two stages according to whether the NO 2 concentration is above a threshold value. HONO elimination is the main reaction channel during the first stage because autocatalytic decomposition requires NO 2 and the concentration of NO 2 is initially low. As the reaction proceeds, the concentration of NO 2 gradually increases; when it exceeds the threshold value, the second stage begins, with autocatalytic decomposition becoming the main reaction channel.
Decomposition Rate and Pattern in Hanging Pigs.
Lynch-Aird, Jeanne; Moffatt, Colin; Simmons, Tal
2015-09-01
Accurate prediction of the postmortem interval requires an understanding of the decomposition process and the factors acting upon it. A controlled experiment, over 60 days at an outdoor site in the northwest of England, used 20 freshly killed pigs (Sus scrofa) as human analogues to study decomposition rate and pattern. Ten pigs were hung off the ground and ten placed on the surface. Observed differences in the decomposition pattern required a new decomposition scoring scale to be produced for the hanging pigs to enable comparisons with the surface pigs. The difference in the rate of decomposition between hanging and surface pigs was statistically significant (p=0.001). Hanging pigs reached advanced decomposition stages sooner, but lagged behind during the early stages. This delay is believed to result from lower variety and quantity of insects, due to restricted beetle access to the aerial carcass, and/or writhing maggots falling from the carcass. © 2015 American Academy of Forensic Sciences.
Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr
NASA Astrophysics Data System (ADS)
Jensen, Jacob
High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the nanoscale interpenetrating microstructure was discovered to form via a conditional spinodal reaction pathway involving a congruent ordering transformation preceding spinodal decomposition. In order to gain a comprehensive understanding of the true morphology of these phases and obtain a novel perspective of 3D elemental segregation in the HEA, STEM-high angle annular darkfield (HAADF) micrographs and XEDS spectral images were utilized in the tomographic reconstruction of the microstructure, which was inherently difficult to observe through conventional characterization techniques. The microstructure of the alloy was ultimately refined by incremental variations to the base alloy composition in an effort to remove deleterious intermetallic phases adversely affecting ductility. Despite the excellent compressive strength across a wide range of temperatures and the ability to tailor the microstructure by compositional modifications, microstructural and phase transformations in the desired operating temperature range indicate that the AlMo0.5NbTa0.5TiZr alloy may not be a suitable material for high temperature aerospace structural components.
Kong, Xiangshi; Jia, Yanyan; Song, Fuqiang; Tian, Kai; Lin, Hong; Bei, Zhanlin; Jia, Xiuqin; Yao, Bei; Guo, Peng; Tian, Xingjun
2018-02-01
Arbuscular mycorrhizal fungi (AMF) play an important role in litter decomposition. This study investigated how soil nutrient level affected the process. Results showed that AMF colonization had no significant effect on litter decomposition under normal soil nutrient conditions. However, litter decomposition was accelerated significantly under lower nutrient conditions. Soil microbial biomass in decomposition system was significantly increased. Especially, in moderate lower nutrient treatment (condition of half-normal soil nutrient), litters exhibited the highest decomposition rate, AMF hypha revealed the greatest density, and enzymes (especially nitrate reductase) showed the highest activities as well. Meanwhile, the immobilization of nitrogen (N) in the decomposing litter remarkably decreased. Our results suggested that the roles AMF played in ecosystem were largely affected by soil nutrient levels. At normal soil nutrient level, AMF exhibited limited effects in promoting decomposition. When soil nutrient level decreased, the promoting effect of AMF on litter decomposition began to appear, especially on N mobilization. However, under extremely low nutrient conditions, AMF showed less influence on decomposition and may even compete with decomposer microorganisms for nutrients.
A compositional approach to building applications in a computational environment
NASA Astrophysics Data System (ADS)
Roslovtsev, V. V.; Shumsky, L. D.; Wolfengagen, V. E.
2014-04-01
The paper presents an approach to creating an applicative computational environment to feature computational processes and data decomposition, and a compositional approach to application building. The approach in question is based on the notion of combinator - both in systems with variable binding (such as λ-calculi) and those allowing programming without variables (combinatory logic style). We present a computation decomposition technique based on objects' structural decomposition, with the focus on computation decomposition. The computational environment's architecture is based on a network with nodes playing several roles simultaneously.
Premkumar, Thathan; Govindarajan, Subbiah; Coles, Andrew E; Wight, Charles A
2005-04-07
The thermal decomposition kinetics of N(2)H(5)[Ce(pyrazine-2,3-dicarboxylate)(2)(H(2)O)] (Ce-P) have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), for the first time; TGA analysis reveals an oxidative decomposition process yielding CeO(2) as the final product with an activation energy of approximately 160 kJ mol(-1). This complex may be used as a precursor to fine particle cerium oxides due to its low temperature of decomposition.
Muravyev, Nikita V; Monogarov, Konstantin A; Asachenko, Andrey F; Nechaev, Mikhail S; Ananyev, Ivan V; Fomenkov, Igor V; Kiselev, Vitaly G; Pivkina, Alla N
2016-12-21
Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).
Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.
2006-01-01
Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrens, R.; Minier, L.; Bulusu, S.
1998-12-31
The time-dependent, solid-phase thermal decomposition behavior of 2,4-dinitroimidazole (2,4-DNI) has been measured utilizing simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) methods. The decomposition products consist of gaseous and non-volatile polymeric products. The temporal behavior of the gas formation rates of the identified products indicate that the overall thermal decomposition process is complex. In isothermal experiments with 2,4-DNI in the solid phase, four distinguishing features are observed: (1) elevated rates of gas formation are observed during the early stages of the decomposition, which appear to be correlated to the presence of exogenous water in the sample; (2) this is followed bymore » a period of relatively constant rates of gas formation; (3) next, the rates of gas formation accelerate, characteristic of an autocatalytic reaction; (4) finally, the 2,4-DNI is depleted and gaseous decomposition products continue to evolve at a decreasing rate. A physicochemical and mathematical model of the decomposition of 2,4-DNI has been developed and applied to the experimental results. The first generation of this model is described in this paper. Differences between the first generation of the model and the experimental data collected under different conditions suggest refinements for the next generation of the model.« less
Young Children's Thinking About Decomposition: Early Modeling Entrees to Complex Ideas in Science
NASA Astrophysics Data System (ADS)
Ero-Tolliver, Isi; Lucas, Deborah; Schauble, Leona
2013-10-01
This study was part of a multi-year project on the development of elementary students' modeling approaches to understanding the life sciences. Twenty-three first grade students conducted a series of coordinated observations and investigations on decomposition, a topic that is rarely addressed in the early grades. The instruction included in-class observations of different types of soil and soil profiling, visits to the school's compost bin, structured observations of decaying organic matter of various kinds, study of organisms that live in the soil, and models of environmental conditions that affect rates of decomposition. Both before and after instruction, students completed a written performance assessment that asked them to reason about the process of decomposition. Additional information was gathered through one-on-one interviews with six focus students who represented variability of performance across the class. During instruction, researchers collected video of classroom activity, student science journal entries, and charts and illustrations produced by the teacher. After instruction, the first-grade students showed a more nuanced understanding of the composition and variability of soils, the role of visible organisms in decomposition, and environmental factors that influence rates of decomposition. Through a variety of representational devices, including drawings, narrative records, and physical models, students came to regard decomposition as a process, rather than simply as an end state that does not require explanation.
Effect of pressure on rate of burning /decomposition with flame/ of liquid hydrazine.
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1966-01-01
Liquid hydrazine decomposition process to determine what chemical or physical changes may be occurring that cause breaks in burning rate/ pressure curves, measuring flame temperature and light emission
Materials on the brink: unprecedented transforming materials
2013-09-10
2013 56.00 Shenqiang Ren\\, Manfred Wuttig. Spinodal synthesis of PZT /NFO magnetoelectric, Applied Physics Letters, (08 2007): 83501. doi: 02/06/2013... PZT . This material was discovered through a combinatorial search. Rabe et al. have used first principles methods to show that this morphotropic...temperature. James et al. have suggested a new strategy for energy recovery from waste heat using this alloy. • Discovery of a new fatigue -free shape
Ab initio kinetics of gas phase decomposition reactions.
Sharia, Onise; Kuklja, Maija M
2010-12-09
The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data.
Microbial community assembly and metabolic function during mammalian corpse decomposition.
Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob
2016-01-08
Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations. Copyright © 2016, American Association for the Advancement of Science.
Basic dye decomposition kinetics in a photocatalytic slurry reactor.
Wu, Chun-Hsing; Chang, Hung-Wei; Chern, Jia-Ming
2006-09-01
Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 degrees C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baidakov, Vladimir G., E-mail: baidakov@itp.uran.ru; Tipeev, Azat O.
The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal–liquid phase equilibrium when the melting linemore » comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.« less
A cavitation transition in the energy landscape of simple cohesive liquids and glasses
NASA Astrophysics Data System (ADS)
Altabet, Y. Elia; Stillinger, Frank H.; Debenedetti, Pablo G.
2016-12-01
In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρS. The tensile limit at ρS is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρS is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherent structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.
Pedersen, Kristine S. K.; Aanen, Duur K.
2017-01-01
ABSTRACT Fungus-growing termites rely on mutualistic fungi of the genus Termitomyces and gut microbes for plant biomass degradation. Due to a certain degree of symbiont complementarity, this tripartite symbiosis has evolved as a complex bioreactor, enabling decomposition of nearly any plant polymer, likely contributing to the success of the termites as one of the main plant decomposers in the Old World. In this study, we evaluated which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We found a diversity of active enzymes at different stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant substrate. However, preliminary fungal RNA sequencing (RNA-seq) analyses suggest that this likely transport is supplemented with enzymes produced in situ. Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mixture of plant material, fungal spores, and enzymes, is likely the key to the extraordinarily efficient plant decomposition in fungus-growing termites. IMPORTANCE Fungus-growing termites have a substantial ecological footprint in the Old World (sub)tropics due to their ability to decompose dead plant material. Through the establishment of an elaborate plant biomass inoculation strategy and through fungal and bacterial enzyme contributions, this farming symbiosis has become an efficient and versatile aerobic bioreactor for plant substrate conversion. Since little is known about what enzymes are expressed and where they are active at different stages of the decomposition process, we used enzyme assays, transcriptomics, and plant content measurements to shed light on how this decomposition of plant substrate is so effectively accomplished. PMID:29269491
da Costa, Rafael R; Hu, Haofu; Pilgaard, Bo; Vreeburg, Sabine M E; Schückel, Julia; Pedersen, Kristine S K; Kračun, Stjepan K; Busk, Peter K; Harholt, Jesper; Sapountzis, Panagiotis; Lange, Lene; Aanen, Duur K; Poulsen, Michael
2018-03-01
Fungus-growing termites rely on mutualistic fungi of the genus Termitomyces and gut microbes for plant biomass degradation. Due to a certain degree of symbiont complementarity, this tripartite symbiosis has evolved as a complex bioreactor, enabling decomposition of nearly any plant polymer, likely contributing to the success of the termites as one of the main plant decomposers in the Old World. In this study, we evaluated which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We found a diversity of active enzymes at different stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant substrate. However, preliminary fungal RNA sequencing (RNA-seq) analyses suggest that this likely transport is supplemented with enzymes produced in situ Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mixture of plant material, fungal spores, and enzymes, is likely the key to the extraordinarily efficient plant decomposition in fungus-growing termites. IMPORTANCE Fungus-growing termites have a substantial ecological footprint in the Old World (sub)tropics due to their ability to decompose dead plant material. Through the establishment of an elaborate plant biomass inoculation strategy and through fungal and bacterial enzyme contributions, this farming symbiosis has become an efficient and versatile aerobic bioreactor for plant substrate conversion. Since little is known about what enzymes are expressed and where they are active at different stages of the decomposition process, we used enzyme assays, transcriptomics, and plant content measurements to shed light on how this decomposition of plant substrate is so effectively accomplished. Copyright © 2018 da Costa et al.
Li, Xia; Cui, Baoshan; Yang, Qichun; Tian, Hanqin; Lan, Yan; Wang, Tingting; Han, Zhen
2012-01-01
Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO3-N and NH4-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes. PMID:22848699
The neural basis of novelty and appropriateness in processing of creative chunk decomposition.
Huang, Furong; Fan, Jin; Luo, Jing
2015-06-01
Novelty and appropriateness have been recognized as the fundamental features of creative thinking. However, the brain mechanisms underlying these features remain largely unknown. In this study, we used event-related functional magnetic resonance imaging (fMRI) to dissociate these mechanisms in a revised creative chunk decomposition task in which participants were required to perform different types of chunk decomposition that systematically varied in novelty and appropriateness. We found that novelty processing involved functional areas for procedural memory (caudate), mental rewarding (substantia nigra, SN), and visual-spatial processing, whereas appropriateness processing was mediated by areas for declarative memory (hippocampus), emotional arousal (amygdala), and orthography recognition. These results indicate that non-declarative and declarative memory systems may jointly contribute to the two fundamental features of creative thinking. Copyright © 2015 Elsevier Inc. All rights reserved.
Wood decomposition following clearcutting at Coweeta Hydrologic Laboratory
Kim G. Mattson; Wayne T. Swank
2014-01-01
Most of the forest on Watershed (WS) 7 was cut and ledt on site to decompose. This Chapter describes the rate and manner of wood decomposition and also quantifies the fluxes from decaying wood to the forest floor on WS 7. In doing so, we make the case that wood and its process of decomposition contributes to ecosystem stability. We also review some of the history of...
Miclele Renschin; Hal O. Leichty; Michael G. Shelton
2001-01-01
Although fire has been used extensively over long periods of time in loblolly pine (Pinis taeda L.) ecosystems, little is known concerning the effects of frequent fire use on nutrient cycling and decomposition. To better understand the long-term effects of fire on these processes, foliar litter decomposition rates were quantified in a study...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, W.; Zhou, L.; Kassen, A. G.
