Science.gov

Sample records for spiral galaxy m83

  1. M83

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    M83 is a spiral galaxy of type SABc (i.e. it is an intermediate type between a barred spiral and a normal spiral galaxy) in Hydra (sometimes referred to as the `Pinwheel Galaxy'). It was fist discovered by Lacaille during the time he spent at the Cape of Good Hope (1751-2) and is therefore the first galaxy beyond the Local Group to be discovered. Its distance is estimated at 15 million light-year...

  2. Dark vs. luminous matter in the CenA/M83 galaxy complex

    NASA Astrophysics Data System (ADS)

    Karachentsev, Igor

    2004-07-01

    The distribution of dark vs. luminous matter on scales of 0.1-1.0 Mpc remains poorly understood. For a nearby group, the total mass can be determined from the radius of "the zero-velocity surface", which separates the group from the general Hubble flow. This new method requires the measurement of accurate distances and radial velocities of galaxies around the group, but gives total mass estimates independent of assumptions about the state of relaxation or orbital characteristics. The mass pertains to the group at the full scale to which it is bound. Upon application in several nearest groups, the method yields mass estimates in agreement with the sum of the virial masses of subcomponents. However, the typical total M/L ratio for the nearby groups of ~30 Mo/Lo implies a local mean density of matter which is only 1/7 the canonical global density . The nearby complex of galaxies around Cen A and M83 resembles our Local Group by the dumb-bell concentration of objects around a pair of dominant galaxies. Accurate distances have been acquired recently for ~20 group members by the TRGB method using HST. We will measure TRGB distances to the 17 remaining galaxies in the region. These observations will constrain the dynamical state of the halo surrounding the nearest giant E-galaxy Cen A, providing a comparison with the halos of the nearest spirals.

  3. Orbit crowding of molecular gas at a bar-spiral arm transition zone in M83

    NASA Technical Reports Server (NTRS)

    Kenney, Jeffrey D. P.; Lord, Steven D.

    1991-01-01

    The southwestern bar-spiral arm transition zone in M83 is been studied in CO, H-alpha, H I, red light, and the radio continuum. A massive molecular gas complex in the heart of the transition zone is composed or two principal components which have the morphology and kinematics expected from orbit crowding, where gas on highly elliptical orbits form the bar region converges with gas on more circular orbits from the spiral arm region. Three mechanisms for the origin of the orbit crowding are investigated, and it is proposed that the crowding is due primarily to density wave streaming motions caused by the bar and spiral arms. The inner CO component is partially coincident with a region of highly polarized radio continuum emission which precedes the H-alpha spiral arm by 15-25 arcsec, indicating that it lies on or just downstream from a shock front. This suggests that the bar gas approaching the transition zone is shocked and explains the ridge of dense gas seen upstream from the spiral arm.

  4. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  5. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  6. FIFI-LS Imaging of [O III] Line Emission in the Nucleus and Spiral Arm of M83: Tracing the Stellar Radiation FIelds

    NASA Astrophysics Data System (ADS)

    Stacey, Gordon

    2015-10-01

    We propose to map the [O III] 52 um (two spatial positions) and 88 um (one spatial position) line emission from the nucleus and SW bar/spiral arm interface region of M83. These data will be used together with publically available [O III] 88 um, [N III] 57 um, and [N II] 122 um line emission observed with Herschel/PACS in the same positions to constrain the ionized gas density, the hardness of the stellar radiation fields (hence most massive star on the Main Sequence), and the O/N ratio (which reflects the numbers of cycles for stellar processing). We will also take advantage of the [O I] 63 um, [O I] 146 um, and [C II] 158 um line mapping available in the Herschel archives to complete a far-IR line study of these regions. The combined data sets trace the strength of the FUV (6 - 13.6 eV) radiation field, the numbers of ionizing photons, and the radiation field hardness allowing us to characterize the stellar populations in this nearby grand design spiral galaxy and make a robust measure of the O/N ratio at the nucleus and spiral arm 2.2 kpc away. The FIFI-LS [OIII] 52 um line provides the gas-density probe that is the lynch-pin for our technique. These measurements will provide a local benchmark for our line-ratio techniques that can be applied to fine-structure line studies of high-z galaxies where it is expected that stellar radiation fields will be harder, and the O/N ratio will be larger in the lowest metalicity galaxies. Therefore, the proposed observations are of fundamental importance for the understanding of the evolution of star formation over cosmic time.

  7. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  8. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  9. A Hard X-Ray Study of the Normal Star-forming Galaxy M83 with NuSTAR

    NASA Astrophysics Data System (ADS)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.; Ptak, A.; Wik, D. R.; Zezas, A.; Antoniou, V.; Maccarone, T. J.; Replicon, V.; Tyler, J. B.; Venters, T.; Argo, M. K.; Bechtol, K.; Boggs, S.; Christensen, F. E.; Craig, W. W.; Hailey, C.; Harrison, F.; Krivonos, R.; Kuntz, K.; Stern, D.; Zhang, W. W.

    2016-06-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E\\gt 10 keV) X-ray emission of this galaxy. The nuclear region and ˜20 off-nuclear point sources, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, which is consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC 253, NGC 3310, and NGC 3256. The NuSTAR observations constrain any active galactic nucleus (AGN) to be either highly obscured or to have an extremely low luminosity of ≲1038 erg s‑1 (10–30 keV), implying that it is emitting at a very low Eddington ratio. An X-ray point source that is consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038 erg s‑1 may be a low-luminosity AGN but is more consistent with being an X-ray binary.

  10. Chiral asymmetry in spiral galaxies?

    PubMed

    Kondepudi, D K; Durand, D J

    2001-07-01

    Spiral galaxies are chiral entities when coupled with the direction of their recession velocity. As viewed from the Earth, the S-shaped and Z-shaped spiral galaxies are two chiral forms. What is the nature of chiral symmetry in spiral galaxies? In the Carnegie Atlas of Galaxies that lists photographs of a total of 1,168 galaxies, we found 540 galaxies, classified as normal or barred spirals, that are clearly identifiable as S- or Z- type. The recession velocities for 538 of these galaxies could be obtained from this atlas and other sources. A statistical analysis of this sample reveals no overall asymmetry but there is a significant asymmetry in certain subclasses: dominance of S-type galaxies in the Sb class of normal spiral galaxies and a dominance of Z-type in the SBb class of barred spiral galaxies. Both S- and Z-type galaxies seem to have similar velocity distribution, indicating no spatial segregation of the two chiral forms.

  11. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  12. Magnetic fields in spiral galaxies

    SciTech Connect

    Beck, R. )

    1990-02-01

    Radio polarization observations have revealed large-scale magnetic fields in spiral galaxies. The average total field strength most probably increases with the rate of star formation. The uniform field generally follows the orientation of the optical spiral arms, but is often strongest {ital outside} the arms. Long magnetic-field filaments are seen, sometimes up to a 30 kpc length. The field seems to be anchored in large gas clouds and is inflated out of the disk; e.g., by a galactic wind. The field in radio halos around galaxies is highly uniform in limited regions, resembling the structure of the solar corona. The detection of Faraday rotation in spiral galaxies excludes the existence of large amounts of antimatter. The distribution of Faraday rotation in the disks shows two different large-scale structures of the interstellar field: Axisymmetric-spiral and bisymmetric-spiral, which are interpreted as two modes of the galactic dynamo driven by differential rotation.

  13. HUBBLE REVEALS 'BACKWARDS' SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have found a spiral galaxy that may be spinning to the beat of a different cosmic drummer. To the surprise of astronomers, the galaxy, called NGC 4622, appears to be rotating in the opposite direction to what they expected. Pictures by NASA's Hubble Space Telescope helped astronomers determine that the galaxy may be spinning clockwise by showing which side of the galaxy is closer to Earth. A Hubble telescope photo of the oddball galaxy is this month's Hubble Heritage offering. The image shows NGC 4622 and its outer pair of winding arms full of new stars [shown in blue]. Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. To add to the conundrum, NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction it is rotating. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise. NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. What caused this galaxy to behave differently from most galaxies? Astronomers suspect that NGC 4622 interacted with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a small companion galaxy. The galaxy's core provides new evidence for a merger between NGC 4622 and a smaller galaxy. This information could be the key to understanding the unusual leading arms. Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way Galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 resides 111 million light-years away in the constellation Centaurus. The pictures were taken in May 2001 with Hubble

  14. THE SPIRAL GALAXY M100

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the grand design of spiral galaxy M100 obtained with NASA's Hubble Space Telescope resolves individual stars within the majestic spiral arms. (These stars typically appeared blurred together when viewed with ground-based telescopes.) Hubble has the ability to resolve individual stars in other galaxies and measure accurately the light from very faint stars. This makes space telescope invaluable for identifying a rare class of pulsating stars, called Cepheid Variable stars embedded within M100's spiral arms. Cepheids are reliable cosmic distance mileposts. The interval it takes for the Cepheid to complete one pulsation is a direct indication of the stars's intrinsic brightness. This value can be used to make a precise measurement of the galaxy's distance, which turns out to be 56 million light-years. M100 (100th object in the Messier catalog of non-stellar objects) is a majestic face-on spiral galaxy. It is a rotating system of gas and stars, similar to our own galaxy, the Milky Way. Hubble routinely can view M100 with a level of clarity and sensitivity previously possible only for the very few nearby galaxies that compose our 'Local Group.'' M100 is a member of the huge Virgo cluster of an estimated 2,500 galaxies. The galaxy can be seen by amateur astronomers as a faint, pinwheel-shaped object in the spring constellation Coma Berenices. Technical Information: The Hubble Space Telescope image was taken on December 31, 1993 with the Wide Field Planetary Camera 2 (WFPC 2). This color picture is a composite of several images taken in different colors of light. Blue corresponds to regions containing hot newborn stars. The Wide Field and Planetary Camera 2 was developed by the Jet Propulsion Laboratory (JPL) and managed by the Goddard Space Flight Center for NASA's Office of Space Science. Credit: J. Trauger, JPL and NASA

  15. Theoretical problems of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Yuan, C.

    1982-01-01

    Three theoretical problems concerning the large scale structure of disk galaxies in general, and the Milky Way System, in particular, were proposed to study. They are, namely, modes of spiral density waves, evolutionary change of the abundance distribution of the gas in the Milky Way System and the motions of the cloud medium behind the large scale galactic shock.

  16. Molecular gas temperature and density in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Wall, W. F.; Jaffe, D. T.; Bash, F. N.; Israel, F. P.; Maloney, P. R.; Baas, F.

    1993-01-01

    We combine beam-matched CO-13, CO-12 J = 3 yields 2 and J = 2 yields 1 line data to infer the molecular gas excitation conditions in the central 500 to 1600 pc diameters of a small sample of infrared-bright external galaxies: NGC253, IC342, M 83, Maffei 2, and NGC6946. Additional observations of the J = 1 yields 0 lines of C-18O and CO-13 set limits on the opacity of the CO-13 J = 1 yields 0 line averaged over the central kiloparsec of these spiral galaxies.

  17. The mass of spiral galaxy halos

    NASA Technical Reports Server (NTRS)

    Zaritsky, Dennis

    1992-01-01

    A discussion is presented of previous and current work on the determination of the mass distribution of spiral galaxy halos. The two most common tools utilized to determine the mass of spiral galaxies, i.e., companion galaxies and rotation curves are discussed. The most recent research of companion galaxies, which probes the potential to larger distances and utilizes more accurate dynamic modeling, demonstrates that isolated late-type galaxies do have very large dark-matter halos.

  18. Stellar Populations in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    MacArthur, L. A.; Courteau, S.; Bell, E. F.; Holtzman, J. A.

    2004-12-01

    We investigate optical and near-IR color gradients in a sample of 172 low-inclination galaxies spanning Hubble types S0--Irr. The colors are compared to stellar population synthesis models from which luminosity-weighted average ages and metallicities are determined. We explore the effects of different underlying star formation histories and additional bursts of star formation. Because the observed gradients show radial structure, we measure ``inner'' and ``outer'' disk age and metallicity gradients. Relative trends in age and metallicity and their gradients are explored as a function of Hubble type, rotational velocity, total near-IR galaxy magnitude, central surface brightness, and scale length. We find strong correlations in age and metallicity with Hubble type, rotational velocity, total magnitude, and central surface brightness in the sense that earlier-type, faster rotating, more luminous, and higher surface brightness galaxies are older and more metal-rich, suggesting an early and more rapid star formation history for these galaxies. The increasing trends level off for T ⪉ 4 (Sbc and earlier), V {rot} ⪆ 120 km s-1, MK ⪉ -23 mag, and μ 0 ⪉ 18.5 mag arcsec-2. Outer disk gradients are weaker than the inner gradients as expected for a slower variation of the potential and surface brightness in the outer parts. We find that stronger age gradients are associated with weaker metallicity gradients. Relative trends in gradients with galaxy parameters do not agree with predictions of semi-analytic models of hierarchical galaxy formation, possibly as a result of bar-induced radial flows. However, the observed trends are in agreement with chemo-spectro photometric models of spiral galaxy evolution based on CDM-motivated scaling laws but including none of the hierarchical merging characteristics. This implies a strong dependence of the star formation history of spiral galaxies on the galaxy potential and halo spin parameter. L.A.M. and S.C acknowledge support

  19. High spatial resolution 100 micron observations of the M83 bar

    NASA Technical Reports Server (NTRS)

    Smith, B. J.; Lester, Dan F.; Harvey, P. M.

    1990-01-01

    A program of high spatial resolution far-infrared observations of galaxies using the Kuiper Airborne Observatory (KAO), was conducted to better understand the role of star formation, the general interstellar radiation field, and non-thermal activity in powering the prodigious far-infrared luminosities seen in spiral and interacting galaxies. Here, researchers present observations of the central region of the well-known barred spiral M83 (NGC 5236). The resultant channel 3 scans for M83 and IRC + 10216, after co-addition and smoothing, are shown. These data show that M83 is extended at 100 microns compared to a point source. A simple Gaussian deconvolution of the M83 data with the point source profile from IRC+10216 gives a full width half maximum (FWHM) of about 19 seconds for M83. By comparison with IRC+10216, researchers obtain a flux for the unresolved component in M83 of about 110 Jy. This is about 1/6 the total flux for M83 (Rice et al. 1988) and about 1/2 the PSC flux. The M83 and IRC+10216 profiles in the cross-scan direction (SE-NW) were also compared, and show that M83 is extended in this direction as well, with a width of about 18 seconds. A comparison of the different channel profiles for M83 and IRC+10216 shows that there is an asymmetry in the M83 data, in that the maximum in the profiles shifts from southeast to northwest as channel number increases. This corresponds to the extension in the bar seen in the CO data. Thus the far-infrared emission in the central region of M83 tends to trace the CO bar. The new 100 micron data is also compared with previous H alpha observations from the literature, to determine how well the far-infrared traces the stellar structure, the star formation as measured by H alpha, and the optical colors.

  20. Early Results from Star Date: M83 - A Citizen Science Project to Age Date Star Clusters in the Southern Pinwheel Galaxy

    NASA Astrophysics Data System (ADS)

    Heartley, Jeremy; Whitmore, B. C.; Blair, W. P.; Christian, C. A.; Donaldson, T.; Hammer, D.; Smith, S.; Viana, A.

    2014-01-01

    The M83 Citizen Science Project is a collaborative effort currently in development between the Space Telescope Science Institute (STScI) and Zooniverse under the guidance of Dr. Brad Whitmore as part of Cy 19 proposal 12513 (PI - Dr. William Blair). This unique citizen science project will allow users to analyze individual star clusters within The Southern Pinwheel Galaxy, M83. The project will show users color-composite images taken with Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST) and ask them to estimate the age of the star cluster. Through a multistage process, the project will educate and familiarize the user with the appearance of each age category based on the presence and shape of H-alpha emission, degree of resolution of the individual stars, and color of the cluster. (Whitmore et al. 2011). Additionally, the project will involve the actual measurement of the star cluster and H-alpha cloud radii to be used for further assessment and reinforcement of age. The data from this project and the statistics it yields will quantify these ages which can then be used to inform the debate between universal and environmental models of star cluster formation and destruction in galaxies. The tentative launch date is December 2013, therefore early results should be available at the time of the conference.

  1. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  2. Cinematique et dynamique des galaxies spirales barrees

    NASA Astrophysics Data System (ADS)

    Hernandez, Olivier

    The total mass (luminous and dark) of galaxies is derived from their circular velocities. Spectroscopic Fabry-Perot observations of the ionized gas component of spiral galaxies allow one to derive their kinematics. In the case of purely axisymmetric velocity fields--as in non-active and unbarred spirals galaxies-- the circular velocities can be derived directly. However, the velocity fields of barred galaxies (which constitute two thirds of the spirals) exhibit strong non-circular motions and need a careful analysis to retrieve the circular component. This thesis proposes the necessary steps to recover the axisymmetric component of barred spiral galaxies. The first step was to develop the best instrumentation possible for this work. [Special characters omitted.] , which is the most sensitive photon counting camera ever developed, was coupled to a Fabry-Perot interferometer. The observations of a sample of barred spiral galaxies--the BH a BAR sample--was assembled in order to obtain the most rigourous velocity fields. Then, the Tremaine-Weinberg method, which can determine the bar pattern speed and is usually used with the observations of stellar component, has been tested on the ionised gas and gave satisfactory results. Finally, all the above techniques have been applied to the BH a BAR sample in order to study the key parameters of the galaxies' evolution--bar pattern speeds, multiple stationary waves, resonances etc.--which will allow one to use N-body+SPH simulations to model properly the non-circular motions and determine the true total mass of barred spiral galaxies.

  3. Far infrared structure of spiral galaxies from the IRAS CPC images

    NASA Technical Reports Server (NTRS)

    Wainscoat, Richard J.; Chokshi, Arati; Doyle, Laurance R.

    1989-01-01

    Significant extended far infrared (50 micron and 100 micron) structure was found for five face-on spiral galaxies (NGC2403, M51, M83, NGC6946, and IC342) from fourteen galaxies searched in the Infrared Astronomy Satellite (IRAS) chopped photometric channel (CPC) catalogue. Images were initially processed to remove instrumental and background artifacts, the isophotal centroids of each image determined, and multiple images of each galaxy (for each wavelength) superimposed and averaged to improve signal-to-noise. Calibration of these images was performed using IRAS survey array data. Infrared isophotes were then superimposed on optical (blue) images so that direct structural comparisons could be made.

  4. ON THE FRACTION OF BARRED SPIRAL GALAXIES

    SciTech Connect

    Nair, Preethi B.; Abraham, Roberto G. E-mail: abraham@astro.utoronto.c

    2010-05-10

    We investigate the stellar masses of strongly barred spiral galaxies. Our analysis is based on a sample of {approx}14,000 visually classified nearby galaxies given by Nair and Abraham. The fraction of barred spiral galaxies is found to be a strong function of stellar mass and star formation history, with a minimum near the characteristic mass at which bimodality is seen in the stellar populations of galaxies. We also find that bar fractions are very sensitive to the central concentration of galaxies below the transition mass but not above it. This suggests that whatever process is causing the creation of the red and blue sequences is either influencing, or being influenced by, structural changes which manifest themselves in the absence of bars. As a consequence of strong bar fractions being sensitive to the mass range probed, our analysis helps resolve discrepant results on the reported evolution of bar fractions with redshift.

  5. Smoothing Rotation Curves in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Sellwood, Jerry

    2014-05-01

    We present evidence that spiral activity is responsible for the creation of featureless rotation curves. We examine a variety of simulations of disk galaxies beginning in equilibrium and allow them to evolve while adding particles in annuli to the hot disk using a variety of rules. Two unstable spiral modes develop when this new material forms a ridge-like feature in the surface density profile of the disk. The extra material is redistributed radially by the spiral activity, and the associated angular momentum changes remove more particles from the ridge than are added to it. This process eventually removes the density feature from the galaxy and creates a locally flat rotation curve. We argue that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called ``disk-halo conspiracy'', could also be accounted for by this mechanism.

  6. Precision distances with spiral galaxy apparent diameters

    NASA Astrophysics Data System (ADS)

    Steer, Ian

    2016-01-01

    Spiral galaxy diameters offer the oldest extragalactic distance indicator known. Although outdated and hitherto imprecise, two spiral diameter-based distance indicators applied in the 1980s can be tested, calibrated, and re-established for precision era use, based on abundant redshift-independent distances data available in NED-D. Indicator one employs the largest Giant Spiral Galaxies, which have an absolute isophotal major diameter of ~70 +/- 10 kpc, offering standard ruler-based distances with <10% precision. Indicator two employs the diameter-magnitude relation for spirals in general, as a secondary indicator, offering ~20% precision. The ruler-based indicator is the only indicator with <10% precision able to independently calibrate type Ia supernovae-based distances at cosmological distances. The secondary-based indicator is the only indicator with 20% precision applicable to more galaxies than in current Tully-Fisher surveys. The primary indicator gives researchers a new tool to confirm or refute if, as currently believed, universal expansion is accelerating. The secondary indicator gives researchers a new path toward acquiring a more complete 3D picture of the local universe and potentially, because the majority of galaxies in the universe are spirals, the distant universe.

  7. STAR CLUSTERS IN PSEUDOBULGES OF SPIRAL GALAXIES

    SciTech Connect

    Di Nino, Daiana; Trenti, Michele; Stiavelli, Massimo; Carollo, C. Marcella; Scarlata, Claudia; Wyse, Rosemary F. G.

    2009-11-15

    We present a study of the properties of the star-cluster systems around pseudobulges of late-type spiral galaxies using a sample of 11 galaxies with distances from 17 Mpc to 37 Mpc. Star clusters are identified from multiband Hubble Space Telescope ACS and WFPC2 imaging data by combining detections in three bands (F435W and F814W with ACS and F606W with WFPC2). The photometric data are then compared to population synthesis models to infer the masses and ages of the star clusters. Photometric errors and completeness are estimated by means of artificial source Monte Carlo simulations. Dust extinction is estimated by considering F160W NICMOS observations of the central regions of the galaxies, augmenting our wavelength coverage. In all galaxies we identify star clusters with a wide range of ages, from young (age {approx}< 8 Myr) blue clusters, with typical mass of 10{sup 3} M {sub sun} to older (age >100-250 Myr), more massive, red clusters. Some of the latter might likely evolve into objects similar to the Milky Way's globular clusters. We compute the specific frequencies for the older clusters with respect to the galaxy and bulge luminosities. Specific frequencies relative to the galaxy light appear consistent with the globular cluster specific frequencies of early-type spirals. We compare the specific frequencies relative to the bulge light with the globular cluster specific frequencies of dwarf galaxies, which have a surface brightness profile that is similar to that of the pseudobulges in our sample. The specific frequencies we derive for our sample galaxies are higher than those of the dwarf galaxies, supporting an evolutionary scenario in which some of the dwarf galaxies might be the remnants of harassed late-type spiral galaxies that hosted a pseudobulge.

  8. An Infrared Portrait of the Barred Spiral Galaxy Messier 83

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Messier 83 (M83) is a relatively nearby spiral galaxy with a pronounced bar-like structure. It is located in the southern constellation Hydra (The Water-Snake) and is also known as NGC 5236 ; the distance is approximately 12 million light-years. Images of M83 obtained in visible light - like the VLT photo published exactly two years ago ( ESO PR 18/99 ) - show clumpy, well-defined spiral arms that are rich in young stars while the disk reveals a complex system of intricate dust lanes. This galaxy is known to be a site of vigorous star formation and no less than six supernovae (exploding stars) have been observed in M83 during the past century. It is a fairly symmetrical object and possesses no nearby companions. Gas dynamics and galaxy bars Investigations of gas motions in the nucleus and in the main disk play a key role in understanding the structure and evolution of barred spiral galaxies like M83. Inflow of gas towards the center caused by a mass distribution that is not circularly symmetric is often invoked to explain certain observed phenomena, e.g., the feeding of Active Galactic Nuclei (AGNs, see also the report about recent observations in three such galaxies in ESO PR 18/01 ), and the fueling of bursts of star formation in the nuclear region. Some astronomers think that this process may cause a change of a galaxy's (morphological) type, for instance from barred to normal spiral galaxy. It has also been suggested that the development of spiral structures in galactic disks may be due to central stellar bars. Interstellar gas that is subject to periodical perturbations by the non-circularly symmetrical gravitational field in a barred system will develop a "density wave" that attracts neighbouring stars and gas. The local density increases and once a certain ("critical") value is reached, star formation is "ignited" in this area. The mass distribution In order to better understand phenomena like these, it is essential to know in detail the distribution of

  9. Dynamics of ultraharmonic resonances in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1992-01-01

    The mildly nonlinear response of a fluid disk with pressure, viscosity, and self-gravity to spiral stellar forcing is considered as a model of the interstellar medium in spiral galaxies. Nonlinear effects are analyzed through a quasi-linear flow analysis ordered by successive powers of a dimensionless spiral perturbing force, which is the ratio of imposed nonaxisymmetric gravitational to axisymmetric gravitational forces. Waves with mn arms are launched from a position where the wavenumber of a free wave matches n times the wavenumber of the spiral forcing. The launched short wave in the gas is an interarm feature that is more tightly wrapped than the stellar wave. The gas wave extracts energy and angular momentum from the stellar wave, causing it to damp. The application of the results to the stellar disk alone reveals even stronger damping, as stars undergo Landau damping of the short wave. For parameters in M81, damping times are less than 10 exp 9 yr.

  10. Spiral Galaxies in MKW/AWM Clusters

    NASA Astrophysics Data System (ADS)

    Williams, Barbara A.

    1997-03-01

    Observations have been made of the neutral hydrogen content of more than 170 galaxies within MKW 4, MKW 7, MKW 8, MKW 9, MKW 11, AWM 1, AWM 3, AWM 4, and AWM 5. This sample of nine clusters is representative of the general class of poor clusters identified by MKW and AWM in that they all contain D-- or cD--like dominant galaxies at their dynamical centers. We examine the neutral hydrogen (HI) content of the spiral members in these systems as a function of the local and global properties of the cluster, i.e., galaxy density, x-ray intra cluster gas pressure, x-ray and optical luminosities, and compare our findings with the HI properties of similar galaxies in rich clusters and loose groups of galaxies.

  11. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  12. VLA continuum observations of barred spiral galaxies

    NASA Technical Reports Server (NTRS)

    Garcia-Barreto, J. Antonio; Pismis, P.

    1987-01-01

    Observations of NGC 613, NGC 1300, NGC 4314 and NGC 5383 using the VLA at frequencies of 1464.9 and 4885.1 MHz are reported. These objects are a subset of galaxies from which radio emission were searched. The selection criteria were: (1) they are barred spiral galaxies preferentially with different Hubble type; (2) they have a peculiar or hot spot nucleus; (3) they have been observed at far infrared wavelengths by IRAS; and (4) they are observable from the northern hemisphere. Their radio and far infrared properties are summarized and their composite spectra are shown.

  13. Variable Stars in a Distant Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A NASA Hubble Space Telescope (HST) view of the magnificent spiral galaxy NGC 4603, the most distant galaxy in which a special class of pulsating stars called Cepheid variables have been found. It is associated with the Centaurus cluster, one of the most massive assemblages of galaxies in the nearby universe. The Local Group of galaxies, of which the Milky Way is a member, is moving in the direction of Centaurus at a speed of more than a million miles an hour under the influence of the gravitational pull of the matter in that direction. Clusters of young bright blue stars highlight the galaxy's spiral arms. In contrast, red giant stars in the process of dying are also found. Only the very brightest stars in NGC 4603 can be seen individually, even with the unmatched ability of the Hubble Space Telescope to obtain detailed images of distant objects. Much of the diffuse glow comes from fainter stars that cannot be individually distinguished by Hubble. The reddish filaments are regions where clouds of dust obscure blue light from the stars behind them. This galaxy was observed by a team affiliated with the HST Key Project on the Extragalactic Distance Scale. Because NGC 4603 is much farther away than the other galaxies studied with Hubble by the Key Project team, 108 million light-years, its stars appear very faint from the Earth, and so accurately measuring their brightness, as is required for distinguishing the characteristic variations of Cepheids, is extremely difficult. Determining the distance to the galaxy required an unprecedented statistical analysis based on extensive computer simulations.

  14. STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES

    SciTech Connect

    Hunter, Deidre A.; Ashburn, Allison; Wright, Teresa; Elmegreen, Bruce G.; Rubin, Vera C.; Józsa, Gyula I. G.; Struve, Christian

    2013-10-01

    We examined star formation in two very luminous (M{sub V} = –22 to –23) Sc-type spiral galaxies, NGC 801 and UGC 2885, using ultra-deep Hα images. We combine these Hα images with UBV and Two-Micron All-Sky Survey JHK images and H I maps to explore the star formation characteristics of disk galaxies at high luminosity. Hα traces star formation in these galaxies to 4-6 disk scale lengths, but the lack of detection of Hα further out is likely due to the loss of Lyman continuum photons. Considering gravitational instabilities alone, we find that the gas and stars in the outer regions are marginally stable in an average sense, but considering dissipative gas and radial and azimuthal forcing, the outer regions are marginally unstable to forming spiral arms. Star formation is taking place in spiral arms, which are regions of locally higher gas densities. Furthermore, we have traced smooth exponential stellar disks over four magnitudes in V-band surface brightness and 4-6 disk scale lengths, in spite of a highly variable gravitational instability parameter. Thus, gravitational instability thresholds do not seem relevant to the stellar disk. One possibility for creating an exponential disk is that the molecular cloud densities and star formation rates have exponential profiles and this fact forces the stellar disk to build up such a profile. Another possibility is that the stellar disk is continuously adjusted to an exponential shape regardless of the star formation profile, for example, through global dynamical processes that scatter stars. However, such scattering processes are only known to operate in spiral systems, in which case they cannot explain the same dilemma of smooth exponential disks observed in dwarf irregular galaxies.

  15. A photometrically and spectroscopically confirmed population of passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.

    2016-10-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  16. Granularity in the magnetic field structure of M83

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Sukumar, S.

    1990-01-01

    Researchers recently reported Very Large Array (VLA) 20 cm continuum polarization observations of the bright, nearly face-on southern spiral galaxy M83 (NGC 5236) at a spatial resolution of 2 kpc (Sukumar and Allen 1989). The strongest linearly-polarized emission is found in two giant arcs, with typical lengths of about 30 kpc, which are situated roughly opposite each other in the dark outer regions of the galaxy at a radius of 12 kpc from the center. These regions of high polarized intensity (and hence highly-uniform magnetic field) do not coincide with any prominent spiral-arm tracers, in contrast to the expectations of simple models for the large-scale compression of magnetic field in density-wave shock fronts. From a comparison of the data with previous results at 6 cm, the authors concluded that the low polarization in the central regions of the galaxy is a result of disorder in the interstellar magnetic field. The most likely cause of this disorder is the greater star formation activity observed in the inner parts of the galaxy. The intrinsic direction of the magnetic field in the outer parts of the galaxy has also recently been determined on a length scale of 6.5 kpc from a comparison of the VLA 20 cm results with 6.3 cm observations obtained earlier with the Effelsberg telescope (Sukumar et al. 1989). There is very little Faraday rotation in the regions of the highly-polarized arcs of emission. The magnetic field in these polarized arcs is parallel to the general spiral arm structure seen in the usual optical tracers (dust, HII regions) in the bright inner parts of the galaxy disk. The maximum observed polarization at 2 kpc resolution is about 50 percent.

  17. Star formation in the outer disks of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Barnes, Kate Lynn

    I present results from a multi-wavelength study of star formation and the gaseous content in the outer disks of a sample of eight nearby spiral galaxies. In particular, the study focuses on galaxies with typical HI-to-optical sizes of ˜1--2, to provide a comparison to studies of galaxies with star formation occurring in extended gas disks. The study features new, ultra-deep ground-based H-alpha imaging and deep ultraviolet (UV) imaging from the GALEX space telescope to trace the recent star formation. I find that star formation typically extends through most (>85%) of the gas disk, with an outermost star forming regime characterized by low covering fractions and low star formation rate surface densities. The result that star formation extends through most of the gas disk regardless of the HI-to-optical size implies that it is important to further our understanding of the formation of extended gas disks to fully understand the implications of extended star forming disks. I find that the outer gaseous disks are gravitationally stable, which is in agreement with the lower level of star formation. I use ultraviolet and H-alpha colors to probe the recent star formation in the outer disks and find significant variations between colors of young stellar clusters. I run stellar population synthesis models to show how episodic star formation histories (SFHs) with periods of 100--250 Myr could cause similar color variations as are seen in outer disks. An episodic SFH would have implications for the gas depletion time and chemical evolution of spiral galaxies. In addition to an episodic SFH, the observed ultraviolet and H-alpha colors of young stellar clusters in the outer disks of galaxies in our sample are also in agreement with recently published models of a stochastically sampled initial mass function (IMF). Therefore, there remains some uncertainty for the possible cause of this observational result. Finally, we present a pilot study of deep, near infrared (NIR) imaging

  18. A Unified Scaling Law in Spiral Galaxies.

    PubMed

    Koda; Sofue; Wada

    2000-03-01

    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega0<1) and high-expansion (h>0.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.

  19. The Young Outer Disk of M83

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2010-08-01

    Deep near-infrared images recorded with NICI on Gemini South are used to investigate the evolved stellar content in the outer southeast quadrant of the spiral galaxy M83. A diffuse population of asymptotic giant branch (AGB) stars is detected, indicating that there are stars outside of the previously identified young and intermediate age star clusters in the outer disk. The brightest AGB stars have M K >= -8, and the AGB luminosity function (LF) is well matched by model LFs that assume ages <=1 Gyr. The specific star formation rate (SFR) during the past few Gyr estimated from AGB star counts is consistent with that computed from mid-infrared observations of star clusters at similar radii, and it is concluded that the disruption timescale for star clusters in the outer disk is Lt1 Gyr. The LF and specific frequency of AGB stars vary with galactocentric radius, in a manner that is indicative of lower luminosity-weighted ages at larger radii. Modest numbers of red supergiants are also found, indicating that there has been star formation during the past 100 Myr, while the ratio of C stars to M giants is consistent with that expected for a solar metallicity system that has experienced a constant SFR for the past few Gyr. The results drawn from the properties of resolved AGB stars are broadly consistent with those deduced from integrated light observations in the UV. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a co-operative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council of Canada (Canada), CONICYT (Chile), the Australian Research Council (Australia), the Ministerio da Ciencia e Technologia (Brazil), and the Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina).

  20. A FUNDAMENTAL PLANE OF SPIRAL STRUCTURE IN DISK GALAXIES

    SciTech Connect

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    2015-03-20

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We present evidence that the tangent of the pitch angle of logarithmic spiral arms in disk galaxies correlates strongly with the density of neutral atomic hydrogen in the disk and with the central stellar bulge mass of the galaxy. These three quantities, when plotted against each other, form a planar relationship that we argue should be fundamental to our understanding of spiral structure in disk galaxies. We further argue that any successful theory of spiral structure must be able to explain this relationship.

  1. A VLA Low Frequency Survey of the Supernova Remnant Population in M83

    NASA Astrophysics Data System (ADS)

    Stockdale, Christopher; Pritchard, T. A.; Blair, W. P.; Cowan, J. J.; Godfrey, L.; Miller-Jones, J.; Kuntz, K. D.; Long, K. S.; Maddox, L. A.; Plucinsky, P. P.; Soria, R.; Whitmore, B. C.; Winkler, P. F.

    2014-01-01

    We present low frequency observations of the grand design spiral galaxy, M83, using the C and L bands of the Karl G. Jansky Very Large Array (VLA). With recent optical (HST) and X-ray (Chandra) observations and utilizing the newly expanded bandwidth of the VLA, we are exploring the radio spectral properties of the more than 150 radio point sources in M83. These observations allow us to probe the evolution of supernova remnants (SNRs) and to find previously undiscovered SNRs. These observations represent the fourth epoch of deep VLA observations of M83. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities.

  2. Chemical evolution in spiral and irregular galaxies

    NASA Technical Reports Server (NTRS)

    Torres-Peimbert, S.

    1986-01-01

    A brief review of models of chemical evolution of the interstellar medium in our galaxy and other galaxies is presented. These models predict the time variation and radial dependence of chemical composition in the gas as function of the input parameters; initial mass function, stellar birth rate, chemical composition of mass lost by stars during their evolution (yields), and the existence of large scale mass flows, like infall from the halo, outflow to the intergalactic medium or radial flows within a galaxy. At present there is a considerable wealth of observational data on the composition of HII regions in spiral and irregular galaxies to constrain the models. Comparisons are made between theory and the observed physical conditions. In particular, studies of helium, carbon, nitrogen and oxygen abundances are reviewed. In many molecular clouds the information we have on the amount of H2 is derived from the observed CO column density, and a standard CO/H2 ratio derived for the solar neighborhood. Chemical evolution models and the observed variations in O/H and N/O values, point out the need to include these results in a CO/H2 relation that should be, at least, a function of the O/H ratio. This aspect is also discussed.

  3. The Unusual Young Supernova Remnant Population in M83

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Dopita, M. A.; Ghavamian, P.; Kuntz, K. D.; Long, K. S.; Plucinsky, P. P.; Soria, R.; Winkler, P. F.

    2014-01-01

    The face-on grand design spiral galaxy M83 (d=4.6 Mpc) is a veritable supernova factory, having generated six known SNe in less than 100 years. Hence, one might expect of order 60 or more supernova remnants (SNRs) less than a thousand years old that might shed light on the poorly understood ejecta-dominated phase of early SNR evolution, as well as many more older, ISM-dominated remnants that should still be visible. We are conducting a multi-wavelength Chandra/Hubble/ground-based campaign to find and characterize the SNRs in M83, concentrating especially on the younger population. HST/WFC3 emission-line data for seven fields covering the bulk of the bright optical disk have allowed us to identify ~50 optical SNR candidates with angular sizes below 0.5” (<11 pc), many with corresponding Chandra X-ray counterparts. However, with the singular exception of the remnant of SN1957D, we are not finding the expected population of ejecta-dominated young SNRs. Rather, most of the young SNRs appear to have quickly evolved into the radiative phase. Gemini-S GMOS spectra of selected objects confirm the lack of observed high velocities or obvious ejecta-enhancement of abundances. This unexpected result implies that the CSM/ISM environments for most young remnants in M83 are very dense, perhaps due in part to the super-solar metal abundances in much of this galaxy. We will show representative data from all relevant data sets that lead us to this conclusion. This work is supported in part by STScI grant HST-GO-12513.01-A and Chandra grant SAO-GO1-12115C to Johns Hopkins University.

  4. Gaseous Vortices in Barred Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    England, Martin N.; Hunter, James H., Jr.

    1995-01-01

    During the course of examining many two-dimensional, as well as a smaller sample of three-dimensional, models of gas flows in barred spiral galaxies, we have been impressed by the ubiquitous presence fo vortex pairs, oriented roughly perpendicular to their bars, with one vortex on each side. The vortices are obvious only when viewed in the bar frame, and the centers of their velocity fields usually are near Lagrangian points L(sub 4,5). In all models that we have studied, the vortices form on essentially the same time scale as that for the development of gaseous spiral arms, typically two bar rotations. Usually the corotation radius, r(sub c), lies slightly beyond the end of the bar. Depending upon the mass distributions of the various components, gas spirals either into, or out of, the vortices: In the former case, the vortices become regions of high density, whereas the opposite is true if the gas spirals out of a vortex. The models described in this paper have low-density vortices, as do most of the models we have studied. Moreover, usually the vortex centers lie approximately within +/- 15 deg of L(sub 4,5). In the stellar dynamic limit, when pressure and viscous forces are absent, short-period orbits exist, centered on L(sub 4,5). These orbits need not cross and therefore their morphology is that of gas streamlines, that is, vortices. We believe that the gas vortices in our models are hydrodynamic analogues of closed, short-period, libration orbits centered on L(sub 4,5).

  5. Structure of magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kotarba, Hanna; Lesch, H.; Dolag, K.; Naab, T.; Johansson, P. H.; Stasyszyn, F. A.

    2009-04-01

    We present a set of global, self-consistent N-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the ideal induction equation in the SPH part of the code Vine. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a ∇ ċ B-free description, a constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the code Gadget. Starting with a homogeneous field we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry of the dynamic pattern for the evolution of the magnetic field.

  6. Abundances in Spiral Galaxies of the Pegasus I Cluster

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Shields, G. A.; Blanc, G. A.

    2011-01-01

    We present a study of abundances in spiral galaxies of the Pegasus I cluster (cz = 4000 km/s), motivated by evidence for high interstellar abundances in the spirals of the Virgo cluster. Spectra of H II regions in six galaxies with a range of H I deficiency were obtained with the VIRUS-P integral field spectrograph on the 2.7-meter telescope at McDonald Observatory. The results suggest a pattern of higher abundances in more hydrogen deficient galaxies. This resembles the case for Virgo, despite the lower velocity dispersion and higher spiral fraction in the Pegasus cluster.

  7. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  8. The Globular Cluster System of the Spiral Galaxy NGC 7814

    NASA Astrophysics Data System (ADS)

    Rhode, Katherine L.; Zepf, Stephen E.

    2003-11-01

    We present the results of a wide-field photometric study of the globular cluster (GC) system of the edge-on Sab spiral NGC 7814. This is the first spiral to be fully analyzed from our survey of the GC systems of a large sample of galaxies beyond the Local Group. NGC 7814 is of particular interest because a previous study estimated that it has 500-1000 GCs, giving it the largest specific frequency (SN) known for a spiral. Understanding this galaxy's GC system is important in terms of our understanding of the GC populations of spirals in general and has implications for the formation of massive galaxies. We observed the galaxy in BVR filters with the WIYN 3.5 m telescope and used image classification and three-color photometry to select GC candidates. We also analyzed archival Hubble Space Telescope (HST) Wide Field Planetary Camera 2 images of NGC 7814, both to help quantify the contamination level of the WIYN GC candidate list and to detect GCs in the inner part of the galaxy halo. Combining HST data with high-quality ground-based images allows us to trace the entire radial extent of this galaxy's GC system and determine the total number of GCs directly through observation. We find that rather than being an especially high-SN spiral, NGC 7814 has <~200 GCs and SN~1, making it comparable to the two most well-studied spiral galaxies, the Milky Way and M31. We explore the implications of these results for models of the formation of galaxies and their GC systems. The initial results from our survey suggest that the GC systems of typical elliptical galaxies can be accounted for by the merger of two or more spirals, but that for highly luminous elliptical galaxies, additional physical processes may be needed.

  9. An alternative view of flat rotation curves of spiral galaxies.

    NASA Astrophysics Data System (ADS)

    Soares, D. S. L.

    1992-04-01

    The present view of flat rotation curves of spiral galaxies relies upon the necessity of a dark mass component to push up the predicted declining portion of the rotation curve, that arises when the galaxy luminous matter and mass to light ratios similar to the ones in the solar neighbourhood are combined. Mass to light ratios obtained from binary galaxy studies are about ten times as large as the values currently assumed for spiral galaxies (Schweizer, 1987; Soares, 1989). Considering them as the real M/L for spiral galaxies, it implies that the Keplerian rotation curve derived by the combination of these M/L values and the luminous matter distribution of a spiral galaxy lies above observed rotational profiles. Here the author argues that a more convincing and coherent approach is to search for the physical processes responsible for pulling down such a predicted rotation curve to the observed levels. Accordingly, a toy model is proposed based on the existence of significant buoyancy forces in the gaseous disk of spiral galaxies. The model has a plausible phenomenological counterpart, and predicts a wide range of rotation curve shapes including flat ones.

  10. The Hot Gaseous Halos of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bregman, J.

    2016-06-01

    In the Milky Way, absorption and emission line measurements of O VII and O VIII show that the halo environment is dominated by a nearly spherical halo of temperature 2 × 10^6 K, metallicity of 0.3-0.5 solar, and with a density decreasing as r^{-3/2}. The mass of the hot gas, estimated through extrapolation to the virial radius, is comparable to the stellar mass, but does not account for the missing mass. The Milky Way hot halo appears to be rotating at about 180 km/s, which is consistent with model expectations, depending on the time of infall. Around massive spiral galaxies, hot halos are seen in emission out to about 70 kpc in the best cases. These show similar gas density laws and metallicities in the range 0.1-0.5 solar. The gas mass is comparable to the stellar mass, but does not account for the missing baryons within the virial radius. If the density law can be extrapolated to about three virial radii, the missing baryons would be accounted for.

  11. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    SciTech Connect

    Honig, Z. N.; Reid, M. J.

    2015-02-10

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.

  12. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. III. PLANETARY NEBULA KINEMATICS AND DISK MASS

    SciTech Connect

    Herrmann, Kimberly A.; Ciardullo, Robin E-mail: rbc@astro.psu.ed

    2009-11-10

    Much of our understanding of dark matter halos comes from the assumption that the mass-to-light ratio (Y) of spiral disks is constant. The best way to test this hypothesis is to measure the disk surface mass density directly via the kinematics of old disk stars. To this end, we have used planetary nebulae (PNe) as test particles and have measured the vertical velocity dispersion (sigma{sub z}) throughout the disks of five nearby, low-inclination spiral galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). By using H I to map galactic rotation and the epicyclic approximation to extract sigma{sub z} from the line-of-sight dispersion, we find that, with the lone exception of M101, our disks do have a constant Y out to approx3 optical scale lengths (h{sub R} ). However, once outside this radius, sigma{sub z} stops declining and becomes flat with radius. Possible explanations for this behavior include an increase in the disk mass-to-light ratio, an increase in the importance of the thick disk, and heating of the thin disk by halo substructure. We also find that the disks of early type spirals have higher values of Y and are closer to maximal than the disks of later-type spirals, and that the unseen inner halos of these systems are better fit by pseudo-isothermal laws than by NFW models.

  13. Turbulence and Star Formation in a Sample of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Maier, Erin; Chien, Li-Hsin; Hunter, Deidre A.

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  14. Dynamical trigger of star formation in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    The relationship between dynamical phenomena and starbursts in spiral galaxies is discussed. It is noted that interactions between galaxies or the presence of a bar in the center of a spiral can induce two-arm density waves in a galactic disk. It is suggested that the increase in interstellar cloud collisions, the formation of giant molecular clouds giving birth to stars, and the formation of rings by angular momentum transfer which result from these waves could explain the starburst phenomenon. NIR and mm CO observations of Arp 299, NGC 3628, ring galaxies, and barred galaxies are examined to determine the location of starbursts within a galaxy. It is concluded that a passing-by companion which reinforces bar action might play an important role in starburst galaxies.

  15. Gas Ejection from Spiral Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Durelle, Jeremy

    We present the results of three proposed mechanisms for ejection of gas from a spiral arm into the halo. The mechanisms were modelled using magnetohydrodynamics (MHD) as a theoretical template. Each mechanism was run through simulations using a Fortran code: ZEUS-3D, an MHD equation solver. The first mechanism modelled the gas dynamics with a modified Hartmann flow which describes the fluid flow between two parallel plates. We initialized the problem based on observation of lagging halos; that is, that the rotational velocity falls to a zero at some height above the plane of the disk. When adopting a density profile which takes into account the various warm and cold H I and HII molecular clouds, the system evolves very strangely and does not reproduce the steady velocity gradient observed in edge-on galaxies. This density profile, adopted from Martos and Cox (1998), was used in the remaining models. However, when treating a system with a uniform density profile, a stable simulation can result. Next we considered supernova (SN) blasts as a possible mechanism for gas ejection. While a single SN was shown to be insufficient to promote vertical gas structures from the disk, multiple SN explosions proved to be enough to promote gas ejection from the disk. In these simulations, gas ejected to a height of 0.5 kpc at a velocity of 130 km s--1 from 500 supernovae, extending to an approximate maximum height of 1 kpc at a velocity of 6.7 x 103 km s--1 from 1500 supernovae after 0.15 Myr, the approximate time of propagation of a supernova shock wave. Finally, we simulated gas flowing into the spiral arm at such a speed to promote a jump in the disk gas, termed a hydraulic jump. The height of the jump was found to be slightly less than a kiloparsec with a flow velocity of 41 km s--1 into the halo after 167 Myr. The latter models proved to be effective mechanisms through which gas is ejected from the disk whereas the Hartmann flow (or toy model) mechanism remains unclear as the

  16. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.

  17. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  18. Brackett Gamma Imaging of the Nucleus of M83

    NASA Astrophysics Data System (ADS)

    Crosthwaite, L. P.; Turner, J. L.; Beck, S. C.; Meier, D. S.

    2004-12-01

    The gas-rich nucleus of barred spiral galaxy, M83, is a hotbed of star formation, with a total infrared luminosity of 4 X 109 Lo. We have observed the nucleus of M83 with the near infrared spectrometer, NIRSPEC, on Keck 2 to obtain high resolution Brγ recombination line spectra of the nucleus. Simultaneous imaging with the SCAM camera in a broadband K filter shows the position of the slit on the near-infrared galaxy. This allows us to map the nucleus with a continuum reference. The SCAM image shows a bright peak at the nucleus and a complex semi-circular arc of emission to the southwest. We stepped the 0.5'' X 24'' length slit in small declination increments to map a 20'' X 20'' region just west of the nucleus. Individual spectra were used to form a ra-dec-lambda cube and an integrated intensity map of Brγ . A total of 1.1 X 10-16 W m-2 of Brγ emission is detected in the map, in good agreement with previous low resolution observations (Turner, Ho, & Beck 1987, ApJ, 313, 644). This is not corrected for extinction within the molecular clouds in M83 or to the nebulae themselves and is therefore a lower limit to the true Brγ flux. Extinction is estimated to be at least a magnitude in the near-IR as measured in larger (4'') beams (Turner et al.) The bulk of the Brγ emission extends along the northern portion of the near-IR continuum semi-circle. Twenty percent of the total Brγ emission comes from single a 3'' (FWHM) source located 5'' west of the near-IR nucleus. The complementary NIRSPEC Brα data we have obtained will eventually allow us to evaluate the near-IR extinction on subarcsecond sizescales and obtain an extinction-corrected estimate of the Lyman continuum rate and therefore the number of ionizing stars.

  19. DYNAMICS OF NON-STEADY SPIRAL ARMS IN DISK GALAXIES

    SciTech Connect

    Baba, Junichi; Saitoh, Takayuki R.; Wada, Keiichi

    2013-01-20

    In order to understand the physical mechanisms underlying non-steady stellar spiral arms in disk galaxies, we analyzed the growing and damping phases of their spiral arms using three-dimensional N-body simulations. We confirmed that the spiral arms are formed due to a swing amplification mechanism that reinforces density enhancement as a seeded wake. In the damping phase, the Coriolis force exerted on a portion of the arm surpasses the gravitational force that acts to shrink the portion. Consequently, the stars in the portion escape from the arm, and subsequently they form a new arm at a different location. The time-dependent nature of the spiral arms originates in the continual repetition of this nonlinear phenomenon. Since a spiral arm does not rigidly rotate, but follows the galactic differential rotation, the stars in the arm rotate at almost the same rate as the arm. In other words, every single position in the arm can be regarded as the corotation point. Due to interaction with their host arms, the energy and angular momentum of the stars change, thereby causing radial migration of the stars. During this process, the kinetic energy of random motion (random energy) of the stars does not significantly increase, and the disk remains dynamically cold. Owing to this low degree of disk heating, short-lived spiral arms can recurrently develop over many rotational periods. The resultant structure of the spiral arms in the N-body simulations is consistent with the observational nature of spiral galaxies. We conclude that the formation and structure of spiral arms in isolated disk galaxies can be reasonably understood by nonlinear interactions between a spiral arm and its constituent stars.

  20. Taking the Radio Blinders Off of M83: A Wide Spectrum Analysis of the Historical Point Source Population

    NASA Astrophysics Data System (ADS)

    Stockdale, Christopher; Keefe, Clayton; Nichols, Michael; Rujevcan, Colton; Blair, William P.; Cowan, John J.; Godfrey, Leith; Miller-Jones, James; Kuntz, K. D.; Long, Knox S.; Maddox, Larry A.; Plucinsky, Paul P.; Pritchard, Tyler A.; Soria, Roberto; Whitmore, Bradley C.; Winkler, P. Frank

    2015-01-01

    We present low frequency observations of the grand design spiral galaxy, M83, using the C and L bands of the Karl G. Jansky Very Large Array (VLA). With recent optical (HST) and X-ray (Chandra) observations and utilizing the newly expanded bandwidth of the VLA, we are exploring the radio spectral properties of the historical radio point sources in M83. These observations allow us to probe the evolution of supernova remnants (SNRs) and to find previously undiscovered SNRs. These observations represent the fourth epoch of deep VLA observations of M83. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities.

  1. Parallel-sequencing of early-type and spiral galaxies

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2015-03-01

    Since Edwin Hubble introduced his famous tuning fork diagram more than 70 years ago, spiral galaxies and early-type galaxies (ETGs) have been regarded as two distinct families. The spirals are characterized by the presence of disks of stars and gas in rapid rotation, while the early-types are gas poor and described as spheroidal systems, with less rotation and often non-axisymmetric shapes. The separation is physically relevant as it implies a distinct path of formation for the two classes of objects. I will give an overview of recent findings, from independent teams, that motivated a radical revision to Hubble's classic view of ETGs. These results imply a much closer link between spiral galaxies and ETGs than generally assumed.

  2. Self-perpetuating Spiral Arms in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena; Vogelsberger, Mark; Hernquist, Lars

    2013-03-01

    The causes of spiral structure in galaxies remain uncertain. Leaving aside the grand bisymmetric spirals with their own well-known complications, here we consider the possibility that multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can thus survive at least in a statistical sense long after the original perturbing influence has been removed.

  3. SELF-PERPETUATING SPIRAL ARMS IN DISK GALAXIES

    SciTech Connect

    D'Onghia, Elena; Vogelsberger, Mark; Hernquist, Lars

    2013-03-20

    The causes of spiral structure in galaxies remain uncertain. Leaving aside the grand bisymmetric spirals with their own well-known complications, here we consider the possibility that multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can thus survive at least in a statistical sense long after the original perturbing influence has been removed.

  4. The relation between infrared and radio emission in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Helou, George

    1991-01-01

    A remarkable correlation between the far infrared and the radio continuum emission of star forming galaxies was one of the early results based on IRAS data, and has remained one of the most intriguing. Recent work has extended the correlation to early type galaxies, revealing a slightly different ratio in lenticulars. When radio and infrared maps of disk galaxies are compared, the radio disks appear systematically more diffuse. This has been interpreted as a manifestation of the diffusion of cosmic-ray electrons, and has allowed a fresh look at the behavior of magnetic fields and cosmic rays in spiral galaxies, and at their relation to the rest of the interstellar medium.

  5. Star Formation in Partially Gas-Depleted Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rose, James A.; Robertson, Paul; Miner, Jesse; Levy, Lorenza

    2010-02-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  6. Continuum observations of M 51 and M 83 at 1.1 mm with AzTEC

    NASA Astrophysics Data System (ADS)

    Wall, W. F.; Puerari, I.; Tilanus, R.; Israel, F. P.; Austermann, J. E.; Aretxaga, I.; Wilson, G.; Yun, M.; Scott, K. S.; Perera, T. A.; Roberts, C. M.; Hughes, D. H.

    2016-06-01

    We observed the spiral galaxies M 51 and M 83 at 20 arscec spatial resolution with the bolometer array Aztronomical Thermal Emission Camera (AzTEC) on the JCMT in the 1.1 mm continuum, recovering the extended emission out to galactocentric radii of more than 12 kpc in both galaxies. The 1.1 mm-continuum fluxes are 5.6 ± 0.7 and 9.9 ± 1.4 Jy, with associated gas masses estimated at 9.4 × 109 M⊙ and 7.2 × 109 M⊙ for M 51 and M 83, respectively. In the interarm regions of both galaxies, the N(H2)/I(CO) (or X-factor) ratios exceed those in the arms by factors of ˜1.5-2. In the inner discs of both galaxies, the X-factor is about 1 × 1020 cm- 2 (K km s- 1)- 1. In the outer parts, the CO-dark molecular gas becomes more important. While the spiral density wave in M 51 appears to influence the interstellar medium and stars in a similar way, the bar potential in M 83 influences the interstellar medium and the stars differently. We confirm the result of Foyle et al. that the arms merely heighten the star formation rate (SFR) and the gas surface density in the same proportion. Our maps reveal a threshold gas surface density for an SFR increase by two or more orders of magnitude. In both galaxy centres, the molecular gas depletion time is about 1 Gyr climbing to 10-20 Gyr at radii of 6-8 kpc. This is consistent with an inside-out depletion of the molecular gas in the discs of spiral galaxies.

  7. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. II. PLANETARY NEBULA SPECTROSCOPY

    SciTech Connect

    Herrmann, Kimberly A.; Ciardullo, Robin E-mail: rbc@astro.psu.ed

    2009-09-20

    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s{sup -1}. Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top {approx}1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) {approx} 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  8. Planetary Nebulae in Face-On Spiral Galaxies. II. Planetary Nebula Spectroscopy

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; Ciardullo, Robin

    2009-09-01

    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s-1. Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top ~1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) ~ 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  9. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A.

    2012-03-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 ± 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  10. Neutral hydrogen and magnetic fields in M83 observed with the SKA Pathfinder KAT-7

    NASA Astrophysics Data System (ADS)

    Heald, G.; de Blok, W. J. G.; Lucero, D.; Carignan, C.; Jarrett, T.; Elson, E.; Oozeer, N.; Randriamampandry, T. H.; van Zee, L.

    2016-10-01

    We present new KAT-7 observations of the neutral hydrogen (H I) spectral line, and polarized radio continuum emission, in the grand-design spiral M83. These observations provide a sensitive probe of the outer-disc structure and kinematics, revealing a vast and massive neutral gas distribution that appears to be tightly coupled to the interaction of the galaxy with the environment. We present a new rotation curve extending out to a radius of 50 kpc. Based on our new H I data set and comparison with multiwavelength data from the literature, we consider the impact of mergers on the outer disc and discuss the evolution of M83. We also study the periphery of the H I distribution and reveal a sharp edge to the gaseous disc that is consistent with photoionization or ram pressure from the intergalactic medium. The radio continuum emission is not nearly as extended as the H I and is restricted to the main optical disc. Despite the relatively low angular resolution, we are able to draw broad conclusions about the large-scale magnetic field topology. We show that the magnetic field of M83 is similar in form to other nearby star-forming galaxies, and suggest that the disc-halo interface may host a large-scale regular magnetic field.

  11. THE MISSING GOLIATH'S SLINGSHOT: MASSIVE BLACK HOLE RECOIL AT M83

    SciTech Connect

    Dottori, Horacio; Diaz, Ruben J.; Facundo Albacete-Colombo, Juan

    2010-07-01

    The Fanaroff-Riley II radio source J133658.3-295105, which is also an X-ray source, appears to be projected onto the disk of the barred-spiral galaxy M83 at about 60'' from the galaxy's optical nucleus. J133658.3-295105 and its radio lobes are aligned with the optical nucleus of M 83 and two other radio sources, neither of which are supernova remnants or H II regions. Due to this peculiar on-the-sky projection, J133658.3-295105 was previously studied by Gemini+GMOS optical spectroscopy, which marginally revealed the presence of H{alpha} in emission receding at 130 km s{sup -1} with respect to the optical nucleus. In this Letter, we reanalyze the Chandra spectroscopy carried out in 2000. We show that J133658.3-295105 presents an Fe K{alpha} emission line at a redshift of z = 0.018. This redshift is compatible with a black hole at the distance of M 83. We discuss similarities to the recently reported micro-quasar in NGC 5408. This finding reinforces the kicked-off black hole scenario for J133658.3-295105.

