Science.gov

Sample records for spitzer 24mic cosmos

  1. Completing the Legacy of Spitzer/IRAC over COSMOS

    NASA Astrophysics Data System (ADS)

    Labbe, Ivo; Caputi, Karina; McLeod, Derek; Cowley, Will; Dayal, Pratika; Behroozi, Peter; Ashby, Matt; Franx, Marijn; Dunlop, James; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Ilbert, Olivier; Tasca, Lidia; de Barros, Stephane; Oesch, Pascal; Bouwens, Rychard; Muzzin, Adam; Illingworth, Garth; Stefanon, Mauro; Schreiber, Corentin; Hutter, Anne; van Dokkum, Pieter

    2016-08-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of reionization at z=6-8 with ~10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 < z < 11, 3) trace the growth of stellar mass at 1 < z < 8 and the co-evolution of galaxies and their dark matter halos, 4) identify (proto)clusters and large scale structures, and 5) reveal dust enshrouded starbursts and the first quiescent galaxies at 3 < z < 6. The Spitzer Legacy over COSMOS will enable a wide range of discoveries beyond these science goals owing to the unique array of multiwavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  2. S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: Survey Strategy and First Analysis

    NASA Astrophysics Data System (ADS)

    Sanders, D. B.; Salvato, M.; Aussel, H.; Ilbert, O.; Scoville, N.; Surace, J. A.; Frayer, D. T.; Sheth, K.; Helou, G.; Brooke, T.; Bhattacharya, B.; Yan, L.; Kartaltepe, J. S.; Barnes, J. E.; Blain, A. W.; Calzetti, D.; Capak, P.; Carilli, C.; Carollo, C. M.; Comastri, A.; Daddi, E.; Ellis, R. S.; Elvis, M.; Fall, S. M.; Franceschini, A.; Giavalisco, M.; Hasinger, G.; Impey, C.; Koekemoer, A.; Le Fèvre, O.; Lilly, S.; Liu, M. C.; McCracken, H. J.; Mobasher, B.; Renzini, A.; Rich, M.; Schinnerer, E.; Shopbell, P. L.; Taniguchi, Y.; Thompson, D. J.; Urry, C. M.; Williams, J. P.

    2007-09-01

    The COSMOS Spitzer survey (S-COSMOS) is a Legacy program (Cycles 2+3) designed to carry out a uniform deep survey of the full 2 deg2 COSMOS field in all seven Spitzer bands (3.6, 4.5, 5.6, 8.0, 24.0, 70.0, and 160.0 μm). This paper describes the survey parameters, mapping strategy, data reduction procedures, achieved sensitivities to date, and the complete data set for future reference. We show that the observed infrared backgrounds in the S-COSMOS field are within 10% of the predicted background levels. The fluctuations in the background at 24 μm have been measured and do not show any significant contribution from cirrus, as expected. In addition, we report on the number of asteroid detections in the low Galactic latitude COSMOS field. We use the Cycle 2 S-COSMOS data to determine preliminary number counts, and compare our results with those from previous Spitzer Legacy surveys (e.g., SWIRE, GOODS). The results from this ``first analysis'' confirm that the S-COSMOS survey will have sufficient sensitivity with IRAC to detect ~L* disks and spheroids out to z>~3, and with MIPS to detect ultraluminous starbursts and AGNs out to z~3 at 24 μm and out to z~1.5-2 at 70 and 160 μm. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555 also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA under cooperative agreement with the National Science Foundation; the National Radio Astronomy

  3. THE OPTICAL SPECTRA OF SPITZER 24 mum GALAXIES IN THE COSMIC EVOLUTION SURVEY FIELD. II. FAINT INFRARED SOURCES IN THE zCOSMOS-BRIGHT 10k CATALOG

    SciTech Connect

    Caputi, K. I.; Lilly, S. J.; Maier, C.; Carollo, C. M.; Aussel, H.; Floc'h, E. Le; Frayer, D.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Scoville, N.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Coppa, G.; Bongiorno, A.

    2009-12-20

    We have used the zCOSMOS-bright 10k sample to identify 3244 Spitzer/MIPS 24 mum-selected galaxies with 0.06 mJy < S{sub 24{sub m}}u{sub m} approx< 0.50 mJy and I{sub AB} < 22.5, over 1.5 deg{sup 2} of the COSMOS field, and studied different spectral properties, depending on redshift. At 0.2 < z < 0.3, we found that different reddening laws of common use in the literature explain the dust extinction properties of approx80% of our infrared (IR) sources, within the error bars. For up to 16% of objects, instead, the Halpha lambda6563/Hbeta lambda4861 ratios are too high for their IR/UV attenuations, which is probably a consequence of inhomogeneous dust distributions. In only a few of our galaxies at 0.2 < z < 0.3, the IR emission could be mainly produced by dust heated by old rather than young stars. Besides, the line ratios of approx22% of our galaxies suggest that they might be star-formation/nuclear-activity composite systems. At 0.5 < z < 0.7, we estimated galaxy metallicities for 301 galaxies: at least 12% of them are securely below the upper-branch mass-metallicity trend, which is consistent with the local relation. Finally, we performed a combined analysis of the H{sub d}elta equivalent width versus D{sub n} (4000) diagram for 1722 faint and bright 24 mum galaxies at 0.6 < z < 1.0, spanning two decades in mid-IR luminosity. We found that, while secondary bursts of star formation are necessary to explain the position of the most luminous IR galaxies in that diagram, quiescent, exponentially declining star formation histories can well reproduce the spectral properties of approx40% of the less luminous sources. Our results suggest a transition in the possible modes of star formation at total IR luminosities L{sub TIR} approx (3 +- 2) x 10{sup 11} L{sub sun}.

  4. The Chandra-Cosmos Survey

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2006-09-01

    We propose the Chandra-COSMOS survey which will provide an unprecedented combination of contiguous area, depth and resolution. 36 densely tiled observations will cover the central 0.7 sq.deg. COSMOS field to a uniform 200ksec depth. COSMOS explores the coupled evolution of galaxies, dark matter halos and AGNs (massive black holes) largely free of cosmic variance. COSMOS is a comprehensive survey including: HST, Spitzer, Subaru, VLT, Magellan, VLA, MAMBO, GALEX, & potentially EVLA & ALMA. Chandra resolution & sensitivity enables the study of large scale phenomena: (1) influence of the surrounding environment; (2) interaction between galaxies; (3) influence of groups and clusters: (4) BH growth and census; (5) star formation and stellar populations; (6) feedback from starbursts and AGNs.

  5. The Spitzer Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Werner, M. W.

    2005-01-01

    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is about five years. Spitzer is thus both a scientific and a technical precursor to the infrared astronomy missions of the future. This very brief paper refers interested readers to several sets of recent publications which describe both the scientific and the technical features of Spitzer in detail. Note that, until 2003 December, Spitzer was known as the Space Infrared Telescope Facility (SIRTF).

  6. Association between the AUC0-24/MIC Ratio of Vancomycin and Its Clinical Effectiveness: A Systematic Review and Meta-Analysis

    PubMed Central

    Men, Peng; Li, Hui-Bo; Zhai, Suo-Di; Zhao, Rong-Sheng

    2016-01-01

    Background A target AUC0-24/MIC ratio of 400 has been associated with its clinical success when treating Staphylococcus aureus infections but is not currently supported by state-of-the-art evidence-based research. Objective This current systematic review aimed to evaluate the available evidence for the association between the AUC0-24/MIC ratio of vancomycin and its clinical effectiveness on hospitalized patients and to confirm the existing target value of 400. Methods PubMed, Embase, Web of Sciences, the Cochrane Library and two Chinese literature databases (CNKI, CBM) were systematically searched. Manual searching was also applied. Both RCTs and observational studies comparing the clinical outcomes of high AUC0-24/MIC groups versus low AUC0-24/MIC groups were eligible. Two reviewers independently extracted the data. The primary outcomes were mortality and infection treatment failure. Risk ratios (RRs) with 95% confidence intervals (95%CIs) were calculated. Results No RCTs were retrieved. Nine cohort studies were included in the meta-analysis. Mortality rates were significantly lower in high AUC0-24/MIC groups (RR = 0.47, 95%CI = 0.31–0.70, p<0.001). The rates of infection treatment failure were also significantly lower in high AUC/MIC groups and were consistent after correcting for heterogeneity (RR = 0.39, 95%CI = 0.28–0.55, p = 0.001). Subgroup analyses showed that results were consistent whether MIC values were determined by broth microdilution (BMD) method or Etest method. In studies using the BMD method, breakpoints of AUC0-24/MIC all fell within 85% to 115% of 400. Conclusions This meta-analysis demonstrated that achieving a high AUC0-24/MIC of vancomycin could significantly decrease mortality rates by 53% and rates of infection treatment failure by 61%, with 400 being a reasonable target. PMID:26731739

  7. AzTEC COSMOS Survey

    NASA Astrophysics Data System (ADS)

    Yun, Min Su; Ade, P. A.; Aretxaga, I.; Austermann, J.; Bock, J. J.; Hughes, D.; Kang, Y.; Kim, S.; Lowenthal, J.; Mauskopf, P.; Scott, K.; Wilson, G.

    2006-12-01

    The Cosmic Evolution Survey (COSMOS) is a 2 square degree HST/ACS survey specifically designed to probe galaxy evolution as a function of time and environment (PI: N. Scoville). In addition to the extensive HST data, the COSMOS team has acquired deep multi-wavelength data from radio to X-ray (VLA, Spitzer, NOAO, CFHT, Subaru, Galex, Chandra, XMM). Spectroscopic surveys are currently under way using Magellan, Kecks, and VLT, and an extensive photometric redshift database is also being assembled. Future surveys using major new instruments such as Herschel are also being planned. To take advantage of these rich complementary databases, we have undertaken a 1100 micron imaging survey of a 30' x 30' field centered just north of the earlier mm/submm surveys by the Bolocam on CSO and MAMBO on the 30-m telescope, with a small overlap. We will present some of the preliminary results from the survey.

  8. Evolving Cosmos

    NASA Astrophysics Data System (ADS)

    Schilling, Govert

    2005-02-01

    Science journalist Govert Schilling takes the reader on a whirlwind journey through time by describing the evolution of the cosmos, from the beginning of space and time fourteen billion years ago, to the creation of the Earth and humankind. Ending with a glance into the distant future of the universe, the book's combination of compelling text and breathtaking photographs provides an impressive vision of the place of man in the cosmos. Govert Schilling is a Dutch science writer and astronomy publicist. He is a contributing editor of Sky and Telescope magazine, and regularly writes for the news sections of Science and New Scientist. Schilling is the astronomy writer for de Volkskrant, one of the largest national daily newspapers in The Netherlands, and frequently talks about the Universe on Dutch radio broadcasts. He is the author of more than twenty popular astronomy books, including Flash! (Cambridge, 2002), and hundreds of newspaper and magazine articles on astronomy.

  9. The Cosmos

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Filippenko, Alex

    2013-10-01

    Preface; About the authors; 1. A grand tour of the heavens; 2. Light, matter and energy: powering the Universe; 3. Light and telescopes: extending our senses; 4. Observing the stars and planets: clockwork of the Universe; 5. Gravitation and motion: the early history of astronomy; 6. The terrestrial planets: Earth, Moon, and their relatives; 7. The Jovian planets: windswept giants; 8. Pluto, comets, and space debris; 9. Our Solar System and others; 10. Our star: the Sun; 11. Stars: distant suns; 12. How the stars shine: cosmic furnaces; 13. The death of stars: recycling; 14. Black holes: the end of space and time; 15. The Milky Way: our home in the Universe; 16. A Universe of galaxies; 17. Quasars and active galaxies; 18. Cosmology: the birth and life of the cosmos; 19. In the beginning; 20. Life in the Universe; Epilogue; Appendices; Selected readings; Glossary; Index.

  10. Cosmos 2229

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie; Roy, Roland R.; Hodgson, John A.

    1993-01-01

    The 6 weeks preflight activities of the Cosmos project during 1993 included: modification of EMG connector to improve the reliability of EMG recording; 24 hour cage activity recording from all but two of the flight animals (monkeys); attempts to record from flight candidates during foot lever task; and force transducer calibrations on all flight candidate animals. The 4 week postflight recordings included: postflight recordings from flight animals; postflight recordings on 3 control (non-flight) animals; postflight recalibration of force transducers on 1 flight and 4 control (non-flight) animals; and attempts to record EMG and video data from the flight animals during postflight locomotion and postural activity. The flight EMG recordings suggest that significant changes in muscle control may occur in spaceflight. It is also clear from recordings that levels of EMG recorded during spaceflight can attain values similar to those measured on earth. Amplifier gain settings should therefore probably not be changed for spaceflight.

  11. COSMOS Launch Services

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  12. First results from the Chandra COSMOS Legacy survey

    NASA Astrophysics Data System (ADS)

    Civano, Francesca M.; the Chandra COSMOS Legacy Team

    2014-01-01

    The equatorial 2 deg2 COSMOS area is the only large field for which a complete, deep, pan-chromatic data set exists, from an outstanding survey effort, and that all large telescopes can observe. During 2013, this pioneering and ambitious COSMOS survey had a major extension, pushing its frontiers via the newly approved Chandra COSMOS Legacy Survey, the second largest Chandra proposal ever approved, plus new deep Spitzer, JVLA and NuSTAR surveys all aimed to study the formation of the structures in the high redshift Universe and the role of active super massive black holes. The Chandra COSMOS-Legacy survey uniformly covers the 1.7 deg2 COSMOS/HST field with 2.8 Ms of Chandra ACIS-I imaging at ~160 ksec depth. This project expands the deep C-COSMOS area by a factor of ~3 at ~3e-16 (1.45 vs 0.44 deg2). The survey consists of 56x50 ks tiles covering a total area of 2.2 deg2 yelding a sample of ~4000 X-ray sources. In this poster we present the first results on the survey and we concentrate on the high redshift z>3 sample.

  13. Carl Sagan Cosmos Voyager

    NASA Video Gallery

    Excerpt from "Cosmos", read by Carl Sagan, part of the NASA.gov multimedia piece celebrating NASA's 50th anniversary in 2008. Used by permission of Carl Sagan Associates. To see the whole interacti...

  14. Signals from the Cosmos.

    ERIC Educational Resources Information Center

    Lichtman, Jeffrey M.

    1991-01-01

    Introduces the basics of radio astronomy and describes how to assemble several simple systems for receiving radio signals from the cosmos. Includes schematics, parts lists, working drawings, and contact information for radio astronomy suppliers. (11 references) (Author/JJK)

  15. Visualizing the cosmos

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2016-01-01

    Space, as Douglas Adams once wrote, is big. Really big. But just how big is it? And what else, aside from our own planet Earth, is out there in it? Cosmos: the Infographic Book of Space answers these questions in a stunning fashion, but to describe it as a beautiful book full of interesting facts does not do it justice.

  16. Cosmos: 1989 immunology studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    The effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM were determined. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies performed on Cosmos 1887. Spleen and bone marrow cells were obtained from flown, vivarium control, synchronous control, and suspended rats. The cells were stained with a series of monoclonal antibodies directed against rat leukocyte cell surface antigens. Control cells were stained with a monoclonal antibody directed against an irrelevant species or were unstained. Cells were then analyzed for fluorescence using a FACSCAN flow cytometer. Bone marrow cells were placed in culture with GM-CSF in McCoy's 5a medium and incubated for 5 days. Cultures were then evaluated for the number of colonies of 50 cells or greater.

  17. Engines for the Cosmos

    NASA Technical Reports Server (NTRS)

    Rodgers, Stephen L.; Reisz, Al; Wyckoff, James (Technical Monitor)

    2002-01-01

    Galactic forces spiral across the cosmos fueled by nuclear fission and fusion and atoms in plasmatic states with throes of constraints of gravitational forces and magnetic fields, In their wanderings these galaxies spew light, radiation, atomic and subatomic particles throughout the universe. Throughout the ages of man visions of journeying through the stars have been wondered. If humans and human devices from Earth are to go beyond the Moon and journey into deep space, it must be accomplished with like forces of the cosmos such as electrical fields, magnetic fields, ions, electrons and energies generated from the manipulation of subatomic and atomic particles. Forms of electromagnetic waves such as light, radio waves and lasers must control deep space engines. We won't get far on our Earth accustomed hydrocarbon fuels.

  18. A Multiwavelength Study of Millimeter Galaxies in the Bolocam-COSMOS Survey

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; Bolocam-COSMOS Collaboration

    2006-12-01

    We present a multiwavelength study of galaxies detected in a 1.1 mm Bolocam survey of the center 940 square arcminutes of the COSMOS HST Treasury field. The Bolocam survey reached an RMS noise level (filtered for point sources) of 1.9 mJy/beam. We compare the detections with overlapping AzTEC and MAMBO surveys, and examine the radio to X-ray properties of these galaxies using the rich datasets available in the field. Particular attention is given to Spitzer IRAC and MIPS counterparts from the S-COSMOS survey.

  19. The Chandra COSMOS Legacy Survey: A New Window to the Obscured and Distant Universe

    NASA Astrophysics Data System (ADS)

    Civano, Francesca M.; Elvis, M.; Hasinger, G.; Comastri, A.; Harrison, F.; Urry, C. M.; Brusa, M.; Zamorani, G.; Cappelluti, N.; Scoville, N.; Schinnerer, E.; Donley, J.; Allevato, V.; Silverman, J.; Treister, E.; Capak, P. L.; Aldcroft, T. L.; Alexander, D.; D'Abrusco, R.; Finoguenov, A.; Fruscione, A.; Glikman, E.; Hao, H.; Jahnke, K.; Karim, A.; Kartaltepe, J. S.; Leauthaud, A.; Lanzuisi, G.; Miyaji, T.; Vignali, C.; Fiore, F.; Puccetti, S.; Ranalli, P.; Smolcic, V.; Riguccini, L.; Sargent, M.; Schawinski, K.; Stern, D.; Gilli, R.

    2013-01-01

    The equatorial 2 deg2 COSMOS area is the only large field for which a complete, deep, pan-chromatic data set exists, from an outstanding survey effort, and that all large telescopes can observe. Now, this pioneering and ambitious COSMOS survey is undergoing major extension, pushing its frontiers via the newly approved Chandra COSMOS Legacy Survey, the second largest Chandra proposal ever approved.'COSMOS-Legacy' will uniformly cover the 1.7 deg2 COSMOS/HST field with 2.8 Ms of Chandra ACIS-I imaging at ~160 ksec depth. This project expands the current deep C-COSMOS area by a factor of ~3 at ~3e-16 (1.45 vs 0.44 deg2). This will be achieved with 56x50 ks tiles covering a total area of 2.2 deg2, which will be observed during Chandra Cycle 14. The area and depth of COSMOS Legacy are designed to detect ~40 z>4, and ~4 z>5 Large Scale Structures on >15 arcmin scales. These structures have proven to connect luminous AGN (over 200 at z>3 will be detected) and sub-mm galaxies. COSMOS Legacy will also probe mini-quasars at z>7, using anistotropies of the unresolved X-ray Background, and the masses of the Dark Matter halos hosting X-ray AGN up to 3, via autocorrelation functions on ~30arcmin scales. To fully achieve these goals, COSMOS Legacy is complemented by spectroscopic follow-up with DEIMOS and MOSFIRE at Keck and KMOS at the VLT and FMOS at Subaru, just approved observations with Spitzer and JVLA, and with harder (5-80 keV) X-ray imaging with NuSTAR. In the near future, observations with Subaru HyperSuprimeCam (grizY) to r(AB)=28.2 are planned.

  20. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  1. The New Cosmos

    NASA Astrophysics Data System (ADS)

    Eicher, David J.; Filippenko, Alex

    2015-12-01

    Foreword Alex Filippenko; 1. The awakening of astronomy; 2. How the Sun will die; 3. The end of life on Earth; 4. How the moon formed; 5. Where has all the water gone?; 6. Why did Venus turn inside-out?; 7. Is Pluto a planet?; 8. Planets everywhere; 9. The Milky Way as barred spiral; 10. Here comes Milkomeda; 11. The Big Bang's cosmic echo; 12. How large is the universe?; 13. The mystery of dark matter; 14. The bigger mystery of dark energy; 15. Black holes are ubiquitous; 16. What is the universe's fate?; 17. The meaning of life in the cosmos; Glossary; Bibliography; Index.

  2. COSMOS 2044 Mission: Overview

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  3. Cosmos-1989 immunology studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The current study involved a determination of the effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies carried out on Cosmos 1887.

  4. Cosmos 1887 - Science overview

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.

    1990-01-01

    Twenty two groups of U.S. investigators participated in joint studies of ten male rats flown on the Cosmos 1887 biosatellite. A summary of these studies embracing skeletal muscle, bone, endocrine, neural, intestinal, metabolic, immunology, cardiac, and gonadal investigations is presented. Three general objectives of the rat experiments are outlined - verification of previous observations of the biological responses to microgravity; clarification of the effects of microgravity on both the tissues investigated and the measurements performed; and relation of biological responses to flight duration. It is concluded that the first objective is met fully and the second with a varying degree of success. The confounding effects of overshooting the designated landing site and delayed recovery of the animals largely precluded meeting the last objective. It is also noted that investigations were performed for the first time on brain and spinal cord enzymes, a neurotransmitter, transmitter receptors, hypothalamic regulatory factors, pineal metabolites, atrial granules, liver histology, and jejunal mitotic rate in spaceflight animals.

  5. Spitzer Spies Spectacular Sombrero

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a 'sombrero,' but here looks more like a 'bulls-eye.'

    Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions.

    Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen.

    The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun.

    This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features.

    In figure 1, the new picture of Messier 104 combines a recent infrared observation from NASA's Spitzer Space Telescope with a well

  6. Spitzer Spies Spectacular Sombrero

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a 'sombrero,' but here looks more like a 'bulls-eye.'

    Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions.

    Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen.

    The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun.

    This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features.

    In figure 1, the new picture of Messier 104 combines a recent infrared observation from NASA's Spitzer Space Telescope with a well

  7. Scheduling Spitzer: The SIRPASS Story

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Hawkins, Robert

    2013-01-01

    NASA's Spitzer Space Telescope was launched on August 25, 2003 from Florida's Cape Canaveral Air Force Base. Drifting in a unique Earth-trailing orbit around the Sun, Spitzer sees an optically invisible universe dominated by dust and stars. Since 1997, the Spitzer Integrated Resource Planning and Scheduling System (SIRPASS) has helped produce spacecraft activity plans for the Spitzer Space Telescope. SIRPASS is used by members of the Observatory Planning and Scheduling Team to plan, schedule and sequence the Telescope from data made available to them from the science and engineering community. Because of the volume of data that needs to be scheduled, SIRPASS offers a variety of automated assistants to aid in this task. This paper will describe the functional elements of the SIRPASS software system -- emphasizing the role that automation plays in the system -- and will highlight lessons learned for the software developer from a decade of Spitzer Space Telescope operations experience.

  8. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  9. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/. PMID:17503900

  10. First Results from the Chandra COSMOS Legacy Survey: A New Window on the High-z Universe

    NASA Astrophysics Data System (ADS)

    Civano, Francesca M.; Chandra COSMOS Legacy Survey Team

    2013-04-01

    The 2 sq.deg. COSMOS area is the only large field for which a complete, deep, pan-chromatic data set exists, thanks to an outstanding survey effort over nearly a decade. Now, the COSMOS survey is undergoing major extensions, via the newly approved Chandra COSMOS Legacy Survey ('COSMOS-Legacy') and other programs. COSMOS-Legacy is the second largest Chandra proposal ever approved. COSMOS-Legacy will uniformly cover the 1.7 sq.deg. COSMOS/HST field with 2.8 Ms of Chandra ACIS-I imaging at ~160 ksec depth, expanding the deep C-COSMOS area by a factor of ~3 at ~3e-16 erg/cm2/s (1.45 vs 0.44 deg2). A total area of 2.2 deg2 will be covered. The first ten 50ks tiles (as of Jan 2013), out of 56 tiles, have been observed. At least other twenty are scheduled by the end of March 2013. At the same time NuSTAR is observing COSMOS for 3 Msec in the harder (5-80 keV) band to 5e-14 cgs (10-30 keV) complementing the Chandra observations. The area and depth of COSMOS Legacy are designed to detect ~40 z>4, and ~4 z>5 Large Scale Structures on >15 arcmin scales. These proto-structures have proven to connect luminous AGN and sub-mm galaxies in the early Universe. Over 200 z>3 X-ray AGN (below and above Lx=10^44) are expected, many of which should lie in these structures. To fully characterize the high-z X-ray sources in the structures, COSMOS Legacy is supported by spectroscopic follow-up observations (DEIMOS and MOSFIRE at Keck, KMOS at the VLT, FMOS at Subaru). New deep imaging surveys with Spitzer and JVLA are underway to define the properties of the galaxies in the structures up to 7. Extremely deep, r_{AB}=28.2, optical imaging in grizY are planned with the new HyperSuprimeCam on Subaru as well.

  11. The COSMOS2015 Catalog: Exploring the 1 < z < 6 Universe with Half a Million Galaxies

    NASA Astrophysics Data System (ADS)

    Laigle, C.; McCracken, H. J.; Ilbert, O.; Hsieh, B. C.; Davidzon, I.; Capak, P.; Hasinger, G.; Silverman, J. D.; Pichon, C.; Coupon, J.; Aussel, H.; Le Borgne, D.; Caputi, K.; Cassata, P.; Chang, Y.-Y.; Civano, F.; Dunlop, J.; Fynbo, J.; Kartaltepe, J. S.; Koekemoer, A.; Le Fèvre, O.; Le Floc'h, E.; Leauthaud, A.; Lilly, S.; Lin, L.; Marchesi, S.; Milvang-Jensen, B.; Salvato, M.; Sanders, D. B.; Scoville, N.; Smolcic, V.; Stockmann, M.; Taniguchi, Y.; Tasca, L.; Toft, S.; Vaccari, Mattia; Zabl, J.