2015-05-25
Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (H cj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology.more » As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less
Di Somma, Ilaria; Pollio, Antonino; Pinto, Gabriele; De Falco, Maria; Pizzo, Elio; Andreozzi, Roberto
2010-04-15
The knowledge of the substances which form when a molecule undergoes chemical reactions under unusual conditions is required by European legislation to evaluate the risks associated with an industrial chemical process. A thermal decomposition is often the result of a loss of control of the process which leads to the formation of many substances in some cases not easily predictable. The evaluation of the change of an overall toxicity passing from the parent compound to the mixture of its thermal decomposition products has been already proposed as a practical approach to this problem when preliminary indications about the temperature range in which the molecule decomposes are available. A new procedure is proposed in this work for the obtainment of the mixtures of thermal decomposition products also when there is no previous information about the thermal behaviour of investigated molecules. A scanning calorimetric run that is aimed to identify the onset temperature of the decomposition process is coupled to an isoperibolic one in order to obtain and collect the products. An algal strain is adopted for toxicological assessments of chemical compounds and mixtures. An extension of toxicological investigations to human cells is also attempted. 2009 Elsevier B.V. All rights reserved.
Zu, Y Q; He, S
2013-04-01
A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.
Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; ...
2016-02-11
Here, we report how the superconducting phase forms in pseudo-single-crystal K xFe 2-ySe 2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition.more » It should be emphasized that the phase separation in pseudo-single-crystal K xFe 2-ySe 2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less
NASA Astrophysics Data System (ADS)
Meng, Jian-ping; Guo, Rui-rui; Li, Hu; Zhao, Lu-ming; Liu, Xiao-peng; Li, Zhou
2018-05-01
Solar selective absorbing coatings play a valuable role in photo-thermal conversion for high efficiency concentrating solar power systems (CSP). In this paper, a novel Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coating was successfully deposited by ion beam assisted deposition. The optical properties, microstructure and element distribution in depth were investigated by spectroscopic ellipsometry, UV-vis-NIR spectrophotometer, transmission electron microscope (TEM) and Auger electron spectroscopy (AES), respectively. A high absorptance of 0.953 and a low thermal emittance of 0.079 at 400 °C are obtained by the integral computation according to the whole reflectance from 300 nm to 28,800 nm. After annealing treatment at 400 °C (in vacuum) for 192 h, the deposited coating exhibits the high thermal stability. Whereas, the photothermal conversion efficiency decreases from 12.10 to 6.86 due to the emittance increase after annealing at 600 °C for 192 h. Meanwhile, the nitrogen atom in the Zr0.3Al0.7N sub-layer diffuses toward the adjacent sub-layer due to the spinodal decomposition of metastable c-ZrAlN and the phase transition from c-AlN to h-AlN, which leads to the composition of the Zr0.3Al0.7N sub-layer deviates the initial design. This phenomenon has a guide effect for the thermal-stability improvement of cermet coatings. Additionally, a serious diffusion between copper and silicon substrate also contributes to the emittance increase.
Average structure and M2 site configurations in C2/c clinopyroxenes along the Di-En join
NASA Astrophysics Data System (ADS)
Tribaudino, M.; Benna, P.; Bruno, E.
1989-12-01
In order to clarify the structural configurations observed in Diss in the Ca-rich region of the Di-En join (in which TEM observations show neither exsolution microstructures nor evidence of spinodal decomposition) single crystals large enough for X-ray diffraction analyses, with composition (Ca0.66Mg0.34)MgSi2O6, have been equilibrated close to the solvus at T=1350° C for 317 h, and quenched at room temperature. The refinement in C2/c space group shows that in the M2 site Ca and Mg are fully ‘ordered’ in two split positions (M2occ: 0.66 Ca; M2'occ: 0.34 Mg). Since the average structure shows a relevant elongation of anisotropic thermal ellipsoids of the O2 and O3 oxygen atoms, the refinement has been carried out according to a split model for O2 and O3 atoms: Ca appears 8-coordinated (as in diopside) and Mg shows a sixfold coordination similar to that of high-pigeonite. This coordination for Mg is significantly different from the fourfold coordination (Zn-like in Zn-cpx) proposed previously and it is a more probable coordination for Mg from a crystalchemical point of view. The same results were obtained refining a Di80En20 cpx, equilibrated at T=1230° C, according to the same O-split model. The data support the coexistence of a Di-like configuration for Ca and of a highPig-like configuration for Mg away from the solvus also. At T very near to T solidus the different configurations, observed at room temperature in the quenched samples, should converge and Ca and Mg should retain a single disordered configuration in the M2 site.
Szczepanski, Caroline R.; Stansbury, Jeffrey W.
2015-01-01
Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm2), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm2) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus. PMID:26190865
Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy
2008-09-04
CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data.
Analytical separations of mammalian decomposition products for forensic science: a review.
Swann, L M; Forbes, S L; Lewis, S W
2010-12-03
The study of mammalian soft tissue decomposition is an emerging area in forensic science, with a major focus of the research being the use of various chemical and biological methods to study the fate of human remains in the environment. Decomposition of mammalian soft tissue is a postmortem process that, depending on environmental conditions and physiological factors, will proceed until complete disintegration of the tissue. The major stages of decomposition involve complex reactions which result in the chemical breakdown of the body's main constituents; lipids, proteins, and carbohydrates. The first step to understanding this chemistry is identifying the compounds present in decomposition fluids and determining when they are produced. This paper provides an overview of decomposition chemistry and reviews recent advances in this area utilising analytical separation science. Copyright © 2010 Elsevier B.V. All rights reserved.
Biological decomposition efficiency in different woodland soils.
Herlitzius, H
1983-03-01
The decomposition (meaning disappearance) of different leaf types and artificial leaves made from cellulose hydrate foil was studied in three forests - an alluvial forest (Ulmetum), a beech forest on limestone soil (Melico-Fagetum), and a spruce forest in soil overlying limestone bedrock.Fine, medium, and coarse mesh litter bags of special design were used to investigate the roles of abiotic factors, microorganisms, and meso- and macrofauna in effecting decomposition in the three habitats. Additionally, the experimental design was carefully arranged so as to provide information about the effects on decomposition processes of the duration of exposure and the date or moment of exposure. 1. Exposure of litter samples oor 12 months showed: a) Litter enclosed in fine mesh bags decomposed to some 40-44% of the initial amount placed in each of the three forests. Most of this decomposition can be attributed to abiotic factors and microoganisms. b) Litter placed in medium mesh litter bags reduced by ca. 60% in alluvial forest, ca. 50% in beech forest and ca. 44% in spruce forest. c) Litter enclosed in coarse mesh litter bags was reduced by 71% of the initial weights exposed in alluvial and beech forests; in the spruce forest decomposition was no greater than observed with fine and medium mesh litter bags. Clearly, in spruce forest the macrofauna has little or no part to play in effecting decomposition. 2. Sequential month by month exposure of hazel leaves and cellulose hydrate foil in coarse mesh litter bags in all three forests showed that one month of exposure led to only slight material losses, they did occur smallest between March and May, and largest between June and October/November. 3. Coarse mesh litter bags containing either hazel or artificial leaves of cellulose hydrate foil were exposed to natural decomposition processes in December 1977 and subsampled monthly over a period of one year, this series constituted the From-sequence of experiments. Each of the From-sequence samples removed was immediately replaced by a fresh litter bag which was left in place until December 1978, this series constituted the To-sequence of experiments. The results arising from the designated From- and To-sequences showed: a) During the course of one year hazel leaves decomposed completely in alluvial forest, almost completely in beech forest but to only 50% of the initial value in spruce forest. b) Duration of exposure and not the date of exposure is the major controlling influence on decomposition in alluvial forest, a characteristic reflected in the mirror-image courses of the From- and To-sequences curves with respect to the abscissa or time axis. Conversely the date of exposure and not the duration of exposure is the major controlling influence on decomposition in the spruce forest, a characteristic reflected in the mirror-image courses of the From-and To-sequences with respect to the ordinate or axis of percentage decomposition. c) Leaf powder amendment increased the decomposition rate of the hazel and cellulose hydrate leaves in the spruce forest but had no significant effect on their decomposition rate in alluvial and beech forests. It is concluded from this, and other evidence, that litter amendment by leaf fragments of phytophage frass in sites of low biological decomposition activity (eg. spruce) enhances decomposition processes. d) The time course of hazel leaf decomposition in both alluvial and beech forest is sigmoidal. Three s-phases are distinguished and correspond to the activity of microflora/microfauna, mesofauna/macrofauna, and then microflora/microfauna again. In general, the sigmoidal pattern of the curve can be considered valid for all decomposition processes occurring in terrestrial situations. It is contended that no decomposition (=disappearance) curve actually follows an e-type exponential function. A logarithmic linear regression can be constructed from the sigmoid curve data and although this facilitates inter-system comparisons it does not clearly express the dynamics of decomposition. 4. The course of the curve constructed from information about the standard deviations of means derived from the From- and To-sequence data does reflect the dynamics of litter decomposition. The three s-phases can be recognised and by comparing the actual From-sequence deviation curve with a mirror inversion representation of the To-sequence curve it is possible to determine whether decomposition is primarily controlled by the duration of exposure or the date of exposure. As is the case for hazel leaf decomposition in beech forest intermediate conditions can be readily recognised.
Reactivity continuum modeling of leaf, root, and wood decomposition across biomes
NASA Astrophysics Data System (ADS)
Koehler, Birgit; Tranvik, Lars J.
2015-07-01
Large carbon dioxide amounts are released to the atmosphere during organic matter decomposition. Yet the large-scale and long-term regulation of this critical process in global carbon cycling by litter chemistry and climate remains poorly understood. We used reactivity continuum (RC) modeling to analyze the decadal data set of the "Long-term Intersite Decomposition Experiment," in which fine litter and wood decomposition was studied in eight biome types (224 time series). In 32 and 46% of all sites the litter content of the acid-unhydrolyzable residue (AUR, formerly referred to as lignin) and the AUR/nitrogen ratio, respectively, retarded initial decomposition rates. This initial rate-retarding effect generally disappeared within the first year of decomposition, and rate-stimulating effects of nutrients and a rate-retarding effect of the carbon/nitrogen ratio became more prevalent. For needles and leaves/grasses, the influence of climate on decomposition decreased over time. For fine roots, the climatic influence was initially smaller but increased toward later-stage decomposition. The climate decomposition index was the strongest climatic predictor of decomposition. The similar variability in initial decomposition rates across litter categories as across biome types suggested that future changes in decomposition may be dominated by warming-induced changes in plant community composition. In general, the RC model parameters successfully predicted independent decomposition data for the different litter-biome combinations (196 time series). We argue that parameterization of large-scale decomposition models with RC model parameters, as opposed to the currently common discrete multiexponential models, could significantly improve their mechanistic foundation and predictive accuracy across climate zones and litter categories.
Aerogel composites and method of manufacture
Cao, Wanqing; Hunt, Arlon Jason
1999-01-01
Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel. Also disclosed are the composites made by the process.
NASA Astrophysics Data System (ADS)
Tjong, Tiffany; Yihaa’ Roodhiyah, Lisa; Nurhasan; Sutarno, Doddy
2018-04-01
In this work, an inversion scheme was performed using a vector finite element (VFE) based 2-D magnetotelluric (MT) forward modelling. We use an inversion scheme with Singular value decomposition (SVD) method toimprove the accuracy of MT inversion.The inversion scheme was applied to transverse electric (TE) mode of MT. SVD method was used in this inversion to decompose the Jacobian matrices. Singular values which obtained from the decomposition process were analyzed. This enabled us to determine the importance of data and therefore to define a threshold for truncation process. The truncation of singular value in inversion processcould improve the resulted model.
Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu
2009-01-01
Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.
Tu, Jun-Ling; Yuan, Jiao-Jiao
2018-02-13
The thermal decomposition behavior of olive hydroxytyrosol (HT) was first studied using thermogravimetry (TG). Cracked chemical bond and evolved gas analysis during the thermal decomposition process of HT were also investigated using thermogravimetry coupled with infrared spectroscopy (TG-FTIR). Thermogravimetry-Differential thermogravimetry (TG-DTG) curves revealed that the thermal decomposition of HT began at 262.8 °C and ended at 409.7 °C with a main mass loss. It was demonstrated that a high heating rate (over 20 K·min -1 ) restrained the thermal decomposition of HT, resulting in an obvious thermal hysteresis. Furthermore, a thermal decomposition kinetics investigation of HT indicated that the non-isothermal decomposition mechanism was one-dimensional diffusion (D1), integral form g ( x ) = x ², and differential form f ( x ) = 1/(2 x ). The four combined approaches were employed to calculate the activation energy ( E = 128.50 kJ·mol -1 ) and Arrhenius preexponential factor (ln A = 24.39 min -1 ). In addition, a tentative mechanism of HT thermal decomposition was further developed. The results provide a theoretical reference for the potential thermal stability of HT.
Conceptual design optimization study
NASA Technical Reports Server (NTRS)
Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.
1990-01-01
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.
NASA Astrophysics Data System (ADS)
Yong, Yingqiong; Nguyen, Mai Thanh; Tsukamoto, Hiroki; Matsubara, Masaki; Liao, Ying-Chih; Yonezawa, Tetsu
2017-03-01
Mixtures of a copper complex and copper fine particles as copper-based metal-organic decomposition (MOD) dispersions have been demonstrated to be effective for low-temperature sintering of conductive copper film. However, the copper particle size effect on decomposition process of the dispersion during heating and the effect of organic residues on the resistivity have not been studied. In this study, the decomposition process of dispersions containing mixtures of a copper complex and copper particles with various sizes was studied. The effect of organic residues on the resistivity was also studied using thermogravimetric analysis. In addition, the choice of copper salts in the copper complex was also discussed. In this work, a low-resistivity sintered copper film (7 × 10-6 Ω·m) at a temperature as low as 100 °C was achieved without using any reductive gas.