  12. Dynamics and morphology in the inner regions of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fathi, Kambiz

    The formation and evolution of galaxies represents one of the foremost questions in the understanding of the Universe. Galaxies are not static structures. They form at a certain time during the history of the Universe, and evolve with time. Given that galaxies are found in a variety of shapes and properties, studying the properties of galaxies is best carried out when they are sub-divided into different morphological types. In the 1920s, Edwin Hubble introduced the classification scheme illustrated which classifies most galaxies into categories of elliptical, normal spiral, barred spiral, and irregular galaxies, and then subdivided these categories with respect to properties such as the amount of flattening for elliptical galaxies and the size of the bulges and the nature of the arms for spiral galaxies. The Hubble sequence has often been interpreted as an evolutionary sequence with galaxies evolving from right to left. Recently there are more and more studies that find that some galaxies have undergone significant morphological transformation over cosmic time. It is found that, in the nearby Universe, more field disk galaxies are of earlier Hubble type than at higher redshift. Also a large number of faint blue galaxies have been detected at intermediate redshift, which are believed to have evolved by now to red dwarf ellipticals. Last but not least, it has been known for quite some time that spiral galaxies after merging can form elliptical galaxies. The interesting puzzle is now to use these transformations to learn more about what happens with these systems through mergers, interactions with companions, or by internal dynamical processes. Do galaxies evolve along the Hubble sequence, and if yes, in which direction? In this thesis, we focus on the inner regions of barred as well as unbarred spiral galaxies, and aim to better understand to what extent non-axisymmetric features such as bars determine the evolution of a galaxy. It is known that non-circular motions

  13. On wave dark matter in spiral and barred galaxies

    SciTech Connect

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L. E-mail: bray@math.duke.edu

    2015-12-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.

  14. Magnetic field evolution and reversals in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  15. Diffuse X-Ray Emission in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal; Quillen, A. C.; LaPage, Amanda; Rieke, George H.

    2004-07-01

    We compare the soft diffuse X-ray emission from Chandra images of 12 nearby intermediate-inclination spiral galaxies to the morphology seen in Hα, molecular gas, and mid-infrared emission. We find that diffuse X-ray emission is often located along spiral arms in the outer parts of spiral galaxies but tends to be distributed in a more nearly radially symmetric morphology in the center. The X-ray morphology in the spiral arms matches that seen in the mid-infrared or Hα and thus implies that the X-ray emission is associated with recent active star formation. In the spiral arms there is a good correlation between the level of diffuse X-ray emission and that in the mid-infrared in different regions. The correlation between X-ray and mid-IR flux in the galaxy centers is less strong. We also find that the central X-ray emission tends to be more luminous in galaxies with brighter bulges, suggesting that more than one process is contributing to the level of central diffuse X-ray emission. We see no strong evidence for X-ray emission trailing the location of high-mass star formation in spiral arms. However, population synthesis models predict a high mechanical energy output rate from supernovae for a time period that is about 10 times longer than the lifetime of massive ionizing stars, conflicting with the narrow appearance of the arms in X-rays. The fraction of supernova energy that goes into heating the interstellar medium must depend on environment and is probably higher near sites of active star formation. The X-ray estimated emission measures suggest that the volume filling factors and scale heights are low in the outer parts of these galaxies but higher in the galaxy centers. The differences between the X-ray properties and morphology in the centers and outer parts of these galaxies suggest that galactic fountains operate in outer galaxy disks but that winds are primarily driven from galaxy centers.

  16. Star formation regions in galaxies: Star complexes and spiral arms

    NASA Astrophysics Data System (ADS)

    Efremov, Iurii N.

    This book describes observational data on star formation regions (from young star clusters to spiral arms) in the Milky Way and other galaxies. It is concluded that not only high-luminosity stars but also star clusters and associations are forming together in vast complexes. It is claimed that these complexes are the primary, fundamental entities of star formation.

  17. Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies: Measurement and Relationship to Galactic Structure and Nuclear Supermassive Black Hole Mass

    NASA Astrophysics Data System (ADS)

    Davis, Benjamin

    In this dissertation, I explore the geometric structure of spiral galaxies and how the visible structure can provide information about the central mass of a galaxy, the density of its galactic disk, and the hidden mass of the supermassive black hole in its nucleus. In order to quantitatively measure the logarithmic spiral pitch angle (a measurement of tightness of the winding) of galactic spiral arms, I led an effort in our research group (the Arkansas Galaxy Evolution Survey) to modify existing two-dimensional fast Fourier transform software to increase its efficacy and accuracy. Using this software, I was able to lead an effort to calculate a black hole mass function (BHMF) for spiral galaxies in our local Universe. This work effectively provides us with a census of local black holes and establishes an endpoint on the evolutionary history of the BHMF for spiral galaxies. Furthermore, my work has indicated a novel fundamental relationship between the pitch angle of a galaxy's spiral arms, the maximum density of neutral atomic hydrogen in its disk, and the stellar mass of its bulge. This result provides strong support for the density wave theory of spiral structure in disk galaxies and poses a critical question of the validity of rival theories for the genesis of spiral structure in disk galaxies.

  18. The Globular Cluster Systems of Five Nearby Spiral Galaxies: New Insights from Hubble Space Telescope Imaging

    NASA Astrophysics Data System (ADS)

    Chandar, Rupali; Whitmore, Bradley; Lee, Myung Gyoon

    2004-08-01

    We use available multifilter Hubble Space Telescope (HST) WFPC2 imaging of five (M81, M83, NGC 6946, M101, and M51, in order of distance) low-inclination, nearby spiral galaxies to study ancient star cluster populations. Combining rigorous selection criteria to reject contaminants (individual stars, background galaxies, and blends) with optical photometry including the U bandpass, we unambiguously detect ancient globular cluster (GC) systems in each galaxy. We present luminosities, colors, and size (effective radius) measurements for our candidate GCs. These are used to estimate specific frequencies, to assess whether intrinsic color distributions are consistent with the presence of both metal-poor and metal-rich GCs, and to compare relative sizes of ancient clusters between different galaxy systems. M81 globulars have intrinsic color distributions that are very similar to those in the Milky Way and M31, with ~40% of sample clusters having colors expected for a metal-rich population. The GC system in M51 meanwhile, appears almost exclusively blue and metal-poor. This lack of metal-rich GCs associated with the M51 bulge indicates that the bulge formation history of this Sbc galaxy may have differed significantly from that of our own. Ancient clusters in M101 and possibly in NGC 6946, two of the three later type spirals in our sample, appear to have luminosity distributions that continue to rise to our detection limit (MV~-6.0), well beyond the expected turnover (MV~-7.4) in the luminosity function. This is reminiscent of the situation in M33, a Local Group galaxy of similar Hubble type. The faint ancient cluster candidates in M101 and NGC 6946 have properties (colors and reff) similar to their more luminous counterparts, and we suggest that these are either intermediate-age (3-9 Gyr) disk clusters or the low-mass end of the original GC population. Potentially, these lower mass clusters were not destroyed because of different dynamical conditions relative to those

  19. Far-infrared emission and star formation in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Bandiera, R.

    1989-01-01

    The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.

  20. New low surface brightness dwarf galaxies detected around nearby spirals

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Riepe, P.; Zilch, T.; Blauensteiner, M.; Elvov, M.; Hochleitner, P.; Hubl, B.; Kerschhuber, G.; Küppers, S.; Neyer, F.; Pölzl, R.; Remmel, P.; Schneider, O.; Sparenberg, R.; Trulson, U.; Willems, G.; Ziegler, H.

    2015-10-01

    We conduct a survey of low surface brightness (LSB) satellite galaxies around the Local Volume massive spirals using long exposures with small amateur telescopes. We identified 27 low and very low surface brightness objects around the galaxies NGC672, 891, 1156, 2683, 3344, 4258, 4618, 4631, and 5457 situated within 10 Mpc from us, and found nothing new around NGC2903, 3239, 4214, and 5585. Assuming that the dwarf candidates are the satellites of the neighboring luminous galaxies, their absolute magnitudes are in the range of -8.6 > M B > -13.3, their effective diameters are 0.4-4.7 kpc, and the average surface brightness is 26ṃ1/□″. The mean linear projected separation of the satellite candidates from the host galaxies is 73 kpc. Our spectroscopic observations of two LSB dwarfs with the Russian 6-meter telescope confirm their physical connection to the host galaxies NGC891 and NGC2683.

  1. Gas and stellar spiral structures in tidally perturbed disc galaxies

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Tasker, Elizabeth J.; Wadsley, James W.

    2016-06-01

    Tidal interactions between disc galaxies and low-mass companions are an established method for generating galactic spiral features. In this work, we present a study of the structure and dynamics of spiral arms driven in interactions between disc galaxies and perturbing companions in 3D N-body/smoothed hydrodynamical numerical simulations. Our specific aims are to characterize any differences between structures formed in the gas and stars from a purely hydrodynamical and gravitational perspective, and to find a limiting case for spiral structure generation. Through analysis of a number of different interacting cases, we find that there is very little difference between arm morphology, pitch angles and pattern speeds between the two media. The main differences are a minor offset between gas and stellar arms, clear spurring features in gaseous arms, and different radial migration of material in the stronger interacting cases. We investigate the minimum mass of a companion required to drive spiral structure in a galactic disc, finding the limiting spiral generation cases with companion masses of the order of 1 × 109 M⊙, equivalent to only 4 per cent of the stellar disc mass, or 0.5 per cent of the total galactic mass of a Milky Way analogue.

  2. On galaxy spiral arms' nature as revealed by rotation frequencies

    NASA Astrophysics Data System (ADS)

    Roca-Fàbrega, Santi; Valenzuela, Octavio; Figueras, Francesca; Romero-Gómez, Mercè; Velázquez, Héctor; Antoja, Teresa; Pichardo, Bárbara

    2013-07-01

    High-resolution N-body simulations using different codes and initial condition techniques reveal two different behaviours for the rotation frequency of transient spiral arms like structures. Whereas unbarred discs present spiral arms nearly corotating with disc particles, strong barred models (bulged or bulgeless) quickly develop a bar-spiral structure dominant in density, with a pattern speed almost constant in radius. As the bar strength decreases the arm departs from bar rigid rotation and behaves similar to the unbarred case. In strong barred models, we detect in the frequency space other subdominant and slower modes at large radii, in agreement with previous studies, however, we also detect them in the configuration space. We propose that the distinctive behaviour of the dominant spiral modes can be exploited in order to constraint the nature of Galactic spiral arms by the astrometric survey Gaia and by 2D spectroscopic surveys like Calar Alto Legacy Integral Field Area Survey (CALIFA) and Mapping Nearby Galaxies at APO (MANGA) in external galaxies.

  3. Self-Consistent Models of Barred Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kaufmann, David E.

    1994-02-01

    Self-consistent models of barred spiral galaxies based on the observed properties of NGC3992, NGC1073, and NGC1398 are constructed and analyzed. The method of model construction is a slight modification of the technique developed by Contopoulos and Grosbol for the case of unbarred spirals. The main factors which influence self-consistency are the amplitude, pitch angle, scale length and z-thickness of the spirals, the mass of the bar, the angular velocity of the bar/spiral pattern, the central surface density and scale length of the disk, and the central value and slope of the velocity dispersion. Stochastic orbits whose Jacobi constants lie between the values at the Lagrange points L_1 and L_4 are found to play a significant role in supporting self-consistent spiral structure, especially in the regions just beyond the ends of the bar. Stochastic orbits whose Jacobi constants lie below this interval tend to fill more or less uniformly either rings in the outer disk or ovals in the bar region, depending on the regions to which they are confined. Stochastic orbits whose Jacobi constants lie above that of L_4 also tend not to support any imposed structure. The model bars are predominantly comprised of elongated orbits trapped around the x_1 family and terminate close to corotation. The response of gas to the forces of the most successful models is calculated using a two-dimensional smoothed particle hydrodynamics code. The results confirm that a bar alone is not sufficient to drive a strong spiral response in the gas of the outer disk. An underlying spiral structure in the more massive stellar component appears to be required. If stellar spirals are present, strong gas spirals may persist for long times. (SECTION: Dissertation Summaries)

  4. Self-consistent models of barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kaufmann, David Eugene

    1993-01-01

    Self-consistent models of barred spiral galaxies based on the observed properties of NGC 3992, NGC 1073, and NGC 1398 are constructed and analyzed. The method of model construction is a slight modification of the technique developed by Contopoulos and Grosbol for the case of unbarred spirals. The main factors which influence self-consistency are the amplitude, pitch angle, scale length and z-thickness of the spirals, the mass of the bar, the angular velocity of the bar/spiral pattern, the central surface density and scale length of the disk, and the central value and slope of the velocity dispersion. Stochastic orbits whose Jacobi constants lie between the values at the Lagrange points L1 and L4 are found to play a significant role in supporting self-consistent spiral structure, especially in the regions just beyond the ends of the bar. Stochastic orbits whose Jacobi constants lie below this interval tend to fill more or less uniformly either rings in the outer disk or ovals in the bar region, depending on the regions to which they are confined. Stochastic orbits whose Jacobi constants lie above that of L4 also tend not to support any imposed structure. The model bars are predominantly comprised of elongated orbits trapped around the chi1 family and terminate close to corotation. The response of gas to the forces of the most successful models is calculated using a two-dimensional smoothed particle hydrodynamics code. The results confirm that a bar alone is not sufficient to drive a strong spiral response in the gas of the outer disk. An underlying spiral structure in the more massive stellar component appears to be required. If stellar spirals are present, strong gas spirals may persist for long times.

  5. Dynamical effect of gas on spiral pattern speed in galaxies

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumavo; Jog, Chanda J.

    2016-07-01

    In the density wave theory of spiral structure, the grand-design two-armed spiral pattern is taken to rotate rigidly in a galactic disc with a constant, definite pattern speed. The observational measurement of the pattern speed of the spiral arms, though difficult, has been achieved in a few galaxies such as NGC 6946, NGC 2997, and M 51 which we consider here. We examine whether the theoretical dispersion relation permits a real solution for wavenumber corresponding to a stable wave, for the observed rotation curve and the pattern speed values. We find that the disc when modelled as a stars-alone case, as is usually done in literature, does not generally give a stable density wave solution for the observed pattern speed. Instead the inclusion of the low velocity dispersion component, namely, gas, is essential to obtain a stable density wave. Further, we obtain a theoretical range of allowed pattern speeds that correspond to a stable density wave at a certain radius, and check that for the three galaxies considered, the observed pattern speeds fall in the respective prescribed range. The inclusion of even a small amount (˜15 per cent) of gas by mass fraction in the galactic disc is shown to have a significant dynamical effect on the dispersion relation and hence on the pattern speed that is likely to be seen in a real, gas-rich spiral galaxy.

  6. Star formation and evolution in spiral galaxies.

    NASA Technical Reports Server (NTRS)

    Quirk, W. J.; Tinsley, B. M.

    1973-01-01

    Evolutionary models for regions of M31 and M33 and the solar neighborhood are based on a stellar birthrate suggested by the dynamics of spiral structure: we assume that stars are formed very efficiently until the gas content reaches equilibrium at its present value, which takes about 1 b.y.; thereafter, the birthrate just equals the rate at which gas enters the system from stellar mass-loss or infall of intergalactic matter. Each model represents an average around a cylindrical-shell-shaped region, which is homogeneous and closed except for possible infall. The disk and spiral-arm populations only are considered. Each star is followed in the H-R diagram from the main sequence to death as an invisible remnant. Integrated magnitudes, colors, mass-to-light ratio (M/L), gas content, helium and metal abundance (Z), are computed in steps of 1 b.y.

  7. Distribution de la matiere sombre dans les galaxies spirales

    NASA Astrophysics Data System (ADS)

    Blais-Ouellette, Sebastien

    Cette etude a pour objet central la distribution de la masse obscure dans les galaxies spirales. Utilisant l'exemple de NGC 5585, il est d'abord montre l'impact de la resolution spatiale insuffisante dans les observations radio en synthese d'ouverture, observations jusqu'a maintenant tenues pour suffisamment precises et fiables. A l'aide d'observations Fabry-Perot de haute resolution, nous observons une correction importante de la partie montante de la courbe de rotation et par consequence un changement majeur dans l'importance relative des composantes sombre et lumineuse dans la galaxie. A partir de ce resultat, une etude systematique d'une dizaine de galaxies spirales est faite en ajoutant des observations Fabry-Perot aux donnees radio existantes. Une technique d'une grande malleabilite permet de modeliser la masse dans ces galaxies en utilisant diverses formes de halo sombre en plus des composantes gazeuse et stellaires. Il apparait clairement que les halos predits par les simulations de l'evolution cosmologique de la masse sombre froide ne peuvent expliquer la dynamique actuelle des galaxies spirales tardives. En fait, la compatibilite cesse pour des galaxies ayant des vitesses de rotation inferieures a 100 km s-1 suggerant que les trop grandes densites centrales des simulations sont detruites par un phenomene inhibe par un grand potentiel gravitationel. Par ailleurs, une theorie alternative a la masse obscure, la gravite newtonienne modifiee, apparait incompatible avec les nouvelles donnees, ne pouvant expliquer les courbes de rotation de pres de la moitie des galaxies de l'echantillon. De plus, plusieurs correlations apparaissent entre les parametres de la modelisation de masse. Entre autres, il existe une relation directe entre la densite centrale des halos et leur rayon de coeur, deux parametres jusqu'alors consideres comme independants. La distribution de la masse sombre peut donc etre decrite par un seul parametre.

  8. Infrared emission and tidal interactions of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Byrd, Gene G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small.

  9. Computer experiments on the structure and dynamics of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Hohl, F.

    1972-01-01

    The evolution of an initially balanced rotating disk of stars with an initial velocity dispersion given by Toomre's local criterion was investigated by means of a computer model for isolated disks of stars. It was found that the disk is unstable against very large scale modes. A stable axisymmetric disk with a velocity dispersion much larger than that given by Toomre's criterion was generated. The final mass distribution for the disk gives a high density central core and a disk population of stars that is closely approximated by an exponential variation. Various methods and rates of cooling the hot axisymmetric disks were investigated. It was found that the cooling resulted in the development of two-arm spiral structures which persisted as long as cooling continued. An experiment was performed to induce spiral structure in a galaxy by means of the close passage of a companion galaxy. Parameters similar to those expected for M51 and its companion were used. It was found that because of the high velocity dispersion of the disturbed disk galaxy, only a weak two-arm spiral structure appeared. The evolution of a uniformly rotating disk galaxy which is a stationary solution of the collisionless Boltzmann equation was investigated for various values of the initial rms velocity dispersion. It was found that the disk becomes stable at a value of the velocity dispersion predicted by theory.

  10. SPIRAL FLOWS IN COOL-CORE GALAXY CLUSTERS

    SciTech Connect

    Keshet, Uri

    2012-07-10

    We argue that bulk spiral flows are ubiquitous in the cool cores (CCs) of clusters and groups of galaxies. Such flows are gauged by spiral features in the thermal and chemical properties of the intracluster medium, by the multiphase properties of CCs, and by X-ray edges known as cold fronts. We analytically show that observations of piecewise-spiral fronts impose strong constraints on the CC, implying the presence of a cold, fast flow, which propagates below a hot, slow inflow, separated by a slowly rotating, trailing, quasi-spiral, tangential discontinuity surface. This leads to the nearly logarithmic spiral pattern, two-phase plasma, {rho} {approx} r{sup -1} density (or T {approx} r{sup 0.4} temperature) radial profile, and {approx}100 kpc size, characteristic of CCs. By advecting heat and mixing the gas, such flows can eliminate the cooling problem, provided that a feedback mechanism regulates the flow. In particular, we present a quasi-steady-state model for an accretion-quenched, composite flow, in which the fast phase is an outflow, regulated by active galactic nucleus bubbles, reproducing the observed low star formation rates and explaining some features of bubbles such as their R{sub b} {proportional_to}r size. The simplest two-component model reproduces several key properties of CCs, so we propose that all such cores harbor a spiral flow. Our results can be tested directly in the next few years, for example by ASTRO-H.

  11. The black hole mass function derived from local spiral galaxies

    SciTech Connect

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Daniel; Kennefick, Julia; Seigar, Marc S.; Lacy, Claud H. S.; Hartley, Matthew T.

    2014-07-10

    We present our determination of the nuclear supermassive black hole (SMBH) mass function for spiral galaxies in the local universe, established from a volume-limited sample consisting of a statistically complete collection of the brightest spiral galaxies in the southern (δ < 0°) hemisphere. Our SMBH mass function agrees well at the high-mass end with previous values given in the literature. At the low-mass end, inconsistencies exist in previous works that still need to be resolved, but our work is more in line with expectations based on modeling of black hole evolution. This low-mass end of the spectrum is critical to our understanding of the mass function and evolution of black holes since the epoch of maximum quasar activity. The sample is defined by a limiting luminosity (redshift-independent) distance, D{sub L} = 25.4 Mpc (z = 0.00572) and a limiting absolute B-band magnitude, M{sub B}=−19.12. These limits define a sample of 140 spiral galaxies, with 128 measurable pitch angles to establish the pitch angle distribution for this sample. This pitch-angle distribution function may be useful in the study of the morphology of late-type galaxies. We then use an established relationship between the logarithmic spiral arm pitch angle and the mass of the central SMBH in a host galaxy in order to estimate the mass of the 128 respective SMBHs in this volume-limited sample. This result effectively gives us the distribution of mass for SMBHs residing in spiral galaxies over a lookback time, t{sub L} ≤ 82.1 h{sub 67.77}{sup −1} Myr and contained within a comoving volume, V{sub C} = 3.37 × 10{sup 4} h{sub 67.77}{sup −3} Mpc{sup 3}. We estimate that the density of SMBHs residing in spiral galaxies in the local universe is ρ=5.54{sub −2.73}{sup +6.55} × 10{sup 4} h{sub 67.77}{sup 3} M{sub ☉} Mpc{sup –3}. Thus, our derived cosmological SMBH mass density for spiral galaxies is Ω{sub BH}=4.35{sub −2.15}{sup +5.14} × 10{sup –7} h{sub 67.77}. Assuming that

  12. Effects of Spiral Arms on Gaseous Structures and Mass Drift in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Yonghwi; Kim, Woong-Tae

    2015-01-01

    Stellar spiral arms play a key role in the formation and evolution of gaseous structures in disk galaxies as well as mass drift in the radial direction. Using hydrodynamic simulations, we investigate nonlinear responses of self-gravitating gas to an imposed stellar spiral potential in galactic disks. By considering various models with different arm strength and pattern speed, we find that the physical properties of imposed spiral potential have profound influences on the shapes and extent of gaseous arms as well as the related mass drift rate. To produce quasi-steady spiral shocks, the gas has to not only move faster than the local sound speed relative to the perturbing potential, but also have sufficient time to respond to one arm before encountering the next arm. From our numerical results, we provide a simple expression for the existence of quasi-steady spiral shocks depending on the pitch angle and pattern speed of stellar spiral arms, which appears consistent to the previous study. We also measure the mass drift rates which are in the range of ~0.5-3.0 M⊙/yr inside the corotation radius, and further quantify the relative contribution of shock dissipation (~50%), external torque (~40%), and self-gravitational torque (~10%) to them. The offset between the pitch angles of stellar and gaseous arms is larger for smaller arm strength and larger pattern speed, since a deeper potential tends to form shocks closer to the potential minima of the arms. We demonstrate that the distributions of line-of-sight velocities and spiral shock densities can be a diagnostic tool in distinguishing whether the spiral pattern rotates fast or not.

  13. Evolution of Gas Across Spiral Arms in the Whirlpool Galaxy

    NASA Astrophysics Data System (ADS)

    Louie, Melissa Nicole

    To investigate the dynamic evolution of gas across spiral arms, we conducted a detailed study of the gas and star formation along the spiral arms in the Whirlpool Galaxy, M51. This nearby, face-on spiral galaxy provides a unique laboratory to study the relationship between gas dynamics and star formation. The textbook picture of interstellar medium (ISM) evolution is rapidly changing. Molecular gas was once believed to form along spiral arms from the diffuse atomic gas in the inter-arm regions. Star formation occurs within giant molecular clouds during spiral arm passage. Lastly, the molecular gas is photo-dissociated back into atomic gas by massive stars on the downstream side of the spiral arm. Recent evidence, however, is revealing a new picture of the interstellar medium and the process of star formation. We seek development of a new picture by studying the development and evolution of molecular gas and the role of large scale galactic dynamics in organizing the interstellar medium. This thesis begins by presenting work measuring the geometrical offsets between interstellar gas and recent star formation. Interstellar gas is traced by atomic hydrogen and carbon monoxide (CO). Star formation is traced by ionized hydrogen recombination lines and infrared emission from dust warmed by young bright stars. Measuring these offsets can help determine the underlying large scale galactic dynamics. Along the spiral arms in M51, offsets between CO and the star formation tracers suggest that gas is flowing through the spiral arms, but the offsets do not show the expected signature of a single pattern speed and imply a more complicated pattern. This thesis also examines the intermediate stages of gas evolution, by studying a denser component of the ISM closer to which stars will form. Only a small percent of the bulk molecular gas will become dense enough to form stars. HCN and HCO+ probe densities ˜104 cm-3, where as the bulk gas is 500 cm-3. This thesis looks at HCN and

  14. Unstable spiral modes in disk-shaped galaxies

    PubMed Central

    Lau, Y. Y.; Lin, C. C.; Mark, James W.-K.

    1976-01-01

    The mechanisms for the maintenance and the excitation of trailing spiral modes of density waves in diskshaped galaxies, as proposed by Lin in 1969 and by Mark recently, are substantiated by an analysis of the gas-dynamical model of the galaxy. The self-excitation of the unstable mode in caused by waves propagating outwards from the corotation circle, which carry away angular momentum of a sign opposite to that contained in the wave system inside that circle. Specifically, a simple dispersion relationship is given as a definite integral, which allows the immediate determination of the pattern frequency and the amplification rate, once the basic galactic model is known. PMID:16592313

  15. Tidally Induced Offset Disks in Magellanic Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Pardy, Stephen A.; D'Onghia, Elena; Athanassoula, E.; Wilcots, Eric M.; Sheth, Kartik

    2016-08-01

    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations, we consider a dwarf-dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar, and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter, causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyr, the time that it takes for the disk to be recentered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, these results, once applied to the LMC, suggest that the dynamical center should reside in the bar center instead of the H i center as previously assumed, pointing to a variation in the current estimate of the north component of the LMC proper motion.

  16. Tidally Induced Offset Disks in Magellanic Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Pardy, Stephen A.; D’Onghia, Elena; Athanassoula, E.; Wilcots, Eric M.; Sheth, Kartik

    2016-08-01

    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations, we consider a dwarf–dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar, and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter, causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyr, the time that it takes for the disk to be recentered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, these results, once applied to the LMC, suggest that the dynamical center should reside in the bar center instead of the H i center as previously assumed, pointing to a variation in the current estimate of the north component of the LMC proper motion.

  17. Stellar populations in spiral galaxies: broadband versus spectroscopic viewpoints

    NASA Astrophysics Data System (ADS)

    MacArthur, Lauren Anne

    2006-06-01

    This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful

  18. Stellar populations in spiral galaxies: Broadband versus spectroscopic viewpoints

    NASA Astrophysics Data System (ADS)

    MacArthur, Lauren Anne

    This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful

  19. Gas dynamics of the barred spiral galaxy NGC 3359

    SciTech Connect

    Ball, J.R.

    1984-01-01

    A detailed study was conducted of the dynamics of the neutral hydrogen gas in the bright northern barred spiral galaxy NGC 3359. Observations of the 21 cm line at the Very Large Array were reduced to give single-channel maps with spatial resolution of 18'', and a velocity resolution of 25 km/s. The acquisition, calibration, and reduction of the data are discussed in some detail. Maps of the integrated column density and mean velocity of the atomic hydrogen, derived from the channel maps, provide the principal data for an investigation of the dynamics associated with the spiral structure of the galaxy. On scales comparable to the resolution of this survey, approximately 1 kpc at the distance of NGC 3359, the gas is broken up into a somewhat chaotic distribution of local maxima and minima. However, on larger scales the column density shows a smooth, grand design spiral pattern with two principal spiral arms. The extent and density of these two arms are roughly equal in the 21 cm map, unlike the optical image. These neutral hydrogen arms are very well correlated with the position of H II regions.

  20. Opaque Matter in Spiral Galaxies. Cosmological Consequences

    NASA Astrophysics Data System (ADS)

    Faria, Peter Leroy

    1996-10-01

    The luminosity function plays a direct role in several points of cosmological interest, like the magnitud and redshift galaxy number counts, the determination of the mean luminosity density in a given volume and the determination of the spatial two point correlation function from the knowledge of the angular correlation function. In this work, we have related the optical thickness of the galactic disk with some cosmological observations. We assume that the absorbing material appears in a epoch z_d and obtain the absolute luminosity function corrected for the dust effects and study some cosmological consequences of this correction. Our main results are: 1.Luminosity function: As an effect of the opacity, an inclination i different from zero modifies the apparent luminosity of the galaxies and leads to a wrong estimation of the absolute luminosity. The corrections that must be applied depend on how the luminosities vary with inclination and therefore, in how to assign the corrected distribution function for the variable associated to the galaxy inclination. We have used a distribution function for the variable tau = |cos i|, assuming that the galaxies are uniformly distributed in a region of space, with the variable i (inclination) uniformly distributed. We have checked out that this hypothesis is reasonable for a pair of samples but further work must be done with larger and more complete samples in order to comfirm or to choose a more suitable distribution function to the variable mu and get more conclusions about the modifications in the luminosity function due to the opacity effects. We have found that the opacity modifies the luminosity function in the sense of increasing the number of more bright galaxies and keeping almost the same the number of faint galaxies. 2.Magnitude and redshift number counts: The modifications in the luminosity function affects directly the galaxy counts N(m) and N(z). We have found for N(m) in the B band (blue) that moderate opacities

  1. Galaxy And Mass Assembly (GAMA): stellar mass growth of spiral galaxies in the cosmic web

    NASA Astrophysics Data System (ADS)

    Alpaslan, Mehmet; Grootes, Meiert; Marcum, Pamela M.; Popescu, Cristina; Tuffs, Richard; Bland-Hawthorn, Joss; Brough, Sarah; Brown, Michael J. I.; Davies, Luke J. M.; Driver, Simon P.; Holwerda, Benne W.; Kelvin, Lee S.; Lara-López, Maritza A.; López-Sánchez, Ángel R.; Loveday, Jon; Moffett, Amanda; Taylor, Edward N.; Owers, Matt; Robotham, Aaron S. G.

    2016-04-01

    We look for correlated changes in stellar mass and star formation rate (SFR) along filaments in the cosmic web by examining the stellar masses and UV-derived SFRs of 1799 ungrouped and unpaired spiral galaxies that reside in filaments. We devise multiple distance metrics to characterize the complex geometry of filaments, and find that galaxies closer to the cylindrical centre of a filament have higher stellar masses than their counterparts near the periphery of filaments, on the edges of voids. In addition, these peripheral spiral galaxies have higher SFRs at a given mass. Complementing our sample of filament spiral galaxies with spiral galaxies in tendrils and voids, we find that the average SFR of these objects in different large-scale environments are similar to each other with the primary discriminant in SFR being stellar mass, in line with previous works. However, the distributions of SFRs are found to vary with large-scale environment. Our results thus suggest a model in which in addition to stellar mass as the primary discriminant, the large-scale environment is imprinted in the SFR as a second-order effect. Furthermore, our detailed results for filament galaxies suggest a model in which gas accretion from voids on to filaments is primarily in an orthogonal direction. Overall, we find our results to be in line with theoretical expectations of the thermodynamic properties of the intergalactic medium in different large-scale environments.

  2. Galaxy Zoo: spiral galaxy morphologies and their relation to the star-forming main sequence

    NASA Astrophysics Data System (ADS)

    Willett, Kyle; Schawinski, Kevin; Masters, Karen; Melvin, Tom; Skibba, Ramin A.; Nichol, Robert; Cheung, Edmond; Lintott, Chris; Simmons, Brooke D.; Kaviraj, Sugata; Keel, William C.; Fortson, Lucy; Galaxy Zoo volunteers

    2015-01-01

    We examine the relationship between stellar mass and star formation rate in disk galaxies at z<0.085, measuring different populations of spirals as classified by their kiloparsec-scale structure. The morphologies of disk galaxies are obtained from the Galaxy Zoo 2 project, which includes the number of spiral arms, the arm pitch angle, and the presence of strong galactic bars. We show that both the slope and dispersion of the star-forming main sequence (SFMS) is constant no matter what the morphology of the spiral disk. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by 0.3 dex; this is a significant reduction over the increase seen in merging systems at higher redshifts (z > 1). Of the galaxies that do lie significantly above the SFMS in the local Universe, more than 50% are mergers, with a large contribution from the compact green pea galaxies. We interpret our results as evidence that the number and pitch angle of spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms for star formation or are completely overwhelmed by the combination of outflows and feedback.

  3. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    SciTech Connect

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.; Israel, F. P.; Van der Werf, P. P.; Serjeant, S.; Bendo, G. J.; Clements, D. L.; Brinks, E.; Irwin, J. A.; Knapen, J. H.; Leech, J.; Tan, B. K.; Matthews, H. E.; Muehle, S.; Mortimer, A. M. J.; Petitpas, G.; Spekkens, K.; Tilanus, R. P. J.; Usero, A. E-mail: wilson@physics.mcmaster.c E-mail: israel@strw.leidenuniv.n

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allow us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.

  4. Morphology and Dynamics in the Inner Regions of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Jong, Jelte Teun Anne de

    2005-09-01

    It is a well established fact that the universe contains much more matter than we can observe directly from their emission or absorption properties. All massive objects in the universe move with respect to each other under the influence of their mutual gravitational attraction. This enables us to determine the mass of gravitationally bound systems by looking at their dynamics. From the motions of galaxies within galaxy clusters, we know that these clusters contain at least ten times more mass than we can see in the form of galaxies and intergalactic gas. The rotation of spiral galaxies shows that galaxies themselves are also much more massive than can be explained by the stars and gas that we observe. Modern astronomy faces the disturbing fact that we cannot see and do not understand the nature of at least 90 percent of the matter content of the universe. In this thesis we focus on one possible constituent of this unseen, ``dark''or ``missing'' matter, namely dark, massive, compact objects that might be present in the halos of galaxies. Using the gravitational lensing effect we search for these otherwise impossible to observe objects within the halo of the cosmic neighbour of our Milky Way, the Andromeda galaxy.

  5. Photometric Properties of Face-on Isolated Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bahr, Alexander; Epstein, P.; Durbala, A.

    2011-05-01

    We want to quantify the relative role of nature versus nurture in defining the observed properties of galaxies. In simpler terms we would like to disentangle the ``genetic'’ and the environmental influences in shaping the morphology of galaxies. In order to do that one needs to firstly define a zero-order baseline, i.e., a sample of galaxies that have been minimally perturbed by neighbors in the last few billion years of their existence. Such a sample has been produced and refined in different stages in the context of the AMIGA international project (www.iaa.es/AMIGA.html). The recent catalogue ``The All-Sky Catalog of Isolated Galaxies Selected from 2MASS'’ (Karachentseva, V. E. et al. 2010) allows us to complete and enrich the initial sample constructed within AMIGA with new objects, thus enhancing the statistical relevance of our study. Our focus is to define a subset of isolated disk spiral galaxies. We constrain the sample selection by: 1) orientation, restricting to almost face-on galaxies and 2) availability of good photometric images in SDSS. The goal is to ``dissect'’ (decompose) these galaxies in major components (disk, bulge, bars, etc.) and to study the properties of the components in a statistical context. Having a reasonable representation of all morphological types, we aim to test the bimodality of bulges and bars. We present a progress report of our work.

  6. The ultraviolet attenuation law in backlit spiral galaxies

    SciTech Connect

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin E-mail: ammanning@bama.ua.edu E-mail: Twitter@BenneHolwerda E-mail: Twitter@chrislintott E-mail: Twitter@kevinschawinski

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread

  7. IN-SPIRALING CLUMPS IN BLUE COMPACT DWARF GALAXIES

    SciTech Connect

    Elmegreen, Bruce G.; Zhang Hongxin; Hunter, Deidre A.

    2012-03-10

    Giant star formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the blue compact dwarf (BCD) phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived. The two examples with clumps closest to the center have the largest relative clump masses and the greatest contributions from old stars. An additional indication that the dense central regions of BCDs are like bulges is the high ratio of the inner disk scale height to the scale length, which is comparable to 1 for four of the galaxies.

  8. The Maximum Disk Hypothesis and 2-D Spiral Galaxy Models

    NASA Astrophysics Data System (ADS)

    Palunas, P.; Williams, T. B.

    1995-12-01

    We present an analysis of two-dimensional \\ha\\ velocity fields and I-band surface photometry for spiral galaxies taken from the southern sky Fabry-Perot Tully-Fisher survey (Schommer et al., 1993, AJ 105, 97). We construct axi-symmetric maximum disk mass models for 75 galaxies and examine in detail the deviations from axi-symmetry in the surface brightness and kinematics for a subsample of these galaxies. The luminosity profiles and rotation curves are derived using consistent centers, position angles, and inclinations. The disk and bulge are deconvolved by fitting an exponential disk and a series expansion of Gaussians for the bulge directly to the I-band images. This helps constrain the deconvolution by exploiting geometric information as well as the distinct disk and bulge radial profiles. The final disk model is the surface brightness profile of the bulge-subtracted image. The photometric model is fitted to the rotation curve assuming a maximum disk and constant M/L's for the disk and bulge components. The overall structure of the photometric models reproduces the structure in the rotation curves in the majority of galaxies spanning a large range of morphologies and rotation widths from 120 \\kms\\ to 680 \\kms. The median I-band M/L in solar units is 2.8, consistent with normal stellar populations. These results make the disk-halo conspiracy even more puzzling. The degree to which spiral galaxy mass models can reproduce small-scale structure in rotation curves is often used as evidence to support or refute the maximum disk hypothesis. However, single-slit rotation curves sample the velocity distribution only along the major axis, and photometric profiles for inclined galaxies are also sampled most heavily near the major axis. The small-scale structure can be due to local perturbations, such as spiral arms and spiral-arm streaming motions, rather than variations in the global mass distribution. We test this hypothesis by analysing azimuthal correlations in

  9. The Red and Featureless Outer Disks of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2016-07-01

    We present results from deep, wide-field surface photometry of three nearby (D = 4-7 Mpc) spiral galaxies: M94 (NGC 4736), M64 (NGC 4826), and M106 (NGC 4258). Our imaging reaches a limiting surface brightness of {μ }B ˜ 28-30 mag arcsec-2 and probes colors down to {μ }B ˜ 27.5 mag arcsec-2. We compare our broadband optical data to available ultraviolet and high column density H i data to better constrain the star-forming history and stellar populations of the outermost parts of each galaxy’s disk. Each galaxy has a well-defined radius beyond which little star formation occurs and the disk light appears both azimuthally smooth and red in color, suggestive of old, well-mixed stellar populations. Given the lack of ongoing star formation or blue stellar populations in these galaxies’ outer disks, the most likely mechanisms for their formation are dynamical processes such as disk heating or radial migration, rather than inside-out growth of the disks. This is also implied by the similarity in outer disk properties despite each galaxy showing distinct levels of environmental influence, from a purely isolated galaxy (M94) to one experiencing weak tidal perturbations from its satellite galaxies (M106) to a galaxy recovering from a recent merger (M64), suggesting that a variety of evolutionary histories can yield similar outer disk structure. While this suggests a common secular mechanism for outer disk formation, the large extent of these smooth, red stellar populations—which reach several disk scale lengths beyond the galaxies’ spiral structure—may challenge models of radial migration given the lack of any nonaxisymmetric forcing at such large radii.

  10. Energetic constraints to chemo-photometric evolution of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, Alberto

    2011-08-01

    galaxies; (iii) although lower-mass galaxies tend more likely to take the look of later-type spirals, it is mass, not morphology, that drives galaxy chemical properties. Facing the relatively flat trend of ? versus galaxy type, the increasingly poorer gas metallicity, as traced by the [O/H] abundance of H II regions along the Sa → Im Hubble sequence, seems to be mainly the result of the softening process, that dilute enriched stellar mass within a larger fraction of residual gas. The problem of the residual lifetime for spiral galaxies as active star-forming systems has been investigated. If returned mass is left as the main (or unique) gas supplier to the ISM, as implied by the Roberts time-scale, then star formation might continue only at a maximum birthrate bmax≪f/(1 -f) ≲ 0.45, for a Salpeter IMF. As a result, only massive (Mgal≳ 1011 M⊙) Sa/Sb spirals may have some chance to survive ˜30 per cent or more beyond a Hubble time. Things may be worse, on the contrary, for dwarf systems, that seem currently on the verge of ceasing their star formation activity unless to drastically reduce their apparent birthrate below the bmax threshold.

  11. Self-gravitating gas flow in barred spiral galaxies

    NASA Technical Reports Server (NTRS)

    Huntley, J. M.

    1980-01-01

    A series of two-dimensional numerical experiments is performed in order to test the response of an isothermal, self-gravitating gas disk to a uniformly rotating, barlike gravitational potential. The barlike potential is an equilibrium stellar model from the n-body calculations of Miller and Smith (1979). In the bar-dominated, central regions of the disk, a gas bar whose phase depends primarily on the location of principal resonances in the disk is formed. This response can be understood in terms of orbit-crowding effects. In the gas-dominated outer regions of the disk, two-armed trailing spiral waves are formed. The local pitch angle of these waves increases with increasing fractional gas mass. These self-gravitating gas waves are not self-sustaining. They are driven from the ends of equilibrium stellar bars, and their phase does not depend on the location of resonances in the disk. The relevance of these self-gravitating waves to observations and models of barred spiral galaxies is discussed. It is concluded that these waves and their associated ringlike structures may be consistent with the morphological distribution of gas features in barred spiral galaxies.

  12. Young Stars and Ionized Nebulae in M83: Comparing Chemical Abundances at High Metallicity.

    NASA Astrophysics Data System (ADS)

    Bresolin, Fabio; Kudritzki, Rolf-Peter; Urbaneja, Miguel A.; Gieren, Wolfgang; Ho, I.-Ting; Pietrzyński, Grzegorz

    2016-10-01

    We present spectra of 14 A-type supergiants in the metal-rich spiral galaxy M83. We derive stellar parameters and metallicities and measure a spectroscopic distance modulus μ =28.47+/- 0.10 (4.9 ± 0.2 Mpc), in agreement with other methods. We use the stellar characteristic metallicity of M83 and other systems to discuss a version of the galaxy mass–metallicity relation that is independent of the analysis of nebular emission lines and the associated systematic uncertainties. We reproduce the radial metallicity gradient of M83, which flattens at large radii, with a chemical evolution model, constraining gas inflow and outflow processes. We carry out a comparative analysis of the metallicities we derive from the stellar spectra and published H ii region line fluxes, utilizing both the direct, {T}{{e}}-based method and different strong-line abundance diagnostics. The direct abundances are in relatively good agreement with the stellar metallicities, once we apply a modest correction to the nebular oxygen abundance due to depletion onto dust. Popular empirically calibrated strong-line diagnostics tend to provide nebular abundances that underestimate the stellar metallicities above the solar value by ∼0.2 dex. This result could be related to difficulties in selecting calibration samples at high metallicity. The O3N2 method calibrated by Pettini and Pagel gives the best agreement with our stellar metallicities. We confirm that metal recombination lines yield nebular abundances that agree with the stellar abundances for high-metallicity systems, but find evidence that in more metal-poor environments they tend to underestimate the stellar metallicities by a significant amount, opposite to the behavior of the direct method.

  13. Star formation in nuclear rings of barred-spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Seo, Woo-Young

    2015-08-01

    Barred-spiral galaxies contain star-forming nuclear rings at their centers. Some rings show a well-defined azimuthal age gradient of star clusters along a ring, while others do not. Using hydrodynamic simulations with the prescriptions of star formation and feedback included, we study what control star formation occurring in the nuclear rings. In models without spiral arms, the star formation rate (SFR) in a ring exhibits a strong burst at early time and declines to small values at late time. The early burst is caused by a rapid gas infall along due to the bar growth, consuming most of the gas inside the bar region. On the other hand, models with spiral arms outside the bar region show multiple starburst activities at late time caused by arm-induced gas inflows, provided that the arm pattern speed is slower than that of the bar. The SFR in models with spirals is larger by a factor of ~ 1.4-4.0 than that in the bar-only models, with larger values corresponding to stronger and slower arms. In all models, young star clusters in nuclear ring show an azimuthal age gradient only when the SFR is small, such that younger clusters tend to locate closer to the contact points, since star formation occurs preferentially in the contact points between a ring and dust lanes.

  14. The interstellar halo of spiral galaxies: NGC 891

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Rand, R. J.; Hester, J. Jeff

    1990-01-01

    Researchers have detected the Warm Ionized Medium (WIM) phase in the galaxy NGC 891. They found that the radial distribution of the WIM follows the molecular or young star distribution - an expected dependence. The amount of the WIM in this galaxy exceeds that in our Galaxy. The major surprize is the large thickness of the WIM phase - about 9 kpc instead 3 kpc as in our Galaxy. Clearly, this is the most significant result of the observations. The presence of low ionization gas at high z as well as at large galactocentric radii (where young stars are rare) is an important clue to the origin of the halo and observations such as the one reported here provide important data on this crucial question. In particular, the ionization of gas at high absolute z implies that either the UV photons manage to escape from the disk of the galaxy or that the extragalactic UV background plays an important role. The bulk of the WIM in spiral galaxies is a result of star-formation activity and thus these results can be understood by invoking a high star formation rate in NGC 891. Only the concerted action of supernovae can get the gas to the large z-heights as is observed in this galaxy. Support for this view comes from our detection of many worms i.e., bits and pieces of supershells in the form of kilo-parsec long vertical filaments. Researchers also saw a 600-pc size supershell located nearly one kpc above the plane of the galaxy.

  15. MAGNETIC FIELDS IN A SAMPLE OF NEARBY SPIRAL GALAXIES

    SciTech Connect

    Van Eck, C. L.; Brown, J. C.; Shukurov, A.; Fletcher, A. E-mail: jocat@ucalgary.ca E-mail: andrew.fletcher@ncl.ac.uk

    2015-01-20

    Both observations and modeling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed, but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider the statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and interstellar medium parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate, and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit a noticeable degree of correlation, suggesting a universal behavior of the degree of order in galactic magnetic fields. We also compare the predictions of galactic dynamo theory to observed magnetic field parameters and identify directions in which theory and observations might be usefully developed.

  16. Fundamental mass-spin-morphology relation of spiral galaxies

    SciTech Connect

    Obreschkow, D.; Glazebrook, K.

    2014-03-20

    This work presents high-precision measurements of the specific baryon angular momentum j {sub b} contained in stars, atomic gas, and molecular gas, out to ≳ 10 scale radii, in 16 nearby spiral galaxies of the THINGS sample. The accuracy of these measurements improves on existing studies by an order of magnitude, leading to the discovery of a strong correlation between the baryon mass M {sub b}, j {sub b}, and the bulge mass fraction β, fitted by β=−(0.34±0.03) lg (j{sub b}M{sub b}{sup −1}/[10{sup −7} kpc km s{sup −1} M{sub ⊙}{sup −1}])−(0.04±0.01) on the full sample range of 0 ≤ β ≲ 0.3 and 10{sup 9} M {sub ☉} < M {sub b} < 10{sup 11} M {sub ☉}. The corresponding relation for the stellar quantities M {sub *} and j {sub *} is identical within the uncertainties. These M-j-β relations likely originate from the proportionality between jM {sup –1} and the surface density of the disk that dictates its stability against (pseudo-)bulge formation. Using a cold dark matter model, we can approximately explain classical scaling relations, such as the fundamental plane of spiral galaxies, the Tully-Fisher relation, and the mass-size relation, in terms of the M-j(-β) relation. These results advocate the use of mass and angular momentum as the most fundamental quantities of spiral galaxies.

  17. GMC evolution in a barred spiral galaxy with star formation and thermal feedback

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yusuke; Bryan, Greg L.; Tasker, Elizabeth J.; Habe, Asao; Simpson, Christine M.

    2016-09-01

    We explore the impact of star formation and thermal stellar feedback on the giant molecular cloud population forming in a M83-type barred spiral galaxy. We compare three high-resolution simulations (1.5 pc cell size) with different star formation/feedback models: one with no star formation, one with star formation but no feedback, and one with star formation and thermal energy injection. We analyse the resulting population of clouds, finding that we can identify the same population of massive, virialized clouds and transient, low-surface density clouds found in our previous work (that did not include star formation or feedback). Star formation and feedback can affect the mix of clouds we identify. In particular, star formation alone simply converts dense cloud gas into stars with only a small change to the cloud populations, principally resulting in a slight decrease in the transient population. Feedback, however, has a stronger impact: while it is not generally sufficient to entirely destroy the clouds, it does eject gas out of them, increasing the gas density in the intercloud region. This decreases the number of massive clouds, but substantially increases the transient cloud population. We also find that feedback tends to drive a net radial inflow of massive clouds, leading to an increase in the star formation rate in the bar region. We examine a number of possible reasons for this and conclude that it is possible that the drag force from the enhanced intercloud density could be responsible.

  18. Star-gas density waves in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen H.; Cowie, Lennox L.; Balbus, Steven A.

    1986-01-01

    The steady state dynamics of spiral galaxies is analyzed as a two-component system consisting of stars and gas within the framework of the WKB density wave theory. The gravitational influence of the gas is included for the first time in a steady state calculation. The full set of equations for a star-gas galaxy is presented, and the equations are analyzed for small-amplitude forcing. Wave properties near the solar circle are examined, and it is found that the large-scale gas shock disappears for gas content above 8 percent. Instead, gas density profiles change to highly symmetric shapes as a result of the action of the gas self-gravity. The stellar wave is damped by the torque exerted by the gas.

  19. The environmental dependence of neutral hydrogen content in spiral galaxies

    SciTech Connect

    Miner, Jesse; Rose, Jim; Kannappan, Sheila

    2008-08-01

    We present a study of the relationship between the deficiency of neutral hydrogen and the local three-dimensional number density of spiral galaxies in the Arecibo catalog [1] of global HI measurements. We find that the dependence on density of the HI content is weak at low densities, but increases sharply at high densities where interactions between galaxies and the intra-cluster medium become important. This behavior is reminiscent of the morphology-density relation [2] in that the effect manifests itself only at cluster-type densities, and indeed when we plot both the HI deficiency-density and morphology-density relations, we see that the densities at which they 'turn up' are similar. This suggests that the physical mechanisms responsible for the increase in early types in clusters are also responsible for the decrease in HI content.

  20. Sites of star formation in galaxies: star complexes and spiral arms.

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.

    This book describes observational data concerning the regions in our Galaxy and other ones where star formation is going on - from young star clusters and associations to the spiral arms. The synthesis of these data is carried out. The author concludes that not only high-luminosity stars, but also star clusters and associations are forming together in vast complexes. These complexes are primary, fundamental entities of star formation. Contents: 1. Introduction: Star groupings and gaseous clouds. 2. The scale of distances. 3. The scale of ages. 4. Young stellar groupings in the Galaxy. 5. Clusters, associations, and complexes in irregular galaxies. 6. Young star groupings in M31 and M33. 7. The problem of spiral structure. 8. The structure of spiral arms in the Andromeda galaxy. 9. The spiral arms of the Galaxy. 10. The origin of clusters and associations. 11. The nature of star complexes. 12. Star complexes and spiral structure.

  1. Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2014-09-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factor of ∼3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ∼45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.

  2. Big Fish in Small Ponds: massive stars in the low-mass clusters of M83

    SciTech Connect

    Andrews, J. E.; Calzetti, D.; McElwee, Sean; Chandar, R.; Elmegreen, B. G.; Kennicutt, R. C.; Kim, Hwihyun; Krumholz, Mark R.; Lee, J. C.; Whitmore, B.; O'Connell, R. W. E-mail: callzetti@astro.umass.edu

    2014-09-20

    We have used multi-wavelength Hubble Space Telescope WFC3 data of the starbursting spiral galaxy M83 in order to measure variations in the upper end of the stellar initial mass function (uIMF) using the production rate of ionizing photons in unresolved clusters with ages ≤ 8 Myr. As in earlier papers on M51 and NGC 4214, the uIMF in M83 is consistent with a universal IMF, and stochastic sampling of the stellar populations in the ∼<10{sup 3} M {sub ☉} clusters are responsible for any deviations in this universality. The ensemble cluster population, as well as individual clusters, also imply that the most massive star in a cluster does not depend on the cluster mass. In fact, we have found that these small clusters seem to have an over-abundance of ionizing photons when compared to an expected universal or truncated IMF. This also suggests that the presence of massive stars in these clusters does not affect the star formation in a destructive way.

  3. Distribution of Spiral Galaxies in the Virgo and Fornax Clusters and Their Dynamic Features

    NASA Astrophysics Data System (ADS)

    Kogoshvili, N. G.; Borchkhadze, T. M.; Kalloghlian, A. T.

    2014-12-01

    The dynamic characteristics of spiral galaxies with absolute magnitudes M ≥ -20m.6 in the Virgo and Fornax clusters are studied using data from the Merged Catalog of Galaxies MERCG. The galactic diameters from MERCG are used to determine the radius RD that defines the region of possible concentration of dark matter, and the dynamic parameters Mdyn and Mdyn/LB of the spiral galaxies are calculated based on the centrifugal equilibrium condition. Results from the theory of angular momentum transfer are used to estimate the central surface density m0 and angular momentum K of stars in these galaxies. A comparison of the dynamic parameters of the spiral galaxies with M ≥ -20.6 and M ≤ -20.6 reveals a statistically significant higher fraction of dark matter in the spiral galaxies with M ≤ -20.6, at 26.3% in Virgo and 27% in Fornax.

  4. The Dragonfly nearby Galaxies Survey. I. Substantial Variation in the Diffuse Stellar Halos around Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Abraham, Roberto; Zhang, Jielai

    2016-10-01

    Galaxies are thought to grow through accretion; as less massive galaxies are disrupted and merge over time, their debris results in diffuse, clumpy stellar halos enveloping the central galaxy. Here we present a study of the variation in the stellar halos of galaxies, using data from the Dragonfly Nearby Galaxies Survey (DNGS). The survey consists of wide field, deep ({μ }g\\gt 31 mag arcsec‑2) optical imaging of nearby galaxies using the Dragonfly Telephoto Array. Our sample includes eight spiral galaxies with stellar masses similar to that of the Milky Way, inclinations of 16-19 degrees and distances between 7-18 Mpc. We construct stellar mass surface density profiles from the observed g-band surface brightness in combination with the g ‑ r color as a function of radius, and compute the halo fractions from the excess stellar mass (relative to a disk+bulge fit) beyond 5 half-mass radii. We find a mean halo fraction of 0.009 ± 0.005 and a large rms scatter of {1.01}-0.26+0.9 dex. The peak-to-peak scatter of the halo fraction is a factor of \\gt 100—while some galaxies feature strongly structured halos resembling that of M31, three of the eight have halos that are completely undetected in our data. We conclude that spiral galaxies as a class exhibit a rich variety in stellar halo properties, implying that their assembly histories have been highly non-uniform. We find no convincing evidence for an environmental or stellar mass dependence of the halo fraction in the sample.

  5. Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Willett, Kyle W.; Masters, Karen L.; Cardamone, Carolin; Lintott, Chris J.; Mackay, Robert J.; Nichol, Robert C.; Rosslowe, Christopher K.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2016-10-01

    The majority of galaxies in the local Universe exhibit spiral structure with a variety of forms. Many galaxies possess two prominent spiral arms, some have more, while others display a many-armed flocculent appearance. Spiral arms are associated with enhanced gas content and star formation in the discs of low-redshift galaxies, so are important in the understanding of star formation in the local universe. As both the visual appearance of spiral structure, and the mechanisms responsible for it vary from galaxy to galaxy, a reliable method for defining spiral samples with different visual morphologies is required. In this paper, we develop a new debiasing method to reliably correct for redshift-dependent bias in Galaxy Zoo 2, and release the new set of debiased classifications. Using these, a luminosity-limited sample of ˜18 000 Sloan Digital Sky Survey spiral galaxies is defined, which are then further sub-categorized by spiral arm number. In order to explore how different spiral galaxies form, the demographics of spiral galaxies with different spiral arm numbers are compared. It is found that whilst all spiral galaxies occupy similar ranges of stellar mass and environment, many-armed galaxies display much bluer colours than their two-armed counterparts. We conclude that two-armed structure is ubiquitous in star-forming discs, whereas many-armed spiral structure appears to be a short-lived phase, associated with more recent, stochastic star-formation activity.

  6. New insights on the formation and assembly of M83 from deep near-infrared imaging

    SciTech Connect

    Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.; Staudaher, Shawn; Bullock, James S.; Calzetti, Daniela; Chandar, Rupali; Dalcanton, Julianne J.

    2014-07-10

    We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{sub 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.

  7. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    SciTech Connect

    Elmegreen, Bruce G.

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  8. BCD Galaxies from In-spiraling Giant Clumps

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce; Zhang, H.; Hunter, D. A.

    2012-01-01

    Giant star-formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the center in less than 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration analogous to a bulge in an earlier-type galaxy. A long history of inward migration will also produce a long-lived starburst in the inner regions as the gas column density remains above a threshold for star formation. Such a burst may be identified with the BCD phase in some dwarfs. Observations of giant star formation clumps in five local dwarf irregulars illustrate the relatively large clump masses that are suggested by this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case they may be gravitationally bound and long-lived. The two examples with clumps closest to the center have the largest relative clump masses and the greatest contributions from old stars. This work was funded in part by the National Science Foundation through grants AST-0707563 and AST-0707426 to DAH and BGE. HZ was partly supported by NSF of China through grants #10425313, #10833006 and #10621303 to Professor Yu Gao.