    2016-06-01

    We present the COSMOS201524 catalog, which contains precise photometric redshifts and stellar masses for more than half a million objects over the 2deg2 COSMOS field. Including new {{YJHK}}{{s}} images from the UltraVISTA-DR2 survey, Y-band images from Subaru/Hyper-Suprime-Cam, and infrared data from the Spitzer Large Area Survey with the Hyper-Suprime-Cam Spitzer legacy program, this near-infrared-selected catalog is highly optimized for the study of galaxy evolution and environments in the early universe. To maximize catalog completeness for bluer objects and at higher redshifts, objects have been detected on a χ 2 sum of the {{YJHK}}{{s}} and z ++ images. The catalog contains ˜ 6× {10}5 objects in the 1.5 deg2 UltraVISTA-DR2 region and ˜ 1.5× {10}5 objects are detected in the “ultra-deep stripes” (0.62 deg2) at {K}{{s}}≤slant 24.7 (3σ, 3″, AB magnitude). Through a comparison with the zCOSMOS-bright spectroscopic redshifts, we measure a photometric redshift precision of {σ }{{Δ }z/(1+{z}s)} = 0.007 and a catastrophic failure fraction of η = 0.5%. At 3\\lt z\\lt 6, using the unique database of spectroscopic redshifts in COSMOS, we find {σ }{{Δ }z/(1+{z}s)} = 0.021 and η = 13.2 % . The deepest regions reach a 90% completeness limit of {10}10{M}⊙ to z = 4. Detailed comparisons of the color distributions, number counts, and clustering show excellent agreement with the literature in the same mass ranges. COSMOS2015 represents a unique, publicly available, valuable resource with which to investigate the evolution of galaxies within their environment back to the earliest stages of the history of the universe. The COSMOS2015 catalog is distributed via anonymous ftp and through the usual astronomical archive systems (CDS, ESO Phase 3, IRSA).

  12. SACS: Spitzer Archival Cluster Survey

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys

  13. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as pink dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. Red shows heated dust that pervades the region's cavities, while green highlights dense clouds.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  14. Seven Wonders of the Cosmos

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant Vishnu

    1999-04-01

    Our cosmic tour begins here. As we leave the secure confines of the Earth and journey into space, we find a plethora of strange and unexpected phenomena. Little can we anticipate from the quiet, star-studded sky the violent events in the cosmos. Stars explode. Powerful radio sources eject matter in jets. The ever-changing Universe grows more beautiful and more complex the deeper into it we go. Professor Narlikar skillfully steers us through a cosmic journey of discovery, starting from the Earth and Solar System and stepping out to the farthest reaches of the Universe. Using simple analogies, humorous anecdotes, and a wealth of illustrations, he conveys the thrill of observing strange and surprising features of the Universe. The seven wonders represent a range of mysterious phenomena, a class of spectacular events, or remarkable cosmic objects that have challenged human curiosity and defied explanation. They concern the giants and dwarfs of the stellar world, the catastrophic explosion of massive stars, pulsars--the ultimate timekeepers of the cosmos, the strange effects of gravity, illusions of space, and the majestic expansion of the Universe as a whole. With lucid prose, the author weaves together a host of exciting recent discoveries in astronomy and shows us how these motivate astronomers to unravel the wonders of tomorrow.

  15. Station Astronauts Do Experiment for 'Cosmos'

    NASA Video Gallery

    Aboard the International Space Station, Expedition 38 Commander Koichi Wakata of the Japan Aerospace Exploration Agency and Flight Engineer Rick Mastracchio of NASA help 'Cosmos' host Neil deGrasse...

  16. The Chandra COSMOS Legacy Survey: first results

    NASA Astrophysics Data System (ADS)

    Marchesi, Stefano; Civano, Francesca M.; Elvis, Martin; Urry, C. Megan; Comastri, Andrea

    2014-08-01

    The COSMOS field is the only large (2 sq. deg.) field for which complete, deep, panchromatic data exist and which all large telescopes can observe due to its equatorial location. In 2013, the COSMOS survey was greatly extended, thanks to the Chandra COSMOS Legacy Survey, the second largest extragalactic Chandra project ever approved. This survey is aimed at studying the formation of the structures in the high redshift Universe and understanding the role active super massive black holes played in their evolution. With 56 overlapping ACIS-I pointings of 50-ksec depth each, the Chandra COSMOS-Legacy survey uniformly covers the 1.7 sq. deg. COSMOS/HST field to ~160 ksec depth, with a total of 2.8 Ms exposure time. This triples the area of the earlier deep C-COSMOS survey (limiting flux ~3e-16 ergs/cm2/s in the 0.5-2 keV band), and together these two projects cover a total area of 2.2 sq. deg., yielding a sample of ~4200 X-ray sources. We present the survey properties, the procedure adopted to obtain our final catalog and the first scientific highlights, focusing on the high redshift (z>3) sample.

  17. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way.

    Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky.

    The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight.

    Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila.

    Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered.

    This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

    Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the

  18. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This picture was taken with Spitzer's infrared array camera. It is a four-color composite, in which light with a wavelength of 3.6 microns is blue; 4.5-micron light is green; 5.8-micron light is orange; and 8-micron light is red.

  19. Muscle Feasibility for Cosmos Rhesus

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie (Principal Investigator); Roland, Roy R.; Hodgson, John A.

    1994-01-01

    The following tasks were proposed for the Cosmos project: 1) Complete recordings of all preflight candidates during performance of a foot pedal motor control task while in the space capsule mock-up. 2) Complete recordings of all preflight candidates during locomotion and postural tasks. 3) Complete recordings of 24-hour spontaneous cage activity in the two flight monkeys before and after flight and of at least three control (non-flight) monkeys after the flight has been completed. 4) Complete recordings of the foot pedal and motor control tasks during flight and postflight as scheduled. 5) Complete recordings of the vertical drop test pre, during and postflight for the two flight and three control monkeys. 6) Complete recordings of locomotion and posture tests of the two flight monkeys postflight. 7) Complete recordings of locomotion and postural tests of at least three control (non-flight) monkeys during the postflight period. 8) Recalibrate buckles of the two flight and of at least three control monkeys postflight. 9) Complete analysis of the 24 hour EMG recordings of all monkeys. 10) Complete analysis of the foot pedal, locomotor and postural motor control tasks for the two flight and three control monkeys. It was proposed that efforts in the first postflight year be concentrated on the two flight animals and three postflight animals.

  20. Spitzer - Hot & Colorful Student Activities

    NASA Astrophysics Data System (ADS)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  1. Spitzer Space Telescope proposal process

    NASA Astrophysics Data System (ADS)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  2. Spitzer Digs Up Hidden Stars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4

    Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope.

    The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image.

    The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is

  3. Spitzer observations of adolescent novae

    NASA Astrophysics Data System (ADS)

    Evans, Aneurin; Gehrz, Robert; Helton, Andrew; Krautter, Joachim; Lyke, James; Polomsky, Elisha; Rushton, Mark; Salama, Alberto; Shore, Steven; Starrfield, Sumner; Truran, James; Wagner, R. Mark; Woodward, Charles

    2006-05-01

    Classical novae (CNe) offer the best opportunity to observe many astrophysical processes (such as dust formation and processing, shaping of nebulae, gas cooling by IR fine structure lines) in `fast forward'. The CN eruption arises following a thermonuclear runaway on the surface of a white dwarf in a semi-detached binary system, following which some 10^-4 Msun of material, enriched in metals, is explosively ejected at ~1000km/s. Following the eruption, CNe vary rapidly, on a timescale ~months, and this necessitates continuous monitoring. Several novae were observed in GO1 as targets-of-opportunity (ToO). We propose to use the Spitzer IRS to observe a sample of novae, including GO1 ToO and several recent (<20years) CNe, to provide us with a well-populated CN parameter space. We aim to determine (i) the ejecta masses, (ii) abundances in the ejected material, (iii) evolution and processing of the CN dust.

  4. Completing the Galaxy Census from z=0 to z~7 in the CANDELS/COSMOS Field

    NASA Astrophysics Data System (ADS)

    Tilvi, Vithal; Papovich, Casey; Finkelstein, Steven; Dickinson, Mark; Faber, Sandra; Ferguson, Henry; Fazio, Giovanni; Salmon, Brett; Mobasher, Bahram; Mehrtens, Nicola; Koekemoer, Anton; Giavalisco, Mauro; Livermore, Rachael; Trump, Jonathan

    2014-02-01

    We propose to construct a comprehensive spectroscopic sample of galaxies at 4COSMOS field - combining these observations with the existing and ongoing surveys at z<4, we will build a complete 3-D view of this field stretching back to the Cosmic Dawn. Through this program we will (1) build a large, homogeneous spectroscopic sample of 4COSMOS field-these observations will have a long-lasting legacy value: thanks to the extremely deep HST ACS, WFC3 and Spitzer infrared photometry, (2) measure accurate redshift evolution of Lyα fraction (currently highly uncertain due to lack of large spectroscopic samples) providing crucial information about the reionization history of the universe, and bridging the connection between Lyman-break galaxies with and without Lyman-alpha emission lines, and (3) investigate the mass-buildup of z>4 galaxies, which requires precise redshifts to eliminate contamination from the redshifted nebular line fluxes- currently there exists a large discrepancy between observations and theoretical models. In addition, we will obtain detailed properties e.g., Lyα line shape, equivalent width distributions, etc. for galaxies at z>4. These observations will further enable extensive archival research and create an excellent sample accessible to ALMA.

  5. NASA Facts, American Experiments on Cosmos 782.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is a summary report of the American experiments conducted on the Soviet Cosmos 782 satellite in November and December, l975. Each of the four passive and seven cooperating experiments developed by the U.S. National Aeronautics and Space Administration (NASA) are reviewed. (SL)

  6. Cosmos: An Information Retrieval System that Works.

    ERIC Educational Resources Information Center

    Clay, Katherine; Grossman, Alvin

    1980-01-01

    Briefly described is the County of San Mateo Online System (COSMOS) which was developed and is used by the San Mateo Educational Resources Center (SMERC) to access the Educational Resources Information Center (ERIC) and Fugitive Information Data Organizer (FIDO) databases as well as the curriculum guides housed at SMERC. (TG)

  7. SPRITE: the Spitzer proposal review website

    NASA Astrophysics Data System (ADS)

    Crane, Megan K.; Storrie-Lombardi, Lisa J.; Silbermann, Nancy A.; Rebull, Luisa M.

    2008-07-01

    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  8. History of the Spitzer Mission

    NASA Astrophysics Data System (ADS)

    Rieke, George

    2006-12-01

    The Spitzer Telescope was launched more than 20 years after the original announcement of opportunity was released. During this long gestation period, the mission took a wide variety of forms and had to survive many political and managerial environments within NASA and in the US Government generally. Finally, approval to build the telescope was won at the height of the faster-better-cheaper era, but completing it extended beyond this phase. This poster shows the key steps in preserving the mission and why decision makers viewed it positively at critical points when it might have been killed. In the end, the scope of the mission was reduced by a factor of about five while still preserving much of its science capabilities. This reduction required a new way to streamline the science objectives by adopting a limited number of key programs and requiring that all features be justified in terms of those programs. This philosophy provided decision rules to carry out necessary descopes while preserving a coherent set of capabilities. In addition, the faster-better-cheaper guidelines requires use of a small launch vehicle, which was only possible by the invention of a new “warm launch” telescope concept, in which the telescope would cool primarily by radiation into space after launch. Both of these concepts are critical to the approach to future missions such as JWST. This work is partially supported by contract 1255094 from JPL/Caltech to the University of Arizona.

  9. 1.75 h {sup -1} kpc SEPARATION DUAL ACTIVE GALACTIC NUCLEI AT z = 0.36 IN THE COSMOS FIELD

    SciTech Connect

    Comerford, Julia M.; Davis, Marc; Griffith, Roger L.; Stern, Daniel; Gerke, Brian F.; Newman, Jeffrey A.

    2009-09-01

    We present strong evidence for dual active galactic nuclei (AGNs) in the z = 0.36 galaxy COSMOS J100043.15+020637.2. COSMOS Hubble Space Telescope (HST) imaging of the galaxy shows a tidal tail, indicating that the galaxy recently underwent a merger, as well as two bright point sources near the galaxy's center. The luminosities of these sources (derived from the HST image) and their emission line flux ratios (derived from Keck/DEIMOS slit spectroscopy) suggest that both are AGNs and not star-forming regions or supernovae. Observations from zCOSMOS, the Sloan Digital Sky Survey, XMM-Newton, Spitzer, and the Very Large Array fortify the evidence for AGN activity. With HST imaging we measure a projected spatial offset between the two AGNs of 1.75 {+-} 0.03 h {sup -1} kpc, and with DEIMOS we measure a 150 {+-} 40 km s{sup -1} line-of-sight velocity offset between the two AGNs. Combined, these observations provide substantial evidence that COSMOS J100043.15+020637.2 is a merger-remnant galaxy with dual AGNs.

  10. Parallax: The Race to Measure the Cosmos

    NASA Astrophysics Data System (ADS)

    Hirshfeld, A. W.

    2001-05-01

    The new book "Parallax: The Race to Measure the Cosmos" chronicles the centuries-long struggle to secure the first distance to a star through detection of stellar parallax. Beginning with the naked-eye attempts of Tycho Brahe and proceeding through the telescopic studies of Robert Hooke, James Bradley, and William Herschel, all three of whom employed observational strategies suggested by Galileo, the effort to measure stellar parallax gained momentum in the early 19th century with dramatic improvements in telescope technology by German craftsmen such as Joseph Fraunhofer. Three near-contemporaneous announcements of stellar parallaxes were made in the late 1830s by Thomas Henderson (Alpha Centauri), Wilhelm Struve (Vega), and Friedrich Bessel (61 Cygni). By consensus of the astronomical community, Bessel was credited with the first successful measurement of a star's distance. With its biographical focus, "Parallax: The Race to Measure the Cosmos" highlights the human dimensions of scientific achievement.

  11. Cosmos 1129 - Spaceflight and bone changes

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey-Holton, E.; Jee, W. S. S.

    1980-01-01

    Male Wistar rats were placed in orbit for an 18.5 day period aboard the Soviet Cosmos 1129 biological satellite. The skeletal changes which occurred during spaceflight were determined to be a reduced rate of periosteal bone formation in the tibial and humeral diaphyses, and a decreased trabecular bone volume and an increased fat content of the bone marrow in the proximal tibial metaphysis.

  12. Mining the Spitzer Legacy Science Data Archive

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Storrie-Lombardi, L.; Squires, G.; Alexov, A.

    2005-12-01

    The original Spitzer Legacy Science Program is now approaching completion with the basic observations archived and the `enhanced' data products populating dedicated Spitzer and IRSA archives. To date the Legacy teams of C2D, FEPS, GLIMPSE, GOODS, SINGS and SWIRE have delivered more than half of the total planned `enhanced' data products to the public archives. The archives include fully reduced and calibrated imaging, spectra, and tabular data derived from the Spitzer IRAC, MIPS and IRS observations, as well as ancillary ground-based imaging and spectroscopy. Science results are now flowing from the Legacy teams, addressing the fundamental questions that the Spitzer observations where designed and optimized to answer. However, the data archives are mostly untapped in their science potential, offering a rich resource for astronomical data mining. We describe the archives in detail, spanning their structure, content and accessibility. User friendly resources for mining the data are showcased, including the Spitzer Science Center archive tool Leopard and the Infrared Science Archive services Atlas and RADAR.

  13. Spitzer v. K2: Part II

    NASA Astrophysics Data System (ADS)

    Werner, Michael; Crossfield (Deputy PI), Ian; Akeson, Rachel; Beichman, Charles; Benneke, Bjoern; Christiansen, Jessie; Ciardi, David; Deck, Katherine; Dressing, Courtney; Howard, Andrew; Howell, Steve; Knutson, Heather; Krick, Jessica; Livingston, John; Morales, Farisa; Petigura, Erik; Schlieder, Joshua; Gorjian, Varoujan

    2016-08-01

    We propose to build on our Cycles 11-12 program of Spitzer photometry of planets from the K2 survey by enlarging our sample to interesting exoplanets from the continuing K2 mission. Our team has shown that we can carry out this program end to end, starting with finding interesting candidate stars/planets in the K2 data stream, validating them using both proven Kepler techniques and ground-based observations, selecting and executing the Spitzer observations, and analyzing the Spitzer data in conjunction with the K2 data. To date we have observed or scheduled 38 transits/eclipses of 27 exoplanets. We will observe stars in K2 fields 0 through 15 and foresee executing over 60 AOR's on over 40 exoplanets. In the end, we expect to have a greatly improved characterization of exoplanets and their orbits than would be possible from the K2 data alone. This will be vital for JWST follow-up. In addition to improvements in ephemerides, these Spitzer observations will look for transit timing variations, analyze exoplanet atmospheres, study young exoplanets, and provde early TESS follow-up. This work will add substantially to the extensive exoplanet legacy of the Spitzer mission. This is a Generic Target proposal: The fields to be studied and their visibility windows are known, but until the K2 data is analyzed and the targets vetted, we cannot specify exact AORs.

  14. Radio and Millimeter Observations of the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Schinnerer, E.; Bertoldi, F.; Carilli, C. L.; Smolčič, V.; Scoville, N. Z.; Menten, K.; Voss, H.; Blain, A.; Lutz, D.

    2007-10-01

    The Cosmic Evolution Survey (COSMOS) targets an equatorial two square degree field covering the full electromagnetic spectrum. Here we present first results from observations of the COSMOS field in the millimeter and centimeter regime done with the IRAM 30 m/MAMBO array and NRAO's Very Large Array (VLA) at 250 GHz and 1.4 GHz, respectively.

  15. COSMOS (County of San Mateo Online System). A Searcher's Manual.

    ERIC Educational Resources Information Center

    San Mateo County Superintendent of Schools, Redwood City, CA. Educational Resources Center.

    Operating procedures are explained for COSMOS (County of San Mateo Online System), a computerized information retrieval system designed for the San Mateo Educational Resources Center (SMERC), which provides interactive access to both ERIC and a local file of fugitive documents. COSMOS hardware and modem compatibility requirements are reviewed,…

  16. CoSMoS unravels mysteries of transcription initiation.

    PubMed

    Gourse, Richard L; Landick, Robert

    2012-02-17

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters.

  17. The Ultimate Spitzer Phase Curve Survey

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Feng, Y. Katherina; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam

    2016-08-01

    Exoplanet phase curves are sure to be one of the main enduring legacies of Spitzer. They provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that will continue to open new doors of scientific inquiry and propel future investigations for years to come. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. Instead, a new potential trend is emerging, one that connects heat redistribution efficiency with planet rotation rate. We will test this hypothesis by performing Spitzer phase curve observations of seven exoplanets with physical properties that span the parameter space. We have identified high-contrast targets with short orbital periods around bright host stars to ensure the observations reveal robust phase curve results. Spitzer is uniquely suited for this program because we can achieve our primary goals using broadband photometry. Part of the phase curve legacy will be to combine our archived Spitzer data with transmission and dayside emission spectra from HST and JWST. Adding energy transport and cloud coverage constraints to the measured dayside abundances and thermal profiles will yield a fundamental understanding of these exoplanets' atmospheres that can be leveraged into new avenues of investigation.

  18. Observations of Near Earth Objects with Spitzer

    NASA Astrophysics Data System (ADS)

    Trilling, David E.; Mommert, Michael; Hora, Joseph L.; Chesley, Steven R.; Emery, Joshua P.; Fazio, Giovanni G.; Harris, Alan; Mueller, Michael; Smith, Howard Alan

    2016-10-01

    We are carrying out an Exploration Science Warm Spitzer program entitled NEOSurvey in which we are observing 550 Near Earth Objects in 710 hours of Spitzer time. For each object we use a thermal model to derive diameter and albedo. For each object we also derive a (partial) lightcurve; total elapsed observing times range from 15 minutes to 3.2 hours. This catalog of 500+ NEO lightcurves is a substantial increase over the number of NEO lightcurves presently known. In addition to creating a large catalog of NEO properties, we are also able to study the properties of individual NEOs, including those with low delta V values (i.e., accessible asteroids) and those that might be dead comets. The final observations in this program will be obtained by 30 Sept 2016, so at the DPS meeting we will present a first look at our entire catalog of results. All results are posted at nearearthobjects.nau.edu usually within days of the data being released by the Spitzer Science Center. This work was supported in part by funding from the Spitzer Science Center.

  19. Adaptation of skeletal muscle to spaceflight: Cosmos rhesus project. Cosmos 2044 and 2229

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue

    1994-01-01

    The proposed experiments were designed to determine the effects of the absence of weight support on hindlimb muscles of the monkey: an ankle flexor (tibialis anterior, TA), two ankle extensors (medial gastrocnemius, MG and soleus, SOL), and a knee extensor (vastus lateralis, VL). These effects were assessed by examining the biochemical and morphological properties of muscle fibers obtained from biopsies in young Rhesus monkeys (3-4 Kg). Biopsies taken from ground base experiments were analyzed to determine: (1) the effects of chair restraint at 1 G on muscle properties and (2) the growth rate of flexor and extensor muscles in the Rhesus. In addition, two sets of biopsies were taken from monkeys which were in the flight pool and the four monkeys that flew on the Cosmos 2044 and 2229 biosatellite missions. Based on data collected in rats it is generally assumed that extensors atrophy to a greater extent than flexors in response to spaceflight or hindlimb suspension. Consequently, the finding that fibers in the TA (a fast flexor) of the flight monkeys atrophied, whereas fibers in the Sol (a predominantly slow extensor) and MG (a fast extensor) grew after a 14-day spaceflight (Cosmos 2044) and 12-day spaceflight (Cosmos 2229) was unexpected. In Cosmos 2044, the TA in both flight monkeys had a 21 percent decrease in fiber size, whereas the Sol and MG both had a 79 percent increase in fiber size. In Cosmos 2229, the TA in both flight monkeys showed significant atrophy, whereas the Sol and MG showed slight growth in one monkey (906) and slight atrophy in the other monkey (151).

  20. SPS Fabric of the Cosmos Cafe

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anish

    2012-02-01

    Hosted by Brian Greene and based on his best-selling book of the same title, The Fabric of the Cosmos is a new four- part NOVA series that explores the deepest mysteries of space and time. The program was kicked-off by 30 ``Cosmic Cafes'' being held around the country funded by an NSF grant which allows SPS-NOVA to fund SPS chapters for these events. During the summer I assisted in planning this kick-off, reviewing and suggesting revisions of resources related to the NOVA series to make them relevant to an SPS audience. I also got to organize and moderate the first ``Cosmic Cafe.'' The Cosmic cafe that I organized was discussion based, with our speaker Dr. James Gates starting with a short talk and then opening the floor up for questions. By organizing a ``Cosmic cafe,'' I got real hand experience about the challenges an SPS chapter would face while organizing a cafe themselves. Based on my experience I shall also discuss the effectiveness of the first ever themed science cafe blitz. A science caf'e is an informal discussion with an expert in a very casual location, usually a restaurant, coffee shop, or a bar. A science cafe is mostly discussion based, but has a lot of freedom for the format. A ``Cosmic'' cafe is a science cafe which is based around the topics discussed in the documentary ``The Fabric of the Cosmos.''

  1. Software Architecture of the Spitzer Archive Interface

    NASA Astrophysics Data System (ADS)

    Chavez, J.; Wu, X.; Roby, W.; Hoac, A.; Goldina, T.; Hartley, B.

    2007-10-01

    The Spitzer Science Center (SSC) provides a set of user tools to support search and retrieval of Spitzer Archive (SA) data via the Internet. This presentation describes the software architecture and design principles that support the Archive Interface subsystem of the SA (Handley 2007). The Archive Interface is an extension of the core components of the Uplink subsystem and provides a set web services to allow open access to the SA data set. Web services technology provides a basis for searching the archive and retrieving data products. The archive interface provides three modes of access: a rich client, a Web browser, and scripts (via Web services). The rich client allows the user to perform complex queries and submit requests for data that are asynchronously down-loaded to the local workstation. Asynchronous down-load is a critical feature given the large volume of a typical data set (on the order of 40~GB). For basic queries and retrieval of data the Web browser interface is provided. For advanced users, scripting languages with web services capabilities (i.e. Perl) can used to query and down-load data from the SA. The archive interface subsystem is the primary means for searching and retrieving data from the SA and is critical to the success of the Spitzer Space Telescope.

  2. Stellar Jewels Shine in New Spitzer Image

    NASA Technical Reports Server (NTRS)

    2004-01-01

    One of the most prolific birthing grounds in our Milky Way galaxy, a nebula called RCW 49, is exposed in superb detail for the first time in this new image from NASA's Spitzer Space Telescope. Located 13,700 light-years away in the southern constellation Centaurus, RCW 49 is a dark and dusty stellar nursery that houses more than 2,200 stars.

    Because many of the stars in RCW 49 are deeply embedded in plumes of dust, they cannot be seen at visible wavelengths. When viewed with Spitzer's infrared eyes, however, RCW 49 becomes transparent. Like cracking open a quartz rock to discover its jewels inside, the nebula's newborn stars have been dramatically exposed.

    This image taken by Spitzer's infrared array camera highlights the nebula's older stars (blue stars in center pocket), its gas filaments (green) and dusty tendrils (pink). Speckled throughout the murky clouds are more than 300 never-before-seen newborn stars.

    Astronomers are interested in further studying these newfound proto-stars because they offer a fresh look at star formation in our own galaxy.

    This image was taken on Dec. 23, 2003, and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  3. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    PubMed

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  4. Investigations onboard the biosatellite Cosmos-1667

    NASA Astrophysics Data System (ADS)

    Gazenko, O. G.; Ilyin, E. A.

    The program of the 7-day flight of the biosatellite Cosmos-1667 launched in July 1985 included experiments on two rhesus monkeys, ten Wistar SPF rats, ten newts, Drosophila flies, maize seedlings, lettuce sprouts, and unicellular organisms - Tetrahymena. The primate study demonstrated that transition to orbital flight was accompanied by a greater excitability of the vestibular apparatus and an increased linear blood flow velocity in the common carotid artery. The rat studies showed that atrophy of antigravity muscles and osteoporosis of limb bones developed even during short-term exposure to microgravity. The experiments on other living systems revealed no microgravity effects on the cell division rate, proliferative activity of cells of regenerating tissues and organs, energy metabolism of developing insects, structure or chemical composition of higher plant seedlings.