Understanding the critical challenges of self-aligned octuple patterning
NASA Astrophysics Data System (ADS)
Yu, Ji; Xiao, Wei; Kang, Weiling; Chen, Yijian
2014-03-01
In this paper, we present a thorough investigation of self-aligned octuple patterning (SAOP) process characteristics, cost structure, integration challenges, and layout decomposition. The statistical characteristics of SAOP CD variations such as multi-modality are analyzed and contributions from various features to CDU and MTT (mean-to-target) budgets are estimated. The gap space is found to have the worst CDU+MTT performance and is used to determine the required overlay accuracy to ensure a satisfactory edge-placement yield of a cut process. Moreover, we propose a 5-mask positive-tone SAOP (pSAOP) process for memory FEOL patterning and a 3-mask negative-tone SAOP (nSAOP) process for logic BEOL patterning. The potential challenges of 2-D SAOP layout decomposition for BEOL applications are identified. Possible decomposition approaches are explored and the functionality of several developed algorithm is verified using 2-D layout examples from Open Cell Library.
Ionization-Enhanced Decomposition of 2,4,6-Trinitrotoluene (TNT) Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; Wright, David; Cliffel, David
2011-01-01
The unimolecular decomposition reaction of TNT can in principle be used to design ways to either detect or remove TNT from the environment. Here, we report the results of a density functional theory study of possible ways to lower the reaction barrier for this decomposition process by ionization, so that decomposition and/or detection can occur at room temperature. We find that ionizing TNT lowers the reaction barrier for the initial step of this decomposition. We further show that a similar effect can occur if a positive moiety is bound to the TNT molecule. The positive charge produces a pronounced electronmore » redistribution and dipole formation in TNT with minimal charge transfer from TNT to the positive moiety.« less
Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios
NASA Technical Reports Server (NTRS)
Helm, B. Robert; Fickas, Stephen
1992-01-01
Our interest is in the design of multi-agent problem-solving systems, which we refer to as composite systems. We have proposed an approach to composite system design by decomposition of problem statements. An automated assistant called Critter provides a library of reusable design transformations which allow a human analyst to search the space of decompositions for a problem. In this paper we describe a method for evaluating and critiquing problem decompositions generated by this search process. The method uses knowledge stored in the form of failure decompositions attached to design transformations. We suggest the benefits of our critiquing method by showing how it could re-derive steps of a published development example. We then identify several open issues for the method.
Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods
Ebeling, Anne; Meyer, Sebastian T.; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W.
2014-01-01
Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning. PMID:25226237
Traveling waves in a spring-block chain sliding down a slope
NASA Astrophysics Data System (ADS)
Morales, J. E.; James, G.; Tonnelier, A.
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
Traveling waves in a spring-block chain sliding down a slope.
Morales, J E; James, G; Tonnelier, A
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
Zhang, Ji-Dong; Kang, Li-Hua; Cheng, Xin-Lu
2015-01-01
The intriguing decompositions of nitro-containing explosives have been attracting interest. While theoretical investigations have long been concentrated mainly on unimolecular decompositions, bimolecular reactions have received little theoretical attention. In this paper, we investigate theoretically the bimolecular reactions between nitromethane (CH3NO2)-the simplest nitro-containing explosive-and its decomposition products, such as NO2, NO and CO, that are abundant during the decomposition process of CH3NO2. The structures and potential energy surface (PES) were explored at B3LYP/6-31G(d), B3P86/6-31G(d) and MP2/6-311 + G(d,p) levels, and energies were refined using CCSD(T)/cc-pVTZ methods. Quantum chemistry calculations revealed that the title reactions possess small barriers that can be comparable to, or smaller than, that of the initial decomposition reactions of CH3NO2. Considering that their reactants are abundant in the decomposition process of CH3NO2, we consider bimolecular reactions also to be of great importance, and worthy of further investigation. Moreover, our calculations show that NO2 can be oxidized by CH3NO2 to NO3 radical, which confirms the conclusion reached formerly by Irikura and Johnson [(2006) J Phys Chem A 110:13974-13978] that NO3 radical can be formed during the decomposition of nitramine explosives.
Zeng, Quanchao; Liu, Yang; An, Shaoshan
2017-01-01
The forest ecosystem is the main component of terrestrial ecosystems. The global climate and the functions and processes of soil microbes in the ecosystem are all influenced by litter decomposition. The effects of litter decomposition on the abundance of soil microorganisms remain unknown. Here, we analyzed soil bacterial communities during the litter decomposition process in an incubation experiment under treatment with different litter quantities based on annual litterfall data (normal quantity, 200 g/(m 2 /yr); double quantity, 400 g/(m 2 /yr) and control, no litter). The results showed that litter quantity had significant effects on soil carbon fractions, nitrogen fractions, and bacterial community compositions, but significant differences were not found in the soil bacterial diversity. The normal litter quantity enhanced the relative abundance of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes, Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were significantly less abundant in the normal quantity litter addition treatment, and were subsequently more abundant in the double quantity litter addition treatment. The bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-, and Delta) to Actinobacteria-dominant during the decomposition of the normal quantity of litter. A cluster analysis showed that the double litter treatment and the control had similar bacterial community compositions. These results suggested that the double quantity litter limited the shift of the soil bacterial community. Our results indicate that litter decomposition alters bacterial dynamics under the accumulation of litter during the vegetation restoration process, which provides important significant guidelines for the management of forest ecosystems.
Three-Component Decomposition of Polarimetric SAR Data Integrating Eigen-Decomposition Results
NASA Astrophysics Data System (ADS)
Lu, Da; He, Zhihua; Zhang, Huan
2018-01-01
This paper presents a novel three-component scattering power decomposition of polarimetric SAR data. There are two problems in three-component decomposition method: volume scattering component overestimation in urban areas and artificially set parameter to be a fixed value. Though volume scattering component overestimation can be partly solved by deorientation process, volume scattering still dominants some oriented urban areas. The speckle-like decomposition results introduced by artificially setting value are not conducive to further image interpretation. This paper integrates the results of eigen-decomposition to solve the aforementioned problems. Two principal eigenvectors are used to substitute the surface scattering model and the double bounce scattering model. The decomposed scattering powers are obtained using a constrained linear least-squares method. The proposed method has been verified using an ESAR PolSAR image, and the results show that the proposed method has better performance in urban area.
Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water
King, Jr., Allen D.; King, Robert B.; Sailers, III, Earl L.
1983-02-08
A process for producing hydrogen from formate and water by photogenerating an active formate decomposition catalyst from transition metal carbonyl precursor catalysts at relatively low temperatures and otherwise mild conditions is disclosed. Additionally, this process may be expanded to include the generation of formate from carbon monoxide and hydroxide such that the result is the water gas shift reaction.
Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques
2018-04-30
Title: Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques Subject: Monthly Progress Report Period of...Resources: N/A TOTAL: $18,687 2 TECHNICAL STATUS REPORT Abstract The program goal is analysis of sea ice dynamical behavior using Koopman Mode Decompo...sition (KMD) techniques. The work in the program’s first month consisted of improvements to data processing code, inclusion of additional arctic sea ice
NASA Technical Reports Server (NTRS)
Fedorov, I. V.; Chernyy, A. V.; Fedorov, A. I.
1978-01-01
During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity.
Dynamics of Potassium Release and Adsorption on Rice Straw Residue
Li, Jifu; Lu, Jianwei; Li, Xiaokun; Ren, Tao; Cong, Rihuan; Zhou, Li
2014-01-01
Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K+. This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K+ release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K+ from the ambient environment, which was subject to decomposition periods and extra K+ concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K+ ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g−1, and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K+ indirectly during the initial decomposition period. These crop residues could also directly adsorb K+ via physical and chemical adsorption in the later period, allowing part of this K+ to be absorbed by plants for the next growing season. PMID:24587364
Dynamics of potassium release and adsorption on rice straw residue.
Li, Jifu; Lu, Jianwei; Li, Xiaokun; Ren, Tao; Cong, Rihuan; Zhou, Li
2014-01-01
Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K(+). This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K(+) release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K(+) from the ambient environment, which was subject to decomposition periods and extra K(+) concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K(+) ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g(-1), and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K(+) indirectly during the initial decomposition period. These crop residues could also directly adsorb K(+) via physical and chemical adsorption in the later period, allowing part of this K(+) to be absorbed by plants for the next growing season.
Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min
2009-11-15
In the past, process incidents attributed to organic peroxides (OPs) that involved near misses, over-pressures, runaway reactions, and thermal explosions occurred because of poor training, human error, incorrect kinetic assumptions, insufficient change management, and inadequate chemical knowledge in the manufacturing process. Calorimetric applications were employed broadly to test organic peroxides on a small-scale because of their thermal hazards, such as exothermic behavior and self-accelerating decomposition in the laboratory. In essence, methyl ethyl ketone peroxide (MEKPO) is highly reactive and exothermically unstable. In recent years, it has undergone many thermal explosions and runaway reaction incidents in the manufacturing process. Differential scanning calorimetry (DSC), vent sizing package 2 (VSP2), and thermal activity monitor (TAM) were employed to analyze thermokinetic parameters and safety index. The intent of the analyses was to facilitate the use of various auto-alarm equipments to detect over-pressure, over-temperature, and hazardous materials leaks for a wide spectrum of operations. Results indicated that MEKPO decomposition is detected at low temperatures (30-40 degrees C), and the rate of decomposition was shown to exponentially increase with temperature and pressure. Determining time to maximum rate (TMR), self-accelerating decomposition temperature (SADT), maximum temperature (T(max)), exothermic onset temperature (T(0)), and heat of decomposition (DeltaH(d)) was essential for identifying early-stage runaway reactions effectively for industries.
A study of photothermal laser ablation of various polymers on microsecond time scales.
Kappes, Ralf S; Schönfeld, Friedhelm; Li, Chen; Golriz, Ali A; Nagel, Matthias; Lippert, Thomas; Butt, Hans-Jürgen; Gutmann, Jochen S
2014-01-01
To analyze the photothermal ablation of polymers, we designed a temperature measurement setup based on spectral pyrometry. The setup allows to acquire 2D temperature distributions with 1 μm size and 1 μs time resolution and therefore the determination of the center temperature of a laser heating process. Finite element simulations were used to verify and understand the heat conversion and heat flow in the process. With this setup, the photothermal ablation of polystyrene, poly(α-methylstyrene), a polyimide and a triazene polymer was investigated. The thermal stability, the glass transition temperature Tg and the viscosity above Tg were governing the ablation process. Thermal decomposition for the applied laser pulse of about 10 μs started at temperatures similar to the start of decomposition in thermogravimetry. Furthermore, for polystyrene and poly(α-methylstyrene), both with a Tg in the range between room and decomposition temperature, ablation already occurred at temperatures well below the decomposition temperature, only at 30-40 K above Tg. The mechanism was photomechanical, i.e. a stress due to the thermal expansion of the polymer was responsible for ablation. Low molecular weight polymers showed differences in photomechanical ablation, corresponding to their lower Tg and lower viscosity above the glass transition. However, the difference in ablated volume was only significant at higher temperatures in the temperature regime for thermal decomposition at quasi-equilibrium time scales.
Tryba, B; Piszcz, M; Grzmil, B; Pattek-Janczyk, A; Morawski, A W
2009-02-15
Fe-C-TiO(2) photocatalysts were prepared by mechanical mixing of commercial anatase TiO(2) precursor with FeC(2)O(4) and heating at 500-800 degrees C under argon flow. These photocatalysts were tested for dyes decomposition: Methylene Blue (MB), Reactive Black (RB) and Acid Red (AR). The preliminary adsorption of dyes on the photocatalysts surface was performed. Modification of anatase by FeC(2)O(4) caused reducing of zeta potential of the photocatalyst surface from +12 to -7mV and decreasing of their adsorption ability towards RB and AR, which were negatively charged, -46.8 and -39.7, respectively. Therefore, unmodified TiO(2) showed the highest degree of RB and AR decompositions in the combination of dyes adsorption and UV irradiation. Methylene Blue, which had zeta potential of +4.3 in the aqueous solution was poorly adsorbed on all the tested photocatalysts and also slowly decomposed under UV irradiation. The high rate of dyes decomposition was noted on Fe-C-TiO(2) photocatalysts under UV irradiation with addition of H(2)O(2). It was observed, that at lower temperatures of heat treatment such as 500 degrees C higher content of carbon is remained in the sample, blocking the built in of iron into the TiO(2) lattice. This iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. At higher temperatures of heat treatment, less active FeTiO(3) phase is formed, therefore Fe-C-TiO(2) sample prepared at 800 degrees C showed low photocatalytic activity for dyes decomposition. Fe-C-TiO(2) photocatalysts are active under visible light irradiation, however, the efficiency of a dye decomposition is lower than under UV light. In a dark Fenton process there is observed an insignificant generation of OH radicals and very little decomposition of a dye, what suggests the powerful of photo-Fenton process in the dyes decomposition.
Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis
Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng
2013-01-01
Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter decomposition (P<0.05). The intent of this meta-analysis was to improve our understanding of the overall effects of UV-B on litter decomposition. PMID:23818993
Plant Identity Influences Decomposition through More Than One Mechanism
McLaren, Jennie R.; Turkington, Roy
2011-01-01
Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss. PMID:21858210
Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers
Cobaugh, Kelly L.; Schaeffer, Sean M.; DeBruyn, Jennifer M.
2015-01-01
The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession in soil microbial communities during decomposition of human-derived organic matter, provided insight into decomposition processes, and identified putative predictor populations for time since death estimation. PMID:26067226
Marais-Werner, A; Myburgh, J; Meyer, A; Nienaber, W C; Steyn, M
2017-07-01
Burial of remains is an important factor when one attempts to establish the post-mortem interval as it reduces, and in extreme cases, excludes oviposition by Diptera species. This in turn leads to modification of the decomposition process. The aim of this study was to record decomposition patterns of buried remains using a pig model. The pattern of decomposition was evaluated at different intervals and recorded according to existing guidelines. In order to contribute to our knowledge on decomposition in different settings, a quantifiable approach was followed. Results indicated that early stages of decomposition occurred rapidly for buried remains within 7-33 days. Between 14 and 33 days, buried pigs displayed common features associated with the early to middle stages of decomposition, such as discoloration and bloating. From 33 to 90 days advanced decomposition manifested on the remains, and pigs then reached a stage of advanced decomposition where little change was observed in the next ±90-183 days after interment. Throughout this study, total body scores remained higher for surface remains. Overall, buried pigs followed a similar pattern of decomposition to those of surface remains, although at a much slower rate when compared with similar post-mortem intervals in surface remains. In this study, the decomposition patterns and rates of buried remains were mostly influenced by limited insect activity and adipocere formation which reduces the rate of decay in a conducive environment (i.e. burial in soil).