  9. The nuclear region of the spiral galaxy M81.

    PubMed Central

    Bartel, N; Bietenholz, M F; Rupen, M P

    1995-01-01

    Very-long-baseline radio interferometry images of the nuclear region of the nearby spiral galaxy M81 reveal the most compact galactic core outside the Galaxy of which the size has been determined: 700 x 300 astronomical units (AU). The observations exclude a starburst or supernova interpretation for the core. Instead they favor an active galactic nucleus. There is evidence for a northeastern jet bent by approximately 35 degrees over a length scale from 700 to 4000 AU. The jet is, on average, directed toward an extended emission region, probably a radio lobe, about 1 kiloparsec (kpc) away from the core. A corresponding emission region was found in the southwest at a distance of only 30 pc from the core. The observed jet is extremely stable and likely to be associated with a steady-state channel. There is no detectable motion along the jet beyond the nominal value of -60 +/- 60 km.s-1. The level of activities in the core region of M81 is intermediate between that of SgrA* and that of powerful radio galaxies and quasars. Images Fig. 1 PMID:11607601

  10. On the Star Formation Law for Spiral and Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  11. Star Formation in the Outer Disk of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Barnes, Kate L.; van Zee, Liese; Côté, Stéphanie; Schade, David

    2012-09-01

    We combine new deep and wide field of view Hα imaging of a sample of eight nearby (d ≈ 17 Mpc) spiral galaxies with new and archival H I and CO imaging to study the star formation and the star formation regulation in the outer disk. We find that, in agreement with previous studies, star formation in the outer disk has low covering fractions, and star formation is typically organized into spiral arms. The star formation in the outer disk is at extremely low levels, with typical star formation rate surface densities of ~10-5 to 10-6 M ⊙ yr-1 kpc-2. We find that the ratio of the radial extent of detected H II regions to the radius of the H I disk is typically gsim85%. This implies that in order to further our understanding of the implications of extended star formation, we must further our understanding of the formation of extended H I disks. We measure the gravitational stability of the gas disk, and find that the outer gaseous disk is typically a factor of ~2 times more stable than the inner star-forming disk. We measure the surface density of outer disk H I arms, and find that the disk is closer to gravitational instability along these arms. Therefore, it seems that spiral arms are a necessary, but not sufficient, requirement for star formation in the outer disk. We use an estimation of the flaring of the outer gas disk to illustrate the effect of flaring on the Schmidt power-law index; we find that including flaring increases the agreement between the power-law indices of the inner and outer disks.

  12. 2-D distribution of the ionised gas oxygen abundance in CALIFA spiral galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez-Menguiano, L.; Sánchez, S. F.; Pérez, I.

    2016-06-01

    Spiral arms are distinctive features in disc galaxies where the star formation is enhanced. Whether their gaseous content is different to what found in the rest of the disc (inter-arm region) is still an unexplored matter of debate. In our study we try to shed some light to this question by analysing the full 2-D information provided by the CALIFA survey. With this purpose, oxygen abundance gradients are derived separately for star forming regions in the spiral arms and in the inter-arm area. A distinction between flocculent and grand design galaxies is also performed to look for differences in the origin of these two type of spiral galaxies.

  13. Gas velocity patterns in simulated galaxies: observational diagnostics of spiral structure theories

    NASA Astrophysics Data System (ADS)

    Baba, J.; Morokuma-Matsui, K.; Miyamoto, Y.; Egusa, F.; Kuno, N.

    2016-08-01

    There are two theories of stellar spiral arms in isolated disc galaxies that model stellar spiral arms with different longevities: quasi-stationary density wave theory, which characterizes spirals as rigidly rotating, long-lived patterns (i.e. steady spirals), and dynamic spiral theory, which characterizes spirals as differentially rotating, transient, recurrent patterns (i.e. dynamic spirals). In order to discriminate between these two spiral models observationally, we investigated the differences between the gas velocity patterns predicted by these two spiral models in hydrodynamic simulations. We found that the azimuthal phases of the velocity patterns relative to the gas density peaks (i.e. gaseous arms) differ between the two models, as do the gas flows; nevertheless, the velocity patterns themselves are similar for both models. Such similarity suggests that the mere existence of streaming motions does not conclusively confirm the steady spiral model. However, we found that the steady spiral model shows that the gaseous arms have radial streaming motions well inside the co-rotation radius, whereas the dynamic spiral model predicts that the gaseous arms tend to have tangential streaming motions. These differences suggest that the gas velocity patterns around spiral arms will enable distinction between the spiral theories.

  14. The co-evolution of spiral structure and mass distribution in disk galaxies

    NASA Astrophysics Data System (ADS)

    Seigar, Marc

    2005-07-01

    We propose to use a new diagnostic tool to study the mass buildup in disk galaxies as a function of look-back time out to z 1. The tight correlation between spiral arm pitch angle and rotation curve shear rate {Seigar et al. 2005} demonstrates that the tightness of spiral structure in disk galaxies depends on the central mass concentration {including dark matter}, as this determines the shear rate. Galaxies with high central mass concentration have a higher shear rate and more tightly wound spiral structure than those with low mass concentration. As a result, the evolution of spiral structure over time can be used to search for evolution in the mass distribution in spiral galaxies. The main goal of this project is to determine evolution in the mass distribution of disk galaxies, using spiral arm pitch angles as a quanitative indicator. In order to do this we will use nearly face-on disk galaxies with measurable spiral structure, observed in the GOODS fields.

  15. A Newly Recognized Very Young Supernova Remnant in M83

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Winkler, P. Frank; Long, Knox S.; Whitmore, Bradley C.; Kim, Hwihyun; Soria, Roberto; Kuntz, K. D.; Plucinsky, Paul P.; Dopita, Michael A.; Stockdale, Christopher

    2015-01-01

    As part of a spectroscopic survey of supernova remnant candidates in M83 using the Gemini-South telescope and GMOS, we have discovered one object whose spectrum shows very broad lines at Halpha, [O I] 6300, and [O III] 5007, similar to those from other objects classified as `late time supernovae.' Although six historical supernovae have been observed in M83 since 1923, none were seen at the location of this object. Hubble Space Telescope Wide Field Camera 3 images show a nearly unresolved emission source, while Chandra and ATCA data reveal a bright X-ray source and nonthermal radio source at the position. Objects in other galaxies showing similar spectra are only decades post-supernova, which raises the possibility that the supernova that created this object occurred during the last century but was not observed. Using photometry of nearby stars from the HST data, we suggest the precursor was at least 17 M(sun), and the presence of broad Halpha in the spectrum makes a type II supernova likely. The supernova must predate the 1983 VLA radio detection of the object. We suggest examination of archival images of M83 to search for evidence of the supernova event that gave rise to this object, and thus provide a precise time since the explosion.We acknowledge STScI grants under the umbrella program ID GO-12513 to Johns Hopkins University, STScI, and Middlebury College. PFW acknowledges additional support from the National Science Foundation through grant AST-0908566.

  16. Radio Continuum Mapping of the Spiral Galaxy NGC 4321

    NASA Astrophysics Data System (ADS)

    Hyman, Scott D.; Weiler, Kurt W.; van Dyk, Schuyler D.; Sramek, Richard A.; Liang, Wenhui

    1994-12-01

    We have combined numerous, short radio continuum observations of the Virgo Cluster spiral galaxy NGC 4321 (M 100) made at 20 and 6 cm with the Very Large Array (VLA) to produce a deep map of the galaxy. These observations were originally taken for monitoring the radio supernova SN 1979C (Weiler et al. 1986, ApJ, 310, 790; 1991, ApJ, 380, 161) and is analogous to our recent work on NGC 6946 (Hyman et al. 1993, BAAS 25, 1322) using observations taken for monitoring SN 1980K. The maps we derive for NGC 4321 are of superior sensitivity (sigma ~ lt 0.05 mJy/beam at 20 cm) and spatial resolution ( ~ 2" at 20 cm) to those previously published by other investigators (e. g., Knapen et al. 1993, ApJ, 416, 563). We present preliminary measurements and analyses of detected thermal and nonthermal sources, including flux densities, spectral indices, and luminosities, particularly for the very strong circumnuclear radio source, known as a site of intense star formation (e. g., Arsenault et al. 1988, A&A, 200, 29). We also make comparisons of our radio maps with existing data at other wavelengths.

  17. Disk mass densities in edge-on spiral galaxies

    NASA Technical Reports Server (NTRS)

    Rupen, Michael P.

    1990-01-01

    Very Large Array (VLA) observations of the neutral hydrogen (HI) gas in two nearby edge-on spirals (NGC 4565 and NGC 891) successfully resolve the thickness of the gas layers in both disks over a wide range in radii. The combination of B, C, and D array data produces a 4 arcsec (approx. 200 pc) beam and 21 km s(exp -1) velocity resolution, combined with sensitivity to structures as large as 18 arcmin (approx. 54 kpc). These observations directly constrain the mid-plane disk mass densities, under the assumption of an equilibrium between the thermal pressure of the gas and the gravitational attraction of the disk. The results of a preliminary analysis are given regarding the z-velocity dispersion of the gas, the mass-to-light ratio of the disk in NGC 4565, and the roles of atomic and molecular gases. The data also allow a detailed study of the HI in these galaxies; in general their brightness temperature distributions seem similar to that in the Milky Way. Both galaxies show asymmetric HI extensions beyond the optical disk. In NGC 4565 the extension is a surprisingly abrupt warp, which may bend back to parallel the galactic plane; the velocity structure implies the warp is continuous around the disk.

  18. The relationship of galaxy morphology to nuclear star formation in non-interacting spiral galaxies

    SciTech Connect

    Pompea, S.M.

    1989-01-01

    Three specific questions concerning the relationship between galactic morphology and infrared properties were addressed for noninteracting galaxies: (1) the scarcity of high infrared luminosity Sa galaxies compared to Sb and Sc; (2) the relationship between the bulge to total luminosity and the infrared properties of early type spirals; and (3) nuclear star formation processes in noninteracting galaxies. These questions were answered using IRAS data, CO (1 to 0) measurements, 2 micron, 10 micron, and visible CCD observations. Only four percent of Sa's in the Revised Shapley-Ames Catalog (RSAC) with B(gamma) is less than 12 have infrared luminosities 1/6th of the ratio for Sb's and Sc's. Less than three Sa's of 166 in the RSAC have nuclear starbursts not associated with interactions or active nuclei. A comparison of neutral hydrogen fluxes and CO fluxes with infrared fluxes implies that molecular cloud formation is inhibited in Sa's, leading to the lack of infrared activity. An investigation of the role of bulges in suppressing star formation in Sa through Sb spirals relied on the photometric observations of Kent, Kodaira, and Cornell and on IRAS infrared observatories. The results indicate that disk star formation is relatively unaffected by bulge size. The hypothesis that high far-infrared luminosities in noninteracting galaxies are dependent on material fed into the nuclei by bars was tested by near infrared imaging of a sample of 15 optically unbarred galaxies in a search for hidden bars. At least 8 of these galaxies do not appear to have bars. Strong bars therefore are not an absolute requirement for high infrared luminosity.

  19. Spiral- and bar-driven peculiar velocities in Milky Way-sized galaxy simulations

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Bovy, Jo; Kawata, Daisuke; Hunt, Jason A. S.; Famaey, Benoit; Siebert, Arnaud; Monari, Giacomo; Cropper, Mark

    2015-10-01

    We investigate the kinematic signatures induced by spiral and bar structure in a set of simulations of Milky Way-sized spiral disc galaxies. The set includes test particle simulations that follow a quasi-stationary density wave-like scenario with rigidly rotating spiral arms, and N-body simulations that host a bar and transient, corotating spiral arms. From a location similar to that of the Sun, we calculate the radial, tangential and line-of-sight peculiar velocity fields of a patch of the disc and quantify the fluctuations by computing the power spectrum from a two-dimensional Fourier transform. We find that the peculiar velocity power spectrum of the simulation with a bar and transient, corotating spiral arms fits very well to that of APOGEE red clump star data, while the quasi-stationary density wave spiral model without a bar does not. We determine that the power spectrum is sensitive to the number of spiral arms, spiral arm pitch angle and position with respect to the spiral arm. However, it is necessary to go beyond the line-of-sight velocity field in order to distinguish fully between the various spiral models with this method. We compute the power spectrum for different regions of the spiral discs, and discuss the application of this analysis technique to external galaxies.

  20. Spiral Galaxy Mass Models and the Distance Scale

    NASA Astrophysics Data System (ADS)

    Palunas, P.; Williams, T. B.

    1993-12-01

    We present mass models for a sample of Freeman Type I spiral galaxies taken from the southern sky Fabry-Perot Tully-Fisher survey(Schommer \\etal 1993, Bothun \\etal 1992). We fit two component, bulge and disk, photometric models directly to I- and R-band images. The bulge model is a series expansion of Gaussians (a Gabor expansion): each Gaussian in the series has a common center, ellipticity and position angle. The position angle is fixed to be the same as that of the disk. We have found that a deVaucouleurs law does not give a good fit to the bulges of many disk galaxies. The disk model is an exponential with the same center as the bulge. Small-scale radial structure is included in the disk mass model by azimuthally averaging the residuals of the analytic fit in annuli with the same ellipticity and position angle of the disk. Fitting to the full 2-d images helps constrain the disk-bulge deconvolution by using the information in the different ellipticities well as the different radial profiles of the disk and bulge. The photometric model is fitted to the rotation curve assuming a maximum disk and constant mass-to-light ratios for disk and bulge components. The small scale structure in the photometric models is found to reproduce the structure in the rotation curve in many galaxies. We find approximately 15 percent rms scatter in the I-band mass-to-light ratios, as well as correlations to the detailed properties of the kinematics indicating that mass-to-light ratios may be useful in reducing the scatter in the Tully-Fisher relation. Bothun, G.D., Schommer, R.A., Williams, T.B., Mould J.R., Huchra, J.P. 1992, Ap.J., 388, 253. Schommer, R.A., Bothun, G.D., Williams, T.B., Mould J.R. 1993, A.J., 105, 97.

  1. Spectrophotometry of H II regions in the spiral galaxy M101.

    PubMed

    Sedwick, K E; Aller, L H

    1981-04-01

    Spectral line intensity data are presented for ionized hydrogen regions in the giant spiral galaxy M101. The influence of interstellar extinction is assessed and electron temperatures of the gas clouds are derived.

  2. Spectrophotometry of H II regions in the spiral galaxy M101

    PubMed Central

    Sedwick, K. E.; Aller, L. H.

    1981-01-01

    Spectral line intensity data are presented for ionized hydrogen regions in the giant spiral galaxy M101. The influence of interstellar extinction is assessed and electron temperatures of the gas clouds are derived. Images PMID:16592999

  3. THE RESOLVED STELLAR POPULATION IN 50 REGIONS OF M83 FROM HST/WFC3 EARLY RELEASE SCIENCE OBSERVATIONS

    SciTech Connect

    Kim, Hwihyun; Cohen, Seth H.; Windhorst, Rogier A.; Whitmore, Bradley C.; Mutchler, Max; Bond, Howard E.; Chandar, Rupali; Saha, Abhijit; Kaleida, Catherine C.; Calzetti, Daniela; O'Connell, Robert W.; Balick, Bruce; Carollo, Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; and others

    2012-07-01

    We present a multi-wavelength photometric study of {approx}15,000 resolved stars in the nearby spiral galaxy M83 (NGC 5236, D = 4.61 Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters: F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260 pc by 280 pc) in the spiral arm and inter-arm areas of M83 and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction toward each individual star by comparing its colors with predictions from stellar isochrones. We compare the resulting luminosity-weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with the scenario that star formation is associated with the spiral arms, and stars form primarily in star clusters and then disperse on short timescales to form the field population. The locations of Wolf-Rayet stars are found to correlate with the positions of many of the youngest regions, providing additional support for our ability to accurately estimate ages. We address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected.

  4. The Resolved Stellar Population in 50 Regions of M83 from HST/WFC3 Early Release Science Observations

    NASA Technical Reports Server (NTRS)

    Kim, Hwihyun; Whitmore, Bradley C.; Chandar, Rupali; Saha, Abhijit; Kaleida, Catherine C.; Mutchler, Max; Cohen, Seth H.; Calzetti, Daniela; O’Connell, Robert W.; Windhorst, Rogier A.; Balick, Bruce; Bond, Howard E.; Carollo, Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; Paresce, Francesco; Silk, Joe I; Trauger, John T.; Walker, Alistair R.; Young, Erick T.

    2012-01-01

    We present a multi-wavelength photometric study of approximately 15,000 resolved stars in the nearby spiral galaxy M83 (NGC 5236, D = 4.61 Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters: F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260 pc by 280 pc) in the spiral arm and inter-arm areas of M83 and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction toward each individual star by comparing its colors with predictions from stellar isochrones.We compare the resulting luminosity-weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with the scenario that star formation is associated with the spiral arms, and stars form primarily in star clusters and then disperse on short timescales to form the field population. The locations ofWolf-Rayet stars are found to correlate with the positions of many of the youngest regions, providing additional support for our ability to accurately estimate ages. We address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected.

  5. The Resolved Stellar Population in 50 Regions of M83 from HST/WFC3 Early Release Science Observations

    NASA Astrophysics Data System (ADS)

    Kim, Hwihyun; Whitmore, Bradley C.; Chandar, Rupali; Saha, Abhijit; Kaleida, Catherine C.; Mutchler, Max; Cohen, Seth H.; Calzetti, Daniela; O'Connell, Robert W.; Windhorst, Rogier A.; Balick, Bruce; Bond, Howard E.; Carollo, Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; Paresce, Francesco; Silk, Joe I.; Trauger, John T.; Walker, Alistair R.; Young, Erick T.

    2012-07-01

    We present a multi-wavelength photometric study of ~15,000 resolved stars in the nearby spiral galaxy M83 (NGC 5236, D = 4.61 Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters: F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260 pc by 280 pc) in the spiral arm and inter-arm areas of M83 and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction toward each individual star by comparing its colors with predictions from stellar isochrones. We compare the resulting luminosity-weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with the scenario that star formation is associated with the spiral arms, and stars form primarily in star clusters and then disperse on short timescales to form the field population. The locations of Wolf-Rayet stars are found to correlate with the positions of many of the youngest regions, providing additional support for our ability to accurately estimate ages. We address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected.

  6. Kinematics of the nuclear region of M83

    NASA Astrophysics Data System (ADS)

    Rodrigues, I.; Díaz, R. J.; Dottori, H.; Mediavilla, E.; Agüero, M. P.; Mast, D.

    2006-06-01

    The enormous energy output detected in many cores of galaxies is one of the key issues in the studies of galaxies and their evolution, notwithstanding several questions remain unsolved: Are accretion onto super-massive black holes and violent star formation just coevolving phenomena or necessary partners of the activity? How is the detailed physics of the mechanisms triggering the nuclear extended violent star formation? Which is the relationship of the triggering mechanisms with galaxy evolution? The main drawback to face these issues is that developed stages of large star formation events at galactic centres do not provide enough clues about their origin, since the morphological signatures of the triggering mechanism are smeared out in the time scale of a few orbital revolutions of the galaxy core. Here we present the onset of such an event undergone by M83, a galaxy nearby enough to allow detailed spatial cinematic and morphological studies. High resolution 3D near-IR spectroscopy sugests the capture of a satellite galaxy, whose spur left behind a giant nuclear arc of violent star formation. The age gradient within the arc supports that this structure traces the orbital path of the intruder. Our numerical modelling indicates that the two nuclei would coalesce in less than 50 Myr.

  7. STELLAR ORBITAL STUDIES IN NORMAL SPIRAL GALAXIES. I. RESTRICTIONS TO THE PITCH ANGLE

    SciTech Connect

    Perez-Villegas, A.; Pichardo, B.; Moreno, E.

    2013-08-01

    We built a family of non-axisymmetric potential models for normal non-barred or weakly barred spiral galaxies as defined in the simplest classification of galaxies: the Hubble sequence. For this purpose, a three-dimensional self-gravitating model for the spiral arm PERLAS is superimposed on the galactic axisymmetric potentials. We analyze the stellar dynamics varying only the pitch angle of the spiral arms, from 4 Degree-Sign to 40 Degree-Sign for an Sa galaxy, from 8 Degree-Sign to 45 Degree-Sign for an Sb galaxy, and from 10 Degree-Sign to 60 Degree-Sign for an Sc galaxy. Self-consistency is indirectly tested through periodic orbital analysis and through density response studies for each morphological type. Based on ordered behavior, periodic orbit studies show that, for pitch angles up to approximately 15 Degree-Sign , 18 Degree-Sign , and 20 Degree-Sign for Sa, Sb, and Sc galaxies, respectively, the density response supports the spiral arms' potential, a requisite for the existence of a long-lasting large-scale spiral structure. Beyond those limits, the density response tends to ''avoid'' the potential imposed by maintaining lower pitch angles in the density response; in that case, the spiral arms may be explained as transient features rather than long-lasting large-scale structures. In a second limit, from a phase-space orbital study based on chaotic behavior, we found that for pitch angles larger than {approx}30 Degree-Sign , {approx}40 Degree-Sign , and {approx}50 Degree-Sign for Sa, Sb, and Sc galaxies, respectively, chaotic orbits dominate the all phase-space prograde region that surrounds the periodic orbits sculpting the spiral arms and even destroying them. This result seems to be in good agreement with observations of pitch angles in typical isolated normal spiral galaxies.

  8. SpArcFiRe: Scalable automated detection of spiral galaxy arm segments

    SciTech Connect

    Davis, Darren R.; Hayes, Wayne B. E-mail: whayes@uci.edu

    2014-08-01

    Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy (possibly masking nearby stars and other objects if necessary in order to isolate the galaxy itself) and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment, allowing image analysis on a per-arm-segment basis. We also perform a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, location, etc. The algorithm takes about one minute per galaxies, and can easily be scaled using parallelism. We have run it on all ∼644,000 Sloan objects that are larger than 40 pixels across and classified as 'galaxies'. We find a very good correlation between our quantitative description of a spiral structure and the qualitative description provided by Galaxy Zoo humans. Our objective, quantitative measures of structure demonstrate the difficulty in defining exactly what constitutes a spiral 'arm', leading us to prefer the term 'arm segment'. We find that pitch angle often varies significantly segment-to-segment in a single spiral galaxy, making it difficult to define the pitch angle for a single galaxy. We demonstrate how our new database of arm segments can be queried to find galaxies satisfying specific quantitative visual criteria. For example, even though our code does not explicitly find rings, a good surrogate is to look for galaxies having one long, low-pitch-angle arm—which is how our code views ring galaxies. SpArcFiRe is available at http://sparcfire.ics.uci.edu.

  9. HUBBLE OBSERVES SPIRAL GAS DISK IN ACTIVE GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope image of a spiral-shaped disk of hot gas in the core of active galaxy M87. HST measurements show the disk is rotating so rapidly it contains a massive black hole at its hub. A black hole is an object that is so massive yet compact nothing can escape its gravitational pull, not even light. The object at the center of M87 fits that description. It weights as much as three billion suns, but is concentrated into a space no larger than our solar system. Now that astronomers have seen the signature of the tremendous gravitational field at the center of M87, it is clear that the region contains only a fraction of the number of stars that would be necessary to create such a powerful attraction. The giant elliptical galaxy M87 is located 50 million light-years away in the constellation Virgo. Earlier observations suggested the black hole was present, but were not decisive. A brilliant jet of high- speed electrons that emits from the nucleus (diagonal line across image) is believed to be produced by the black hole 'engine.' The image was taken with HST's Wide Field Planetary Camera 2 Credit: Holland Ford, Space Telescope Science Institute/Johns Hopkins University; Richard Harms, Applied Research Corp.; Zlatan Tsvetanov, Arthur Davidsen, and Gerard Kriss at Johns Hopkins; Ralph Bohlin and George Hartig at Space Telescope Science Institute; Linda Dressel and Ajay K. Kochhar at Applied Research Corp. in Landover, Md.; and Bruce Margon from the University of Washington in Seattle. NASA PHOTO CAPTION STScI-PR94-23a

  10. The Nuclear Ring in the Barred Spiral Galaxy IC 4933

    NASA Astrophysics Data System (ADS)

    Ryder, Stuart D.; Illingworth, Samuel M.; Sharp, Robert G.; Farage, Catherine L.

    2010-03-01

    We present infrared imaging from IRIS2 on the Anglo-Australian Telescope that shows the barred spiral galaxy IC 4933 has not just an inner ring encircling the bar, but also a star-forming nuclear ring 1.5 kpc in diameter. Imaging in the u' band with GMOS on Gemini South confirms that this ring is not purely an artifact due to dust. Optical and near-infrared colours alone however cannot break the degeneracy between age, extinction, and burst duration that would allow the star formation history of the ring to be unraveled. Integral field spectroscopy with the GNIRS spectrograph on Gemini South shows the equivalent width of the Paβ line to peak in the north and south quadrants of the ring, indicative of a bipolar azimuthal age gradient around the ring. The youngest star-forming regions do not appear to correspond to where we expect to find the contact points between the offset dust lanes and the nuclear ring unless the nuclear ring is oval in shape, causing the contact points to lead the bar by more than 90°.

  11. The Chemical Anatomy of Nuclei of Nearby Barred Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Meier, D. S.; Turner, J. L.

    2004-12-01

    We present images of the millimeter lines of eight molecules---C2H, C34S, N2H+, CH3OH, HNCO, HNC, HC3N, and SO---in the nuclei of the nearby barred spiral galaxies, IC 342 and Maffei 2, made with the OVRO and BIMA arrays. These maps are compared to obtain a picture of changes in chemistry on sizescales of individual giant molecular clouds (GMCs) within a nucleus and between nuclei of similar morphological type. Emission from all species except SO are detected in both galaxies. Marked differences in morphology between the observed species are seen in both galaxies. A principal component analysis (PCA) is performed to quantify differences among the images. In IC 342, the PCA reveals that while all molecules are zeroth order correlated, that is, trace dense GMCs, there are three distinct groups of molecules distinguished by the location of their emission within the nucleus. N2H+ and HNC are widespread and bright, tracing all of the GMCs. C2H and C34S, tracers of photo-dissociation region chemistry, originate exclusively from the central ˜ 5'' ring illuminated by the 60 Myr, massive central cluster. CH3OH (and HNCO), a typical tracer of grain processing, correlates well with the expected locations of bar-induced orbital shocks. In Maffei 2, the PCA demonstrates that its chemistry is quite similar to IC 342, with the molecules tending to couple together in the same groups and with the same structural components of the nucleus. C2H dominates from the central starburst region, but is significantly more extended than IC 342 because its star formation is more extended. The correlation between HNCO and CH3OH in Maffei 2 is even strongly than in IC 342, being entirely dominated by the bar ends and orbit intersections. This provides strong evidence that HNCO is formed by the same processes as CH3OH. Funding for this research is provided by the Laboratory for Astronomical Imaging at the University of Illinois through the NSF grant AST-0228953, and by NSF grants AST-0071276 and

  12. Galactic Scale Flows and the Triggering of Star Formation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ramón-Fox, F. G.; Bonnell, I. A.

    2016-06-01

    Galactic scale gas flows feed the growth of molecular clouds where stars form in high-density cores. Large scale flows also play a role in injecting the energy that drives the internal dynamics of these clouds, which affects their overall stability and star formation activity. The triggering of star formation involves a connection between large and small-scale dynamical processes in galaxies, which can be explored using high-resolution hydrodynamical simulations. We present results of current work in high-resolution N-body and Smoothed Particle Hydrodynamics simulations of a model spiral galaxy with a realistic spiral arm morphology. These simulations allow to study gas flows in a self-consistent galaxy and their role on molecular cloud formation and growth. They also provide a ground for studying molecular cloud properties in different environments of a galaxy, the effects of spiral arms on large scale flows and for understanding global star formation relations.

  13. Dependence of Nebular Heavy-element Abundance on H I Content for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Shields, Gregory A.; Davé, Romeel; Blanc, Guillermo A.; Wright, Audrey

    2013-08-01

    We analyze the galactic H I content and nebular log (O/H) for 60 spiral galaxies in the Moustakas et al. (2006a) spectral catalog. After correcting for the mass-metallicity relationship, we show that the spirals in cluster environments show a positive correlation for log (O/H) on DEF, the galactic H I deficiency parameter, extending the results of previous analyses of the Virgo and Pegasus I clusters. Additionally, we show for the first time that galaxies in the field obey a similar dependence. The observed relationship between H I deficiency and galactic metallicity resembles similar trends shown by cosmological simulations of galaxy formation including inflows and outflows. These results indicate the previously observed metallicity-DEF correlation has a more universal interpretation than simply a cluster's effects on its member galaxies. Rather, we observe in all environments the stochastic effects of metal-poor infall as minor mergers and accretion help to build giant spirals.

  14. DEPENDENCE OF NEBULAR HEAVY-ELEMENT ABUNDANCE ON H I CONTENT FOR SPIRAL GALAXIES

    SciTech Connect

    Robertson, Paul; Shields, Gregory A.; Wright, Audrey; Dave, Romeel; Blanc, Guillermo A.

    2013-08-10

    We analyze the galactic H I content and nebular log (O/H) for 60 spiral galaxies in the Moustakas et al. (2006a) spectral catalog. After correcting for the mass-metallicity relationship, we show that the spirals in cluster environments show a positive correlation for log (O/H) on DEF, the galactic H I deficiency parameter, extending the results of previous analyses of the Virgo and Pegasus I clusters. Additionally, we show for the first time that galaxies in the field obey a similar dependence. The observed relationship between H I deficiency and galactic metallicity resembles similar trends shown by cosmological simulations of galaxy formation including inflows and outflows. These results indicate the previously observed metallicity-DEF correlation has a more universal interpretation than simply a cluster's effects on its member galaxies. Rather, we observe in all environments the stochastic effects of metal-poor infall as minor mergers and accretion help to build giant spirals.

  15. Spirality: Spiral arm pitch angle measurement

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Pfountz, Casey; Davis, Benjamin L.; Hartley, Matthew; Pour Imani, Hamed; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

    2015-12-01

    Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

  16. Herschel-ATLAS/GAMA: dusty early-type galaxies and passive spirals

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Dunne, L.; Maddox, S.; Bourne, N.; Gomez, H. L.; Kaviraj, S.; Bamford, S. P.; Brough, S.; Charlot, S.; da Cunha, E.; Driver, S. P.; Eales, S. A.; Hopkins, A. M.; Kelvin, L.; Nichol, R. C.; Sansom, A. E.; Sharp, R.; Smith, D. J. B.; Temi, P.; van der Werf, P.; Baes, M.; Cava, A.; Cooray, A.; Croom, S. M.; Dariush, A.; de Zotti, G.; Dye, S.; Fritz, J.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Liske, J.; Loveday, J.; Madore, B.; Norberg, P.; Popescu, C. C.; Rigby, E. E.; Robotham, A.; Rodighiero, G.; Seibert, M.; Tuffs, R. J.

    2012-01-01

    We present the dust properties and star formation histories of local submillimetre-selected galaxies, classified by optical morphology. Most of the galaxies are late types and very few are early types. The early-type galaxies (ETGs) that are detected contain as much dust as typical spirals, and form a unique sample that has been blindly selected at submillimetre wavelengths. Additionally, we investigate the properties of the most passive, dusty spirals. We morphologically classify 1087 galaxies detected in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) Science Demonstration Phase data. Comparing to a control sample of optically selected galaxies, we find 5.5 per cent of luminous ETGs are detected in H-ATLAS. The H-ATLAS ETGs contain a significant mass of cold dust: the mean dust mass is 5.5 × 107 M⊙, with individual galaxies ranging from 9 × 105 to 4 × 108 M⊙. This is comparable to that of spiral galaxies in our sample, and is an order of magnitude more dust than that found for the control early-types, which have a median dust mass inferred from stacking of (0.8-4.0) × 106 M⊙ for a cold dust temperature of 25-15 K. The early-types detected in H-ATLAS tend to have bluer NUV - r colours, higher specific star formation rates and younger stellar populations than early-types which are optically selected, and may be transitioning from the blue cloud to the red sequence. We also find that H-ATLAS and control early-types inhabit similar low-density environments. We investigate whether the observed dust in H-ATLAS early-types is from evolved stars, or has been acquired from external sources through interactions and mergers. We conclude that the dust in H-ATLAS and control ETGs cannot be solely from stellar sources, and a large contribution from dust formed in the interstellar medium or external sources is required. Alternatively, dust destruction may not be as efficient as predicted. We also explore the properties of the most passive spiral

  17. A spiral galaxy's mass distribution uncovered through lensing and dynamics

    NASA Astrophysics Data System (ADS)

    Trick, Wilma H.; van de Ven, Glenn; Dutton, Aaron A.

    2016-09-01

    We investigate the matter distribution of a spiral galaxy with a counter-rotating stellar core, SDSS J1331+3628 (J1331), independently with gravitational lensing and stellar dynamical modelling. By fitting a gravitational potential model to a quadruplet of lensing images around J1331's bulge, we tightly constrain the mass inside the Einstein radius Rein = (0.91 ± 0.02)″( ≃ 1.83 ± 0.04~kpc) to within 4%: Mein = (7.8 ± 0.3) × 1010M⊙. We model observed long-slit major axis stellar kinematics in J1331's central regions by finding Multi-Gaussian Expansion (MGE) models for the stellar and dark matter distribution that solve the axisymmetric Jeans equations. The lens and dynamical model are independently derived, but in very good agreement with each other around ˜Rein. We find that J1331's center requires a steep total mass-to-light ratio gradient. A dynamical model including a NFW halo (with virial velocity v200 ≃ 240 ± 40~kms-1 and concentration c200 ≃ 8 ± 2) and moderate tangential velocity anisotropy (βz ≃ -0.4 ± 0.1) can reproduce the signatures of J1331's counter-rotating core and predict the stellar and gas rotation curve at larger radii. However, our models do not agree with the observed velocity dispersion at large radii. We speculate that the reason could be a non-trivial change in structure and kinematics due to a possible merger event in J1331's recent past.

  18. Supernovae and their host galaxies - IV. The distribution of supernovae relative to spiral arms

    NASA Astrophysics Data System (ADS)

    Aramyan, L. S.; Hakobyan, A. A.; Petrosian, A. R.; de Lapparent, V.; Bertin, E.; Mamon, G. A.; Kunth, D.; Nazaryan, T. A.; Adibekyan, V.; Turatto, M.

    2016-07-01

    Using a sample of 215 supernovae (SNe), we analyse their positions relative to the spiral arms of their host galaxies, distinguishing grand-design (GD) spirals from non-GD (NGD) galaxies. We find that: (1) in GD galaxies, an offset exists between the positions of Ia and core-collapse (CC) SNe relative to the peaks of arms, while in NGD galaxies the positions show no such shifts; (2) in GD galaxies, the positions of CC SNe relative to the peaks of arms are correlated with the radial distance from the galaxy nucleus. Inside (outside) the corotation radius, CC SNe are found closer to the inner (outer) edge. No such correlation is observed for SNe in NGD galaxies nor for SNe Ia in either galaxy class; (3) in GD galaxies, SNe Ibc occur closer to the leading edges of the arms than do SNe II, while in NGD galaxies they are more concentrated towards the peaks of arms. In both samples of hosts, the distributions of SNe Ia relative to the arms have broader wings. These observations suggest that shocks in spiral arms of GD galaxies trigger star formation in the leading edges of arms affecting the distributions of CC SNe (known to have short-lived progenitors). The closer locations of SNe Ibc versus SNe II relative to the leading edges of the arms supports the belief that SNe Ibc have more massive progenitors. SNe Ia having less massive and older progenitors, have more time to drift away from the leading edge of the spiral arms.

  19. On the link between central black holes, bar dynamics and dark matter haloes in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Treuthardt, Patrick; Seigar, Marc S.; Sierra, Amber D.; Al-Baidhany, Ismaeel; Salo, Heikki; Kennefick, Daniel; Kennefick, Julia; Lacy, Claud H. S.

    2012-07-01

    The discovery of a relationship between supermassive black hole (SMBH) mass and spiral arm pitch angle (P) is evidence that SMBHs are tied to the overall secular evolution of a galaxy. The discovery of SMBHs in late-type galaxies with little or no bulge suggests that an underlying correlation between the dark matter halo concentration and SMBH mass (MBH) exists, rather than between the bulge mass and MBH. In this paper we measure P using a two-dimensional fast Fourier transform and estimate the bar pattern speeds of 40 barred spiral galaxies from the Carnegie-Irvine Galaxy Survey. The pattern speeds were derived by estimating the gravitational potentials of our galaxies from Ks-band images and using them to produce dynamical simulation models. The pattern speeds allow us to identify those galaxies with low central dark halo densities, or fast rotating bars, while P provides an estimate of MBH. We find that a wide range of MBH exists in galaxies with low central dark matter halo densities, which appears to support other theoretical results. We also find that galaxies with low central dark halo densities appear to follow more predictable trends in P versus de Vaucouleurs morphological type (T) and bar strength versus T than barred galaxies in general. The empirical relationship between MBH and total gravitational mass of a galaxy (Mtot) allows us to predict the minimum Mtot that will be observationally measured of our fast bar galaxies. These predictions will be investigated in a subsequent paper.

  20. Synthetic HI observations of spiral structure in the outer disk in galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey A.; Bertin, Giuseppe

    2015-12-01

    > By means of 3D hydrodynamical simulations, in a separate paper we have discussed the properties of non-axisymmetric density wave trains in the outermost regions of galaxy disks, based on the picture that self-excited global spiral modes in the bright optical stellar disk are accompanied by low-amplitude short trailing wave signals outside corotation; in the gas, such wave trains can penetrate through the outer Lindblad resonance and propagate outwards, forming prominent spiral patterns. In this paper we present the synthetic 21 cm velocity maps expected from simulated models of the outer gaseous disk, focusing on the case when the disk is dominated by a two-armed spiral pattern, but considering also other more complex situations. We discuss some aspects of the spiral pattern in the gaseous periphery of galaxy disks noted in our simulations that might be interesting to compare with specific observed cases.

  1. Variations in Metallicity and Gas Content in Spiral Galaxies: Accidents of Infall

    NASA Astrophysics Data System (ADS)

    Shields, Gregory A.; Robertson, P.; Dave, R.; Blanc, G. A.; Wright, A.

    2013-01-01

    Oxygen abundances are elevated in hydrogen deficient spirals in the Virgo and Pegasus clusters (Robertson et al. 2012, ApJ 748:48, and references therein). We confirm the relationship between O/H and H I deficiency "DEF" for an additional set of cluster spirals. In addition, we find that field spirals show a similar increase in O/H with DEF. Thus, the relationship is not uniquely the result of environmental processes in clusters. Cosmological simulations of galaxy formation predict a qualitatively similar trend of O/H with DEF for field spirals. This reflects excursions of gas content and metallicity above and below the mean mass-metallicity relationship as galaxies evolve. These excursions result from the stochastic effects of mergers and merger-free periods during the evolution.

  2. Effect of dark matter halo on global spiral modes in galaxies

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.

    2016-02-01

    Low surface brightness (LSB) galaxies form a major class of galaxies, and are characterized by low disc surface density and low star formation rate. These are known to be dominated by dark matter halo from the innermost regions. Here, we study the role of the dark matter halo on the grand-design, m = 2, spiral modes in a galactic disc by carrying out a global mode analysis in the WKB approximation. The Bohr-Sommerfeld quantization rule is used to determine how many discrete global spiral modes are permitted. First, a typical superthin, LSB galaxy UGC 7321 is studied by taking only the galactic disc, modelled as a fluid; and then the disc embedded in a dark matter halo. We find that both cases permit the existence of global spiral modes. This is in contrast to earlier results where the inclusion of dark matter halo was shown to nearly fully suppress local, swing-amplified spiral features. Although technically global modes are permitted in the fluid model as shown here, we argue that due to lack of tidal interactions, these are not triggered in LSB galaxies. For comparison, we carried out a similar analysis for the Galaxy, for which the dark matter halo does not dominate in the inner regions. We show that here too the dark matter halo has little effect, hence the disc embedded in a halo is also able to support global modes. The derived pattern speed of the global mode agrees fairly well with the observed value for the Galaxy.

  3. Deep UV Imaging of Stripped Spiral Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Crowl, Hugh

    We propose moderately deep GALEX observations (6 ksec) of eighteen gas-stripped Virgo Cluster spiral galaxies. These observations will give a complete sample of strongly stripped, highly inclined (i>70 degrees) Virgo spirals brighter than magnitude 16. Optical imaging and HI mapping show that these spirals all lack dust and gas in their outer disks, presumably due to ICM-ISM interactions. GALEX UV observations will provide critical information on how these interactions have affected recent star formation in the galaxies. The GALEX FUV and NUV data, particularly when combined with our existing multi-wavelength data set including broadband optical, H-alpha, and Spitzer IR imaging, and optical spectroscopy, will strongly constrain when a galaxy was stripped, how rapidly it was stripped, and the strength of any starburst at the time of stripping. The UV light changes dramatically over timescales of 0-500 Myr, which are the same timescales over which ICM-ISM interactions take place, making it possible to constrain the most recent effects of the cluster environment on galaxy evolution and if these effects can effectively drive the transformation of spirals into S0s. The deep imaging we propose will enable us to detect age gradients in the stellar populations of the outer disks, which will tell us how rapidly the galaxies are stripped. The cluster locations of recently stripped galaxies and the timescales over which the galaxies are stripped will allow us to constrain the relative importance of stripping that occurs during cluster core passages and stripping which occurs when galaxies encounter an ICM shock outside the core. Ten of these galaxies have already been imaged with GALEX, and we are requesting deep observations of these galaxies, in addition to time to image the remaining eight to the same depth.

  4. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Saftly, W.; Baes, M.; De Geyter, G.; Camps, P.; Renaud, F.; Guedes, J.; De Looze, I.

    2015-04-01

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sérsic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.

  5. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    SciTech Connect

    Singal, J.; Jones, E.; Dunlap, H.; Kogut, A.

    2015-01-20

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  6. Stellar content of nearby galaxies. III - The local group spiral galaxy M33

    NASA Technical Reports Server (NTRS)

    Wilson, Christine D.; Madore, Barry F.; Freedman, Wendy L.

    1990-01-01

    BVRI CCD photometry is presented for stars brighter than V = 21 mag in four fields in the nearby spiral galaxy M33. V vs (B - V) and I vs (V - I) color-magnitude diagrams clearly show both a young stellar population (as indicated by the blue main sequence and red supergiant plumes) as well as an intermediate-age population of asymptotic giant branch stars. Deep photometry in the outer field (where crowding is less severe) reveals a population consistent in color and magnitude with the tip of the first red giant branch. The M33 distance modulus, 24.6 + or - 0.3 mag, derived from this Population II component is consistent with a recent redetermination of the distance modulus found from Population I Cepheid variables. Finally, some evidence is presented for a radial gradient in the average internal reddening for the fields in M33 reported here.

  7. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  8. X-ray, optical, and radio properties of the extensive SNR population in M83

    NASA Astrophysics Data System (ADS)

    Blair, W.; Long, S. K.; Winkler, F.; Soria, R.; Kuntz, D. K.; Plucinsky, P. P.; Dopita, A. M.

    2016-06-01

    The nearly face-on spiral galaxy M83 (d=4.6 Mpc) provides a significant opportunity for finding and studying a large and diverse sample of SNRs all at the same distance, given its active star formation, a starburst nuclear region, and at least six SNe since 1923. As the result of a concerted effort involving ground and spaced-based studies at radio (ATCA), optical and NIR (Magellan 6.5m and HST), and X-ray (Chandra) wavelengths, we have identified almost 300 SNRs in M83. Of these, at least 87 and 47 were detected in the X-ray and radio bands. Some 227 of the SNR candidates are within the regions observed in [Fe II] 1.64 microns with HST WFC3/IR, and we detect ∼100 of them, including ~8 in dusty regions where the [Fe II] emission was the primary means of identification. Follow-up ground-based spectroscopy of 99 of the 300 SNRs with Gemini-S and the GMOS instrument shows that essentially all of the SNRs identified in ground-based imaging have the [S II]/Halpha ratios expected of bona fide SNRs, and that most of the SNRs in the sample are “normal ISM-dominated” SNRs, in the sense that the line widths are narrow and the spectra look like radiative shocks. We have studied a number of interesting individual SNRs and historical SNe counterparts, as well as investigating the ensemble population of nearly 300 SNRs to better understand their properties as a group, their evolution, and their impact on their host galaxy. Of particular interest is a set of the smallest diameter (and hence presumably youngest) objects measured with HST, where the 0.04arcsec WFC3-UVIS pixels correspond to ~1 pc. One SNR has very broad emission lines and given its small size, was most likely a SN that occurred during the last century but was missed. A number of the other objects are comparable to the Crab Nebula or Cas A in size, but very few show the high velocities and spectral signatures of ejecta. Rather, their spectra show low velocities and “normal” ISM-dominated emissions, albeit

  9. The relation between the gas, dust and total mass in edge-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Allaert, Flor

    2015-02-01

    Each component of a galaxy plays its own unique role in regulating the galaxy's evolution. In order to understand how galaxies form and evolve, it is therefore crucial to study the distribution and properties of each of the various components, and the links between them, both radially and vertically. The latter is only possible in edge-on systems. We present the HEROES project, which aims to investigate the 3D structure of the interstellar gas, dust, stars and dark matter in a sample of 7 massive early-type spiral galaxies based on a multi-wavelength data set including optical, NIR, FIR and radio data.

  10. A Comparative Study of Knots of Star Formation in Interacting versus Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Beverly J.; Zaragoza-Cardiel, Javier; Struck, Curtis; Olmsted, Susan; Jones, Keith

    2016-03-01

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  11. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. I. Discovery of low surface brightness systems around nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Javanmardi, B.; Martinez-Delgado, D.; Kroupa, P.; Henkel, C.; Crawford, K.; Teuwen, K.; Gabany, R. J.; Hanson, M.; Chonis, T. S.; Neyer, F.

    2016-04-01

    Context. We introduce the Dwarf Galaxy Survey with Amateur Telescopes (DGSAT) project and report the discovery of eleven low surface brightness (LSB) galaxies in the fields of the nearby galaxies NGC 2683, NGC 3628, NGC 4594 (M 104), NGC 4631, NGC 5457 (M 101), and NGC 7814. Aims: The DGSAT project aims to use the potential of small-sized telescopes to probe LSB features around large galaxies and to increase the sample size of the dwarf satellite galaxies in the Local Volume. Methods: Using long exposure images, fields of the target spiral galaxies are explored for extended LSB objects. After identifying dwarf galaxy candidates, their observed properties are extracted by fitting models to their light profiles. Results: We find three, one, three, one, one, and two new LSB galaxies in the fields of NGC 2683, 3628, 4594, 4631, 5457, and 7814, respectively. In addition to the newly found galaxies, we analyse the structural properties of nine already known galaxies. All of these 20 dwarf galaxy candidates have effective surface brightnesses in the range 25.3 ≲ μe ≲ 28.8 mag arcsec-2 and are fit with Sersic profiles with indices n ≲ 1. Assuming that they are in the vicinity of the above mentioned massive galaxies, their r-band absolute magnitudes, their effective radii, and their luminosities are in the ranges -15.6 ≲ Mr ≲ -7.8, 160 pc ≲ Re ≲ 4.1 kpc, and 0.1 × 106 ≲ (L/L⊙)r ≲ 127 × 106, respectively. To determine whether these LSB galaxies are indeed satellites of the above mentioned massive galaxies, their distances need to be determined via further observations. Conclusions: Using small telescopes, we are readily able to detect LSB galaxies with similar properties to the known dwarf galaxies of the Local Group.

  12. The role of interactions in triggering bars, spiral arms and AGN in disk galaxies

    NASA Astrophysics Data System (ADS)

    Nair, Preethi; Ellison, Sara L.; Patton, David R.

    2016-01-01

    The role of secular structures like bars, rings and spiral arms in triggering star formation and AGN activity in disk galaxies are not well understood. In addition, the mechanisms which create and destroy these structures are not well characterized. Mergers are considered to be one of the main mechanisms which can trigger bars in massive disk galaxies. Using a sample of ~8000 close pair galaxies at 0.02 < z < 0.06 from the Sloan Digital Sky Survey, I will present results illustrating the role of mergers in triggering bars, rings, spiral arms and AGN as a function of close pair separation and merger ratios as well as their dependence on morphology and other physical properties of the galaxies. Time permitting, I will show how resolved IFU observations from SDSS MaNGA will help to place stronger constraints on the role of these structures in triggering star formation and AGN.

  13. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    SciTech Connect

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2015-01-01

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.

  14. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-04-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  15. Gas distribution, star formation and giant molecular cloud evolution in nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Rebolledo Lara, David Andres

    2013-12-01

    In this thesis, I present a detailed study of the resolved properties of the cold gas in nearby galaxies at different size scales, starting from the whole galactic disk to the size of the Giant Molecular Clouds (GMCs). Differences in the shape and width of global CO and HI spectra of resolved disks of spiral galaxies are systematically investigated using a nearby sample for which high-resolution CO and HI maps are available. I find that CO line widths can be wider than HI widths in galaxies where the rotation curve declines in the outer parts, while they can be narrower in galaxies where the CO does not adequately sample the flat part of the rotation curve. Limited coverage of the CO emission by the telescope beam can mimic the latter effect. A physically based prescription linking the CO and HI radial profiles with the stellar disk is consistent with these findings. Then, I present an analysis performed on high spatial resolution observations of Giant Molecular Clouds in the three nearby spiral galaxies NGC 6946, NGC 628 and M101 obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Using the automated CPROPS algorithm I identified 112 CO cloud complexes in the CO(1 → 0) map and 145 GMCs in the CO(2 → 1) maps. The properties of the GMCs are similar to values found in other extragalactic studies. Clouds located on-arm present in general higher star formation rates than clouds located in inter-arm regions. Also, I find differences in the distribution of star formation efficiencies in the disk of these galaxies. These differences may be related to the underlying dynamical process that drives the observed spiral arm structure in the disks. In this scenario, in galaxies with nearly symmetric arm shape (e. g., NGC 628), the spiral shocks are triggering star formation along the arms. On other hand, galaxies with flocculent or multi-arm spiral structure (e. g., NGC 6946 and M101) show regions of high star formation efficiency at specific

  16. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  17. XMM-NEWTON DETECTS A HOT GASEOUS HALO IN THE FASTEST ROTATING SPIRAL GALAXY UGC 12591

    SciTech Connect

    Dai Xinyu; Anderson, Michael E.; Bregman, Joel N.; Miller, Jon M.

    2012-08-20

    We present our XMM-Newton observation of the fastest rotating spiral galaxy UGC 12591. We detect hot gas halo emission out to 80 kpc from the galaxy center, and constrain the halo gas mass to be smaller than 4.5 Multiplication-Sign 10{sup 11} M{sub Sun }. We also measure the temperature of the hot gas as T = 0.64 {+-} 0.03 keV. Combining our x-ray constraints and the near-infrared and radio measurements in the literature, we find a baryon mass fraction of 0.03-0.05 in UGC 12591, suggesting a missing baryon mass of 70% compared with the cosmological mean value. Combined with another recent measurement in NGC 1961, the result strongly argues that the majority of missing baryons in spiral galaxies do not reside in their hot halos. We also find that UGC 12591 lies significantly below the baryonic Tully-Fisher relationship. Finally, we find that the baryon fractions of massive spiral galaxies are similar to those of galaxy groups with similar masses, indicating that the baryon loss is ultimately controlled by the gravitational potential well. The cooling radius of this gas halo is small, similar to NGC 1961, which argues that the majority of the stellar mass of this galaxy is not assembled as a result of cooling of this gas halo.

  18. Hα kinematics of S4G spiral galaxies - II. Data description and non-circular motions

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Leaman, Ryan; Cisternas, Mauricio; Font, Joan; Beckman, John E.; Sheth, Kartik; Muñoz-Mateos, Juan Carlos; Díaz-García, Simón; Bosma, Albert; Athanassoula, E.; Elmegreen, Bruce G.; Ho, Luis C.; Kim, Taehyun; Laurikainen, Eija; Martinez-Valpuesta, Inma; Meidt, Sharon E.; Salo, Heikki

    2015-07-01

    We present a kinematical study of 29 spiral galaxies included in the Spitzer Survey of Stellar Structure in Galaxies, using Hα Fabry-Perot (FP) data obtained with the Galaxy Hα Fabry-Perot System instrument at the William Herschel Telescope in La Palma, complemented with images in the R band and in Hα. The primary goal is to study the evolution and properties of the main structural components of galaxies through the kinematical analysis of the FP data, complemented with studies of morphology, star formation and mass distribution. In this paper we describe how the FP data have been obtained, processed and analysed. We present the resulting moment maps, rotation curves, velocity model maps and residual maps. Images are available in FITS format through the NASA/IPAC Extragalactic Database and the Centre de Données Stellaires. With these data products we study the non-circular motions, in particular those found along the bars and spiral arms. The data indicate that the amplitude of the non-circular motions created by the bar does not correlate with the bar strength indicators. The amplitude of those non-circular motions in the spiral arms does not correlate with either arm class or star formation rate along the spiral arms. This implies that the presence and the magnitude of the streaming motions in the arms is a local phenomenon.

  19. The molecular gas content of spiral galaxies in the Coma/A1367 supercluster.

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Gavazzi, G.; Lequeux, J.; Buat, V.; Casoli, F.; Dickey, J.; Donas, J.

    1997-11-01

    We present ^12^CO(J=1-0) line observations of 73 spiral galaxies mostly in the Coma/A1367 supercluster. From these data, combined with data available in the literature, we extract the first complete, optically selected sample (m_pg_<15.2) of 37 isolated and of 27 cluster galaxies. Adopting a standard conversion factor X=N(H_2_)/I(CO), we estimate that the molecular hydrogen content of isolated spiral galaxies is, on average, 20% of the atomic hydrogen reservoir, significantly lower than previous estimates based on samples selected by FIR criteria, thus biased towards CO rich objects. We show that the frequency distributions of the CO deficiency parameter, defined as the difference between the expected and the observed molecular gas content of a galaxy of given luminosity (or linear diameter), computed separately for cluster and isolated galaxies, are not significantly different, indicating that the environment does not affect the molecular gas content of spiral discs. A well defined relationship exists between M_i_(H_2_) and the star formation activity in bright galaxies, while it is weaker at lower luminosities. We interpret this finding as indicating that CO emission traces relatively well the H_2_ mass only in high-mass galaxies, such as the Milky Way. On the other hand, in low-mass spirals the higher far-UV radiation field produced by young O-B stars and the lower metallicity cause the photodissociation of the diffuse molecular gas, weakening the expected relationship between star formation and the CO emission. The conversion factor between the CO line intensity and the amount of molecular hydrogen being ill-determined and variable with the UV flux and abundances, it is difficult to assess the relationship between the star formation and the amount of molecular hydrogen.

  20. Long-lived Spiral Structure for Galaxies with Intermediate-size Bulges

    NASA Astrophysics Data System (ADS)

    Saha, Kanak; Elmegreen, Bruce

    2016-08-01

    Spiral structure in disk galaxies is modeled with nine collisionless N-body simulations including live disks, halos, and bulges with a range of masses. Two of these simulations make long-lasting and strong two-arm spiral wave modes that last for ˜5 Gyr with constant pattern speed. These two had a light stellar disk and the largest values of the Toomre Q parameter in the inner region at the time the spirals formed, suggesting the presence of a Q-barrier to wave propagation resulting from the bulge. The relative bulge mass in these cases is about 10%. Models with weak two-arm spirals had pattern speeds that followed the radial dependence of the Inner Lindblad Resonance.

  1. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-09-22

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. PMID:21881560

  2. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution.

  3. THE DISCOVERY OF SEVEN EXTREMELY LOW SURFACE BRIGHTNESS GALAXIES IN THE FIELD OF THE NEARBY SPIRAL GALAXY M101

    SciTech Connect

    Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 mag arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.

  4. New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Not so long ago, the real nature of the "spiral nebulae", spiral-shaped objects observed in the sky through telescopes, was still unknown. This long-standing issue was finally settled in 1924 when the famous American astronomer Edwin Hubble provided conclusive evidence that they are located outside our own galaxy and are in fact "island universes" of their own. Nowadays, we know that the Milky Way is just one of billions of galaxies in the Universe. They come in vastly different shapes - spiral, elliptical, irregular - and many of them are simply beautiful, especially the spiral ones. Astronomers Mark Neeser from the Universitäts-Sternwarte München (Germany) and Peter Barthel from the Kapteyn Institute in Groningen (The Netherlands) were clearly not insensitive to this when they obtained images of three beautiful spiral galaxies with ESO's Very Large Telescope (VLT). They did this in twilight during the early morning when they had to stop their normal observing programme, searching for very distant and faint quasars. The resulting colour images ( ESO PR Photos 33a-c/03 ) were produced by combining several CCD images in three different wavebands from the FORS multi-mode instruments. The three galaxies are known as NGC 613, NGC 1792 and NGC 3627 . They are characterized by strong far-infrared, as well as radio emission, indicative of substantial ongoing star-formation activity. Indeed, these images all display prominent dust as well as features related to young stars, clear signs of intensive star-formation. NGC 613 ESO PR Photo 33a/03 ESO PR Photo 33a/03 [Preview - JPEG: 470 x 400 pix - 25k] [Normal - JPEG: 939 x 800 pix - 416k] [Full Res - JPEG: 2702 x 2301 pix - 3.4M] PR Photo 33a/03 of the barred spiral galaxy NGC 613 was obtained with the FORS1 and FORS2 multi-mode instruments (at VLT MELIPAL and YEPUN, respectively) on December 16-18, 2001. It is a composite of three exposures in different wavebands, cf. the technical note below. The full-resolution version

  5. Individual QSOs, Groups, & Clusters of High Redshift QSOs Associated with Low Redshift Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Burbidge, Geoffrey; Napier, W.

    2009-01-01

    Starting more than forty years ago it was found by Arp and others that many high redshift QSOs lie very close to comparatively nearby spiral galaxies. As time has gone on the implication of these results have been ignored. Implicitly they have been assumed to be accidental configurations. By now there are so many data, sometimes involving clusters of high z QSOs, that the data requires re-examination. We have done this using conservative statistical methods. We have concluded that the physical associations are real and thus it appears that QSOs are being ejected from spiral galaxies which often show other aspects of activity. Some examples of these phenomena will be described. Thus despite the fact that most investigators continue to use QSOs for cosmological investigations, the results are doomed to failure. Even more important the nature of the high redshifts of QSOs (but not the redshifts of normal galaxies) remains a puzzle yet to be solved.

  6. The Near-Infrared Ca II Triplet-σ Relation for Bulges of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Peletier, Reynier F.; Vazdekis, Alexandre; Balcells, Marc

    2003-05-01

    We present measurements of the near-infrared Ca II triplet (CaT, CaT*), Paschen (PaT), and magnesium (Mg I) indices for a well-studied sample of 19 bulges of early to intermediate spiral galaxies. We find that both the CaT* and CaT indices decrease with central velocity dispersion σ with small scatter. This dependence is similar to that recently found by Cenarro for elliptical galaxies, implying a uniform CaT*-σ relation that applies to galaxies from ellipticals to intermediate-type spirals. The decrease of CaT and CaT* with σ contrasts with the well-known increase of another α-element index, Mg2, with σ. We discuss the role of Ca underabundance ([Ca/Fe]<0) and initial mass function variations in the onset of the observed relations.