  5. Hubble's new view of the cosmos

    PubMed

    Villard, R

    1996-05-01

    Since the December 1993 repair of NASA's Hubble Space Telescope's (HST) optics by the crew of the Space Shuttle Endeavour, the rapid-fire scientific achievements have brought a new era of discovery to the field of astronomy. Hubble has confirmed some astronomical theories, challenged others, and often come up with complete surprises. Some images are so unexpected that astronomers have to develop new theories to explain what they are seeing. The HST has detected galaxies out to the visible horizon of the cosmos, and has made an attempt at pinning down the universe's expansion rate. Both of these key research areas should ultimately yield answers to age-old questions: What has happened since the beginning of time, and will the universe go on forever? PMID:11538725

  6. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  7. Biological investigations aboard the biosatellite Cosmos-1129

    NASA Astrophysics Data System (ADS)

    Tairbekov, M. G.; Parfyonov, G. P.; Platonova, R. W.; Abramova, V. M.; Golov, V. K.; Rostopshina, A. V.; Lyubchenko, V. Yu.; Chuchkin, V. G.

    Experiments on insects, higher plants and lower fungi were carried out aboard the biological satellite Cosmos-1129, in Earth orbit, from 25 September to 14 October 1979. The main objective of these experiments was to gain more profound knowledge of the effect of weightlessness on living organisms and to study the mechanisms by which these various organisms with different life cycles can adjust and develop in weightlessness. Experiments on insects (Drosophila melanogaster) were made with a view towards understanding gravitational preference in flies, the life cycle of which took place on board the biosatellite under conditions of artificial gravity. Experiments on higher plants (Zea mays, Arabidopsis taliana, Lycopersicum esculentum) and lower fungi (Physarum polycephalum) were performed.

  8. Investigations onboard the biosatellite Cosmos-1667.

    PubMed

    Gazenko, O G; Ilyin, E A

    1986-01-01

    The program of the 7-day flight of the biosatellite Cosmos-1667 launched in July 1985 included experiments on two rhesus monkeys, ten Wistar SPF rats, ten newts, Drosophila flies, maize seedlings, lettuce sprouts, and unicellular organisms--Tetrahymena. The primate study demonstrated that transition to orbital flight was accompanied by a greater excitability of the vestibular apparatus and an increased linear blood flow velocity in the common carotid artery. The rat studies showed that atrophy of antigravity muscles and osteoporosis of limb bones developed even during short-term exposure to microgravity. The experiments on other living systems revealed no microgravity effects on the cell division rate, proliferative activity of cells of regenerating tissues and organs, energy metabolism of developing insects, structure or chemical composition of higher plant seedlings.

  9. 12. Historic American Buildings Survey Topographic Survey of Cosmos Club, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic American Buildings Survey Topographic Survey of Cosmos Club, 1950, by Bernard Locroft, Civil Engineer (Showing Grounds as They Were at End of Sumner Welles Era) SITE PLAN - Townsend House, 2121 Massachusetts Avenue Northwest, Washington, District of Columbia, DC

  10. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  11. Fingerprints of the first black holes? Crosscorrelationg the Near-Infrared and X-ray background in COSMOS

    NASA Astrophysics Data System (ADS)

    Hasinger, Guenther

    Unresolved cosmic backgrounds carry information about the populations of stars and black holes not accessible by any other current observational technique. Studies using both Spitzer and AKARI have revealed large-scale fluctuations in the Cosmic Infrared Background (CIB) after subtracting resolved sources to faint levels. The signal, which is stronger than all foreground contributions, has been attributed to the earliest light in the universe. Other teams, by using Spitzer and CIBER, suggested that this signal could originate from stars tidally stripped from their parent galaxies at low redshift as a result of mergers. Only sensitive multi-wavelength observations can distinguish between these radically different interpretations. Recently our team discovered an intriguing cross-correlation signal between the unresolved CIB and X-ray background (CXB) suggesting significant black hole populations among the CIB sources (C13). The analysis used data from Spitzer and Chandra in an overlapping 8'x45' region of the All-Wavelength Extended Groth strip International Survey (AEGIS), probing the clustering of the underlying sources to angular scales 20', but the experiment is limited by the size and the elongated configuration of the field. Here we propose to use the much more extended multiwavelength observations in the COSMOS field to obtain new constraints on this important debate. Spitzer has recently completed the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH), which observed the full 2 square degree COSMOS field to about half the depth of the AEGIS field, but a 20 times larger sky area. SPLASH, focusing on the COSMOS field with excellent multi-wavelength coverage from space and ground-based observatories, is ideally suited to study the CIB to better precision and at larger scales than available so far. We propose to cross-correlate the Spitzer unresolved CIB to the unresolved CXB observed by Chandra and XMM-Newton. Chandra has covered the full 2 deg2 COSMOS

  12. Performance of a newly designed continuous soot monitoring system (COSMOS).

    PubMed

    Miyazaki, Yuzo; Kondo, Yutaka; Sahu, Lokesh K; Imaru, Junichi; Fukushima, Nobuhiko; Kano, Minoru

    2008-10-01

    We designed a continuous soot monitoring system (COSMOS) for fully automated, high-sensitivity, continuous measurement of light absorption by black carbon (BC) aerosols. The instrument monitors changes in transmittance across an automatically advancing quartz fiber filter tape using an LED at a 565 nm wavelength. To achieve measurements with high sensitivity and a lower detectable light absorption coefficient, COSMOS uses a double-convex lens and optical bundle pipes to maintain high light intensity and signal data are obtained at 1000 Hz. In addition, sampling flow rate and optical unit temperature are actively controlled. The inlet line for COSMOS is heated to 400 degrees C to effectively volatilize non-refractory aerosol components that are internally mixed with BC. In its current form, COSMOS provides BC light absorption measurements with a detection limit of 0.45 Mm(-1) (0.045 microg m(-3) for soot) for 10 min. The unit-to-unit variability is estimated to be within +/- 1%, demonstrating its high reproducibility. The absorption coefficients determined by COSMOS agreed with those by a particle soot absorption photometer (PSAP) to within 1% (r2 = 0.97). The precision (+/- 0.60 Mm(-1)) for 10 min integrated data was better than that of PSAP and an aethalometer under our operating conditions. These results showed that COSMOS achieved both an improved detection limit and higher precision for the filter-based light absorption measurements of BC compared to the existing methods.

  13. The Euclid/WFIRST Spitzer Legacy Survey

    NASA Astrophysics Data System (ADS)

    Capak, Peter; Arendt, R.; Arnouts, S.; Bartlett, J.; Bouwens, R.; Brinchman, J.; Brodwin, M.; Carollo, M.; Castander, F.; Charlot, S.; Chary, R.-R.; Cohen, J.; Cooray, A.; Conselice, C.; Coupon, J.; Cuby, J.-G.; Culliandre, J.; Davidzon, I.; Dole, H.; Dunlop, J.; Eisenhardt, P.; Ferrara, A.; Gardner, J.; Hasinger, G.; Hildebrandt, H.; Ho, S.; Ilbert, O.; Jouvel, S.; Kashlinsky, A.; LeFevre, O.; LeFloc'h, E.; Maraston, C.; Masters, D.; McCracken, H. J.; Mei, S.; Mellier, Y.; Mitchell-Wynn, K.; Moustakas, L.; Nayyeri, H.; Paltani, S.; Rhodes, J.; Salvato, M.; Sanders, D.; Scaramella, R.; Scarlata, C.; Scoville, N.; Silverman, J.; Speagle, J.; Stanford, S.; Stern, D.; Teplitz, H.; Toft, S.

    2016-08-01

    We propose 5286h of Spitzer Legacy Science Time to carry out a precursor survey for Euclid, WFIRST, and JWST. The primary goal is to enable definitive studies of reionization, z>7 galaxy formation, and the first massive black holes. The proposed data will also enhance the cosmological constraints provided by Euclid and WFIRST. The survey will cover 20 square degrees to 2h per pointing, split between the Chandra Deep Field South (CDFS) and the North Ecliptic Pole. These are some of the darkest and most observable fields on the sky and have existing multi-wavelength data that will enable immediate science. The survey parameters are designed to enable stellar mass measurement at 3Spitzer can probe this region of survey space at 3-5um, a wavelength range that uniquely enables stellar mass estimates at z>3 enabling a direct probe of galaxy growth during the epoch of re-ionization.

  14. Spitzer Secondary Eclipses of WASP-32b

    NASA Astrophysics Data System (ADS)

    Garland, Justin; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Foster, Andrew S.; Bowman, Oliver Oliver; Maxted, Pierre F. L.

    2016-10-01

    We report two secondary eclipses of the exoplanet WASP-32b. Discovered Maxted et al. in 2010, this hot-Jupiter exoplanet has a mass of 3.6 ± 0.07 Mj a radius of 1.18 ± 0.07 Rj and an orbital period of 2.71865 ± 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 μm} and 4.5 μm channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse depth measurements of 0.0013 ± 0.00023 in the 4.5 μm band and a three sigma upper limit on the eclipse depth in the 3.6 μm band of 0.04 ± 0.0333. We also report an infrared brightness temperature of 1538 ± 110 K in the 4.5 μm channel and refinements of orbital parameters for WASP-32b from our eclipse timing as well as amatuer and professional data that reduce the uncertanties of previous results.

  15. SPITZER SECONDARY ECLIPSES OF WASP-18b

    SciTech Connect

    Nymeyer, Sarah; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Campo, Christopher J.; Blecic, Jasmina; Bowman, William C.; Britt, Christopher B. T.; Cubillos, Patricio; Madhusudhan, Nikku; Collier-Cameron, Andrew; Maxted, Pierre F. L.; Loredo, Thomas J.; Hellier, Coel; Anderson, David R.; Gillon, Michael; Hebb, Leslie; Wheatley, Peter J.; Pollacco, Don

    2011-11-20

    The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzer's Infrared Array Camera in the 3.6 {mu}m and 5.8 {mu}m bands on 2008 December 20, and in the 4.5 {mu}m and 8.0 {mu}m bands on 2008 December 24. We report eclipse depths of 0.30% {+-} 0.02%, 0.39% {+-} 0.02%, 0.37% {+-} 0.03%, 0.41% {+-} 0.02%, and brightness temperatures of 3100 {+-} 90, 3310 {+-} 130, 3080 {+-} 140, and 3120 {+-} 110 K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered-as hot as an M-class star. The planet's pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day side to the night side of the planet.

  16. Optimal Calibration of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David; Kang, Bryan; Brugarolas, Paul; Boussalis, Dhemetrio

    2007-01-01

    A document discusses the focal-plane calibration of the Spitzer Space Telescope by use of the instrument pointing frame (IPF) Kalman filter, which was described in Kalman Filter for Calibrating a Telescope Focal Plane (NPO-40798), NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 62. To recapitulate: In the IPF Kalman filter, optimal estimates of both engineering and scientific focal-plane parameters are obtained simultaneously, using data taken in each focalplane survey activity. The IPF Kalman filter offers greater efficiency and economy, relative to prior calibration practice in which scientific and engineering parameters were estimated by separate teams of scientists and engineers and iterated upon each other. In the Spitzer Space Telescope application, the IPF Kalman filter was used to calibrate 56 frames for precise telescope pointing, estimate >1,500 parameters associated with focal-plane mapping, and process calibration runs involving as many as 1,338 scientific image centroids. The final typical survey calibration accuracy was found to be 0.09 arc second. The use of the IPF Kalman filter enabled a team of only four analysts to complete the calibration processing in three months. An unanticipated benefit afforded by the IPF Kalman filter was the ability to monitor health and diagnose performance of the entire end-to-end telescope-pointing system.

  17. Spitzer Sees Water Loud and Clear

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B.

    The data were captured by NASA's Spitzer Space Telescope using an instrument called a spectrograph. A spectrograph collects light and sorts it according to color, or wavelength. In this case, infrared light from NGC 1333-IRAS 4B was broken up into the wavelengths listed on the horizontal axis of the plot. The sharp spikes, called spectral lines, occur at wavelengths at which the stellar object is particularly bright. The signature of water vapor is revealed in the pattern of wavelengths at which the spikes appear.

    By comparing the observed data to a model (lower curve), astronomers can also determine the physical and chemical details of the region. For example, astronomers say these data suggest that ice in a cocoon surrounding the forming star is falling inward. The ice then smacks supersonically into a dusty planet-forming disk surrounding the stellar embryo, heats up and vaporizes quickly, releasing the infrared light that Spitzer collected.

  18. Spitzer IRS Observations of ``Mature'' Novae

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Woodward, C. E.; Evans, A.; Gehrz, R. D.; Lynch, D. L.; Rudy, R.; Schwarz, G. J.; Vanlandingham, K.; Spitzer Nova Team

    2009-01-01

    Many facets of astrophysics are captured in classical nova (CN) eruptions, making them unique laboratories in which we may observe several poorly understood astrophysical processes including mass transfer, thermonuclear runaway, optically thick winds, common envelope evolution, molecule and grain formation, coronal line emission, and gas cooling by fine structure lines. Many of these phenomena evolve in real time. Therefore, a better understanding of CNe has far-reaching applications and underpins several related and important areas of astrophysics. Here we present preliminary results of our Cycle 5 Spitzer IRS study of ``mature'' novae (several 100s of days post-outburst), complemented by extensive multi-wavelength data from other facilities. We present data on V2361 Cyg, V2467 Cyg and V378 Ser. In particular, V2361 Cyg displays a strong dust continuum with possible Aromatic Emission Features (AEF) superimposed, the first dusty CN observed to do so since 1993 and the first to be observed spectroscopically in the far IR. This object presents us with an outstanding opportunity to investigate how the dust is processed by the UV radiation from the stellar remnant. Support for this work was provided in part by NASA through Spitzer contracts issued by JPL/Caltech to the University of Minnesota.

  19. SPITZER OBSERVATIONS OF COLD DUST GALAXIES

    SciTech Connect

    Willmer, C. N. A.; Rieke, G. H.; Hinz, J. L.; Engelbracht, C. W.; Le Floc'h, Emeric; Marcillac, Delphine; Gordon, K. D.

    2009-07-15

    We combine new Spitzer Space Telescope observations in the mid-infrared and far-infrared (FIR) with SCUBA 850 {mu}m observations to improve the measurement of dust temperatures, masses, and luminosities for 11 galaxies of the SCUBA Local Universe Galaxy Survey. By fitting dust models we measure typical dust masses of 10{sup 7.9} M {sub sun} and dust luminosities of {approx}10{sup 10} L {sub sun}, for galaxies with modest star formation rates. The data presented in this paper combined with previous observations show that cold dust is present in all types of spiral galaxies and is a major contributor to their total luminosity. Because of the lower dust temperature of the SCUBA sources measured in this paper, they have flatter FIR {nu}F{sub {nu}}(160 {mu}m)/{nu}F{sub {nu}}(850 {mu}m) slopes than the larger Spitzer Infrared Nearby Galaxies Survey (SINGS), the sample that provides the best measurements of the dust properties of galaxies in the nearby universe. The new data presented here added to SINGS extend the parameter space that is well covered by local galaxies, providing a comprehensive set of templates that can be used to interpret the observations of nearby and distant galaxies.

  20. Panel Discussion: Life in the Cosmos

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Water appears to be essential to all life on Earth. For this reason, "Follow the Water" has been adopted as a mantra for the search for Life in the Cosmos. Expeditions have helped to establish the limits and biodiversity of life in the most extreme environments on Earth. Microbial extremophiles inhabit acidic streams; hypersaline and hyperalkaline lakes and pools; the cold deep sea floor, permafrost, rocks, glaciers, and perennially ice-covered lakes of the polar environments; geysers, volcanic fumaroles, hydrothermal vents and hot rocks deep within the Earth's crust. The ESA Venus Express Spacecraft entered Venusian Orbit in 2006 and continues to produce exciting results. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument made the first detection of hydroxyl in the atmosphere of Venus, indicating it is much more similar to Earth and Mars than previously thought. Huge hurricane-like vortices have been found above the poles of the planet and as yet unidentified UV absorbers that form mysterious dark bands in the upper atmosphere. At 70 km and below, water vapor and sulfur dioxide combine to form sulfuric acid droplets that create a haze above the cloud tops. Thermophilic acidophiles, such as have recently been discovered on Earth, could possibly survive in the hot sulfuric acid droplets that exist in the upper atmosphere of Venus. In order to understand how to search for life elsewhere in the Solar System, over 40 VIRTIS images of Earth from Venus have been obtained to search for evidence of life on Earth. The signatures of water and molecular Oxygen were detected in the Earth s atmosphere, but the atmosphere of Venus also exhibits these signatures. The water and water ice are far more abundant on comet, the polar caps and permafrost of Mars and the icy moons of Jupiter and Saturn. These "frozen worlds" of our Solar System, are much more promising regimes where extant or extinct microbial life may exist. The ESA Mars Advanced Radar for

  1. Qualitative and Quantitative Analysis of Flower Pigments in Chocolate Cosmos, Cosmos atrosanguineus, and its Hybrids.

    PubMed

    Amamiya, Kotarou; Iwashina, Tsukasa

    2016-01-01

    Two major anthocyanins, cyanidin 3-O-glucoside and 3-O-rutinoside, were isolated from the black flowers of Cosmos atrosanguineus cultivar 'Choco Mocha', together with three minor anthocyanins, cyanidin 3-O-malonylglucoside, pelargonidin 3-O-glucoside and 3-O-rutinoside. A chalcone, butein 4'-O-glucoside and three minor flavanones were isolated from the red flowers of C. atrosanguineis x C. sulphureus cultivar 'Rouge Rouge'. The anthocyanins and chalcone accumulation of cultivar 'Choco Mocha' and its hybrid cultivars 'Brown Rouge', 'Forte Rouge', 'Rouge Rouge' and 'Noel Rouge' was surveyed by quantitative HPLC. Total anthocyanins of black flower cultivars 'Choco Mocha' and 'Brown Rouge' were 3-4-folds higher than that of the red flower cultivar 'Noel Rouge'. On the other hand, total chalcone of 'Noel Rouge' was 10-77-folds higher compared with those of other cultivars, 'Brown Rouge', 'Forte Rouge' and 'Rouge Rouge'. It was shown that the flower color variations from red to black of Chocolate Cosmos and its hybrids are due to the difference in the relative amounts of anthocyanins and chalcone. PMID:26996024

  2. The Subaru COSMOS 20: Subaru optical imaging of the HST COSMOS field with 20 filters*

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshiaki; Kajisawa, Masaru; Kobayashi, Masakazu A. R.; Shioya, Yasuhiro; Nagao, Tohru; Capak, Peter L.; Aussel, Herve; Ichikawa, Akie; Murayama, Takashi; Scoville, Nick Z.; Ilbert, Olivier; Salvato, Mara; Sanders, David B. B.; Mobasher, Bahram; Miyazaki, Satoshi; Komiyama, Yutaka; Le Fèvre, Olivier; Tasca, Lidia; Lilly, Simon; Carollo, Marcella; Renzini, Alvio; Rich, Michael; Schinnerer, Eva; Kaifu, Norio; Karoji, Hiroshi; Arimoto, Nobuo; Okamura, Sadanori; Ohta, Kouji; Shimasaku, Kazuhiro; Hayashino, Tomoki

    2015-12-01

    We present both the observations and the data reduction procedures of the Subaru COSMOS 20 project, an optical imaging survey of the HST COSMOS field, carried out by using Suprime-Cam on the Subaru Telescope with the following 20 optical filters: six broad-band (B, g', V, r', i', and z'), two narrow-band (NB711 and NB816), and 12 intermediate-band filters (IA427, IA464, IA484, IA505, IA527, IA574, IA624, IA679, IA709, IA738, IA767, and IA827). Part of this project is described in Taniguchi et al. (2007, ApJS, 172, 9) and Capak et al. (2007, ApJS, 172, 99) for the six broad-band and one narrow-band (NB816) filter data. In this paper, we present details of the observations and data reduction for the remaining 13 filters (the 12 IA filters and NB711). In particular, we describe the accuracy of both the photometry and astrometry in all the filter bands. We also present the optical properties of the Suprime-Cam IA filter system in appendices.

  3. Qualitative and Quantitative Analysis of Flower Pigments in Chocolate Cosmos, Cosmos atrosanguineus, and its Hybrids.

    PubMed

    Amamiya, Kotarou; Iwashina, Tsukasa

    2016-01-01

    Two major anthocyanins, cyanidin 3-O-glucoside and 3-O-rutinoside, were isolated from the black flowers of Cosmos atrosanguineus cultivar 'Choco Mocha', together with three minor anthocyanins, cyanidin 3-O-malonylglucoside, pelargonidin 3-O-glucoside and 3-O-rutinoside. A chalcone, butein 4'-O-glucoside and three minor flavanones were isolated from the red flowers of C. atrosanguineis x C. sulphureus cultivar 'Rouge Rouge'. The anthocyanins and chalcone accumulation of cultivar 'Choco Mocha' and its hybrid cultivars 'Brown Rouge', 'Forte Rouge', 'Rouge Rouge' and 'Noel Rouge' was surveyed by quantitative HPLC. Total anthocyanins of black flower cultivars 'Choco Mocha' and 'Brown Rouge' were 3-4-folds higher than that of the red flower cultivar 'Noel Rouge'. On the other hand, total chalcone of 'Noel Rouge' was 10-77-folds higher compared with those of other cultivars, 'Brown Rouge', 'Forte Rouge' and 'Rouge Rouge'. It was shown that the flower color variations from red to black of Chocolate Cosmos and its hybrids are due to the difference in the relative amounts of anthocyanins and chalcone.

  4. 77 FR 23318 - Culturally Significant Object Imported for Exhibition Determinations: “African Cosmos: Stellar Arts”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Object Imported for Exhibition Determinations: ``African Cosmos: Stellar Arts... Cosmos: Stellar Arts,'' imported from abroad for temporary exhibition within the United States, is...

  5. Fitness of the Cosmos for Life

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Conway Morris, Simon; Freeland, Stephen J.; Harper, Charles L., Jr.

    2007-12-01

    Foreword: The improbability of life George M. Whitesides; Part I. The Fitness of 'Fitness' - Henderson in Context: 1. Locating 'fitness' and Lawrence J. Henderson Everett Mendelsohn; 2. Revisiting The Fitness of the Environment Owen Gingerich; 3. Is fine-tuning remarkable? John F. Haught; 4. Complexity in context: the metaphysical implications of evolutionary theory Edward T. Oakes; 5. Tuning fine-tuning Ernan Mcmullin; Part II. The Fitness of the Cosmic Environment: 6. Fitness and the cosmic environment Paul C. W. Davies; 7. The interconnections between cosmology and life Mario Livio; 8. Chemistry and sensitivity John D. Barrow; 9. Fitness of the cosmos for the origin and evolution of life: from biochemical fine-tuning to the Anthropic Principle Julian Chela-Flores; Part III. The Fitness of the Terrestrial Environment: 10. How biofriendly is the universe? Christian de Duve; 11. Tuning into the frequencies of life: a roar of static or a precise signal? Simon Conway Morris; 12. Life on earth: the role of proteins Jayanth R. Banavar and Amos Maritan; 13. Protein-based life as an emergent property of matter: the nature and biological fitness of the protein folds Michael J. Denton; 14. Could an intelligent alien predict earth's biochemistry? Stephen J. Freeland; 15. Would Venus evolve on Mars? Bioenergetic constraints, allometric trends, and the evolution of life-history invariants Jeffrey P. Schloss; Part IV. The Fitness of the Chemical Environment: 16. Creating a perspective for comparing Albert Eschenmoser; 17. Fine-tuning and interstellar chemistry William Klemperer; 18. Framing the question of fine-tuning for intermediary metabolism Eric Smith and Harold J. Morowitz; 19. Coarse-tuning the origin of life? Guy Ourisson; 20. Plausible lipid-like peptides: prebiotic molecular self-assembly in water Shuguang Zhang; 21. Evolution revisited by inorganic chemists R. J. P. Williams and J. J. R. Fraústo da Silva; Index.

  6. GREEN GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Pan, Zhizheng; Kong, Xu; Fan, Lulu E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  7. Fitness of the Cosmos for Life

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Conway Morris, Simon; Freeland, Stephen J.; Harper, Charles L., Jr.

    2012-08-01

    Foreword: The improbability of life George M. Whitesides; Part I. The Fitness of 'Fitness' - Henderson in Context: 1. Locating 'fitness' and Lawrence J. Henderson Everett Mendelsohn; 2. Revisiting The Fitness of the Environment Owen Gingerich; 3. Is fine-tuning remarkable? John F. Haught; 4. Complexity in context: the metaphysical implications of evolutionary theory Edward T. Oakes; 5. Tuning fine-tuning Ernan Mcmullin; Part II. The Fitness of the Cosmic Environment: 6. Fitness and the cosmic environment Paul C. W. Davies; 7. The interconnections between cosmology and life Mario Livio; 8. Chemistry and sensitivity John D. Barrow; 9. Fitness of the cosmos for the origin and evolution of life: from biochemical fine-tuning to the Anthropic Principle Julian Chela-Flores; Part III. The Fitness of the Terrestrial Environment: 10. How biofriendly is the universe? Christian de Duve; 11. Tuning into the frequencies of life: a roar of static or a precise signal? Simon Conway Morris; 12. Life on earth: the role of proteins Jayanth R. Banavar and Amos Maritan; 13. Protein-based life as an emergent property of matter: the nature and biological fitness of the protein folds Michael J. Denton; 14. Could an intelligent alien predict earth's biochemistry? Stephen J. Freeland; 15. Would Venus evolve on Mars? Bioenergetic constraints, allometric trends, and the evolution of life-history invariants Jeffrey P. Schloss; Part IV. The Fitness of the Chemical Environment: 16. Creating a perspective for comparing Albert Eschenmoser; 17. Fine-tuning and interstellar chemistry William Klemperer; 18. Framing the question of fine-tuning for intermediary metabolism Eric Smith and Harold J. Morowitz; 19. Coarse-tuning the origin of life? Guy Ourisson; 20. Plausible lipid-like peptides: prebiotic molecular self-assembly in water Shuguang Zhang; 21. Evolution revisited by inorganic chemists R. J. P. Williams and J. J. R. Fraústo da Silva; Index.