Jo, Insu; Fridley, Jason D; Frank, Douglas A
2016-01-01
Invaders often have greater rates of production and produce more labile litter than natives. The increased litter quantity and quality of invaders should increase nutrient cycling through faster litter decomposition. However, the limited number of invasive species that have been included in decomposition studies has hindered the ability to generalize their impacts on decomposition rates. Further, previous decomposition studies have neglected roots. We measured litter traits and decomposition rates of leaves for 42 native and 36 nonnative woody species, and those of fine roots for 23 native and 25 nonnative species that occur in temperate deciduous forests throughout the Eastern USA. Among the leaf and root traits that differed between native and invasive species, only leaf nitrogen was significantly associated with decomposition rate. However, native and nonnative species did not differ systematically in leaf and root decomposition rates. We found that among the parameters measured, litter decomposer activity was driven by litter chemical quality rather than tissue density and structure. Our results indicate that litter decomposition rate per se is not a pathway by which forest woody invasive species affect North American temperate forest soil carbon and nutrient processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Incorporating DSA in multipatterning semiconductor manufacturing technologies
NASA Astrophysics Data System (ADS)
Badr, Yasmine; Torres, J. A.; Ma, Yuansheng; Mitra, Joydeep; Gupta, Puneet
2015-03-01
Multi-patterning (MP) is the process of record for many sub-10nm process technologies. The drive to higher densities has required the use of double and triple patterning for several layers; but this increases the cost of the new processes especially for low volume products in which the mask set is a large percentage of the total cost. For that reason there has been a strong incentive to develop technologies like Directed Self Assembly (DSA), EUV or E-beam direct write to reduce the total number of masks needed in a new technology node. Because of the nature of the technology, DSA cylinder graphoepitaxy only allows single-size holes in a single patterning approach. However, by integrating DSA and MP into a hybrid DSA-MP process, it is possible to come up with decomposition approaches that increase the design flexibility, allowing different size holes or bar structures by independently changing the process for every patterning step. A simple approach to integrate multi-patterning with DSA is to perform DSA grouping and MP decomposition in sequence whether it is: grouping-then-decomposition or decomposition-then-grouping; and each of the two sequences has its pros and cons. However, this paper describes why these intuitive approaches do not produce results of acceptable quality from the point of view of design compliance and we highlight the need for custom DSA-aware MP algorithms.
Potential role of gas hydrate decomposition in generating submarine slope failures: Chapter 12
Pauli, Charles K.; Ussler, William III; Dillon, William P.; Max, Michael D.
2003-01-01
Gas hydrate decomposition is hypothesized to be a factor in generating weakness in continental margin sediments that may help explain some of the observed patterns of continental margin sediment instability. The processes associated with formation and decomposition of gas hydrate can cause the strengthening of sediments in which gas hydrate grow and the weakening of sediments in which gas hydrate decomposes. The weakened sediments may form horizons along which the potential for sediment failure is increased. While a causal relationship between slope failures and gas hydrate decomposition has not been proven, a number of empirical observations support their potential connection.
Services Textbook of Explosives
1972-03-01
described the use of wood ashes in this process, whereby, by double- decomposition of calcium nitrate present in the crude salt, a greater yield of true...the Italians had worked on the nitration of hexamine, but had not developed successful processes. In 1945 , however, it was found that the Germans had...of the propellant. It was later, and unexpectedly, found to have the valuable property of absorbing the (acidic) products of decomposition of
NASA Astrophysics Data System (ADS)
Jones, S.; Zwart, J. A.; Solomon, C.; Kelly, P. T.
2017-12-01
Current efforts to scale lake carbon biogeochemistry rely heavily on empirical observations and rarely consider physical or biological inter-lake heterogeneity that is likely to regulate terrestrial dissolved organic carbon (tDOC) decomposition in lakes. This may in part result from a traditional focus of lake ecologists on in-lake biological processes OR physical-chemical pattern across lake regions, rather than on process AND pattern across scales. To explore the relative importance of local biological processes and physical processes driven by lake hydrologic setting, we created a simple, analytical model of tDOC decomposition in lakes that focuses on the regulating roles of lake size and catchment hydrologic export. Our simplistic model can generally recreate patterns consistent with both local- and regional-scale patterns in tDOC concentration and decomposition. We also see that variation in lake hydrologic setting, including the importance of evaporation as a hydrologic export, generates significant, emergent variation in tDOC decomposition at a given hydrologic residence time, and creates patterns that have been historically attributed to variation in tDOC quality. Comparing predictions of this `biologically null model' to field observations and more biologically complex models could indicate when and where biology is likely to matter most.
Mixing effects on litter decomposition rates in a young tree diversity experiment
NASA Astrophysics Data System (ADS)
Setiawan, Nuri Nurlaila; Vanhellemont, Margot; De Schrijver, An; Schelfhout, Stephanie; Baeten, Lander; Verheyen, Kris
2016-01-01
Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.
Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes
NASA Technical Reports Server (NTRS)
Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.
1996-01-01
The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.
Size-controlled magnetic nanoparticles with lecithin for biomedical applications
NASA Astrophysics Data System (ADS)
Park, S. I.; Kim, J. H.; Kim, C. G.; Kim, C. O.
2007-05-01
Lecithin-adsorbed magnetic nanoparticles were prepared by three-step process that the thermal decomposition was combined with ultrasonication. Experimental parameters were three items—molar ratio between Fe(CO) 5 and oleic acid, keeping time at decomposition temperature and lecithin concentration. As the molar ratio between Fe(CO) 5 and oleic acid, and keeping time at decomposition temperature increased, the particle size increased. However, the change of lecithin concentration did not show the remarkable particle size variation.
Verbs in the lexicon: Why is hitting easier than breaking?
McKoon, Gail; Love, Jessica
2011-11-01
Adult speakers use verbs in syntactically appropriate ways. For example, they know implicitly that the boy hit at the fence is acceptable but the boy broke at the fence is not. We suggest that this knowledge is lexically encoded in semantic decompositions. The decomposition for break verbs (e.g. crack, smash) is hypothesized to be more complex than that for hit verbs (e.g. kick, kiss). Specifically, the decomposition of a break verb denotes that "an entity changes state as the result of some external force" whereas the decomposition for a hit verb denotes only that "an entity potentially comes in contact with another entity." In this article, verbs of the two types were compared in a lexical decision experiment - Experiment 1 - and they were compared in sentence comprehension experiments with transitive sentences (e.g. the car hit the bicycle and the car broke the bicycle) - Experiments 2 and 3. In Experiment 1, processing times were shorter for the hit than the break verbs and in Experiments 2 and 3, processing times were shorter for the hit sentences than the break sentences, results that are in accord with the complexities of the postulated semantic decompositions.
Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X
2013-02-01
In this work, the morphological characteristics of waste polyethylene (PE)/polypropylene (PP) plastics during their pyrolysis process were investigated, and based on their basic image changing patterns representative morphological signals describing the pyrolysis stages were obtained. PE and PP granules and films were used as typical plastics for testing, and influence of impurities was also investigated. During pyrolysis experiments, photographs of the testing samples were taken sequentially with a high-speed infrared camera, and the quantitative parameters that describe the morphological characteristics of these photographs were explored using the "Image Pro Plus (v6.3)" digital image processing software. The experimental results showed that plastics pyrolysis involved four stages: melting, two stages of decomposition which are characterized with bubble formation caused by volatile evaporating, and ash deposition; and each stage was characterized with its own phase changing behaviors and morphological features. Two stages of decomposition are the key step of pyrolysis since they took up half or more of the reaction time; melting step consumed another half of reaction time in experiments when raw materials were heated up from ambient temperatures; and coke-like deposition appeared as a result of decomposition completion. Two morphological signals defined from digital image processing, namely, pixel area of the interested reaction region and bubble ratio (BR) caused by volatile evaporating were found to change regularly with pyrolysis stages. In particular, for all experimental scenarios with plastics films and granules, the BR curves always exhibited a slowly drop as melting started and then a sharp increase followed by a deep decrease corresponding to the first stage of intense decomposition, afterwards a second increase - drop section corresponding to the second stage of decomposition appeared. As ash deposition happened, the BR dropped to zero or very low values. When impurities were involved, the shape of BR curves showed that intense decomposition started earlier but morphological characteristics remained the same. In addition, compared to parameters such as pressure, the BR reflects reaction stages better and its change with pyrolysis process of PE/PP plastics with or without impurities was more intrinsically process correlated; therefore it can be adopted as a signal for pyrolysis process characterization, as well as offering guide to process improvement and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boyanovsky, D.; Holman, R.; Hutasoit, Jimmy A.
2009-04-01
Motivated by slow-roll inflationary cosmology we study a scalar unparticle weakly coupled to a Higgs field in the broken symmetry phase. The mixing between the unparticle and the Higgs field results in a seesaw type matrix and the mixing angles feature a Mikheyev-Smirnov-Wolfenstein (MSW) effect as a consequence of the unparticle field being noncanonical. We find two (MSW) resonances for small and large spacelike momenta. The unparticlelike mode features a nearly flat potential with spinodal instabilities and a large expectation value. An effective potential for the unparticlelike field is generated from the Higgs potential, but with couplings suppressed by a large power of the small seesaw ratio. The dispersion relation for the Higgs-like mode features an imaginary part even at “tree level” as a consequence of the fact that the unparticle field describes a multiparticle continuum. Mixed unparticle-Higgs propagators reveal the possibility of oscillations, albeit with short coherence lengths. The results are generalized to the case in which the unparticle features a mass gap, in which case a low energy MSW resonance may occur for lightlike momenta depending on the scales. Unparticle-Higgs mixing leads to an effective unparticle potential of the new-inflation form. Slow-roll variables are suppressed by seesaw ratios and the anomalous dimensions and favor a red spectrum of scalar perturbations consistent with cosmic microwave background data.
Microbial Community Functional Change during Vertebrate Carrion Decomposition
Pechal, Jennifer L.; Crippen, Tawni L.; Tarone, Aaron M.; Lewis, Andrew J.; Tomberlin, Jeffery K.; Benbow, M. Eric
2013-01-01
Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition. PMID:24265741
Grandy, A Stuart; Neff, Jason C
2008-10-15
Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions <53 microm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions.
McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura
2017-05-01
Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by negative litter mixing effects during the early stages of encroachment. © 2017 by the Ecological Society of America.
Fukuzumi, Shunichi; Kobayashi, Takeshi; Suenobu, Tomoyoshi
2008-01-01
Formic acid (HCOOH) decomposes efficiently to afford H2 and CO2 selectively in the presence of a catalytic amount of a water-soluble rhodium aqua complex, [Rh(III)(Cp*)(bpy)(H2O)]2+ (Cp*=pentamethylcyclopentadienyl, bpy=2,2'-bipyridine) in aqueous solution at 298 K. No CO was produced in this catalytic decomposition of HCOOH. The decomposition rate reached a maximum value at pH 3.8. No deterioration of the catalyst was observed during the catalytic decomposition of HCOOH, and the catalytic activity remained the same for the repeated addition of HCOOH. The rhodium-hydride complex was detected as the catalytic active species that undergoes efficient H/D exchange with water. When the catalytic decomposition of HCOOH was performed in D2O, D2 was produced selectively. Such an efficient H/D exchange and the observation of a deuterium kinetic isotope effect in the catalytic decomposition of DCOOH in H2O provide valuable mechanistic insight into this efficient and selective decomposition process.
USDA-ARS?s Scientific Manuscript database
1. Fungal endophyte - grass symbioses can have dramatic ecological effects, altering individual plant physiology, plant and animal community structure and function, and ecosystem processes such as litter decomposition and nutrient cycling. 2. Within the tall fescue (Schedonorus arundinaceus) - funga...
From the Rainbow Crow To Polar Bears: Introducing Science Concepts through Children's Literature.
ERIC Educational Resources Information Center
Burns, John Eric
1997-01-01
Describes an activity that integrates chemistry, physics, and a Native American legend to help students imitate the thought processes of scientists who have observed chemical decomposition and the refraction of light. Includes a laboratory experiment for sugar decomposition. (DKM)
Students' Understanding of Quadratic Equations
ERIC Educational Resources Information Center
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-01-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…
Factors and processes causing accelerated decomposition in human cadavers - An overview.
Zhou, Chong; Byard, Roger W
2011-01-01
Artefactually enhanced putrefactive and autolytic changes may be misinterpreted as indicating a prolonged postmortem interval and throw doubt on the veracity of witness statements. Review of files from Forensic Science SA and the literature revealed a number of external and internal factors that may be responsible for accelerating these processes. Exogenous factors included exposure to elevated environmental temperatures, both outdoors and indoors, exacerbated by increased humidity or fires. Situations indoor involved exposure to central heating, hot water, saunas and electric blankets. Deaths within motor vehicles were also characterized by enhanced decomposition. Failure to quickly or adequately refrigerate bodies may also lead to early decomposition. Endogenous factors included fever, infections, illicit and prescription drugs, obesity and insulin-dependent diabetes mellitus. When these factors or conditions are identified at autopsy less significance should, therefore, be attached to changes of decomposition as markers of time since death. Copyright © 2010 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Guo, Feng; Cheng, Xin-lu; Zhang, Hong
2012-04-12
Which is the first step in the decomposition process of nitromethane is a controversial issue, proton dissociation or C-N bond scission. We applied reactive force field (ReaxFF) molecular dynamics to probe the initial decomposition mechanisms of nitromethane. By comparing the impact on (010) surfaces and without impact (only heating) for nitromethane simulations, we found that proton dissociation is the first step of the pyrolysis of nitromethane, and the C-N bond decomposes in the same time scale as in impact simulations, but in the nonimpact simulation, C-N bond dissociation takes place at a later time. At the end of these simulations, a large number of clusters are formed. By analyzing the trajectories, we discussed the role of the hydrogen bond in the initial process of nitromethane decompositions, the intermediates observed in the early time of the simulations, and the formation of clusters that consisted of C-N-C-N chain/ring structures.