  7. Megamaser Disks Reveal a Broad Distribution of Black Hole Mass in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Seth, A.; Kim, M.; Läsker, R.; Goulding, A.; Gao, F.; Braatz, J. A.; Henkel, C.; Condon, J.; Lo, K. Y.; Zhao, W.

    2016-08-01

    We use new precision measurements of black hole (BH) masses from water megamaser disks to investigate scaling relations between macroscopic galaxy properties and supermassive BH mass. The megamaser-derived BH masses span 106-108 {M}⊙ , while all the galaxy properties that we examine (including total stellar mass, central mass density, and central velocity dispersion) lie within a narrower range. Thus, no galaxy property correlates tightly with {M}{BH} in ˜L* spiral galaxies as traced by megamaser disks. Of them all, stellar velocity dispersion provides the tightest relation, but at fixed {σ }* the mean megamaser {M}{BH} are offset by -0.6 ± 0.1 dex relative to early-type galaxies. Spiral galaxies with non-maser dynamical BH masses do not appear to show this offset. At low mass, we do not yet know the full distribution of BH mass at fixed galaxy property; the non-maser dynamical measurements may miss the low-mass end of the BH distribution due to an inability to resolve their spheres of influence and/or megamasers may preferentially occur in lower-mass BHs.

  8. LIFTING THE VEIL OF DUST TO REVEAL THE SECRETS OF SPIRAL GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have combined information from the NASA Hubble Space Telescope's visible- and infrared-light cameras to show the hearts of four spiral galaxies peppered with ancient populations of stars. The top row of pictures, taken by a ground-based telescope, represents complete views of each galaxy. The blue boxes outline the regions observed by the Hubble telescope. The bottom row represents composite pictures from Hubble's visible- and infrared-light cameras, the Wide Field and Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Astronomers combined views from both cameras to obtain the true ages of the stars surrounding each galaxy's bulge. The Hubble telescope's sharper resolution allows astronomers to study the intricate structure of a galaxy's core. The galaxies are ordered by the size of their bulges. NGC 5838, an 'S0' galaxy, is dominated by a large bulge and has no visible spiral arms; NGC 7537, an 'Sbc' galaxy, has a small bulge and loosely wound spiral arms. Astronomers think that the structure of NGC 7537 is very similar to our Milky Way. The galaxy images are composites made from WFPC2 images taken with blue (4445 Angstroms) and red (8269 Angstroms) filters, and NICMOS images taken in the infrared (16,000 Angstroms). They were taken in June, July, and August of 1997. Credits for the ground-based images: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for WFPC2 and NICMOS composites: NASA, ESA, and Reynier Peletier (University of Nottingham, United Kingdom)

  9. Gas Clouds in Whirlpool Galaxy Yield Important Clues Supporting Theory on Spiral Arms

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Astronomers studying gas clouds in the famous Whirlpool Galaxy have found important clues supporting a theory that seeks to explain how the spectacular spiral arms of galaxies can persist for billions of years. The astronomers applied techniques used to study similar gas clouds in our own Milky Way to those in the spiral arms of a neighbor galaxy for the first time, and their results bolster a theory first proposed in 1964. M51 The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas. CREDIT: STScI, OVRO, IRAM (Click on image for larger version) Image Files Optical and Radio (CO) Views (above image) HST Optical Image with CO Contours Overlaid Radio/Optical Composite Image of M51 VLA/Effelsberg Radio Image of M51, With Panel Showing Magnetic Field Lines The Whirlpool Galaxy, about 31 million light-years distant, is a beautiful spiral in the constellation Canes Venatici. Also known as M51, it is seen nearly face-on from Earth and is familiar to amateur astronomers and has been featured in countless posters, books and magazine articles. "This galaxy made a great target for our study of spiral arms and how star formation works along them," said Eva Schinnerer, of the National Radio Astronomy Observatory in Socorro, NM. "It was ideal for us because it's one of the closest face-on spirals in the sky," she added. Schinnerer worked with Axel Weiss of the Institute for Millimeter Radio Astronomy (IRAM) in Spain, Susanne Aalto of the Onsala Space Observatory in Sweden, and Nick Scoville of Caltech. The astronomers presented their findings to the American Astronomical Society's meeting in Denver, Colorado. The scientists analyzed radio emission from Carbon Monoxide (CO) molecules in giant gas clouds along M51's spiral arms. Using telescopes at Caltech's Owens Valley Radio Observatory and the 30-meter radio telescope of IRAM, they were able to determine the temperatures and amounts of turbulence within the

  10. Aperture corrections for disk galaxy properties derived from the CALIFA survey. Balmer emission lines in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Iglesias-Páramo, J.; Vílchez, J. M.; Galbany, L.; Sánchez, S. F.; Rosales-Ortega, F. F.; Mast, D.; García-Benito, R.; Husemann, B.; Aguerri, J. A. L.; Alves, J.; Bekeraité, S.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; de Amorim, A. L.; de Lorenzo-Cáceres, A.; Ellis, S.; Falcón-Barroso, J.; Flores, H.; Florido, E.; Gallazzi, A.; Gomes, J. M.; González Delgado, R. M.; Haines, T.; Hernández-Fernández, J. D.; Kehrig, C.; López-Sánchez, A. R.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Monreal-Ibero, A.; Mourão, A.; Papaderos, P.; Rodrigues, M.; Sánchez-Blázquez, P.; Spekkens, K.; Stanishev, V.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.; Zibetti, S.; Ziegler, B.

    2013-05-01

    This work investigates the effect of the aperture size on derived galaxy properties for which we have spatially-resolved optical spectra. We focus on some indicators of star formation activity and dust attenuation for spiral galaxies that have been widely used in previous work on galaxy evolution. We investigated 104 spiral galaxies from the CALIFA survey for which 2D spectroscopy with complete spatial coverage is available. From the 3D cubes we derived growth curves of the most conspicuous Balmer emission lines (Hα, Hβ) for circular apertures of different radii centered at the galaxy's nucleus after removing the underlying stellar continuum. We find that the Hα flux (f(Hα)) growth curve follows a well-defined sequence with aperture radius that shows a low dispersion around the median value. From this analysis, we derived aperture corrections for galaxies in different magnitude and redshift intervals. Once stellar absorption is properly accounted for, the f(Hα)/f(Hβ) ratio growth curve shows a smooth decline, pointing toward the absence of differential dust attenuation as a function of radius. Aperture corrections as a function of the radius are provided in the interval [0.3, 2.5]R50. Finally, the Hα equivalent-width (EW(Hα)) growth curve increases with the size of the aperture and shows a very high dispersion for small apertures. This prevents us from using reliable aperture corrections for this quantity. In addition, this result suggests that separating star-forming and quiescent galaxies based on observed EW(Hα) through small apertures will probably result in low EW(Hα) star-forming galaxies begin classified as quiescent.

  11. Star Formation in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Joseph, Robert D.; Wells, Martyn; Gallais, Pascal; Haas, Martin; Heras, Ana M.; Klaas, Ulrich; Laureijs, René J.; Leech, Kieron; Lemke, Dietrich; Metcalfe, Leo; Rowan-Robinson, Michael; Schulz, Bernhard; Telesco, Charles

    2002-09-01

    We investigate star formation along the Hubble sequence using the Infrared Space Observatory Atlas of Bright Spiral Galaxies. Using mid-infrared and far-infrared flux densities normalized by K-band flux densities as indicators of recent star formation, we find several trends. First, star formation activity is stronger in late-type (Sc-Scd) spirals than in early-type (Sa-Sab) spirals. This trend is seen both in nuclear and disk activity. These results confirm several previous optical studies of star formation along the Hubble sequence but conflict with the conclusions of most of the previous studies using IRAS data, and we discuss why this might be so. Second, star formation is significantly more extended in later type spirals than in early-type spirals. We suggest that these trends in star formation are a result of differences in the gas content and its distribution along the Hubble sequence, and it is these differences that promote star formation in late-type spiral galaxies. We also search for trends in nuclear star formation related to the presence of a bar or nuclear activity. The nuclear star formation activity is not significantly different between barred and unbarred galaxies. We do find that star formation activity appears to be inhibited in low ionization nuclear emission regions and transition objects compared with H II galaxies. The mean star formation rate in the sample is 1.4 Msolar yr-1, based on global far-infrared fluxes. Combining these data with CO data gives a mean gas consumption time of 6.4×108 yr, which is ~5 times lower than the values found in other studies. Finally, we find excellent support for the Schmidt law in the correlation between molecular gas masses and recent star formation in this sample of spiral galaxies. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the

  12. Multi-dimensional analysis of the chemical and physical properties of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.

    2010-06-01

    In this thesis, wide-field 2D spectroscopy is employed in order to characterise the nebular properties of late-type field galaxies. The observations performed for this dissertation represent the first endeavour to obtain full 2D coverage of the disks of a sample of nearby spiral galaxies, by the application of the Integral Field Spectroscopy (IFS) technique, under the PPAK IFS Nearby Galaxies Survey: PINGS. A self-consistent methodology is defined in terms of observation, data reduction and analysis techniques for this and upcoming IFS surveys, as well as providing a whole new set of IFS visualization and analysis software made available for the public domain (PINGSoft). The scientific analysis comprises the study of the integrated properties of the ionized gas and a detailed 2D study from the emission line spectra of four selected galaxies. Evidence is found suggesting that measurements of emission lines of classical HII regions are not only aperture, but spatial dependent, and therefore, the derived physical parameters and metallicity content may significantly depend on the morphology of the region, on the extraction aperture and on the signal-to-noise of the observed spectrum. Furthermore, observational evidence of non-linear multi-modal abundance gradients in normal spiral galaxies is found, consistent with a flattening in the innermost and outermost parts of the galactic discs, with important implications in terms of the chemical evolution of galaxies.

  13. The relationship between the carbon monoxide intensity and the radio continuum emission in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Adler, David S.; Lo, K. Y.; Allen, Ronald J.

    1991-01-01

    The relationship between the velocity-integrated CO emission and the nonthermal radio continuum brightness in the disks of normal spiral galaxies is examined on a variety of length scales. On a global scale, the total CO intensity correlates strongly with the total radio continuum flux density for a sample of 31 galaxies. On scales of about 2 kpc or more in the disk of individual galaxies, it is found that the ratio I(CO)/T(20) remains fairly constant over the entire disk as well as from galaxy to galaxy. For the eight spirals in the sample, the disk-averaged values of I(CO)/T(20) range from 0.6-2.4, with the average over all eight galaxies being 1.3 +/- 0.6. It is concluded that what these various length scales actually trace are differences in the primary heating mechanism of the gas in the beam. The observed relationship between CO and nonthermal radio continuum emission can be explained by assuming that molecular gas in galactic disks is heated primarily by cosmic rays. The observed relationship is used to show that the brightness of synchrotron emission is proportional to n(cr) exp 0.4 - 0.9 in galactic disks.

  14. High-Resolution Hα Velocity Fields of Nearby Spiral Galaxies with the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl; Williams, Ted; Spekkens, Kristine; Lee-Waddell, Karen; Kuzio de Naray, Rachel; Sellwood, Jerry

    2016-01-01

    In an effort to test ΛCDM predictions of galaxy mass distributions, we have obtained spectrophotometric observations of several nearby spiral galaxies with the Southern African Large Telescope (SALT) Fabry-Pérot (FP) interferometer as part of the RSS Imaging spectroscopy Nearby Galaxy Survey. Utilizing the SALT FP's 8 arcmin field of view and 2 arcsec angular resolution, we have derived 2D velocity fields of the Hα emission line to high spatial resolution at large radii. We have modeled these velocity fields with the DiskFit software package and found them to be in good agreement with lower-resolution velocity fields of the HI 21 cm line for the same galaxies. Here we present our Hα kinematic map of the barred spiral galaxy NGC 578. At the distance to this galaxy (22 Mpc), our kinematic data has a spatial resolution of 185 pc and extends to galactocentric radii of 13 kpc. The high spatial resolution of this data allows us to resolve the inner rising part of the rotation curves, which is compromised by beam smearing in lower-resolution observations. We are using these Hα kinematic data, combined with HI 21 cm kinematics and broadband photometric observations, to place constraints on NGC 578's mass distribution.

  15. 12CO(3-2) Emission in Spiral Galaxies: Warm Molecular Gas in Action?

    NASA Astrophysics Data System (ADS)

    Galaz, Gaspar; Cortés, Paulo; Bronfman, Leonardo; Rubio, Monica

    2008-04-01

    Using the APEX submillimeter telescope we have investigated the 12CO(3-2) emission in five face-on nearby barred spiral galaxies, where three of them are high surface brightness galaxies (HSBs) lying at the Freeman limit, and two are low surface brightness galaxies (LSBs). We have positive detections for two of three HSB spirals and nondetections for the LSBs. For the galaxies with positive detection (NGC 0521 and PGC 070519), the emission is confined to their bulges, with velocity dispersions of ~90 and ~73 km s-1 and integrated intensities of 1.20 and 0.76 K km s-1, respectively. For the nondetections, the estimated upper limit for the integrated intensity is ~0.54 K km s-1. With these figures we estimate the H2 masses as well as the atomic-to-molecular mass ratios. Although all the galaxies are barred, we observe 12CO(3-2) emission only for galaxies with prominent bars. We speculate that bars could dynamically favor the 12CO(3-2) emission, as a second parameter after surface brightness. Therefore, secular evolution could play a major role in boosting collisional transitions of molecular gas, such as 12CO(3-2), especially in LSBs.

  16. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  17. Environmental Effects on the ISM and Star Formation Properties of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, Christine

    2015-08-01

    We present the results from a sample of HI flux-selected spiral galaxies within 25 Mpc from the JCMT Nearby Galaxies Legacy Survey (NGLS), subdivided into isolated, group, and Virgo cluster samples. The CO J=3-2 line was observed with the James Clerk Maxwell Telescope (JCMT), a tracer for the dense molecular gas linked to star formation. We combine the CO data with integrated star formation rates using H-alpha measurements and stellar masses from the S4G Survey in order to study the link between the gas and stars inside these galaxies. We find that while the mean atomic gas mass is lower for the Virgo galaxies compared to the isolated galaxies, the distributions of molecular gas masses are not significantly different between the three samples. The specific star formation rate is also lower for the Virgo sample, followed by the group and isolated galaxies. Finally, the molecular gas depletion time is longer for the Virgo galaxies compared to the group and isolated galaxies, which suggests the possible effects of environment on the galaxy's star formation properties.

  18. GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.

    2013-03-01

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures

  19. The strange 'barred' spiral galaxy ESO 235-58 - A case of morphological deception

    NASA Astrophysics Data System (ADS)

    Buta, R.; Crocker, D. A.

    1993-09-01

    On the SRC-J southern sky survey, the galaxy ESO 235-58 (alpha = 21 h 03 m, delta = -48 deg 19 arcmin, 1950) looks deceptively like a late-type barred spiral with a weak, broken ring surrounding the bar. However, the bar shows a straight, splitting dust lane, atypical of normal bars but just like what is seen in an edge-on spiral galaxy. In this paper, we use CCD images to show that the apparent bar is indeed likely to be an edge-on galaxy, possibly of Hubble type Sb. The object is part of a group of nine galaxies at a distance of 47 Mpc, and from the photometry we find that the edge-on component has a low luminosity, corresponding to a corrected absolute blue magnitude of M(0)B = -18.0 (for H0 = 100). The outer spiral part is asymmetric and may be perturbed by one or both of the neighboring large spirals, ESO 235-55 and ESO 235-57. Since we can find no evidence for an independent bulge or nucleus of this part, we believe that ESO 235-58 is not simply a case of superposition of two unrelated objects, but instead is an interacting galaxy of the type related to polar rings. This interpretation is supported by preliminary single-dish H I observations and published optical spectroscopy. Here we present mainly B-band images, a B-I color index map, an unsharp-masked image, integrated parameters, and luminosity profiles of the object to highlight its structural properties.

  20. Infrared Emission and Thermal Processes in Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Mundy, Lee; Wolfire, Mark

    1999-01-01

    In this research we constructed theoretical models of the infrared and submillimeter line and continuum emission from the neutral interstellar medium in the Milky Way and external galaxies. The model line intensities were compared to observations of the Galactic disk and several galaxies to determine the average physical properties of the neutral gas including the density, temperature, and ultraviolet radiation field which illuminates the gas. In addition we investigated the heating mechanisms in the Galactic disk and estimated the emission rate of the [C 11] 158 micrometer line as a function of position in the Galaxy. We conclude that the neutral gas is heated mainly by the grain photoelectric effect and that a two phase (CNM+WNM) is possible between Galactic radii R = 3 kpc and R = 18 kpc. Listings of meeting presentations and publications are included.

  1. Dynamical models - the barred spiral galaxy NGC 1300

    SciTech Connect

    England, M.N. )

    1989-09-01

    The results of hydrodynamical model calculations for the classic SBb(s) system NGC 1300 are presented and compared to high-resolution H I observations reported by England (1989). The effects of the various galactic components are investigated, and composite models are constructed in order to reproduce the gas observations and provide dynamical information on the galaxy. The models only partially reproduce the observations but nevertheless provide bounds for various dynamical parameters. The results indicate that either the models are too simplistic or nondynamical effects are important in the galaxy. 42 refs.

  2. The JCMT nearby galaxies legacy survey - X. Environmental effects on the molecular gas and star formation properties of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, C. D.; Golding, J.; Warren, B. E.; Israel, F. P.; Serjeant, S.; Knapen, J. H.; Sánchez-Gallego, J. R.; Barmby, P.; Bendo, G. J.; Rosolowsky, E.; van der Werf, P.

    2016-03-01

    We present a study of the molecular gas properties in a sample of 98 H I - flux selected spiral galaxies within ˜25 Mpc, using the CO J = 3 - 2 line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H2 mass in the Virgo galaxies, despite their lower mean H I mass. This leads to a significantly higher H2 to H I ratio for Virgo galaxies. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H2 masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative of differences in the star formation process between low- and high-mass galaxies, and a negative correlation between the molecular gas depletion time and the specific star formation rate.

  3. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  4. Generation and maintenance of bisymmetric spiral magnetic fields in disk galaxies in differential rotation

    NASA Astrophysics Data System (ADS)

    Sawa, Takeyasu; Fujimoto, M.

    1993-05-01

    The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.

  5. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574 .

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    In this work we address the study of the detection in Halpha of a radial corrugation in the vertical velocity field in a sample of four nearly face-on, spiral galaxies. The geometry of the problem is a main criterion in the selection of the sample as well as of the azimuthal angle of the slits. These spatial corrugations must be equally associated with wavy vertical motions in the galactic plane with a strong large-scale consistency. Evidence of these kinematic waves were first detected in the analysis of the rotation curves of spiral galaxies (eg Vaucoleurs & de Vaucaleurs 1963, Pismis 1965), but it was not until 2001 that Alfaro et al. analyzed in more detail the velocity corrugations in NGC 5427 and a possible physical mechanism for their origin. The aim of this study is to analyze the corrugated velocity pattern in terms of the star formation processes. We describe the geometry of the problem and establish its fundamental relationships.

  6. Old Star Clusters in Spiral Galaxies: M101 as a Case Study

    NASA Astrophysics Data System (ADS)

    Simanton, Lesley Ann

    2015-01-01

    Most stars form in groups and clusters, at least a small fraction of which can be extremely long-lived. However, many details of how star clusters form and how they disrupt are still unclear. We present and examine a catalog of old star clusters in the nearby spiral galaxy M101, and compare with the known properties of old star clusters in other spiral galaxies. Data include multi-band Hubble Space Telescope images and Gemini-GMOS spectra. Among the properties examined are luminosity distributions, colors, sizes, spatial distributions, and velocities. We highlight the somewhat surprising result of a population of old, disk clusters in M101, which are unlike populations found in the Milky Way and M31.

  7. The Frequency of Barred Spiral Galaxies in the Near-Infrared

    NASA Astrophysics Data System (ADS)

    Eskridge, Paul B.; Frogel, Jay A.; Pogge, Richard W.; Quillen, Alice C.; Davies, Roger L.; DePoy, D. L.; Houdashelt, Mark L.; Kuchinski, Leslie E.; Ramírez, Solange V.; Sellgren, K.; Terndrup, Donald M.; Tiede, Glenn P.

    2000-02-01

    We have determined the fraction of barred galaxies in the H-band for a statistically well-defined sample of 186 spirals drawn from the Ohio State University Bright Spiral Galaxy Survey. We find 56% of our sample to be strongly barred in the H band while another 16% is weakly barred. Only 27% of our sample is unbarred in the near-infrared. The RC3 and the Carnegie Atlas of Galaxies both classify only about 30% of our sample as strongly barred. Thus strong bars are nearly twice as prevalent in the near-infrared as in the optical. The frequency of genuine optically hidden bars is significant but lower than many claims in the literature: 40% of the galaxies in our sample that are classified as unbarred in the RC3 show evidence for a bar in the H band while the Carnegie Atlas lists this fraction as 66%. Our data reveal no significant trend in bar fraction as a function of morphology in either the optical or H band. Optical surveys of high-redshift galaxies may be strongly biased against finding bars, as bars are increasingly difficult to detect at bluer rest wavelengths. Based partially on observations obtained at the Cerro Tololo Inter-American Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  8. NGC 7217: A Spheroid-dominated, Early-Type Resonance Ring Spiral Galaxy

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.; Wakamatsu, K.; Sofue, Y.; Tomita, A.

    1995-09-01

    NGC 7217 is a well-known northern spiral galaxy which is characterized by flocculent spiral structure and a series of three optical ringlike zones: a nuclear ring 21" in diameter, a weak inner ring 63" in diameter, and a striking outer ring 2'.6 in diameter. The rings all have nearly the same shape and position angle in projection. The appearance of the galaxy suggests that it may be more axisymmetric than the typical spiral galaxy, since there is little evidence for the presence of a bar, oval, or stellar density wave. This makes the origin of the ring features uncertain. In an effort to understand this kind of ringed galaxy, which is by no means typical, we have obtained multicolor CCD BVRI images, accurate surface photometry, mappings of the CO and H I gas distributions, and rotational velocities from Hα and H I spectral line data. Our deep surface photometry has revealed an important feature of NGC 7217 that was missed in previous studies: The region occupied by the rings of the galaxy is surrounded by an extensive, nearly circular luminous halo. This halo cannot be merely an extension of the disk component because it is much rounder than the inner regions. Instead, we believe the light represents either the outer regions of the bulge or a separate stellar halo component. We are able to successfully model the luminosity profile in terms of an r114 "spheroid" and an exponential disk with a spheroid-to-total disk (including rings) luminosity ratio of 2.3-2.4. This makes NGC 7217 one of the most spheroid-dominated spirals known, and the finding has important implications for the recent discovery by Merrifield and Kuijken of a significant population of counter-rotating stars in the galaxy. Although the spiral structure of NGC 7217 is flocculent in blue light, there is a definite two-armed stellar spiral in the region of the outer ring. This ring includes about 4.4% of the total blue luminosity and is the locus of most of the recent star formation in the galaxy

  9. DETECTION OF A HOT GASEOUS HALO AROUND THE GIANT SPIRAL GALAXY NGC 1961

    SciTech Connect

    Anderson, Michael E.; Bregman, Joel N. E-mail: jbregman@umich.edu

    2011-08-10

    Hot gaseous halos are predicted around all large galaxies and are critically important for our understanding of galaxy formation, but they have never been detected at distances beyond a few kpc around a spiral galaxy. We used the ACIS-I instrument on board Chandra to search for diffuse X-ray emission around an ideal candidate galaxy: the isolated giant spiral NGC 1961. We observed four quadrants around the galaxy for 30 ks each, carefully subtracting background and point-source emission, and found diffuse emission that appears to extend to 40-50 kpc. We fit {beta}-models to the emission and estimate a hot halo mass within 50 kpc of 5 x 10{sup 9} M{sub sun}. When this profile is extrapolated to 500 kpc (the approximate virial radius), the implied hot halo mass is 1-3 x 10{sup 11} M{sub sun}. These mass estimates assume a gas metallicity of Z = 0.5 Z{sub sun}. This galaxy's hot halo is a large reservoir of gas, but falls significantly below observational upper limits set by pervious searches, and suggests that NGC 1961 is missing 75% of its baryons relative to the cosmic mean, which would tentatively place it below an extrapolation of the baryon Tully-Fisher relationship of less massive galaxies. The cooling rate of the gas is no more than 0.4 M{sub sun} yr{sup -1}, more than an order of magnitude below the gas consumption rate through star formation. We discuss the implications of this halo for galaxy formation models.

  10. The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.

    2012-07-01

    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined

  11. The Importance of Radial Migration to the Evolution of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2016-01-01

    Spiral galaxy evolution is frequently considered in the context of environment, but internal processes may also play an important role. Radial migration is one such internal process, wherein a transient spiral arm rearranges the angular momentum distribution of the disk around corotation without causing kinematic heating. The efficiency of radial migration depends on both the duty cycle for transient patterns and the RMS change in orbital angular momentum induced by each pattern. Should radial migration be efficient, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having significant impact on its kinematic, structural and chemical evolution.In this talk, I will summarize a subset of work focusing on the physics that determines the magnitude of the RMS change in orbital angular momentum from each spiral pattern. I have derived an analytic "capture criterion" that predicts whether or not a disk star with finite random orbital energy is in a "trapped orbit" (i.e. the orbital family induced by the spiral pattern that can lead to radial migration). I will present this criterion and show that it is primarily a star's orbital angular momentum that determines whether or not it is in a trapped orbit. The capture criterion could be used to better understand the role of radial migration in N-body simulations as well as applied to models of galaxy evolution. I will describe an example study wherein I applied the capture criterion, in a series of disk galaxy models, to find the fraction of an ensemble of stars that is in trapped orbits. I found that this fraction decreases linearly with increasing radial velocity dispersion and conclude that radial migration may play a role in the evolution of disk galaxies, but it is insignificant to the evolution of high velocity dispersion populations.

  12. An expanded HST/WFC3 survey of M83: Project overview and targeted supernova remnant search

    SciTech Connect

    Blair, William P.; Kuntz, K. D.; Chandar, Rupali; Dopita, Michael A.; Ghavamian, Parviz; Hammer, Derek; Long, Knox S.; Whitmore, Bradley C.; Soria, Roberto; Frank Winkler, P. E-mail: kuntz@pha.jhu.edu E-mail: Michael.Dopita@anu.edu.au E-mail: long@stsci.edu E-mail: whitmore@stsci.edu E-mail: winkler@middlebury.edu

    2014-06-10

    We present an optical/NIR imaging survey of the face-on spiral galaxy M83, using data from the Hubble Space Telescope Wide Field Camera 3 (WFC3). Seven fields are used to cover a large fraction of the inner disk, with observations in nine broadband and narrowband filters. In conjunction with a deep Chandra survey and other new radio and optical ground-based work, these data enable a broad range of science projects to be pursued. We provide an overview of the WFC3 data and processing and then delve into one topic, the population of young supernova remnants (SNRs). We used a search method targeted toward soft X-ray sources to identify 26 new SNRs. Many compact emission nebulae detected in [Fe II] 1.644 μm align with known remnants and this diagnostic has also been used to identify many new remnants, some of which are hard to find with optical images. We include 37 previously identified SNRs that the data reveal to be <0.''5 in angular size and thus are difficult to characterize from ground-based data. The emission line ratios seen in most of these objects are consistent with shocks in dense interstellar material rather than showing evidence of ejecta. We suggest that the overall high elemental abundances in combination with high interstellar medium pressures in M83 are responsible for this result. Future papers will expand on different aspects of the these data including a more comprehensive analysis of the overall SNR population.

  13. Sustaining Star Formation Rates in Spiral Galaxies Supernova-driven Turbulent Accretion Disk Models Applied to THINGS Galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M ⊙) <~ 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  14. Global-, local-, and intermediate-scale structures in prototype spiral galaxies

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.

    1993-01-01

    The relationship between galactic spiral structure and the matter in the underlying disk constitutes one of the central problems in galactic dynamics. In Bertin et al. (1989), disk matter characterized by a low-dispersive speed is shown to be capable of playing a key role in the generation of large-scale spiral structure. In Roberts et al. (1992), this self-gravitating, low-dispersion disk matter is shown to be capable of playing an essential role in the formation of structure on local and intermediate scales. Both in computed cases where large-scale spiral structure is present and in those where it is not, the same dominant physical processes and fundamental dynamical mechanisms are active on local scales. The new perception, in which large-scale and small-scale phenomena operate somewhat independently as evidenced in the computational studies, permits a range of flocculent, multiarmed, and grand design spiral types to be simulated. In particular, grand design galaxies with ragged appearances exhibiting spurs, arm branchings, and interarm bridges in addition to the major spiral arms, similar to those often observed, can be generated.

  15. A Numerical Simulation of Star Formation in Nuclear Rings of Barred-Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Woo-Young; Kim, W.

    2014-01-01

    We use grid-based hydrodynamic simulations to study star formation history in nuclear rings of barred-spiral galaxies. We assume infinitesimally thin, isothermal, and unmagnetized gaseous disk. To investigate effects of spiral arm potential, we calculate both models with and without spiral. We find that star formation rate (SFR) in a nuclear ring is determined by the mass inflow rate to the ring rather than the total gas mass in the ring. In case of models without spiral arms, the SFR shows a strong primary burst at early time, and declines to small values after after that. The primary burst is caused by the rapid gas infall to the ring due to the bar growth. On the other hand, models with spiral arms show multiple star bursts at late time caused by additional gas inflow from outside bar region. When the SFR is low, ages of young star clusters exhibit a bipolar azimuthal gradient along the ring since star formation occurs near the contact points between dust lanes and the nuclear ring. When the SFR is large, there are no age gradient of star clusters since star formation sites are widely distributed throughout the whole ring region.

  16. Giant Molecular Clouds and Star Formation in the Non-Grand Design Spiral Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Wong, Tony; Leroy, Adam

    2011-10-01

    Although the internal physical properties of molecular clouds have been extensively studied (Solomon et al. 1987), a more detailed understanding of their origin and evolution in different types of galaxies is needed. In order to disentangle the details of this process, we performed CO(1→0) CARMA observations of the eastern part of the multi-armed galaxy NGC 6946. Our goal was to determine if azimuthal segregation of various gas and star formation tracers occurs in this kind of spiral galaxy (Tamburro et al. 2008). Although we found no evidence of an angular offset between molecular gas, atomic gas and star formation regions in our observations, we observe a clear radial progression from regions where molecular gas dominates over atomic gas (for r ≤ 2.8 kpc) to regions where the gas becomes mainly atomic (5.6 kpc ≤ r ≤ 7.6 kpc) when azimuthally averaged. In addition, we found that the densest concentrations of molecular gas are located on arms, particularly where they appear to intersect. This result is in concordance with the behavior predicted by simulations of the spiral galaxies with an active potential (Clarke & Gittins 2006; Dobbs & Bonnell 2008). Since NGC 6946 is located at a distance of 5.5 Mpc, the linear resolution of the map corresponds to 140 pc. At such resolution, we were able to find CO emitting complexes with masses greater than those of typical Giant Molecular Clouds (105-106 M⊙). To identify GMCs individually and make a more detailed study of their physical properties, we made D array observations of CO(2→1) toward the densest concentrations of gas located in the prominent spiral arms. We achieved a linear resolution of 50 pc at 1 mm in D array, similar to GMCs sizes found in other galaxies (Bolatto et al. 2008). We present first results about possible differences in the properties of the on-arm clouds and the inter-arm clouds. While inter-arm GMAs in grand-design galaxies are thought to be formed by fragmentation of more massive on

  17. DETECTION OF A LUMINOUS HOT X-RAY CORONA AROUND THE MASSIVE SPIRAL GALAXY NGC 266

    SciTech Connect

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.; Jones, Christine

    2013-08-01

    The presence of luminous hot X-ray coronae in the dark matter halos of massive spiral galaxies is a basic prediction of galaxy formation models. However, observational evidence for such coronae is very scarce, with the first few examples having only been detected recently. In this paper, we study the large-scale diffuse X-ray emission associated with the massive spiral galaxy NGC 266. Using ROSAT and Chandra X-ray observations we argue that the diffuse emission extends at least {approx}70 kpc, whereas the bulk of the stellar light is confined to within {approx}25 kpc. Based on X-ray hardness ratios, we find that most of the diffuse emission is released at energies {approx}< 1.2 keV, which indicates that this emission originates from hot X-ray gas. Adopting a realistic gas temperature and metallicity, we derive that in the (0.05-0.15)r{sub 200} region (where r{sub 200} is the virial radius) the bolometric X-ray luminosity of the hot gas is (4.3 {+-} 0.8) Multiplication-Sign 10{sup 40} erg s{sup -1} and the gas mass is (9.1 {+-} 0.9) Multiplication-Sign 10{sup 9} M{sub Sun }. These values are comparable to those observed for the two other well-studied X-ray coronae in spiral galaxies, suggesting that the physical properties of such coronae are similar. This detection offers an excellent opportunity for comparison of observations with detailed galaxy formation simulations.

  18. Optical spectroscopy of the radio-loud nuclei of spiral galaxies: Starbursts or monsters

    SciTech Connect

    Heckman, T.M.; Van Breugel, W.; Miley, G.K.; Butcher, H.R.

    1983-08-01

    We present optical spectroscopic data pertaining to the physical state, kinematics, and spatial extent of the emission-line gas near the radio-loud nuclei of spiral galaxies. These data are combined with published optical, radio, and infrared data to evaluate the suggestions by Condon et al. (1982) that the nuclear radio emission in this class of galaxy is produced by multiple supernova remnants generated as a consequence of a nuclear starburst. As a whole, the radio-loud nuclei have stronger emission lines than radio-quiet nuclei of galaxies of similar Hubble/de Vaucouleurs type. This emission-line gas is generally at least as spatially extended as the radio continuum emission. However, we find that only about 1/3 of the spiral galaxies examined have optical spectroscopic properties consistent with those of ''extranuclear starbursts'' (i.e., giant H II regions). The majority of the nuclei seem to require a form of energy input to the ionized gas which is ''harder'' than the Lyman continuum radiation of OB stars, as their emission-line spectra are of the Seyfert or Liner variety. The nuclei with H II region spectra are distinct from the nuclei with Seyfert spectra in terms of radio morphology and radio spectral index, and tend to occur in spiral galaxies of much later Hubble type than do the Seyfert or Liner nuclei (Sc vs Sa). Moreover, the most luminous nuclear radio sources in our sample (PMHz> or =10/sup 22/ Watts Hz/sup -1/ Sr/sup -1/) are not associated with H II region nuclei. We summarize evidence that the putative nuclear starbursts must differ significantly from extranuclear starbursts.

  19. Star formation in grand-design, spiral galaxies. Young, massive clusters in the near-infrared

    NASA Astrophysics Data System (ADS)

    Grosbøl, P.; Dottori, H.

    2012-06-01

    Aims: Spiral structure is a prominent feature in many disk galaxies and is often outlined by bright, young objects. We study the distribution of young stellar clusters in grand-design spiral galaxies and thereby determine whether strong spiral perturbations can influence star formation. Methods: Deep, near-infrared JHK-maps were observed for ten nearby, grand-design, spiral galaxies using HAWK-I at the Very Large Telescope. Complete, magnitude-limited candidate lists of star-forming complexes were obtained by searching within the K-band maps. The properties of the complexes were derived from (H - K) - (J - H) diagrams including the identification of the youngest complexes (i.e. ≲7 Myr) and the estimation of their extinction. Results: Young stellar clusters with ages ≲7 Myr have significant internal extinction in the range of AV = 3-7m, while older ones typically have AV < 1m. The cluster luminosity function (CLF) is well-fitted by a power law with an exponent of around -2 and displays no evidence of a high luminosity cut-off. The brightest cluster complexes in the disk reach luminosities of MK = -15.5m or estimated masses of 106 M⊙. At radii with a strong, two-armed spiral pattern, the star formation rate in the arms is higher by a factor of 2-5 than in the inter-arm regions. The CLF in the arms is also shifted towards brighter MK by at least 0.4m. We also detect clusters with colors compatible with Large Magellanic Cloud intermediate age clusters and Milky Way globular clusters. The (J - K) - MK diagram of several galaxies shows, for the brightest clusters, a clear separation between young clusters that are highly attenuated by dust and older ones with low extinction. Conclusions: The gap in the (J - K) - MK diagrams implies that there has been a rapid expulsion of dust at an age around 7 Myr, possibly triggered by supernovae. Strong spiral perturbations concentrate the formation of clusters in the arm regions and shifts their CLF towards brighter magnitudes

  20. Sizes and Shapes of Young, Massive Star Clusters in M83

    NASA Astrophysics Data System (ADS)

    Ryon, Jenna E.; Bastian, Nate; Adamo, Angela; Silva-Villa, Esteban; Gallagher, John S.

    2015-01-01

    Using HST imaging, the surface brightness profiles of individual star clusters in nearby galaxies can be resolved, in that clusters are clearly more extended than the stellar PSF. Previous studies of the sizes and shapes of star clusters find little variation with cluster age, mass, or galaxy environment. We use observations from seven pointings on M83 from HST/WFC3 programs GO/DD-11360 (PI O'Connell) and GO-12513 (PI Blair) to obtain a large sample of young, massive star clusters. We measure the half-light radii and power-law indices of the EFF light profile (Elson, Fall, & Freeman 1987) of these clusters using the galfit software package (Peng et al. 2002). We present our results on the relationships between cluster size, shape, age, mass, and environment in the disk of M83.

  1. METALLICITY GRADIENT OF A LENSED FACE-ON SPIRAL GALAXY AT REDSHIFT 1.49

    SciTech Connect

    Yuan, T.-T.; Kewley, L. J.; Swinbank, A. M.; Richard, J.; Livermore, R. C.

    2011-05-01

    We present the first metallicity gradient measurement for a grand-design face-on spiral galaxy at z {approx} 1.5. This galaxy has been magnified by a factor of 22x by a massive, X-ray luminous galaxy cluster MACS J1149.5+2223 at z = 0.544. Using the Laser Guide Star Adaptive Optics aided integral field spectrograph OSIRIS on KECK II, we target the H{alpha} emission and achieve a spatial resolution of 0.''1, corresponding to a source-plane resolution of 170 pc. The galaxy has well-developed spiral arms and the nebular emission line dynamics clearly indicate a rotationally supported disk with V{sub rot}/{sigma} {approx} 4. The best-fit disk velocity field model yields a maximum rotation of V{sub rot}sin i = 150 {+-} 15 km s{sup -1}, and a dynamical mass of M{sub dyn} = (1.3 {+-} 0.2) x 10{sup 10} cosec{sup 2}(i) M{sub sun} (within 2.5 kpc), where the inclination angle i = 45{sup 0} {+-} 10{sup 0}. Based on the [N II] and H{alpha} ratios, we measured the radial chemical abundance gradient from the inner hundreds of parsecs out to {approx}5 kpc. The slope of the gradient is -0.16 {+-} 0.02 dex kpc{sup -1}, significantly steeper than the gradient of late-type or early-type galaxies in the local universe. If representative of disk galaxies at z {approx} 1.5, our results support an 'inside-out' disk formation scenario in which early infall/collapse in the galaxy center builds a chemically enriched nucleus, followed by slow enrichment of the disk over the next 9 Gyr.

  2. Unveiling the sources of disk heating in spiral galaxies with the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; van de Ven, G.; Lyubenova, M.; Leaman, R.

    2016-06-01

    The stellar velocity ellipsoid (SVE) quantifies the amount of velocity dispersion in the vertical, radial and azimuthal directions. Since different disk heating mechanisms (e.g. spiral arms, giant molecular clouds, mergers, etc) affect these components differently, the SVE can constrain the sources of heating in disk galaxies. At present the 3D nature of the SVE can only be directly measured in the Milky Way but, thanks to integral-field surveys like CALIFA, we are now in position to carry out the same kind of analysis in external galaxies. For this purpose, we have gathered a sample of ~30 intermediate inclined spiral galaxies along the Hubble sequence (S0 to Scd types) with high quality stellar kinematic maps. This allows us to probe the SVE for each galaxy from different line-of-sights in different regions, and thus provide strong constraints on its shape. In this presentation we relate our preliminary findings to realistic numerical simulations of disks with different formation histories (quiescent vs mergers), and to results of previous works.

  3. Are passive red spirals truly passive?. The current star formation activity of optically red disc galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.

    2012-07-01

    We used GALEX ultraviolet and WISE 22 μm observations to investigate the current star formation activity of the optically red spirals recently identified as part of the Galaxy Zoo project. These galaxies were accurately selected from the Sloan Digital Sky Survey as pure discs with low or no current star formation activity, representing one of the best optically selected samples of candidate passive spirals. However, we show that these galaxies are not only still forming stars at a significant rate (≳1 M⊙ yr-1) but, more importantly, their star formation activity is not different from that of normal star-forming discs of the same stellar mass (M∗ ≳ 1010.2 M⊙). Indeed, these systems lie on the UV-optical blue sequence, even without any corrections for internal dust attenuation, and they follow the same specific star formation rate vs. stellar mass relation of star-forming galaxies. Our findings clearly show that at high stellar masses, optical colours do not allow to distinguish between actively star-forming and truly quiescent systems.

  4. Radio Continuum Mapping of the Spiral Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Calle, Daniel; Hyman, Scott D.; Weiler, Kurt W.; van Dyk, Schuyler D.; Sramek, Richard A.

    1996-05-01

    We have combined numerous, short radio continuum observations of the Seyfert 1 galaxy NGC 4258 (M 106) made at 20 and 6 cm with the Very Large Array (VLA) to produce deep radio maps at these frequencies. These observations were originally taken for monitoring the radio supernova SN 1981K (Weiler et al. 1986, ApJ, 310, 790; Van Dyk et al. 1992, ApJ, 396, 195). The present analysis is analogous to our recent work on NGC 6946 (Hyman et al. 1993, BAAS 25, 1322) and on NGC 4321 (Hyman et al. 1994, BAAS 26, 1498) using observations taken for monitoring SN 1980K and SN 1979C, respectively. The maps we produce for NGC 4258 are of superior sensitivity (sigma ~ lt 0.02 mJy/beam at 6 cm) and spatial resolution ( ~ 0.5" at 6 cm) to those previously published by other investigators (e. g., Turner & Ho 1994, ApJ, 421, 122; Cecil et al. 1995, ApJ, 452, 613). We present preliminary measurements and analyses of the nuclear region, the anomalous arms, and of detected thermal and nonthermal sources throughout the galaxy. We also make comparisons of our radio maps with existing data at other wavelengths and with the results of our analyses of NGC 6946 and NGC 4321.

  5. A new integral representation for reconstructing the density distribution of matter in the discs of spiral galaxies using the rotation velocity curve in it

    NASA Astrophysics Data System (ADS)

    Shatskiy, A. A.; Novikov, I. D.; Silchenko, O. K.; Hansen, J.; Katkov, I. Yu.

    2012-03-01

    In this paper, we propose a new integral representation for reconstructing the surface density of matter in the flat discs of spiral galaxies. The surface density is expressed through the observed rotation velocity curves of visible matter in the discs of spiral galaxies. The new integral representation is not based on the quadrature of special functions. The solution that is found is used to process and analyse observational data from several spiral galaxies. The new integral representation can be used to more accurately estimate the amount of dark matter in spiral galaxies.

  6. A New Method to Estimate Local Pitch Angles in Spiral Galaxies: Application to Spiral Arms and Feathers in M81 and M51

    NASA Astrophysics Data System (ADS)

    Puerari, Ivânio; Elmegreen, Bruce G.; Block, David L.

    2014-12-01

    We examine 8 μ m IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (ln R,θ ) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as a function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.

  7. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    SciTech Connect

    Puerari, Ivânio; Elmegreen, Bruce G.; Block, David L.

    2014-12-01

    We examine 8 μm IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (lnR,θ) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as a function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.

  8. INVESTIGATING THE NUCLEAR ACTIVITY OF BARRED SPIRAL GALAXIES: THE CASE OF NGC 1672

    SciTech Connect

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Kuntz, K. D.; Koribalski, B.; Levan, A. J.; Ojha, R.; Zezas, A.

    2011-06-10

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D{sub 25} area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (L{sub X} > 5 x 10{sup 39} erg s{sup -1}) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard ({Gamma} {approx} 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 x 10{sup 38} erg s{sup -1}. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  9. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  10. ASSOCIATIONS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS WITH ACTIVE, LOW-REDSHIFT SPIRAL GALAXIES

    SciTech Connect

    Burbidge, G.; Napier, W. M. E-mail: smawmn@cardiff.ac.u

    2009-11-20

    Following the discovery in the 1960s of radio and optical QSOs it was found that some of them lie very close to low-redshift (z <= 0.01) spiral galaxies with separations of approx<2 arcmin. These were discovered both serendipitously by many observers, and systematically by Arp. They are some of the brightest QSOs in radio and optical wavelengths and are very rare. We have carried out a new statistical analysis of most of those galaxy-QSO pairs and find that the configurations have high statistical significance. We show that gravitational microlensing due to stars or other dark objects in the halos of the galaxies apparently cannot account for the excess. Sampling or identification bias likewise seems unable to explain it. Following this up we selected all approx4000 QSOs with g <= 18 from a catalog of confirmed QSOs in the Sloan Digital Sky Survey, and compared them with various subsets of galaxies from the RC 3 galaxy catalog. In contrast to the earlier results, no significant excess of such QSOs was found around these galaxies. Possible reasons for the discrepancy are discussed.

  11. Star Formation Histories across the Interacting Galaxy NGC 6872, the Largest-known Spiral

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.; Dwek, Eli; Arendt, Richard G.; de Mello, Duilia F.; Gadotti, Dimitri A.; Urrutia-Viscarra, Fernanda; Mendes de Oliveira, Claudia; Benford, Dominic J.

    2014-11-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 μm) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  12. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    NASA Technical Reports Server (NTRS)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  13. Star formation histories across the interacting galaxy NGC 6872, the largest-known spiral

    SciTech Connect

    Eufrasio, Rafael T.; De Mello, Duilia F.; Dwek, Eli; Arendt, Richard G.; Benford, Dominic J.; Gadotti, Dimitri A.; Urrutia-Viscarra, Fernanda; De Oliveira, Claudia Mendes

    2014-11-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 μm) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  14. The Red Spiral Galaxy UGC11680: Clues for the Inside-Out Quenching.

    NASA Astrophysics Data System (ADS)

    Bárcenas, J.; Sanchez, S. F.

    2016-06-01

    Broadly, galaxies can be divided in two groups, thanks to the Color-Magnitude Diagram: the lively star formation ones, ``The blue Cloud'' and galaxies which halted their star formation, ``The Red Sequence''. It is a currently accepted that the galaxies start their lifespan as a blue objects, turning red when they stop to assembly more mass and thus more stars. Nevertheless, This change need to be quick (˜ 1 Gyr), due to the dearth of galaxies between this two populations (the so called ``green valley'').Previous works have found two distinct stellar mass assembly modes, they are termed as ``the inside-out'' and ``the outside-in'' growth scenarios in the literature. In the ``inside-out'' scenario, mass assembly is finished in the galactic central region. In some cases, the inflow gas can fuel the central SuperMassive BlackHole. The subsequent AGN feedback will then shut-off the central star formation. One possible case of this scenario is the galaxy UGC11680, an unusual face-on red spiral galaxy with an AGN type 2, at the red sequence belonging to the CALIFA survey. We used the so called fossil method to study its star formation history and try to understand what happened to its stellar populations.

  15. OT2_bsmith_3: Spirals, Bridges, and Tails: The Herschel View of Dust in Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, B.

    2011-09-01

    The tidal features produced by gravitational interactions between galaxies may contribute significantly to the enrichment of the intergalactic medium in dust and heavy elements. However, at the present time little is known about the dust content and properties of tidal structures. To address this lack, we propose to use the PACS and SPIRE instruments on Herschel to image a sample of nine nearby interacting galaxies in six far-infrared/submm broadband filters. We will map the dust column density and temperature in the main bodies and tidal features of these galaxies, and compare the far-infrared/submm properties of these features with those of normal spirals and dwarf galaxies. We will compare the Herschel maps with already acquired GALEX UV, Spitzer IR, and ground-based optical data, and with population synthesis and radiative transfer codes, to investigate dust heating mechanisms and extinction in these galaxies. We will compare with available radio maps to investigate dust/gas ratios and star formation triggering mechanisms, and compare with numerical simulations of the interactions. Our sample includes the closest and best-studied examples of tidal dwarf galaxies and accretion-driven star formation. These will provide a good testbed for interpreting high redshift systems.

  16. The effects of bar-spiral coupling on stellar kinematics in the Galaxy

    NASA Astrophysics Data System (ADS)

    Monari, Giacomo; Famaey, Benoit; Siebert, Arnaud; Grand, Robert J. J.; Kawata, Daisuke; Boily, Christian

    2016-10-01

    We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superposition of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large-scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger or (more likely) transient amplitudes would be needed: otherwise the disc is actually mostly unaffected by churning in the present models. Finally, regarding vertical breathing modes, the combined effect of the bar and spirals on vertical motions is a clear non-linear superposition of the isolated effects of both components, significantly superseding the linear superposition of modes produced by each perturber separately, thereby providing an additional effect to consider when analysing the observed breathing mode of the Galactic disc in the extended solar neighbourhood.

  17. Strong Evidence for the Density-wave Theory of Spiral Structure in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia; Davis, Benjamin L.; Shields, Douglas W.; Shameer Abdeen, Mohamed

    2016-08-01

    The density-wave theory of galactic spiral-arm structure makes a striking prediction that the pitch angle of spiral arms should vary with the wavelength of the galaxy’s image. The reason is that stars are born in the density wave but move out of it as they age. They move ahead of the density wave inside the co-rotation radius, and fall behind outside of it, resulting in a tighter pitch angle at wavelengths that image stars (optical and near-infrared) than those that are associated with star formation (far-infrared and ultraviolet). In this study we combined large sample size with wide range of wavelengths, from the ultraviolet to the infrared to investigate this issue. For each galaxy we used an optical wavelength image (B-band: 445 nm) and images from the Spitzer Space Telescope at two infrared wavelengths (infrared: 3.6 and 8.0 μm) and we measured the pitch angle with the 2DFFT and Spirality codes. We find that the B-band and 3.6 μm images have smaller pitch angles than the infrared 8.0 μm image in all cases, in agreement with the prediction of density-wave theory. We also used images in the ultraviolet from Galaxy Evolution Explorer, whose pitch angles agreed with the measurements made at 8 μm.

  18. Gaseous Structures and Mass Drift in Spiral Galaxies: Effects of Arm Strength

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, W.-T.

    2015-10-01

    Stellar spiral arms in disk galaxies play an important role in the formation of gaseous substructures such as gaseous feathers as well as mass inflows/outflows in the radial direction. We study nonlinear responses of self-gravitating gas to an imposed stellar spiral potential in galactic disks with differing arm strength and pattern speed. We find that the extent and shapes of gaseous arms as well as the radial mass drift rate depend rather sensitively on the arm pattern speed. Quasi-steady spiral shocks can exist only when the normal Mach number is small. The pitch angle of gaseous arms is usually smaller than that of stellar arms. The mass drift rate to the central region is in the range of ˜0.05-3.0M⊙yr-1 , with larger values corresponding to stronger and/or slower-rotating arms. Using a normal-mode linear stability analysis together with nonlinear simulations, we show that wiggle instability of spiral shocks is due to the accumulation of potential vorticity at a perturbed shock front, rather than Kelvin-Helmholtz instability as previously suggested.

  19. The ratio of molecular to atomic gas in spiral galaxies as a function of morphological type

    NASA Technical Reports Server (NTRS)

    Knezek, Patricia M.; Young, Judith S.

    1990-01-01

    In order to gain an understanding of the global processes which influence cloud and star formation in disk galaxies, it is necessary to determine the relative amounts of atomic, molecular, and ionized gas both as a function of position in galaxies and from galaxy to galaxy. With observations of the CO distributions in over 200 galaxies now completed as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey (Young et al. 1989), researchers are finally in a position to determine the type dependence of the molecular content of spiral galaxies, along with the ratio of molecular to atomic gas as a function of type. Do late type spirals really have more gas than early types when the molecular gas content is included. Researchers conclude that there is more than an order of magnitude decrease in the ratio of molecular to atomic gas mass as a function of morphological type from Sa-Sd; an average Sa galaxy has more molecular than atomic gas, and an average Sc has less. Therefore, the total interstellar gas mass to blue luminosity ratio, M sub gas/L sub B, increases by less than a factor of two as a function of type from Sa-Sd. The dominant effect found is that the phase of the gas in the cool interstellar medium (ISM) varies along the Hubble sequence. Researchers suggest that the more massive and centrally concentrated galaxies are able to achieve a molecular-dominated ISM through the collection of more gas in the potential. That gas may then form molecular clouds when a critical density is exceeded. The picture which these observations support is one in which the conversion of atomic gas to molecular gas is a global process which depends on large scale dynamics (cf Wyse 1986). Among interacting and merging systems, researchers find considerable scatter in the M(H2)/M(HI) ratio, with the mean ratio similar to that in the early type galaxies. The high global ratio of molecular to atomic gas could result from the removal of HI gas, the enhanced

  20. Two-dimensional maps of the infrared-to-radio ratio in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Marsh, Kenneth A.; Helou, George

    1994-01-01

    We have produced two-dimensional maps of the intensity ratio Q(sub 60) of 60 micron infrared to 20 cm radio continuum emission, for a set of 25 nearby galaxies, mostly spirals. The ratio maps were obtained from infrared images made using Infrared Astronomical Satellite (IRAS) data with the Maximum Correlation Method, and radio images made using VLA data. Before taking the ratio, the radio images were processed so as to have the same resolution properties as the infrared images; the final spatial resolution in all cases is approximately 1 min, corresponding to 1-2 kpc for most galaxies. These images allow us to study the variations for the Q(sub 60) ratio with unprecedented spatial resolution, and thus represents a major improvement over earlier work. Our new high-resolution maps confirm the slow decrease of Q(sub 60) with increasing radial distance from the nucleus, but show additional structure which is probably associated with separate sites of active star formation in the spiral arms. The maps show Q(sub 60) to be more closely related to infrared surface brightness than to the radial distance in the galaxy disk. We expect that the results will provide improved constraints on the evolution (diffusion, decay and escape) of cosmic-ray electrons in the magnetic field of the disks.

  1. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    SciTech Connect

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath; Pimbblet, Kevin A.

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find that red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.

  2. Corrugated velocity pattern in spiral galaxies: NGC 278, NGC 1058, NGC 2500 and UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2011-11-01

    We report the detection in Hα emission of a radial corrugation pattern in the vertical velocity field of a sample of nearby face-on, spiral galaxies. We obtain long-slit spectra with the double arm ISIS spectrograph, attached to the 4.2 m William Herschel Telescope. The existence of corrugations has been already reported, e.g. Alfaro et al. (2001), Matthews & Uson (2008). Corrugations are closely link, as cause/effect, to the large scale star formation processes: density waves, tidal interactions, galactic bores, collisions of high velocity clouds with disk, etc. Which mechanism is the origin of disk corrugations is still an open problem. In this work not only the existence of radial and azimuthal corrugations are clearly observed, we report a first systematic study on the velocity corrugations in a sample of nearly face-on spiral galaxies. NGC 278 and NGC 1058 show a similar behavior to NGC 5427 (Alfaro et al. 2001), with a clear displacement between the velocities and emission line peaks. Where the approaching velocity peaks occur in the convex border of the arms, and the receding maxima are located behind the Hα emission maxima, in the concave side. This kinematical behavior is similar to the one expected in a galactic bore generated by the interaction of a spiral density wave with a thick gaseous disk. NGC 2500 and UGC 3574 do not show so clear this last relation between the velocity and emission line peaks, a possible cause should a fainter and discontinuous Hα emission. Oddly, these two pairs of galaxies also differ between them in their ionization mechanism features obtained from diagnostic diagrams.

  3. Spiral Arm Pitch Angle Measurements of Galaxies in Different Wavelengths of Light to Investigate a Prediction of Density Wave Theory

    NASA Astrophysics Data System (ADS)

    Pour Imani, Hamed; Davis, Benjamin L.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel

    2015-08-01

    Spiral structure in disk galaxies has been an important study of astronomy for decades. In understanding this structure one of the major parameters is the pitch angle of spiral arms. The density wave theory was proposed by C.Lin and F.Shu in the mid-1960s to explain the spiral arm structure of spiral galaxies [1]. A prediction of this theory is that the pitch angle of spiral arms for galaxies with blue-light wavelength images should be smaller than for infrared-light, so we have tighter spiral arms in blue band images. Young (blue) stars in arms of the galaxies move head of the old (red) stellar populations, clouds and dust. This implies that blue stars should exhibit tighter arms. In ref [2], E.M Garcia et al (2014) investigate the behavior of the pitch angle of spiral arms depending on optical wavelength. They worked on five galaxies and their images band-pass wavelength are in the optical range and their results show that just three of those five galaxies are consistent with density wave theory.In this research, we worked with a bigger samples and for each galaxy we used an optical wavelength image (B-Band: 445 nm) and another image from the Spitzer Space Telescope in a deep infrared range (Infrared: 8.0 μm) and we measured the pitch angle with the 2DFFT code [3]. Our results show that for optical range images we have smaller pitch angle compared to the infrared range and all of our measurements support with the density wave theory. Our results for 42 NGC galaxies show that spiral arms for images with optical range wavelength are clearly tighter typically by a few degrees than spiral arms in infrared range wavelength.Reference:[1]. Bertin, G. and Lin, C. (1996), MIT Press[2]. E.M Garcia et al, 2014 ApJ 793 L19[3]. Benjamin L. Davis et al. 2012 ApJS 199 33

  4. Catalog of Observed Tangents to the Spiral Arms in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Vallée, Jacques P.

    2014-11-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 mean tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory.

  5. CATALOG OF OBSERVED TANGENTS TO THE SPIRAL ARMS IN THE MILKY WAY GALAXY

    SciTech Connect

    Vallée, Jacques P.

    2014-11-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 mean tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc; doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory.

  6. On the local and global stability of spiral galaxies in modified gravity

    NASA Astrophysics Data System (ADS)

    Roshan, M.

    2016-09-01

    We study the local and global stability of self-gravitating disks in the context of modified gravity (MOG). MOG is a covariant generalization of general relativity and developed as an alternative for dark matter particles. On the other hand the stability of spiral galaxies is directly linked to the dark matter problem. Thus it seems necessary to study the astrophysical consequences of MOG from gravitational stability point of view. More specifically, we review the generalized version of the Toomre's stability criterion and present the result of some idealized N-body simulation for the global stability of self-gravitating disks.

  7. Angular momentum, accretion, and radial flows in chemodynamical models of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Pezzulli, G.; Fraternali, F.

    2016-09-01

    Gas accretion and radial flows are key ingredients of the chemical evolution of spiral galaxies. They are also tightly linked to each other (accretion drives radial flows due to angular momentum conservation) and should therefore be modeled simultaneously. We summarize an algorithm that can be used to consistently compute accretion profiles, radial flows, and abundance gradients under quite general conditions, and we describe illustrative applications to the Milky Way. We find that gas-phase abundance gradients strongly depend on the angular momentum of the accreting material and, in the outer regions, they are significantly affected by the choice of boundary conditions.