  8. Future investigations onboard Soviet biosatellites of the Cosmos series.

    PubMed

    Ilyin, E A

    1981-01-01

    Many rat experiments onboard Cosmos biosatellites have furnished information concerning the effects of weightlessness, artificial gravity, and ionizing radiation combined with weightlessness on structural and biochemical parameters of the animal body. The necessity to expand the scope of physiological investigations has led to the project of flight primate studies. It is planned to carry out the first primate experiments onboard the Cosmos biosatellite in 1982. At present investigations of weightlessness effects on the cardiovascular and vestibular systems, higher nervous activity, skeletal muscles and biorhythms of two rhesus monkeys are being developed and tested. It is also planned to conduct a study of weightlessness effects on embryogenesis of rats and bioenergetics of living systems onboard the same biosatellite. Further experiments onboard Cosmos biosatellites are planned.

  9. Identification of Two Bright z > 3 Submillimeter Galaxy Candidates in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Younger, J. D.; Fazio, G. G.; Gurwell, M.; Espada, D.; Bertoldi, F.; Capak, P.; Wilner, D.

    2010-08-01

    We present high-resolution interferometric Submillimeter Array imaging at 890 μm (~2'' resolution) of two millimeter selected galaxies—MMJ100015+021549 and MMJ100047+021021—discovered with the Max-Planck Millimeter Bolometer (MAMBO) on the IRAM 30 m telescope and also detected with Bolocam on the CSO, in the COSMOS field. The first source is significantly detected at the ~11σ level, while the second source is tentatively detected at the ~4σ level, leading to a positional accuracy of ~0farcs2-0farcs3. MM100015+021549 is identified with a faint radio and K-band source. MMJ100047+021021 shows no radio emission and is tentatively identified with a very faint K-band peak which lies at ~1farcs2 from a clumpy optical source. The submillimeter-to-radio flux ratio for MM100015+021549 yields a redshift of ~4.8, consistent with the redshift implied by the UV-to-submillimeter photometry, z ~ 3.0-5.0. We find evidence for warm dust in this source with an infrared luminosity in the range ~(0.9-2.5) × 1013 L sun, supporting the increasing evidence for a population of luminous submillimeter galaxies at z > 3. Finally, the lack of photometric data for MMJ100047+021021 does not allow us to investigate its properties in detail; however, its submillimeter-to-radio flux ratio implies z > 3.5. Based on observations obtained with the SMA, which is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. Also based on observations obtained, within the COSMOS Legacy Survey, with the Institut de Radioastronomie Millimetrique (IRAM) 30 m telescope, the Caltech Submillimeter Observatory (CSO), the APEX telescope, the Hubble Space Telescope (HST), the Spitzer Space Telescope, the Subaru telescope, the Kitt Peak National Observatory (KPNO), the Cerro Tololo Inter-American Observatory (CTIO), the National Optical Astronomy Observatory (NOAO), the

  10. Caltrans Keeps the Spitzer Pipelines Moving

    NASA Technical Reports Server (NTRS)

    Lee, Wen; Laher, Russ; Fowler, John; Moshir, Mehrdad

    2004-01-01

    The computer pipelines used to process digital infrared astronomical images from NASA's Spitzer Space Telescope require various input calibration-data files for characterizing the attributes and behaviors of the onboard focal-plane-arrays and their detector pixels, such as operability, dark-current offset, linearity, non- uniformity, muxbleed, droop, and point-response functions. The telescope has three very different science instruments, each with three or four spectral-band-pass channels, depending on the instrument. Moreover, each instrument has various operating modes (e-g., full array or sub-array in one case) and parameters (e.g., integration time). Calibration data that depend on these considerations are needed by pipelines for generating both science products (production pipelines) and higher-level calibration products (calibration pipelines). The calibration files are created in various formats either 'off-line' or by the aforementioned calibration pipelines, depending on the above configuration details. Also, the calibration files are generally applicable to a certain time period and therefore must be selected accordingly for a given raw input image to be correctly processed. All of this complexity in selecting and retrieving calibration files for pipeline processing is handled by a procedural software-program called 'caltrans' . This software, which is implemented in C and interacts with an Informix database, was developed at the Spitzer Science Center (SSC) and is now deployed in SSC daily operations. The software is rule-based, very flexible, and, for efficiency, capable of retrieving multiple calibration files with a single software-execution command.

  11. Galactic Distribution of Planets Spitzer Microlens Parallaxes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Carey, Sean; Yee, Jennifer

    2016-08-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 700 events, including 18 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by 1 AU in projection. As we have demonstrated in two previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. For non-planetary events it can be combined with a Galactic model to estimate these quantities with factor 1.4 precision. Hence, the cumulative distributions of planetary events and all events can be compared to determine the relative frequency of planets in the Galactic disk and bulge. The results will be combined with those of current/previous Spitzer campaigns and the current Kepler campaign. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the new KMTNet observing strategy that covers 80 sq.deg at >0.4/hr cadence, 24/7 from 3 southern observatories. This same observing program also provides a unique probe of dark objects. It will yield the first mass-measurement based determination of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  12. Spitzer Observations of Nearby M Dwarfs

    NASA Astrophysics Data System (ADS)

    Riaz, Basmah; Mullan, D. J.; Gizis, John E.

    2006-10-01

    We present Spitzer IRAC and MIPS observations for a sample of eight M dwarfs: six dMe, one dM, and one sdMe star. All of our targets are found to have SEDs that are fitted within the error bars by a purely photospheric spectrum out to 24 μm. We find no evidence for IR excess. None of our targets are detected in the MIPS 70 and 160 μm bands. The estimated ages for all are >10 Myr, suggesting that enough disk dissipation has occurred within the inner several AU of the star. For four of these, Mullan et al. had reported IRAS detections at 12 μm, although the reported fluxes were below the 5 σ IRAS detection limit (~0.2 Jy). Mullan et al. also pointed out that V-K colors in dMe stars are larger than those in dM stars, possibly because of the presence of a chromosphere. Here we suggest that metallicity effects provide a better explanation of the V-K data. For reasons of observational selection, our targets are not the most active flare stars known, but being dMe stars indicates the presence of a chromosphere. Scaling from Houdebine's model of the AU Mic chromosphere, we have computed the free-free IR excesses for a range of densities. Our Spitzer 24 μm data show that the chromospheres in two of our targets are less dense than in AU Mic by a factor of 10 or more. This is consistent with the fact that our sample includes the less active flare stars. Our models also indicate that the chromospheric contribution to the observed AU Mic emission at submillimeter wavelengths is only about 2%.

  13. The Chandra Cosmos Legacy Survey: Overview and Point Source Catalog

    NASA Astrophysics Data System (ADS)

    Civano, F.; Marchesi, S.; Comastri, A.; Urry, M. C.; Elvis, M.; Cappelluti, N.; Puccetti, S.; Brusa, M.; Zamorani, G.; Hasinger, G.; Aldcroft, T.; Alexander, D. M.; Allevato, V.; Brunner, H.; Capak, P.; Finoguenov, A.; Fiore, F.; Fruscione, A.; Gilli, R.; Glotfelty, K.; Griffiths, R. E.; Hao, H.; Harrison, F. A.; Jahnke, K.; Kartaltepe, J.; Karim, A.; LaMassa, S. M.; Lanzuisi, G.; Miyaji, T.; Ranalli, P.; Salvato, M.; Sargent, M.; Scoville, N. J.; Schawinski, K.; Schinnerer, E.; Silverman, J.; Smolcic, V.; Stern, D.; Toft, S.; Trakhtenbrot, B.; Treister, E.; Vignali, C.

    2016-03-01

    The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg2 of the COSMOS field with an effective exposure of ≃ 160 ks over the central 1.5 deg2 and of ≃ 80 ks in the remaining area. The survey is the combination of 56 new observations obtained as an X-ray Visionary Project with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2 × 10-5. We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft, and hard band). The limiting depths are 2.2 × 10-16, 1.5 × 10-15, and 8.9 × 10-16 {\\text{erg cm}}-2 {{{s}}}-1 in the 0.5-2, 2-10, and 0.5-10 keV bands, respectively. The observed fraction of obscured active galactic nuclei with a column density >1022 cm-2 from the hardness ratio (HR) is ˜50{}-16+17%. Given the large sample we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5%-10%. For the first time we compute number counts for obscured (HR > -0.2) and unobscured (HR < -0.2) sources and find significant differences between the two populations in the soft band. Due to the unprecedent large exposure, COSMOS-Legacy area is three times larger than surveys at similar depths and its depth is three times fainter than surveys covering similar areas. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come.

  14. CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY

    SciTech Connect

    Rettura, A.; Stern, D.; Martinez-Manso, J.; Gettings, D.; Gonzalez, A. H.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Stanford, S. A.; Bartlett, J. G.

    2014-12-20

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg{sup 2} Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density n{sub c}=(0.7{sub −0.6}{sup +6.3})×10{sup −7} h{sup 3} Mpc{sup −3} and a spatial clustering correlation scale length r {sub 0} = (32 ± 7) h {sup –1} Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M {sub min}, we derive that at z = 1.5 these clusters reside in halos larger than M{sub min}=1.5{sub −0.7}{sup +0.9}×10{sup 14} h{sup −1} M{sub ⊙}. We find that the mean mass of our cluster sample is equal to M{sub mean}=1.9{sub −0.8}{sup +1.0}×10{sup 14} h{sup −1} M{sub ⊙}; thus, our sample contains the progenitors of

  15. Astrobiology: traces of life in the cosmos

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Rozanov, Alexei Y.

    2002-07-01

    The discovery of traces of life in the ancient Mars meteorite triggered the development of the rapidly emerging field of Astrobiology. Astrobiologists are seeking to develop conclusive methods to recognize biosignatures and microfossils of bacteria and other microbiota as well as to understand the spatial, temporal, environmental and chemical limitations of microbial extremophiles. Recent discoveries have revealed the great distribution and diversity of microbial extremophiles on Earth and profoundly increased the probability that life may exist elsewhere in the Cosmos. The rapidly emerging science of Bacterial Paleontology has provided important new information critical to the recognition of fossil bacteria on Earth and in Astromaterials. We have recently conducted independent scanning electron microscopy and x-ray analysis investigations in the US and Russia in order to better understand the morphology and chemical composition of microfossils in ancient terrestrial rocks and carbonaceous meteorites. In this paper, we review some aspects of microbial extremophiles of Earth as modals for life on other bodies of the Solar System. We consider several of the important chemical, mineral and morphological biomarkers that provide definitive evidence of biogenic activity in ancient rocks and meteorites. We present Environmental Scanning Electron Microscope images of microfossils found in-situ in freshly fractured meteorite surfaces and describe Energy Dispersive Spectroscopy and Link microprobe analysis of the chemical elements in the mineralized and/or kerogenous microfossils and meteorite rock matrix. We also discuss technqiues and methods that may be used to help discriminate indigenous microfosils from recent terrestrial contaminants. We will also present new data from our in-situ investigations of living cyanobacteria and bacteria and freshly broken surfaces of terrestrial rocks and meteorites. Comparative analysis of these images are interpreted as providing

  16. MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Stern, Daniel; Assef, Roberto J.; Eisenhardt, Peter; Benford, Dominic J.; Blain, Andrew; Cutri, Roc; Griffith, Roger L.; Jarrett, T. H.; Masci, Frank; Tsai, Chao-Wei; Yan, Lin; Dey, Arjun; Lake, Sean; Petty, Sara; Wright, E. L.; Stanford, S. A.; Harrison, Fiona; Madsen, Kristin

    2012-07-01

    The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 - W2 {>=} 0.8 (i.e., [3.4]-[4.6] {>=}0.8, Vega), which identifies 61.9 {+-} 5.4 active galactic nucleus (AGN) candidates per deg{sup 2} to a depth of W2 {approx} 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 {mu}Jy at 4.6 {mu}m, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.

  17. US experiments flown on the Soviet satellite COSMOS 936

    NASA Technical Reports Server (NTRS)

    Rosenzweig, S. N.; Souza, K. A.

    1978-01-01

    Results of spaceborne experiments onboard the Cosmos 936 satellite are reported. Alterations in normal bone chemistry, muscle structure, and general physiology resulting from spaceflight are covered along with measurements of cosmic radiation and its potential hazard to man during prolonged spaceflights. Postflight activities involving the seven U.S. experiments are emphasized.

  18. Bijuralism in Law's Empire and in Law's Cosmos.

    ERIC Educational Resources Information Center

    Kasirer, Nicholas

    2002-01-01

    Using the example of McGill University's bijural program, explores how teaching the common and civil law traditions together provides an opportunity to teach in law's "cosmos" rather than its "empire," so that a bijural legal education can plainly and confidently ally itself with the great university tradition of prizing knowledge over…

  19. [COSMOS motion design optimization in the CT table].

    PubMed

    Shang, Hong; Huang, Jian; Ren, Chao

    2013-03-01

    Through the CT Table dynamic simulation by COSMOS Motion, analysis the hinge of table and the motor force, then optimize the position of the hinge of table, provide the evidence of selecting bearing and motor, meanwhile enhance the design quality of the CT table and reduce the product design cost.

  20. Emerging Adolescence: Finding One's Place in the Cosmos.

    ERIC Educational Resources Information Center

    Schaefer, Patricia

    2000-01-01

    Discusses emerging characteristics of early adolescents from a Montessorian perspective. Considers adolescents' revelations related to cosmic education, their need to serve, their need to think and to feel, and their need to know the cosmos through finding one's place in it. Discusses samples from students' cosmic autobiographies. (KB)

  1. An Interactive Multimedia Learning Environment for VLSI Built with COSMOS

    ERIC Educational Resources Information Center

    Angelides, Marios C.; Agius, Harry W.

    2002-01-01

    This paper presents Bigger Bits, an interactive multimedia learning environment that teaches students about VLSI within the context of computer electronics. The system was built with COSMOS (Content Oriented semantic Modelling Overlay Scheme), which is a modelling scheme that we developed for enabling the semantic content of multimedia to be used…

  2. US experiment flown on the Soviet biosatellite Cosmos 1667

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Editor); Skidmore, Michael G. (Editor)

    1994-01-01

    Two male young-adult rhesus monkeys were flown on the Soviet Biosatellite Cosmos 1667 for seven days from July 10-17, 1985. Both animals were instrumented to record neurophysiological parameters. One animal, Gordyy, was additionally instrumented to record cardiovascular changes. Space capsule and environmental parameters were very similar to those of previous missions. On Cosmos 1514, which flew for five days in 1983, one animal was fitted with a left carotid artery cuff to measure blood pressure and flow velocity. An additional feature of Cosmos 1667 was a postflight control study using the flight animal. Intermittent postural tilt tests were also conducted before and after spaceflight and synchronous control studies, to simulate the fluid shifts associated with spaceflight. The experiment results support the conclusion derived from Cosmos 1514 that significant cardiovascular changes occur with spaceflight. The changes most clearly seen were rapid initial decreases in heart rate and further decreases with continued exposure to microgravity. The triggering mechanism appeared to be a headward shift in blood and tissue fluid volume which, in turn, triggered adaptive cardiovascular changes. Adaptive changes took place rapidly and began to stabilize after the first two days of flight. However, these changes did not plateau in the animal by the last day of the mission.

  3. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J.-P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J.-F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy \\sigma _{\\Delta z/(1+z_{spec})}\\sim 0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band. Based on observations by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under

  4. Spitzer Secondary Eclipses of Two Hubble-observed Exoplanets

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Benneke, Bjoern; Fraine, Jonathan; Knutson, Heather; Lewis, Nikole; Mandell, Avi; Sing, David; Todorov, Kamen

    2015-10-01

    We propose Spitzer secondary eclipse observations of two key exoplanets (WASP-76b and HAT-P-38b) that are approved for transmission spectroscopy by HST/WFC3 in our Large Cycle-23 program. Spitzer eclipse data will provide temperature information needed to determine their atmospheric scale heights, and thereby infer their atmospheric water abundances (proxy for metallicity) from the WFC3 spectra. Potential molecular absorption that falls within the Spitzer bandpasses will also help to measure the atmospheric metallicity of these planets, and will be minimally affected by clouds - that can often frustrate transmission spectroscopy. Beyond the utility to our Hubble analyses, both planets have high scientific value for Spitzer eclipse observations in their own right. WASP-76b is a strongly irradiated and very hot, large radius giant planet. Its combination of strong irradiation and large radius puts it in an atmospheric regime where few planets have been observed by Spitzer in eclipse. HAT-P-38b is a sub-Saturn mass planet in a relatively cool temperature regime (1080 Kelvins) where Kammer et al. recently found that the ratio of planetary brightness temperature in the two Spitzer bands is potentially correlated with planetary mass. The low mass of HAT-P-38b (0.27 Jupiters) gives it substantial leverage to test that correlation.

  5. The Chandra COSMOS Legacy survey: optical/IR identifications

    NASA Astrophysics Data System (ADS)

    Marchesi, S.; Civano, F.; Elvis, M.; Salvato, M.; Brusa, M.; Comastri, A.; Gilli, R.; Hasinger, G.; Lanzuisi, G.; Miyaji, T.; Treister, E.; Urry, C. M.; Vignali, C.; Zamorani, G.; Allevato, V.; Cappelluti, N.; Cardamone, C.; Finoguenov, A.; Griffiths, R. E.; Karim, A.; Laigle, C.; LaMassa, S. M.; Jahnke, K.; Ranalli, P.; Schawinski, K.; Schinnerer, E.; Silverman, J. D.; Smolcic, V.; Suh, H.; Trakhtenbrot, B.

    2016-01-01

    We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 deg2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.

  6. The Chandra COSMOS Legacy survey: optical/IR identifications

    NASA Astrophysics Data System (ADS)

    Marchesi, S.; Civano, F.; Elvis, M.; Salvato, M.; Brusa, M.; Comastri, A.; Gilli, R.; Hasinger, G.; Lanzuisi, G.; Miyaji, T.; Treister, E.; Urry, C. M.; Vignali, C.; Zamorani, G.; Allevato, V.; Cappelluti, N.; Cardamone, C.; Finoguenov, A.; Griffiths, R. E.; Karim, A.; Laigle, C.; LaMassa, S. M.; Jahnke, K.; Ranalli, P.; Schawinski, K.; Schinnerer, E.; Silverman, J. D.; Smolcic, V.; Suh, H.; Trakhtenbrot, B.

    2016-01-01

    We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 deg2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2-10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.

  7. Spitzer IRS Observations of FU Orionis Objects

    NASA Astrophysics Data System (ADS)

    Green, J. D.; Hartmann, L.; Calvet, N.; Watson, D. M.; Ibrahimov, M.; Furlan, E.; Sargent, B.; Forrest, W. J.

    2006-09-01

    We present 5-35 μm spectra, taken with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope, of five FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, BBW 76, and V346 Nor. All but V346 Nor reveal amorphous silicate grains in emission at 10 and 20 μm, and show water-vapor absorption bands at 5.8 and 6.8 μm and SiO or possibly methane absorption at 8 μm. These absorption features closely match these bands in model stellar photospheres-signs of the gaseous photospheres of the inner regions of these objects' accretion disks. The continuum emission at 5-8 μm is also consistent with such disks, and, for FU Orionis and BBW 76, longer wavelength emission may be fit by a model that includes moderate disk flaring. V1057 Cyg and V1515 Cyg have much more emission at longer wavelengths than the others, perhaps evidence of a substantial remnant of their natal, infalling envelopes.

  8. Spitzer Meets K2: Spitzer Studies of Candidate Exoplanets Identified by K2

    NASA Astrophysics Data System (ADS)

    Werner, Michael W.; Spitzer/K2 Study Team

    2016-01-01

    We are in the midst of a ~450 hr program of Spitzer photometry of candidate transiting planets orbiting M dwarf stars, identified in the K2 fields. Whereas the Kepler prime mission eschewed M stars, they have become a major focus of the community-driven target selection for K2. M stars are the most common stars in the galaxy, and planets orbiting M stars can be very attractive candidates for transit and eclipse atmospheric studies, including studies aimed at exploring potentially habitable exoplanets. We will review and show the results of the observations planned and executed to date, which total 21 transits of 16 planets orbiting 13 stars. Our results greatly improve on the characterization of the exoplanets and their orbits over what is possible from the K2 data alone. In addition, the improved ephemerides we generate will facilitate studies of interesting K2 targets from JWST. __________________________________________This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  9. DECOMPOSING STAR FORMATION AND ACTIVE GALACTIC NUCLEUS WITH SPITZER MID-INFRARED SPECTRA: LUMINOSITY FUNCTIONS AND CO-EVOLUTION

    SciTech Connect

    Fu Hai; Scoville, N. Z.; Yan Lin; Capak, P.; Aussel, H.; Le Floc'h, E.; Salvato, M.; Kartaltepe, J. S.; Frayer, D. T.; Sanders, D. B.; Sheth, K.; Taniguchi, Y.

    2010-10-10

    We present Spitzer 7-38 {mu}m spectra for a 24 {mu}m flux-limited sample of galaxies at z {approx} 0.7 in the COSMOS field. The detailed high-quality spectra allow us to cleanly separate star formation (SF) and active galactic nucleus (AGN) in individual galaxies. We first decompose mid-infrared luminosity functions (LFs). We find that the SF 8 {mu}m and 15 {mu}m LFs are well described by Schechter functions. AGNs dominate the space density at high luminosities, which leads to the shallow bright-end slope of the overall mid-infrared LFs. The total infrared (8-1000 {mu}m) LF from 70 {mu}m selected galaxies shows a shallower bright-end slope than the bolometrically corrected SF 15 {mu}m LF, owing to the intrinsic dispersion in the mid-to-far-infrared spectral energy distributions. We then study the contemporary growth of galaxies and their supermassive black holes (BHs). Seven of the thirty-one luminous infrared galaxies with Spitzer spectra host luminous AGNs, implying an AGN duty cycle of 23% {+-} 9%. The time-averaged ratio of BH accretion rate and SF rate matches the local M{sub BH} - M{sub bulge} relation and the M{sub BH} - M{sub host} relation at z {approx} 1. These results favor co-evolution scenarios in which BH growth and intense SF happen in the same event but the former spans a shorter lifetime than the latter. Finally, we compare our mid-infrared spectroscopic selection with other AGN identification methods and discuss candidate Compton-thick AGNs in the sample. While only half of the mid-infrared spectroscopically selected AGNs are detected in X-ray, {approx}90% of them can be identified with their near-infrared spectral indices.

  10. VizieR Online Data Catalog: Spitzer-CANDELS catalog within 5 deep fields (Ashby+, 2015)

    NASA Astrophysics Data System (ADS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Dunlop, J. S.; Egami, E.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hora, J. L.; Huang, J.-S.; Koekemoer, A. M.; Labbe, I.; Wang, Z.

    2015-08-01

    We chose to locate S-CANDELS inside the wider and shallower fields already covered by Spitzer Extended Deep Survey (SEDS), in regions that enjoy deep optical and NIR imaging from HST/CANDELS. These S-CANDELS fields are thus the Extended GOODS-south (aka the GEMS field, hereafter ECDFS; Rix et al. 2004ApJS..152..163R; Castellano et al. 2010A&A...511A..20C), the Extended GOODS-north (HDFN; Giavalisco et al. 2004, II/261; Wang et al. 2010, J/ApJS/187/251; Hathi et al. 2012ApJ...757...43H; Lin et al. 2012ApJ...756...71L), the UKIDSS UDS (aka the Subaru/XMM Deep Field, Ouchi et al. 2001ApJ...558L..83O; Lawrence et al. 2007, II/319), a narrow field within the EGS (Davis et al. 2007ApJ...660L...1D; Bielby et al. 2012A&A...545A..23B), and a strip within the UltraVista deep survey of the larger COSMOS field (Scoville et al. 2007ApJS..172...38S; McCracken et al. 2012, J/A+A/544/A156). The S-CANDELS observing strategy was designed to maximize the area covered to full depth within the CANDELS area. Each field was visited twice with six months separating the two visits. Table 1 lists the epochs for each field. All of the IRAC full-depth coverage is within the SEDS area (Ashby et al. 2013, J/ApJ/769/80), and almost all is within the area covered by HST for CANDELS. (6 data files).

  11. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; Croton, D.; Dave, R.; Dunlop, J. S.; Egami, E.; Faber, S.; Finlator, K.; Grogin, N. A.; Guhathakurta, P.; Hernquist, L.; Hora, J. L.; Illingworth, G.; Kashlinsky, A; Koekmoer, A. M.; Koo, D. C.; Moseley, H.

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  12. SEDS: The Spitzer Extended Deep Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.; SEDS Team

    2009-05-01

    The Spitzer Extended Deep Survey (SEDS) will provide a unique opportunity to obtain the first complete census of the assembly of stellar mass and black holes as a function of cosmic time back to the era of reionization, yielding unique information on galaxy formation in the early Universe. The survey will also measure galaxy clustering over a wide redshift range, which will provide the critical link between galaxies and their dark matter halos and critical tests of models of early star formation. SEDS will achieve these goals by tracing the stellar mass growth in mass-selected samples of galaxies via their broadband spectral energy distributions. The baseline proposal is an unbiased survey with 12 hours/pointing at 3.6 and 4.5 microns over five well-studied fields of 0.90 square degree total. We expect to find (a) >10,000 galaxies at z = 4--6 (including 100 galaxies at z = 6), reaching galaxies down to 5 x 109 Msun at z = 6, necessary to robustly measure M* at that redshift, i.e., the galaxies that dominate the global stellar mass density, and (b) >100 massive galaxies at z = 7, which will firmly anchor the high mass end of the early galaxy populations and provide targets bright enough for future spectroscopic follow-up with 20--30 meter telescopes, JWST, and ALMA. The proposed five-field deep survey will enable several secondary science objectives. These include: (1) galaxy evolution in the redshift range z 1--4, (2) mid-infrared variability for AGN identification, and (3) measurement of the cosmic infrared background spatial fluctuations. SEDS is the most efficient and most highly optimized program that we can imagine to achieve core scientific goals of the warm mission and is a unique program that will leave an important legacy for years to come.