Huang, Haiming; Xiao, Dean; Liu, Jiahui; Hou, Li; Ding, Li
2015-01-01
In the present study, struvite decomposition was performed by air stripping for ammonia release and a novel integrated reactor was designed for the simultaneous removal and recovery of total ammonia-nitrogen (TAN) and total orthophosphate (PT) from swine wastewater by internal struvite recycling. Decomposition of struvite by air stripping was found to be feasible. Without supplementation with additional magnesium and phosphate sources, the removal ratio of TAN from synthetic wastewater was maintained at >80% by recycling of the struvite decomposition product formed under optimal conditions, six times. Continuous operation of the integrated reactor indicated that approximately 91% TAN and 97% PT in the swine wastewater could be removed and recovered by the proposed recycling process with the supplementation of bittern. Economic evaluation of the proposed system showed that struvite precipitation cost can be saved by approximately 54% by adopting the proposed recycling process in comparison with no recycling method. PMID:25960246
Surface-Accelerated Decomposition of δ-HMX.
Sharia, Onise; Tsyshevsky, Roman; Kuklja, Maija M
2013-03-07
Despite extensive efforts to study the explosive decomposition of HMX, a cyclic nitramine widely used as a solid fuel, explosive, and propellant, an understanding of the physicochemical processes, governing the sensitivity of condensed HMX to detonation initiation is not yet achieved. Experimental and theoretical explorations of the initiation of chemistry are equally challenging because of many complex parallel processes, including the β-δ phase transition and the decomposition from both phases. Among four known polymorphs, HMX is produced in the most stable β-phase, which transforms into the most reactive δ-phase under heat or pressure. In this study, the homolytic NO2 loss and HONO elimination precursor reactions of the gas-phase, ideal crystal, and the (100) surface of δ-HMX are explored by first principles modeling. Our calculations revealed that the high sensitivity of δ-HMX is attributed to interactions of surfaces and molecular dipole moments. While both decomposition reactions coexist, the exothermic HONO-isomer formation catalyzes the N-NO2 homolysis, leading to fast violent explosions.
Rotational-path decomposition based recursive planning for spacecraft attitude reorientation
NASA Astrophysics Data System (ADS)
Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying
2018-02-01
The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.
NASA Astrophysics Data System (ADS)
Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.
2017-07-01
From the results of experimental studies of the processes of suppressing the thermal decomposition of the typical forest combustibles (birch leaves, fir needles, asp twigs, and a mixture of these three materials) by water aerosol, the minimum volumes of the fire-extinguishing liquid have been determined (by varying the volume of samples of the forest combustibles from 0.00002 m3 to 0.0003 m3 and the area of their open surface from 0.0001 m2 to 0.018 m2). The dependences of the minimum volume of water on the area of the open surface of the forest combustible have been established. Approximation expressions for these dependences have been obtained. Forecast has been made of the minimum volume of water for suppressing the process of thermal decomposition of forest combustibles in areas from 1 cm2 to 1 km2, as well as of the characteristic quenching times by varying the water concentration per unit time. It has been shown that the amount of water needed for effective suppression of the process of thermal decomposition of forest combustibles is several times less than is customarily assumed.
Matrix decomposition graphics processing unit solver for Poisson image editing
NASA Astrophysics Data System (ADS)
Lei, Zhao; Wei, Li
2012-10-01
In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.
Metal-Doped Silver Oxide Films as a Mask Layer for the Super-RENS Disk
NASA Astrophysics Data System (ADS)
Shima, Takayuki; Buechel, Dorothea; Mihalcea, Christophe; Kim, Jooho; Atoda, Nobufumi; Tominaga, Junji
Various kinds of metal (Co, Pd, Pt and Au) were doped into Ag2O and AgO sputtered films to study its effect on the thermal decomposition process. The oxygen composition ratio was evaluated by the X-ray fluorescence spectroscopy method after annealing up to 260,oC. The optical transmittance change was measured during heating of the film to 600,oC. Noble metal doping was found to modify the AgO decomposition process, and the oxygen content decreased gradually compared to the undoped case. Super-RENS disks with a metal-doped AgO mask were prepared, and the laser power necessary for super-resolutional readout was evaluated. It slightly shifted to the higher-power side when the noble metal was doped, and this agrees with the modification of the decomposition process.Japan Science and Technology Corporation, Domestic Research Fellow
Process for coating an object with silicon carbide
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1989-01-01
A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.
NASA Astrophysics Data System (ADS)
Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Ana; Widiaty, I.; Hurriyati, R.
2017-03-01
Curcumin is one of the pigments which is used as a spice in Asian cuisine, traditional cosmetic, and medicine. Therefore, process for getting curcumin has been widely studied. Here, the purpose of this study was to demonstrate the simple method for extracting curcumin from Indonesian local turmeric and investigate the infrared spectra and thermal decomposition properties. In the experimental procedure, the washed turmeric was dissolved into an ethanol solution, and then put into a rotary evaporator to enrich curcumin concentration. The result showed that the present method is effective to isolate curcumin compound from Indonesian local turmeric. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.
Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.
2015-03-01
In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.
An NN-Based SRD Decomposition Algorithm and Its Application in Nonlinear Compensation
Yan, Honghang; Deng, Fang; Sun, Jian; Chen, Jie
2014-01-01
In this study, a neural network-based square root of descending (SRD) order decomposition algorithm for compensating for nonlinear data generated by sensors is presented. The study aims at exploring the optimized decomposition of data 1.00,0.00,0.00 and minimizing the computational complexity and memory space of the training process. A linear decomposition algorithm, which automatically finds the optimal decomposition of N subparts and reduces the training time to 1N and memory cost to 1N, has been implemented on nonlinear data obtained from an encoder. Particular focus is given to the theoretical access of estimating the numbers of hidden nodes and the precision of varying the decomposition method. Numerical experiments are designed to evaluate the effect of this algorithm. Moreover, a designed device for angular sensor calibration is presented. We conduct an experiment that samples the data of an encoder and compensates for the nonlinearity of the encoder to testify this novel algorithm. PMID:25232912
Interactions between soil and tree roots accelerate long-term soil carbon decomposition.
Dijkstra, Feike A; Cheng, Weixin
2007-11-01
Decomposition of soil organic carbon (SOC) is the main process governing the release of CO(2) into the atmosphere from terrestrial systems. Although the importance of soil-root interactions for SOC decomposition has increasingly been recognized, their long-term effect on SOC decomposition remains poorly understood. Here we provide experimental evidence for a rhizosphere priming effect, in which interactions between soil and tree roots substantially accelerate SOC decomposition. In a 395-day greenhouse study with Ponderosa pine and Fremont cottonwood trees grown in three different soils, SOC decomposition in the planted treatments was significantly greater (up to 225%) than in soil incubations alone. This rhizosphere priming effect persisted throughout the experiment, until well after initial soil disturbance, and increased with a greater amount of root-derived SOC formed during the experiment. Loss of old SOC was greater than the formation of new C, suggesting that increased C inputs from roots could result in net soil C loss.
Gelderman, H T; Boer, L; Naujocks, T; IJzermans, A C M; Duijst, W L J M
2018-05-01
The decomposition process of human remains can be used to estimate the post-mortem interval (PMI), but decomposition varies due to many factors. Temperature is believed to be the most important and can be connected to decomposition by using the accumulated degree days (ADD). The aim of this research was to develop a decomposition scoring method and to develop a formula to estimate the PMI by using the developed decomposition scoring method and ADD.A decomposition scoring method and a Book of Reference (visual resource) were made. Ninety-one cases were used to develop a method to estimate the PMI. The photographs were scored using the decomposition scoring method. The temperature data was provided by the Royal Netherlands Meteorological Institute. The PMI was estimated using the total decomposition score (TDS) and using the TDS and ADD. The latter required an additional step, namely to calculate the ADD from the finding date back until the predicted day of death.The developed decomposition scoring method had a high interrater reliability. The TDS significantly estimates the PMI (R 2 = 0.67 and 0.80 for indoor and outdoor bodies, respectively). When using the ADD, the R 2 decreased to 0.66 and 0.56.The developed decomposition scoring method is a practical method to measure decomposition for human remains found on land. The PMI can be estimated using this method, but caution is advised in cases with a long PMI. The ADD does not account for all the heat present in a decomposing remain and is therefore a possible bias.
NASA Astrophysics Data System (ADS)
Zhang, Hongqin; Tian, Xiangjun
2018-04-01
Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.
Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques
2012-09-01
The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.
Comparison of decomposition rates between autopsied and non-autopsied human remains.
Bates, Lennon N; Wescott, Daniel J
2016-04-01
Penetrating trauma has been cited as a significant factor in the rate of decomposition. Therefore, penetrating trauma may have an effect on estimations of time-since-death in medicolegal investigations and on research examining decomposition rates and processes when autopsied human bodies are used. The goal of this study was to determine if there are differences in the rate of decomposition between autopsied and non-autopsied human remains in the same environment. The purpose is to shed light on how large incisions, such as those from a thorocoabdominal autopsy, effect time-since-death estimations and research on the rate of decomposition that use both autopsied and non-autopsied human remains. In this study, 59 non-autopsied and 24 autopsied bodies were studied. The number of accumulated degree days required to reach each decomposition stage was then compared between autopsied and non-autopsied remains. Additionally, both types of bodies were examined for seasonal differences in decomposition rates. As temperature affects the rate of decomposition, this study also compared the internal body temperatures of autopsied and non-autopsied remains to see if differences between the two may be leading to differential decomposition. For this portion of this study, eight non-autopsied and five autopsied bodies were investigated. Internal temperature was collected once a day for two weeks. The results showed that differences in the decomposition rate between autopsied and non-autopsied remains was not statistically significant, though the average ADD needed to reach each stage of decomposition was slightly lower for autopsied bodies than non-autopsied bodies. There was also no significant difference between autopsied and non-autopsied bodies in the rate of decomposition by season or in internal temperature. Therefore, this study suggests that it is unnecessary to separate autopsied and non-autopsied remains when studying gross stages of human decomposition in Central Texas and that penetrating trauma may not be a significant factor in the overall rate of decomposition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Morphological Decomposition in Reading Hebrew Homographs
ERIC Educational Resources Information Center
Miller, Paul; Liran-Hazan, Batel; Vaknin, Vered
2016-01-01
The present work investigates whether and how morphological decomposition processes bias the reading of Hebrew heterophonic homographs, i.e., unique orthographic patterns that are associated with two separate phonological, semantic entities depicted by means of two morphological structures (linear and nonlinear). In order to reveal the nature of…
Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.
ERIC Educational Resources Information Center
Alexopoulos, John; Abraham, Paul
2001-01-01
Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…
USDA-ARS?s Scientific Manuscript database
Although permafrost soils contain vast stores of carbon, we know relatively little about the chemical composition of their constituent organic matter. Soil organic matter chemistry is an important predictor of decomposition rates, especially in the initial stages of decomposition. Permafrost, organi...
Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature
NASA Astrophysics Data System (ADS)
Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi
2018-06-01
We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.
Heterogeneous decomposition of silane in a fixed bed reactor
NASA Technical Reports Server (NTRS)
Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.
1982-01-01
Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.
Kinetics of the cellular decomposition of supersaturated solid solutions
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Naumuk, A. Yu.
2014-09-01
A consistent description of the kinetics of the cellular decomposition of supersaturated solid solutions with the development of a spatially periodic structure of lamellar (platelike) type, which consists of alternating phases of precipitates on the basis of the impurity component and depleted initial solid solution, is given. One of the equations, which determines the relationship between the parameters that describe the process of decomposition, has been obtained from a comparison of two approaches in order to determine the rate of change in the free energy of the system. The other kinetic parameters can be described with the use of a variational method, namely, by the maximum velocity of motion of the decomposition boundary at a given temperature. It is shown that the mutual directions of growth of the lamellae of different phases are determined by the minimum value of the interphase surface energy. To determine the parameters of the decomposition, a simple thermodynamic model of states with a parabolic dependence of the free energy on the concentrations has been used. As a result, expressions that describe the decomposition rate, interlamellar distance, and the concentration of impurities in the phase that remain after the decomposition have been derived. This concentration proves to be equal to the half-sum of the initial concentration and the equilibrium concentration corresponding to the decomposition temperature.
Measurement of the energy dependence of X-ray-induced decomposition of potassium chlorate.
Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong
2013-03-21
We report the first measurements of the X-ray induced decomposition of KClO3 as a function of energy in two experiments. KClO3 was pressurized to 3.5 GPa and irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 35 keV in 5 keV increments. A systematic increase in the decomposition rate as the energy was decreased was observed, which agrees with the 1/E(3) trend for the photoelectric process, except at the lowest energy studied. A second experiment was performed to access lower energies (10 and 12 keV) using a beryllium gasket; suggesting an apparent resonance near 15 keV or 0.83 Ǻ maximizing the chemical decomposition rate. A third experiment was performed using KIO3 to ascertain the anionic dependence of the decomposition rate, which was observed to be far slower than in KClO3, suggesting that the O-O distance is the critical factor in chemical reactions. These results will be important for more efficiently initiating chemical decomposition in materials using selected X-ray wavelengths that maximize decomposition to aid useful hard X-ray-induced chemistry and contribute understanding of the mechanism of X-ray-induced decomposition of the chlorates.
Phase separation of comb polymer nanocomposite melts.