  8. X-ray Properties of Supernova Remnants in Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Long, Knox S.; Blair, William P.; Kuntz, K. D.; Winkler, P. Frank

    2016-04-01

    More extragalactic SNRs have been detected in X-rays in nearby galaxies than in the Milky Way. Most of the X-ray detected SNRs were first identified optically, and then detected as soft X-ray sources in deep imaging observations with Chandra and in some cases XMM. Here, we discuss the large X-ray samples of SNRs in M33, M51, M83, and M101, with the goal of understanding which SNRs are detected in X-rays and which are not. Not surprisingly perhaps, most of the SNRs in these galaxies are middle-aged ones very few analogs of Cas A, the Crab or other young objects have been found. Trends of X-ray luminosity with diameter are absent, probably because the total amount of swept up material is the dominant factor in determining the X-ray luminosity of a SNR at a particular time. SNRs expanding into high density media evolve rapidly and have X-ray luminosities that peak at small diameters, whereas those expanding into lower density media evolve more slowly and have luminosities that peak later.

  9. The 158 micron (CII) mapping of galaxies: Probing the atomic medium

    NASA Technical Reports Server (NTRS)

    Madden, S. C.; Geis, N.; Genzel, R.; Herrmann, F.; Jackson, J.; Poglitsch, A.; Stacey, G. J.; Townes, C. H.

    1993-01-01

    Using the MPE/UCB Far-infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO), we have made large scale maps of (CII) in the spiral galaxies NGC 6946, NGC 891, M83 and the peculiar elliptical Cen A, thus allowing for the first time, detailed studies of the spatial distribution of the FIR line emission in external galaxies. We find that the (CII) emission comes from a mixture of components of interstellar gas. The brightest emission is associated with the nuclear regions, a second component traces the spiral arms as seen in the nearly face on spiral galaxies NGC 6946 and M83 and the largest star forming/H2 regions contained within them, and another extended component of low brightness can be detected in all of the galaxies far from the nucleus, beyond the extent of CO emission.

  10. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 105 M⊙. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V - I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting MI (max) = -8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H0 = 77.9 ± 3.6 km s-1 Mpc-1. We estimate the GC specific frequency of NGC 4921 to be SN = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  11. On the Effective Oxygen Yield in the Disks of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Zasov, A.; Saburova, A.; Abramova, O.

    2015-12-01

    The factors that influence the chemical evolution of galaxies are poorly understood. Both gas inflow and gas outflow reduce the gas-phase abundance of heavy elements (metallicity), whereas ongoing star formation continuously increases it. To exclude the stellar nucleosynthesis from consideration, we analyze for a sample of 14 spiral galaxies the radial distribution of the effective yield of oxygen yeff, which would be identical to the true stellar yield (per stellar generation) yo if the evolution followed the closed-box model. As the initial data for gas-phase abundance, we used the O/H radial profiles from Moustakas et al., based on two different calibrations (the PT2005 and KK2004 methods). In most of the galaxies with the PT2005 calibration, which we consider the preferred one, the yield yeff in the main disk (R≥slant 0.2 {R}25, where R25 is the optical radius) increases with radius, remaining lower than the empirically found true stellar yield yo. This may indicate the inflow of less-enriched gas predominantly to the inner disk regions, which reduces yeff. We show that the maximal values of the effective yield in the main disks of galaxies, {y}{eff,{max}}, anticorrelate with the total mass of galaxies and with the mass of their dark halos enclosed within R25. It allows us to propose the greater role of gas accretion for galaxies with massive halos. We also found that the radial gradient of oxygen abundance normalized to R25 has a tendency to be shallower in the systems with lower dark halo to stellar mass ratio within the optical radius, which, if confirmed, gives evidence of the effective radial mixing of gas in galaxies with a relatively light dark matter halo.

  12. VizieR Online Data Catalog: 1.49GHz Atlas of Spiral Galaxies (Condon, 1987)

    NASA Astrophysics Data System (ADS)

    Condon, J. J.

    2003-11-01

    The VLA has been used in its most compact D- and C/D-configurations to make low-resolution (θ~0.9FWHM) 1.49GHz maps of the spiral galaxies north of DE=-45° and brighter than BT=+12, the completeness limit of the Revised Shapley-Ames Catalog (Cat. VII/51). Most of these maps are confusion-limited at σ>=0.1mJy per beam, and at least 94% of the galaxies were detected with S>=1mJy. The maps have sufficient sensitivity to low-brightness emission that accurate radio "photometry" is possible. An atlas of contour maps, a table of total flux densities plus other radio source parameters, and references to published radio maps are given. (3 data files).

  13. Identification of an Extensive Luminous Halo Around the Ringed Spiral Galaxy NGC 7217

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.

    1993-12-01

    The isolated spiral galaxy NGC 7217 is characterized by flocculent spiral structure and three optical ring-like zones: a stellar nuclear ring, a weak inner pseudoring, and a bright patchy outer ring. The rings all have nearly the same shape and position angle in projection. To understand this kind of ringed galaxy, we have obtained deep CCD BVRI surface photometry and mapping of the CO and HI gas distributions and kinematics. Our images reveal something that was missed in previous studies: a large, nearly round halo of light extending far beyond the outer ring. We interpret this as bulge light which comes back to dominate the luminosity distribution at large radii. Ellipse fits to isophotes out to 240('') radius reveal a minimum axis ratio of 0.83 just outside the outer ring at 90('') , and then a rise to 0.96 at about 140('') . The luminosity profiles are well-fitted by a combined r({1/) 4} bulge and exponential disk model. In all filters, the bulge dominates at all radii, and the bulge-to-total disk ratio is about 2.3 (B). If the minimum axis ratio of 0.83 approximates the apparent flattening of the disk, then NGC 7217 is remarkably axisymmetric. Nevertheless, the I-band image reveals a tightly-wrapped, two-armed spiral pattern in the outer ring region. The outer ring includes 4.5% of the total B luminosity and is the locus of most of the recent star formation in the galaxy; it is also where the HI gas is concentrated. An additional noteworthy feature is a circumnuclear dust ring 1.2 kpc in diameter. Other dust lanes are seen only on the near side of the galaxy. The rings of NGC 7217 could be resonances with a very weak internal perturbation. We are attempting to simulate the structure using the I-band light distribution to help define the potential. But most interesting is the recent discovery of a substantial population of counter-rotating stars in the galaxy (Kuijken 1993, PASP, 105, 1016). One possible explanation for these stars is that the bulge is more

  14. The Arizona Radio Observatory Survey of Molecular Gas in Nearby Normal Spiral Galaxies I: The Data

    NASA Astrophysics Data System (ADS)

    Vila-Vilaro, B.; Cepa, J.; Zabludoff, A.

    2015-06-01

    Using the ARO KP 12 m telescope, we have carried out a CO(1-0) and 13CO(1-0) survey of the central regions of 113 “normal” spiral galaxies (i.e., unperturbed and with little or no nuclear activity). Our sample spans the whole range of morphological types (T = 1-7), with distances up to 75 Mpc. The detection rates for the observed objects are 99.1% for CO(1-0) and 75.2% for 13CO(1-0), respectively. For three of the targets in our sample (i.e., NGC 0891, NGC 2903, and NGC 3521), we also carry out 13CO(1-0) mapping along their major axes, which, combined with data from the literature, reveal differences in their molecular gas properties. Analysis of the beam-matched line intensity ratios of CO(1-0)/13CO(1-0) (hereafter {R}1312) indicates that for “normal” spiral galaxies the scatter in {R}1312 is of ≈x3, and has an average value (including upper limits) of 10.4 ± 0.4 (in contrast with the values of 3-5 in typical giant molecular clouds and 13 ± 6 in Starburst Galaxies). No significant correlations (at the ≥2σ level) are found between {R}1312 and the total far-infrared (FIR) luminosity, the FIR colors, and the fraction of area sampled in the disk of each galaxy. There is a tentative (1.4σ significance) correlation between {R}1312 and morphological type along the Hubble sequence. The observed scatter in {R}1312 can be explained by intrinsic variations among the CO conversion factors. The observations presented in this work, which include the most extensive 13CO(1-0) extragalactic survey published so far on “normal” spiral galaxies are ideally suited for use in recovering the “missing” flux of interferometers with elements of similar dish sizes.

  15. THE LUMINOSITY FUNCTION OF X-RAY SOURCES IN SPIRAL GALAXIES

    SciTech Connect

    Prestwich, A. H.; Primini, F.; McDowell, J. C.; Zezas, A.; Kilgard, R. E.

    2009-11-10

    X-ray sources in spiral galaxies can be approximately classified into bulge and disk populations. The bulge (or hard) sources have X-ray colors which are consistent with low-mass X-ray binaries (LMXBs) but the disk sources have softer colors suggesting a different type of source. In this paper, we further study the properties of hard and soft sources by constructing color-segregated X-ray luminosity functions (XLFs) for these two populations. Since the number of sources in any given galaxy is small, we co-added sources from a sample of nearby, face-on spiral galaxies observed by Chandra as a Large Project in Cycle 2. We use simulations to carefully correct the XLF for completeness. The composite hard source XLF is not consistent with a single-power-law fit. At luminosities L{sub x} > 3 x 10{sup 38} erg s{sup -1}, it is well fitted by a power law with a slope that is consistent with that found for sources in elliptical galaxies by Kim and Fabbiano. This supports the suggestion that the hard sources are dominated by LMXBs. In contrast, the high-luminosity XLF of soft sources has a slope similar to the 'universal' high-mass X-ray binary XLF. Some of these sources are stellar-mass black hole binaries accreting at high rates in a thermal/steep power-law state. The softest sources have inferred disk temperatures that are considerably lower than found in galactic black holes binaries. These sources are not well understood, but some may be super-soft ultra-luminous X-ray sources in a quiescent state as suggested by Soria and Ghosh.

  16. Dark matter in spiral galaxies. I. Galaxies with optical rotation curves

    SciTech Connect

    Kent, S.M.

    1986-06-01

    Data obtained with a CCD camera are presented for 37 Sb and Sc galaxies with existing optical rotation curves. The CCD images are used to derive luminosity profiles using standard reduction methods, and multicolor images are obtained for several galaxies in order to investigate the effects of color gradients. A new method for decomposing the profiles into bulge and disk components is presented. It is found that optical rotation curves do not always place strong constraints on the amount of dark matter in galaxies. Three methods of constraining the halo or bulge/disk parameters are presented. The stellar M/L ratio is shown to correlate with galaxy mass, morphological type, and inclination. 31 references.

  17. THE SPIRAL GALAXY M100 AS SEEN WITH THE HUBBLE'S IMPROVED VISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the grand design spiral galaxy M100 obtained with the second generation Wide Field and Planetary Camera (WFPC-2), newly installed in the Hubble Space Telescope. Though the galaxy lies several tens of millions of light-years away, modified optics incorporated within the WFPC-2 allow Hubble to view M100 with a level of clarity and sensitivity previously possible only for the very few nearby galaxies that compose our ``Local Group.'' Just as one does not learn about the diversity of mankind by conversing only with your next door neighbor, astronomers must study many galaxies in a host of different environments if they are to come to understand how our own galaxy, our star, and our earth came to be. By expanding the region of the universe that can be studied in such detail a thousand fold, the WFPC-2 will help the Hubble Space Telescope to fulfill this mission. One of the greatest gains of the high resolution provided by Hubble is the ability to resolve individual stars in other galaxies. The new camera not only allows astronomers to separate stars which would have been blurred together at the resolution available from the ground, but also allows astronomers to accurately measure the light from very faint stars. The quantitative study of compositions, ages, temperatures, and other properties of stars and gas in other galaxies will provide important clues about how galaxies form and evolve. In addition, the WFPC-2 will allow the Hubble Space Telescope to be used to attack one of the most fundamental questions in science: the age and scale of the universe. Astronomers have many ``yardsticks'' for measuring the scale of the universe, but lack a good knowledge of how long these yardsticks really are. M100 is a member of the Virgo Cluster of galaxies. By allowing astronomers to resolve and measure individual stars in the Virgo Cluster -- in particular a special type of star called Cepheid variables, which have well known absolute brightnesses -- HST observations

  18. Satellite accretion in action: a tidally disrupting dwarf spheroidal around the nearby spiral galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Martínez-Delgado, David; Martin, Nicolas F.; Morales, Gustavo; Jennings, Zachary G.; GaBany, R. Jay; Brodie, Jean P.; Grebel, Eva K.; Schedler, Johannes; Sidonio, Michael

    2016-03-01

    We report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy, NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. The dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars. Using g- and Rc-band photometry, we detect a red giant branch consistent with an old, metal-poor stellar population at a distance of ˜3.5 Mpc. From the distribution of likely member stars, we infer a highly elongated shape with a semimajor axis half-light radius of (2 ± 0.4) kpc. Star counts also yield a luminosity estimate of ˜2 × 106 L⊙,V (MV ˜ -10.7). The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ˜50 kpc from the main galaxy. Our observations support the hierarchical paradigm wherein massive galaxies continuously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics. We also note the continued efficacy of small telescopes for making big discoveries.

  19. Molecular hydrogen beyond the optical edge of an isolated spiral galaxy.

    PubMed

    Braine, Jonathan; Herpin, Fabrice

    2004-11-18

    Knowledge about the outermost portions of galaxies is limited owing to the small amount of light coming from them. It is known that in many cases atomic hydrogen (H I) extends well beyond the optical radius. In the centres of galaxies, however, molecular hydrogen (H2) usually dominates by a large factor, raising the question of whether H2 is also abundant in the outer regions. Here we report the detection of emission from carbon monoxide (CO), the most abundant tracer of H2, beyond the optical radius of the nearby galaxy NGC 4414. The host molecular clouds probably formed in the regions of relatively high H i column density and in the absence of spiral density waves. The relative strength of the lines from the two lowest rotational levels indicates that both the temperature and density of the H2 are quite low compared to conditions closer to the centre. The inferred surface density of the molecular material continues the monotonic decrease from the inner regions. We conclude that although molecular clouds can form in the outer region of this galaxy, there is little mass associated with them.

  20. Corrugated velocity patterns in the spiral galaxies NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2013-05-01

    In this work we address the study of the detection in Ha of a radial corrugation in the vertical velocity field in a sample of four nearly face-on, spiral galaxies. The geometry of the problem is a main criterion in the selection of the sample as well as of the azimuthal angle of the slits. These spatial corrugations must be equally associated with wavy vertical motions in the galactic plane with a strong large-scale consistency. Evidence of these kinematic waves were first detected in the analysis of the rotation curves of spiral galaxies (e.g. te{1963ApJ...137..363D,1965BOTT....4....8P}), but it was not until 2001 that te{2001ApJ...550..253A} analyzed in more detail the velocity corrugations in NGC 5427 and a possible physical mechanism for their origin. The aim of this study is to analyze the corrugated velocity pattern in terms of the star formation processes. We describe the geometry of the problem and establish its fundamental relationships.

  1. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, M. Carmen; Alfaro, Emilio J.; Pérez, Enrique

    2015-12-01

    We address the study of the H α vertical velocity field in a sample of four nearly face-on galaxies using long-slit spectroscopy taken with the Intermediate dispersion Spectrograph and Imaging System (ISIS), attached to the William Herschel Telescope (WHT) at the Roque de los Muchachos Observatory (Spain). The spatial structure of the velocity vertical component shows a radial corrugated pattern with spatial scales higher or within the order of 1 kpc. The gas is mainly ionized by high-energy photons: only in some locations of NGC 278 and NGC 1058 is there some evidence of ionization by low-velocity shocks, which, in the case of NGC 278, could be due to minor mergers. The behaviour of the gas in the neighbourhood of the spiral arms fits, in the majority of the observed cases, with that predicted by the so-called hydraulic bore mechanism, where a thick magnetized disc encounters a spiral density perturbation. The results obtained show that it is difficult to explain the H α large-scale velocity field without the presence of a magnetized, thick galactic disc. Larger samples and spatial covering of the galaxy discs are needed to provide further insight into this problem.

  2. Radial metallicity gradients in spiral galaxies from H II regions and planetary nebulae: probing galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia

    2015-08-01

    Radial metallicity gradients, typically observed in spiral galaxies, are excellent constraints for chemical evolution models. The contemporary studies of the two stellar populations, whose progenitors have formed at different times, yield to the chemical and time constraining of the models. In this context, planetary nebula and HII region analysis proved to be ideal two-epochs test populations. We present an assortment of galaxies whose oxygen abundances have been determined both with weak- and strong-line methods, and whose radial metallicity gradients and their evolution in time have disclosed very interesting correlations with the galaxy characteristics. New results from our Gemini/GMOS observations, and a review of the best literature data, set the stage for a better understanding of spiral galaxy evolution.

  3. SPIRALS, BRIDGES, AND TAILS: A GALAXY EVOLUTION EXPLORER ULTRAVIOLET ATLAS OF INTERACTING GALAXIES

    SciTech Connect

    Smith, Beverly J.; Giroux, Mark L.; Hancock, Mark; Struck, Curtis E-mail: girouxm@etsu.edu E-mail: curt@iastate.edu

    2010-03-15

    We have used the Galaxy Evolution Explorer (GALEX) ultraviolet telescope to study stellar populations and star formation morphology in a well-defined sample of 42 nearby optically selected pre-merger interacting galaxy pairs. Galaxy interactions were likely far more common in the early universe than in the present; thus our study provides a nearby well-resolved comparison sample for high-redshift studies. We have combined the GALEX near-ultraviolet (NUV) and far-ultraviolet images with broadband optical maps from the Sloan Digitized Sky Survey to investigate the ages and extinctions of the tidal features and the disks. The distributions of the UV/optical colors of the tidal features and the main disks of the galaxies are similar; however, the tidal features are bluer on average in NUV - g when compared with their own parent disks; thus tails and bridges are often more prominent relative to the disks in UV images compared to optical maps. This effect is likely due to enhanced star formation in the tidal features compared to the disks rather than reduced extinction; however, lower metallicities may also play a role. We have identified a few new candidate tidal dwarf galaxies in this sample. Other interesting morphologies such as accretion tails and 'beads on a string' are also seen in these images. We also identify a possible 'Taffy' galaxy in our sample, which may have been produced by a head-on collision between two galaxies. In only a few cases are strong tidal features seen in H I maps but not in GALEX.

  4. W.W. Morgan and the Discovery of the Spiral Arm Structure of our Galaxy

    NASA Astrophysics Data System (ADS)

    Sheehan, William

    2008-03-01

    William Wilson Morgan was one of the great astronomers of the twentieth century. He considered himself a morphologist, and was preoccupied throughout his career with matters of classification. Though, his early life was difficult, and his pursuit of astronomy as a career was opposed by his father, he took a position at Yerkes Observatory in 1926 and remained there for the rest of his working life. Thematically, his work was also a unified whole. Beginning with spectroscopic studies under Otto Struve at Yerkes Observatory, by the late 1930s he concentrated particularly on the young O and B stars. His work an stellar classification led to the Morgan-Keenan-Kellman [MKK] system of classification of stars, and later - as he grappled with the question of the intrinsic color and brightness of stars at great distances - to the Johnson-Morgan UBV system for measuring stellar colors. Eventually these concerns with classification and method led to his greatest single achievement - the recognition of the nearby spiral arms of our Galaxy by tracing the OB associations and HII regions that outline them. After years of intensive work on the problem of galactic structure, the discovery came in a blinding flash of Archimedean insight as he walked under the night sky between his office and his house in the autumn of 1951. His optical discovery of the spiral arms preceded the radio-mapping of the spiral arms by more than a year. Morgan suffered a nervous breakdown soon after he announced his discovery, however, and so was prevented from publishing a complete account of his work. As a result of that, and the announcement soon afterward of the first radio maps of the spiral arms, the uniqueness of his achievement was not fully appreciated at the time.

  5. Spiral Galaxies with a Larger Fraction of Dark Matter in the Region of 3-10 Mpc Around the Virgo and Fornax Clusters

    NASA Astrophysics Data System (ADS)

    Kogoshvili, N. G.; Borchkhadze, T. M.; Kalloghlian, A. T.

    2015-09-01

    This is a study of the dynamic characteristics of spiral galaxies with absolute magnitudes M ≥ -20m.6 at distances of 3 to 10 Mpc from the Virgo and Fornax clusters based on data from the Merged Catalog of Galaxies MERCG. The diameters of the galaxies are used to determine the radius RD corresponding to the region with the greatest concentration of dark matter. Based on the condition of centrifugal equilibrium, the dynamic parameters of the spiral galaxies with M ≥ -20m.6 are calculated and compared with the dynamic characteristics of spiral galaxies with M ≥ -20m.6. It is found that there are many fewer spiral galaxies with M ≥ -20m.6 and a larger fraction of dark matter in the regions surrounding these clusters, estimated at 12.7% in the vicinity of the Virgo cluster and 15.3% in the vicinity of the Fornax cluster.

  6. Nearby Spiral Galaxy Globular Cluster Systems. II. Globular Cluster Metallicities in NGC 300

    NASA Astrophysics Data System (ADS)

    Nantais, Julie B.; Huchra, John P.; Barmby, Pauline; Olsen, Knut A. G.

    2010-03-01

    We present new metallicity estimates for globular cluster (GC) candidates in the Sd spiral NGC 300, one of the nearest spiral galaxies outside the Local Group. We have obtained optical spectroscopy for 44 Sculptor Group GC candidates with the Boller and Chivens (B&C) spectrograph on the Baade Telescope at Las Campanas Observatory. There are two GCs in NGC 253 and 12 objects in NGC 300 with globular-cluster-like spectral features, nine of which have radial velocities above 0 km s-1. The remaining three, due to their radial velocities being below the expected 95% confidence limit for velocities of NGC 300 halo objects, are flagged as possible foreground stars. The non-cluster-like candidates included 13 stars, 15 galaxies, and an H II region. One GC, four galaxies, two stars, and the H II region from our sample were identified in archival Hubble Space Telescope images. For the GCs, we measure spectral indices and estimate metallicities using an empirical calibration based on Milky Way GCs. The GCs of NGC 300 appear similar to those of the Milky Way. Excluding possible stars and including clusters from the literature, the GC system (GCS) has a velocity dispersion of 68 km s-1 and has no clear evidence of rotation. The mean metallicity for our full cluster sample plus one literature object is [Fe/H] = -0.94, lying above the relationship between mean GC metallicity and overall galaxy luminosity. Excluding the three low-velocity candidates, we obtain a mean [Fe/H] = -0.98, still higher than expected, raising the possibility of significant foreground star contamination even in this sample. Visual confirmation of genuine GCs using high-resolution space-based imagery could greatly reduce the potential problem of interlopers in small samples of GCSs in low-radial-velocity galaxies. Data for this project were obtained at the Baade 6.5 m telescope, Las Campanas Observatory, Chile. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint

  7. The flaring Hi disk of the nearby spiral galaxy NGC 2683

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Nehlig, F.; Ibata, R.

    2016-02-01

    New deep VLA D array Hi observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model Hi data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80°; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination between 10 kpc ≤ R ≤ 20 kpc (decreasing by 10°); (iv) an exponential flare that rises from 0.5 kpc at R = 9 kpc to 4 kpc at R = 15 kpc, stays constant until R = 22 kpc, and decreases its height for R> 22 kpc; and (v) a low surface-density gas ring with a vertical offset of 1.3 kpc. The slope of NGC 2683's flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683's maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the optical and thin gas disk. Under the assumption of vertical hydrostatic equilibrium we derive the vertical velocity dispersion of the gas. The high turbulent velocity dispersion in the flare can be explained by energy injection by (i) supernovae; (ii) magneto-rotational instabilities; (iii) interstellar medium stirring by dark matter substructure; or (iv) external gas accretion. The existence of the complex large-scale warping and asymmetries favors external gas accretion as one of the major energy sources that drives turbulence in the outer gas disk. We propose a scenario where this external accretion leads to turbulent adiabatic compression that enhances the turbulent velocity dispersion and might quench star formation in the outer gas disk of NGC

  8. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    NASA Astrophysics Data System (ADS)

    Klaric, Mario; Byrd, Gene G.

    1990-11-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of

  9. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    NASA Technical Reports Server (NTRS)

    Klaric, Mario; Byrd, Gene G.

    1990-01-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of

  10. The angular momentum of hot coronae around spiral galaxies and its impact on the evolution of star forming discs

    NASA Astrophysics Data System (ADS)

    Pezzulli, G.; Fraternali, F.; Binney, J.

    2016-06-01

    Galaxy formation theory and recent observations indicate that spiral galaxies are surrounded by massive and hot coronae, which potentially constitute a huge source of mass and angular momentum for the star forming discs embedded within them. Accretion from these reservoirs is likely a key ingredient for the evolution of spiral galaxies, but our understanding of the involved processes requires more observational and theoretical investigation, both at global and local scales. In this talk, I focus on some theoretical aspects of the angular momentum distribution of hot coronae. I address, in particular, whether these structures can sustain the inside-out growth of spiral galaxies and what are the dynamical consequences of the accretion of hot coronal gas onto the disc. These processes can have a big impact on observable quantities, most notably gas-phase abundance gradients, which can be used to put constraints on theory. I finally mention ongoing work to understand whether a cosmologically motivated angular momentum distribution for the hot gas is compatible with the constraints from galaxy evolution.

  11. GRAND DESIGN AND FLOCCULENT SPIRALS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    SciTech Connect

    Elmegreen, Debra Meloy; Yau, Andrew; Elmegreen, Bruce G.; Athanassoula, E.; Bosma, Albert; Helou, George; Sheth, Kartik; Ho, Luis C.; Madore, Barry F.; Menendez-Delmestre, KarIn; Gadotti, Dimitri A.; Knapen, Johan H.; Laurikainen, Eija; Salo, Heikki; Meidt, Sharon E.; Regan, Michael W.; Zaritsky, Dennis; Aravena, Manuel

    2011-08-10

    Spiral arm properties of 46 galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) were measured at 3.6 {mu}m, where extinction is small and the old stars dominate. The sample includes flocculent, multiple arm, and grand design types with a wide range of Hubble and bar types. We find that most optically flocculent galaxies are also flocculent in the mid-IR because of star formation uncorrelated with stellar density waves, whereas multiple arm and grand design galaxies have underlying stellar waves. Arm-interarm contrasts increase from flocculent to multiple arm to grand design galaxies and with later Hubble types. Structure can be traced further out in the disk than in previous surveys. Some spirals peak at mid-radius while others continuously rise or fall, depending on Hubble and bar type. We find evidence for regular and symmetric modulations of the arm strength in NGC 4321. Bars tend to be long, high amplitude, and flat-profiled in early-type spirals, with arm contrasts that decrease with radius beyond the end of the bar, and they tend to be short, low amplitude, and exponential-profiled in late Hubble types, with arm contrasts that are constant or increase with radius. Longer bars tend to have larger amplitudes and stronger arms.

  12. Disc colours in field and cluster spiral galaxies at 0.5 ≲z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Cantale, Nicolas; Jablonka, Pascale; Courbin, Frédéric; Rudnick, Gregory; Zaritsky, Dennis; Meylan, Georges; Desai, Vandana; De Lucia, Gabriella; Aragón-Salamanca, Alfonso; Poggianti, Bianca M.; Finn, Rose; Simard, Luc

    2016-05-01

    We present a detailed study of the colours of late-type galaxy discs for ten of the EDisCS galaxy clusters with 0.5 ≲ z ≲ 0.8. Our cluster sample contains 172 spiral galaxies, and our control sample is composed of 96 field disc galaxies. We deconvolved their ground-based V and I images obtained with FORS2 at the VLT with initial spatial resolutions between 0.4 and 0.8 arcsec to achieve a final resolution of 0.1 arcsec with 0.05 arcsec pixels, which is close to the resolution of the ACS at the HST. After removing the central region of each galaxy to avoid pollution by the bulges, we measured the V-I colours of the discs. We find that 50% of cluster spiral galaxies have disc V-I colours redder by more than 1σ of the mean colours of their field counterparts. This is well above the 16% expected for a normal distribution centred on the field disc properties. The prominence of galaxies with red discs depends neither on the mass of their parent cluster nor on the distance of the galaxies to the cluster cores. Passive spiral galaxies constitute 20% of our sample. These systems are not abnormally dusty. They are are made of old stars and are located on the cluster red sequences. Another 24% of our sample is composed of galaxies that are still active and star forming, but less so than galaxies with similar morphologies in the field. These galaxies are naturally located in the blue sequence of their parent cluster colour-magnitude diagrams. The reddest of the discs in clusters must have stopped forming stars more than ~5 Gyr ago. Some of them are found among infalling galaxies, suggesting preprocessing. Our results confirm that galaxies are able to continue forming stars for some significant period of time after being accreted into clusters, and suggest that star formation can decline on seemingly long (1 to 5 Gyr) timescales.

  13. Spiral-like structure in the core of nearby galaxy clusters

    SciTech Connect

    Lagana, Tatiana F.; Andrade-Santos, Felipe; Lima Neto, Gastao B.

    2010-07-15

    Not surprisingly, with the very high angular resolution of the Chandra telescope, results revealed fairly complex structures in cluster cores to be more common than expected. In particular, understanding the nature of spiral-like features at the center of some clusters is the major motivation of this work. We present results from Chandra deep observations of 15 nearby galaxy clusters (0.01

  14. A SINFONI view of circum-nuclear star-forming rings in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Böker, Torsten; Schinnerer, Eva; Knapen, Johan H.; Ryder, Stuart

    2008-07-01

    We present near-infrared (H- and K-band) SINFONI integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. We made use of the relative intensities of different emission lines (i.e. [FeII], HeI, Brγ) to age date the stellar clusters present along the rings. This qualitative, yet robust, method allows us to discriminate between two distinct scenarios that describe how star formation progresses along the rings. Our findings favour a model where star formation is triggered predominantly at the intersection between the bar major axis and the inner Lindblad resonance and then passively evolves as the clusters rotate around the ring (‘Pearls on a string’ scenario), although models of stochastically distributed star formation (‘Popcorn’ model) cannot be completely ruled out.

  15. Giant Molecular Clouds and Star Formation in the Non-Grand Design Spiral Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Wong, T.; Leroy, A.

    2012-01-01

    Although the internal physical properties of molecular clouds have been extensively studied (Solomon et al. 1987), a more detailed understanding of their origin and evolution in different types of galaxies is needed. In order to disentangle the details of this process, we performed CO(1-0) CARMA observations of the eastern part of the multi-armed galaxy NGC 6946. Although we found no evidence of an angular offset between molecular gas, atomic gas and star formation regions in our observations (Tamburro et al. 2008), we observe a clear radial progression from regions where molecular gas dominates over atomic gas (for r ≤ 2.8 kpc) to regions where the gas becomes mainly atomic (5.6 kpc ≤ r ≤ 7.6 kpc) when azimuthally averaged. In addition, we found that the densest concentrations of molecular gas are located on arms, particularly where they appear to intersect, which is in concordance with the predictions by simulations of the spiral galaxies with an active potential (Clarke & Gittins 2006; Dobbs & Bonnell 2008). At CO(1-0) resolution (140 pc), we were able to find CO emitting complexes with masses greater than those of typical Giant Molecular Clouds (105-106 M⊙). To identify GMCs individually and make a more detailed study of their physical properties, we made D array observations of CO(2-1) toward the densest concentrations of gas, achieving a resolution similar to GMCs sizes found in other galaxies (Bolatto et al. 2008). We present first results about differences in properties of the on-arm clouds and inter-arm clouds. We found that, in general, on-arm clouds present broader line widths, are more massive and more active in star formation than inter-arm clouds. We investigated if the velocity dispersion observed in CO(1-0) emitting complexes reflects velocity differences between unresolved smaller clouds, or if it corresponds to actual internal turbulence of the gas observed.

  16. The nature of the UV halo around the spiral galaxy NGC 3628

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Viaene, Sébastien

    2016-03-01

    Thanks to deep UV observations with GALEX and Swift, diffuse UV haloes have recently been discovered around galaxies. Based on UV-optical colours, it has been advocated that the UV haloes around spiral galaxies are due to UV radiation emitted from the disc and scattered off dust grains at high latitudes. Detailed UV radiative transfer models that take into account scattering and absorption can explain the morphology of the UV haloes, and they require the presence of an additional thick dust disc next the to traditional thin disc for half of the galaxies in their sample. We test whether such an additional thick dust disc agrees with the observed infrared emission in NGC 3628, an edge-on galaxy with a clear signature of a thick dust disc. We extend the far-ultraviolet radiative transfer models to full-scale panchromatic models. Our model, which contains no fine-tuning, can almost perfectly reproduce the observed spectral energy distribution from UV to mm wavelengths. These results corroborate the interpretation of the extended UV emission in NGC 3628 as scattering off dust grains, and hence of the presence of a substantial amount of diffuse extra-planar dust. A significant caveat, however, is the geometrical simplicity and non-uniqueness of our model: other models with a different geometrical setting could lead to a similar spectral energy distribution. More detailed radiative transfer simulations that compare the model results to images from UV to submm wavelengths are a way to break this degeneracy, as are UV polarisation measurements.

  17. Magnetic field structure due to the global velocity field in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kotarba, H.; Lesch, H.; Dolag, K.; Naab, T.; Johansson, P. H.; Stasyszyn, F. A.

    2009-08-01

    We present a set of global, self-consistent N-body/smoothed particle hydrodynamic (SPH) simulations of the dynamic evolution of galactic discs with gas, including magnetic fields. We have implemented a description to follow the evolution of magnetic fields with the ideal induction equation in the SPH part of the VINE code. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a ∇ . B-free description, a constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the GADGET code which also includes cleaning methods for ∇ . B. Starting with a homogeneous seed field, we find that by differential rotation and spiral structure formation of the disc the field is amplified by one order of magnitude within five rotation periods of the disc. The amplification is stronger for higher numerical resolution. Moreover, we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry for the evolution of the magnetic field.

  18. Spiral-like star-forming patterns in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Vílchez, J. M.; Kehrig, C.; Iglesias-Páramo, J.; Breda, I.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Dos Reis, S. N.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Walcher, C. J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Mollá, M.; Marino, R. A.; Catalán-Torrecilla, C.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-01-01

    Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 <μr mag/□″< 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified i+, is a two-radial-zone structure, with the inner zone that displays faint (EW(Hα) ≃ 1 Å) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3 Å

  19. Radial and vertical flows induced by galactic spiral arms: likely contributors to our `wobbly Galaxy'

    NASA Astrophysics Data System (ADS)

    Faure, Carole; Siebert, Arnaud; Famaey, Benoit

    2014-05-01

    In an equilibrium axisymmetric galactic disc, the mean Galactocentric radial and vertical velocities are expected to be zero everywhere. In recent years, various large spectroscopic surveys have however shown that stars of the Milky Way disc exhibit non-zero mean velocities outside of the Galactic plane in both the Galactocentric radial and vertical velocity components. While radial velocity structures are commonly assumed to be associated with non-axisymmetric components of the potential such as spiral arms or bars, non-zero vertical velocity structures are usually attributed to excitations by external sources such as a passing satellite galaxy or a small dark matter substructure crossing the Galactic disc. Here, we use a three-dimensional test-particle simulation to show that the global stellar response to a spiral perturbation induces both a radial velocity flow and non-zero vertical motions. The resulting structure of the mean velocity field is qualitatively similar to what is observed across the Milky Way disc. We show that such a pattern also naturally emerges from an analytic toy model based on linearized Euler equations. We conclude that an external perturbation of the disc might not be a requirement to explain all of the observed structures in the vertical velocity of stars across the Galactic disc. Non-axisymmetric internal perturbations can also be the source of the observed mean velocity patterns.

  20. Differences between CO- and calcium triplet-derived velocity dispersions in spiral galaxies: evidence for central star formation?

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Ho, Luis C.; Mason, Rachel; Rodríguez-Ardila, Alberto; Martins, Lucimara; Riffel, Rogério; Diaz, Ruben; Colina, Luis; Alonso-Herrero, Almudena; Flohic, Helene; Gonzalez Martin, Omaira; Lira, Paulina; McDermid, Richard; Ramos Almeida, Cristina; Schiavon, Ricardo; Thanjavur, Karun; Ruschel-Dutra, Daniel; Winge, Claudia; Perlman, Eric

    2015-01-01

    We examine the stellar velocity dispersions (σ) of a sample of 48 galaxies, 35 of which are spirals, from the Palomar nearby galaxy survey. It is known that for ultra-luminous infrared galaxies (ULIRGs) and merger remnants, the σ derived from the near-infrared CO band heads is smaller than that measured from optical lines, while no discrepancy between these measurements is found for early-type galaxies. No such studies are available for spiral galaxies - the subject of this paper. We used cross-dispersed spectroscopic data obtained with the Gemini Near-Infrared Spectrograph, with spectral coverage from 0.85 to 2.5 μm, to obtain σ measurements from the 2.29 μm CO band heads (σCO) and the 0.85 μm calcium triplet (σCaT). For the spiral galaxies in the sample, we found that σCO is smaller than σCaT, with a mean fractional difference of 14.3 per cent. The best fit to the data is given by σopt = (46.0 ± 18.1) + (0.85 ± 0.12)σCO. This `σ-discrepancy' may be related to the presence of warm dust, as suggested by a slight correlation between the discrepancy and the infrared luminosity. This is consistent with studies that have found no σ-discrepancy in dust-poor early-type galaxies, and a much larger discrepancy in dusty merger remnants and ULIRGs. That σCO is lower than σopt may also indicate the presence of a dynamically cold stellar population component. This would agree with the spatial correspondence between low-σCO and young/intermediate-age stellar populations that has been observed in spatially resolved spectroscopy of a handful of galaxies.

  1. The dust energy balance in the edge-on spiral galaxy NGC 4565

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Ciesla, Laure; Cortese, Luca; de Geyter, Gert; Groves, Brent; Boquien, Médéric; Boselli, Alessandro; Brondeel, Lena; Cooray, Asantha; Eales, Steve; Fritz, Jacopo; Galliano, Frédéric; Gentile, Gianfranco; Gordon, Karl D.; Hony, Sacha; Law, Ka-Hei; Madden, Suzanne C.; Sauvage, Marc; Smith, Matthew W. L.; Spinoglio, Luigi; Verstappen, Joris

    2012-12-01

    We combine new dust continuum observations of the edge-on spiral galaxy NGC 4565 in all Herschel/Spectral and Photometric Imaging Receiver (250, 350 and 500 μm) wavebands, obtained as part of the Herschel Reference Survey, and a large set of ancillary data (Spitzer, Sloan Digital Sky Survey, Galaxy Evolution Explorer) to analyse its dust energy balance. We fit a radiative transfer model for the stars and dust to the optical maps with the fitting algorithm FITSKIRT. To account for the observed ultraviolet and mid-infrared emission, this initial model was supplemented with both obscured and unobscured star-forming regions. Even though these star-forming complexes provide an additional heating source for the dust, the far-infrared/submillimetre emission long wards of 100 μm is underestimated by a factor of 3-4. This inconsistency in the dust energy budget of NGC 4565 suggests that a sizable fraction (two-thirds) of the total dust reservoir (Md ˜ 2.9 × 108 M⊙) consists of a clumpy distribution with no associated young stellar sources. The distribution of those dense dust clouds would be in such a way that they remain unresolved in current far-infrared/submillimetre observations and hardly contribute to the attenuation at optical wavelengths. More than two-thirds of the dust heating in NGC 4565 is powered by the old stellar population, with localized embedded sources supplying the remaining dust heating in NGC 4565. The results from this detailed dust energy balance study in NGC 4565 are consistent with that of similar analyses of other edge-on spirals.

  2. Kinematical evidence for secular evolution in Spitzer Survey of Stellar Structure in Galaxies (S4G) spirals

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Font, Joan; Beckman, John E.

    2015-03-01

    We present a study of the kinematics of a sample of isolated spiral galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G). We use Hα Fabry-Perot data from the GHαFaS instrument at the William Herschel Telescope (WHT) in La Palma, complemented with images at 3.6 microns, in the R band and in the Hα filter. The resulting data cubes and velocity field maps allow a complete study of the kinematics of a galaxy, including in-depth investigations of the rotation curve, velocity moment maps, velocity residual maps, gradient maps and position-velocity (PV) diagrams. We find clear evidence of the secular evolution processes going on in these galaxies, such as asymmetries in the velocity field in the bar zone, and non-circular motions, probably in response to the potential of the structural components of the galaxies, or to past or present interactions.

  3. Quantifying the faint structure of galaxies: the late-type spiral NGC 2403

    NASA Astrophysics Data System (ADS)

    Barker, Michael K.; Ferguson, Annette M. N.; Irwin, M. J.; Arimoto, N.; Jablonka, P.

    2012-01-01

    Ground-based surveys have mapped the stellar outskirts of Local Group disc galaxies in unprecedented detail, but extending this work to other galaxies is necessary in order to overcome stochastic variations in evolutionary history and provide more stringent constraints on cosmological galaxy formation models. As part of our continuing programme of ultra-deep imagery of galaxies beyond the Local Group, we present a wide-field analysis of the isolated late-type spiral NGC 2403 using data obtained with Suprime-Cam on the Subaru telescope. The surveyed area reaches a maximum projected radius of 30 kpc or a deprojected radius of Rdp˜ 60 kpc. The colour-magnitude diagram reaches 1.5 mag below the tip of the metal-poor red giant branch (RGB) at a completeness rate >50 per cent for Rdp > rsim 12 kpc. Using the combination of diffuse light photometry and resolved star counts, we are able to trace the radial surface brightness (SB) profile over a much larger range of radii and SB than is possible with either technique alone. The exponential disc as traced by RGB stars dominates the SB profile out to ≳8 disc scalelengths, or Rdp˜ 18 kpc, and reaches a V-band SB of μV˜ 29 mag arcsec-2. Beyond this radius, we find evidence for an extended structural component with a significantly flatter SB profile than the inner disc and which we trace to Rdp˜ 40 kpc and μV˜ 32 mag arcsec-2. This component can be fit with a power-law index of γ˜ 3, has an axial ratio consistent with that of the inner disc and has a V-band luminosity integrated over all radii of 1-7 per cent that of the whole galaxy. At Rdp˜ 20 - 30 kpc, we estimate a peak metallicity [M/H] =-1.0 ± 0.3 assuming an age of 10 Gyr and zero α-element enhancement. Although the extant data are unable to discriminate between stellar halo or thick disc interpretations of this component, our results support the notion that faint, extended stellar structures are a common feature of all disc galaxies, even isolated, low

  4. ASTE CO (3-2) MAPPING TOWARD THE WHOLE OPTICAL DISK OF M 83: PROPERTIES OF INTER-ARM GIANT MOLECULAR-CLOUD ASSOCIATIONS

    SciTech Connect

    Muraoka, Kazuyuki; Tosaki, Tomoka; Kuno, Nario; Fukuhara, Masayuki; Kawabe, Ryohei; Kohno, Kotaro; Handa, Toshihiro; Nakanishi, Kouichiro; Sawada, Tsuyoshi; Ezawa, Hajime; Sorai, Kazuo; Tanaka, Kunihiko

    2009-12-01

    We present a new on-the-fly mapping of CO (J = 3-2) line emission with the Atacama Submillimeter Telescope Experiment toward the 8' x 8' (or 10.5 x 10.5 kpc at the distance of 4.5 Mpc) region of the nearby barred spiral galaxy M 83 at an effective resolution of 25''. Due to its very high sensitivity, our CO (J = 3 - 2) map can depict not only spiral arm structures but also spur-like substructures extended in inter-arm regions. This spur-like substructures in CO (J = 3-2) emission are well coincident with the distribution of massive star-forming regions traced by Halpha luminosity and Spitzer/Infrared Array Camera 8 mum emission. We have identified 54 CO (J = 3-2) clumps as Giant Molecular-cloud Associations (GMAs) employing the CLUMPFIND algorithm, and have obtained their sizes, velocity dispersions, virial masses, and CO luminosity masses. We found that the virial parameter alpha, which is defined as the ratio of the virial mass to the CO luminosity mass, is almost unity for GMAs in spiral arms, whereas there exist some GMAs whose alpha are 3-10 in the inter-arm region. We found that GMAs with higher alpha tend not to be associated with massive star-forming regions, while other virialized GMAs are. Since alpha mainly depends on velocity dispersion of the GMA, we suppose that the onset of star formation in these unvirialized GMAs with higher alpha are suppressed by an increase in internal velocity dispersions of giant molecular clouds within these GMAs due to shear motion.

  5. Galaxy secular mass flow rate determination using the potential-density phase shift approach: Application to six nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Buta, Ronald J.

    2015-01-01

    Using the potential-density phase shift approach developed by the present authors in earlier publications, we estimate the magnitude of radial mass accretion/excretion rates across the disks of six nearby spiral galaxies (NGC 628, NGC 3351, NGC 3627, NGC 4321, NGC 4736, and NGC 5194) having a range of Hubble types. Our goal is to examine these rates in the context of bulge building and secular morphological evolution along the Hubble sequence. Stellar surface density maps of the sample galaxies are derived from SINGS 3.6 μm and SDSS i-band images using colors as an indicator of mass-to-light ratios. Corresponding molecular and atomic gas surface densities are derived from published CO (1-0) and HI interferometric observations of the BIMA SONG, THINGS, and VIVA surveys. The mass flow rate calculations utilize a volume-type torque integral to calculate the angular momentum exchange rate between the basic state disk matter and what we assume to be density wave modes in the observed galaxies. This volume-type integral contains the contributions from both the gravitational surface torque couple and the advective surface torque couple at the nonlinear, quasi-steady state of the wave modes, in sharp contrast to its behavior in the linear regime, where it contains only the contribution from the gravitational surface torque couple used by Lynden-Bell & Kalnajs in 1972. The potential-density phase shift approach yields angular momentum transport rates several times higher than those estimated using the Lynden-Bell and Kalnajs approach. And unlike Lynden-Bell and Kalnajs, whose approach predicts zero mass redistribution across the majority of the disk surface (apart from the isolated locations of wave-particle resonances) for quasi-steady waves, the current approach leads to predictions of significant mass redistribution induced by the quasi-steady density wave modes, enough for the morphological types of disks to evolve substantially within its lifetime. This difference

  6. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    SciTech Connect

    Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    2015-02-01

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines of sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.

  7. The bolometric and UV attenuation in normal spiral galaxies of the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Baes, M.; Bendo, G.; Boquien, M.; Boselli, A.; Ciesla, L.; Cortese, L.; De Looze, I.; Eales, S.; Fritz, J.; Karczewski, O. Ł.; Madden, S.; Smith, M. W. L.; Spinoglio, L.

    2016-02-01

    The dust in nearby galaxies absorbs a fraction of the UV-optical-near-infrared radiation produced by stars. This energy is consequently re-emitted in the infrared. We investigate the portion of the stellar radiation absorbed by spiral galaxies from the Herschel Reference Survey (HRS) by modelling their UV-to-submillimetre spectral energy distributions. Our models provide an attenuated and intrinsic spectral energy distribution (SED), from which we find that on average 32% of all starlight is absorbed by dust. We define the UV heating fraction as the percentage of dust luminosity that comes from absorbed UV photons and find this to be 56%, on average. This percentage varies with morphological type, with later types having significantly higher UV heating fractions. We find a strong correlation between the UV heating fraction and specific star formation rate and provide a power-law fit. Our models allow us to revisit the IRX - AFUV relations, and derive these quantities directly within a self-consistent framework. We calibrate this relation for different bins of NUV - r colour and provide simple relations to relate these parameters. We investigated the robustness of our method and conclude that the derived parameters are reliable within the uncertainties that are inherent to the adopted SED model. This calls for a deeper investigation of how well extinction and attenuation can be determined through panchromatic SED modelling. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    NASA Technical Reports Server (NTRS)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  9. HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS

    SciTech Connect

    Bogdan, Akos; Forman, William R.; Vogelsberger, Mark; Sijacki, Debora; Mazzotta, Pasquale; Kraft, Ralph P.; Jones, Christine; David, Laurence P.; Bourdin, Herve; Gilfanov, Marat; Churazov, Eugene

    2013-08-01

    Luminous X-ray gas coronae in the dark matter halos of massive spiral galaxies are a fundamental prediction of structure formation models, yet only a few such coronae have been detected so far. In this paper, we study the hot X-ray coronae beyond the optical disks of two 'normal' massive spirals, NGC 1961 and NGC 6753. Based on XMM-Newton X-ray observations, hot gaseous emission is detected to {approx}60 kpc-well beyond their optical radii. The hot gas has a best-fit temperature of kT {approx} 0.6 keV and an abundance of {approx}0.1 Solar, and exhibits a fairly uniform distribution, suggesting that the quasi-static gas resides in hydrostatic equilibrium in the potential well of the galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r{sub 200} region (r{sub 200} is the virial radius) is {approx}6 Multiplication-Sign 10{sup 40} erg s{sup -1} for both galaxies. The baryon mass fractions of NGC 1961 and NGC 6753 are f{sub b,NGC1961} {approx} 0.11 and f{sub b,NGC6753} {approx} 0.09, which values fall short of the cosmic baryon fraction. The hot coronae around NGC 1961 and NGC 6753 offer an excellent basis to probe structure formation simulations. To this end, the observations are confronted with the moving mesh code AREPO and the smoothed particle hydrodynamics code GADGET. Although neither model gives a perfect description, the observed luminosities, gas masses, and abundances favor the AREPO code. Moreover, the shape and the normalization of the observed density profiles are better reproduced by AREPO within {approx}0.5r{sub 200}. However, neither model incorporates efficient feedback from supermassive black holes or supernovae, which could alter the simulated properties of the X-ray coronae. With the further advance of numerical models, the present observations will be essential in constraining the feedback effects in structure formation simulations.

  10. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    SciTech Connect

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-11-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  11. Constraining Dark Matter Halo Profiles and Galaxy Formation Models Using Spiral Arm Morphology. II. Dark and Stellar Mass Concentrations for 13 Nearby Face-on Galaxies

    NASA Astrophysics Data System (ADS)

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-11-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  12. The structure and environment of young stellar clusters in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.

    2004-03-01

    A search for stellar clusters has been carried out in 18 nearby spiral galaxies, using archive images from the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. All of the galaxies have previously been imaged from the ground in UBVI. A catalogue of structural parameters, photometry and comments based on visual inspection of the clusters is compiled and used to investigate correlations between cluster structure, environment, age and mass. Least-squares fits to the data suggest correlations between both the full-width at half-maximum (FWHM) and half-light radius (Reff) of the clusters and their masses (M) at about the 3σ level. Although both relations show a large scatter, the fits have substantially shallower slopes than for a constant-density relation (size ∝ M1/3). However, many of the youngest clusters have extended halos which make the Reff determinations uncertain. There is no evidence for galaxy-to-galaxy variations in the mean cluster sizes. In particular, the mean sizes do not appear to depend on the host galaxy star formation rate surface density. Many of the youngest objects (age < 107 years) are located in strongly crowded regions, and about 1/3-1/2 of them are double or multiple sources. The HST images are also used to check the nature of cluster candidates identified in a previous ground-based survey. The contamination rate in the ground-based sample is generally less than about 20%, but some cluster identifications remain ambiguous because of crowding even with HST imaging, especially for the youngest objects. Full Tables \\ref{tab:all}-\\ref{tab:hstphot}, and \\ref{tab:gb} are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/537 Based on observations obtained with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in

  13. The infrared massive stellar content of M 83

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Bonanos, A. Z.; Whitmore, B. C.; Prieto, J. L.; Blair, W. P.

    2015-06-01

    Aims: We present an analysis of archival Spitzer images and new ground-based and Hubble Space Telescope (HST) near-infrared (IR) and optical images of the field of M 83 with the goal of identifying rare, dusty, evolved massive stars. Methods: We present point source catalogs consisting of 3778 objects from Spitzer Infrared Array Camera (IRAC) Band 1 (3.6 μm) and Band 2 (4.5 μm), and 975 objects identified in Magellan 6.5 m FourStar near-IR J and Ks images. A combined catalog of coordinate matched near- and mid-IR point sources yields 221 objects in the field of M 83. Results: We find 49 strong candidates for massive stars which are very promising objects for spectroscopic follow-up. Based on their location in a B - V versus V - I diagram, we expect at least 24, or roughly 50%, to be confirmed as red supergiants. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.Figures 12-23 are available in electronic form at http://www.aanda.orgFull Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A100

  14. KINEMATICS AND MODELING OF THE INNER REGION OF M 83

    SciTech Connect

    Rodrigues, Irapuan; Dottori, Horacio; Diaz, Ruben J.; Agueero, Maria P.; Mast, Damian E-mail: dottori@if.ufrgs.br

    2009-05-15

    Two-dimensional kinematics of the central region of M 83 (NGC 5236) were obtained through three-dimensional NIR spectroscopy with the Gemini South telescope. The spatial region covered by the integral field unit ({approx}5'' x 13'' or {approx}90 x 240 pc) was centered approximately at the center of the bulge isophotes and oriented southeast-northwest. The Pa{beta} emission at half-arcsecond resolution clearly reveals spider-like diagrams around three centers, indicating the presence of extended masses, which we describe in terms of Satoh distributions. One of the mass concentrations is identified as the optical nucleus (ON), another as the center of the bulge isophotes, similar to the CO kinematical center (KC), and the third as a condensation hidden at optical wavelengths (hidden nucleus, HN), coincident with the largest lobe in 10 {mu}m emission. We run numerical simulations that take into account ON, KC, and HN and four more clusters, representing the star-forming arc at the southwest of the optical nucleus. We show that ON, KC, and HN suffer strong evaporation and merge in 10-50 Myr. The star-forming arc is scattered in less than one orbital period, also falling into the center. Simulations also show that tidal striping boosts the external shell of the condensations to their escape velocity. This fact might lead to an overestimation of the mass of the condensations in kinematical observations with spatial resolution smaller than the condensations' apparent sizes. Additionally, the existence of two ILR resonances embracing the chain of H II regions, claimed by different authors, might not exist due to the similarity of the masses of the different components and the fast dynamical evolution of M 83 central 300 pc.

  15. Ultraviolet Spectroscopy of Circumnuclear Star Clusters in M83

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, Claus; Chandar, Rupali

    2011-02-01

    We analyze archival HST/STIS/FUV-MAMA imaging and spectroscopy of 13 compact star clusters within the circumnuclear starburst region of M83, the closest such example. We compare the observed spectra with semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE, and with theoretical models, which are based on a new theoretical UV library of hot massive stars computed with WM-Basic. The models were generated with Starburst99 for metallicities of Z = 0.020 and Z = 0.040, and for stellar initial mass functions (IMFs) with upper mass limits of 10, 30, 50, and 100 M sun. We estimate the ages and masses of the clusters from the best-fit model spectra and find that the ages derived from the semi-empirical and theoretical models agree within a factor of 1.2 on average. A comparison of the spectroscopic age estimates with values derived from HST/WFC3/UVIS multi-band photometry shows a similar level of agreement for all but one cluster. The clusters have a range of ages from about 3 to 20 Myr and do not appear to have an age gradient along M83's starburst. Clusters with strong P-Cygni profiles have masses of a few×104 M sun, seem to have formed stars more massive than 30 M sun, and are consistent with a Kroupa IMF from 0.1to100 M sun. Field regions in the starburst lack P-Cygni profiles and are dominated by B stars.

  16. Erratum: Precision Velocity Fields in Spiral Galaxies. I. Noncircular Motions and rms Noise in Disks

    NASA Astrophysics Data System (ADS)

    Beauvais, Charles; Bothun, G.

    2000-05-01

    In the paper ``Precision Velocity Fields in Spiral Galaxies. I. Noncircular Motions and rms Noise in Disks'' by Charles Beauvais and G. Bothun (ApJS, 125, 99) the abstract was incorrect. The corrected abstract is as follows: Imaging Fabry-Perot data have been acquired for a sample of spiral galaxies from which two-dimensional velocity fields have been constructed on a subkiloparsec resolution scale. These velocity fields are then examined for evidence of noncircular motions. Individual spectra are extracted and the resultant line profiles are fitted with Voigt, Gaussian, and Lorentzian functions. Gaussians are shown to provide a better model for simultaneously fitting a large number of line profiles, successfully fitting a higher fraction. The kinematic disk (i.e., tilted ring) modeling procedure is studied in detail and is shown to accurately recover the underlying rotational structure of galactic disks. The process of obtaining rotation curves from full two-dimensional velocity data is examined. Small-scale ``bumps and wiggles'' on the rotation curves are shown to be due to the inclusion of noncircular motions. Use of the rotation curve estimate returned by the modeling procedure rather than deprojection of the velocity field is recommended to avoid their inclusion. Investigation of the symmetry of the major- and minor-axis rotation curves reveal strong evidence of nonconcentric gas orbits with the maximum center shift of ~300 pc. Comparisons between kinematic and photometric structure (e.g., position angles, inclinations, centers) show considerable noise on small scales. Although large-scale averages are in agreement, this noise is a matter of some concern in the application of the Tully-Fisher method to disk galaxies. Moreover, cases of significant misalignment in position angle between the inner and outer disks are seen in two of the sample galaxies and may indicate the transition between luminous and dark-matter-dominated regions (i.e., where the maximum disk

  17. Investigating the Relationship of Luminosity and Curvature Using the Luminous Convolution Model for Spiral Galaxy Rotation Curves

    NASA Astrophysics Data System (ADS)

    Crowley, Meagan

    2016-03-01

    The Luminous Convolution Model maps velocities of galaxies given by data of visible matter with respect to the relative curvature of the emitter and receiver galaxy using five different models of the Milky Way. This model purports that observations made of the luminous profiles of galaxies do not take the relative curvatures of the emitter and receiver galaxies into account, and thus maps the luminous profile onto the curvature using Lorentz transformations, and then back into the flat frame where local observations are made. The five models of the Milky Way used to compile galaxy data are proposed by Klypin:Anatoly (2002) A and B, Xue (2008), Sofue (2013), and a mixture of Xue and Sofue data. The Luminous Convolution Model has been able to accurately describe the rotation of spiral galaxies through this method without the need for dark matter. In each fitting of a given galaxy, the luminous profile graph exhibits a crossing with the graph of the curvature component, suggesting a correlation between the two. This correlation is currently under investigation as being related to phenomena apparent within each galaxy. To determine the correlation between the luminous profile and the curvature component, a functional analysis of the Luminous Convolution Model will be presented

  18. Azimuthally averaged radial S(sub 100 microns)/S(sub 60 microns) dust color temperatures in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nick A.

    1994-01-01

    The IRAS S(sub 100 micron)/S(sub 60 micron) dust color temperature profiles are presented for two nearby spiral galaxies M 101 and M 81. The radial dust temperature profiles provided an important constraint on the origin of the far-infrared luminosity. The observed dust temperature is compared with that expected for diffuse interstellar dust heated by the general interstellar radiation field within each galaxy. The implications for the contribution of cirrus to the far-infrared luminosity of M 101 and M 81 are discussed.