  13. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    SciTech Connect

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard E-mail: mlacy@nrao.edu E-mail: eilat.glikman@yale.edu E-mail: bschulz@ipac.caltech.edu

    2012-10-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 A emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  14. Panel Discussion: Life in the Cosmos

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Water appears to be essential to all life on Earth. For this reason, "Follow the Water" has been adopted as a mantra for the search for Life in the Cosmos. Expeditions have helped to establish the limits and biodiversity of life in the most extreme environments on Earth. Microbial extremophiles inhabit acidic streams; hypersaline and hyperalkaline lakes and pools; the cold deep sea floor, permafrost, rocks, glaciers, and perennially ice-covered lakes of the polar environments; geysers, volcanic fumaroles, hydrothermal vents and hot rocks deep within the Earth's crust. The ESA Venus Express Spacecraft entered Venusian Orbit in 2006 and continues to produce exciting results. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument made the first detection of hydroxyl in the atmosphere of Venus, indicating it is much more similar to Earth and Mars than previously thought. Huge hurricane-like vortices have been found above the poles of the planet and as yet unidentified UV absorbers that form mysterious dark bands in the upper atmosphere. At 70 km and below, water vapor and sulfur dioxide combine to form sulfuric acid droplets that create a haze above the cloud tops. Thermophilic acidophiles, such as have recently been discovered on Earth, could possibly survive in the hot sulfuric acid droplets that exist in the upper atmosphere of Venus. In order to understand how to search for life elsewhere in the Solar System, over 40 VIRTIS images of Earth from Venus have been obtained to search for evidence of life on Earth. The signatures of water and molecular Oxygen were detected in the Earth s atmosphere, but the atmosphere of Venus also exhibits these signatures. The water and water ice are far more abundant on comet, the polar caps and permafrost of Mars and the icy moons of Jupiter and Saturn. These "frozen worlds" of our Solar System, are much more promising regimes where extant or extinct microbial life may exist. The ESA Mars Advanced Radar for

  15. Spitzer Space Telescope Research Program for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Daou, D.

    2005-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Space Telescope (SST) archives, and to receive training in infrared astronomy and observational techniques. The teachers also attended a workshop offered by the SSC to learn about the observation planning process, and telescope and instrument capabilities. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work on their data with SSC and NOAO scientists. This program allows a team of 12 teachers and their students to utilize up to 3.5 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. Leveraging on a well-established teacher professional development, the SSC is offering this program to teachers in the Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing program at the NOAO. This NSF-sponsored program touches the formal education community through a national audience of well-trained and supported middle and high school teachers.

  16. Cardiac morphology after conditions of microgravity during Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Goldstein, Margaret A.; Edwards, Robert J.; Schroeter, John P.

    1992-01-01

    Light- and electron-microscopic studies were performed on cardiac muscle from rats flown on Cosmos 2044 and from four control groups. Average cross-sectional area of myofibers was measured by video analysis of the light-microscopic images of papillary and ventricular muscle samples from all animals. This cross-sectional area was significantly decreased in flight rats (P = 0.03) compared with synchronous controls. Additional findings at the electron microscopic level consistent with this atrophy were obtained by stereological analysis and optical diffraction analysis of papillary muscle samples. Slightly higher mitochondrial volume density values and mitochondria-to-myofibril ratios as well as normal A-band spacings (d1,0) and Z-band spacings of myofibrils were observed in the tail-suspension and flight groups. General morphological features similar to those in ventricular samples from the previous Cosmos 1887 flight were observed.

  17. Nature of the 1100 Micron AzTEC-COSMOS Sources

    NASA Astrophysics Data System (ADS)

    Yun, Min Su; Aguirre, J.; Aretxaga, I.; Austermann, J.; Bock, J.; Fazio, G.; Huang, J.; Hughes, D.; Kang, Y.; Kim, S.; Lowenthal, J.; Ma, C.; Mauskopf, P.; Perera, T.; Sanders, D.; Scott, K.; Scoville, N.; Wilson, G.; Yoon, I.

    2006-12-01

    The Cosmic Evolution Survey (COSMOS) is a 2 square degree HST/ACS survey specifically designed to probe galaxy evolution as a function of time and environment (PI: N. Scoville). To take advantage of the extensive complementary databases already available through the COSMOS collaboration, we have undertaken a 1100 micron imaging survey of a 30' x 30' field centered just north of the earlier mm/submm surveys by the Bolocam on CSO and MAMBO on the IRAM 30-m telescope. In this poster paper, we will compare the results of the AzTEC and Bolocam surveys and discuss the nature of the AzTEC sources based on the existing multi-wavelength data in hand.

  18. The US Experiments Flown on the Soviet Biosatellite Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)

    1990-01-01

    Cosmos 1887, a biosatellite containing biological and radiation experiments from the Soviet Union, the United States and seven other countries, was launched on September 29, 1987. One Rhesus monkey's feeder stopped working two days into the flight and a decision was made to terminate the mission after 12 1/2 days. The biosatellite returned to Earth on October 12, 1987. A system malfunction, during the reentry procedure, caused the Cosmos 1887 spacecraft to land approximately 1800 miles beyond the intended landing site and delayed the start of the postflight procedures by approximately 44 hours. Further information on the conditions at landing and postflight activities is included in the Mission Operations portion of this document. U.S. and U.S.S.R. specialists jointly conducted 26 experiments on this mission, including the postflight transfer of data, hardware and biosamples to the U.S.

  19. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE

    SciTech Connect

    Lilly, Simon J.; Maier, Christian; Carollo, Marcella; Caputi, Karina; Le Brun, Vincent; Kneib, Jean-Paul; Le Fevre, Olivier; De la Torre, Sylvain; De Ravel, Loic; Mainieri, Vincenzo; Mignoli, Marco; Zamorani, Gianni; Bardelli, Sandro; Bolzonella, Micol; Coppa, Graziano; Scodeggio, Marco; Contini, Thierry; Bongiorno, Angela; Cucciati, Olga

    2009-10-01

    We present spectroscopic redshifts of a large sample of galaxies with I {sub AB} < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s{sup -1}, independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.

  20. Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Liou, Jer-Chi

    2010-01-01

    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models.

  1. SPS 'Fabric of the Cosmos' Science Cafés

    NASA Astrophysics Data System (ADS)

    Chakrabarti, A.

    2011-12-01

    Hosted by Brian Greene and based on his best selling book of the same title, The Fabric of the Cosmos is a new four part NOVA series that explores the deepest mysteries of space and time. The program was kicked off by more than 30 'Cosmic Cafes' around the country, as part of a Society of Physics Students, NOVA outreach effort funded by an NSF grant. A Cosmic Café is a science café based on the topics discussed in The Fabric of the Cosmos. Science cafes are open events for non-scientists, where they can have an informal discussion with a scientist in a very casual location, usually a restaurant, coffee shop, or a bar. During the summer I assisted in planning this kick off, by reviewing science café and The Fabric of the Cosmos resources and suggesting revisions to make them more relevant for an SPS audience. I also organized and moderated the first Cosmic Café. The café that I organized was discussion based, with the speaker, Dr. James Gates, starting with a short talk and then opening up the floor for questions. Organizing a Cosmic Café gave me first-hand experience with the challenges an SPS chapter might face while organizing a café themselves. I will discuss lessons learned and the effectiveness of the first ever themed science café blitz.

  2. SEDS: The Spitzer Extended Deep Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Willner, Steven; Arendt, Rick; Ashby, Matt; Barmby, Pauline; Bell, Eric; Bouwens, Rychard; Cattaneo, Andrea; Cox, Thomas J.; Croton, Darren; Dave, Romeel; Dunlop, James; Egami, Eiichi; Faber, Sandy; Finlator, Kristian; Guhathakurta, Puragra; Hernquist, Lars; Hora, Joseph; Huang, Jiasheng; Illingworth, Garth; Kashlinsky, Alexander; Koekemoer, Anton; Koo, David; Labbe, Ivo; Lai, Kamson; Li, Yuexing; Lin, Lihwai; Mather, John; Mo, Houjun; Moseley, Harvey; Nandra, Kirpal; Newman, Jeffrey; Noeske, Kai; Ouchi, Masami; Papovich, Casey; Rigopoulou, Dimitra; Rix, Hans-Walter; Robertson, Brant; Sarajedini, Vicki; Simard, Luc; Smith, Howard; Wechsler, Risa; Weiner, Ben; Wilson, Gillian; Wuyts, Stijn; Yamada, Toru; Yan, Haojing; van der Wel, Arjen

    2008-12-01

    The Spitzer Extended Deep Survey (SEDS) will provide a unique opportunity to obtain the first complete census of the assembly of stellar mass and black holes as a function of cosmic time back to the era of reionization, yielding unique information on galaxy formation in the early UniverseE The survey will also measure galaxy clustering over a wide redshift range, which will provide the critical link between galaxies and their dark matter halos and critical tests of models of early star formation. SEDS will achieve these goals by tracing the stellar mass growth in mass-selected samples of galaxies via their broadband spectral energy distributions. The baseline proposal is an unbiased survey with 12 hours/pointing at 3.6 and 4.5 microns over five well-studied fields of 0.90 square degree total. We expect to find (a) >10,000 galaxies at z D 4--6 (including ~1000 galaxies at z D 6), reaching galaxies down to ~5 x 10^9 Msun at z D 6, necessary to robustly measure M* at that redshift, i.e., the galaxies that dominate the global stellar mass density, and (b) >100 massive galaxies at z D 7, which will firmly anchor the high mass end of the early galaxy populations and provide targets bright enough for future spectroscopic follow-up with 20--30 meter telescopes, JWST, and ALMA. The proposed five-field deep survey will enable several secondary science objectives. These include: (1) galaxy evolution in the redshift range z ~ 1--4, (2) AGN variability, and (3) measurement of the cosmic infrared background spatial fluctuations. SEDS is the most efficient and most highly optimized program that we can imagine to achieve core scientific goals of the warm mission. The opportunity to probe the Universe so widely and at such a depth at mid-IR wavelengths will not come again in the foreseeable future. SEDS is a unique program that will leave an important legacy for years to come.

  3. Investigating Space Weather Events Impacting the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Cheng, Leo Y.; Hunt, Joseph C. Jr.; Stowers, Kennis; Lowrance, Patrick; Stewart, Andrzej; Travis, Paul

    2014-01-01

    Our understanding of the dynamical process in the space environment has increased dramatically. A relatively new field of study called "Space Weather" has emerged in the last few decades. Fundamental to the study of space weather is an understanding of how space weather events such as solar flares and coronal mass ejections impact spacecraft in varying orbits and distances around the Sun. Specialized space weather satellite monitoring systems operated by the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) allow scientists to predict space weather events affecting critical systems on and orbiting the Earth. However, the Spitzer Space Telescope is in an orbit far outside the areas covered by those space weather monitoring systems. This poses a challenge for the Spitzer's Mission Operations Team in determining whether space weather events affect Spitzer.

  4. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    SciTech Connect

    Novati, S. Calchi; Beichman, C.; Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Poleski, R.; Yee, J. C.; Bryden, G.; Henderson, C. B.; Shvartzvald, Y.; Carey, S.; Udalski, A.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Collaboration: Spitzer team; OGLE group; and others

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  5. Spitzer IRAC Photometry for Time Series in Crowded Fields

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Gould, A.; Yee, J. C.; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Shvartzvald, Y.; Wibking, B.; Zhu, W.; Spitzer Team; Udalski, A.; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  6. Improving our understanding of the Spitzer Space Telescope's pointing drifts

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Carey, Sean J.; Stauffer, John R.; Ingalls, James G.

    2014-08-01

    Spitzer observations of exoplanets routinely yield photometric accuracies of better than one part in 10,000. However, the attainable precision is limited in part by pointing drifts, which have the effect of moving the target to less stable or less-well characterized regions of Spitzer's IRAC detector arrays. Here we examine a large sample of observing sequences in an effort to identify the causes of these pointing drifts. We find that short term and higher order drifts are correlated on various time scales to the temperatures of components in and around the spacecraft bus, and are most likely due to very slight angular displacements of the star trackers. Despite the constraints imposed by a limited pool of targets, such pointing drifts are best mitigated by optimal scheduling, minimizing large and/or lengthy excursions in telescope pitch angle within 24 hours of a high-precision photometry sequence. Such an effort is currently being initiated by the Spitzer Science Center.

  7. THE SPITZER ARCHIVAL FAR-INFRARED EXTRAGALACTIC SURVEY

    SciTech Connect

    Hanish, D. J.; Capak, P.; Teplitz, H. I.; Desai, V.; Armus, L.; Brinkworth, C.; Brooke, T.; Colbert, J.; Fadda, D.; Noriega-Crespo, A.; Paladini, R.; Edwards, L.; Frayer, D.; Huynh, M.; Lacy, M.; Murphy, E.; Scarlata, C.; Shenoy, S.

    2015-03-15

    We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared (FIR) extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of FIR data in two wavelength bands (70 and 160 μm) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40,000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals.

  8. Evolution of Galaxies and Their Environments at z = 0.1-3 in COSMOS

    NASA Astrophysics Data System (ADS)

    Scoville, N.; Arnouts, S.; Aussel, H.; Benson, A.; Bongiorno, A.; Bundy, K.; Calvo, M. A. A.; Capak, P.; Carollo, M.; Civano, F.; Dunlop, J.; Elvis, M.; Faisst, A.; Finoguenov, A.; Fu, Hai; Giavalisco, M.; Guo, Q.; Ilbert, O.; Iovino, A.; Kajisawa, M.; Kartaltepe, J.; Leauthaud, A.; Le Fèvre, O.; LeFloch, E.; Lilly, S. J.; Liu, C. T.-C.; Manohar, S.; Massey, R.; Masters, D.; McCracken, H. J.; Mobasher, B.; Peng, Y.-J.; Renzini, A.; Rhodes, J.; Salvato, M.; Sanders, D. B.; Sarvestani, B. D.; Scarlata, C.; Schinnerer, E.; Sheth, K.; Shopbell, P. L.; Smolčić, V.; Taniguchi, Y.; Taylor, J. E.; White, S. D. M.; Yan, L.

    2013-05-01

    Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The Ks -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques—adaptive smoothing and Voronoi tessellation—are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a ΛCDM simulation and find excellent overall agreement between the mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z ~ 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555, and the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of

  9. Robert Spitzer and psychiatric classification: technical challenges and ethical dilemmas.

    PubMed

    Jacob, K S

    2016-01-01

    Dr Robert Leopold Spitzer (May 22, 1932-December 25, 2015), the architect of modern psychiatric diagnostic criteria and classification, died recently at the age of 83 in Seattle. Under his leadership, the American Psychiatric Association's (APA) Diagnostic and Statistical Manuals (DSM) became the international standard. PMID:27260820

  10. Quantitative Analysis of the Usage of the COSMOS Science Education Portal

    ERIC Educational Resources Information Center

    Sotiriou, Sofoklis; Bogner, Franz X.; Neofotistos, George

    2011-01-01

    A quantitative method of mapping the web usage of an innovative educational portal is applied to analyze the behaviour of users of the COSMOS Science Education Portal. The COSMOS Portal contains user-generated resources (that are uploaded by its users). It has been designed to support a science teacher's search, retrieval and access to both,…

  11. Observing Comet C/2012 S1 (ISON) With Spitzer

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.; Vervack, R. J.; Weaver, H. A.; Bauer, J. M.; Fernandez, Y. R.; Kelley, M. S.; Knight, M. M.; Hines, D. C.; Li, J.; Reach, W. T.; Sitko, M. L.; Yanamandra-Fisher, P.; Meech, K. J.; Rayner, J. T.

    2013-10-01

    In this talk we discuss the design, implementation, and reduction of observations of Comet ISON from space using the Spitzer Space Telescope on 13.00 - 13.96 Jun UT and from the ground at Lowell Observatory on Jun 11.16 UT and from APO on 14.13 Jun UT. The comet was at distance rh = 3.34 AU from the Sun, distance ΔSpitzer = 3.29 AU and 17.4o phase from SST, and distance ΔEarth = 4.25 AU and 6.8 - 7.3o phase at the time of observation. Preliminary analyses show ISON's Spitzer coma morphology was relatively compact and simple, with a linear anti-solar dust tail > 3x105 km in length and a 1/p profile gas coma extending > 105 km from the nucleus. Afp values in an 18,200 km radius aperture of 840, 890, and 840 ± 80 cm were found at VRI, and 650 ± 100 cm were found at 3.6 micron. Together, the ground-based and Spitzer photometry imply near-neutral dust scattering from the visual through the infrared. An excess at 4.5 µm due to emission from a neutral gas coma is clearly found both morphologically and photometrically. The gas coma total flux and spatial profile and ISON’s discovery distance imply a coma dominated by the stronger CO_2 line emission at 4.67 μm, but we cannot rule out a preponderance of CO emission at 4.26 μm. No variability in our Spitzer photometry at the 0.03 mag level over 24 hrs was seen. We present our imagery, spectrophotometry, and lightcurves, and discuss the physical implications of these measurements of the comet made well outside the ice line.

  12. Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bliss, David A.

    2006-01-01

    The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.

  13. Occurrence of Leaf Blight on Cosmos Caused by Alternaria cosmosa in Korea

    PubMed Central

    Deng, Jian Xin; Lee, Ji Hye; Paul, Narayan Chandra; Cho, Hye Sun; Lee, Hyang Burm; Yu, Seung Hun

    2015-01-01

    In 2011, a leaf blight disease was observed on cosmos (Cosmos bipinnatus) leaves in Nonsan, Korea. The causal pathogen was isolated and identified based on morphological and molecular approaches. Morphological characteristics of the pathogen matched well with the Alternaria cosmosa and also easily distinguishable from Alternaria zinniae reported from cosmos seeds by producing branched beak. Phylogenetically, the pathogen could not be distinguished from A. passiflorae based on the sequence analysis of a combined data set of Alt a1 and gpd genes. However, A. passiflorae was distinguished from the present species by having conidiophores with 4 to 5 conidiogenous loci. The results indicate that the present Alternaria species is A. cosmosa. Pathogenicity tests revealed that the isolate was pathogenic to the leaves of Cosmos bipinnatus. This is the first report of Alternaria blight disease caused by A. cosmosa on cosmos in Korea. PMID:25774114

  14. Occurrence of Leaf Blight on Cosmos Caused by Alternaria cosmosa in Korea.

    PubMed

    Deng, Jian Xin; Lee, Ji Hye; Paul, Narayan Chandra; Cho, Hye Sun; Lee, Hyang Burm; Yu, Seung Hun

    2015-03-01

    In 2011, a leaf blight disease was observed on cosmos (Cosmos bipinnatus) leaves in Nonsan, Korea. The causal pathogen was isolated and identified based on morphological and molecular approaches. Morphological characteristics of the pathogen matched well with the Alternaria cosmosa and also easily distinguishable from Alternaria zinniae reported from cosmos seeds by producing branched beak. Phylogenetically, the pathogen could not be distinguished from A. passiflorae based on the sequence analysis of a combined data set of Alt a1 and gpd genes. However, A. passiflorae was distinguished from the present species by having conidiophores with 4 to 5 conidiogenous loci. The results indicate that the present Alternaria species is A. cosmosa. Pathogenicity tests revealed that the isolate was pathogenic to the leaves of Cosmos bipinnatus. This is the first report of Alternaria blight disease caused by A. cosmosa on cosmos in Korea.

  15. Planets, Stars, and Orbs, The Medieval Cosmos, 1200-1687

    NASA Astrophysics Data System (ADS)

    Grant, Edward

    Medieval cosmology was a fusion of pagan Greek ideas and biblical descriptions of the world, especially the creation account in Genesis. Planets, Stars, and Orbs describes medieval conceptions of the cosmos as understood by scholastic theologians and natural philosophers in the universities of western Europe from the thirteenth to the seventeenth centuries. Not only are the major ideas and arguments of medieval cosmology described and analysed, but much attention is paid to the responses of scholastic natural philosophers of the sixteenth and seventeenth centuries to the challenges posed by the new science and astronomy as represented by Copernicus, Tycho Brahe, Galileo and Kepler.

  16. THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG

    SciTech Connect

    Elvis, Martin; Civano, Francesca; Aldcroft, T. L.; Fruscione, Antonella; Vignali, Cristian; Puccetti, Simonetta; Fiore, Fabrizio; Cappelluti, Nico; Brusa, Marcella; Finoguenov, Alexis; Brunner, Hermann; Zamorani, G.; Comastri, Andrea; Gilli, Roberto; Miyaji, Takamitsu; Damiani, Francesco; Koekemoer, Anton M.; Urry, C.M.; Silverman, John; Mainieri, Vincenzo

    2009-09-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg{sup 2} of the COSMOS field (centered at 10 {sup h}, +02 deg.) with an effective exposure of {approx}160 ks, and an outer 0.4 deg{sup 2} area with an effective exposure of {approx}80 ks. The limiting source detection depths are 1.9 x 10{sup -16} erg cm{sup -2} s{sup -1} in the soft (0.5-2 keV) band, 7.3 x 10{sup -16} erg cm{sup -2} s{sup -1} in the hard (2-10 keV) band, and 5.7 x 10{sup -16} erg cm{sup -2} s{sup -1} in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 x 10{sup -5} (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily ({approx}50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform ({+-}12%) exposure across the inner 0.5 deg{sup 2} field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.

  17. COSMOS 2044: Lung morphology study, experiment K-7-28

    NASA Technical Reports Server (NTRS)

    Elliott, Ann R.; Mathieu-Costello, Odile; West, John B.

    1991-01-01

    Researchers examined the effect of microgravity during spaceflight on lung tissue. The ultrastructure of the left lungs of 5 Czechoslovakian Wister rats flown on the 13 day, 19+ hour Cosmos 2044 mission was examined and compared to 5 vivarium and 5 synchronous controls at 1-g conditions, and 5 rats exposed to 14 days of tail suspension. Pulmonary hemorrage and alveolar adema of unknown origin occurred to a greater extent in the flight, tail-suspended, and synchronous control animals, and in the dorsal regions of the lung when compared with the vivarium controls. The cause of these changes, which are possibly due to an increase in pulmonary vascular pressure, requires further investigation.

  18. Islet in weightlessness: biological experiments on board COSMOS 1129 satellite

    SciTech Connect

    Zhuk, Y.

    1980-09-01

    Biological experiments planned as an international venture for COSMOS 1129 satellite include tests of: (1) adaptation of rats to conditions of weightlessness, and readaption to Earth's gravity, (2) possibility of fertilization and embryonic development in weightlessness, (3) heat exchange processes, (4) amount of gravity force preferred by fruit flies for laying eggs (given a choice of three centrifugal zones), (5) growth of higher plants from seeds, (6) effects of weightlessness on cells in culture, and (7) radiation danger from heavy nuclei, and electrostatic protection from charged particles.

  19. Islet in weightlessness: Biological experiments on board COSMOS 1129 satellite

    NASA Technical Reports Server (NTRS)

    Zhuk, Y.

    1980-01-01

    Biological experiments planned as an international venture for COSMOS 1129 satellite include tests of: (1) adaptation of rats to conditions of weightlessness, and readaption to Earth's gravity; (2) possibility of fertilization and embryonic development in weightlessness; (3) heat exchange processes; (4) amount of gravity force preferred by fruit flies for laying eggs (given a choice of three centrifugal zones); (5) growth of higher plants from seeds; (6) effects of weightlessness on cells in culture and (7) radiation danger from heavy nuclei, and electrostatic protection from charged particles.

  20. [Animal experiments on the cosmos series biosatellites (results and prospects)].

    PubMed

    Gazenko, O G; IL'in, E A; Oganov, V S; Serova, L V

    1981-01-01

    Results of animal (rat) experiments carried out onboard biosatellites Cosmos-605, 690, 782, 936 and 1129 are presented with emphasis on changes in metabolism and musculo-skeletal system. The modifying effect of weightlessness on the animal radiosensitivity is considered. The use of artificial gravity as a countermeasure against adverse effects of weightlessness is discussed. As an immediate perspective, primate experiments aimed at a detailed study of mechanisms of weightlessness induced changes in the structure and function of the cardiovascular, musculo-skeletal and vestibular systems are described.

  1. Spitzer Finds Clarity in the Inner Milky Way

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

    The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array

  2. Environment of MAMBO Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Bertoldi, F.; Carilli, C.; Schinnerer, E.; McCracken, H. J.; Salvato, M.; Riechers, D.; Sheth, K.; Smǒlcić, V.; Capak, P.; Koekemoer, A. M.; Menten, K. M.

    2010-01-01

    Submillimeter galaxies (SMGs) represent a dust-obscured high-redshift population undergoing massive star formation activity. Their properties and space density have suggested that they may evolve into spheroidal galaxies residing in galaxy clusters. In this Letter, we report the discovery of compact (~10''-20'') galaxy overdensities centered at the position of three SMGs detected with the Max-Planck millimeter bolometer camera in the COSMOS field. These associations are statistically significant. The photometric redshifts of galaxies in these structures are consistent with their associated SMGs; all of them are between z = 1.4and2.5, implying projected physical sizes of ~170 kpc for the overdensities. Our results suggest that about 30% of the radio-identified bright SMGs in that redshift range form in galaxy density peaks in the crucial epoch when most stars formed. Based on observations obtained, within the COSMOS Legacy Survey, with the IRAM 30 m, NRAO-VLA, Hubble Space Telescope (HST), Canada-France-Hawaii Telescope (CFHT), Subaru, KPNO, Cerro Tololo Inter-American Observatory (CTIO), and ESO Observatories. The National Radio Astronomy Observatory is a facility of the National Science Foundation (NSF), operated under cooperative agreement by Associated Universities Inc.

  3. Electro-Magnetic Fields and Plasma in the Cosmos

    SciTech Connect

    Scott, Donald E.

    2006-03-21

    It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories.