Xu, Qinzhi; Feng, Yancong; Chen, Lan
2016-02-07
In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation is consistent with that of chain PNCs. The miscibility window for this condition gradually narrows while the other parameters of the PNCs system are held constant. These results indicate that the present PRISM theory can give molecular-level details of the underlying mechanisms of the comb PNCs. It is hoped that the results can be used to provide useful guidance for the future design control of novel, thermodynamically stable comb PNCs.
New mechanism for autocatalytic decomposition of H2CO3 in the vapor phase.
Ghoshal, Sourav; Hazra, Montu K
2014-04-03
In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.
Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...
2015-04-13
A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less
He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.
2014-01-01
The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.
Mycorrhizal associations of trees have different indirect effects on organic matter decomposition
Melanie K. Taylor; Richard A. Lankau; Nina Wurzburger; Franciska de Vries
2016-01-01
1. Organic matter decomposition is the main process by which carbon (C) is lost from terrestrialecosystems, and mycorrhizal associations of plants (i.e. arbuscular mycorrhizas (AM) and ectomycorrhizas(ECM)) may have different indirect effects on this loss pathway. AM and ECM plants differin the soil...
USDA-ARS?s Scientific Manuscript database
Litter decomposition is a key process for soil organic matter formation and terrestrial biogeochemistry. Yet we still lack complete understanding of the chemical transformations which occur in the litter residue as it decomposes. A number of methods such as bulk nutrient concentrations, chemical fra...
USDA-ARS?s Scientific Manuscript database
Potential differences in storage and processing of detritus in agricultural landscapes may alter freshwater ecosystem function. We compared decomposition rates of maize (Zea mays) and willow oak (Quercus phellos) from three bayous located within the Lower Mississippi River Basin of NW Mississippi, ...
Newton, A S
1950-12-05
Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.
Schoenen, Dirk
2013-01-01
Decomposition of the human body is a microbial process. It is influenced by the environmental situation and it depends to a high degree on the exchange of substances between the corpse and the environment. Mummification occurs at low humidity or frost. Adipocere arises from lack of oxygen, incomplete putrified corpses develop when there is no exchange of air or water between the corpse and the environment.
Decomposition of algal lipids in clay-enriched marine sediment under oxic and anoxic conditions
NASA Astrophysics Data System (ADS)
Lü, Dongwei; Song, Qian; Wang, Xuchen
2010-01-01
A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period, changes in the concentrations of TOC, major algal fatty acid components (14:0, 16:0, 16:1, 18:1 and 20:5), and n-alkanes (C16-C23) were quantified in the samples. Our results indicate that the organic matters were degraded more rapidly in oxic than anoxic conditions. Adsorption of fatty acids onto clay minerals was a rapid and reversible process. Using a simple G model, we calculated the decomposition rate constants for TOC, n-alkanes and fatty acids which ranged from 0.017-0.024 d-1, 0.049-0.103 d-1 and 0.011 to 0.069 d-1, respectively. Algal organic matter degraded in two stages characterized by a fast and a slow degradation processes. The addition of clay minerals montmorillonite and kaolinite to the sediments showed significant influence affecting the decomposition processes of algal TOC and fatty acids by adsorption and incorporation of the compounds with clay particles. Adsorption/association of fatty acids by clay minerals was rapid but appeared to be a slow reversible process. In addition to the sediment redox and clay influence, the structure of the compounds also played important roles in affecting their degradation dynamic in sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, T; Dong, X; Petrongolo, M
Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimationmore » with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trushkin, A. N.; Kochetov, I. V.
The kinetic model of toluene decomposition in nonequilibrium low-temperature plasma generated by a pulse-periodic discharge operating in a mixture of nitrogen and oxygen is developed. The results of numerical simulation of plasma-chemical conversion of toluene are presented; the main processes responsible for C{sub 6}H{sub 5}CH{sub 3} decomposition are identified; the contribution of each process to total removal of toluene is determined; and the intermediate and final products of C{sub 6}H{sub 5}CH{sub 3} decomposition are identified. It was shown that toluene in pure nitrogen is mostly decomposed in its reactions with metastable N{sub 2}(A{sub 3}{Sigma}{sub u}{sup +}) and N{sub 2}(a Primemore » {sup 1}{Sigma}{sub u}{sup -}) molecules. In the presence of oxygen, in the N{sub 2} : O{sub 2} gas mixture, the largest contribution to C{sub 6}H{sub 5}CH{sub 3} removal is made by the hydroxyl radical OH which is generated in this mixture exclusively due to plasma-chemical reactions between toluene and oxygen decomposition products. Numerical simulation showed the existence of an optimum oxygen concentration in the mixture, at which toluene removal is maximum at a fixed energy deposition.« less
Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi
2015-10-01
The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems.
Shoot litter breakdown and zinc dynamics of an aquatic plant, Schoenoplectus californicus.
Arreghini, Silvana; de Cabo, Laura; Serafini, Roberto José María; Fabrizio de Iorio, Alicia
2018-07-03
Decomposition of plant debris is an important process in determining the structure and function of aquatic ecosystems. The aims were to find a mathematic model fitting the decomposition process of Schoenoplectus californicus shoots containing different Zn concentrations; compare the decomposition rates; and assess metal accumulation/mobilization during decomposition. A litterbag technique was applied with shoots containing three levels of Zn: collected from an unpolluted river (RIV) and from experimental populations at low (LoZn) and high (HiZn) Zn supply. The double exponential model explained S. californicus shoot decomposition, at first, higher initial proportion of refractory fraction in RIV detritus determined a lower decay rate and until 68 days, RIV and LoZn detritus behaved like a source of metal, releasing soluble/weakly bound zinc into the water; after 68 days, they became like a sink. However, HiZn detritus showed rapid release into the water during the first 8 days, changing to the sink condition up to 68 days, and then returning to the source condition up to 369 days. The knowledge of the role of detritus (sink/source) will allow defining a correct management of the vegetation used for zinc removal and providing a valuable tool for environmental remediation and rehabilitation planning.
Energetic contaminants inhibit plant litter decomposition in soil.
Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Sunahara, Geoffrey I; Hawari, Jalal
2018-05-30
Individual effects of nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), nitroglycerin (NG), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) on litter decomposition, an essential biologically-mediated soil process, were assessed using Orchard grass (Dactylis glomerata) straw in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support "very high" qualitative relative bioavailability for organic chemicals. Batches of SSL soil were separately amended with individual EMs or acetone carrier control. To quantify the decomposition rates, one straw cluster was harvested from a set of randomly selected replicate containers from within each treatment, after 1, 2, 3, 4, 6, and 8 months of exposure. Results showed that soil amended with 2,4-DNT or NG inhibited litter decomposition rates based on the median effective concentration (EC50) values of 1122 mg/kg and 860 mg/kg, respectively. Exposure to 2-ADNT, 4-ADNT or CL-20 amended soil did not significantly affect litter decomposition in SSL soil at ≥ 10,000 mg/kg. These ecotoxicological data will be helpful in identifying concentrations of EMs in soil that present an acceptable ecological risk for biologically-mediated soil processes. Published by Elsevier Inc.
Tryba, Beata; Morawski, Antoni W; Inagaki, Michio; Toyoda, Masahiro
2006-08-01
Fe-C-TiO(2) photocatalysts which contained the residue carbon (0.2-3.3 mass%) were prepared from a mixture of TiO(2) and FeC(2)O(4) through the heating at 673-1173 K in Ar. These photocatalysts did not show a high adsorption of phenol, but they were active in photo-Fenton reactions during decomposition of phenol under UV irradiation with addition of H(2)O(2). It was proved that Fe(2+) governed the photoactivity of Fe-C-TiO(2) photocatalysts, it decreased with heat-treatment temperature above 773 K. For comparison, Fe-TiO(2) photocatalyst was prepared by heating TiO(2) and FeC(2)O(4) at 823 K in air for 3h. Phenol decomposition was going much slower on Fe-TiO(2) photocatalyst in comparison with Fe-C-TiO(2), of which mechanism was different, on the former phenol was decomposed by the radical reaction, on the latter through a complex reaction with iron and intermediates of phenol decomposition. Therefore carbon-coating TiO(2) was found to be advantageous for mounting iron and its application for the phenol decomposition via photo-Fenton process.
Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi
2015-01-01
The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14–19% and the ambient radiation by 9–16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems. PMID:26423726
Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M
2015-06-25
An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.
NASA Astrophysics Data System (ADS)
Huang, Yan; Wang, Zhihui
2015-12-01
With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.
Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.; Zagaris, George
2009-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
NASA Astrophysics Data System (ADS)
Mleczko, M.
2014-12-01
Polarimetric SAR data is not widely used in practice, because it is not yet available operationally from the satellites. Currently we can distinguish two approaches in POL - In - SAR technology: alternating polarization imaging (Alt - POL) and fully polarimetric (QuadPol). The first represents a subset of another and is more operational, while the second is experimental because classification of this data requires polarimetric decomposition of scattering matrix in the first stage. In the literature decomposition process is divided in two types: the coherent and incoherent decomposition. In this paper the decomposition methods have been tested using data from the high resolution airborne F - SAR system. Results of classification have been interpreted in the context of the land cover mapping capabilities
Xue, Kun; Wang, Lei; An, Jin; Xu, Jianbin
2011-05-13
The thermal decomposition of ultrathin HfO(2) films (∼0.6-1.2 nm) on Si by ultrahigh vacuum annealing (25-800 °C) is investigated in situ in real time by scanning tunneling microscopy. Two distinct thickness-dependent decomposition behaviors are observed. When the HfO(2) thickness is ∼ 0.6 nm, no discernible morphological changes are found below ∼ 700 °C. Then an abrupt reaction occurs at 750 °C with crystalline hafnium silicide nanostructures formed instantaneously. However, when the thickness is about 1.2 nm, the decomposition proceeds gradually with the creation and growth of two-dimensional voids at 800 °C. The observed thickness-dependent behavior is closely related to the SiO desorption, which is believed to be the rate-limiting step of the decomposition process.
Adaptive Fourier decomposition based ECG denoising.
Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming
2016-10-01
A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Domain Decomposition By the Advancing-Partition Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H
2014-08-08
For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Chien, S.
1994-01-01
This paper describes work on the Multimission VICAR Planner (MVP) system to automatically construct executable image processing procedures for custom image processing requests for the JPL Multimission Image Processing Lab (MIPL). This paper focuses on two issues. First, large search spaces caused by complex plans required the use of hand encoded control information. In order to address this in a manner similar to that used by human experts, MVP uses a decomposition-based planner to implement hierarchical/skeletal planning at the higher level and then uses a classical operator based planner to solve subproblems in contexts defined by the high-level decomposition.
NASA Technical Reports Server (NTRS)
Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw
1990-01-01
Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.
Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaramakrishnan, Raghu; Michael, Joe V.; Harding, Lawrence B.
2015-07-16
The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature micro-tubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation re-analysismore » of the CH3CHO potential energy surface (PES). The lowest energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a re-isomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (~10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water and acetylene in the recent micro-tubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms, and have no bearing on the unimolecular decomposition mechanism of CH3CHO. The present simulations also indicate that experiments using these micro-tubular reactors when interpreted with the aid of high-level theoretical calculations and kinetics modeling can offer insights into the chemistry of elusive intermediates in high temperature pyrolysis of organic molecules.« less
Crowdsourcing data on decomposition with the help of schools - Tea4Science
NASA Astrophysics Data System (ADS)
Lehtinen, Taru; Dingemans, Bas J. J.; Keuskamp, Joost A.; Hefting, Mariet M.; Sarneel, Judith M.
2015-04-01
Decay of organic material, decomposition, is a critical process for life on earth. Through decomposition, food becomes available for plants and soil organisms that they use in their growth and maintenance. When plant material decomposes, it loses weight and releases the greenhouse gas carbon dioxide (CO2) into the atmosphere. Commercial nylon teabags containing plant material can provide vital information on the global carbon cycle, if we study their decomposition in soils. Terrestrial soils contain three times more carbon than the atmosphere and therefore changes in the balance of soil carbon storage and release can significantly amplify or attenuate global warming. Many factors affecting the global carbon cycle are already known and archived; however, an index for decomposition rate is still missing. It would be a great improvement if we could measure decomposition (rate and degree) globally instead of estimating it from small scale experiments and lab incubations. We developed a cost-effective and standardised method to investigate decomposition rate and carbon stabilisation; by using commercially available teabags as standardised test-kits for simplified litter bag experiments. In order to make it easy for schools to take part through crowdsourcing (i.e. volunteer-assisted data collection by means of Internet applications), a lesson plan has been written to teachers. The so acquired Tea Bag Index (TBI) provides process-driven information on soil functions at local, regional and global scales essential for future climate modelling; and it is sensitive enough to discriminate data between different ecosystems and soil types. The lesson plan will enable students to understand the concept of decomposition and its relevance for soil fertility and our climate. TBI requires only little means and knowledge, making data collection by crowdsourcing possible. Successful results have already been attained by scout groups in Austria. Engaging schools classes as co-researchers would enlarge the crowdsourcing potential of the TBI. Subsequently, it will increase awareness of soils and provide essential development in including soils more frequently into the natural sciences and environmental classes at schools. The numerous data points collected will allow for a great leap forward in mapping decomposition, as well as understanding and modelling the global carbon cycle.
Interactions of Hydrazine and Blowby Gases
NASA Technical Reports Server (NTRS)
Meagher, Nancy E.