  19. Spiral-induced velocity and metallicity patterns in a cosmological zoom simulation of a Milky Way-sized galaxy

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Springel, Volker; Kawata, Daisuke; Minchev, Ivan; Sánchez-Blázquez, Patricia; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Campbell, David J. R.

    2016-07-01

    We use a high-resolution cosmological zoom simulation of a Milky Way-sized halo to study the observable features in velocity and metallicity space associated with the dynamical influence of spiral arms. For the first time, we demonstrate that spiral arms, that form in a disc in a fully cosmological environment with realistic galaxy formation physics, drive large-scale systematic streaming motions. In particular, on the trailing edge of the spiral arms the peculiar galactocentric radial and azimuthal velocity field is directed radially outward and azimuthally backward, whereas it is radially inward and azimuthally forward on the leading edge. Owing to the negative radial metallicity gradient, this systematic motion drives, at a given radius, an azimuthal variation in the residual metallicity that is characterized by a metal-rich trailing edge and a metal-poor leading edge. We show that these signatures are theoretically observable in external galaxies with integral field unit instruments such as VLT/MUSE, and if detected, would provide evidence for large-scale systematic radial migration driven by spiral arms.

  20. High resolution infrared astronomy satellite observations of a selected spiral galaxy

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.

    1991-01-01

    The H I, infrared, CO, H alpha and H beta band observations of M51, the prototypical grand-design spiral galaxy, are used to study the consequences of star formation for the distribution of H I and dust. Using the new Very Large Array (VLA) map of 21 cm emission, the Owens Valley Radio Observatory CO mosaic map, and an H alpha imate, new tests were performed with the idea of Tilanus and Allen that the H I is largely a photodissociation product in star-forming regions. It is confirmed that the H I spiral arms are generally coincident with the H II region arms, and offset downstream from the CO arms. The radial distributions of total gas, H alpha and H I surface density have a simple explanation in the dissociation picture. The distributions also demonstrate how the surface density of H I might be related to the star formation efficiency in molecule-rich galaxies. The large width of the H I regions along the arms compared to that of the giant H II regions can be understood in terms of a simple calculation of the expected size of an H I region associated with a typical giant H II region. The longer lifetime of the stars producing dissociating radiation vs. those producing ionizing radiation and the relatively long molecular formation timescale will also contribute to the greater width of the H I arms if stars are continuously forming on the arms. The lack of detailed coincidence of the H I and H II regions along the inner arms has a variety of possible explanations. Two simple tests were performed to probe the origins of the IRAS emission in M51. First, it was found that the infrared excess (IFE) of M51 is 24, suggesting that a substantial fraction of the infrared emission arises from dust heated by photons which do not originate in massive star-formaing regions. Second, radial cuts through the IRAS bands show that at 12, 25, and 60 microns, the arm-interarm contrast of the IRAS emission is substantially less than that of the H alpha emission, providing further

  1. Tidal Effects on the Oort Cloud Comets and Dynamics of the Sun in the Spiral Arms of the Galaxy

    NASA Astrophysics Data System (ADS)

    De Biasi, Alice

    2014-01-01

    The Solar System presents a complex dynamical structure and is not isolated from the Galaxy. In particular the comet reservoir of our planetary system, the Oort cloud, is extremely sensitive to the the galactic environment due to its peripheral collocation inside the Solar System. In this framework, the growing evidences about a possible migration of the Sun open new research scenarios relative to the effects that such kind of migration might induce on the cometary motion. Following several previous studied, we identified the spiral arm structure as the main perturbation that is able to produce an efficient solar migration through the disk. Widening the classical model for the spiral arms, provided by Lin& Shu to a 3D formalism, we verified the compatibility between the presence of the spiral perturbation and a significant solar motion for an inner Galactic position to the current one, in agreement with the constrains in position, velocity and metallicity due to the present conditions of our star. The main perturbers of the Oort cloud, the close stellar passages and the tidal field of the Galaxy, might be both affected by the variation of Galactic environment that the solar migration entails. Despite that, in order to isolate the effects to the two different perturbators, we decided to focus our attention only on the Galactic tide. The perturbation due to the spiral structure was included in the study on the cometary motion, introducing the solar migration and adding the direct presence of the non-axisymmetric component in the Galactic potential of the tidal field. The results show a significant influence of the spiral arm in particular on cometary objects belonged to the outer shell of the Oort cloud, for which provides an injection rate three times bigger than the integration performed without the spiral arms. The introduction of the spiral perturbation seems to bolster the planar component of the tide, indeed it produces the most significant variation of the

  2. Stellar metallicity of the extended disk and distance of the spiral galaxy NGC 3621

    SciTech Connect

    Kudritzki, Rolf-Peter; Bresolin, Fabio; Hosek, Matthew W. Jr.; Urbaneja, Miguel A.; Przybilla, Norbert E-mail: bresolin@ifa.hawaii.edu E-mail: Miguel.Urbaneja-Perez@uibk.ac.at

    2014-06-10

    Low resolution (∼4.5 Å) ESO VLT/FORS spectra of blue supergiant stars are analyzed to determine stellar metallicities (based on elements such as iron, titanium, and magnesium) in the extended disk of the spiral galaxy, NGC 3621. Mildly subsolar metallicity (–0.30 dex) is found for the outer objects beyond 7 kpc, independent of galactocentric radius and compatible with the absence of a metallicity gradient, confirming the results of a recent investigation of interstellar medium H II region gas oxygen abundances. The stellar metallicities are slightly higher than those from the H II regions when based on measurements of the weak forbidden auroral oxygen line at 4363 Å but lower than the ones obtained with the R {sub 23} strong line method. It is shown that the present level of metallicity in the extended disk cannot be the result of chemical evolution over the age of the disk with the present rate of in situ star formation. Additional mechanisms must be involved. In addition to metallicity, stellar effective temperatures, gravities, interstellar reddening, and bolometric magnitudes are determined. After the application of individual reddening corrections for each target, the flux-weighted gravity-luminosity relationship of blue supergiant stars is used to obtain a distance modulus of 29.07 ± 0.09 mag (distance D = 6.52 ± 0.28 Mpc). This new distance is discussed in relation to Cepheid and the tip of the red giant branch distances.

  3. WFPC2 Imaging of Dust Structures and Star Formation in the Disk-Halo Interface of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Savage, Blair

    1999-07-01

    WFPC2 images of five edge-on spirals to study star formation and dusty interstellar clouds in the disk-halo interface of these galaxies. Ground-based and HST images of the nearby {9 Mpc} edge-on spiral NGC 891 show an unexpected web of hundreds of dust structures at heights 0.4 <= z <= 1.7 kpc {Howk & Savage 1997}. With masses >10^5-10^6 M{sun}, the more prominent extraplanar dust complexes may be sites of star formation at high-z, and there is evidence for H II regions associated with unresolved continuum sources far above the plane of NGC 891. We have established that such high-z dust features and H II regions are not unique to NGC 891. We propose to image five edge-on spiral galaxies {D 17 - 70 Mpc} with the WFPC2. The proposed BVI images will be used to identify sites of on- going star formation in the thick disks of these galaxies, all of which show evidence for high-z dust complexes, and with ground-based H Alpha images will be used to study the stellar content o f any such regions. The resolution and point-source sensitivity of the WFPC2 are crucial for studying these star-forming regions. We will also use these images to study interstellar matter in the thick disks of these galaxies with unprecedented detail and derive the fundamental properties of high-z dusty clouds-including sizes, extinctions, column densities, masses, and gravitational potential energies.

  4. The spatially resolved Kennicutt-Schmidt relation in the H I-dominated regions of spiral and dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Sambit; Huang, Mei-Ling; Kauffmann, Guinevere; Wang, Jing; Chengalur, Jayaram N.

    2015-06-01

    We study the Kennicutt-Schmidt relation between average star formation rate (SFR) and average cold gas surface density in the H I-dominated ISM of nearby spiral and dwarf irregular galaxies. We divide galaxies into grid cells varying from sub-kpc to tens of kpc in size. Grid-cell measurements of low SFRs using Hα emission can be biased and scatter may be introduced because of non-uniform sampling of the IMF or because of stochastically varying star formation. In order to alleviate these issues, we use far-ultraviolet emission to trace SFR, and we sum up the fluxes from different bins with the same gas surface density to calculate the average ΣSFR at a given value of Σgas. We study the resulting Kennicutt-Schmidt relation in 400 pc, 1 kpc and 10 kpc scale grids in nearby massive spirals and in 400 pc scale grids in nearby faint dwarf irregulars. We find a relation with a power-law slope of 1.5 in the H I-dominated regions for both kinds of galaxies. The relation is offset towards longer gas consumption time-scales compared to the molecular-hydrogen-dominated centres of spirals, but the offset is an order of magnitude less than that quoted by earlier studies. Our results lead to the surprising conclusion that conversion of gas to stars is independent of metallicity in the H I-dominated regions of star-forming galaxies. Our observed relations are better fit by a model of star formation based on thermal and hydrostatic equilibrium in the ISM, in which stellar heating and supernova feedback set the thermal and turbulent pressure.

  5. Testing the dark matter origin of the WMAP-Planck haze with radio observations of spiral galaxies

    SciTech Connect

    Carlson, Eric; Linden, Tim; Profumo, Stefano; Hooper, Dan E-mail: dhooper@fnal.gov E-mail: profumo@ucsc.edu

    2013-07-01

    If the Galactic WMAP radio haze, as recently confirmed by Planck, is produced by dark matter annihilation or decay, similar diffuse radio halos should exist around other galaxies with physical properties comparable to the Milky Way. If instead the haze is due to an astrophysical mechanism peculiar to the Milky Way or to a transient event, a similar halo need not exist around all Milky Way ''twins''. We use radio observations of 66 spiral galaxies to test the dark matter origin of the haze. We select galaxies based on morphological type and maximal rotational velocity, and obtain their luminosities from a 1.49 GHz catalog and additional radio observations at other frequencies. We find many instances of galaxies with radio emission that is less than 5% as bright as naively expected from dark matter models that could produce the Milky Way haze, and at least 3 galaxies that are less than 1% as bright as expected, assuming dark matter distributions, magnetic fields, and cosmic ray propagation parameters equal to those of the Milky Way. For reasonable ranges for the variation of these parameters, we estimate the fraction of galaxies that should be expected to be significantly less bright in radio, and argue that this is marginally compatible with the observed distribution. While our findings therefore cannot rule out a dark matter origin for the radio haze at this time, we find numerous examples (including the Andromeda Galaxy) where, if dark matter is indeed the origin of the Milky Way haze, some mechanism must be in place to suppress the corresponding haze of the external galaxy. We point out that Planck data will offer opportunities to improve this type of constraint in a highly relevant frequency range and for a potentially larger set of candidate galaxies.

  6. THE TWO-PHASE FORMATION HISTORY OF SPIRAL GALAXIES TRACED BY THE COSMIC EVOLUTION OF THE BAR FRACTION

    SciTech Connect

    Kraljic, Katarina; Bournaud, Frederic

    2012-09-20

    We study the evolution of galactic bars and the link with disk and spheroid formation in a sample of zoom-in cosmological simulations. Our simulation sample focuses on galaxies with present-day stellar masses in the 10{sup 10}-10{sup 11} M{sub Sun} range, in field and loose group environments, with a broad variety of mass growth histories. In our models, bars are almost absent from the progenitors of present-day spirals at z > 1.5, and they remain rare and generally too weak to be observable down to z Almost-Equal-To 1. After this characteristic epoch, the fractions of observable and strong bars rise rapidly, bars being present in 80% of spiral galaxies and easily observable in two thirds of these at z {<=} 0.5. This is quantitatively consistent with the redshift evolution of the observed bar fraction, although the latter is presently known up to z Almost-Equal-To 0.8 because of band-shifting and resolution effects. Our models hence predict that the decrease in the bar fraction with increasing redshift should continue with a fraction of observable bars not larger than 10%-15% in disk galaxies at z > 1. Our models also predict later bar formation in lower-mass galaxies, in agreement with existing data. We find that the characteristic epoch of bar formation, namely redshift z Almost-Equal-To 0.8-1 in the studied mass range, corresponds to the epoch at which today's spirals acquire their disk-dominated morphology. At higher redshift, disks tend to be rapidly destroyed by mergers and gravitational instabilities and rarely develop significant bars. We hence suggest that the bar formation epoch corresponds to the transition between an early 'violent' phase of spiral galaxy formation at z {>=} 1 and a late 'secular' phase at z {<=} 0.8. In the secular phase, the presence of bars substantially contributes to the growth of the (pseudo-)bulge, but the bulge mass budget remains statistically dominated by the contribution of mergers, interactions, and disk instabilities at

  7. Star-cluster mass and age distributions of two fields in M83 based on HST/WFC3 observations

    SciTech Connect

    Chandar, Rupali; Whitmore, Bradley C.; Calzetti, Daniela; O'Connell, Robert

    2014-05-20

    We study star clusters in two fields in the nearby spiral galaxy M83 using broadband and narrowband optical imaging taken with the Wide Field Camera 3 onboard the Hubble Space Telescope. We present results on the basis of several different catalogs of star clusters in inner and outer fields, and we conclude that different methods of selection do not strongly affect the results, particularly for clusters older than ≈10 Myr. The age distributions can be described by a power law, dN/dτ∝τ{sup γ}, with γ ≈ –0.84 ± 0.12 in the inner field, and γ ≈ –0.48 ± 0.12 in the outer field for τ ≳ 10 Myr. We bracket the difference, Δγ, between the two fields to be in the 0.18 to 0.36 range, based on estimates of the relative star-formation histories. The mass functions can also be described by a power law, dN/dM∝M {sup β}, with β ≈ –1.98 ± 0.14 and β ≈ –2.34 ± 0.26 in the inner and outer fields, respectively. We conclude that the shapes of the mass and age distributions of the clusters in the two fields are similar, as predicted by the quasi-universal model. Any differences between the two fields are at the ≈2σ-3σ (≈1σ-2σ) level for the age (mass) distributions. Therefore, any dependence of these distributions on the local environment is probably weak. We compare the shapes of the distributions with those predicted by two popular cluster disruption models. We find that both show evidence that the clusters are disrupted at a rate that is approximately independent of their mass. We compare the shapes of the distributions with those predicted by two popular cluster disruption models, and find that both show evidence that the clusters are disrupted at a rate that is approximately independent of their mass, and that observational results do not support the earlier disruption of lower-mass clusters relative to their higher-mass counterparts.

  8. Populations of High-Luminosity Density-Bounded HII Regions in Spiral Galaxies? Evidence and Implications

    NASA Technical Reports Server (NTRS)

    Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.

    2000-01-01

    In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to

  9. M/L, Hα Rotation Curves, and H I Gas Measurements for 329 Nearby Cluster and Field Spirals. III. Evolution in Fundamental Galaxy Parameters

    NASA Astrophysics Data System (ADS)

    Vogt, Nicole P.; Haynes, Martha P.; Giovanelli, Riccardo; Herter, Terry

    2004-06-01

    We have conducted a study of optical and H I properties of spiral galaxies (size, luminosity, Hα flux distribution, circular velocity, H I gas mass) to investigate causes (e.g., nature vs. nurture) for variation within the cluster environment. We find H I-deficient cluster galaxies to be offset in fundamental plane space, with disk scale lengths decreased by a factor of 25%. This may be a relic of early galaxy formation, caused by the disk coalescing out of a smaller, denser halo (e.g., higher concentration index) or by truncation of the hot gas envelope due to the enhanced local density of neighbors, although we cannot completely rule out the effect of the gas stripping process. The spatial extent of Hα flux and the B-band radius also decreases, but only in early-type spirals, suggesting that gas removal is less efficient within steeper potential wells (or that stripped late-type spirals are quickly rendered unrecognizable). We find no significant trend in stellar mass-to-light ratios or circular velocities with H I gas content, morphological type, or clustercentric radius, for star-forming spiral galaxies throughout the clusters. These data support the findings of a companion paper that gas stripping promotes a rapid truncation of star formation across the disk and could be interpreted as weak support for dark matter domination over baryons in the inner regions of spiral galaxies.

  10. Etude des Abondances de MG et de fe dans la Composante Stellaire des Disques des Galaxies Spirales

    NASA Astrophysics Data System (ADS)

    Beauchamp, Dominique

    Je presente ici une technique d'observation par imagerie des disques stellaires des galaxies spirales. Je tente, a l'aide d'un modele evolutif multiphase, de determiner les abondances de fer et de magnesium dans les disques. Dans ce but, je mesure les indices Mg2 et Fe5270 du systeme de Lick. Ces elements representent un choix judicieux d'indicateurs car ils sont formes par des supernovae de deux types differents ayant des durees de vie differentes. Le rapport d'abondances de ces deux elements est un indicateur du taux de formation des populations stellaires. Je decris, en premier lieu, les observations, la technique de mesure, ainsi que son application. J'analyse ensuite les indices mesures. A partir du modele multiphase, j'explore differents parametres physiques des spirales comme le taux de formation stellaire, l'evolution des abondances, les effets possibles de la presence de la barre, etc.

  11. STELLAR TIDAL STREAMS IN SPIRAL GALAXIES OF THE LOCAL VOLUME: A PILOT SURVEY WITH MODEST APERTURE TELESCOPES

    SciTech Connect

    MartInez-Delgado, David; Zibetti, Stefano; Rix, Hans-Walter; Gabany, R. Jay; Crawford, Ken; Majewski, Steven R.; McDavid, David A.; Fliri, Juergen; Carballo-Bello, Julio A.; Bardalez-Gagliuffi, Daniella C.; Trujillo, Ignacio; Penarrubia, Jorge; Chonis, Taylor S.; Madore, Barry; Schirmer, Mischa

    2010-10-15

    Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatially extended stellar 'tidal features' of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of eight isolated spiral galaxies in the Local Volume, with data taken at small (D = 0.1-0.5 m) robotic telescopes that provide exquisite surface brightness sensitivity ({mu}{sub lim}(V) {approx} 28.5 mag arcsec{sup -2}). This initial observational effort has led to the discovery of six previously undetected extensive (to {approx}30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stellar body, as well as jet-like features emerging from galactic disks. Together with presumed remains of already disrupted companions, our observations also capture surviving satellites caught in the act of tidal disruption. A qualitative comparison with available simulations set in a {Lambda}Cold Dark Matter cosmology (that model the stellar halo as the result of satellite disruption evolution) shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around 'normal' disk galaxies and the morphological match to the simulations constitutes new evidence

  12. The fundamental manifold of spiral galaxies: ordered versus random motions and the morphology dependence of the Tully-Fisher relation

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Jones, D. H.; Mould, J.; Webster, R. L.; Danilovich, T.; Ozbilgen, S.

    2014-03-01

    We investigate the morphology dependence of the Tully-Fisher (TF) relation, and the expansion of the relation into a three-dimensional manifold defined by luminosity, total circular velocity and a third dynamical parameter, to fully characterize spiral galaxies across all morphological types. We use a full semi-analytic hierarchical model (based on Croton et al.), built on cosmological simulations of structure formation, to model galaxy evolution and build the theoretical TF relation. With this tool, we analyse a unique data set of galaxies for which we cross-match luminosity with total circular velocity and central velocity dispersion. We provide a theoretical framework to calculate such measurable quantities from hierarchical semi-analytic models. We establish the morphology dependence of the TF relation in both model and data. We analyse the dynamical properties of the model galaxies and determine that the parameter σ/VC, i.e. the ratio between random and total motions defined by velocity dispersion and circular velocity, accurately characterizes the varying slope of the TF relation for different model galaxy types. We apply these dynamical cuts to the observed galaxies and find indeed that such selection produces a differential slope of the TF relation. The TF slope in different ranges of σ/VC is consistent with that for the traditional photometric classification in Sa, Sb and Sc. We conclude that σ/VC is a good parameter to classify galaxy type, and we argue that such classification based on dynamics more closely mirrors the physical properties of the observed galaxies, compared to visual (photometric) classification. We also argue that dynamical classification is useful for samples where eye inspection is not reliable or impractical. We conclude that σ/VC is a suitable parameter to characterize the hierarchical assembly history that determines the disc-to-bulge ratio, and to expand the TF relation into a three-dimensional manifold, defined by luminosity

  13. Correlation of far-infrared emission and radio continuum emission along the major axis of edge-on spiral galaxies

    NASA Technical Reports Server (NTRS)

    Heikkila, Bryant; Webber, William R.

    1994-01-01

    Using new High Resolution far-infrared (FIR) images we have determined FIR flux densities, the FIR luminosity, and intensity profiles along the major axis for eight nearby edge-on spiral galaxies. We present spatial comparisons between the FIR profiles in three of the four IRAS Bands (25, 60, 100 microns). We also present direct spatial comparisons between the 60 micron intensity profiles and intensity profiles from 20 cm radio continuum maps with identical resolution (approx. 60 sec) obtained from J. J. Condon. Using these profiles we have evaluated the 60 micron-to-20 cm ratio Q(sub 60) along the major axis for each galaxy and have compared the results to global Q(sub 60) values. This analysis reveals that a considerable amount of complicated structure exists within the disk of spiral galaxies. Closer examination of this disk structure will make it possible to place further constraints on the well known global far-infrared and radio continuum emission correlation.

  14. Gas-phase Oxygen Abundances and Radial Metallicity Gradients in the Two nearby Spiral Galaxies NGC 7793 and NGC 4945

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia; Magrini, Laura; Casasola, Viviana

    2015-10-01

    Gas-phase abundances in H ii regions of two spiral galaxies, NGC 7793 and NGC 4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8 m Gemini South telescope. We found that NGC 7793 has a well-defined gas-phase radial oxygen gradient of -0.321 ± 0.112 dex {R}25-1 (or -0.054 ± 0.019 dex kpc-1) in the galactocentric range 0.17 < RG/R25 < 0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC 4945, -0.253 ± 0.149 dex {R}25-1 (or -0.019 ± 0.011 dex kpc-1) for 0.04 < RG/R25 < 0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC 7793 and NGC 4945 have been selected for this study because they are similar, in mass and morphology, to M33 and the Milky Way, respectively. Since at zeroth order we expect the radial metallicity gradients to depend on mass and galaxy type, we compared our galaxies in the framework of radial metallicity models best suited for M33 and the Galaxy. We found a good agreement between M33 and NGC 7793, pointing toward similar evolution for the two galaxies. We notice instead differences between NGC 4945 and the radial metallicity gradient model that best fits the Milky Way. We found that these differences are likely related to the presence of an active galactic nucleus combined with a bar in the central regions of NGC 4945, and to its interacting environment.

  15. The Role of Rotation on the Mg[2] - σ Relation of Early-Type Galaxies and Bulges of Spirals

    NASA Astrophysics Data System (ADS)

    Ramos, B. H. F.; Pellegrini, P. S. S.; Ogando, R. L. C.; Maia, M. A. G.

    2006-06-01

    There are strong evidences that early-type galaxies contain stellar populations younger than their dominant old populations indicating that galaxies with this morphology weren't completely formed at the same time in a remote past. This process continues until a more recent epoch which would give support to the hierarchical scenario for galaxy formation. We analyzed a different alternative involving the role of rotational support in the collapse scenario, keeping the idea that the bulk of galaxies formation may occur in a more remote past, but including the rotation as an agent that hinders the complete transformation of primordial gas into stars by forming a disk, which later, secularly, carries material into the bulges. On the other hand, objects with non rotational support converted essentially all of its primordial gas into stars. We have compared M_g{_{2}} - σ relations for about 1000 E and S0 galaxies, discriminating sub-samples in these morphologies and relative importance of rotation (V_{rot}/σ < 0.4 and V_{rot}/σ > 0.4 for 300 galaxies) and found differences, basically associated to the rotational support. Objects with negligible rotation compared to velocity dispersion define a flatter M_g{_{2}} - σ relation with homogeneous scatter, which we considered as a standard to represent the non rotational support case. For galaxies with important rotation, the relation scatter presents an excess of negative residuals relative to the standard mention above and shows an apparent correlation with the rotational support V_{rot}/σ. The scenario extends adequately to 160 bulges of spirals as a natural extension to objects with increasing importance of rotation.

  16. Similarity between the spiral arms of Galaxy M51 image and the interface curve of Yin-Yang balance in the Ancient Tai-Chi diagram

    NASA Astrophysics Data System (ADS)

    Lin, Sui

    2009-03-01

    The particle paths of the Lagrangian flow field between two cylinders simulate well the spiral arms of Galaxy M51 image [1] and the interface curve of the Yin-Yang balance in the ancient Tai-Chi diagram [2]. The particle paths of the Lagrangian flow field involve four parameters. The normalization of the system of equations significantly simplifies the formulation of the flow process and reduces the original four parameters to only one parameter. Furthermore it provides the similarity between the formulation of the spiral arms of Galaxy M51 and that of the interface curve of the Yin-Yang balance in the ancient Tai-Chi diagram.

  17. Herschel-SPIRE Fourier transform spectroscopy of the nearby spiral galaxy IC 342

    NASA Astrophysics Data System (ADS)

    Rigopoulou, D.; Hurley, P. D.; Swinyard, B. M.; Virdee, J.; Croxall, K. V.; Hopwood, R. H. B.; Lim, T.; Magdis, G. E.; Pearson, C. P.; Pellegrini, E.; Polehampton, E.; Smith, J.-D.

    2013-09-01

    We present observations of the nearby spiral galaxy IC 342 with the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer. The spectral range afforded by SPIRE, 196-671 μm, allows us to access a number of 12CO lines from J = 4-3 to J = 13-12 with the highest J transitions observed for the first time. In addition we present measurements of 13CO, [C I] and [N II]. We use a radiative transfer code coupled with Bayesian likelihood analysis to model and constrain the temperature, density and column density of the gas. We find two 12CO components, one at 35 K and one at 400 K with CO column densities of 6.3 × 1017 and 0.4 × 1017 cm-2 and CO gas masses of 1.26 × 107 and 0.15 × 107 M⊙ for the cold and warm components, respectively. The inclusion of the high-J 12CO line observations indicate the existence of a much warmer gas component (˜400 K) confirming earlier findings from H2 rotational line analysis from Infrared Space Observatory and Spitzer. The mass of the warm gas is 10 per cent of the cold gas, but it likely dominates the CO luminosity. In addition, we detect strong emission from [N II] 205 μm and the 3P1 → 3P0 and 3P2 → 3P1 [C I] lines at 370 and 608 μm, respectively. The measured 12CO line ratios can be explained by photon-dominated region (PDR) models although additional heating by e.g. cosmic rays cannot be excluded. The measured [C I] line ratio together with the derived [C] column density of 2.1 × 1017 cm-2 and the fact that [C I] is weaker than CO emission in IC 342 suggests that [C I] likely arises in a thin layer on the outside of the CO emitting molecular clouds consistent with PDRs playing an important role.

  18. THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT

    SciTech Connect

    Bournaud, Frederic; Martig, Marie; Elmegreen, Bruce G.

    2009-12-10

    The formation of thick stellar disks in spiral galaxies is studied. Simulations of gas-rich young galaxies show formation of internal clumps by gravitational instabilities, clump coalescence into a bulge, and disk thickening by strong stellar scattering. The bulge and thick disks of modern galaxies may form this way. Simulations of minor mergers make thick disks too, but there is an important difference. Thick disks made by internal processes have a constant scale height with galactocentric radius, but thick disks made by mergers flare. The difference arises because in the first case, perpendicular forcing and disk-gravity resistance are both proportional to the disk column density, so the resulting scale height is independent of this density. In the case of mergers, perpendicular forcing is independent of the column density and the low-density regions get thicker; the resulting flaring is inconsistent with observations. Late-stage gas accretion and thin-disk growth are shown to preserve the constant scale heights of thick disks formed by internal evolution. These results reinforce the idea that disk galaxies accrete most of their mass smoothly and acquire their structure by internal processes, in particular through turbulent and clumpy phases at high redshift.

  19. 2MTF III. H I 21 cm observations of 1194 spiral galaxies with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Crook, Aidan; Hong, Tao; Jarrett, T. H.; Koribalski, Bärbel S.; Macri, Lucas; Springob, Christopher M.; Staveley-Smith, Lister

    2014-09-01

    We present H I 21 cm observations of 1194 galaxies out to a redshift of 10 000 km s-1 selected as inclined spirals (i ≳ 60°) from the 2MASS redshift survey. These observations were carried out at the National Radio Astronomy Observatory Robert C. Byrd Green Bank Telescope (GBT). This observing programme is part of the 2MASS Tully-Fisher (2MTF) survey. This project will combine H I widths from these GBT observations with those from further dedicated observing at the Parkes Telescope, from the Arecibo Legacy Fast Arecibo L-band Feed Array survey at Arecibo, and S/N > 10 and spectral resolution vres < 10 km s-1 published widths from a variety of telescopes. We will use these H I widths along with 2MASS photometry to estimate Tully-Fisher distances to nearby spirals and investigate the peculiar velocity field of the local Universe. In this paper, we report on detections of neutral hydrogen in emission in 727 galaxies, and measure good signal to noise and symmetric H I global profiles suitable for use in the Tully-Fisher relation in 484.

  20. Dark matter in early-type spiral galaxies: the case of NGC 2179 and of NGC 2775

    NASA Astrophysics Data System (ADS)

    Corsini, E. M.; Pizzella, A.; Sarzi, M.; Cinzano, P.; Vega Beltrán, J. C.; Funes, J. G.; Bertola, F.; Persic, M.; Salucci, P.

    1999-02-01

    We present the stellar and ionized-gas velocity curves and velocity-dispersion profiles along the major axis for six early-type spiral galaxies. Two of these galaxies, namely NGC 2179 and NGC 2775, are particularly suited for the study of dark matter halos. Using their luminosity profiles and modeling their stellar and gaseous kinematics, we derive the mass contributions of the luminous and the dark matter to the total potential. In NGC 2179 we find that the data (measured out to about the optical radius R_opt) unambiguously require the presence of a massive dark halo. For the brighter and bigger object NGC 2775, we can rule out a significant halo contribution at radii R <~ 0.6 R_opt. Although preliminary, these results agree with the familiar mass distribution trend known for late-type spirals of comparable mass. Based on observations carried out at ESO, La Silla (Chile) (ESO N. 52, 1-020) and on observations obtained with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility. Tables 4 to 42 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

  1. The Mass Dependence of Star Formation Histories in Barred Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Carles, Christian; Martel, Hugo; Ellison, Sara L.; Kawata, Daisuke

    2016-08-01

    We performed a series of 29 gasdynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of three over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas toward the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M★ > 2 × 1010 M⊙) the large amount of gas funnelled toward the centre is completely consumed by the starburst, while in lower-mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower-mass barred galaxies than it is in higher-mass ones. Even though unbarred galaxies funnelled less gas toward their centre, the lower SFR allows this gas to accumulate. At late times, the star formation efficiency is higher in barred galaxies than unbarred ones, enabling these galaxies to maintain a higher SFR with a smaller gas supply. Several properties, such as the global SFR, central SFR, or central gas concentration, vary monotonically with time for unbarred galaxies, but not for barred galaxies. Therefore one must be careful when comparing barred and unbarred galaxies that share one observational property, since these galaxies might be at very different stages of their respective evolution.

  2. The mass dependence of star formation histories in barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Carles, Christian; Martel, Hugo; Ellison, Sara L.; Kawata, Daisuke

    2016-11-01

    We performed a series of 29 gas dynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of 3 over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas towards the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M_{ast }>2{×} 10^{10} {M_{⊙}}) the large amount of gas funnelled towards the centre is completely consumed by the starburst, while in lower mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower mass barred galaxies than it is in higher mass ones. Even though unbarred galaxies funnelled less gas towards their centre, the lower SFR allows this gas to accumulate. At late times, the star formation efficiency is higher in barred galaxies than unbarred ones, enabling these galaxies to maintain a higher SFR with a smaller gas supply. Several properties, such as the global SFR, central SFR, or central gas concentration, vary monotonically with time for unbarred galaxies, but not for barred galaxies. Therefore one must be careful when comparing barred and unbarred galaxies that share one observational property, since these galaxies might be at very different stages of their respective evolution.

  3. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  4. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    SciTech Connect

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L. E-mail: jlwind@astro.indiana.edu

    2012-10-01

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to help characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.

  5. RESOLVED GIANT MOLECULAR CLOUDS IN NEARBY SPIRAL GALAXIES: INSIGHTS FROM THE CANON CO (1-0) SURVEY

    SciTech Connect

    Donovan Meyer, Jennifer; Koda, Jin; Mooney, Thomas; Momose, Rieko; Egusa, Fumi; Carty, Misty; Kennicutt, Robert; Kuno, Nario; Rebolledo, David; Wong, Tony; Sawada, Tsuyoshi; Scoville, Nick

    2013-08-01

    We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 Multiplication-Sign 10{sup 5} M{sub Sun} in the inner disks of 5 large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragalactic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and {sup 12}CO (J = 1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H{sub 2} mass (or X{sub CO}) for each galaxy is 1-2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, all within a factor of two of the Milky Way disk value ({approx}2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-X{sub CO} trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.

  6. CO detections and IRAS observations of bright radio spiral galaxies at cz equal or less than 9000 kilometers per second

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Mirabel, I. F.

    1985-01-01

    CO emission has been detected from 20 of 21 bright radio spirals with strong extended nuclear sources, including the most distant (NGC 7674) and the most luminous (IC 4553 = Arp 220, NGC 6240) galaxies yet detected in CO. All of these galaxies are rich in molecular gas, with M total(H2) = 3 x 10 to the 8th - 2 x 10 to the 10th solar masses. IRAS observations show that they have a strong far-infrared (FIR) excess, with L(FIR)/L(B) approximately equal to 1-35 and L(FIR) (40-400 microns) approximately equal to 10 to the 10th - 10 to the 12th L solar masses. The primary luminosity source for these radio cores appears to be star formation in molecular clouds. A strong correlation is found between the FIR and extended 21 cm continuum flux, implying that the fraction of massive stars formed is independent of the star formation rate. The ratio L(FIR)/M(H2) provides a measure of the current rate of star formation, which is found to be a factor 3-20 larger in these galaxies than for the ensemble of molecular clouds in the Milky Way. At these rates their molecular gas will be depleted in about 10 to the 8th yr.

  7. Ionized gas characteristics in the cavities of the gas and dust disc of the spiral galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.; Afanasiev, V. L.; Egorov, O. V.

    2011-07-01

    The parameters of the ionized gas in NGC 6946 (in the [NII] λλ6548, 6583, H α and [SII] λλ6717, 6731 lines) are investigated with the SAO RAS BTA telescope along three positions of the long slit of the SCORPIO focal reducer, passing through a number of large and small cavities of the gaseous disc of the galaxy. These cavities correspond exactly to the cavities in warm dust, visible at 5 - 8µm. We found that everywhere in the direction of NGC 6946 the lines of ionized gas are decomposed into two Gaussians, one of which shows almost constant [SII]/H α and [NII]/H α ratios, as well as an almost constant radial velocity within the measurement errors (about -35… - 50 km/s). This component is in fact the foreground radiation from the diffuse ionized gas of our Galaxy, which is not surprising, given the low (12°) latitude of NGC 6946; a similar component is also present in the emission of neutral hydrogen. The analysis of the component of ionized gas, occurring inNGC 6946, has revealed that it shows signs of shock excitation in the cavities of the gaseous disc of the galaxy. This shock excitation is as well typical for the extraplanar diffuse ionized gas (EDIG), observed in a number of spiral galaxies at their high Z-coordinates. This can most likely be explained by low density of the gas in the NGC 6946 disc (with the usual photoionization) inside the cavities, due to what we see the spectral features of the EDIG gas of NGC 6946, projected onto them, and located outside the plane of the galaxy. In the absence of separation of ionized gas into two components by radial velocities, there is an increasing contribution to the integral line parameters by the EDIG of our Galaxy when the gas density in NGC 6946 decreases, which explains some strange results, obtained in the previous studies. Themorphology of warmdust, visible in the infrared range and HI is almost the same (except for the peripheral parts of the galaxy, where there are no sources of dust heating

  8. Composite bulges: the coexistence of classical bulges and discy pseudo-bulges in S0 and spiral galaxies

    NASA Astrophysics Data System (ADS)

    Erwin, Peter; Saglia, Roberto P.; Fabricius, Maximilian; Thomas, Jens; Nowak, Nina; Rusli, Stephanie; Bender, Ralf; Vega Beltrán, Juan Carlos; Beckman, John E.

    2015-02-01

    We present an analysis of nine S0-Sb galaxies which have (photometric) bulges consisting of two distinct components. The outer component is a flattened, kinematically cool, disc-like structure: a `discy pseudo-bulge'. Embedded inside is a rounder, kinematically hot spheroidal structure: a `classical bulge'. This indicates that pseudo-bulges and classical bulges are not mutually exclusive phenomena: some galaxies have both. The discy pseudo-bulges almost always consist of an exponential disc (scalelengths = 125-870 pc, mean size ˜440 pc) with one or more disc-related subcomponents: nuclear rings, nuclear bars, and/or spiral arms. They constitute 11-59 per cent of the galaxy stellar mass (mean PB/T = 0.33), with stellar masses ˜7 × 109-9 × 1010 M⊙. The classical-bulge components have Sérsic indices of 0.9-2.2, effective radii of 25-430 pc and stellar masses of 5 × 108-3 × 1010 M⊙; they are usually <10 per cent of the galaxy's stellar mass (mean B/T = 0.06). The classical bulges do show rotation, but are clearly kinematically hotter than the discy pseudo-bulges. Dynamical modelling of three systems indicates that velocity dispersions are isotropic in the classical bulges and equatorially biased in the discy pseudo-bulges. In the mass-radius and mass-stellar mass density planes, classical-bulge components follow sequences defined by ellipticals and (larger) classical bulges. Discy pseudo-bulges also fall on this sequence; they are more compact than large-scale discs of similar mass. Although some classical bulges are quite compact, they are as a class clearly distinct from nuclear star clusters in both size and mass; in at least two galaxies they coexist with nuclear clusters. Since almost all the galaxies in this study are barred, they probably also host boxy/peanut-shaped bulges (vertically thickened inner parts of bars). NGC 3368 shows isophotal evidence for such a zone just outside its discy pseudo-bulge, making it a clear case of a galaxy with all three

  9. Using the H-β Emission Line as a Means of Mass Determination for Spiral Galaxy AGNs

    NASA Astrophysics Data System (ADS)

    Cameron, Thomas; Ratz, Lucus; Burris, Debra L.

    2016-01-01

    This study focuses on the AGN of spiral galaxies in hopes to use the H-β line to determine the mass of the central black hole. We are replicating the method of Vestergaard and Peterson by extinction correcting emission spectra from these black holes, both for cosmic redshift and for FeII emissions using IRAF. From there we can accurately measure the full width half max of the H-beta line in these spectrum as well as the lumosity and these paired with the OIII lines give us an estimate on the mass of the black hole. The purpose of this is to compare it to the values to pitch angle measurements and to explore the Mass-Pitch Angle relation as outlined by J. Kennefick from the University of Arkansas.

  10. A RECIPE TO PROBE ALTERNATIVE THEORIES OF GRAVITATION VIA N-BODY NUMERICAL SIMULATIONS. I. SPIRAL GALAXIES

    SciTech Connect

    Brandao, C. S. S.; De Araujo, J. C. N. E-mail: jcarlos.dearaujo@inpe.br

    2012-05-01

    A way to probe alternative theories of gravitation is to study if they could account for the structures of the universe. We therefore modified the well-known Gadget-2 code to probe alternative theories of gravitation through galactic dynamics. As an application, we simulate the evolution of spiral galaxies to probe alternative theories of gravitation whose weak field limits have a Yukawa-like gravitational potential. These simulations show that galactic dynamics can be used to constrain the parameters associated with alternative theories of gravitation. It is worth stressing that the recipe given in this study can be applied to any other alternative theory of gravitation in which the superposition principle is valid.

  11. THE LUMINOSITY, MASS, AND AGE DISTRIBUTIONS OF COMPACT STAR CLUSTERS IN M83 BASED ON HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 OBSERVATIONS

    SciTech Connect

    Chandar, Rupali; Whitmore, Bradley C.; Mutchler, Max; Bond, Howard; Kim, Hwihyun; Kaleida, Catherine; Calzetti, Daniela; Saha, Abhijit; O'Connell, Robert; Balick, Bruce; Carollo, Marcella; Disney, Michael; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick; Paresce, Francesco; Silk, Joe

    2010-08-10

    The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multi-band images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near-ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function (LF) for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL {proportional_to} L {sup {alpha}}, with {alpha} = -2.04 {+-} 0.08, down to M{sub V} {approx} -5.5. We test the sensitivity of the LF to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in {alpha}. We estimate ages and masses for the clusters by comparing their measured UBVI, H{alpha} colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power law, dN/d{tau} {proportional_to} {tau}{sup {gamma}}, with {gamma} = -0.9 {+-} 0.2, for M {approx}> few x 10{sup 3} M {sub sun} and {tau} {approx}< 4 x 10{sup 8} yr. This indicates that clusters are disrupted quickly, with {approx}80%-90% disrupted each decade in age over this time. The mass function of clusters over the same M-{tau} range is a power law, dN/dM {proportional_to} M {sup {beta}}, with {beta} = -1.94 {+-} 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, M{sub C} , or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e., mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters.

  12. LACK OF INTERACTION BETWEEN THE DUST GRAINS AND THE ANOMALOUS RADIO JET IN THE NEARBY SPIRAL GALAXY NGC 4258

    SciTech Connect

    Laine, Seppo; Krause, Marita; Tabatabaei, Fatemeh S.; Siopis, Christos E-mail: mkrause@mpifr-bonn.mpg.d E-mail: christos.siopis@ulb.ac.b

    2010-10-15

    We obtained Spitzer/IRAC 3.6-8 {mu}m images of the nearby spiral galaxy NGC 4258 to study possible interactions between dust and the radio jet. In our analysis, we also included high-resolution radio continuum, H{alpha}, CO, and X-ray data. Our data reveal that the 8 {mu}m emission, believed to originate largely from polycyclic aromatic hydrocarbon molecules and hot dust, is an excellent tracer of the normal spiral structure in NGC 4258, and hence it originates from the galactic plane. We investigated the possibility of dust destruction by the radio jet by calculating correlation coefficients between the 8 {mu}m and radio continuum emissions along the jet in two independent ways, namely, (1) from wavelet-transformed maps of the original images at different spatial scales and (2) from one-dimensional intensity cuts perpendicular to the projected path of the radio jet on the sky. No definitive sign of a correlation (or anticorrelation) was detected on relevant spatial scales with either approach, implying that any dust destruction must take place at spatial scales that are not resolved by our observations.

  13. The inner regions of the spiral galaxy NGC 3310 - Evidence for galactic cannibalism

    NASA Astrophysics Data System (ADS)

    Balick, B.; Heckman, T.

    1981-03-01

    High resolution optical and radio images of the inner regions of NGC 3310 are presented. Subtle but important differences exist in the distributions of the stellar continuum on the one hand and the ionized gas and high energy particles on the other. These data and others suggest that a galaxy-galaxy collision has lead to a major disruption in the inner regions which has not yet fully relaxed even at radii of 0.5-1 kpc where the relaxation time scales are only 10 to the power 7.8 yr. An encounter in which an Irr 1 galaxy is being cannibalized by NGC 3110 provides a scenario for the recent history of the galaxy which is in accord with published observations.

  14. The spiral density-wave structure of our own Galaxy as traced by open clusters: Least-squares analysis of line-of-sight velocities

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny; Lin, Chien-Cheng; Ngeow, Chow-Choong; Jiang, Ing-Guey

    2014-05-01

    The rotation about the Galactic center of open clusters belonging to the thin component of the Milky Way Galaxy is studied on the basis of line-of-sight velocities and positions for 169 nearby objects taken from the literature. The minor second-order effects caused by the Lin-Shu-type density waves are taken into account by using the least-squares numerical method. Even preliminary, the physical interpretation of the results obtained in this manner shows that (i) among several Fourier modes of collective oscillations developing in the solar neighborhood the one-armed m=1 spiral mode is the main one; the Galaxy has thus significant lopsidedness in the stellar distribution at large radii, (ii) the Sun is located between the major trailing spiral-arm segments in Carina-Sagittarius and Perseus, closer to the outer Perseus one, (iii) the local Cygnus-Orion segment is not a part of the dominant spiral arm but is a minor one, which is due to a secondary Fourier harmonic of the Galaxy’s oscillations, (iv) the pitch angle of the dominant density-wave pattern in the solar vicinity seems to be relatively small, of the order of 7°, and the wavelength (the radial distance between spiral arms) of the m=1 pattern is about 6 kpc, (v) the Galactocentric distance where the velocities of disk rotation and of the spiral density wave (the corotation radius) coincide is located outside of the solar circle; thus, a pattern angular speed lower than the local angular rotation velocity, and finally (vi) the spiral arms of the Galaxy do not represent small deviations of the surface density and gravitational potential from a basic distribution that is axisymmetric in the mean.

  15. The Universal Initial Mass Function in the Extended Ultraviolet Disk of M83

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Yagi, Masafumi; Boissier, Samuel; Gil de Paz, Armando; Imanishi, Masatoshi; Donovan Meyer, Jennifer; Madore, Barry F.; Thilker, David A.

    2012-04-01

    We report deep Subaru Hα observations of the extended ultraviolet (XUV) disk of M83. These new observations enable the first complete census of very young stellar clusters over the entire XUV disk. Combining Subaru and Galaxy Evolution Explorer data with a stellar population synthesis model, we find that (1) the standard, but stochastically sampled, initial mass function (IMF) is preferred over the truncated IMF because there are low-mass stellar clusters (102-3 M ⊙) that host massive O-type stars; (2) the standard Salpeter IMF and a simple aging effect explain the counts of far-UV (FUV)-bright and Hα-bright clusters with masses >103 M ⊙ and (3) the Hα-to-FUV flux ratio over the XUV disk supports the standard IMF. To reach conclusion (2), we assumed instantaneous cluster formation and a constant cluster formation rate over the XUV disk. The Subaru Prime Focus Camera covers a large area even outside the XUV disk—far beyond the detection limit of the H I gas. This enables us to statistically separate the stellar clusters in the disk from background contamination. The new data, model, and previous spectroscopic studies provide overall consistent results with respect to the internal dust extinction (A V ~ 0.1 mag) and low metallicity (~0.2 Z ⊙) using the dust extinction curve of the Small Magellanic Cloud. The minimum cluster mass for avoiding the upper IMF incompleteness due to stochastic sampling and the spectral energy distributions of O, B, and A stars are discussed in the Appendices.

  16. Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formation-stellar mass relation of spiral galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Seibert, M.; Kelvin, L. S.

    2014-02-01

    We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms. The performance of the method is quantified for different parameter combinations, using purely human-based classifications as a benchmark. The discretization of the parameter space allows a markedly superior selection than commonly used proxies relying on a fixed curve or surface of separation. Moreover, we find structural parameters derived using passbands longwards of the g band and linked to older stellar populations, especially the stellar mass surface density μ* and the r-band effective radius re, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations, e.g. UV/optical colours. In particular, the distinct bimodality in the parameter μ*, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We use the cell-based method for the optical parameter set including re in combination with the Sérsic index n and the i-band magnitude to investigate the intrinsic specific star formation rate-stellar mass relation (ψ*-M*) for a morphologically defined volume-limited sample of local Universe spiral galaxies. The relation is found to be well described by ψ _* ∝ M_*^{-0.5} over the range of 109.5 ≤ M* ≤ 1011 M⊙ with a mean interquartile range of 0.4 dex. This is somewhat steeper than previous determinations based on colour-selected samples of star-forming galaxies, primarily due to the inclusion in the sample of red quiescent discs.

  17. CHANG-ES - VI. Probing Supernova energy deposition in spiral galaxies through multiwavelength relationships

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Beck, Rainer; Dettmar, Ralf-Jürgen; Heald, George; Irwin, Judith; Johnson, Megan; Kepley, Amanda A.; Krause, Marita; Murphy, E. J.; Orlando, Elena; Rand, Richard J.; Strong, A. W.; Vargas, Carlos J.; Walterbos, Rene; Wang, Q. Daniel; Wiegert, Theresa

    2016-02-01

    How a galaxy regulates its supernovae (SNe) energy into different interstellar/circumgalactic medium components strongly affects galaxy evolution. Based on the JVLA D-configuration C- (6 GHz) and L-band (1.6 GHz) continuum observations, we perform statistical analysis comparing multiwavelength properties of the Continuum Haloes in Nearby Galaxies - an EVLA Survey galaxies. The high-quality JVLA data and edge-on orientation enable us for the first time to include the halo into the energy budget for a complete radio-flux-limited sample. We find tight correlations of Lradio with the mid-IR-based star formation rate (SFR). The normalization of our I1.6 GHz/W Hz-1-SFR relation is ˜2-3times of those obtained for face-on galaxies, probably a result of enhanced IR extinction at high inclination. We also find tight correlations between Lradio and the SNe energy injection rate dot{E}_SN(Ia+CC), indicating the energy loss via synchrotron radio continuum accounts for ˜1 of dot{E}_SN, comparable to the energy contained in cosmic ray electrons. The integrated C-to-L-band spectral index is α ˜ 0.5-1.1 for non-active galactic nucleus galaxies, indicating a dominance by the diffuse synchrotron component. The low-scatter Lradio-SFR/L_radio-dot{E}_{SN (Ia+CC)} relationships have superlinear logarithmic slopes at ˜2σ in L band (1.132 ± 0.067/1.175 ± 0.102) while consistent with linear in C band (1.057 ± 0.075/1.100 ± 0.123). The superlinearity could be naturally reproduced with non-calorimeter models for galaxy discs. Using Chandra halo X-ray measurements, we find sublinear LX-Lradio relations. These results indicate that the observed radio halo of a starburst galaxy is close to electron calorimeter, and a galaxy with higher SFR tends to distribute an increased fraction of SNe energy into radio emission (than X-ray).

  18. N-body simulations of collective effects in spiral and barred galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2016-10-01

    We present gravitational N-body simulations of the secular morphological evolution of disk galaxies induced by density wave modes. In particular, we address the demands collective effects place on the choice of simulation parameters, and show that the common practice of the use of a large gravity softening parameter was responsible for the failure of past simulations to correctly model the secular evolution process in galaxies, even for those simulations where the choice of basic state allows an unstable mode to emerge, a prerequisite for obtaining the coordinated radial mass flow pattern needed for secular evolution of galaxies along the Hubble sequence. We also demonstrate that the secular evolution rates measured in our improved simulations agree to an impressive degree with the corresponding rates predicted by the recently-advanced theories of dynamically-driven secular evolution of galaxies. The results of the current work, besides having direct implications on the cosmological evolution of galaxies, also shed light on the general question of how irreversibility emerges from a nominally reversible physical system.

  19. Revealing the nature of the ULX and X-ray population of the spiral galaxy NGC 4088

    SciTech Connect

    Mezcua, M.; Fabbiano, G.; Gladstone, J. C.; Farrell, S. A.; Soria, R.

    2014-04-20

    We present the first Chandra and Swift X-ray study of the spiral galaxy NGC 4088 and its ultraluminous X-ray source (ULX N4088-X1). We also report very long baseline interferometry (VLBI) observations at 1.6 and 5 GHz performed quasi-simultaneously with the Swift and Chandra observations, respectively. Fifteen X-ray sources are detected by Chandra within the D25 ellipse of NGC 4088, from which we derive the X-ray luminosity function (XLF) of this galaxy. We find the XLF is very similar to those of star-forming galaxies and estimate a star-formation rate of 4.5 M {sub ☉} yr{sup –1}. The Chandra detection of the ULX yields its most accurate X-ray position, which is spatially coincident with compact radio emission at 1.6 GHz. The ULX Chandra X-ray luminosity, L {sub 0.2-10.0} {sub keV} = 3.4 × 10{sup 39} erg s{sup –1}, indicates that N4088-X1 could be located at the high-luminosity end of the high-mass X-ray binary (HMXB) population of NGC 4088. The estimates of the black hole (BH) mass and ratio of radio to X-ray luminosity of N4088-X1 rule out a supermassive BH nature. The Swift X-ray spectrum of N4088-X1 is best described by a thermal Comptonization model and presents a statistically significant high-energy cutoff. We conclude that N4088-X1 is most likely a stellar remnant BH in an HMXB, probably fed by Roche lobe overflow, residing in a super-Eddington ultraluminous state. The 1.6 GHz VLBI source is consistent with radio emission from possible ballistic jet ejections in this state.

  20. A Luminous X-Ray Flare from the Nucleus of the Dormant Bulgeless Spiral Galaxy NGC 247

    NASA Astrophysics Data System (ADS)

    Feng, Hua; Ho, Luis C.; Kaaret, Philip; Tao, Lian; Yamaoka, Kazutaka; Zhang, Shuo; Grisé, Fabien

    2015-07-01

    NGC 247 is a nearby late-type bulgeless spiral galaxy that contains an inactive nucleus. We report a serendipitous discovery of an X-ray flare from the galaxy center with a luminosity of up to 2× {10}39 erg s-1 in the 0.3-10 keV band with XMM-Newton. A Chandra observation confirms that the new X-ray source is spatially coincident with the galaxy nucleus. The XMM-Newton data revealed a hard power-law spectrum with a spectral break near 3-4 keV, no pulsations on timescales longer than 150 ms, and a flat power spectrum consistent with Poisson noise from 1 mHz to nearly 10 Hz. Follow-up observations with Swift detected a second flux peak followed by a luminosity drop by a factor of almost 20. The spectral and temporal behaviors of the nuclear source are consistent with the scenario that the flare was due to an outburst of a low-mass X-ray binary that contains a stellar-mass black hole emitting near its Eddington limit at the peak. However, it cannot be ruled out that the sudden brightening in the nucleus was due to accretion onto a possible low-mass nuclear black hole, fed by a tidally disrupted star or a gas cloud; the Monitor of All-sky X-ray Image observations limit the peak luminosity of the flare to less than ˜ {10}43 erg s-1, suggesting that it is either a low-mass black hole or an inefficient tidal disruption event.

  1. The Thousand-Ruby Galaxy

    NASA Astrophysics Data System (ADS)

    2008-09-01

    ESO's Wide Field Imager has captured the intricate swirls of the spiral galaxy Messier 83, a smaller look-alike of our own Milky Way. Shining with the light of billions of stars and the ruby red glow of hydrogen gas, it is a beautiful example of a barred spiral galaxy, whose shape has led to it being nicknamed the Southern Pinwheel. Messier 83, M83 ESO PR Photo 25/08 Spiral Galaxy Messier 83 This dramatic image of the galaxy Messier 83 was captured by the Wide Field Imager at ESO's La Silla Observatory, located high in the dry desert mountains of the Chilean Atacama Desert. Messier 83 lies roughly 15 million light-years away towards the huge southern constellation of Hydra (the sea serpent). It stretches over 40 000 light-years, making it roughly 2.5 times smaller than our own Milky Way. However, in some respects, Messier 83 is quite similar to our own galaxy. Both the Milky Way and Messier 83 possess a bar across their galactic nucleus, the dense spherical conglomeration of stars seen at the centre of the galaxies. This very detailed image shows the spiral arms of Messier 83 adorned by countless bright flourishes of ruby red light. These are in fact huge clouds of glowing hydrogen gas. Ultraviolet radiation from newly born, massive stars is ionising the gas in these clouds, causing the great regions of hydrogen to glow red. These star forming regions are contrasted dramatically in this image against the ethereal glow of older yellow stars near the galaxy's central hub. The image also shows the delicate tracery of dark and winding dust streams weaving throughout the arms of the galaxy. Messier 83 was discovered by the French astronomer Nicolas Louis de Lacaille in the mid 18th century. Decades later it was listed in the famous catalogue of deep sky objects compiled by another French astronomer and famous comet hunter, Charles Messier. Recent observations of this enigmatic galaxy in ultraviolet light and radio waves have shown that even its outer desolate regions

  2. In-N-Out: The Gas Cycle from Dwarfs to Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Christensen, Charlotte R.; Davé, Romeel; Governato, Fabio; Pontzen, Andrew; Brooks, Alyson; Munshi, Ferah; Quinn, Thomas; Wadsley, James

    2016-06-01

    We examine the scalings of galactic outflows with halo mass across a suite of 20 high-resolution cosmological zoom galaxy simulations covering halo masses in the range {10}9.5{--}{10}12 {M}ȯ . These simulations self-consistently generate outflows from the available supernova energy in a manner that successfully reproduces key galaxy observables, including the stellar mass–halo mass, Tully–Fisher, and mass–metallicity relations. We quantify the importance of ejective feedback to setting the stellar mass relative to the efficiency of gas accretion and star formation. Ejective feedback is increasingly important as galaxy mass decreases; we find an effective mass loading factor that scales as {v}{{circ}}-2.2, with an amplitude and shape that are invariant with redshift. These scalings are consistent with analytic models for energy-driven wind, based solely on the halo potential. Recycling is common: about half of the outflow mass across all galaxy masses is later reaccreted. The recycling timescale is typically ˜1 Gyr, virtually independent of halo mass. Recycled material is reaccreted farther out in the disk and with typically ˜2–3 times more angular momentum. These results elucidate and quantify how the baryon cycle plausibly regulates star formation and alters the angular momentum distribution of disk material across the halo mass range where most cosmic star formation occurs.

  3. ISOCAM Mid-Infrared Imaging of the Quiescent Spiral Galaxy NGC 7331

    NASA Astrophysics Data System (ADS)

    Smith, Beverly J.

    1998-06-01

    Using the mid-infrared camera (ISOCAM) on the Infrared Space Observatory (ISO), the Sb LINER galaxy NGC 7331 has been imaged in two broadband and four narrowband filters between 6.75 and 15 μm. These maps show a prominent circumnuclear ring of radius 0.25 arcmin × 0.75 arcmin (1.1 × 3.3 kpc) encircling an extended central source. The 7.7 and 11.3 μm dust emission features are strong in this galaxy, contributing approximately one-third of the total IRAS 12 μm broadband flux. In contrast to starburst galaxies, the 15 μm continuum is weak in NGC 7331. The mid-infrared spectrum does not vary dramatically with position in this quiescent galaxy, showing neither large-scale destruction of the carriers of the emission bands nor a large increase in the 15 μm continuum in the star-forming ring. In the bulge there is some enhancement of the LW2 (6.75 μm) flux, probably because of contributions from photospheric light; however, the 11.3 μm dust feature is also seen, showing additional emission from interstellar or circumstellar dust. Based on observations made with ISO, an ESA project with instruments funded by ESAMember States and with the participation of ISAS and NASA.

  4. ASASSN-16ek: Discovery of A Probable Supernova in a Bright, Uncatalogued Spiral Galaxy

    NASA Astrophysics Data System (ADS)

    Cruz, I.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Brimacombe, J.; Bock, G.; Conseil, E.; Kiyota, S.; Koff, R. A.; Masi, G.

    2016-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy GALEXASC J072024.60+325058.8.

  5. The vertical disk structure of the edge-on spiral galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthorn, Jonathan; Cecil, G.; Tully, R. B.