  4. TRACSSS-2: Tracing More Cold Stellar Streams with Spitzer

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl; Kupper, Andreas; Sesar, Branimir; Pearson, Sarah; Rich, Jeffrey; Scowcroft, Vicky; Price-Whelan, Adrian; Johnston, Kathryn

    2016-08-01

    Stellar debris streams may be the most sensitive probes we have of the size and shape of the Milky Way's dark matter distribution. Using the remarkably precise infrared period-luminosity relation for RR Lyrae, Spitzer has already demonstrated the ability to measure distances to better than 2% over nearly the entire volume of the Galaxy. By measuring very accurate mean magnitudes for RR Lyrae in the Anticenter and Styx streams, we will immediately be able to put tighter constrains on the mass and shape of the Galactic halo. These measurements will become still more important in coming years, when they can be used to turn Gaia proper motion measurements into accurate transverse space velocities. These measurements are unlikely to be improved upon in the foreseeable future and may ultimately rank among Spitzer's most enduring legacies.

  5. The Eagle Nebula Unveiled by the Spitzer/MIPSGAL Survey

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Carey, S.; Boulanger, F.; Compiegne, M.; Noriega-Crespo, A.; Paladini, R.; Shenoy, S.

    2009-01-01

    We report the discovery of structured diffuse infrared emission in MIPSGAL 24 microns Spitzer images of the Eagle Nebula that fills the wind-blown cavity of this massive star forming region. We combine the Spitzer data with ISO and MSX observations to present a spectral energy distribution of this emission and compare it to that of the famous Pillars of Creation. The SED peaks at 24 microns, tracing hotter dust than within the surrounding photo-dissociation regions (PDRs). We show that the emission from the Pillars of Creation is well reproduced by our dust model of PDRs powered by the NGC 6611 cluster radiation field while the inside shell requires an order of magnitude higher incident energy. We suggest several interpretations to explain such a discrepancy.

  6. Spitzer Space Telescope Spectroscopy of the Kepler Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Onaka, T.

    2004-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope was used for observations of the Kepler supernova remnant, with all four instrument modules targeted on the bright infrared knot located at 17h30m35.80s,-21d28m54.0s (J2000). The low spectral resolution modules data show a dust continuum spectrum consistent with dust grains heated by high-energy electrons, while the high resolution modules data show atomic emission line ratios consistent with excitation by a high velocity shock of greater than 100 kilometers per second and electron densities of approximately 1,000 per centimeter. The abundance ratios for the six detected elements show signs of heavy-element enhancement. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology. Support for this work was provided by NASA's Office of Space Science.

  7. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples.

    PubMed

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-05-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis.

  8. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples

    PubMed Central

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-01-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  9. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; Simon, Amy A.; Wong, Michael H.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μm. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μm and 0.6 mag at 4.5 μm. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μm) and W2 (4.6 μm) from the Wide-feld Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μm filters.

  10. Spitzer, Gaia and the Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn

    Recent work has demonstrated how Spitzer observations can be used to make distance estimates accurate to 2% for individual RR Lyraes stars. This unprecedented precision surpasses even the most optimistic astrometric measurements (e.g. from ESA's upcoming Gaia mission) for the vast majority of our Galaxy (beyond 2kpc from the Sun). When combined with Gaia's promised proper motions, Spitzer can effectively extend the horizon where we might hope to obtain useful six-dimensional phase-space co-ordinates by more than an order of magnitude in distance (and three orders of magnitude in volume) compared to Gaia's own "horizon". In the proposed work we will examine what we might learn about our Galaxy using such accurate co-ordinates over such a large volume. In particular, we will develop and test an algorithm that maximizes the information from small, accurate samples (i.e. which might be observed with Spitzer on a feasible timescale) by using debris from satellite disruption to measure the Galactic potential. Mock observational samples will be generated by observing the end point of simulations of satellite destruction and the success of our algorithm in recovering the potential in which the simulation was actually run will be assessed. Preliminary tests suggest that we should be able to look at the 3-dimensional structure of the Galaxy's dark matter halo, constraining its shape, orientation and depth as a function of radius. The opportunity to examine a dark matter halo in such great detail is truly unique. It is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy, and possible for no other galaxy in the Universe.

  11. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cao, Yi; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Jencson, Jacob; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andy

    2016-08-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 147 explosive transients and 1948 eruptive variables. Of these 147 infrared transients, 35 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black-hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of only those 104 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEa. Scaling from the SPIRITS discovery rate, we estimate finding 22 new SPRITEs and 6 new supernovae over the next two years. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  12. A PUBLIC K{sub s} -SELECTED CATALOG IN THE COSMOS/ULTRAVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS {sup ,}

    SciTech Connect

    Muzzin, Adam; Franx, Marijn; Labbe, Ivo; Marchesini, Danilo; Stefanon, Mauro; Milvang-Jensen, Bo; Fynbo, J. P. U.; Dunlop, James S.; Brammer, Gabriel; Van Dokkum, Pieter

    2013-05-01

    We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {sub 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.

  13. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Astrophysics Data System (ADS)

    Timlin, John; Ross, Nicholas; Richards, Gordon T.; Lacy, Mark; Bauer, Franz E.; Brandt, W. Niel; Fan, Xiaohui; Haggard, Daryl; Makler, Martin; Myers, Adam D.; Schneider, Donald P.; Strauss, Michael A.; Urry, C. Megan; Zakamska, Nadia L.; SpIES Team

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of the Equatorial SDSS Stripe 82 field using Warm Spitzer. SpIES was designed to probe enough volume to perform measurements of the z>3 quasar clustering and luminosity function in order to test various "AGN feedback'' models. Additionally, the wide range of multi-wavelength, multi-epoch ancillary data makes SpIES a prime location to identify both high-redshift (z>6) quasars as well as obscured quasars missed by optical surveys. SpIES maps ~115deg2 of Stripe 82 to depths of 6.3 uJy (21.9 AB Magnitudes) and 5.75 uJy (22.0 AB Magnitudes) at [3.6] and [4.5] microns respectively; depths significantly greater than WISE. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. Amongst our preliminary science results, we show high significance detections of spectroscopically confirmed, z~5 quasars in the SpIES data. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  14. ALBEDOS OF SMALL HILDA GROUP ASTEROIDS AS REVEALED BY SPITZER

    SciTech Connect

    Ryan, Erin Lee; Woodward, Charles E. E-mail: chelsea@astro.umn.edu

    2011-06-15

    We present thermal 24 {mu}m observations from the Spitzer Space Telescope of 62 Hilda asteroid group members with diameters ranging from 3 to 12 km. Measurements of the thermal emission, when combined with reported absolute magnitudes, allow us to constrain the albedo and diameter of each object. From our Spitzer sample, we find the mean geometric albedo, p{sub V} = 0.07 {+-} 0.05, for small (D < 10 km) Hilda group asteroids. This Spitzer-derived value of p{sub V} is greater than and spans a larger range in albedo space than the mean albedo of large (D {approx}> 10 km) Hilda group asteroids which is p{sub V} = 0.04 {+-} 0.01. Though this difference may be attributed to space weathering, the small Hilda group population reportedly displays greater taxonomic range from C-, D-, and X-type whose albedo distributions are commensurate with the range of determined albedos. We discuss the derived Hilda size-frequency distribution, color-color space, and geometric albedo for our survey sample in the context of the expected migration induced 'seeding' of the Hilda asteroid group with outer solar system proto-planetesimals as outlined in the 'Nice' formalism.

  15. Pointing History Engine for the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David; Ahmed, Asif; Brugarolas, Paul

    2007-01-01

    The Pointing History Engine (PHE) is a computer program that provides mathematical transformations needed to reconstruct, from downlinked telemetry data, the attitude of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility) as a function of time. The PHE also serves as an example for development of similar pointing reconstruction software for future space telescopes. The transformations implemented in the PHE take account of the unique geometry of the Spitzer telescope-pointing chain, including all data on relative alignments of components, and all information available from attitude-determination instruments. The PHE makes it possible to coordinate attitude data with observational data acquired at the same time, so that any observed astronomical object can be located for future reference and re-observation. The PHE is implemented as a subroutine used in conjunction with telemetry-formatting services of the Mission Image Processing Laboratory of NASA s Jet Propulsion Laboratory to generate the Boresight Pointing History File (BPHF). The BPHF is an archival database designed to serve as Spitzer s primary astronomical reference documenting where the telescope was pointed at any time during its mission.

  16. SSGSS: THE SPITZER-SDSS-GALEX SPECTROSCOPIC SURVEY

    SciTech Connect

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, Stephane; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2011-11-10

    The Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) provides a new sample of 101 star-forming galaxies at z < 0.2 with unprecedented multi-wavelength coverage. New mid- to far-infrared spectroscopy from the Spitzer Space Telescope is added to a rich suite of previous imaging and spectroscopy, including ROSAT, Galaxy Evolution Explorer, Sloan Digital Sky Survey, Two Micron All Sky Survey, and Spitzer/SWIRE. Sample selection ensures an even coverage of the full range of normal galaxy properties, spanning two orders of magnitude in stellar mass, color, and dust attenuation. In this paper we present the SSGSS data set, describe the science drivers, and detail the sample selection, observations, data reduction, and quality assessment. Also in this paper, we compare the shape of the thermal continuum and the degree of silicate absorption of these typical, star-forming galaxies to those of starburst galaxies. We investigate the link between star formation rate, infrared luminosity, and total polycyclic aromatic hydrocarbon luminosity, with a view to calibrating the latter for spectral energy distribution models in photometric samples and at high redshift. Last, we take advantage of the 5-40 {mu}m spectroscopic and far-infrared photometric coverage of this sample to perform detailed fitting of the Draine et al. dust models, and investigate the link between dust mass and star formation history and active galactic nucleus properties.

  17. Teacher-Student Education and Public Outreach Using Spitzer Data

    NASA Astrophysics Data System (ADS)

    Keeton, Adam; Mehta, S.; Butler, M.; Spuck, T.; Heller, M.; Sixel, W.; Cook, C.; Hutchinson, P.; Butler, M.; Abajian, M.; Gorjian, V.

    2012-01-01

    As part of the NASA-IPAC Teacher Archival Research Program (NITARP) astronomers, teachers, and students collaborated in using archival data from the Spitzer Space Telescope to identify galaxy clusters around Active Galactic Nuclei (AGN) at a high redshift of z≈1. The team analyzed 168 fields around AGN to determine if an over density of sources existed. The team, including members from across the US, initially explored the idea at the 2011 Winter AAS Meeting. The initial meeting followed up with regular conference calls, and a 4-day face to face meeting at the Spitzer Science Center in Pasadena, CA. Throughout the process teachers and students gained a great deal of knowledge and experiences conducting authentic science research, and scientists gained a deeper understanding of education issues. The poster will present the processes used to engage students in this real-world experience, and the many benefits to all. In addition our team will present inquiry based activities using archival data from the Spitzer Space Telescope, APT photometry software, and an Excel spreadsheet template, to enrich their understanding of the structure of the universe. NITARP is a NASA funded program.

  18. Two HAT-P-16b Spitzer Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Hardin, Matthew R.; Harrington, J.; Fortney, J. J.; Foster, A. S.; Cubillos, P. E.; Hardy, R. A.; Bowman, O.; Blecic, J.; Hartman, J. D.; . Bakos, G.

    2013-10-01

    We report two Spitzer secondary eclipses of exoplanet HAT-P-16b. Discovered by Buchhave et al. (2010), this hot Jupiter is four times more massive than Jupiter and has a blackbody equilibrium temperature of 1626 K. We find a 3.6-micron eclipse depth of 0.129% ± 0.013% and a 4.5-micron eclipse depth of 0.210% ± 0.015%. These correspond to brightness temperatures of 1804 ± 71 K and 1946 ± 69 K respectively. We use the eclipse depths to constrain atmospheric models both with and without a thermal inversion, and find that those with a thermal inversion more closely match the data. We also refine the orbit of the planet, and confirm a small yet significant eccentricity of 0.0435 ± 0.0013. These observations are part of the Spitzer Exoplanet Target of Opportunity program. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work.

  19. SpiKeS - The Spitzer-Kepler Survey

    NASA Astrophysics Data System (ADS)

    Werner, Michael W.; Gorjian, V.; Beichman, C. A.; Plavchan, P.; Lowrance, P.; Ciardi, D.; Stark, C. C.; Livingston, J. H.; Wyatt, M.; Kennedy, G.

    2013-06-01

    We have proposed SpiKeS, a high sensitivity photometric survey of the entire Kepler field, using the Spitzer Space Telescope. The ~190,000 stars for which Kepler is obtaining light curves will be the best studied stars in the sky. In addition to the extensive monitoring being carried out by Kepler, about a dozen new or existing surveys from xRay to near infrared will be targeting these stars. We will augment these data with the highest precision infrared photometry to be available for the foreseeable future. Our proposed Spitzer survey - to be carried out at 3.6 and 4.5 microns - will go two magnitudes deeper than the WISE survey and will have an order of magnitude better areal resolution. The observations will reach limiting [5-sigma, Vega] magnitudes of 18.4 at 3.6um and 17.6 at 4.5um. Our final catalog will have tremendous archival value and will form an important part of the scientific legacy of both Spitzer and Kepler. In addition our photometry will be synergistic with Kepler’s exoplanet discoveries by: 1. Identifying stars with infrared excess suggestive of either hot circumstellar dust or very red companions; 2. Providing improved data for dereddening Kepler stars and for constraining photospheric models and stellar properties, leading to improved stellar [and exoplanet] radius estimates; 3. Identifying, by their proper motions, true M dwarfs in the Kepler field, which would be promising targets for transiting planet searches. We have carried out a pilot project- SmallSpiKeS - in Spitzer Cycle 9 in which we observed one of the 21 Kepler tiles to the sensitivity levels reported above. We report here the results of that pilot project, which was successfully executed in January, 2013. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  20. ENVIRONMENT OF MAMBO GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Aravena, M.; Bertoldi, F.; Carilli, C.; Schinnerer, E.; McCracken, H. J.; Salvato, M.; Riechers, D.; Smolcic, V.; Sheth, K.; Capak, P.; Koekemoer, A. M.; Menten, K. M.

    2010-01-01

    Submillimeter galaxies (SMGs) represent a dust-obscured high-redshift population undergoing massive star formation activity. Their properties and space density have suggested that they may evolve into spheroidal galaxies residing in galaxy clusters. In this Letter, we report the discovery of compact ({approx}10''-20'') galaxy overdensities centered at the position of three SMGs detected with the Max-Planck millimeter bolometer camera in the COSMOS field. These associations are statistically significant. The photometric redshifts of galaxies in these structures are consistent with their associated SMGs; all of them are between z = 1.4and2.5, implying projected physical sizes of {approx}170 kpc for the overdensities. Our results suggest that about 30% of the radio-identified bright SMGs in that redshift range form in galaxy density peaks in the crucial epoch when most stars formed.

  1. MHD Simulations of Core Collapse Supernovae with Cosmos++

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Salmonson, Jay

    2010-10-01

    We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core-collapse supernovae. We have initialized a non-rotating 15 Msolar progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post-collapse environment is expected to be only ~200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. [1] and Obergaulinger et al. [2].

  2. Investigations on-board the biosatellite Cosmos-83

    NASA Astrophysics Data System (ADS)

    Gazenko, O. G.; Ilyin, Eu. A.

    The program of the 5day flight of the biosatellite Cosmos-1514 (December 1983) envisaged experimental investigations the purpose of which was to ascertain the effect of short-term microgravity on the physiology, growth and development of various animal and plant species. The study of Rhesus-monkeys has shown that they are an adequate model for exploring the mechanisms of physiological adaptation to weightlessness of the vestibular apparatus and the cardiovascular system. The rat experiment has demonstrated that mammalian embryos, at least during the last term of pregnancy, can develop in microgravity. This finding has been confirmed by fish studies. The experiment on germinating seeds and adult plants has given evidence that microgravity produces no effect on the metabolism of seedlings and on the flowering stage.

  3. The most obscured AGN in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Cappelluti, N.; Comastri, A.; Gilli, R.; Gruppioni, C.; Mignoli, M.; Pozzi, F.; Vietri, G.; Vignali, C.; Zamorani, G.

    2015-06-01

    Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH ≳ 1024 cm-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 1024 cm-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH ≳ 1025 cm-2), intrinsically luminous (L2-10 > 1044 erg s-1) AGN at z = 0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6 μm luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a ≳1025 cm-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (LBol/LEdd = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z ~ 2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.

  4. The SuperCOSMOS all-sky galaxy catalogue

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.

    2016-10-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

  5. Starbursts and Galaxy Evolution: results from COSMOS survey.

    NASA Astrophysics Data System (ADS)

    Muñoz-Tuñón, C.; Hinojosa Goñi, R.; Jairo Méndez Abreu, J.; Sánchez Alméida, J.

    2016-06-01

    The search for starbursts galaxies in COSMOS database by a tailored procedure that uses the photometry from SUBARU, results in 220 targets at z<0.5. The typical mass of the starburst is 10^8 and its distribution is similar to that of the quiescent galaxies in the survey at the same redshift range. From the detailed analysis of the galaxies images using the HST, the star forming clumps are characterized. The galaxies are of three different kinds, Snot, Snot and diffuse light and multiple knots. The mass of the knots are typically one order of magnitude below that of the host galaxy and the clumps in multiple knot galaxies are bigger the closer they are to the center. The sSFR however does not change with the particular position of the burst in their host galaxy, which suggests a similar process independently of their location. This result applies also to the galaxies at the largest z range (0.9). Our interpretation is that the star formation is happening at all possible locations on the galaxy discs, possibly from gas accreted from the halo or the IGM, with clumps which grow as they spiral and get to the centermost regions. Our previous work on nearby SF -tadpole galaxies of similar mass reported metallicity drops coinciding with the location of the burst what we have interpreted as SF driven by cold flows. Our results in COSMOS would be consistent with a similar interpretation and a scenario in which medium mass disks are growing by gas accretion that show up as scattered starbursts knots.

  6. [Dynamics of lipid concentration changes in the livers of rats on biosatellites "Cosmos-605" and "Cosmos-782"].

    PubMed

    Iakovleva, V I

    1977-10-01

    Histological and histochemical investigation was carried out with rat liver specimens taken 9-11 h (from 6 rats), 24 (from 7 rats), 48 h (from 8 rats), and 25 (from 5 rats) and 27 days (from 7 rats) after the completion of 19.5- and 22.5-day of space bioflights in "Cosmos-605" and "Cosmos-782". The same number of specimens was investigated from corresponding models of the experiments carried out in the laboratory and from the control rats. The investigations demonstrated that in the rats sacrificed during the first two days, and in 25 and 27 days after the completion of the flight, no morphological changes developed in comparison with the control and with the animals from the laboratory experiments. Only some fluctuations in lipid content could be noticed in connection with the time of samples taking after the completion of the experiments. The greatest amount of lipids in the liver was observed in the rats sacrified 9-11 h after the completion of the flight, in 24 h the lipid level was still rather high, and in 48 h there was a tendency to their decrease. In 25 and 27 days the livers of the animals from the experimental group did not differ in their lipid content from those of the control animals. The changes in the lipid content observed in the liver during 8-48 h after the flight completion and during the period of afteraction indicate the reversibility of the adipose infiltration process, connected with lipid mobilization, dependent on stress-reaction.

  7. Chemical abundances in Galactic planetary nebulae with Spitzer spectra

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Górny, S. K.

    2014-07-01

    We present new low-resolution (R ~ 800) optical spectra of 22 Galactic planetary nebulae (PNe) with Spitzer spectra. These data are combined with recent optical spectroscopic data available in the literature to construct representative samples of compact (and presumably young) Galactic disc and bulge PNe with Spitzer spectra. Attending to the nature of the dust features - C-rich, O-rich, and both C- and O-rich dust features (or double chemistry) - seen in their Spitzer spectra, the Galactic disc and bulge PNe are classified according to four major dust types (oxygen chemistry or OC, carbon chemistry or CC, double chemistry or DC, featureless or F) and subtypes (amorphous and crystalline, and aliphatic and aromatic), and their Galactic distributions are presented. Nebular gas abundances of He, N, O, Ne, S, Cl, and Ar, as well as plasma parameters (e.g. Ne, Te) are homogeneously derived by using the classical empirical method. We study the median chemical abundances and nebular properties in Galactic disc and bulge PNe depending on their Spitzer dust types and subtypes. The differences and similarities between PNe in the Galactic disc and bulge are reported. In particular, the median abundances for the major Spitzer dust types CC and OC are representative of the dominant dust subtype (which are different in both Galactic environments), while these values in DC PNe are representative of the two DC subtypes. A comparison of the derived median abundance patterns with AGB nucleosynthesis predictions mainly show that i) DC PNe, both with amorphous and crystalline silicates, display high-metallicity (solar/supra-solar) and the highest He abundances and N/O abundance ratios, suggesting relatively massive (~3-5 M⊙) hot bottom burning AGB stars as progenitors; ii) PNe with O-rich and C-rich unevolved dust (amorphous and aliphatic) seem to evolve from subsolar metallicity (z ~ 0.008) and lower mass (<3 M⊙) AGB stars; iii) a few O-rich PNe and a significant fraction of C

  8. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    SciTech Connect

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-09-20

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Halpha, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Halpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 {mu}m polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  9. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    SciTech Connect

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-11-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets ({approx}15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at {approx}1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  10. A Spitzer Survey for Dust in Type IIn Supernovae

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low Type IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. vVhile previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from ten targets (approx. 15 %) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests these SNe "turn off" at " approx. 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors having similar mass-loss histories.

  11. A Spitzer Survey for Dust in Type IIn Supernovae

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  12. NEOLegacy: The ultimate Spitzer survey of Near Earth Objects

    NASA Astrophysics Data System (ADS)

    Trilling, David; Mommert, Michael; Hora, Joseph; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Michael; Smith, Howard

    2016-08-01

    Near Earth Objects (NEOs) are bodies whose orbits bring them close to the Earth's orbit. NEOs are valuable tracers of the evolution of our Solar System, and are also key components of current and future space exploration. Finally, the study of NEOs is relevant for civil defense through understanding the impact threat. We propose here an efficient and comprehensive survey to measure the diameters, albedos, and lightcurves of 1154 NEOs. We include only targets that are too faint to be detected by NEOWISE. This catalog will complete a database of diameters and albedos for nearly 3000 NEOs -- more than 20% of all known objects. Our primary goal, in line with the planetary science priorities for Spitzer Cycle 13, is to create a large and uniform catalog of NEO properties. From this catalog we will calculate an independent estimate of the NEO size distribution, addressing a current controversy, and measure the compositional distribution of NEOs as a function of size. We will increase by up to a factor of five the number of NEO lightcurves with relatively well known periods and amplitudes. The legacy value of this project is most evident in the fact that there will not ever in the foreseeable future be another opportunity to measure thousands of NEO diameters and carry out the type of science described above. Our online database will be the single most valuable resource of NEO diameters and albedos for years to come. Only Spitzer is sensitive and efficient enough to create such an important catalog of this scale. Our team has unmatched experience observing NEOs with Spitzer.

  13. Spitzer Science operations: the good, the bad, and the ugly

    NASA Astrophysics Data System (ADS)

    Levine, Deborah A.

    2008-07-01

    We review the Spitzer Space Telescope Science Center operations teams and processes and their interfaces with other Project elements -- what we planned early in the development of the science center, what we had at a launch and what we have now and why. We also explore the checks and balances behind building an organizational structure that supports constructive airing of conflicts and a timely resolution that balances the inputs and provides for very efficient on-orbit operations. For example, what organizational roles are involved in reviewing observing schedules, what constituency do they represent and who has authority to approve or disapprove the schedule.

  14. The Spitzer-HETDEX Exploratory Large-area Survey

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S. L.; Bassett, R.; Behroozi, P.; Blanc, G. A.; de Jong, R. S.; DePoy, D. L.; Drory, N.; Gawiser, E.; Gebhardt, K.; Gronwall, C.; Hill, G. J.; Hopp, U.; Jogee, S.; Kawinwanichakij, L.; Marshall, J. L.; McLinden, E.; Mentuch Cooper, E.; Somerville, R. S.; Steinmetz, M.; Tran, K.-V.; Tuttle, S.; Viero, M.; Wechsler, R.; Zeimann, G.

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ˜ 800 spectroscopy will produce ˜200,000 redshifts from the Lyα emission for galaxies in the range 1.9 < z < 3.5, and an additional ˜200,000 redshifts from the [O ii] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ˜0.5 Gpc3 at 1.9 < z < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μm images. The catalogs reach limiting sensitivities of 1.1 μJy at both 3.6 and 4.5 μm (1σ, for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  15. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.

    2004-01-01

    PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. This paper will focus on recent applications of the NASA Ames PAH IR spectral Database to interpret astronomical observations made by the Spitzer Space telescope and other space based infrared instruments. Examples will be given showing how changes in the spectral characteristics of different objects reveal interstellar PAH characteristics such as structure, size and composition, as well as provide insight into the chemical history and physical nature of the emission zones.

  16. The Spitzer-HETDEX Exploratory Large-area Survey

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S. L.; Bassett, R.; Behroozi, P.; Blanc, G. A.; de Jong, R. S.; DePoy, D. L.; Drory, N.; Gawiser, E.; Gebhardt, K.; Gronwall, C.; Hill, G. J.; Hopp, U.; Jogee, S.; Kawinwanichakij, L.; Marshall, J. L.; McLinden, E.; Mentuch Cooper, E.; Somerville, R. S.; Steinmetz, M.; Tran, K.-V.; Tuttle, S.; Viero, M.; Wechsler, R.; Zeimann, G.