2003-01-01
The interactions between hydrazine and blowby gases from pyrovalves was explored in this research project. Investigating the decomposition chemistry of hydrazine through detailed chemical kinetic modeling is a project started last summer while participating in the Summer Faculty Fellowship program. During the 1999-2000 academic year, the chemical kinetic mechanism for hydrazine decomposition developed while a SFF at NASA's White Sands Test Facility was further revised and validated against the limited experimental data in the literature. This mechanism was then used in assessing the effects of blowby gas species on hydrazine decomposition. The combustion products introduced into the fuel line by pyrovalve actuation consist primarily of hydrogen gas. Hydrogen is also a product of the decomposition of hydrazine. Additional gaseous chemical species are introduced into the fuel, as well as metals and metal salts that deposit onto the walls of the fuel line. The deposition process is undoubtedly very rapid, and exothermic. Therefore, the major focus of this summer's work was examining the effects of hydrogen presence on hydrazine decomposition, with some representative calculations including the remaining gaseous species found to exist in blowby gases. Since hydrogen is a product of hydrazine decomposition, all reactions necessary to evaluate its effect on hydrazine decomposition chemistry were in the original mechanism developed. However, the mechanism needed to be considerably expanded to include the reactions of the other gaseous blowby species with hydrazine, all the intermediate species formed in its decomposition, and each other. The expanded mechanism consists of 70 species interacting via a network of 452 reactions. Calculations with molecular hydrogen introduced into hydrazine gas in an inert bath gas indicate that H2 presence as an initial reactant in substantial amounts can dramatically impact the decomposition process for hydrazine. The other gaseous blowby species (CO, CO2, H2O, CH4, O2, and N2) were found to have little effect compared to the inclusion of hydrogen itself as an initial reagent. This result is undoubtedly due, in part, to the fact that the blowby gas used in these calculations consisted of 94.6% H2. A more rigorous examination of the behavior of the full detailed mechanism under a variety of conditions was not performed.
Long-term amelioration of acidity accelerates decomposition in headwater streams.
Jenkins, Gareth B; Woodward, Guy; Hildrew, Alan G
2013-04-01
The secondary production of culturally acidified streams is low, with a few species of generalist detritivores dominating invertebrate assemblages, while decomposition processes are impaired. In a series of lowland headwater streams in southern England, we measured the rate of cellulolytic decomposition and compared it with values measured three decades ago, when anthropogenic acidification was at its peak. We hypothesized that, if acidity has indeed ameliorated, the rate of decomposition will have accelerated, thus potentially supporting greater secondary production and the longer food chains that have been observed in some well-studied recovering freshwater systems. We used cellulose Shirley test cloth as a standardized bioassay to measure the rate of cellulolytic decomposition, via loss in tensile strength, for 31 streams in the Ashdown Forest over 7 days in summer 2011 and 49 days in winter 2012. We compared this with data from an otherwise identical study conducted in 1978 and 1979. In a secondary study, we determined whether decomposition followed a linear or logarithmic decay and, as Shirley cloth is no longer available, we tested an alternative in the form of readily available calico. Overall mean pH had increased markedly over the 32 years between the studies (from 6.0 to 6.7). In both the previous and contemporary studies, the relationship between decomposition and pH was strongest in winter, when pH reaches a seasonal minimum. As in the late 1970s, there was no relationship in 2011/2012 between pH and decay rate in summer. As postulated, decomposition in winter was significantly faster in 2011/2012 than in 1978/1979, with an average increase in decay rate of 18.1%. Recovery from acidification, due to decreased acidifying emissions and deposition, has led to an increase in the rate of cellulolytic decomposition. This response in a critical ecosystem process offers a potential explanation of one aspect of the limited biological recovery that has been observed so far, an increase in larger bodied predators including fish, which in turn leads to an increase in the length of food chains. © 2012 Blackwell Publishing Ltd.
Funck, J Arce; Clivot, H; Felten, V; Rousselle, P; Guérold, F; Danger, M
2013-11-15
The functioning of forested headwater streams is intimately linked to the decomposition of leaf litter by decomposers, mainly aquatic hyphomycetes, which enables the transfer of allochthonous carbon to higher trophic levels. Evaluation of this process is being increasingly used as an indicator of ecosystem health and ecological integrity. Yet, even though the individual impacts of contaminants and nutrient availability on decomposition have been well studied, the understanding of their combined effects remains limited. In the current study, we investigated whether the toxic effects of a reemerging contaminant, silver (Ag), on leaf litter decomposition could be partly overcome in situations where microorganisms were benefitting from high phosphorus (P) availability, the latter being a key chemical element that often limits detritus decomposition. We also investigated whether these interactive effects were mediated by changes in the structure of the aquatic hyphomycete community. To verify these hypotheses, leaf litter decomposition by a consortium of ten aquatic hyphomycete species was followed in a microcosm experiment combining five Ag contamination levels and three P concentrations. Indirect effects of Ag and P on the consumption of leaf litter by the detritivorous crustacean, Gammarus fossarum, were also evaluated. Ag significantly reduced decomposition but only at the highest concentration tested, independently of P level. By contrast, P and Ag interactively affected fungal biomass. Both P level and Ag concentrations shaped microbial communities without significantly affecting the overall species richness. Finally, the levels of P and Ag interacted significantly on G. fossarum feeding rates, high [Ag] reducing litter consumption and low P availability tending to intensify the feeding rate. Given the high level of contaminant needed to impair the decomposition process, it is unlikely that a direct effect of Ag on leaf litter decomposition could be observed in situ. However, subtle Ag effects in relation to nutrient levels in ecosystems could be expected. In particular, owing to higher consumption of low P leaf litter, shredding invertebrates could increase the ingestion of contaminated resources, which could, in turn, represent an important threat to headwater stream ecosystems. Copyright © 2013 Elsevier B.V. All rights reserved.
Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system.
Gu, Yurong; Liu, Tongzhou; Wang, Hongjie; Han, Huili; Dong, Wenyi
2017-12-31
As one of the most reactive species, hydrated electron (e aq - ) is promising for reductive decomposition of recalcitrant organic pollutants, such as perfluorooctane sulfonate (PFOS). In this study, PFOS decomposition using a vacuum ultraviolet (VUV)/sulfite system was systematically investigated in comparison with sole VUV and ultraviolet (UV)/sulfite systems. A fast and nearly complete (97.3%) PFOS decomposition was observed within 4h from its initial concentration of 37.2μM in the VUV/sulfite system. The observed rate constant (k obs ) for PFOS decomposition in the studied system was 0.87±0.0060h -1 , which was nearly 7.5 and 2 folds faster than that in sole VUV and UV/sulfite systems, respectively. Compared to previously studied UV/sulfite system, VUV/sulfite system enhanced PFOS decomposition in both weak acidic and alkaline pH conditions. In weak acidic condition (pH6.0), PFOS predominantly decomposed via direct VUV photolysis, whereas in alkaline condition (pH>9.0), PFOS decomposition was mainly induced by e aq - generated from both sulfite and VUV photolytic reactions. At a fixed initial solution pH (pH10.0), PFOS decomposition kinetics showed a positive linear dependence with sulfite dosage. The co-presence of humic acid (HA) and NO 3 - obviously suppressed PFOS decomposition, whereas HCO 3 - showed marginal inhibition. A few amount of short chain perfluorocarboxylic acids (PFCAs) were detected in PFOS decomposition process, and a high defluorination efficiency (75.4%) was achieved. These results suggested most fluorine atoms in PFOS molecule ultimately mineralized into fluoride ions, and the mechanisms for PFOS decomposition in the VUV/sulfite system were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A
2013-01-01
Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities.
Genung, Mark A.; Bailey, Joseph K.; Schweitzer, Jennifer A.
2013-01-01
Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities. PMID:23349735
Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei
2016-09-15
Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.
van Geffen, Koert G; Berg, Matty P; Aerts, Rien
2011-12-01
As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all possible combinations of three functionally different macro-detritivores (the earthworm Lumbricus rubellus, isopod Oniscus asellus, and millipede Julus scandinavius). Our results show that these macro-detritivores stimulated decomposition, especially of the high-quality A. incana litter and that the macro-detritivores tested differed in their decomposition-stimulating effects, with earthworms having the largest influence. Decomposition processes increased with increasing number of macro-detritivore species, and positive net diveristy effects occurred in several macro-detritivore treatments. However, after correction for macro-detritivore biomass, all interspecific differences in macro-detritivore effects, as well as the positive effects of species number on subarctic litter decomposition disappeared. The net diversity effects also appeared to be driven by variation in biomass, with a possible exception of net diversity effects in mass loss. Based on these results, we conclude that the expected climate change-induced range expansion of macro-detritivores into subarctic regions is likely to result in accelerated decomposition rates. Our results also indicate that the magnitude of macro-detritivore effects on subarctic decomposition will mainly depend on macro-detritivore biomass, rather than on macro-detritivore species number or identity.
Photodegradation at day, microbial decomposition at night - decomposition in arid lands
NASA Astrophysics Data System (ADS)
Gliksman, Daniel; Gruenzweig, Jose
2014-05-01
Our current knowledge of decomposition in dry seasons and its role in carbon turnover is fragmentary. So far, decomposition during dry seasons was mostly attributed to abiotic mechanisms, mainly photochemical and thermal degradation, while the contribution of microorganisms to the decay process was excluded. We asked whether microbial decomposition occurs during the dry season and explored its interaction with photochemical degradation under Mediterranean climate. We conducted a litter bag experiment with local plant litter and manipulated litter exposure to radiation using radiation filters. We found notable rates of CO2 fluxes from litter which were related to microbial activity mainly during night-time throughout the dry season. This activity was correlated with litter moisture content and high levels of air humidity and dew. Day-time CO2 fluxes were related to solar radiation, and radiation manipulation suggested photodegradation as the underlying mechanism. In addition, a decline in microbial activity was followed by a reduction in photodegradation-related CO2 fluxes. The levels of microbial decomposition and photodegradation in the dry season were likely the factors influencing carbon mineralization during the subsequent wet season. This study showed that microbial decomposition can be a dominant contributor to CO2 emissions and mass loss in the dry season and it suggests a regulating effect of microbial activity on photodegradation. Microbial decomposition is an important contributor to the dry season decomposition and impacts the annual litter turn-over rates in dry regions. Global warming may lead to reduced moisture availability and dew deposition, which may greatly influence not only microbial decomposition of plant litter, but also photodegradation.
Factors influencing leaf litter decomposition: An intersite decomposition experiment across China
Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.
2008-01-01
The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.
Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; ...
2015-09-30
Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. Here in this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion inmore » microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.« less
Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto
2015-01-01
Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer. PMID:26419420
Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto
2015-09-30
Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.
NASA Astrophysics Data System (ADS)
Boniecki, P.; Nowakowski, K.; Slosarz, P.; Dach, J.; Pilarski, K.
2012-04-01
The purpose of the project was to identify the degree of organic matter decomposition by means of a neural model based on graphical information derived from image analysis. Empirical data (photographs of compost content at various stages of maturation) were used to generate an optimal neural classifier (Boniecki et al. 2009, Nowakowski et al. 2009). The best classification properties were found in an RBF (Radial Basis Function) artificial neural network, which demonstrates that the process is non-linear.
The mechanism of the photochemical oxidation of water to oxygen with silver chloride colloids
NASA Astrophysics Data System (ADS)
Chandrasekaran, K.; Thomas, J. K.
1983-05-01
Photoexcitation of silver chloride colloids in the presence of excess silver ions, leads to the decomposition of water. Hydroxyl radicals were found to be intermediates in the decomposition process. Irradiation leads to hydroxyl radicals, which recombine to give hydrogen peroxide, on the colloidal particle surface. Subsequent decomposition of H 2O 2 to give O 2 is catalyzed by silver ions. Addition of alcohols such as methanol and isopropanol reduce the oxygen yield, as they react with OH radicals and reduce the H 2O 2 yield.
Optimal Multi-scale Demand-side Management for Continuous Power-Intensive Processes
NASA Astrophysics Data System (ADS)
Mitra, Sumit
With the advent of deregulation in electricity markets and an increasing share of intermittent power generation sources, the profitability of industrial consumers that operate power-intensive processes has become directly linked to the variability in energy prices. Thus, for industrial consumers that are able to adjust to the fluctuations, time-sensitive electricity prices (as part of so-called Demand-Side Management (DSM) in the smart grid) offer potential economical incentives. In this thesis, we introduce optimization models and decomposition strategies for the multi-scale Demand-Side Management of continuous power-intensive processes. On an operational level, we derive a mode formulation for scheduling under time-sensitive electricity prices. The formulation is applied to air separation plants and cement plants to minimize the operating cost. We also describe how a mode formulation can be used for industrial combined heat and power plants that are co-located at integrated chemical sites to increase operating profit by adjusting their steam and electricity production according to their inherent flexibility. Furthermore, a robust optimization formulation is developed to address the uncertainty in electricity prices by accounting for correlations and multiple ranges in the realization of the random variables. On a strategic level, we introduce a multi-scale model that provides an understanding of the value of flexibility of the current plant configuration and the value of additional flexibility in terms of retrofits for Demand-Side Management under product demand uncertainty. The integration of multiple time scales leads to large-scale two-stage stochastic programming problems, for which we need to apply decomposition strategies in order to obtain a good solution within a reasonable amount of time. Hence, we describe two decomposition schemes that can be applied to solve two-stage stochastic programming problems: First, a hybrid bi-level decomposition scheme with novel Lagrangean-type and subset-type cuts to strengthen the relaxation. Second, an enhanced cross-decomposition scheme that integrates Benders decomposition and Lagrangean decomposition on a scenario basis. To demonstrate the effectiveness of our developed methodology, we provide several industrial case studies throughout the thesis.
Photodegradation Pathways in Arid Ecosystems
NASA Astrophysics Data System (ADS)
King, J. Y.; Lin, Y.; Adair, E. C.; Brandt, L.; Carbone, M. S.