    1993-01-01

    NGC 3079 is an edge-on SB(s)c galaxy at a redshift of 1225 km/s relative to the Local Group. Earlier researchers found a spectacular 'figure-eight' radio structure aligned along the minor axis of the galaxy, centered on the nucleus, and extending 3 kpc above and below the plane. The geometry of this structure and the evidence of unusually high nuclear gas velocities suggest that a wind-type outflow from the nucleus is taking place. The disk of NGC 3079 is also remarkable: it is extremely rich in H 2 regions and is the only unambiguous example of a galaxy outside M31 and our own Galaxy to exhibit 'Heiles-like' shells. Other researchers have also identified a nebulosity with a ragged X-shaped morphology formed by a system of lumpy filaments with individual lengths of 3 - 5 kpc. They suggest that this material is ambient halo gas entrained into the boundary layers of the nuclear outflow. The complex structure of the line emission in NGC 3079 makes this object an ideal target for an imaging spectroscopic study. The present paper reports the preliminary results of such a study.

  6. Beyond the Borders of a Galaxy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    The outlying regions around the Southern Pinwheel galaxy, or M83, are highlighted in this composite image from NASA's Galaxy Evolution Explorer and the National Science Foundation's Very Large Array in New Mexico. The blue and pink pinwheel in the center is the galaxy's main stellar disk, while the flapping, ribbon-like structures are its extended arms.

    The Galaxy Evolution Explorer is an ultraviolet survey telescope. Its observations, shown here in blue and green, highlight the galaxy's farthest-flung clusters of young stars up to 140,000 light-years from its center. The Very Large Array observations show the radio emission in red. They highlight gaseous hydrogen atoms, or raw ingredients for stars, which make up the lengthy, extended arms.

    Astronomers are excited that the clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the 'backwoods' of a galaxy.

    In this image, far-ultraviolet light is blue, near-ultraviolet light is green and radio emission at a wavelength of 21 centimeters is red.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to

  7. The Surface Brightness Profile of the Bulge and Halo of the Andromeda Spiral Galaxy (M31) from R = 10 to 165 kiloparsecs

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Gilbert, K.; Kalirai, J.; Ostheimer, J.; Majewski, S.; Patterson, R.; Geha, M.; Cooper, M.; Reitzel, D.; Rich, R.

    2006-12-01

    Understanding the formation of galaxies and their structural subcomponents is a key goal of modern cosmology. Large spiral galaxies like our own consist of a flattened rotating disk, a centrally concentrated bulge whose density decreases exponentially with increasing radius, and an extended halo whose density scales as an inverse power law in radius. Our internal vantage point is disadvantageous for investigating the structure of our own Galaxy. By contrast, the Andromeda spiral galaxy (M31), the Milky Ways neighbour, offers us a global external perspective and yet is close enough for individual stars to be resolved. Over several decades, structural studies of M31 have generally concluded that its outer spheroid is an extension of its inner bulge, displaying the characteristic exponential cut-off out to a distance of about 20 kpc from the center, and/or that its halo is undetected or absent. We report here on the discovery of a halo of red giant stars in M31 extending beyond a radius of 150 kpc. Our finding shows that previous studies of the spheroid of M31 spanning the last few decades have been sampling its extended bulge instead of the pristine metal-poor halo. Characterizing the dynamics, metallicity, substructure, and age of M31's halo will provide unique tests of galaxy formation theories. This research was supported by funds from the NSF and NASA/STScI.

  8. EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY

    SciTech Connect

    Liu, Guilin; Calzetti, Daniela; Hong, Sungryong; Whitmore, Bradley; Chandar, Rupali; O'Connell, Robert W.; Blair, William P.; Cohen, Seth H.; Kim, Hwihyun; Frogel, Jay A.

    2013-12-01

    We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.

  9. CO Multi-line Imaging of Nearby Galaxies (COMING). I. Physical properties of molecular gas in the barred spiral galaxy NGC 2903

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Sorai, Kazuo; Kuno, Nario; Nakai, Naomasa; Nakanishi, Hiroyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Miyamoto, Yusuke; Kishida, Nozomi; Hatakeyama, Takuya; Umei, Michiko; Tanaka, Takahiro; Tomiyasu, Yuto; Saita, Chey; Ueno, Saeko; Matsumoto, Naoko; Salak, Dragan; Morokuma-Matsui, Kana

    2016-10-01

    We present simultaneous mappings of J = 1-0 emission of 12CO, 13CO, and C18O molecules toward the whole disk (8' × 5' or 20.8 kpc × 13.0 kpc) of the nearby barred spiral galaxy NGC 2903 with the Nobeyama Radio Observatory 45 m telescope at an effective angular resolution of 20″ (or 870 pc). We detected 12CO(J = 1-0) emission over the disk of NGC 2903. In addition, significant 13CO(J = 1-0) emission was found at the center and bar-ends, whereas we could not detect any significant C18O(J = 1-0) emission. In order to improve the signal-to-noise ratio of CO emission and to obtain accurate line ratios of 12CO(J = 2-1)/12CO(J = 1-0) (R2-1/1-0) and 13CO(J = 1-0)/12CO(J = 1-0) (R13/12), we performed the stacking analysis for our 12CO(J = 1-0), 13CO(J = 1-0), and archival 12CO(J = 2-1) spectra with velocity axis alignment in nine representative regions of NGC 2903. We successfully obtained the stacked spectra of the three CO lines, and could measure averaged R2-1/1-0 and R13/12 with high significance for all the regions. We found that both R2-1/1-0 and R13/12 differ according to the regions, which reflects the difference in the physical properties of molecular gas, i.e., density (n_H_2) and kinetic temperature (TK). We determined n_H_2 and TK using R2-1/1-0 and R13/12 based on the large velocity gradient approximation. The derived n_H_2 ranges from ˜1000 cm-3 (in the bar, bar-ends, and spiral arms) to 3700 cm-3 (at the center) and the derived TK ranges from 10 K (in the bar and spiral arms) to 30 K (at the center). We examined the dependence of star formation efficiencies (SFEs) on n_H_2 and TK, and found a positive correlation between SFE and n_H_2 with correlation coefficient for the least-squares power-law fit R2 of 0.50. This suggests that molecular gas density governs the spatial variations in SFEs.

  10. Near-infrared surface photometry of bulges and disks of spiral galaxies. The data

    NASA Astrophysics Data System (ADS)

    Peletier, R. F.; Balcells, M.

    1997-03-01

    We present optical and near-infrared (NIR) surface brightness and colour profiles, in bands ranging from U to K, for the disk and bulge components of a complete sample of 30 nearby S0 to Sbc galaxies with inclinations larger than 50 °. We describe in detail the observations and the determination of colour parameters. Calibrated monochromatic and real-colour images are presented, as well as colour index maps. This data set, tailored for the study of the population characteristics of galaxy bulges, provides useful information on the colours of inner disks as well. In related papers, we have used them to quantify colour gradients in bulges, and age differentials between bulge and inner disk.

  11. VIRUS-W: an integral field unit spectrograph dedicated to the study of spiral galaxy bulges

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Barnes, Stuart; Bender, Ralf; Drory, Niv; Grupp, Frank; Hill, Gary J.; Hopp, Ulrich; MacQueen, Phillip J.

    2008-07-01

    We present the design, layout and performance estimates for a fiber based Integral Field Unit spectrograph. This instrument is built for flexible use at different telescopes, and in particular for the new 2m telescope on Mount Wendelstein in the Bavarian Alps. Based on the VIRUS spectrograph for the HETDEX experiment, the proposed instrument will have a fiber head consisting of 267 optical fibers. The large angular field of view of 150×75 arcseconds will allow full coverage of the bulge regions of most local late type galaxies in one or two pointings. Realized by the usage of VPH gratings, a R ~ 2500 and a R ~ 6800 mode with 850Å and 515Å wavelength coverage will be dedicated to the study of stellar populations and kinematics of late type galaxy bulges.

  12. Towards a more realistic population of bright spiral galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; White, Simon D. M.; Naab, Thorsten; Scannapieco, Cecilia

    2013-10-01

    We present an update to the multiphase smoothed particle hydrodynamics galaxy formation code by Scannapieco et al. We include a more elaborate treatment of the production of metals, cooling rates based on individual element abundances and a scheme for the turbulent diffusion of metals. Our supernova feedback model now transfers energy to the interstellar medium (ISM) in kinetic and thermal form, and we include a prescription for the effects of radiation pressure from massive young stars on the ISM. We calibrate our new code on the well-studied Aquarius haloes and then use it to simulate a sample of 16 galaxies with halo masses between 1 × 1011 and 3 × 1012 M⊙. In general, the stellar masses of the sample agree well with the stellar mass to halo mass relation inferred from abundance matching techniques for redshifts z = 0-4. There is however a tendency to overproduce stars at z > 4 and to underproduce them at z < 0.5 in the least massive haloes. Overly high star formation rates (SFRs) at z < 1 for the most massive haloes are likely connected to the lack of active galactic nuclei feedback in our model. The simulated sample also shows reasonable agreement with observed SFRs, sizes, gas fractions and gas-phase metallicities at z = 0-3. Remaining discrepancies can be connected to deviations from predictions for star formation histories from abundance matching. At z = 0, the model galaxies show realistic morphologies, stellar surface density profiles, circular velocity curves and stellar metallicities, but overly flat metallicity gradients. 15 out of 16 of our galaxies contain disc components with kinematic disc fraction ranging between 15 and 65 per cent. The disc fraction depends on the time of the last destructive merger or misaligned infall event. Considering the remaining shortcomings of our simulations we conclude that even higher kinematic disc fractions may be possible for Λ cold dark matter haloes with quiet merger histories, such as the Aquarius haloes.

  13. Spatially extended and high-velocity dispersion molecular component in spiral galaxies: Single-dish versus interferometric observations

    SciTech Connect

    Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-02-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  14. Detection of a ˜20 kpc coherent magnetic field in the outskirt of merging spirals: the Antennae galaxies

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Mao, S. A.; Kepley, Amanda A.; Robishaw, Timothy; Zweibel, Ellen G.; Gallagher, John. S.

    2016-09-01

    We present a study of the magnetic field properties of NGC 4038/9 (the `Antennae' galaxies), the closest example of a late stage merger of two spiral galaxies. Wideband polarimetric observations were performed using the Karl G. Jansky Very Large Array between 2 and 4 GHz. Rotation measure synthesis and Faraday depolarization analysis was performed to probe the magnetic field strength and structure at spatial resolution of ˜1 kpc. Highly polarized emission from the southern tidal tail is detected with intrinsic fractional polarization close to the theoretical maximum (0.62 ± 0.18), estimated by fitting the Faraday depolarization with a volume that is both synchrotron emitting and Faraday rotating containing random magnetic fields. Magnetic fields are well aligned along the tidal tail and the Faraday depths shows large-scale smooth variations preserving its sign. This suggests the field in the plane of the sky to be regular up to ˜20 kpc, which is the largest detected regular field structure on galactic scales. The equipartition field strength of ˜8.5~μG of the regular field in the tidal tail is reached within a few 100 Myr, likely generated by stretching of the galactic disc field by a factor of 4-9 during the tidal interaction. The regular field strength is greater than the turbulent fields in the tidal tail. Our study comprehensively demonstrates, although the magnetic fields within the merging bodies are dominated by strong turbulent magnetic fields of ˜20~μG in strength, tidal interactions can produce large-scale regular field structure in the outskirts.

  15. ROSAT HRI and ASCA Observations of the Spiral Galaxy NGC 6946 and its Northeast Complex of Luminous Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Schlegel, E.; Swank, Jean (Technical Monitor)

    2001-01-01

    Analysis of 80 ks ASCA (Advanced Satellite for Cosmology and Astrophysics) and 60 ks ROSAT HRI (High Resolution Image) observations of the face-on spiral galaxy NGC 6946 are presented. The ASCA image is the first observation of this galaxy above approximately 2 keV. Diffuse emission may be present in the inner approximately 4' extending to energies above approximately 2-3 keV. In the HRI data, 14 pointlike sources are detected, the brightest two being a source very close to the nucleus and a source to the northeast that corresponds to a luminous complex of interacting supernova remnants (SNRs). We detect a point source that lies approximately 30" west of the SNR complex but with a luminosity -1115 of the SNR complex. None of the point sources show evidence of strong variability; weak variability would escape our detection. The ASCA spectrum of the SNR complex shows evidence for an emission line at approximately 0.9 keV that could be either Ne IX at approximately 0.915 keV or a blend of ion stages of Fe L-shell emission if the continuum is fitted with a power law. However, a two-component, Raymond-Smith thermal spectrum with no lines gives an equally valid continuum fit and may be more physically plausible given the observed spectrum below 3 keV. Adopting this latter model, we derive a density for the SNR complex of 10-35 cm(exp -3), consistent with estimates inferred from optical emission-line ratios. The complex's extraordinary X-ray luminosity may be related more to the high density of the surrounding medium than to a small but intense interaction region where two of the complex's SNRs are apparently colliding.

  16. First Results from the MADCASH Survey: A Faint Dwarf Galaxy Companion to the Low-mass Spiral Galaxy NGC 2403 at 3.2 Mpc

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Price, Paul; Willman, Beth; Karunakaran, Ananthan; Spekkens, Kristine; Bell, Eric F.; Brodie, Jean P.; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Lupton, Robert; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay

    2016-09-01

    We report the discovery of the faintest known dwarf galaxy satellite of a Large Magellanic Cloud (LMC) stellar-mass host beyond the Local Group (LG), based on deep imaging with Subaru/Hyper Suprime-Cam. Magellanic Analog Dwarf Companions And Stellar Halos (MADCASH) J074238+652501-dw lies ˜35 kpc in projection from NGC 2403, a dwarf spiral galaxy at D ≈ 3.2 Mpc. This new dwarf has {M}g=-7.4+/- 0.4 and a half-light radius of 168 ± 70 pc, at the calculated distance of 3.39 ± 0.41 Mpc. The color-magnitude diagram reveals no evidence of young stellar populations, suggesting that MADCASH J074238+652501-dw is an old, metal-poor dwarf similar to low-luminosity dwarfs in the LG. The lack of either detected HI gas ({M}{HI}/{L}V\\lt 0.69 {M}⊙ /{L}⊙ , based on Green Bank Telescope observations) or GALEX NUV/FUV flux enhancement is consistent with a lack of young stars. This is the first result from the MADCASH survey, which is conducting a census of the stellar substructure and faint satellites in the halos of Local Volume LMC analogs via resolved stellar populations. Models predict a total of ˜4-10 satellites at least as massive as MADCASH J074238+652501-dw around a host with the mass of NGC 2403, with 2-3 within our field of view, slightly more than the one such satellite observed in our footprint. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  17. First Results from the MADCASH Survey: A Faint Dwarf Galaxy Companion to the Low-mass Spiral Galaxy NGC 2403 at 3.2 Mpc

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Price, Paul; Willman, Beth; Karunakaran, Ananthan; Spekkens, Kristine; Bell, Eric F.; Brodie, Jean P.; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Lupton, Robert; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay

    2016-09-01

    We report the discovery of the faintest known dwarf galaxy satellite of a Large Magellanic Cloud (LMC) stellar-mass host beyond the Local Group (LG), based on deep imaging with Subaru/Hyper Suprime-Cam. Magellanic Analog Dwarf Companions And Stellar Halos (MADCASH) J074238+652501-dw lies ˜35 kpc in projection from NGC 2403, a dwarf spiral galaxy at D ≈ 3.2 Mpc. This new dwarf has {M}g=-7.4+/- 0.4 and a half-light radius of 168 ± 70 pc, at the calculated distance of 3.39 ± 0.41 Mpc. The color–magnitude diagram reveals no evidence of young stellar populations, suggesting that MADCASH J074238+652501-dw is an old, metal-poor dwarf similar to low-luminosity dwarfs in the LG. The lack of either detected HI gas ({M}{HI}/{L}V\\lt 0.69 {M}ȯ /{L}ȯ , based on Green Bank Telescope observations) or GALEX NUV/FUV flux enhancement is consistent with a lack of young stars. This is the first result from the MADCASH survey, which is conducting a census of the stellar substructure and faint satellites in the halos of Local Volume LMC analogs via resolved stellar populations. Models predict a total of ˜4–10 satellites at least as massive as MADCASH J074238+652501-dw around a host with the mass of NGC 2403, with 2–3 within our field of view, slightly more than the one such satellite observed in our footprint. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  18. Teorii spiral'noj struktury galaktik v 1969-e gody. II %t Theories of spiral structures of galaxies in the 1960s. Paper II

    NASA Astrophysics Data System (ADS)

    Pasha, I. I.

    The present paper continues the author's study of the galactic spiral density-wave developments in the 1960s. The first section considers the theory of sheared density waves that was worked out in 1963-1965 by Donald Lynden-Bell, Peter Goldreich, Alar Toomre and William Julian. This theory displayed the fundamental property of differentially rotating gravitating systems to strongly amplify the sheared waves as they pass near-radial orientations swinging from leading to trailing, and it also showed how the localised material condensations induce and fix rather extended spiral-like steady waves with the help of this amplifier. The second section analyses efforts applied in the second half of the 1960s to support the then already wide-spread spiral theory of C. C. Lin and Frank Shu. Reviewed here are Shu's works aimed at improving the theory's analytical principles; William Roberts' elaboration of the concept of galactic shocks triggering the star-formation process in the spiral arms; and the early attempts of Lin and his colleagues to compare their theory with empirical evidence. The third section is devoted to Toomre's work, who was the first to analyse the group properties of the Lin-Shu waves and show that in the course of their natural evolution they do not have enough time to make up any coherent spiral mode since they drift rather rapidly towards the galactic centre and damp there. This result logically debunked the Lin-Shu picture of "self-sustained" spiral waves and stripped the as-yet latent problem of the mechanism for maintaining the spiral structure. The last section exposes several authors' results from the late 1960s - early 1970s.

  19. The Link between Light and Mass in Late-type Spiral Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Swaters, Robert A.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Westfall, Kyle B.; Andersen, David R.; Verheijen, Marc A. W.

    2014-12-01

    We present the correlation between the extrapolated central disk surface brightness (μ) and extrapolated central surface mass density (Σ) for galaxies in the DiskMass sample. This μ-Σ relation has a small scatter of 30% at the high surface brightness (HSB) end. At the low surface brightness (LSB) end, galaxies fall above the μ-Σ relation, which we attribute to their higher dark matter content. After correcting for the dark matter as well as for the contribution of gas and the effects of radial gradients in the disk, the LSB end falls back on the linear μ-Σ relation. The resulting scatter around the corrected μ-Σ relation is 25% at the HSB end and about 50% at the LSB end. The intrinsic scatter in the μ-Σ relation is estimated to be 10%-20%. Thus, if μ K, 0 is known, the stellar surface mass density is known to within 10%-20% (random error). Assuming disks have an exponential vertical distribution of mass, the average \\Upsilon _\\ast ^K is 0.24 M ⊙/L ⊙, with an intrinsic scatter around the mean of at most 0.05 M ⊙/L ⊙. This value for \\Upsilon _\\ast ^K is 20% smaller than we found in Martinsson et al., mainly due to the correction for dark matter applied here. This small scatter means that among the galaxies in our sample, variations in scale height, vertical density profile shape, and/or the ratio of vertical over radial velocity dispersion must be small.

  20. Precision Velocity Fields in Spiral Galaxies. I. Noncircular Motions and rms Noise in Disks

    NASA Astrophysics Data System (ADS)

    Beauvais, Charles; Bothun, G.

    1999-11-01

    Investigation of the symmetry of the major- and minor-axis rotation curves reveals strong evidence of nonconcentric gas orbits with the maximum center shift of ~300 pc. Comparisons between kinematic and photometric structure (e.g., position angles, inclinations, centers) show considerable noise on small scales. Although large-scale averages are in agreement, this noise is a matter of some concern in the application of the Tully-Fisher method to disk galaxies. Moreover, cases of significant misalignment in position angle between the inner and outer disks are seen in two of the sample galaxies and may indicate the transition between luminous and dark-matter-dominated regions (i.e., where the maximum-disk hypothesis begins to fail). The kinematic disk models are used to find the residual velocity fields, and typical residuals are found to be 10-15 km s-1 over regions 0.5-1.5 kpc in diameter. Correlations are shown to exist between the residual velocity fields and both the Hα intensity and the velocity dispersion images. This suggests that kinematic feedback to the gas from star formation is an important source of noncircular motion. However, the relative quiescence of the large-scale velocity field indicates that the effect does not cause a significant deviation from circular symmetry, kinematically indicating that star formation is not a hidden parameter in the Tully-Fisher relation. Finally, the residual velocity fields are examined for signs of noncircular orbits by looking for azimuthal angular harmonics that would be present if disk galaxies are embedded in a triaxial dark matter potential. For our sample we find the ellipticity of the gas orbits to be <~0.08, which implies the potential is relatively round. This is consistent with disks being maximal.

  1. THE LINK BETWEEN LIGHT AND MASS IN LATE-TYPE SPIRAL GALAXY DISKS

    SciTech Connect

    Swaters, Robert A.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Westfall, Kyle B.; Andersen, David R.; Verheijen, Marc A. W.

    2014-12-20

    We present the correlation between the extrapolated central disk surface brightness (μ) and extrapolated central surface mass density (Σ) for galaxies in the DiskMass sample. This μ-Σ relation has a small scatter of 30% at the high surface brightness (HSB) end. At the low surface brightness (LSB) end, galaxies fall above the μ-Σ relation, which we attribute to their higher dark matter content. After correcting for the dark matter as well as for the contribution of gas and the effects of radial gradients in the disk, the LSB end falls back on the linear μ-Σ relation. The resulting scatter around the corrected μ-Σ relation is 25% at the HSB end and about 50% at the LSB end. The intrinsic scatter in the μ-Σ relation is estimated to be 10%-20%. Thus, if μ {sub K,} {sub 0} is known, the stellar surface mass density is known to within 10%-20% (random error). Assuming disks have an exponential vertical distribution of mass, the average Υ{sub ∗}{sup K} is 0.24 M {sub ☉}/L {sub ☉}, with an intrinsic scatter around the mean of at most 0.05 M {sub ☉}/L {sub ☉}. This value for Υ{sub ∗}{sup K} is 20% smaller than we found in Martinsson et al., mainly due to the correction for dark matter applied here. This small scatter means that among the galaxies in our sample, variations in scale height, vertical density profile shape, and/or the ratio of vertical over radial velocity dispersion must be small.

  2. Hierarchical Bayesian approach for estimating physical properties in spiral galaxies: Age Maps for M74

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. Carmen; Berihuete, Angel; Alfaro, Emilio J.; Pérez, Enrique; Sarro, Luis M.

    2015-09-01

    One of the fundamental goals of modern Astronomy is to estimate the physical parameters of galaxies from images in different spectral bands. We present a hierarchical Bayesian model for obtaining age maps from images in the Ha line (taken with Taurus Tunable Filter (TTF)), ultraviolet band (far UV or FUV, from GALEX) and infrared bands (24, 70 and 160 microns (μm), from Spitzer). As shown in [1], we present the burst ages for young stellar populations in the nearby and nearly face on galaxy M74. As it is shown in the previous work, the Hα to FUV flux ratio gives a good relative indicator of very recent star formation history (SFH). As a nascent star-forming region evolves, the Ha line emission declines earlier than the UV continuum, leading to a decrease in the HαFUV ratio. Through a specific star-forming galaxy model (Starburst 99, SB99), we can obtain the corresponding theoretical ratio Hα / FUV to compare with our observed flux ratios, and thus to estimate the ages of the observed regions. Due to the nature of the problem, it is necessary to propose a model of high complexity to take into account the mean uncertainties, and the interrelationship between parameters when the Hα / FUV flux ratio mentioned above is obtained. To address the complexity of the model, we propose a Bayesian hierarchical model, where a joint probability distribution is defined to determine the parameters (age, metallicity, IMF), from the observed data, in this case the observed flux ratios Hα / FUV. The joint distribution of the parameters is described through an i.i.d. (independent and identically distributed random variables), generated through MCMC (Markov Chain Monte Carlo) techniques.

  3. Imaging and spectroscopic observations of a strange elliptical bubble in the northern arm of the spiral galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Efremov, Yuri N.; Moiseev, Alexei V.

    2016-09-01

    NGC 6946, known as the Fireworks galaxy because of its high supernova rate and high star formation, is embedded in a very extended H I halo. Its northern spiral arm is well detached from the galactic main body. We found that this arm contains a large (˜300 pc in size) Red Ellipse, named according to a strong contamination of the Hα emission line on its optical images. The ellipse is accompanied by a short parallel arc and a few others still smaller and less regular; a bright star cluster is seen inside these features. The complicated combination of arcs seems to be unique; it is only a bit similar to some SNRs. However, the long-slit spectral data obtained with the Russian 6-m telescope did not confirm the origin of the nebula as a result of a single SN outburst. The emission-line spectrum corresponds to the photoionization by young hot stars with a small contribution of shock ionization. The most likely explanation of the Red Ellipse is a superbubble created by a collective feedback of massive stars in the star cluster located in the NE side of the Red Ellipse. However, the very regular elliptical shape of the nebulae seems strange.

  4. HIGHLY IONIZED PLASMA IN THE HALO OF A LUMINOUS SPIRAL GALAXY NEAR z = 0.225

    SciTech Connect

    Narayanan, Anand; Savage, Blair D.; Wakker, Bart P. E-mail: savage@astro.wisc.ed

    2010-04-01

    We present analyses of the physical conditions in the z(O{sub VI})=0.22496 and z(O{sub VI})=0.22638 multiphase absorption systems detected in the ultraviolet Hubble Space Telescope/STIS and FUSE spectra of the quasar H 1821+643 (m{sub V} = 14.2, z{sub em} = 0.297). Both absorbers are likely associated with the extended halo of a {approx}2L*{sub B} Sbc-Sc galaxy situated at a projected distance of {approx}116 h {sup -1}{sub 71} kpc from the sight line. The z = 0.22496 absorber is detected in C II, C III, C IV, O III, O VI, Si II, Si III, and H I (Ly alpha-Lytheta) at >3sigma significance. The components of Si III and Si II are narrow with implied temperatures of T {approx}< 3 x 10{sup 4} K. The low and intermediate ions in this absorber are consistent with an origin in a T {approx} 10{sup 4} K photoionized gas with [Si/H] and [C/H] of {approx}-0.6 dex. In contrast, the broader O VI absorption is likely produced in collisionally ionized plasma under nonequilibrium conditions. The z(O{sub VI})=0.22638 system has broad Ly alpha (BLA) and C III absorption offset by v = -53 km s{sup -1} from O VI. The H I and C III line widths for the BLA imply T = 1.1 x 10{sup 5} K. For non-equilibrium cooling we obtain [C/H] {approx}-1.5 dex and N(H) = 3.2 x 10{sup 18} cm{sup -2} in the BLA. The O VI, offset from the BLA with no detected H I or C III, is likely collisionally ionized at T {approx} 3 x 10{sup 5} K. From the observed multiphase properties and the proximity to a luminous galaxy, we propose that the z = 0.22496 absorber is an extragalactic analog of a highly ionized Galactic HVC, in which the O VI is produced in transition temperature plasma (T {approx} 10{sup 5} K) at the interface layers between the warm (T < 5 x 10{sup 4} K) HVC gas phase and the hot (T {approx}> 10{sup 6} K) coronal halo of the galaxy. The z = 0.22638 O VI-BLA absorber could be tracing a cooling condensing fragment in the nearby galaxy's hot gaseous halo.

  5. THE EVOLUTION OF STELLAR POPULATIONS IN THE OUTER DISKS OF SPIRAL GALAXIES

    SciTech Connect

    Alberts, Stacey; Calzetti, Daniela; Dong Hui; Johnson, L. C.; Dale, Daniel A.; Bianchi, Luciana; Thilker, David; Chandar, Rupali; Kennicutt, Robert C.; Meurer, Gerhardt R.; Regan, Michael

    2011-04-10

    We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Galaxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer-disk associations in our sample is {approx}100 Myr with a large dispersion that spans the entire range of our models (1 Myr to 1 Gyr). This relatively evolved state for most associations addresses the observed dearth of H{alpha} emission in some outer disks, as H{alpha} can only be observed in star-forming regions younger than {approx}10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B - V) = 0-0.3 mag) and variations in the upper end of the stellar initial mass function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.

  6. PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99

    SciTech Connect

    Kasliwal, Mansi M.; Kulkarni, Shri R.; Quimby, Robert M.; Ofek, Eran O.; Arcavi, Iair; Gal-Yam, Avishay; Green, Yoav; Yaron, Ofer; Nugent, Peter; Jacobsen, Janet; Poznanski, Dovi; Fox, Derek B.; Howell, Jacob L.; Bradley Cenko, S.; Kleiser, Io; Bloom, Joshua S.; Miller, Adam; Li Weidong; Filippenko, Alexei V.; Starr, Dan

    2011-04-01

    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local universe (distance less than 200 Mpc). Here, we report the discovery of PTF 10fqs, a transient in the luminosity 'gap' between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of M{sub r} = -12.3, red color (g - r = 1.0), and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width H{alpha} ({approx}930 km s{sup -1}) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to that of M85 OT2006-1, SN 2008S, and NGC 300 OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF 10fqs shows some evidence of a broad feature (around 8600 A) that may suggest very large velocities ({approx}10,000 km s{sup -1}) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring, and statistics (e.g., disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.

  7. A Compton-thick AGN in the barred spiral galaxy NGC 4785

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Yamada, S.; Ricci, C.; Asmus, D.; Mushotzky, R. F.; Ueda, Y.; Terashima, Y.; La Parola, V.

    2015-05-01

    We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66-month Swift/BAT (Burst Array Telescope) all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width ≳1 keV. Fitting the broad-band spectra with physical reflection models shows the source to be a Compton-thick AGN with NH of at least 2 × 1024 cm-2 and absorption-corrected 2-10 keV X-ray power L2-10 ˜ few times 1042 erg s-1. Realistic uncertainties on L2-10 computed from the joint confidence interval on the intrinsic power-law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton-thick AGN population is highly heterogeneous in terms of WISE mid-infrared source colours, and the nucleus of NGC 4785 appears especially sub-dominant in the mid-infrared when comparing to other Compton-thick AGN. Such sources would not be easily found using mid-infrared selection alone. The extent of host galaxy extinction to the nucleus is not clear, though NGC 4785 shows a complex core with a double bar and inner disc, adding to the list of known Compton-thick AGN in barred host galaxies.

  8. THE MAGELLAN/IMACS CATALOG OF OPTICAL SUPERNOVA REMNANT CANDIDATES IN M83

    SciTech Connect

    Blair, William P.; Winkler, P. Frank; Long, Knox S. E-mail: winkler@middlebury.edu

    2012-11-15

    We present a new optical imaging survey of supernova remnants (SNRs) in M83, using data obtained with the Magellan I 6.5 m telescope and IMACS instrument under conditions of excellent seeing. Using the criterion of strong [S II] emission relative to H{alpha}, we confirm all but three of the 71 SNR candidates listed in our previous survey, and expand the SNR candidate list to 225 objects, more than tripling the earlier sample. Comparing the optical survey with a new deep X-ray survey of M83 with Chandra, we find that 61 of these SNR candidates have X-ray counterparts. We also identify an additional list of 46 [O III]-selected nebulae for follow-up as potential ejecta-dominated remnants, seven of which have associated X-ray emission that makes them strong candidates. Some of the other [O III]-bright objects could also be normal interstellar medium (ISM) dominated SNRs with shocks fast enough to doubly ionize oxygen, but with H{alpha} and [S II] emission faint enough to have been missed. A few of these objects may also be H II regions with abnormally high [O III] emission compared with the majority of M83 H II regions, compact nebulae excited by young Wolf-Rayet stars, or even background active galactic nuclei. The SNR H{alpha} luminosity function in M83 is shifted by a factor of {approx}4.5 times higher than for M33 SNRs, indicative of a higher mean ISM density in M83. We describe the search technique used to identify the SNR candidates and provide basic information and finder charts for the objects.

  9. VizieR Online Data Catalog: Infrared massive stellar content of M83 (Williams+, 2015)

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Bonanos, A. Z.; Whitmore, B. C.; Prieto, J. L.; Blair, W. P.

    2015-06-01

    We extracted the mosaic image of M83 from the Local Volume Legacy Survey (LVL, Dale et al., 2009ApJ...703..517D, Cat. J/ApJ/703/517) in all four of the IRAC bands. The final images analyzed here cover an area of 15' x15' with a pixel scale of 0.75arcsec/pix centered on the nucleus of M83 (J2000.0:RA=13:37:00.9,DE=-29:51:56). Observations of M83 were made in J and Ks with the FourStar instrument attached to the 6.5m Baade Magellan Telescope at Las Campanas Observatory on UT date 2014 Jan. 2. Blair et al. (2014ApJ...788...55B, Cat. J/ApJ/788/55) studied supernova remnants in M83 with seven fields of Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations in multiple bandpasses. Two fields come from the Early Release Science Program (ID 11360; R. O'Connell, PI) with the remaining five coming from the cycle 19 HST General Observer program 12513 (W. Blair, PI). These seven fields cover the majority of the bright disk region of M83. We specifically used the imaging and photometry in the F336W (Johnson U), F438W (Johnson B), F555W (Johnson V) or F547M (Stroemgren y, easily converted to Johnson V), and F814W (Johnson I) bands. (2 data files).

  10. On the predictive power of the minimum energy condition. 2: Fractional calorimeter behaviour in the diffuse high energy gamma emission of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Pohl, M.

    1994-07-01

    In this paper we investigate the high energy gamma ray emission from spiral galaxies. The calculations are based on equilibrium spectra for cosmic ray protons and electrons, respectively, which have been derived in an earlier paper (Pohl 1993a). There, the cosmic ray particles are assumed to undergo simultaneously transport by diffusion, escape, and energy losses by ionization, inelastic scattering, bremsstrahlung, adiabatic cooling and radiative losses. In the thick target case a fractional calorimeter behavior occurs both for leptonic and for hadronic gamma ray emission: the resultant gamma ray flux depends solely on the injection rate of cosmic rays and on a fraction factor. This fraction factor is in fact a combination of two: the first is the fraction of cosmic rays which meet the interaction targets like protons or thermal gas. The second is the fraction of the gamma ray producing loss mechanism to the total losses in the gas disk. Once reliable gamma ray and radio spectra of spiral galaxies are obtained these calorimeter fractions may help to gain information about the physical state of the interstellar medium in these objects, especially on the proton-to-electron ratio in cosmic rays. The integrated radio spectra of spiral galaxies tell us whether these systems form a thick target for cosmic rays or not. With the minimum energy consumption for the magnetic field strength we are then able to predict explicitely the gamma ray flux from these objects in a broad energy range. The hitherto promising candidates M 31 and M 82 will not be detected by EGRET, since their integrated flux is les than 2 x 10-8ph./sq cm/sec. It appears that our Galaxy is the only object apart from Large Magellanic Cloud (LMC) which we observe with sufficient accuracy to base clues on the gamma ray emission. Since via the calorimeter effects spiral galaxies can regulate themselves, the minimum energy condition has a predictive power which is much more precise than earlier estimated

  11. ASCA Observation of Bright X-Ray Sources in the Nearby Spiral Galaxy IC 342

    NASA Astrophysics Data System (ADS)

    Okada, Kyoko; Dotani, Tadayasu; Makishima, Kazuo; Mitsuda, Kazuhisa; Mihara, Tatehiro

    1998-02-01

    X-ray observations of the nearby starburst galaxy IC 342 with ASCA led to the detection of three bright X-ray sources, whose positions are consistent with those from the Einstein and ROSAT observations. The X-ray luminosities of the two sources exceed the Eddington limit of a 1.4MO object by two orders of magnitude for an assumed distance of 4.5 Mpc. The brightest one (source 1) among the three exhibited significant time variations on a time scale of a few hours during the ASCA observation. Thus, the size of the emission region must be smaller than about 10(14) cm. The energy spectrum of the source can be represented either by a power-law with an exponential roll-over, or by an optically thick accretion disk model with a maximum color temperature of 1.77 keV. Although the large luminosity of source 1 may be explained by a ~ 100MO black hole at 4.5 Mpc, the observed energy spectrum is too hard to be accounted for by an optically thick accretion disk around the black hole. Ifsource1 is a relativistic jet source with strong X-ray beaming, both the large luminosity and the hard X-ray spectrum can be explained.

  12. Southern galaxies. VIII - Surface photometry of the SD spiral NGC 7793

    NASA Astrophysics Data System (ADS)

    de Vaucouleurs, G.; Davoust, E.

    1980-08-01

    Detailed surface photometry in blue light of the SA(s)d galaxy NGC 7793, the faintest of the five major members of the Sculptor group, is obtained from photoelectrically calibrated Mount Stromlo and McDonald photographs. The luminosity distribution is dominated by an exponential disk of effective radius αe = 2'.11 = 1.92 kpc contributing 98.6% of the total luminosity BT = 9.51 ± 0.06. The corrected face-on magnitude BT0 = 9.13 corresponds to MT0 = -18.35 at the revised distance Δ = 3.1 Mpc (Appendix C). The spheroidal component visible only in the vicinity of the nucleus can be represented by an r1/4 law of effective radius rIe = 6".0 = 91 pc and total magnitude BTI = 14.13 or 1.4% of the total luminosity of the galaxy. The position angle of the major axis is 97°, the mean axis ratio is q = b/a = 0.61, and the inclination = 53°. The concentration indices C21 = 1.68 and C32 = 1.48 are consistent with the Sd classification. The integrated colors from UBV aperture photometry are essentially constant at = 0.56 ± 0.02, = -0.07 ± 0.02, the corrected face-on colors are (B - V)T0 = 0.46, (U - B)T0 = -0.15 in close agreement with the colors of M33 and the mean values for type Scd. A decomposition of the disk into an underlying old component and a young arm component shows that 65.570 of the total luminosity comes from the old component which has a corrected central luminosity μcα(0) = 21.06 and an effective radius re = 1'.76 = 1.60 kpc. The neutral H I mass MH = 0.67 × 109 Msun corresponds to a hydrogen-luminosity ratio MH/LB = 0.14 which is less than half the average for the morphological type and luminosity class of NGC 7793. The large number of H ii regions and the strength of the Hα emission in the disk suggest that a large fraction of the hydrogen is ionized. The integrated magnitude of the brightest superassociation (Hodge Nr 20) B, = 16.0 ± 0.1 is derived in Appendix A. The effect of resolution on the apparent peak brightness is illustrated in Appendix B

  13. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    SciTech Connect

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Perez-Gonzalez, P. G.; Gallego, J.; Zamorano, J.; Sanchez, S. F.

    2012-07-20

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  14. HST/COS SPECTRA OF THREE QSOs THAT PROBE THE CIRCUMGALACTIC MEDIUM OF A SINGLE SPIRAL GALAXY: EVIDENCE FOR GAS RECYCLING AND OUTFLOW

    SciTech Connect

    Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Green, James C.; Rosenberg, Jessica L.; Ryan-Weber, Emma V.; Savage, Blair D.

    2013-03-01

    We have used the Cosmic Origins Spectrograph (COS) to obtain far-UV spectra of three closely spaced QSO sight lines that probe the circumgalactic medium (CGM) of an edge-on spiral galaxy, ESO 157-49, at impact parameters of 74 and 93 h {sup -1} {sub 70} kpc near its major axis and 172 h {sup -1} {sub 70} kpc along its minor axis. H I Ly{alpha} absorption is detected at the galaxy redshift in the spectra of all three QSOs, and metal lines of Si III, Si IV, and C IV are detected along the two major-axis sight lines. Photoionization models of these clouds suggest metallicities close to the galaxy metallicity, cloud sizes of {approx}1 kpc, and gas masses of {approx}10{sup 4} M {sub Sun }. Given the high covering factor of these clouds, ESO 157-49 could harbor {approx}2 Multiplication-Sign 10{sup 9} M {sub Sun} of warm CGM gas. We detect no metals in the sight line that probes the galaxy along its minor axis, but gas at the galaxy metallicity would not have detectable metal absorption with ionization conditions similar to the major-axis clouds. The kinematics of the major-axis clouds favor these being portions of a 'galactic fountain' of recycled gas, while two of the three minor-axis clouds are constrained geometrically to be outflowing gas. In addition, one of our QSO sight lines probes a second more distant spiral, ESO 157-50, along its major axis at an impact parameter of 88 h {sup -1} {sub 70} kpc. Strong H I Ly{alpha} and C IV absorption only are detected in the QSO spectrum at the redshift of ESO 157-50.

  15. Star formation properties in barred galaxies. III. Statistical study of bar-driven secular evolution using a sample of nearby barred spirals

    SciTech Connect

    Zhou, Zhi-Min; Wu, Hong; Cao, Chen E-mail: hwu@bao.ac.cn

    2015-01-01

    Stellar bars are important internal drivers of secular evolution in disk galaxies. Using a sample of nearby spiral galaxies with weak and strong bars, we explore the relationships between the star formation feature and stellar bars in galaxies. We find that galaxies with weak bars tend coincide with low concentrical star formation activity, while those with strong bars show a large scatter in the distribution of star formation activity. We find enhanced star formation activity in bulges toward stronger bars, although not predominantly, consistent with previous studies. Our results suggest that different stages of the secular process and many other factors may contribute to the complexity of the secular evolution. In addition, barred galaxies with intense star formation in bars tend to have active star formation in their bulges and disks, and bulges have higher star formation densities than bars and disks, indicating the evolutionary effects of bars. We then derived a possible criterion to quantify the different stages of the bar-driven physical process, while future work is needed because of the uncertainties.

  16. The VIRUS-P Exploration of Nearby Galaxies (VENGA): spatially resolved gas-phase metallicity distributions in barred and unbarred spirals

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle F.; Jogee, Shardha; Kewley, Lisa; Blanc, Guillermo A.; Weinzirl, Tim; Song, Mimi; Drory, Niv; Luo, Rongxin; van den Bosch, Remco C. E.

    2016-10-01

    We present a study of the excitation conditions and metallicity of ionized gas (Zgas) in eight nearby barred and unbarred spiral galaxies from the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey, which provides high spatial sampling and resolution (median ˜387 pc), large coverage from the bulge to outer disc, broad wavelength range (3600-6800 Å), and medium spectral resolution (˜120 km s-1 at 5000 Å). Our results are: (1) We present high resolution gas excitation maps to differentiate between regions with excitation typical of Seyfert, LINER, or recent star formation. We find LINER-type excitation at large distances (3-10 kpc) from the centre, and associate this excitation with diffuse ionized gas (DIG). (2) After excluding spaxels dominated by Seyfert, LINER, or DIG, we produce maps with the best spatial resolution and sampling to date of the ionization parameter q, star formation rate, and Zgas using common strong line diagnostics. We find that isolated barred and unbarred spirals exhibit similarly shallow Zgas profiles from the inner kpc out to large radii (7-10 kpc or 0.5-1.0 R25). This implies that if profiles had steeper gradients at earlier epochs, then the present-day bar is not the primary driver flattening gradients over time. This result contradicts earlier claims, but agrees with recent IFU studies. (3) The Zgas gradients in our z ˜ 0 massive spirals are markedly shallower, by ˜0.2 dex kpc-1, than published gradients for lensed lower mass galaxies at z ˜ 1.5-2.0. Cosmologically motivated hydrodynamical simulations best match this inferred evolution, but the match is sensitive to adopted stellar feedback prescriptions.

  17. The Magellan/IMACS Catalog of Optical Supernova Remnant Candidates in M83

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Winkler, P. Frank; Long, Knox S.

    2012-11-01

    We present a new optical imaging survey of supernova remnants (SNRs) in M83, using data obtained with the Magellan I 6.5 m telescope and IMACS instrument under conditions of excellent seeing. Using the criterion of strong [S II] emission relative to Hα, we confirm all but three of the 71 SNR candidates listed in our previous survey, and expand the SNR candidate list to 225 objects, more than tripling the earlier sample. Comparing the optical survey with a new deep X-ray survey of M83 with Chandra, we find that 61 of these SNR candidates have X-ray counterparts. We also identify an additional list of 46 [O III]-selected nebulae for follow-up as potential ejecta-dominated remnants, seven of which have associated X-ray emission that makes them strong candidates. Some of the other [O III]-bright objects could also be normal interstellar medium (ISM) dominated SNRs with shocks fast enough to doubly ionize oxygen, but with Hα and [S II] emission faint enough to have been missed. A few of these objects may also be H II regions with abnormally high [O III] emission compared with the majority of M83 H II regions, compact nebulae excited by young Wolf-Rayet stars, or even background active galactic nuclei. The SNR Hα luminosity function in M83 is shifted by a factor of ~4.5 times higher than for M33 SNRs, indicative of a higher mean ISM density in M83. We describe the search technique used to identify the SNR candidates and provide basic information and finder charts for the objects. Based on observations made with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, and NASA's Chandra X-Ray Observatory. The ground-based observations were obtained through NOAO, which is operated by the Association of Universities for Research in Astronomy, Inc. for the National Science Foundation. NASA's Chandra Observatory is operated by the Smithsonian Astrophysical Observatory under contract No. NAS83060 and the data were obtained through program GO1-12115.

  18. GHASP: an Hα kinematic survey of spiral galaxies - X. Surface photometry, decompositions and the Tully-Fisher relation in the Rc band

    NASA Astrophysics Data System (ADS)

    Barbosa, C. E.; Mendes de Oliveira, C.; Amram, P.; Ferrari, F.; Russeil, D.; Epinat, B.; Perret, V.; Adami, C.; Marcelin, M.

    2015-11-01

    We present Rc-band surface photometry for 170 of the 203 galaxies in GHASP, the Gassendi H-alpha survey of spirals, a sample of late-type galaxies for which high-resolution Fabry-Perot Hα maps have previously been obtained. Our data set is constructed using new Rc-band observations taken at the Observatoire de Haute-Provence, supplemented with Sloan Digital Sky Survey archival data, obtained with the purpose of deriving homogeneous photometric profiles and parameters. Our results include Rc-band surface brightness profiles for 170 galaxies and ugriz profiles for 108 of these objects. We catalogue several parameters of general interest for further reference, such as total magnitude, effective radius and isophotal parameters (magnitude, position angle, ellipticity and inclination). We also perform a structural decomposition of the surface brightness profiles using a multi-component method to separate discs from bulges and bars, and to observe the main scaling relations involving luminosities, sizes and maximum velocities. We determine the Rc-band Tully-Fisher relation using maximum velocities derived solely from Hα rotation curves for a sample of 80 galaxies, resulting in a slope of -8.1 ± 0.5, zero-point of -3.0 ± 1.0 and an estimated intrinsic scatter of 0.28 ± 0.07. We note that, unlike the Tully-Fisher relation in the near-infrared derived for the same sample, no change in the slope of the relation is seen at the low-mass end (for galaxies with Vmax < 125 km s-1). We suggest that this different behaviour of the Tully-Fisher relation (with the optical relation being described by a single power law while the near-infrared has two), may be caused by differences in the stellar mass-to-light ratio for galaxies with Vmax < 125 km s-1.

  19. THE GALEX/S{sup 4}G UV–IR COLOR–COLOR DIAGRAM: CATCHING SPIRAL GALAXIES AWAY FROM THE BLUE SEQUENCE

    SciTech Connect

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Gallego, Jesús; Boissier, Samuel; Muñoz-Mateos, Juan-Carlos; Sheth, Kartik; Laine, Jarkko; Peletier, Reynier F.; Röck, Benjamin R.; Knapen, Johan H.

    2015-02-10

    We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6 μm photometry for >2000 galaxies, available for 90% of the S{sup 4}G sample. We find a very tight GALEX blue sequence (GBS) in the (FUV–NUV) versus (NUV–[3.6]) color–color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ) and a degeneracy between τ and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call the GALEX green valley (GGV). At the red end of the GBS, at (NUV–[3.6]) > 5, we find a wider GALEX red sequence (GRS) mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by M{sub [3.6]}) since both massive (M{sub ⋆}>10{sup 11}M{sub ⊙}) blue- and red-sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0-Sa’s, and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 10{sup 8} yr.

  20. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  1. Sizes and shapes of young star cluster light profiles in M83

    NASA Astrophysics Data System (ADS)

    Ryon, J. E.; Bastian, N.; Adamo, A.; Konstantopoulos, I. S.; Gallagher, J. S.; Larsen, S.; Hollyhead, K.; Silva-Villa, E.; Smith, L. J.

    2015-09-01

    We measure the radii and two-dimensional light profiles of a large sample of young, massive star clusters in M83 using archival HST/Wide Field Camera 3 (WFC3) imaging of seven adjacent fields. We use GALFIT to fit the two-dimensional light profiles of the clusters, from which we find effective (half-light) radii, core radii, and slopes of the power-law (EFF) profile (η). We find lognormal distributions of effective radius and core radius, with medians of ≈2.5 and ≈1.3 pc, respectively. Our results provide strong evidence for a characteristic size of young, massive clusters. The average effective radius and core radius increase somewhat with cluster age. Little to no change in effective radius is observed with increasing galactocentric distance, except perhaps for clusters younger than 100 Myr. We find a shallow correlation between effective radius and mass for the full cluster sample, but a stronger correlation is present for clusters 200-300 Myr in age. Finally, the majority of the clusters are best fit by an EFF model with index η ≲ 3.0. There is no strong evidence for change in η with cluster age, mass, or galactocentric distance. Our results suggest that clusters emerge from early evolution with similar radii and are not strongly affected by the tidal field of M83. Mass-loss due to stellar evolution and/or giant molecular cloud interactions appear to dominate cluster expansion in the age range we study.

  2. FUV and UVIS observations of circumnuclear star clusters in M83

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Chandar, Rupali; Leitherer, Claus

    2011-01-01

    We analyze archival HST/STIS/FUV-MAMA imaging and spectroscopy of 13 compact star clusters within the circumnuclear starburst region of M83, the closest such example. We compare the observed spectra with semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE, and with theoretical models, which are based on a new theoretical UV library of hot massive stars computed with WM-Basic. The models were generated with Starburst99 for metallicities of Z=0.020 and Z=0.040, and for stellar IMFs with upper mass limits of 10, 30, 50, and 100 M_⊙. We estimate the ages and masses of the clusters from the best fit model spectra, and find that the ages derived from the semi-empirical and theoretical models agree within a factor of 1.2 on average. A comparison of the spectroscopic age estimates with values derived from HST/WFC3/UVIS multi-band photometry shows a similar level of agreement for all but one cluster. The clusters have a range of ages from about 2 to 20 Myr, and do not appear to have an age gradient along M83's starburst. Clusters with strong P-Cygni profiles have masses of a few ×10^4 M_⊙, seem to have formed stars more massive than 30 M_⊙, and are consistent with a Kroupa IMF from 0.1-100 M_⊙.

  3. FIRST RESULTS FROM THE DRAGONFLY TELEPHOTO ARRAY: THE APPARENT LACK OF A STELLAR HALO IN THE MASSIVE SPIRAL GALAXY M101

    SciTech Connect

    Van Dokkum, Pieter G.; Merritt, Allison; Abraham, Roberto

    2014-02-20

    We use a new telescope concept, the Dragonfly Telephoto Array, to study the low surface brightness outskirts of the spiral galaxy M101. The radial surface brightness profile is measured down to μ {sub g} ∼ 32 mag arcsec{sup –2}, a depth that approaches the sensitivity of star count studies in the Local Group. We convert surface brightness to surface mass density using the radial g – r color profile. The mass density profile shows no significant upturn at large radius and is well-approximated by a simple bulge + disk model out to R = 70 kpc, corresponding to 18 disk scale lengths. Fitting a bulge + disk + halo model we find that the best-fitting halo mass M{sub halo}=1.7{sub −1.7}{sup +3.4}×10{sup 8} M {sub ☉}. The total stellar mass of M101 is M{sub tot,∗}=5.3{sub −1.3}{sup +1.7}×10{sup 10} M {sub ☉}, and we infer that the halo mass fraction f{sub halo}=M{sub halo}/M{sub tot,∗}=0.003{sub −0.003}{sup +0.006}. This mass fraction is lower than that of the Milky Way (f {sub halo} ∼ 0.02) and M31 (f {sub halo} ∼ 0.04). All three galaxies fall below the f {sub halo}-M {sub tot,} {sub *} relation predicted by recent cosmological simulations that trace the light of disrupted satellites, with M101's halo mass a factor of ∼10 below the median expectation. However, the predicted scatter in this relation is large, and more galaxies are needed to better quantify this possible tension with galaxy formation models. Dragonfly is well suited for this project: as integrated-light surface brightness is independent of distance, large numbers of galaxies can be studied in a uniform way.

  4. The Story of UGC 11919: An Unusual Spiral Galaxy Possibly Having a Warp and Peculiarly Low Mass-to-Light Ratio

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.; Józsa, G. I. G.; Zasov, A. V.; Bizyaev, D. V.; Uklein, R. I.

    2014-05-01

    We present the results of a multi-wavelength study of the spiral galaxy UGC 11919 to verify that the galaxy has a peculiarly low dynamical mass-to-light ratio (M/LB) and to study its kinematical structure in general. We obtained an H I data cube of UGC 11919 with the Westerbork Synthesis Radio Telescope parallel with photometric observations with the Apache Point 0.5-m telescope. Two complementary models of the H I data cube provide a reasonable fit to the data: a model representing a symmetric S-shaped warp and a flat disc model with the deviations from axial symmetry caused by noncircular or bar streaming motions. In both cases UGC 11919 appears to have a disk of unusually low dynamical mass-to-light ratio in spite of its red color and a dark halo of moderate mass. A bottom-light stellar initial mass function could explain the results. Stellar kinematic profiles derived from long-slit observations, with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, show a signature of kinematically decoupled nuclear disk in the galaxy.

  5. Gravitational star formation thresholds and gas density in three galaxies

    NASA Technical Reports Server (NTRS)

    Oey, M. S.; Kennicutt, R. C., Jr.

    1990-01-01

    It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is

  6. Absorption-line detections of 10{sup 5}-10{sup 6} K gas in spiral-rich groups of galaxies

    SciTech Connect

    Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.; Syphers, David; Yamamoto, H.; Shull, J. Michael; Green, James C.; Froning, Cynthia; Savage, Blair D.; Wakker, Bart; Kim, Tae-Sun; Ryan-Weber, Emma V.; Kacprzak, Glenn G.

    2014-08-20

    Using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, the COS Science Team has conducted a high signal-to-noise survey of 14 bright QSOs. In a previous paper, these far-UV spectra were used to discover 14 'warm' (T ≥ 10{sup 5} K) absorbers using a combination of broad Lyα and broad O VI absorptions. A reanalysis of a few of this new class of absorbers using slightly relaxed fitting criteria finds as many as 20 warm absorbers could be present in this sample. A shallow, wide spectroscopic galaxy redshift survey has been conducted around these sight lines to investigate the warm absorber environment, which is found to be spiral-rich groups or cluster outskirts with radial velocity dispersions σ = 250-750 km s{sup –1}. While 2σ evidence is presented favoring the hypothesis that these absorptions are associated with the galaxy groups and not with the individual, nearest galaxies, this evidence has considerable systematic uncertainties and is based on a small sample size so it is not entirely conclusive. If the associations are with galaxy groups, the observed frequency of warm absorbers (dN/dz = 3.5-5 per unit redshift) requires them to be very extended as an ensemble on the sky (∼1 Mpc in radius at high covering factor). Most likely these warm absorbers are interface gas clouds whose presence implies the existence of a hotter (T ∼ 10{sup 6.5} K), diffuse, and probably very massive (>10{sup 11} M {sub ☉}) intra-group medium which has yet to be detected directly.

  7. The spatially resolved dynamics of dusty starburst galaxies in a z ˜ 0.4 cluster: beginning the transition from spirals to S0s

    NASA Astrophysics Data System (ADS)

    Johnson, H. L.; Harrison, C. M.; Swinbank, A. M.; Bower, R. G.; Smail, Ian; Koyama, Y.; Geach, J. E.

    2016-07-01

    To investigate what drives the reversal of the morphology-density relation at intermediate/high redshift, we present a multiwavelength analysis of 27 dusty starburst galaxies in the massive cluster Cl 0024+17 at z = 0.4. We combine Hα dynamical maps from the VLT/FLAMES multi-IFU system with far-infrared imaging using Herschel/SPIRE and millimetre spectroscopy from IRAM/NOEMA, in order to measure the dynamics, star formation rates and gas masses of this sample. Most galaxies appear to be rotationally supported, with a median ratio of rotational-support to line-of-sight velocity dispersion v/σ ˜ 5 ± 2, and specific angular momentum λR = 0.83 ± 0.06 - comparable to field spirals of a similar mass at this redshift. The star formation rates of 3-26 M⊙ yr-1 and average 12CO-derived gas mass of ˜ 1 × 1010 M⊙ suggest gas depletion time-scales of ˜1 Gyr (˜0.25 of the cluster crossing time). We derive characteristic dust temperatures (mean Td = 26 ± 1 K) consistent with local galaxies of similar far-infrared luminosity, suggesting that the low-density gas is yet to be stripped. Taken together, these results suggest that these starbursts have only recently accreted from the field, with star formation rates likely enhanced due to the effects of ram pressure. In order to make the transition to cluster S0s these galaxies must lose ˜40 per cent of their specific angular momentum. We suggest this must occur ≥1 Gyr later, after the molecular gas has been depleted and/or stripped, via multiple tidal interactions with other cluster members.

  8. The influence of a kinematically cold young component on disc-halo decompositions in spiral galaxies: insights from solar neighbourhood K-giants

    NASA Astrophysics Data System (ADS)

    Aniyan, S.; Freeman, K. C.; Gerhard, O. E.; Arnaboldi, M.; Flynn, C.

    2016-02-01

    In decomposing the H I rotation curves of disc galaxies, it is necessary to break a degeneracy between the gravitational fields of the disc and the dark halo by estimating the disc surface density. This is done by combining measurements of the vertical velocity dispersion of the disc with the disc scaleheight. The vertical velocity dispersion of the discs is measured from absorption lines (near the V band) of near-face-on spiral galaxies, with the light coming from a mixed population of giants of all ages. However, the scaleheights for these galaxies are estimated statistically from near-IR surface photometry of edge-on galaxies. The scaleheight estimate is therefore dominated by a population of older (>2 Gyr) red giants. In this paper, we demonstrate the importance of measuring the velocity dispersion for the same older population of stars that is used to estimate the vertical scaleheight. We present an analysis of the vertical kinematics of K-giants in the solar vicinity. We find the vertical velocity distribution best fitted by two components with dispersions of 9.6 ± 0.5 km s-1 and 18.6 ± 1.0 km s-1, which we interpret as the dispersions of the young and old disc populations, respectively. Combining the (single) measured velocity dispersion of the total young + old disc population (13.0 ± 0.1 km s-1) with the scaleheight estimated for the older population would underestimate the disc surface density by a factor of ˜2. Such a disc would have a peak rotational velocity that is only 70 per cent of that for the maximal disc, thus making it appear submaximal.