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ˜ 800 spectroscopy will produce ˜200,000 redshifts from the Lyα emission for galaxies in the range 1.9 < z < 3.5, and an additional ˜200,000 redshifts from the [O ii] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ˜0.5 Gpc3 at 1.9 < z < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μm images. The catalogs reach limiting sensitivities of 1.1 μJy at both 3.6 and 4.5 μm (1σ, for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  17. Quantitative Analysis of the Usage of the COSMOS Science Education Portal

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Bogner, Franz X.; Neofotistos, George

    2011-08-01

    A quantitative method of mapping the web usage of an innovative educational portal is applied to analyze the behaviour of users of the COSMOS Science Education Portal. The COSMOS Portal contains user-generated resources (that are uploaded by its users). It has been designed to support a science teacher's search, retrieval and access to both, scientific and educational resources. It also aims to introduce in and familiarize teachers with an innovative methodology for designing, expressing and representing educational practices in a commonly understandable way through the use of user-friendly authoring tools that are available through the portal. As a new science education portal that includes user-generated content, the COSMOS Portal encounters the well-known "new product/service challenge": to convince the users to use its tools, which facilitate quite fast lesson planning and lesson preparation activities. To respond to this challenge, the COSMOS Portal operators implemented a validation process by analyzing the usage data of the portal in a 10 month time-period. The data analyzed comprised: (a) the temporal evolution of the number of contributors and the amount of content uploaded to the COSMOS Portal; (b) the number of portal visitors (categorized as all-visitors, new-visitors, and returning-visitors) and (c) visitor loyalty parameters (such as page-views; pages/visit; average time on site; depth of visit; length of visit). The data is augmented with data associated with the usage context (e.g. the time of day when most of the activities in the portal take place). The quantitative results indicate that the exponential growth of the contributors to the COSMOS Portal is followed by an exponential growth of the uploaded content. Furthermore, the web usage statistics demonstrate significant changes in users' behaviour during the period under study, with returning visitors using the COSMOS Portal more frequently, mainly for lesson planning and preparation (in the

  18. Environmental Effects on Star Formation Activity at z ~ 0.9 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Kajisawa, M.; Shioya, Y.; Aida, Y.; Ideue, Y.; Taniguchi, Y.; Nagao, T.; Murayama, T.; Matsubayashi, K.; Riguccini, L.

    2013-05-01

    We investigated the fraction of [O II] emitters in galaxies at z ~ 0.9 as a function of the local galaxy density in the Hubble Space Telescope (HST) COSMOS 2 deg2 field. [O II] emitters are selected by the narrowband excess technique with the NB711-band imaging data taken with Suprime-Cam on the Subaru telescope. We carefully selected 614 photo-z-selected galaxies with M U3500 < -19.31 at z = 0.901 - 0.920, which includes 195 [O II] emitters, to directly compare the results with our previous study at z ~ 1.2. We found that the fraction is almost constant at 0.3 Mpc-2 < Σ10th < 10 Mpc-2. We also checked the fraction of galaxies with blue rest-frame colors of NUV - R < 2 in our photo-z-selected sample, and found that the fraction of blue galaxies does not significantly depend on the local density. On the other hand, the semi-analytic model of galaxy formation predicted that the fraction of star-forming galaxies at z ~ 0.9 decreases with increasing projected galaxy density even if the effects of the projection and the photo-z error in our analysis were taken into account. The fraction of [O II] emitters decreases from ~60% at z ~ 1.2 to ~30% at z ~ 0.9 independent of galaxy environment. The decrease of the [O II] emitter fraction could be explained mainly by the rapid decrease of star formation activity in the universe from z ~ 1.2 to z ~ 0.9. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc, under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern

  19. Early-type galaxies in the Chandra cosmos survey

    SciTech Connect

    Civano, F.; Fabbiano, G.; Kim, D.-W.; Paggi, A.; Elvis, M.; Pellegrini, S.; Feder, R.

    2014-07-20

    We study a sample of 69 X-ray detected early-type galaxies (ETGs), selected from the Chandra COSMOS survey, to explore the relation between the X-ray luminosity of hot gaseous halos (L{sub X,{sub gas}}) and the integrated stellar luminosity (L{sub K} ) of the galaxies, in a range of redshift extending out to z = 1.5. In the local universe, a tight, steep relationship has been established between these two quantities (L{sub X,gas}∼L{sub K}{sup 4.5}), suggesting the presence of largely virialized halos in X-ray luminous systems. We use well-established relations from the study of local universe ETGs, together with the expected evolution of the X-ray emission, to subtract the contribution of low-mass X-ray binary populations from the X-ray luminosity of our sample. Our selection minimizes the presence of active galactic nuclei (AGNs), yielding a sample representative of normal passive COSMOS ETGs; therefore, the resulting luminosity should be representative of gaseous halos, although we cannot exclude other sources such as obscured AGNs or enhanced X-ray emission connected with embedded star formation in the higher-z galaxies. We find that most of the galaxies with estimated L{sub X} < 10{sup 42} erg s{sup –1} and z < 0.55 follow the L{sub X,{sub gas}}-L{sub K} relation of local universe ETGs. For these galaxies, the gravitational mass can be estimated with a certain degree of confidence from the local virial relation. However, the more luminous (10{sup 42} erg s{sup –1}

  20. Spitzer IRS Spectra of Basaltic Asteroids: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nick; Stewart, Heather; Marchis, Frank

    2008-01-01

    We present preliminary results of a Spitzer program to observe the 5.2--38 micron spectra of small basaltic asteroids using the Spitzer IRS (Infrared Spectrograph). Our targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), four outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid (NEA) 4055 Magellan. We will compare the compositions and thermophysical properties of the non-Vestoid objects with those of the dynamical vestoids to provide insight on the extent of metal-silicate differentiation on planetsimals during the epoch of planet formation in the early Solar System. As of this writing, spectra of asteroids 10537 (1991 RY16) and 2763 Jeans have been returned. Analysis of these data are ongolng. Observations of 956 Elisa, 2653 Principia, 4215 Kamo, 7472 Kumakiri, and 1459 Magnya have been scheduled and are expected to be available by the time of the DPS meeting. NIR spectra and lightcurves o f the target asteroids are also being observed in support of this program.

  1. Spitzer Thermal Radiometry of Kuiper Belt Objects and Centaurs

    NASA Astrophysics Data System (ADS)

    Stansberry, John; Mueller, Michael; Cruikshank, Dale; Grundy, Will; Noll, Keith; Spencer, John; Trilling, David

    2006-05-01

    About 10 Kuiper Belt Objects (KBOs) have been detected at both 24 and 70um with Spitzer at high enough signal-to-noise ratio (SNR) to allow determinations of their of their albedos and diameters. While these physical parameters can be estimated from a detection at a single thermal wavelength, they are then subject to large uncertainties stemming from the assumed model for the temperature distribution on the surface. A two-color thermal detection eliminates most of the model uncertainty, and the accuracy of the derived parameters is then limited primarily by measurement and calibration errors. An added benefit of a two-color detection is that it yields some information about the temperature distribution, and therefore about the thermal parameter (or thermal inertia, if the rotation period is known) of the surface materials. We propose to use MIPS to detect 8 KBOs and 8 Centaurs at both 24 and 70um, at SNR > 5 in both bands. We base our predictions of their thermal emission, our sensitivity estimates, and our observing strategy on our past observations of KBOs with Spitzer. Our sample size is chosen to double the sample of both KBOs and Centaurs with two-color data, significantly improving our knowledge of their physical parameters, and providing enough objects to allow us to begin to look for trends in albedo vs. size and color.

  2. SPITZER, GAIA, AND THE POTENTIAL OF THE MILKY WAY

    SciTech Connect

    Price-Whelan, Adrian M.; Johnston, Kathryn V.

    2013-11-20

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ∼10 kpc. This ''horizon'' for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy.

  3. Structure of the Zodiacal Emission by Spitzer Archive Data

    NASA Astrophysics Data System (ADS)

    Verebélyi, Erika

    2015-08-01

    Dust in the Interplanetary Dust Cloud not just reflects the sunlight (known as zodiacal light) but also has its own thermal emission. At the heliocentric distance of Earth the peak of this emission (with particle size 100 μm) is close to 20 μm. In this study we used the data of four programs completed with the MIPS camera of the Spitzer Space Telescope at 24 μm to probe the large scale brightness distribution as well as the small-scale (subarcmin) structure of the Zodiacal Could. The four programs were:1. The Production of Zodiacal Dust by Asteroids and Comets (ID: 2317)2. High Latitude Dust Bands in the Main Asteroid Belt: Fingerprints of Recent Breakup Events (ID: 20539)3. A New Source of Interplanetary Dust: Type II Dust Trails (ID: 30545)4. First Look Survey - Ecliptic Plane Component (ID: 98)We take into account that while the Spitzer Space Telescope carried out the measurements it was orbiting the Sun at an Earth-trailing orbit and looked at different parts of the Zodiacal Cloud, in many cases looking through the same parts of the cloud from different locations. This gives us the chance to investigate the 3D distribution of zodiacal dust in addition to its large and small scale structure.

  4. SURVEY OF NEARBY FGK STARS AT 160 mum WITH SPITZER

    SciTech Connect

    Tanner, Angelle; Beichman, Charles; Bryden, Geoff; Lisse, Carey

    2009-10-10

    The Spitzer Space Telescope has advanced debris disk science tremendously with a wealth of information on debris disks around nearby A, F, G, K, and M stars at 24 and 70 mum with the MIPS photometer and at 8-34 mum with IRS. Here we present 160 mum observations of a small subset of these stars. At this wavelength, the stellar photospheric emission is negligible and any detected emission corresponds to cold dust in extended Kuiper Belt analogs. However, the Spitzer 160 mum observations are limited in sensitivity by the large beam size which results in significant 'noise' due to cirrus and extragalactic confusion. In addition, the 160 mum measurements suffer from the added complication of a light leak next to the star's position whose flux is proportional to the near-infrared flux of the star. We are able to remove the contamination from the leak and report 160 mum measurements or upper limits for 24 stars. Three stars (HD 10647, HD 207129, and HD 115617) have excesses at 160 mum that we use to constrain the properties of the debris disks around them. A more detailed model of the spectral energy distribution of HD 10647 reveals that the 70 and 160 mum emission could be due to small water ice particles at a distance of 100 AU, consistent with Hubble Space Telescope optical imaging of circumstellar material in the system.

  5. Structure of the zodiacal emission by Spitzer archive data

    NASA Astrophysics Data System (ADS)

    Verebelyi, E.; Kiss, C.; Balog, Z.; Stansberry, J.

    2014-07-01

    Dust in the interplanetary dust cloud not just reflects the sunlight (known as zodiacal light) but also has its own thermal emission. At the heliocentric distance of the Earth, the peak of this emission (with particle size ˜ 100 μ m) is close to 20 μ m. In this study, we used the data of four programs completed with the MIPS camera of the Spitzer Space Telescope at 24 μ m to probe the large-scale brightness distribution as well as the small-scale (sub-arcmin) structure of the zodiacal cloud. The four programs were: - The Production of Zodiacal Dust by Asteroids and Comets (ID: 2317) - High Latitude Dust Bands in the Main Asteroid Belt: Fingerprints of Recent Breakup Events (ID: 20539) - A New Source of Interplanetary Dust: Type II Dust Trails (ID: 30545) - First Look Survey - Ecliptic Plane Component (ID: 98) We take into account that, when the Spitzer Space Telescope carried out the measurements, it was orbiting the Sun at an Earth-trailing orbit and looking at different parts of the zodiacal cloud, in many cases looking through the same parts of the cloud from different locations. This gives us the chance to investigate the 3D distribution of zodiacal dust in addition to large- and small-scale structure of the cloud.

  6. A Spitzer Study of Dusty Disks around Nearby, Young Stars

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Patten, B. M.; Werner, M. W.; Dowell, C. D.; Stapelfeldt, K. R.; Song, I.; Stauffer, J. R.; Blaylock, M.; Gordon, K. D.; Krause, V.

    2005-12-01

    We have obtained Spitzer Space Telescope MIPS (Multiband Imaging Photometer for Spitzer) observations of 39 A- through M-type dwarfs, with estimated ages between 12 and 600 Myr; IRAC observations for a subset of 11 stars; and follow-up CSO SHARC II 350 μm observations for a subset of two stars. None of the objects observed with IRAC possess infrared excesses at 3.6-8.0 μm however, seven objects observed with MIPS possess 24 and/or 70 μm excesses. Four objects (κ Phe, HD 92945, HD 119124, and AU Mic), with estimated ages 12-200 Myr, possess strong 70 μm excesses, >=100% larger than their predicted photospheres, and no 24 μm excesses, suggesting that the dust grains in these systems are cold. One object (HD 112429) possesses moderate 24 and 70 μm excesses with a color temperature, Tgr=100 K. Two objects (α1 Lib and HD 177724) possess such strong 24 μm excesses that their 12, 24, and 70 μm fluxes cannot be self-consistently modeled using a modified blackbody despite a 70 μm excess >2 times greater than the photosphere around α1 Lib. The strong 24 μm excesses may be the result of emission in spectral features, as observed toward the Hale-Bopp star HD 69830.

  7. A Warm Spitzer Survey of Atmospheric Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Knutson, Heather; Agol, E.; Burrows, A.; Charbonneau, D.; Cowan, N.; Deming, D.; Desert, J.; Fortney, J.; Kite, E.; Langton, J.; Laughlin, G.; Lewis, N.; Showman, A.

    2011-09-01

    The atmospheres of close-in extrasolar planets experience strong, asymmetrically distributed radiative forcing that can potentially lead to dramatic variations in both temperature and composition between the day- and night-side hemispheres. However, secondary eclipse observations only tell us about the properties of the dayside atmosphere, while transmission spectroscopy probes the region around the day-night terminator. By measuring changes in the infrared emission spectra of these planets as a function of orbital phase, we can resolve thermal and compositional gradients in these atmospheres, allowing us to obtain a complete picture of their local properties. The most extensively studied planet to date, HD 189733b, appears to have a relatively modest day-night temperature gradient as seen in the 8 and 24 micron Spitzer bands, suggesting that compositional gradients in this atmosphere are likely to be minimal. We present new, full-orbit phase curves at 3.6 and 4.5 um obtained with warm Spitzer, which we use to construct improved multi-color maps and to constrain variations in the pressure-temperature profile and atmospheric composition as a function of longitude. We also present preliminary results for complementary full-orbit observations of HAT-P-7b in the same bands, and discuss an emerging pattern in which the most highly irradiated (>2000 K) planets appear to undergo a shift towards large day-night temperature gradients, perhaps due to Lorentz braking or other MHD processes.

  8. Using The Cornell Atlas of Spitzer/IRS Sources

    NASA Astrophysics Data System (ADS)

    Samsonyan, A. L.

    2016-06-01

    I summarize my research studying details of the emission line profiles of the mid infrared [NeII] 12.8 microns and [NeIII] 15.6 microns emission lines. Observations are from the Spitzer Infrared Spectrograph (IRS) (Houck et al. 2004), so I illustrate use of the archive of these spectra. The IRS team developed the Cornell Atlas of Spitzer IRS Sources (CASSIS) found at cassis.sirtf.com. At present, all low resolution (Lebouteiller et al. 2011) and high resolution (Lebouteiller et al. 2015) staring observations with the IRS are available (more than 20,000 spectra of about 15,000 distinct sources). Spectra are provided in various formats to enable easy viewing or measurements. Spectra cover 5 microns to 37 microns in low resolution (R ˜ 60 to 125) and 10 microns to 37 microns in high resolution (R ˜ 600) modes. CASSIS is intended as a long term resource for the astronomical community so that this fundamental data base of mid-infrared spectra will be easily usable perpetually, and I demonstrate some examples of its use.

  9. Spitzer mid-infrared spectroscopic observations of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Mata, H.; Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Toalá, J. A.; Fang, X.; Rubio, G.; Kemp, S. N.; Navarro, S. G.; Corral, L. J.

    2016-06-01

    We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of 11 planetary nebulae (PNe). The observations, acquired with the Spitzer Infrared Spectrograph (IRS), cover the spectral range 5.2-14.5 μm that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltzmann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ≃900 ± 70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon features in a few cases. The decline of the [Ar III]/[Ne II] line ratio with the stellar effective temperature can be explained either by a true neon enrichment or by high density circumstellar regions of PNe that presumably descend from higher mass progenitor stars.

  10. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  11. Spitzer, Gaia, and the Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.

    2013-11-01

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ~10 kpc. This "horizon" for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy.

  12. Spitzer, Gaia, and the Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Johnston, K. V.; Hogg, D. W.; Madore, B. F.; Majewski, S. R.

    2014-01-01

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ~10 kpc. This "horizon" for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of ten in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail --- a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on the Galaxy.

  13. Interstellar Dust: New Views After Spitzer, Herschel, and Planck

    NASA Astrophysics Data System (ADS)

    Draine, Bruce T.

    2015-08-01

    The Spitzer, Herschel, and Planck missions have provided observational data that inform and challenge existing models for interstellar dust. These data will guide us in the development of a new generation of dust models.For dust in the general diffuse interstellar medium, these three missions have provided:* 5-20 um PAH emission spectra for a range of regions* determinations of the 10um and 18um silicate absorption and emission profiles in different environments* new determinations of the wavelength-dependent extinction in the mid-IR* spectral energy distributions out to 160um (with Spitzer), to 500um with Herschel, and out to 3mm with Planck* observations of "anomalous microwave emission" from dust near 1 cm* polarization of the dust emission from 4mm to 850um.Models for interstellar dust are constrained by these new data, and also by many other observational constraints, including extinction and polarization of starlight at optical wavelengths, the scattering of starllight by dust, scattering and extinction of X-rays by dust, and ground-based studies of the anomalous microwave emission.I will review where the models now stand, what appear to be the greatest challenges, and directions for future work.

  14. Analyzing the Orbits of Transiting Exoplanets Using Spitzer Secondary Eclipses

    NASA Astrophysics Data System (ADS)

    Foster, Andrew S.; Harrington, J.; Hardy, R. A.; Cubillos, P.; Hardin, M. R.

    2013-10-01

    Radial-velocity and transit-timing data can constrain the eccentricity, argument of periapsis, period, and other exoplanet orbital parameters. Including secondary-eclipse times can improve these parameters, especially eccentricity. We combined Spitzer secondary-eclipse data for HAT-P-16b and TrES-1b with existing radial-velocity and transit-timing data. For HAT-P-16b, we find that e = 0.0435 ± 0.0013, reducing the uncertainty by a factor of 4. For TrES-1b, we find that e cos ω = 0.002460 ± 0.000814, which is evidence of eccentricity not obtained by previous analyses of radial velocity data. We fit a Keplerian model to the data using Bayesian posterior sampling via a Markov-chain Monte Carlo (MCMC) algorithm to estimate the uncertainties. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres grant NNX13AF38G and NASA Astrophysics Data Analysis Program grant NNX12AI69G.

  15. Spitzer Secondary Eclipses of HAT-P-13b

    NASA Astrophysics Data System (ADS)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  16. SPIRITS Discoveries of Recent Infrared Transients with Spitzer Early Release Data

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Kasliwal, M. M.; Tinyanont, S.; Cao, Y.; Prince, T.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; van Dyk, S.; Cody, A.; Boyer, M.; Khan, R.; Bond, H.; Monson, A.; Bally, J.; Levesque, E.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Fox, O.; Phillips, M.; Hsiao, E.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2015-08-01

    The Spitzer InfraRed Intensive Transients Survey (SPIRITS; ATel #6644) is a systematic search of 194 nearby galaxies for infrared transients with the IRAC camera on the warm Spitzer telescope to a depth of 20th mag (Vega) with varying cadences between a week to a year.

  17. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  18. Physics of the Cosmos (PCOS) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  19. Cosmos 2229 immunology study (Experiment K-8-07)

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    The purpose of the current study was to further validate use of the rhesus monkey as a model for humans in future space flight testing. The areas of immunological importance examined in the Cosmos 2229 flight were represented by two sets of studies. The first set of studies determined the effect of space flight on the ability of bone marrow cells to respond to granulocyte/monocyte colony stimulating factor (GM-CSF). GM-CSF is an important regulator in the differentiation of bone marrow cells of both monocyte/macrophage and granulocyte lineages and any change in the ability of these cells to respond to GM-CSF can result in altered immune function. A second set of studies determined space flight effects on the expression of cell surface markers on both spleen and bone marrow cells. Immune cell markers included in this study were those for T-cell, B-cell, natural killer cell, and interleukin-2 populations. Variations from a normal cell population percentage, as represented by these markers, can be correlated with alterations in immunological function. Cells were stained with fluorescein-labelled antibodies directed against the appropriate antigens, and then analyzed using a flow cytometer.

  20. Compton Thick AGN in the XMM-COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Gruppioni, C.; Comastri, A.

    2016-06-01

    I will present results we published in two recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, A≈A 578A 120) on the properties of X-ray selected Compton Thick (CT, NH>10^{24} cm^{-2}) AGN, in the XMM-COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems. We also demonstrated the detectability of even more heavily obscured AGN (NH>10^{25} cm^{-2}), thanks to a truly multi-wavelength approach in the same field, and to the unrivaled XMM sensitivity. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line. The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.

  1. HST AND SPITZER OBSERVATIONS OF THE HD 207129 DEBRIS RING

    SciTech Connect

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Rieke, George H.; Su, K. Y. L.; Gaspar, Andras; Chen, Christine C.; Beichman, Charles A.; Hines, Dean C.; Rebull, Luisa M.; Tanner, Angelle; Trilling, David E.; Clampin, Mark

    2010-10-15

    A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in scattered visible light with the ACS coronagraph on the Hubble Space Telescope (HST) and in thermal emission using MIPS on the Spitzer Space Telescope at {lambda} = 70 {mu}m (resolved) and 160 {mu}m (unresolved). Spitzer IRS ({lambda} = 7-35 {mu}m) and MIPS ({lambda} = 55-90 {mu}m) spectrographs measured disk emission at {lambda}> 28 {mu}m. In the HST image the disk appears as a {approx}30 AU wide ring with a mean radius of {approx}163 AU and is inclined by 60{sup 0} from pole-on. At 70 {mu}m, it appears partially resolved and is elongated in the same direction and with nearly the same size as seen with HST in scattered light. At 0.6 {mu}m, the ring shows no significant brightness asymmetry, implying little or no forward scattering by its constituent dust. With a mean surface brightness of V = 23.7 mag arcsec{sup -2}, it is the faintest disk imaged to date in scattered light. We model the ring's infrared spectral energy distribution (SED) using a dust population fixed at the location where HST detects the scattered light. The observed SED is well fit by this model, with no requirement for additional unseen debris zones. The firm constraint on the dust radial distance breaks the usual grain size-distance degeneracy that exists in modeling of spatially unresolved disks, and allows us to infer a minimum grain size of {approx}2.8 {mu}m and a dust size distribution power-law spectral index of -3.9. An albedo of {approx}5% is inferred from the integrated brightness of the ring in scattered light. The low-albedo and isotropic scattering properties are inconsistent with Mie theory for astronomical silicates with the inferred grain size and show the need for further modeling using more complex grain shapes or compositions. Brightness limits are also presented for six other main-sequence stars with strong Spitzer excess around which HST detects no circumstellar nebulosity (HD 10472, HD 21997, HD

  2. A 6 GHz Synoptic Survey of the COSMOS Deep Field with the JVLA

    NASA Astrophysics Data System (ADS)

    Sink, Joseph R.; Myers, Steven T.

    2016-01-01

    The Cosmic Evolution Survey (COSMOS) covers two square degrees, and is observed over a large portion of the electromagnetic spectrum from X-ray to Radio. Key science goals of COSMOS include probing the evolution of galaxies, AGN, and large scale structures of the Universe. As well as constraining cosmological models and the star and structure formation history of the Universe. The wide range of frequencies and deep surveys are suitable for many astrophysical studies.Beginning in 2013, observations of the COSMOS field in C-band (4 - 8 GHz) using the JVLA have been carried out in every configuration spanning 21 months (April 2013 - Jan 2015) for a total of 13 observations. The observations are comprised of 1 hour time blocks using a technique called On-The-Fly Mosaicking (OTFM). Using OTFM we see an increased efficiency for an allotted observation block by collecting data as the array scans across the field, rather than a pointed mosaic which requires settle down time after each new pointing. Each observation consists of 2160 1-second integrations on 432 phase centers that require calibration and image processing before they can be mosaicked to create the final image of the entire COSMOS field.The primary science goal of this survey is to identify, catalog, and study the variable and transient radio sources in the COSMOS field, comparing these to other radio, optical, IR, and X-ray observations. The main class of variables we are interested in Active Galactic Nuclei.

  3. THE CHANDRA SURVEY OF THE COSMOS FIELD. II. SOURCE DETECTION AND PHOTOMETRY

    SciTech Connect

    Puccetti, S.; Vignali, C.; Cappelluti, N.; Brunner, H.; Brusa, M.; Fruscione, A.; Finoguenov, A.; Fiore, F.; Zamorani, G.; Gilli, R.; Comastri, A.; Aldcroft, T. L.; Elvis, M.; Civano, F.; Miyaji, T.; Damiani, F.; Koekemoer, A. M.; Mainieri, V.

    2009-12-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that covers the central contiguous {approx}0.92 deg{sup 2} of the COSMOS field. C-COSMOS is the result of a complex tiling, with every position being observed in up to six overlapping pointings (four overlapping pointings in most of the central {approx}0.45 deg{sup 2} area with the best exposure, and two overlapping pointings in most of the surrounding area, covering an additional {approx}0.47 deg{sup 2}). Therefore, the full exploitation of the C-COSMOS data requires a dedicated and accurate analysis focused on three main issues: (1) maximizing the sensitivity when the point-spread function (PSF) changes strongly among different observations of the same source (from {approx}1 arcsec up to {approx}10 arcsec half-power radius); (2) resolving close pairs; and (3) obtaining the best source localization and count rate. We present here our treatment of four key analysis items: source detection, localization, photometry, and survey sensitivity. Our final procedure consists of a two step procedure: (1) a wavelet detection algorithm to find source candidates and (2) a maximum likelihood PSF fitting algorithm to evaluate the source count rates and the probability that each source candidate is a fluctuation of the background. We discuss the main characteristics of this procedure, which was the result of detailed comparisons between different detection algorithms and photometry tools, calibrated with extensive and dedicated simulations.

  4. SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE XMM-COSMOS SAMPLE

    SciTech Connect

    Elvis, M.; Hao, H.; Civano, F.; Brusa, M.; Salvato, M.; Bongiorno, A.; Cappelluti, N.; Capak, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Jahnke, K.; Lusso, E.; Cisternas, M.; Mainieri, V.; Trump, J. R.; Ho, L. C.; Aussel, H.; Frayer, D.; Hasinger, G. E-mail: hhao@cfa.harvard.edu; and others

    2012-11-01

    The 'Cosmic Evolution Survey' (COSMOS) enables the study of the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present an SED catalog of 413 X-ray (XMM-Newton)-selected type 1 (emission line FWHM > 2000 km s{sup -1}) AGNs with Magellan, SDSS, or VLT spectrum. The SEDs are corrected for Galactic extinction, broad emission line contributions, constrained variability, and host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest-frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame {approx}8 {mu}m-4000 A), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available online.