2013-12-01
Recent interest in improving our understanding of decomposition patterns in arid and semi-arid ecosystems and under potentially drier future conditions has led to a flurry of research related to abiotic degradation processes. Oxidation of organic matter by solar radiation (photodegradation) is one abiotic degradation process that contributes significantly to litter decomposition rates. Our meta-analysis results show that increasing solar radiation exposure corresponds to an average increase of 23% in litter mass loss rate with large variation among studies associated primarily with environmental and litter chemistry characteristics. Laboratory studies demonstrate that photodegradation results in CO2 emissions. Indirect estimates suggest that photodegradation could account for as much as 60% of ecosystem CO2 emissions from dry ecosystems, but these CO2 fluxes have not been measured in intact ecosystems. The current data suggest that photodegradation is important, not only for understanding decomposition patterns, but also for modeling organic matter turnover and ecosystem C cycling. However, the mechanisms by which photodegradation operates, along with their environmental and litter chemistry controls, are still poorly understood. Photodegradation can directly influence decomposition rates and ecosystem CO2 flux via photochemical mineralization. It can also indirectly influence biotic decomposition rates by facilitating microbial degradation through breakdown of more recalcitrant compounds into simpler substrates or by suppressing microbial activity directly. All of these pathways influence the decomposition process, but the relative importance of each is uncertain. Furthermore, a specific suite of controls regulates each of these pathways (e.g., environmental conditions such as temperature and relative humidity; physical environment such as canopy architecture and contact with soil; and litter chemistry characteristics such as lignin and cellulose content), and these controls have not yet been identified or quantified. To advance our understanding of photodegradation and its role in decomposition and in ecosystem C cycling, we must characterize its mechanisms and their associated controls and incorporate this understanding into biogeochemical models. Our objective is to summarize the current state of understanding of photodegradation and discuss some paths forward to address remaining critical gaps in knowledge about its mechanisms and influence on ecosystem C balance.
Controlled decomposition and oxidation: A treatment method for gaseous process effluents
NASA Technical Reports Server (NTRS)
Mckinley, Roger J. B., Sr.
1990-01-01
The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.
Guo, Juanjuan; Fu, Xiaoliang; Liao, Huidan; Hu, Zhenyu; Long, Lingling; Yan, Weitao; Ding, Yanjun; Zha, Lagabaiyila; Guo, Yadong; Yan, Jie; Chang, Yunfeng; Cai, Jifeng
2016-01-01
Decomposition is a complex process involving the interaction of both biotic and abiotic factors. Microbes play a critical role in the process of carrion decomposition. In this study, we analysed bacterial communities from live rats and rat remains decomposed under natural conditions, or excluding sarcosaphagous insect interference, in China using Illumina MiSeq sequencing of 16S rRNA gene amplicons. A total of 1,394,842 high-quality sequences and 1,938 singleton operational taxonomic units were obtained. Bacterial communities showed notable variation in relative abundance and became more similar to each other across body sites during the decomposition process. As decomposition progressed, Proteobacteria (mostly Gammaproteobacteria) became the predominant phylum in both the buccal cavity and rectum, while Firmicutes and Bacteroidetes in the mouth and rectum, respectively, gradually decreased. In particular, the arrival and oviposition of sarcosaphagous insects had no obvious influence on bacterial taxa composition, but accelerated the loss of biomass. In contrast to the rectum, the microbial community structure in the buccal cavity of live rats differed considerably from that of rats immediately after death. Although this research indicates that bacterial communities can be used as a “microbial clock” for the estimation of post-mortem interval, further work is required to better understand this concept. PMID:27052375
2014-02-01
moisture level of 14% dry soil mass was maintained for the duration of the study by weekly additions of ASTM Type I water. Soil samples were collected...maintain the initial soil moisture level. One cluster of Orchard grass straw was harvested from a set of randomly selected replicate containers...decomposition is among the most integrating processes within the soil ecosystem because it involves complex interactions of soil microbial, plant , and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.
2015-08-20
This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.
NASA Astrophysics Data System (ADS)
Chen, Jun; Li, Guoxiu; Zhang, Tao; Wang, Meng; Yu, Yusong
2016-12-01
Low toxicity ammonium dinitramide (ADN)-based aerospace propulsion systems currently show promise with regard to applications such as controlling satellite attitude. In the present work, the decomposition and combustion processes of an ADN-based monopropellant thruster were systematically studied, using a thermally stable catalyst to promote the decomposition reaction. The performance of the ADN propulsion system was investigated using a ground test system under vacuum, and the physical properties of the ADN-based propellant were also examined. Using this system, the effects of the preheating temperature and feed pressure on the combustion characteristics and thruster performance during steady state operation were observed. The results indicate that the propellant and catalyst employed during this work, as well as the design and manufacture of the thruster, met performance requirements. Moreover, the 1 N ADN thruster generated a specific impulse of 223 s, demonstrating the efficacy of the new catalyst. The thruster operational parameters (specifically, the preheating temperature and feed pressure) were found to have a significant effect on the decomposition and combustion processes within the thruster, and the performance of the thruster was demonstrated to improve at higher feed pressures and elevated preheating temperatures. A lower temperature of 140 °C was determined to activate the catalytic decomposition and combustion processes more effectively compared with the results obtained using other conditions. The data obtained in this study should be beneficial to future systematic and in-depth investigations of the combustion mechanism and characteristics within an ADN thruster.
Method of manufacturing aerogel composites
Cao, W.; Hunt, A.J.
1999-03-09
Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.
Method of manufacturing aerogel composites
Cao, Wanqing; Hunt, Arlon Jason
1999-01-01
Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.
ERIC Educational Resources Information Center
Dunabeitia, Jon Andoni; Peream, Manuel; Carreiras, Manuel
2007-01-01
When does morphological decomposition occur in visual word recognition? An increasing body of evidence suggests the presence of early morphological processing. The present work investigates this issue via an orthographic similarity manipulation. Three masked priming lexical decision experiments were conducted to examine the transposed-letter…
Parallel processing methods for space based power systems
NASA Technical Reports Server (NTRS)
Berry, F. C.
1993-01-01
This report presents a method for doing load-flow analysis of a power system by using a decomposition approach. The power system for the Space Shuttle is used as a basis to build a model for the load-flow analysis. To test the decomposition method for doing load-flow analysis, simulations were performed on power systems of 16, 25, 34, 43, 52, 61, 70, and 79 nodes. Each of the power systems was divided into subsystems and simulated under steady-state conditions. The results from these tests have been found to be as accurate as tests performed using a standard serial simulator. The division of the power systems into different subsystems was done by assigning a processor to each area. There were 13 transputers available, therefore, up to 13 different subsystems could be simulated at the same time. This report has preliminary results for a load-flow analysis using a decomposition principal. The report shows that the decomposition algorithm for load-flow analysis is well suited for parallel processing and provides increases in the speed of execution.
Pochikalov, A V; Karelin, D V
2014-01-01
Although many recently published original papers and reviews deal with plant matter decomposition rates and their controls, we are still very short in understanding of these processes in boreal and high latiude plant communities, especially in permafrost areas of our planet. First and foremost, this is holds true for winter period. Here, we present the results of 2-year field observations in south taiga and south shrub tundra ecosystems in European Russia. We pioneered in simultaneous application of two independent methods: classic mass loss estimation by litter-bag technique, and direct measurement of CO2 emission (respiration) of the same litter bags with different types of dead plant matter. Such an approach let us to reconstruct intra-seasonal dynamics of decomposition rates of the main tundra litter fractions with high temporal resolution, to estimate the partial role of different seasons and defragmentation in the process of plant matter decomposition, and to determine its factors under different temporal scale.
Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing
2012-11-26
We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.
NASA Astrophysics Data System (ADS)
Patel, Vinay Kumar; Bhattacharya, Shantanu
2017-09-01
The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.
Spider foraging strategy affects trophic cascades under natural and drought conditions.
Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong
2015-07-23
Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.
Spider foraging strategy affects trophic cascades under natural and drought conditions
Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong
2015-01-01
Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370
Mechanism of thermal decomposition of K2FeO4 and BaFeO4: A review
NASA Astrophysics Data System (ADS)
Sharma, Virender K.; Machala, Libor
2016-12-01
This paper presents thermal decomposition of potassium ferrate(VI) (K2FeO4) and barium ferrate(VI) (BaFeO4) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe V and Fe IV as intermediate iron species using the applied techniques are given. Thermal decomposition of K2FeO4 involved Fe V, Fe IV, and K3FeO3 as intermediate species while BaFeO3 (i.e. Fe IV) was the only intermediate species during the decomposition of BaFeO4. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K2FeO4 and BaFeO4 under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.
Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution
NASA Astrophysics Data System (ADS)
Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa
2017-12-01
The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.
The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations
Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka
2011-01-01
Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn
2014-12-15
Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystallinemore » nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.« less
Russell, Matthew B.; Woodall, Christopher W.; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.
2014-01-01
Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.
NASA Astrophysics Data System (ADS)
Djukic, Ika; Kappel Schmidt, Inger; Steenberg Larsen, Klaus; Beier, Claus
2017-04-01
Litter decomposition represents one of the largest fluxes in the global terrestrial carbon cycle and a number of large-scale decomposition experiments have been conducted focusing on this fundamental soil process. However, previous studies were most often based on site-specific litters and methodologies. The contrasting litter and soil types used and the general lack of common protocols still poses a major challenge as it adds major uncertainty to meta-analyses across different experiments and sites. In the TeaComposition initiative, we aim to investigate the potential litter decomposition by using standardized substrates (tea) for comparison of temporal litter decomposition rates across different ecosystems worldwide. To this end, Lipton tea bags (Rooibos and Green Tea) has been buried in the H-A or Ah horizon and incubated over the period of 36 months within 400 sites covering diverse ecosystems in 9 zonobiomes. We measured initial litter chemistry and litter mass loss 3 months after the start of decomposition and linked the decomposition rates to site and climatic conditions as well as to the existing decompositions rates of the local litter. We will present and discuss the outcomes of this study. Acknowledgment: We are thankful to colleagues from more than 300 sites who were participating in the implementation of this initiative and who are not mentioned individually as co-authors yet.
Du, Jingjing; Zhang, Yuyan; Guo, Wei; Li, Ningyun; Gao, Chaoshuai; Cui, Minghui; Lin, Zhongdian; Wei, Mingbao; Zhang, Hongzhong
2018-05-15
Titanium dioxide (TiO 2 ) nanoparticles have been applied in diverse commercial products, which could lead to toxic effects on aquatic microbes and would inhibit some important ecosystem processes. The study aimed to investigate the chronic impacts of TiO 2 nanoparticles with different concentrations (5, 50, and 500 mg L -1 ) on Populus nigra L. leaf decomposition in the freshwater ecosystem. After 50 d of decomposing, a significant decrease in decomposition rates was observed with higher concentrations of TiO 2 nanoparticles. During the period of litter decomposition, exposure of TiO 2 nanoparticles led to decreases in extracellular enzyme activities, which was caused by the reduction of microbial especially fungal biomass. In addition, the diversity and composition of the fungal community associated with litter decomposition were strongly affected by the concentrations of TiO 2 nanoparticles. The diversity and composition of the fungal community associated with litter decomposition was strongly affected. The abundance of Tricladium chaetocladium decreased with the increasing concentrations of TiO 2 nanoparticles, indicating the little contribution of the species to the litter decomposition. In conclusion, this study provided the evidence for the chronic exposure effects of TiO 2 nanoparticles on the litter decomposition and further the functions of freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermal decomposition of high-nitrogen energetic compounds: TAGzT and GUzT
NASA Astrophysics Data System (ADS)
Hayden, Heather F.
The U.S. Navy is exploring high-nitrogen compounds as burning-rate additives to meet the growing demands of future high-performance gun systems. Two high-nitrogen compounds investigated as potential burning-rate additives are bis(triaminoguanidinium) 5,5-azobitetrazolate (TAGzT) and bis(guanidinium) 5,5'-azobitetrazolate (GUzT). Small-scale tests showed that formulations containing TAGzT exhibit significant increases in the burning rates of RDX-based gun propellants. However, when GUzT, a similarly structured molecule was incorporated into the formulation, there was essentially no effect on the burning rate of the propellant. Through the use of simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and Fourier-Transform ion cyclotron resonance (FTICR) mass spectrometry methods, an investigation of the underlying chemical and physical processes that control the thermal decomposition behavior of TAGzT and GUzT alone and in the presence of RDX, was conducted. The objective was to determine why GUzT is not as good a burning-rate enhancer in RDX-based gun propellants as compared to TAGzT. The results show that TAGzT is an effective burning-rate modifier in the presence of RDX because the decomposition of TAGzT alters the initial stages of the decomposition of RDX. Hydrazine, formed in the decomposition of TAGzT, reacts faster with RDX than RDX can decompose itself. The reactions occur at temperatures below the melting point of RDX and thus the TAGzT decomposition products react with RDX in the gas phase. Although there is no hydrazine formed in the decomposition of GUzT, amines formed in the decomposition of GUzT react with aldehydes, formed in the decomposition of RDX, resulting in an increased reaction rate of RDX in the presence of GUzT. However, GUzT is not an effective burning-rate modifier because its decomposition does not alter the initial gas-phase decomposition of RDX. The decomposition of GUzT occurs at temperatures above the melting point of RDX. Therefore, the decomposition of GUzT affects reactions that are dominant in the liquid phase of RDX. Although GUzT is not an effective burning-rate modifier, features of its decomposition where the reaction between amines formed in the decomposition of GUzT react with the aldehydes, formed in the decomposition of RDX, may have implications from an insensitive-munitions perspective.
Performance evaluation of canny edge detection on a tiled multicore architecture
NASA Astrophysics Data System (ADS)
Brethorst, Andrew Z.; Desai, Nehal; Enright, Douglas P.; Scrofano, Ronald
2011-01-01
In the last few years, a variety of multicore architectures have been used to parallelize image processing applications. In this paper, we focus on assessing the parallel speed-ups of different Canny edge detection parallelization strategies on the Tile64, a tiled multicore architecture developed by the Tilera Corporation. Included in these strategies are different ways Canny edge detection can be parallelized, as well as differences in data management. The two parallelization strategies examined were loop-level parallelism and domain decomposition. Loop-level parallelism is achieved through the use of OpenMP,1 and it is capable of parallelization across the range of values over which a loop iterates. Domain decomposition is the process of breaking down an image into subimages, where each subimage is processed independently, in parallel. The results of the two strategies show that for the same number of threads, programmer implemented, domain decomposition exhibits higher speed-ups than the compiler managed, loop-level parallelism implemented with OpenMP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com
2014-05-01
Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decompositionmore » of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.« less