  9. Chandra ACIS Survey of M33 (ChASeM33): A Deep X-ray Survey of the Nearest Face-on Spiral Galaxy

    NASA Astrophysics Data System (ADS)

    Gaetz, Terrance J.; Tuellmann, R.; Plucinsky, P. P.; Kuntz, K.; Long, K. S.; Williams, B.; Blair, W. P.; Edgar, R. J.; Ghavamian, P.; Haberl, F.; Helfand, D.; Hughes, J. P.; Kirshner, R.; Mazeh, T.; Pannuti, T.; Pietsch, W.; Shporer, A.; Smith, R. K.; Winkler, P. F.; ChASeM33 Team

    2009-01-01

    The Chandra ACIS Survey of M33 (ChASeM33) is a deep survey of the nearest face-on Spiral Galaxy. The 1.4 Ms survey covers the galaxy out to R 18 arcmin ( 4 kpc at 790 kpc), providing the most extensive high spatial resolution assessment of the X-ray source populations available for M33. Mosaic images of the ChASeM33 observations show several hundred individual X-ray sources as well as soft diffuse emission from the hot interstellar medium. Bright extended emission surrounds the nucleus and is also detected from the giant HII regions NGC604 and IC131. Fainter extended emission and numerous individual sources appear to trace the inner spiral structure. An initial source catalog based on 2/3 of the survey data has been published, and published papers based on the survey include: the discovery of the first eclipsing black hole binary system, an analysis of the brightest supernova remnant in M33, an analysis of the giant HII region NGC604, and an analysis of a number of transient sources. A catalog for the whole survey has now been prepared. We will discuss the improvements made in reducing the data and the approach for detecting and characterizing sources. Adjacent poster presentations include analyses of the new catalog, the X-ray emitting giant HII region (IC131), the supernova remnant population, a preliminary analysis of the diffuse emission, and initial results of a new radio survey complementing the X-ray survey. Support for this work was provided by NASA through Chandra Award Number G06-7073A and contract NAS8-03060.

  10. Kinematic Mass Measurements of Inner and Outer Spiral Disks

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; Ciardullo, R.

    2010-01-01

    Our knowledge of the structure and kinematics of galactic disks and halos is quite limited. While integrated light spectroscopy has provided a large amount of information on inner disks, once outside 2.5 disk scale lengths, almost nothing is known. Does the mass-to-light ratio (M/L) stay constant in the outer regions? Does the stellar scale height stay constant or do disks flare? Are galactic disks really maximal and could there be any trends with Hubble type? Are dark matter halos fit better by NFW or pseudo-isothermal models? We have been using planetary nebulae (PNe) to probe the kinematic structure of face-on spiral disks by identifying large ( 100) samples of these objects via narrow-band imaging, and then measuring their radial velocities with follow-up, high-precision ( 5 km/s) spectroscopy. Our results for IC 342, M74, M83, M94, and M101 are quite interesting. With one exception (M101) the z-velocity dispersion (sigmaz) of galactic disks declines exponentially with the light out to 3 disk scale lengths. This is exactly as expected for a constant M/L, constant scale height disk. However, in the two galaxies with significant data past this radius, the values of sigmaz asymptote out at 20 km/s. Moreover, our analysis finds kinematic evidence for significant flaring in the outer regions, especially in M94. These observations are in excellent agreement with predictions derived from models of disk heating by halo substructure, and demonstrate how kinematic surveys in the outer disks of spirals can be used to test hierarchical models of galaxy formation. We also find that the disks of late-type galaxies are far from maximal, that the disks of early type spirals have higher M/L ratios than the disks of later-type objects, and that the unseen inner halos of spiral galaxies are better fit by pseudo-isothermal laws than by NFW models.

  11. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  12. Spiral Galactic Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2009-05-01

    Before the period of galactic formation the uiverse consisted of a vast number of pre-formed systems consisting of two or more pre-galactic arms, the arms orbiting each other. As the orbits of the arms decayed the sides of the fore-sections of the arms tangentially collided and joined and thereby forming multi-armed spiral galaxies which began to rotate.The rotation resulted from the conversion of the orbital motion of the individual arms when joined into faster rotational motion of the newly formed galaxy. The spiral arms were maintained by the centripital force of the rapidly rotational motion of the galaxy system. As the rotational motion of the galaxy slowed down the arms of the spiral galaxy collapsed towards the body of the galaxy due to lessening of centripetal force on the arms and elliptical galaxies were formed and with further lessening of galactic rotational motion galactic disks were formed. One can see in galaxies M51, M100, NGC2336 and NGC4939 the galactic arms came from external orbit, not disks or instabilities in support of this theory. Also in support of this theory of galactic evolution is that spiral galaxies rotate faster than ellipticals or disks.

  13. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  14. The Slim-disk State of the Ultraluminous X-Ray Source in M83

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Kuntz, K. D.; Long, Knox S.; Blair, William P.; Plucinsky, Paul P.; Winkler, P. Frank

    2015-02-01

    The transient ULX in M83 that went into outburst in, or shortly before, 2010 is still active. Our new XMM-Newton spectra show that it has a curved spectrum typical of the upper end of the high/soft state or slim-disk state. It appears to be spanning the gap between Galactic stellar-mass black holes (BHs) and the ultraluminous state, at X-ray luminosities of ≈1-3 × 1039 erg s-1 (a factor of two lower than in the 2010 and 2011 Chandra observations). From its broadened disk-like spectral shape at that luminosity, and from the fitted inner-disk radius and temperature, we argue that the accreting object is an ordinary stellar-mass BH with M ~ 10-20 M ⊙. We suggest that in the 2010 and 2011 Chandra observations, the source was seen at a higher accretion rate, resulting in a power-law-dominated spectrum with a soft excess at large radii.

  15. Images in the rocket ultraviolet - Young clusters in H II regions of M83

    NASA Technical Reports Server (NTRS)

    Bohlin, Ralph C.; Cornett, Robert H.; Hill, Jesse K.; Stecher, Theodore P.

    1990-01-01

    UV images of M83 at 1540 and 2360 A reveal 18 compact sources that are associated with H II regions. E(B - V) values were estimated individually from the observed UV and optical colors and the Galactic UV extinction curve, using theoretical flux distributions. The dereddened colors are consistent with ages up to 3 x 10 to the 6th yr. A maximum possible age of 6.5 x 10 to the 6th yr is obtained assuming foreground reddening only. The distribution of observed colors is consistent with the Galactic reddening curve but not with enhanced far-UV extinction, as in the LMC 30 Dor curve. The H-alpha fluxes suggest either that dust within the H II regions absorbs up to 70 percent of the Lyman continuum radiation or that a similar fraction of the H-alpha flux is below the surface brightness detection limit. Cluster mass estimates depend on the range of stellar masses present but are probably in the range 10,000-100,000 solar masses.

  16. THE SLIM-DISK STATE OF THE ULTRALUMINOUS X-RAY SOURCE IN M83

    SciTech Connect

    Soria, Roberto; Kuntz, K. D.; Blair, William P.; Long, Knox S.; Plucinsky, Paul P.; Winkler, P. Frank

    2015-02-01

    The transient ULX in M83 that went into outburst in, or shortly before, 2010 is still active. Our new XMM-Newton spectra show that it has a curved spectrum typical of the upper end of the high/soft state or slim-disk state. It appears to be spanning the gap between Galactic stellar-mass black holes (BHs) and the ultraluminous state, at X-ray luminosities of ≈1-3 × 10{sup 39} erg s{sup –1} (a factor of two lower than in the 2010 and 2011 Chandra observations). From its broadened disk-like spectral shape at that luminosity, and from the fitted inner-disk radius and temperature, we argue that the accreting object is an ordinary stellar-mass BH with M ∼ 10-20 M {sub ☉}. We suggest that in the 2010 and 2011 Chandra observations, the source was seen at a higher accretion rate, resulting in a power-law-dominated spectrum with a soft excess at large radii.

  17. THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS

    SciTech Connect

    Patel, Shannon G.; Franx, Marijn; Holden, Bradford P.; Illingworth, Garth D.; Van der Wel, Arjen

    2012-04-01

    We utilize for the first time Hubble Space Telescope Advanced Camera for Surveys imaging to examine the structural properties of galaxies in the rest-frame U - V versus V - J diagram (i.e., the UVJ diagram) using a sample at 0.6 < z < 0.9 that reaches a low stellar mass limit (log M/M{sub Sun} >10.25). The use of the UVJ diagram as a tool to distinguish quiescent galaxies from star-forming galaxies (SFGs) is becoming more common due to its ability to separate red quiescent galaxies from reddened SFGs. Quiescent galaxies occupy a small and distinct region of UVJ color space and we find most of them to have concentrated profiles with high Sersic indices (n > 2.5) and smooth structure characteristic of early-type systems. SFGs populate a broad but well-defined sequence of UVJ colors and are comprised of objects with a mix of Sersic indices. Interestingly, most UVJ-selected SFGs with high Sersic indices also display structure due to dust and star formation typical of the n < 2.5 SFGs and late-type systems. Finally, we find that the position of an SFG on the sequence of UVJ colors is determined to a large degree by the mass of the galaxy and its inclination. Systems that are closer to edge-on generally display redder colors and lower [O II]{lambda}3727 luminosity per unit mass as a consequence of the reddening due to dust within the disks. We conclude that the two main features seen in UVJ color space correspond closely to the traditional morphological classes of early- and late-type galaxies.

  18. A 21 Centimeter Absorber Identified with a Spiral Galaxy: Hubble Space Telescope Faint Object Spectrograph and Wide-Field Camera Observations of 3CR 196

    NASA Technical Reports Server (NTRS)

    Cohen, Ross D.; Beaver, E. A.; Diplas, Athanassios; Junkkarinen, Vesa T.; Barlow, Thomas A.; Lyons, Ronald W.

    1996-01-01

    We present imaging and spectroscopy of the quasar 3CR 196 (z(sub e) = 0.871), which has 21 cm and optical absorption at z(sub a) = 0.437. We observed the region of Ly alpha absorption in 3CR 196 at z(sub a) = 0.437 with the Faint Object Spectrograph on the Hubble Space Telescope. This region of the spectrum is complicated because of the presence of a Lyman limit and strong lines from a z(sub a) approx. z(sub e) system. We conclude that there is Ly alpha absorption with an H I column density greater than 2.7 x 10(exp 19) cm(exp -2) and most probably 1.5 x 10(exp 20) cm(exp -2). Based on the existence of the high H I column density along both the optical and radio lines of sight, separated by more than 15 kpc, we conclude that the Ly alpha absorption must arise in a system comparable in size to the gaseous disks of spiral galaxies. A barred spiral galaxy, previously reported as a diffuse object in the recent work of Boisse and Boulade, can be seen near the quasar in an image taken at 0.1 resolution with the Wide Field Planetary Camera 2 on the HST. If this galaxy is at the absorption redshift, the luminosity is approximately L(sub *) and any H I disk should extend in front of the optical quasar and radio lobes of 3CR 196, giving rise to both the Ly alpha and 21 cm absorption. In the z(sub a) approx. z(sub e) system we detect Lyman lines and the Lyman limit, as well as high ion absorption lines of C III, N V, S VI, and O VI. This absorption probably only partially covers the emission-line region. The ionization parameter is approximately 0.1. Conditions in this region may be similar to those in broad absorption line QSOs.

  19. The Relationship between the Dense Neutral and Diffuse Ionized Gas in the Thick Disks of Two Edge-on Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rueff, Katherine M.; Howk, J. Christopher; Pitterle, Marissa; Hirschauer, Alec S.; Fox, Andrew J.; Savage, Blair D.

    2013-03-01

    We present high-resolution, optical images (BVI + Hα) of the multiphase interstellar medium (ISM) in the thick disks of the edge-on spiral galaxies NGC 4013 and NGC 4302. Our images from the Hubble Space Telescope (HST), Large Binocular Telescope, and WIYN 3.5 m telescope reveal an extensive population of filamentary dust absorption seen to z ~2-2.5 kpc. Many of these dusty thick disk structures have characteristics reminiscent of molecular clouds found in the Milky Way disk. Our Hα images show that the extraplanar diffuse ionized gas (DIG) in these galaxies is dominated by a smooth, diffuse component. The strongly filamentary morphologies of the dust absorption have no counterpart in the smoothly distributed Hα emission. We argue that the thick disk DIG and dust-bearing filaments trace physically distinct phases of the thick disk ISM, the latter tracing a dense, warm or cold neutral medium. The dense, dusty matter in the thick disks of spiral galaxies is largely tracing matter ejected from the thin disk via energetic feedback from massive stars. The high densities of the gas may be a result of converging gas flows. This dense material fuels some thick disk star formation, as evidenced by the presence of thick disk H II regions. Based on observations obtained with the NASA/ESA Hubble Space Telescope operated at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also, based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US, Italy, and Germany. LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Instituto Nazionale do Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and Heidelberg University; Ohio State University, and the Research Corporation, on

  20. THE STRUCTURE OF NUCLEAR STAR CLUSTERS IN NEARBY LATE-TYPE SPIRAL GALAXIES FROM HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 IMAGING

    SciTech Connect

    Carson, Daniel J.; Barth, Aaron J.; Seth, Anil C.; Brok, Mark den; Cappellari, Michele; Greene, Jenny E.; Ho, Luis C.; Neumayer, Nadine

    2015-05-15

    We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters (NCs) residing in late-type spiral galaxies, in seven bands that span the near-UV to the near-IR. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from −11.2 to −15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For 6 of the 10 clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population that is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of NCs in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color–color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (>1 Gyr) and a young population (∼100–300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only. The surface brightness profiles presented in this work will be used for future

  1. The Structure of Nuclear Star Clusters in Nearby Late-type Spiral Galaxies from Hubble Space Telescope Wide Field Camera 3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel J.; Barth, Aaron J.; Seth, Anil C.; den Brok, Mark; Cappellari, Michele; Greene, Jenny E.; Ho, Luis C.; Neumayer, Nadine

    2015-05-01

    We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters (NCs) residing in late-type spiral galaxies, in seven bands that span the near-UV to the near-IR. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from ‑11.2 to ‑15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For 6 of the 10 clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population that is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of NCs in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color–color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (>1 Gyr) and a young population (∼100–300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only. The surface brightness profiles presented in this work will be used for future

  2. HOW DIFFERENT ARE NORMAL AND BARRED SPIRALS?

    SciTech Connect

    Van den Bergh, Sidney

    2011-06-15

    No significant color differences are found between normal and barred spirals over the range of Hubble stages a-ab-b-bc. Furthermore, no significant difference is seen between the luminosity distributions of normal and barred galaxies over the same range of Hubble stages. However, SBc galaxies are found to be systematically fainter than Sc galaxies at 99% confidence. The observation that normal and barred spirals with Hubble stages a-ab-b-bc have indistinguishable intrinsic colors hints at the possibility that the bars in such spiral galaxies might be ephemeral structures. Finally, it is pointed out that lenticular galaxies of types S0 and SB0 are systematically fainter than are other early-type galaxies, suggesting that such galaxies are situated on evolutionary tracks that differ systematically from those of galaxies that lie along the E-Sa-Sb-Sc and E-SBa-SBb-SBc sequences.

  3. E/S0 GALAXIES ON THE BLUE COLOR-STELLAR MASS SEQUENCE AT z = 0: FADING MERGERS OR FUTURE SPIRALS?

    SciTech Connect

    Kannappan, Sheila J.; Guie, Jocelly M.; Baker, Andrew J. E-mail: jocelly@mail.utexas.edu

    2009-08-15

    } show signs of disk and/or pseudobulge building, which may be enhanced by companion interactions. The blue overall colors of blue-sequence E/S0s are most clearly linked to blue outer disks, but also reflect blue centers and more frequent blue-centered color gradients than seen in red-sequence E/S0s. Notably, all E/S0s in the NFGS with polar or counterrotating gas lie on or near the blue sequence, and most of these systems show signs of secondary stellar disks forming in the decoupled gas. From star formation rates and gas fractions, we infer significant recent and ongoing morphological transformation in the blue-sequence E/S0 population, especially below M{sub b}. We argue that sub-M{sub b} blue-sequence E/S0s occupy a 'sweet spot' in stellar mass and concentration, with both abundant gas and optimally efficient star formation, which may enable the formation of large spiral disks. Our results provide evidence for the importance of disk rebuilding after mergers, as predicted by hierarchical models of galaxy formation.

  4. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  5. The Tip of the Red Giant Branch Distance to the Perfect Spiral Galaxy M74 Hosting Three Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Lee, Myung Gyoon

    2014-09-01

    M74 (NGC 628) is a famous face-on spiral galaxy, hosting three core-collapse supernovae (SNe): SN Ic 2002ap, SN II-P 2003gd, and SN II-P 2013ej. However, its distance is not well known. We present a distance estimation for this galaxy based on the Tip of the Red Giant Branch (TRGB) method. We obtain photometry of the resolved stars in the arm-free region of M74 from F555W and F814W images in the Hubble Space Telescope archive. The color-magnitude diagram of the resolved stars shows a dominant red giant branch (RGB) as well as blue main sequence stars, red helium burning stars, and asymptotic giant branch stars. The I-band luminosity function of the RGB stars shows the TRGB to be at I TRGB = 26.13 ± 0.03 mag, and T RGB = 25.97 ± 0.03. From this, we derive the distance modulus to M74 to be 30.04 ± 0.04 (random) ± 0.12 (systematic) (corresponding to a linear distance of 10.19 ± 0.14 ± 0.56 Mpc). With this distance estimate, we calibrate the standardized candle method for SNe II-P. From the absolute magnitudes of SN 2003gd, we derive a value of the Hubble constant, H 0 = 72 ± 6 (random) ± 7 (systematic) km s-1 Mpc-1. It is similar to recent estimates based on the luminosity calibration of Type Ia supernovae.

  6. VIRUS-W: commissioning and first-year results of a new integral field unit spectrograph dedicated to the study of spiral galaxy bulges

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Grupp, Frank; Bender, Ralf; Drory, Niv; Arns, Jim; Barnes, Stuart; Gössl, Claus; Snigula, Jan; Hill, Gary J.; Hopp, Ulrich; Lang-Bardl, Florian; MacQueen, Phillip J.; Saglia, Roberto; Wullstein, Philipp

    2012-09-01

    In November and December 2010 we successfully commissioned a new optical fibre-based Integral Field Unit (IFU) spectrograph at the 2.7m Harlan J. Smith Telescope of the McDonald Observatory in Texas. Regular science observations commenced in spring 2011. The instrument achieves a spectral resolution of λ/Δλ = 8700 with a spectral coverage of 4850Å - 5480Å and a spectacular throughput of 37% including the telescope optics. The design is related to the VIRUS-P instrument that was developed for the HETDEX experiment, but was modified significantly in order to achieve the large spectral resolution that is needed to recover the dynamical properties of disk galaxies. In addition to the high resolution mode, VIRUS-W offers a stellar population mode with a resolution of λ/Δλ = 3300 and a spectral coverage of 4340Å - 6040Å. The IFU is comprised out of 267 150 μm-core optical fibers with a fill factor of 1/3. With a beam of f/3.65, the core diameter translates to 3.2" on sky and a large field of view of 105" x 55" that is ideally suited to study the bulge regions of local spiral galaxies. The large throughput is due to a design that operates close to the numerical aperture of the fibers, a large 200mm aperture refractive camera with no central obscuration, highly efficient volume phase holographic gratings, and a high-QE CCD. We will discuss the design, the performance and briefly present an example for the very up-to-date science that is possible with such instruments at 2m class telescopes.

  7. The broad band X-ray spectrum of SN 1978k and two other luminous X-ray sources in the spiral galaxy NGC 1313

    NASA Astrophysics Data System (ADS)

    Petre, Robert; Okada, Kyoko; Mihara, Tatehiro; Makishima, Kazuo; Colbert, Edward J. M.

    1994-06-01

    We present preliminary results of our analysis of the Advanced Satellite for Cosmology and Astrophysics (ASCA) PV phase observation of the nearby spiral galaxy NGC 1313. ASCA cleanly resolves the three previously known luminous sources, one of which is the very luminous supernova, SN 1978k. The spectrum of SN 1978k is described by either a power law with a photon index gamma approximately 2.2 or a thermal model with temperature kT approximately 3.0 keV and abundances Z approximately 0.2 Z(sun). There is no evidence for strong line emission from it or from the other two sources. The spectrum of SN 1978k arises either in shocked gas in extreme departure from ionization equilibrium or from synchrotron processes associated with a newborn pulsar. A second source, near the galactic center, is well-fit by a power-law with a photon index of approximately 1.8. It is possibly an active nucleus-like source, but physically displaced from the optical nucleus of the galaxy. The spectrum of the third source, located 8 kpc south of the nucleus, along with the absence of an optical counterpart, suggests that it is a low mass X-ray binary; but its high X-ray luminosity clouds this interpretation. This observation demonstrates the ability of ASCA to perform effective broad band spectroscopic measurements of sources at a 2-10 keV flux level of 5 x 10-13 erg cm-2 s-1.

  8. The Tip of the red giant branch distance to the perfect spiral galaxy M74 hosting three core-collapse supernovae

    SciTech Connect

    Sung Jang, In; Gyoon Lee, Myung E-mail: mglee@astro.snu.ac.kr

    2014-09-01

    M74 (NGC 628) is a famous face-on spiral galaxy, hosting three core-collapse supernovae (SNe): SN Ic 2002ap, SN II-P 2003gd, and SN II-P 2013ej. However, its distance is not well known. We present a distance estimation for this galaxy based on the Tip of the Red Giant Branch (TRGB) method. We obtain photometry of the resolved stars in the arm-free region of M74 from F555W and F814W images in the Hubble Space Telescope archive. The color-magnitude diagram of the resolved stars shows a dominant red giant branch (RGB) as well as blue main sequence stars, red helium burning stars, and asymptotic giant branch stars. The I-band luminosity function of the RGB stars shows the TRGB to be at I {sub TRGB} = 26.13 ± 0.03 mag, and T {sub RGB} = 25.97 ± 0.03. From this, we derive the distance modulus to M74 to be 30.04 ± 0.04 (random) ± 0.12 (systematic) (corresponding to a linear distance of 10.19 ± 0.14 ± 0.56 Mpc). With this distance estimate, we calibrate the standardized candle method for SNe II-P. From the absolute magnitudes of SN 2003gd, we derive a value of the Hubble constant, H {sub 0} = 72 ± 6 (random) ± 7 (systematic) km s{sup –1} Mpc{sup –1}. It is similar to recent estimates based on the luminosity calibration of Type Ia supernovae.

  9. The broad band X-ray spectrum of SN 1978k and two other luminous X-ray sources in the spiral galaxy NGC 1313

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Okada, Kyoko; Mihara, Tatehiro; Makishima, Kazuo; Colbert, Edward J. M.

    1994-01-01

    We present preliminary results of our analysis of the Advanced Satellite for Cosmology and Astrophysics (ASCA) PV phase observation of the nearby spiral galaxy NGC 1313. ASCA cleanly resolves the three previously known luminous sources, one of which is the very luminous supernova, SN 1978k. The spectrum of SN 1978k is described by either a power law with a photon index gamma approximately 2.2 or a thermal model with temperature kT approximately 3.0 keV and abundances Z approximately 0.2 Z(sun). There is no evidence for strong line emission from it or from the other two sources. The spectrum of SN 1978k arises either in shocked gas in extreme departure from ionization equilibrium or from synchrotron processes associated with a newborn pulsar. A second source, near the galactic center, is well-fit by a power-law with a photon index of approximately 1.8. It is possibly an active nucleus-like source, but physically displaced from the optical nucleus of the galaxy. The spectrum of the third source, located 8 kpc south of the nucleus, along with the absence of an optical counterpart, suggests that it is a low mass X-ray binary; but its high X-ray luminosity clouds this interpretation. This observation demonstrates the ability of ASCA to perform effective broad band spectroscopic measurements of sources at a 2-10 keV flux level of 5 x 10(exp -13) erg cm(exp -2) s(exp -1).

  10. The Structure and Stellar Populations of Nuclear Star Clusters in Late-type Spiral Galaxies From HST/WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel; Barth, Aaron J.; Seth, Anil; den Brok, Mark; Cappelari, Michele; Greene, Jenny E.; Ho, Luis C.; Neumayer, Nadine

    2015-01-01

    Luminous, compact stellar systems known as nuclear clusters (NCs) are commonly found in the centers of galaxies across the entire Hubble sequence. We present a detailed analysis of the two-dimensional (2D) structure of of ten of the nearest and brightest NCs residing in late-type spiral galaxies, using imaging data from Hubble Space Telescope Wide Field Camera 3 in seven bands that span the near-ultraviolet to the near-infrared. The intrinsic shapes and sizes of the NCs, disentangled from the effects of point spread function (PSF) blurring, were measured by fitting PSF convolved, 2D surface brightness profiles to each image using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from -11.2 mag to -15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For six of the ten NCs in our sample, we find changes in the effective radius with wavelength, which suggests that many NCs contain radially varying stellar populations. We also find a general trend of increasing roundness of the NCs at longer wavelengths, suggesting that the youngest stars in NCs typically form in disks.The stellar populations of the clusters were studied by comparing their observed colors to simple stellar population (SSP) models. In color-color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for complex star formation histories. Most of the NCs have integrated colors consistent with the presence of both an old population (> 1 Gyr) and a young population (˜100-300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only.

  11. The structure and Stellar Populations of Nuclear Star Clusters in Late-type Spiral Galaxies From HST/WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel

    2016-06-01

    Luminous, compact stellar systems known as nuclear clusters (NCs) are commonly found in the centers of galaxies across the entire Hubble sequence. I present an analysis of the structure and stellar populations of a sample of ten of the nearest and brightest NCs residing in late-type spiral galaxies, using imaging data from Hubble Space Telescope Wide Field Camera 3 in seven bands that span the near-ultraviolet to the near-infrared. The intrinsic shapes and sizes of the NCs, disentangled from the effects of point spread function (PSF) blurring, were measured using GALFIT. For six of the ten NCs in our sample, we find changes in the effective radius with wavelength, which suggests that many NCs contain radially varying stellar populations. There is also a general trend of increasing roundness of the NCs at longer wavelengths, suggesting that the youngest stars in NCs typically form in disks. I developed a Monte Carlo code to fit linear combinations of simple stellar population models to the observed spectral energy distribution (SED) of each NC and assess the uncertainties in the fit parameters. Tests using mock SEDs with known input parameters demonstrate that although the method is susceptible to degeneracies between model SEDs, the code is robust and accurately recovers the total stellar mass for a wide range of NC colors and ages. I present global star formation histories and stellar mass estimates for each cluster, which are in good agreement with previous dynamical studies. The clusters are generally dominated by an old (> 1 Gyr) population, but are best described by multi-age models. The spatially resolved properties of the stellar populations of each NC were also studied by performing SED fits on a pixel-by-pixel basis. These fits reveal radial age gradients in the same NCs that exhibited variation in the effective radius with wavelength. Finally, I present deprojected density profiles and estimates of the central stellar density of each cluster.

  12. 2DFFT: Measuring Galactic Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2016-08-01

    2DFFT utilizes two-dimensional fast Fourier transformations of images of spiral galaxies to isolate and measure the pitch angles of their spiral arms; this provides a quantitative way to measure this morphological feature and allows comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. 2DFFT requires fourn.c from Numerical Recipes in C (Press et al. 1989).

  13. Effects of environmental gas compression on the multiphase ISM and star formation . The Virgo spiral galaxies NGC 4501 and NGC 4567/68

    NASA Astrophysics Data System (ADS)

    Nehlig, F.; Vollmer, B.; Braine, J.

    2016-03-01

    The cluster environment can affect galaxy evolution in different ways: via ram pressure stripping or by gravitational perturbations caused by galactic encounters. Both kinds of interactions can lead to the compression of the interstellar medium (ISM) and its associated magnetic fields, causing an increase in the gas surface density and the appearance of asymmetric ridges of polarized radio continuum emission. New IRAM 30m HERA CO(2-1) data of NGC 4501, a Virgo spiral galaxy currently experiencing ram pressure stripping, and NGC 4567/68, an interacting pair of galaxies in the Virgo cluster, are presented. We find an increase in the molecular fraction where the ISM is compressed. The gas is close to self-gravitation in compressed regions. This leads to an increase in gas pressure and a decrease in the ratio between the molecular fraction and total ISM pressure. The overall Kennicutt Schmidt relation based on a pixel-by-pixel analysis at ~1.5 kpc resolution is not significantly modified by compression. However, we detected continuous regions of low molecular star formation efficiencies in the compressed parts of the galactic gas disks. The data suggest that a relation between the molecular star formation efficiency SFEH2 = SFR/M(H2) and gas self-gravitation (Rmol/Ptot and Toomre Q parameter) exists. Both systems show spatial variations in the star formation efficiency with respect to the molecular gas that can be related to environmental compression of the ISM. An analytical model was used to investigate the dependence of SFEH2 on self-gravitation. The model correctly reproduces the correlations between Rmol/Ptot, SFEH2, and Q if different global turbulent velocity dispersions are assumed for the three galaxies. We found that variations in the NH2/ICO conversion factor can mask most of the correlation between SFEH2 and the Toomre Q parameter. Dynamical simulations were used to compare the effects of ram pressure and tidal ISM compression. These models give direct

  14. Unveiling the nature of an X-ray flare from 3XMM* J014528.9+610729: a candidate spiral galaxy

    NASA Astrophysics Data System (ADS)

    Bhatt, Himali; Bhattacharyya, Subir; Bhatt, Nilay; Pandey, J. C.

    2014-11-01

    We report an X-ray flare from 3XMM J014528.9+610729, serendipitously detected during the observation of the open star cluster NGC 663. The colour-colour space technique using optical and infrared data reveals the X-ray source as a candidate spiral galaxy. The flare shows fast rise and exponential decay shape with a ratio of the peak and the quiescent count rates of ˜60 and duration of ˜5.4 ks. The spectrum during the flaring state is well fitted with a combination of thermal (APEC) model with a plasma temperature of 1.3 ± 0.1 keV and non-thermal (POWER-LAW) model with power-law index of 1.9 ± 0.2. However, no firm conclusion can be made for the spectrum during the quiescent state. The temporal behaviour, plasma temperature and spectral evolution during flare suggest that the flare from 3XMM J014528.9+610729 cannot be associated with tidal disruption events.

  15. A DEEP X-RAY VIEW OF THE HOT HALO IN THE EDGE-ON SPIRAL GALAXY NGC 891

    SciTech Connect

    Hodges-Kluck, Edmund J.; Bregman, Joel N.

    2013-01-01

    NGC 891 is a nearby edge-on galaxy that is similar to the Milky Way and has a hot X-ray-emitting halo that could arise from accretion, a galactic fountain, or a combination of the two. The metallicity of the gas can help distinguish between these models, and here we report on results that use 138 ks of archival Chandra data and 92 ks of new XMM-Newton data to measure the temperature and metallicity of the hot halo of the galaxy. We find good fits for a thermal model with kT {approx} 0.2 keV and Z {approx} 0.1 Z {sub Sun }, and rule out solar metallicity to more than 99% confidence. This result suggests accretion from the intergalactic medium as the origin for the hot halo. However, it is also possible to fit a two-temperature thermal model with solar metallicity where kT {sub 1} {approx} 0.1 keV and kT {sub 2} {approx} 0.25 keV. A consideration of the cooling rate and scale height prefers the single-temperature model. We also find that the cooling rate in the hot gas cannot explain the massive H I halo in the steady state. In addition, a galactic fountain model cannot eject enough mass to account for the H I halo, and we speculate that the neutral halo may be gas from a prior outflow that has since cooled.

  16. Spiral Survey Expedition: A proposal to organize for the Survey, exploration and eventual colonization of the Milky Way Galaxy

    NASA Technical Reports Server (NTRS)

    Galloway, Scott

    1993-01-01

    This paper details a plan to explore the galaxy. Areas of interest to an era of cyberspace include the Tech-Index information system for the expedition and the role cyberspace has in increasing expedition productivity and increasing the capabilities of cyberspace by expanding the goals and data set. The paper offers lists of projects for the cybermarket pool. The expedition is described also as a developers tool for cyberspace to acknowledge the scope of the human mind far surpasses present engineering yet guides our direction of energies and materials. Maintaining the biological capability to reproduce the Terran biosphere via Evolution park conservation areas is discussed. The ecological repair of Spaceship Earth and the build up of an interstellar industrial base from simple recyling and educational programs is meshed with a proposed 'reverse engineering cyberspace' plan. A set of constructive contests are proposed with 3 new currencies offered as prizes. The Planet, The Solar System, The Galaxy are 3 areas of focus. Each of these areas are considered in a cyberspectrum of (1) Sentience; (2) Biological diversity; and (3) Energy/Matter resources.

  17. Dynamical mechanisms supporting barred-spiral structures

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.

    We review some recent results of the orbital theory, related with the dynamics of barred-spiral galaxies. The method we use is to study the responses of stellar and gaseous disks when time-independent, external potentials are imposed. These potentials are directly estimated from near-infrared images of disk galaxies. The goal of the work is to detect dynamical mechanisms that reinforce the bars and the spirals in realistic systems. Besides the known mechanism for building bars by quasiperiodic orbits trapped around stable orbits of the {xx} family, we find cases where bars can be supported, to a large extent, by chaotic orbits. These bars are of the ``ansae'' type and their effective potentials are characterized by multiple Lagrangian points roughly along the major axis of the bar. On the other hand the spirals are supported mainly by chaotic orbits and extend usually beyond corotation. We find that the spirals and the outer parts of the bars share the same orbital content. However, we have found also barred-spiral systems with spirals inside corotation, consisting mainly by chaotic orbits. Finally we indicate, that in barred-spiral systems with different pattern speeds for the two components, the dynamics of the spirals can be similar to the dynamics of the spirals of normal spiral galaxies.

  18. VizieR Online Data Catalog: HI data cubes of 4 edge-on spiral galaxies (Allaert+, 2015)

    NASA Astrophysics Data System (ADS)

    Allaert, F.; Gentile, G.; Baes, M.; de Geyter, G.; Hughes, T. M.; Lewis, F.; Bianchi, S.; de Looze, I.; Fritz, J.; Holwerda, B. W.; Verstappen, J.; Viaene, S.

    2015-09-01

    The reduced and Cleaned HI data cubes of the HEROES galaxies NGC 973, UGC 4277, NGC 5529 and NGC 5907 are presented as FITS files. The equatorial coordinates and the beam FWHM, velocity resolution and rms noise of the data cubes are given in a separate table. NGC 973 and UGC 4277 were observed by the authors with the GMRT. The total time on source was 5.7 and 6.2 hours, respectively. For NGC 5529, the data were obtained by Kregel et al. (2004MNRAS.352..768K) using the Maxi-Short configuration of the WSRT, with a total time on source of 11.9 hours. Finally, NGC 5907 was observed by Shang et al. (1998ApJ...504L..23S) with the VLA in Modified C configuration. The total time on source was 4.7 hours. The raw interferometric data can be obtained from the online data archives of the telescopes in question. For IC 2531 and NGC 4217, the reduced data were made available to us by S. Peters (Peters et al., 2013arXiv1303.2463P) and M. Verheijen (Verheijen & Sancisi, 2001A&A...370..765V), respectively. We refer the user to the original papers for further questions or requests about the data. (2 data files).

  19. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars. PMID:17943124

  20. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

  1. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    SciTech Connect

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  2. The Spectral Energy Distribution of Dust Emission in the Edge-on Spiral Galaxy NGC 4631 as Seen with Spitzer and the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Dale, Daniel A.; Draine, Bruce T.; Engelbracht, Charles W.; Kennicutt, Robert C., Jr.; Calzetti, Daniela; Gordon, Karl D.; Helou, George; Hollenbach, David; Li, Aigen; Murphy, Eric J.; Prescott, Moire K. M.; Smith, John-David T.

    2006-11-01

    We explore variations in dust emission within the edge-on Sd spiral galaxy NGC 4631 using 3.6-160 μm Spitzer Space Telescope data and 450-850 μm JCMT data with the goals of understanding the relation between PAHs and dust emission, studying the variations in the colors of the dust emission, and searching for possible excess submillimeter emission compared to what is expected from dust models extrapolated from far-infrared wavelengths. The 8 μm PAH emission correlates best with 24 μm hot dust emission on 1.7 kpc scales, but the relation breaks down on 650 pc scales, possibly because of differences in the mean free paths between photons that excite the PAHs and photons that heat the dust and possibly because the PAHs are destroyed by the hard radiation fields within some star formation regions. The ratio of 8 μm PAH emission to 160 μm cool dust emission appears to vary as a function of radius. The 70 μm/160 μm and 160 μm/450 μm flux density ratios are remarkably constant even though the surface brightnesses vary by factors of 25, which suggests that the emission is from dust heated by a nearly uniform radiation field. Globally, we find an excess of 850-1230 μm emission relative to what would be predicted by dust models. The 850 μm excess is highest in regions with low 160 μm surface brightnesses, although the magnitude depends on the model fit to the data. We rule out variable emissivity functions or ~4 K dust as the possible origins of this 850 μm emission, but we do discuss the other possible mechanisms that could produce the emission.

  3. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  4. Galaxies as gravitational lenses.

    PubMed

    Barnothy, J; Barnothy, M F

    1968-10-18

    Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies. PMID:17836654

  5. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  6. Galaxy NGC 300

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300.

  7. The Lifetimes of Spirals and Bars

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.

    2015-03-01

    Simulations of isolated galaxy disks that are stable against bar formation readily manifest multiple, transient spiral patterns. It therefore seems likely that some spirals in real galaxies are similarly self-excited, although others are clearly driven by tidal interactions or by bars. The rapidly changing appearance of simulated spirals does not, however imply that the patterns last only a fraction of an orbit. Power spectrum analysis reveals a few underlying, longer-lived spiral waves that turn at different rates, which when super-posed give the appearance of swing-amplified transients. These longer-lived waves are genuine unstable spiral modes; each grows vigorously, saturates and decays over a total of several orbit periods. As each mode decays, the wave action created as it grew drains away to the Lindblad resonances, where it scatters stars. The resulting changes to the disk create the conditions for a new instability, giving rise to a recurring cycle of unstable modes.

  8. Long-lived spiral waves in N-body simulations

    NASA Technical Reports Server (NTRS)

    Comins, Neil F.; Schroeder, Michael C.

    1989-01-01

    Results of N-body simulations of disc galaxies using a two-dimensional Cartesian N-body code are presented. Both trailing arm spirals (TAS) and leading arm spirals (LAS) were used with varieties of pitch angles and pattern speeds. LAS perturbations transferred their energy to TAS via swing amplification; TAS perturbations led to TAS arms. In both cases the spiral arms persisted for more than 5 rotation periods, but the maximum amplitude 2-armed spirals were generated by LAS perturbations. The persistence of the trailing arm spiral waves is thought to be caused by the kinematic spiral arm mechanism described by Kalnajs (1973).

  9. Frequency spirals

    NASA Astrophysics Data System (ADS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  10. Equation for the Origin of Spiral Galactic Formation and Rotation

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2012-03-01

    Already formed galactic arms existed in sets of two or more orbiting each other due to the Big Bang. As the orbits of the arms decayed due to gravitational attraction they attached in their fore sections tangentially accreting forming spiral galaxies which began to rotate due to the transformation of the orbital motion of the pre-galactic arms into the rotational motion of the newly formed spiral galaxy. If I1φ1, I2φ2, and Inφn are the angular momentums of the pre-galactic arms, and (Iφ)galaxy is the angular momentum of the newly formed spiral galaxy, the equation for the formation and origin of spiral galaxy rotation is I1φ1+ I2φ2+...+ Inφn= (Iφgalaxy).

  11. GALAXIES: SNAPSHOTS IN TIME

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sequence of NASA Hubble Space Telescope (HST) images of remote galaxies offers tantalizing initial clues to the evolution of galaxies in the universe. [far left column] These are traditional spiral and elliptical-shaped galaxies that make up the two basic classes of island star cities that inhabit the universe we see in our current epoch (14 billion years after the birth of the universe in the Big Bang). Elliptical galaxies contain older stars, while spirals have vigorous ongoing star formation in their dusty, pancake-shaped disks. Our Milky Way galaxy is a typical spiral, or disk-shaped galaxy, on the periphery of the great Virgo cluster. Both galaxies in this column are a few tens of millions of light-years away, and therefore represent our current stage of the universe s evolution. [center left column] These galaxies existed in a rich cluster when the universe was approximately two-thirds its present age. Elliptical galaxies (top) appear fully evolved because they resemble today's descendants. By contrast, some spirals have a frothier appearance, with loosely shaped arms of young star formation. The spiral population appears more disrupted due to a variety of possible dynamical effects that result from dwelling in a dense cluster. [center right column] Distinctive spiral structure appears more vague and disrupted in galaxies that existed when the universe was nearly one-third its present age. These objects do not have the symmetry of current day spirals and contain irregular lumps of starburst activity. However, even this far back toward the beginning of time, the elliptical galaxy (top) is still clearly recognizable. However, the distinction between ellipticals and spirals grows less certain with increasing distance. [far right column] These extremely remote, primeval objects existed with the universe was nearly one-tenth its current age. The distinction between spiral and elliptical galaxies may well disappear at this early epoch. However, the object in

  12. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    SciTech Connect

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivanio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  13. The spatially resolved correlation between [NII] 205 μm line emission and the 24 μm continuum in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Hughes, T. M.; Baes, M.; Schirm, M. R. P.; Parkin, T. J.; Wu, R.; De Looze, I.; Wilson, C. D.; Viaene, S.; Bendo, G. J.; Boselli, A.; Cormier, D.; Ibar, E.; Karczewski, O. Ł.; Lu, N.; Spinoglio, L.

    2016-03-01

    A correlation between the 24 μm continuum and the [Nii] 205 μm line emission may arise if both quantities trace the star formation activity on spatially-resolved scales within a galaxy, yet has so far only been observed in the nearby edge-on spiral galaxy NGC 891. We therefore assess whether the [Nii] 205-24 μm emission correlation has some physical origin or is merely an artefact of line-of-sight projection effects in an edge-on disc. We search for the presence of a correlation in Herschel and Spitzer observations of two nearby face-on galaxies, M 51 and M 83, and the interacting Antennae galaxies NGC 4038 and 4039. We show that not only is this empirical relationship also observed in face-on galaxies, but also that the correlation appears to be governed by the star formation rate (SFR). Both the nuclear starburst in M 83 and the merger-induced star formation in NGC 4038/9 exhibit less [Nii] emission per unit SFR surface density than the normal star-forming discs. These regions of intense star formation exhibit stronger ionization parameters, as traced by the 70/160 μm far-infrared (FIR) colour. These observations suggest the presence of higher ionization lines that may become more important for gas cooling, thereby reducing the observed [Nii] 205 μm line emission in regions with higher star formation rates. Finally, we present a general relation between the [Nii] 205 μm line flux density and SFR density for normal star-forming galaxies, yet note that future studies should extend this analysis by including observations with wider spatial coverage for a larger sample of galaxies.

  14. Structure in galactic bulges - Rings or tight spirals?

    NASA Astrophysics Data System (ADS)

    Pismis, P.; Moreno, E.

    The structure of spirals studded with 'hot spots' that are observed in bulges of some galaxies (such as some early Hubble-type spirals) is considered by reexamining the Pismis and Moreno (1984) model for the formation of tight spirals, which assumes the existence of a pair of tightly wound spirals generated around the galaxy's nucleus. Using the expressions derived by Pismis and Moreno and adopting the physical parameters derived for NGC 4736 by van der Kruit (1976), the locus was computed which is shown to have a spiral form remarkably similar to the central spiral observed in NGC 4736. It is concluded that the widespread practice of referring to nuclear spirals as rings is contrary to observational and theoretical evidences.

  15. Toroidal spiral field theory.

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. B.

    1996-09-01

    A toroidal spiral field is introduced that propagates around all the objects in the universe. The nature of this field can be either gravitational or electrostatic or magnetic, and it governs the motion of the objects as well as the forces that act upon them. The topology of the toroidal spiral field is obtained when the Bertrami vortex comprised of two helical fluxes of opposite vorticity is curved into a circle. The main parameter that defines the geometry of the toroidal spiral field is the inversion radius of a sphere at which the toroidal fluxes of opposite vorticity meet. The inversion sphere is the border surface at which the matter converts into anti-matter, and at which the law of physics are inverted. The theory covers the problem of two objects orbiting each other with possible sizes ranging from an elementary particle to a black hole and to a galaxy. The equations obtained define the radii of the stationary quantum orbits which can be applied to a structure of the hydrogen atom, including its nucleus, as well as to a structure of a planetary system and a black hole. They also establish the relativistic relationships for the gravitational and inertial masses as well as for the electrical charge which are quite different than those proposed by Lorentz.

  16. High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission

    NASA Technical Reports Server (NTRS)

    Smith, P. A.; Brand, P. W. J. L.; Puxley, Phil J.; Mountain, C. M.; Nakai, Naomasa

    1990-01-01

    Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies.

  17. Colliding Galaxies Create Active Galactic Nuclei

    NASA Video Gallery

    This simulation follows the collision of two spiral galaxies that harbor giant black holes. The collision merges the black holes and stirs up gas in both galaxies. The merged black hole gorges on t...

  18. Spiral Arm Pitch Angle and its Significance for Theories of Galactic Structure

    NASA Astrophysics Data System (ADS)

    Kennefick, D.

    2014-03-01

    I argue that the pitch angle of spiral arms in disk galaxies is one of a number of characteristics of galaxies (which we may refer to as “traits” of a galaxy) which correlate reasonably well with each other, most of them probably determined by the mass of the galaxy's central bulge. Although often dealt with qualitatively in the past, as in Hubble's galaxy classification scheme, quantifying pitch angle opens up the prospect of using it as a probe of the mass distribution of a galaxy and as a tool for testing various theories of the origins of spiral structure in disk galaxies.

  19. Mapping IR Enhancements in Closely Interacting Spiral-Spiral Pairs: I. ISO CAM and ISO SWS Observations

    NASA Technical Reports Server (NTRS)

    Xu, C.; Gao, Y.; Mazzarella, J.; Lu, N.; Sulentic, J.; Domingue, D.

    2000-01-01

    Mid-infrared (MIR) imaging and spectroscopic observations are presented for a well defined sample of eight closely interacting (CLO) pairs of spiral galaxies that have overlapping disks and show enhanced far-infrared (FIR) emission.

  20. Rejuvenation of spiral bulges

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel; Davies, Roger L.

    2006-02-01

    indistinguishable as far as their stellar populations are concerned. These results favour an inside-out formation scenario and indicate that the discs in spiral galaxies of Hubble types Sbc and earlier cannot have a significant influence on the evolution of the stellar populations in the bulge component. The phenomenon of pseudo-bulge formation must be restricted to spirals of types later than Sbc.

  1. Classic Galaxy with Glamour

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This color composite image of nearby NGC 300 combines the visible-light pictures from Carnegie Institution of Washington's 100-inch telescope at Las Campanas Observatory (colored red and yellow), with ultraviolet views from NASA's Galaxy Evolution Explorer. Galaxy Evolution Explorer detectors image far ultraviolet light (colored blue).

    This composite image traces star formation in progress. Young hot blue stars dominate the outer spiral arms of the galaxy, while the older stars congregate in the nuclear regions which appear yellow-green. Gases heated by hot young stars and shocks due to winds from massive stars and supernova explosions appear in pink, as revealed by the visible-light image of the galaxy.

    Located nearly 7 million light years away, NGC 300 is a member of a nearby group of galaxies known as the Sculptor Group. It is a spiral galaxy like our own Milky Way.

  2. Percolation and galaxies.

    PubMed

    Schulman, L S; Seiden, P E

    1986-07-25

    A theory is presented in which much of the structure of spiral galaxies arises from a percolation phase transition that underlies the phenomenon of propagating star formation. According to this view, the appearance of spiral arms is a consequence of the differential rotation of the galaxy and the characteristic divergence of correlation lengths for continuous phase transitions. Other structural properties of spiral galaxies, such as the distribution of the gaseous components and the luminosity, arise directly from a feedback mechanism that pins the star formation rate close to the critical point of the phase transition. The approach taken in this article differs from traditional dynamical views. The argument is presented that, at least for some galaxies, morphological and other features are already fixed by general properties of phase transitions, irrespective of detailed dynamic or other considerations. PMID:17794566

  3. Analytical forms of chaotic spiral arms

    NASA Astrophysics Data System (ADS)

    Harsoula, M.; Efthymiopoulos, C.; Contopoulos, G.

    2016-07-01

    We develop an analytical theory of chaotic spiral arms in galaxies. This is based on the Moser theory of invariant manifolds around unstable periodic orbits. We apply this theory to the chaotic spiral arms, which start from the neighbourhood of the Lagrangian points L1 and L2 at the end of the bar in a barred-spiral galaxy. The series representing the invariant manifolds starting at the Lagrangian points L1, L2, or unstable periodic orbits around L1 and L2, yield spiral patterns in the configuration space. These series converge in a domain around every Lagrangian point, called `Moser domain', and represent the orbits that constitute the chaotic spiral arms. In fact, these orbits are not only along the invariant manifolds, but also in a domain surrounding the invariant manifolds. We show further that orbits starting outside the Moser domain but close to it converge to the boundary of the Moser domain, which acts as an attractor. These orbits stay for a long time close to the spiral arms before escaping to infinity.

  4. DO BARS DRIVE SPIRAL DENSITY WAVES?

    SciTech Connect

    Buta, Ronald J.; Knapen, Johan H.; Elmegreen, Bruce G.; Salo, Heikki; Laurikainen, Eija; Elmegreen, Debra Meloy; Puerari, Ivanio; Block, David L. E-mail: jhk@iac.es E-mail: hsalo@sun3.oulu.fi E-mail: elmegreen@vassar.edu E-mail: David.Block@wits.ac.za

    2009-05-15

    We present deep near-infrared K{sub s} -band Anglo-Australian Telescope Infrared Imager and Spectrograph observations of a selected sample of nearby barred spiral galaxies, including some with the strongest known bars. The sample covers a range of Hubble types from SB0{sup -} to SBc. The goal is to determine if the torque strengths of the spirals correlate with those of the bars, which might be expected if the bars actually drive the spirals as has been predicted by theoretical studies. This issue has implications for interpreting bar and spiral fractions at high redshift. Analysis of previous samples suggested that such a correlation exists in the near-infrared, where effects of extinction and star formation are less important. However, the earlier samples had only a few excessively strong bars. Our new sample largely confirms our previous studies, but still any correlation is relatively weak. We find two galaxies, NGC 7513 and UGC 10862, where there is only a weak spiral in the presence of a very strong bar. We suggest that some spirals probably are driven by their bars at the same pattern speed, but that this may be only when the bar is growing or if there is abundant gas and dissipation.

  5. Segregation properties of galaxies

    SciTech Connect

    Santiago, B.X.; Da Costa, L.N. )

    1990-10-01

    Using the recently completed Southern Sky Redshift Survey, in conjunction with measurements of the central surface brightness, the existence of segregation in the way galaxies of different morphology and surface brightness are distributed in space is investigated. Results indicate that there is some evidence that low surface brightness galaxies are more randomly distributed than brighter ones and that this effect is independent of the well-known tendency of early-type galaxies to cluster more strongly than spirals. Presuming that the observed clustering was established at the epoch of galaxy formation, it may provide circumstantial evidence for biased galaxy formation. 24 refs.

  6. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  7. Spiral tectonics

    NASA Astrophysics Data System (ADS)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  8. The spiral structure of the outer Milky Way in hydrogen.

    PubMed

    Levine, E S; Blitz, Leo; Heiles, Carl

    2006-06-23

    We produce a detailed map of the perturbed surface density of neutral hydrogen in the outer Milky Way disk, demonstrating that the Galaxy is a non-axisymmetric multiarmed spiral. Spiral structure in the southern half of the Galaxy can be traced out to at least 25 kiloparsecs, implying a minimum radius for the gas disk. Overdensities in the surface density are coincident with regions of reduced gas thickness. The ratio of the surface density to the local median surface density is relatively constant along an arm. Logarithmic spirals can be fit to the arms with pitch angles of 20 degrees to 25 degrees .

  9. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  10. M51's spiral structure

    NASA Technical Reports Server (NTRS)

    Howard, S.; Byrd, Gene G.

    1990-01-01

    The M51 system (NGC 5194/5195) provides an excellent problem both in spiral structure and in galaxy interactions. The authors present an analytic study of a computer experiment on the excitation mechanisms for M51's spiral arms and whether or not a halo is important for these mechanisms. This work extends previous numerical studies of the M51 system by including self-gravitation in a two component disk: gas and stars, and a dark halo. The analytic study provides two new observational constraints: the time (approx. 70 to 84 million years ago) and position angle of perigalacticon (300 degrees). By using these constraints and a simple conic approximation, the search for the companion's possible orbit is greatly simplified. This requires fewer N-body simulations than a fully self-gravitating orbit search.

  11. HUBBLE SERVES UP A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What may first appear as a sunny side up egg is actually NASA Hubble Space Telescope's face-on snapshot of the small spiral galaxy NGC 7742. But NGC 7742 is not a run-of-the-mill spiral galaxy. In fact, this spiral is known to be a Seyfert 2 active galaxy, a type of galaxy that is probably powered by a black hole residing in its core. The core of NGC 7742 is the large yellow 'yolk' in the center of the image. The lumpy, thick ring around this core is an area of active starbirth. The ring is about 3,000 light-years from the core. Tightly wound spiral arms also are faintly visible. Surrounding the inner ring is a wispy band of material, which is probably the remains of a once very active stellar breeding ground. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  12. An H-alpha survey of cluster spirals - Comparison of star formation in clusters and the field

    NASA Technical Reports Server (NTRS)

    Moss, C.; Whittle, M.

    1993-01-01

    In an objective prism survey of eight nearby Abell clusters, we have detected H-alpha emission from 77 out of a total of 201 CGCG spiral galaxies. We find that detection of H alpha emission is approximately independent of galaxy absolute magnitude, distance to the cluster center, and the presence of a bar. However, tidally distorted spirals are much more likely to be detected than undistorted spirals. Furthermore, there is a strong tendency for tidally distorted spirals to have compact nuclear emission rather than more extended disk-wide emission. When compared to field spirals, we find that late-type (Sc and Sc-Irr) cluster spirals have less H alpha emission, while early-type (Sa and Sab) cluster spirals can have significantly enhanced emission. The enhanced emission is most likely to be due to tidally induced star formation from galaxy-galaxy interactions.

  13. VizieR Online Data Catalog: Study of PGC-54-like galaxies (Li+, 2010)

    NASA Astrophysics Data System (ADS)

    Li, G.; Luo, Z.-Q.; Peng, Q.-H.

    2012-02-01

    With the improved Peng's method, we have made the image processing and spiral arm fitting of the newly released spiral galactic images of Sloan Digital Sky Survey (SDSS), and obtained the equivalent thicknesses of galactic disks, as well as the tangential angles of spiral arms of 73 spiral galaxies. These physical quantities are very important for future studies on the properties of spiral galaxies. (1 data file).

  14. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 μG) and in central starburst regions (50-100 μG). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 μG strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field α -Ω dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos

  15. Discovery of a low-luminosity spiral DRAGN

    NASA Astrophysics Data System (ADS)

    Mulcahy, D. D.; Mao, M. Y.; Mitsuishi, I.; Scaife, A. M. M.; Clarke, A. O.; Babazaki, Y.; Kobayashi, H.; Suganuma, R.; Matsumoto, H.; Tawara, Y.

    2016-11-01

    Standard galaxy formation models predict that large-scale double-lobed radio sources, known as DRAGNs, will always be hosted by elliptical galaxies. In spite of this, in recent years a small number of spiral galaxies have also been found to host such sources. These so-called spiral DRAGNs are still extremely rare, with only 5 cases being widely accepted. Here we report on the serendipitous discovery of a new spiral DRAGN in data from the Giant Metrewave Radio Telescope (GMRT) at 322 MHz. The host galaxy, MCG+07-47-10, is a face-on late-type Sbc galaxy with distinctive spiral arms and prominent bulge suggesting a high black hole mass. Using WISE infra-red and GALEX UV data we show that this galaxy has a star formation rate of 0.16-0.75 M⊙ yr-1, and that the radio luminosity is dominated by star-formation. We demonstrate that this spiral DRAGN has similar environmental properties to others of this class, but has a comparatively low radio luminosity of L1.4 GHz = 1.12 × 1022 W Hz-1, two orders of magnitude smaller than other known spiral DRAGNs. We suggest that this may indicate the existence of a previously unknown low-luminosity population of spiral DRAGNS. FITS cutout image of the observed spiral DRAGN MCG+07-47- 10 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/L8

  16. Six Decades of Spiral Density Wave Theory

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.

    2016-09-01

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular

  17. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  18. CO observations of galaxies with the Nobeyama 45-M telescope

    NASA Technical Reports Server (NTRS)

    Sofue, Y.; Handa, T.; Hayashi, M.; Nakai, N.

    1987-01-01

    High-resolution (15 inch), filled aperture maps of the CO (J = 1-0) line emission were obtained for several nearby, CO-bright galaxies like M82, M83, IC342, and NGC891 in order to study star forming activity in these galaxies.

  19. Galaxy UGC10445

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This ultraviolet color image of the galaxy UGC10445 was taken by NASA's Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  20. Galaxy NGC5962

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  1. Mystery Spiral Arms Explained?

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Using a quartet of space observatories, University of Maryland astronomers may have cracked a 45-year mystery surrounding two ghostly spiral arms in the galaxy M106. The Maryland team, led by Yuxuan Yang, took advantage of the unique capabilities of NASA's Chandra X-ray Observatory, NASA's Spitzer Space Telescope, the European Space Agency's XMM-Newton X-ray observatory, and data obtained almost a decade ago with NASA's Hubble Space Telescope. NGC X-ray Image NGC 4258 X-ray Image M106 (also known as NGC 4258) is a stately spiral galaxy 23.5 million light-years away in the constellation Canes Venatici. In visible-light images, two prominent arms emanate from the bright nucleus and spiral outward. These arms are dominated by young, bright stars, which light up the gas within the arms. "But in radio and X-ray images, two additional spiral arms dominate the picture, appearing as ghostly apparitions between the main arms," says team member Andrew Wilson of the University of Maryland. These so-called "anomalous arms" consist mostly of gas. "The nature of these anomalous arms is a long-standing puzzle in astronomy," says Yang. "They have been a mystery since they were first discovered in the early 1960s." By analyzing data from XMM-Newton, Spitzer, and Chandra, Yang, Bo Li, Wilson, and Christopher Reynolds, all at the University of Maryland at College Park, have confirmed earlier suspicions that the ghostly arms represent regions of gas that are being violently heated by shock waves. Previously, some astronomers had suggested that the anomalous arms are jets of particles being ejected by a supermassive black hole in M106's nucleus. But radio observations by the National Radio Astronomy Observatory's Very Long Baseline Array, and the Very Large Array in New Mexico, later identified another pair of jets originating in the core. "It is highly unlikely that an active galactic nucleus could have more than one pair of jets," says Yang. In 2001, Wilson, Yang, and Gerald Cecil