  5. Warm Spitzer: Effects of Major Operational Changes on Publication Rates

    NASA Astrophysics Data System (ADS)

    Scire, E.

    2014-05-01

    The Spitzer Space Telescope transitioned from the cryogenic mission to the warm mission in 2009. The transition involved changes to observatory operations in order to run the mission on a budget totaling less than 1/3 that of the cryogenic mission. These changes included decreasing the number of approved programs and funding to the community while removing the cap in hours for any one program. This increased the maximum program size to encourage observers to think in terms of ambitious experiments that require > 500 hours to accomplish (Exploration Science (ES) Programs). After 4 years of warm operations, this paper will discuss the how these changes have affected the way observers are publishing data in refereed journal articles.

  6. Spitzer's View of NGC2264's Circumstellar Disk Population

    NASA Astrophysics Data System (ADS)

    Teixeira, Paula S.; Lada, Charles J.; Marengo, Massimo; Lada, Elizabeth

    We present a Spitzer study of the pre-main sequence population of the young cluster NGC 2264. The disk population is divided into three classes, based on individual spectral energy distributions: optically thick disks, in a homologous manner depleted or anemic disks, and radially depleted transition disks. Our analysis indicated that there may be two distinct evolutionary paths; disks evolve from optically thick to anemic via the first path, and from optically thick to transition in the second. Most of the disks seem to follow the first path. It is yet unknown what physical mechanism triggers this evolutionary differentiation - it could be directly connected to the nature of planet formation within the disk.

  7. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  8. Spitzer Space Telescope's View of Galaxy Messier 101

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version

    The galaxy Messier 101 is a swirling spiral of stars, gas, and dust. Messier 101 is nearly twice as wide as our Milky Way galaxy. Spitzer's view, taken in infrared light, reveals the galaxy's delicate dust lanes as yellow-green filaments. Such dense dust clouds are where new stars can form. In this image, dust warmed by the light of hot, young stars glows red. The rest of the galaxy's hundreds of billions of stars are less prominent and form a blue haze. Astronomers can use infrared light to examine the dust clouds where stars are born.

  9. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  10. SPITZER IMAGING OF HERSCHEL-ATLAS GRAVITATIONALLY LENSED SUBMILLIMETER SOURCES

    SciTech Connect

    Hopwood, R.; Negrello, M.; Wardlow, J.; Cooray, A.; Khostovan, A. A.; Kim, S.; Barton, E.; Da Cunha, E.; Cooke, J.; Burgarella, D.; Aretxaga, I.; Auld, R.; Baes, M.; Bertoldi, F.; Bonfield, D. G.; Blundell, R.; Buttiglione, S.; Cava, A.; Dannerbauer, H.

    2011-02-10

    We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 {mu}m, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 {mu}m data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with A{sub V} {approx} 4-5 and star formation rates of {approx}100 M{sub sun} yr{sup -1}. They have low gas fractions and low dynamical masses compared with 850 {mu}m selected galaxies.

  11. On-Orbit Performance of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas; Werner, Michael; Gallagher, David; Irace, William; Fazio, Giovanni; Houck, James; Rieke, George; Wilson, Robert; Soifer, Thomas

    2004-01-01

    The Spitzer Space Telescope (formally known as SIRTF) was successfully launched on August 25, 2003, and has completed its initial in-orbit checkout and science validation and calibration period. The measured performance of the observatory has met or exceeded all of its high-level requirements, it has entered normal operations, and is beginning to return high-quality science data. A superfluid-helium cooled 85 cm diameter telescope provides extremely low infrared backgrounds and feeds three science instruments covering wavelengths ranging from 3.2 to 180 microns. The telescope optical quality is excellent, providing diffraction-limited performance down to wavelengths below 6.5 microns. Based on the first helium mass and boil-off rate measurements, a cryogenic lifetime in excess of 5 years is expected. This presentation will provide a summary of the overall performance of the observatory, with an emphasis on those performance parameters that have the greatest impact on its ultimate science return.

  12. The IRAC Lensing Survey: Achieving JWST depth with Spitzer

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi; Ellis, Richard; Fazio, Giovanni; Huang, Jiasheng; Jiang, Linghua; Kneib, Jean-Paul; Pello, Roser; Richard, Johan; Rieke, George; Schaerer, Daniel; Smith, Graham; Stark, Daniel; Werner, Mike

    2008-12-01

    Massive clusters of galaxies are now recognized as very effective 'cosmic telescopes'. Because of the gravitational lensing effect, they can amplify significantly the background sources - by factors of a few tens - thereby bringing into view faint sources that would otherwise be unobservable. Note that in the background-limited case, which is applicable to IRAC observations, a factor of 20-30 gravitational amplification translates into increasing the integration time by a factor of 400-900. Because of this tremendous gain in sensitivity, IRAC imaging of lensing clusters will allow us to achieve JWST depth (~10 nJy) with Spitzer. Despite this great possibility, however, the full potential of the lensing cluster technique has not yet been realized due to the small number of clusters that have well-constrained accurate mass models. Here, we propose to conduct an IRAC imaging survey of 47 massive lensing clusters (5 hours/band, 2 bands) for which we have constructed accurate mass models through many years of intensive imaging/spectroscopic campaigns with HST, Keck, and VLT telescopes. This is the first time when such a large, statistical sample of clusters will be systematically employed to probe high-redshift Universe, and this proposed IRAC survey is a key component of our comprehensive program, which includes HST/WFC3 and Herschel observations starting next year. Scientifically, we will use the obtained IRAC data to (1) characterize z>6 galaxies (expecting ~50 z~7-8 galaxy detections), (2) support future Herschel and ALMA surveys, and (3) search for z>6 supernovae. The resultant data set will be a great legacy of Spitzer, allowing us to start tackling JWST sciences well before its launch.

  13. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Astrophysics Data System (ADS)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon T.; Lacy, Mark; Ryan, Erin L.; Stone, Robert B.; Bauer, Franz E.; Brandt, W. N.; Fan, Xiaohui; Glikman, Eilat; Haggard, Daryl; Jiang, Linhua; LaMassa, Stephanie M.; Lin, Yen-Ting; Makler, Martin; McGehee, Peregrine; Myers, Adam D.; Schneider, Donald P.; Urry, C. Megan; Wollack, Edward J.; Zakamska, Nadia L.

    2016-07-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of ˜115 deg2 in the Equatorial SDSS Stripe 82 field using Spitzer during its “warm” mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z ≥slant 3 to test various models for “feedback” from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z ≥slant 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5σ depths of 6.13 μJy (21.93 AB magnitude) and 5.75 μJy (22.0 AB magnitude) at 3.6 and 4.5 μm, respectively—depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (˜98%) in Stripe 82 than are recovered by WISE (˜55%). This depth is especially powerful at high-redshift (z ≥slant 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 μm only detection catalog containing ˜6.1 million sources, a 4.5 μm only detection catalog containing ˜6.5 million sources, and a dual-band detection catalog containing ˜5.4 million sources.

  14. Secondary Eclipse Photometry of WASP-4b with Warm Spitzer

    NASA Astrophysics Data System (ADS)

    Beerer, Ingrid M.; Knutson, Heather A.; Burrows, Adam; Fortney, Jonathan J.; Agol, Eric; Charbonneau, David; Cowan, Nicolas B.; Deming, Drake; Desert, Jean-Michel; Langton, Jonathan; Laughlin, Gregory; Lewis, Nikole K.; Showman, Adam P.

    2011-01-01

    We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 μm taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzer's extended warm mission. We find secondary eclipse depths of 0.319% ± 0.031% and 0.343% ± 0.027% for the 3.6 and 4.5 μm bands, respectively, and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have inversions, perhaps due the presence of an unknown absorber in the upper atmosphere. This result might be explained by the modestly enhanced activity level of WASP-4b's G7V host star, which could increase the amount of UV flux received by the planet, therefore reducing the abundance of the unknown stratospheric absorber in the planetary atmosphere as suggested in Knutson et al. We also find no evidence for an offset in the timing of the secondary eclipse and place a 2σ upper limit on |ecos ω| of 0.0024, which constrains the range of tidal heating models that could explain this planet's inflated radius.

  15. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Technical Reports Server (NTRS)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon, T.; Lacy, Mark; Ryan, Erin L.; Stone, Robert B.; Bauer, Franz, E.; Brandt, W. N.; Fan, Xiaohui; Glikman, Eilat; Lamassa, Stephanie M.; Urry, C. Megan; Wollack, Edward J.

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of approx.115 sq deg in the Equatorial SDSS Stripe 82 field using Spitzer during its "warm" mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > or = 3 to test various models for "feedback" from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > or = 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5 sigma depths of 6.13 µJy (21.93 AB magnitude) and 5.75 µJy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively-depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (approx.98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > or = 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 microns only detection catalog containing approx. 6.1 million sources, a 4.5 microns only detection catalog containing approx. 6.5 million sources, and a dual-band detection catalog containing approx. 5.4 million sources.

  16. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Cao, Yi; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Jencson, Jacob; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos

    2014-12-01

    The exploration of the dynamic mid-infrared sky has just begun. We propose to continue the SPitzer InfraRed Intensive Transients Survey (SPIRITS) --- a systematic search of 194 nearby galaxies within 20 Mpc, on timescales ranging between a week to a year, to a depth of 20 mag. During Cycle 10, SPIRITS has discovered over 40 infrared transients and over 1200 infrared variables. We are discovering explosive transients (ILRT, LRN, CNe, SNe), eruptive variables (LBV, RSG, YSG, AGB), and mysterious new infrared events devoid of optical counterparts (e.g. possible birth of a massive star system). Our Cycle 10 discoveries motivate our experiment design for Cycle 11 and 12. In particular, we request additional shorter cadence baselines to fill in missing pieces in our understanding of the end points of stellar evolution. Three years of SPIRITS will constitute the definitive study to ascertain the rate and origin of new classes of infrared transients, quantify the contribution of classical novae to galactic chemical evolution, and uncover supernovae buried in starbursts. We are also systematically probing mass-loss rates and dust formation in the most massive stars. SPIRITS yields a census of supergiant variability and asymptotic giant branch variability in diverse galaxy environments. The SPIRITS team continues to be committed to a concomitant ground-based NIR and optical survey and extensive spectroscopic follow-up: 308 nights of near-IR imaging, 135 nights of optical imaging and 34 nights of spectroscopy in Cycle 11 and 12. Follow-up will serve to maximize the discovery potential of our requested 795.3 hrs of Spitzer/IRAC and 10 orbits of HST/WFC3 observing time.

  17. The Spitzer Space Telescope's performance: getting the most out of a great observatory

    NASA Astrophysics Data System (ADS)

    Dodd, Suzanne R.; Levine, Deborah A.

    2006-06-01

    The Spitzer Space Telescope was launched on August 25 th, 2003, and has been operating virtually flawlessly for over two years. The projected cryogenic lifetime for Spitzer is currently 5.5 years, substantially exceeding the required lifetime of 2.5 years and the pre-launch prediction of 5 years. The Spitzer Project has made a singular effort to extend Spitzer's lifetime through operational changes to conserve helium. Additionally, many updates to calibration and scheduling activities have been made in order to maximum the scientific return from Spitzer. Spitzer has met its level one science time requirement of 90%, and routinely exceeds it today. All this has been achieved with an operating budget that is substantially smaller than that of NASA's other Great Observatories. This paper will describe the overall performance of the Spitzer Space Telescope Science Operations System and detail the modifications made to increase both the helium lifetime and the science data return. It will also discuss trades made between performance improvements and cost. Lessons learned which can be applied to future observatory operations will be included in the paper. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  18. Active Galactic Nucleus Host Galaxy Morphologies in COSMOS

    NASA Astrophysics Data System (ADS)

    Gabor, J. M.; Impey, C. D.; Jahnke, K.; Simmons, B. D.; Trump, J. R.; Koekemoer, A. M.; Brusa, M.; Cappelluti, N.; Schinnerer, E.; Smolčić, V.; Salvato, M.; Rhodes, J. D.; Mobasher, B.; Capak, P.; Massey, R.; Leauthaud, A.; Scoville, N.

    2009-01-01

    We use Hubble Space Telescope/Advanced Camera for Surveys images and a photometric catalog of the Cosmic Evolution Survey (COSMOS) field to analyze morphologies of the host galaxies of ~400 active galactic nucleus (AGN) candidates at redshifts 0.3 < z < 1.0. We compare the AGN hosts with a sample of nonactive galaxies drawn from the COSMOS field to match the magnitude and redshift distribution of the AGN hosts. We perform two-dimensional surface brightness modeling with GALFIT to yield host galaxy and nuclear point source magnitudes. X-ray-selected AGN host galaxy morphologies span a substantial range that peaks between those of early-type, bulge-dominated and late-type, disk-dominated systems. We also measure the asymmetry and concentration of the host galaxies. Unaccounted for, the nuclear point source can significantly bias results of these measured structural parameters, so we subtract the best-fit point source component to obtain images of the underlying host galaxies. Our concentration measurements reinforce the findings of our two-dimensional morphology fits, placing X-ray AGN hosts between early- and late-type inactive galaxies. AGN host asymmetry distributions are consistent with those of control galaxies. Combined with a lack of excess companion galaxies around AGN, the asymmetry distributions indicate that strong interactions are no more prevalent among AGN than normal galaxies. In light of recent work, these results suggest that the host galaxies of AGN at these X-ray luminosities may be in a transition from disk-dominated to bulge-dominated, but that this transition is not typically triggered by major mergers. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc, under NASA contract NAS 5-26555; also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with

  19. Some results of radiobiological studies performed on Cosmos-110 biosatellite.

    PubMed

    Antipov, V V; Delone, N L; Nikitin, M D; Parfyonov, G P; Saxonov, P P

    1969-01-01

    The experiment carried out on the Cosmos 110 biosatellite is a step further in radiobiological investigations performed in outer space and differs appreciably from flight experiments conducted on board the Vostok and Voskhod spacecraft. The difference lies, firstly, in the integral dose of cosmic radiation. According to the onboard dosimeter readings, it was 12 rad at an average dose rate of 500 mrad/day during the biosatellite flight, whereas in previous biological flight experiments, as is well known, the total dose was below 80 mrad (on a five-day flight of Vostok 5) at a dose rate of 80 to 20 mrad/day. Secondly, during the biosatellite mission, cosmic radiation originated not from the primary cosmic radiation as was the case in the Vostok and Voskhod flights but mainly from the Earth's radiation belts. Thirdly, the duration of the Cosmos 110 flight was far longer than that of any previous mission: the effect of weightlessness lasted for about 22 days. The paper presents results of investigations performed on E. coli K-12 lambda lysogenic bacteria, Tradescantia microspores, dry seeds of higher plants, different Chlorella strains and an intact plant of Tradescantia paludosa. The biological effect of space flight factors was evaluated by various physiological, cytogenetic, genetic and microbiological techniques. Similar to previous experiments carried out on board the Vostok 3-6 spacecraft, tests with lysogenic bacteria revealed a statistically significant induction of moderate bacteriophage. The induction value was shown to lag behind the mission duration dependence level. This seems to be related to a change of inducibility properties of lysogenic bacteria and a reduction of the yield range of phages per bacterial cell. Other tests (duration of the latent period, formation pattern of phage components) indicated no significant differences between test and control objects (N.N. Zhukov-Verezhnikov, N.I. Rybakov, V.A. Kozlov et al.). A study of protective properties

  20. THE BUILDUP OF THE HUBBLE SEQUENCE IN THE COSMOS FIELD

    SciTech Connect

    Oesch, P. A.; Carollo, C. M.; Feldmann, R.; Hahn, O.; Lilly, S. J.; Aller, M. C.; Bschorr, T.; Kovac, K.; Sargent, M. T.; Scarlata, C.; Capak, P.; Massey, R.; Aussel, H.; Bolzonella, M.; Bundy, K.; Ilbert, O.; Kneib, J.-P.; Koekemoer, A. M.; Leauthaud, A.; Le Floc'h, E.

    2010-05-01

    We use {approx}8600 COSMOS galaxies at mass scales >5 x 10{sup 10} M {sub sun} to study how the morphological mix of massive ellipticals, bulge-dominated disks, intermediate-bulge disks, disk-dominated galaxies, and irregular systems evolves from z = 0.2 to z = 1. The morphological evolution depends strongly on mass. At M > 3 x 10{sup 11} M {sub sun}, no evolution is detected in the morphological mix: ellipticals dominate since z = 1, and the Hubble sequence has quantitatively settled down by this epoch. At the 10{sup 11} M {sub sun} mass scale, little evolution is detected, which can be entirely explained by major mergers. Most of the morphological evolution from z = 1 to z = 0.2 takes place at masses 5 x 10{sup 10}-10{sup 11} M {sub sun}, where (1) the fraction of spirals substantially drops and the contribution of early types increases. This increase is mostly produced by the growth of bulge-dominated disks, which vary their contribution from {approx}10% at z = 1 to >30% at z = 0.2 (for comparison, the elliptical fraction grows from {approx}15% to {approx}20%). Thus, at these masses, transformations from late to early types result in diskless elliptical morphologies with a statistical frequency of only 30%-40%. Otherwise, the processes which are responsible for the transformations either retain or produce a non-negligible disk component. (2) The disk-dominated galaxies, which contribute {approx}15% to the intermediate-mass galaxy population at z = 1, virtually disappear by z = 0.2. The merger rate since z = 1 is too low to account for the disappearance of these massive disk-dominated systems, which most likely grow a bulge via secular evolution.

  1. Measuring Total Surface Moisture with the COSMOS Rover

    NASA Astrophysics Data System (ADS)

    Chrisman, B. B.; Zreda, M.; Franz, T. E.; Rosolem, R.

    2012-12-01

    The COSMOS rover is the mobile application of the cosmic-ray soil moisture probe. By quantifying the relative amount of the hydrogen molecules within the instrument's support volume (~335 m radius in air, 10-70 cm depth in soil) the instrument makes an area-average surface moisture measurement. We call this measurement "total surface moisture". Quantifying hydrogen in all major stocks (soils, infrastructure, vegetation, and water vapor) allows for an isolation of the volumetric fraction of the exchangeable surface moisture. By isolating the hydrogen molecule we can measure the exchangeable surface moisture over all land cover types including those with built-up infrastructure and dense vegetation; two environments which have been challenging to existing technologies. . The cosmic-ray rover has the capability to improve hydrologic, climate, and weather models by parameterizing the exchangeable surface moisture status over complex landscapes. It can also fill a gap in the verification and development processes of surface moisture satellite missions, such as SMOS and SMAP. In our current research program, 2D transects are produced twice a week and 3D maps are produced once a week during the 2012 monsoon season (July-September) within the Tucson Basin. The 40 km x 40 km area includes four land cover classes; developed, scrub (natural Sonoran Desert), crops, and evergreen forest. The different land cover types show significant differences in their surface moisture behavior with irrigation acting as the largest controlling factor in the developed and crop areas. In addition we investigated the use of the cosmic-ray rover data to verify/compare with satellite derived soil moisture. A Maximum Entropy model is being used to create soil moisture profiles from shallow surface measurements (SMOS data). With the cosmic-ray penetration depth and weighting function known, the satellite measurement can be interpolated, weighted and compared with the cosmic-ray measurement when the

  2. The Chandra COSMOS-Legacy Survey: The z>3 Sample

    NASA Astrophysics Data System (ADS)

    Marchesi, S.; Civano, F.; Salvato, M.; Shankar, F.; Comastri, A.; Elvis, M.; Lanzuisi, G.; Trakhtenbrot, B.; Vignali, C.; Zamorani, G.; Allevato, V.; Brusa, M.; Fiore, F.; Gilli, R.; Griffiths, R.; Hasinger, G.; Miyaji, T.; Schawinski, K.; Treister, E.; Urry, C. M.

    2016-08-01

    We present the largest high-redshift (3 < z < 6.85) sample of X-ray-selected active galactic nuclei (AGNs) on a contiguous field, using sources detected in the Chandra COSMOS-Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift and the other 87 with photometric redshift (z phot). In this work, we treat z phot as a probability-weighted sum of contributions, adding to our sample the contribution of sources with z phot < 3 but z phot probability distribution >0 at z > 3. We compute the number counts in the observed 0.5-2 keV band, finding a decline in the number of sources at z > 3 and constraining phenomenological models of the X-ray background. We compute the AGN space density at z > 3 in two different luminosity bins. At higher luminosities (logL(2-10 keV) > 44.1 erg s-1), the space density declines exponentially, dropping by a factor of ˜20 from z ˜ 3 to z ˜ 6. The observed decline is ˜80% steeper at lower luminosities (43.55 erg s-1 < logL(2-10 keV) < 44.1 erg s-1) from z ˜ 3 to z ˜ 4.5. We study the space density evolution dividing our sample into optically classified Type 1 and Type 2 AGNs. At logL(2-10 keV) > 44.1 erg s-1, unobscured and obscured objects may have different evolution with redshift, with the obscured component being three times higher at z ˜ 5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGNs. These models significantly overpredict the number of expected AGNs at logL (2-10 keV) > 44.1 erg s-1 with respect to our data.

  3. The digestive tract of rat after flight in the biosatellite Cosmos 1667.

    PubMed

    Groza, P; Bordeianu, A; Boca, A

    1987-01-01

    From the histochemical investigation carried out on the digestive tract of rats after 7 days space flight in the soviet biosatellite Cosmos 1667 it resulted that neutral and acid glycoproteins diminished slightly in the sublingual gland, stomach, small intestine and the colon. Some intestinal enzymes augmented (leucineaminopeptidase, acid phosphatase, adenosinetriphosphatase and glucose-6-phosphatase). The changes observed after this flight were less marked than after an 18 day flight (in the Soviet biosatellite Cosmos 936 and 1129) and similar to those revealed after 7 days of hypokinesia. The glycoprotein changes were close to those observed after a 5-day flight (Cosmos 1514) but in which there were pregnant rats; after these last flights, the enzymes were not studied.

  4. Differences in glycogen, lipids, and enzymes in livers from rats flown on COSMOS 2044.

    PubMed

    Merrill, A H; Wang, E; LaRocque, R; Mullins, R E; Morgan, E T; Hargrove, J L; Bonkovsky, H L; Popova, I A

    1992-08-01

    Livers from rats flown aboard COSMOS 2044 were analyzed for protein, carbohydrate (glycogen), and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. The major differences between the flight group and the synchronous control were elevations in microsomal protein, liver glycogen content, tyrosine aminotransferase, and tryptophan oxygenase and reductions in sphingolipids and the rate-limiting enzyme of heme biosynthesis, delta-aminolevulinic acid synthase. These results provide further evidence that spaceflight has pronounced and diverse effects on liver function; however, some of the results with samples from COSMOS 2044 differed notably from those from previous spaceflights. This may be due to conditions of spaceflight and/or the postflight recovery period for COSMOS 2044.

  5. VizieR Online Data Catalog: The COSMOS-Legacy Survey (CLS) catalog (Civano+, 2016)

    NASA Astrophysics Data System (ADS)

    Civano, F.; Marchesi, S.; Comastri, A.; Urry, M. C.; Elvis, M.; Cappelluti, N.; Puccetti, S.; Brusa, M.; Zamorani, G.; Hasinger, G.; Aldcroft, T.; Alexander, D. M.; Allevato, V.; Brunner, H.; Capak, P.; Finoguenov, A.; Fiore, F.; Fruscione, A.; Gilli, R.; Glotfelty, K.; Griffiths, R. E.; Hao, H.; Harrison, F. A.; Jahnke, K.; Kartaltepe, J.; Karim, A.; Lamassa, S. M.; Lanzuisi, G.; Miyaji, T.; Ranalli, P.; Salvato, M.; Sargent, M.; Scoville, N. J.; Schawinski, K.; Schinnerer, E.; Silverman, J.; Smolcic, V.; Stern, D.; Toft, S.; Trakhenbrot, B.; Treister, E.; Vignali, C.

    2016-05-01

    The half-a-field shift tiling strategy was designed to uniformly cover the COSMOS Hubble area in depth and point-spread function (PSF) size by combining the old C-COSMOS (Elvis+, 2009, J/ApJS/184/158) observations with the new Chandra ones (see Figure 1). We summarize the main properties of the new ACIS-I Chandra COSMOS-Legacy observations in Table 1. The observations took place in four blocks: 2012 November to 2013 January; 2013 March to July; 2013 October to 2014 January; and 2014 March. The mean net effective exposure time per field was 48.8ks after all the cleaning and reduction operations. (2 data files).

  6. Differences in glycogen, lipids, and enzymes in livers from rats flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Laroque, Regina; Mullins, Richard E.; Morgan, Edward T.; Hargrove, James L.; Bonkovsky, Herbert L.; Popova, Irina A.

    1992-01-01

    Livers from rats flown aboard Cosmos 2044 were analyzed for protein, carbohydrate (glycogen), and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. The major differences between the flight group and the synchronous control were elevations in microsomal protein, liver glycogen content, tyrosine aminotransferase, and tryptophan oxygenase and reductions in sphingolipids and the rate-limiting enzyme of heme biosynthesis delta-aminolevulinic acid synthase. These results provide further evidence that spaceflight has pronounced and diverse effects on liver function; however, some of the results with samples from Cosmos 2044 differed notably from those from previous spaceflights. This may be due to conditions of spaceflight and/or the postflight recovery period for Cosmos 2044.

  7. ExploreNEOs. II. THE ACCURACY OF THE WARM SPITZER NEAR-EARTH OBJECT SURVEY

    SciTech Connect

    Harris, A. W.; Mommert, M.; Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.; Mueller, M.; Delbo, M.; Trilling, D. E.; Thomas, C. A.; Bhattacharya, B.; Chesley, S.; Mainzer, A.; Emery, J. P.; Penprase, B.; Stansberry, J. A.

    2011-03-15

    We report on results of observations of near-Earth objects (NEOs) performed with the NASA Spitzer Space Telescope as part of our ongoing (2009-2011) Warm Spitzer NEO survey ('ExploreNEOs'), the primary aim of which is to provide sizes and albedos of some 700 NEOs. The emphasis of the work described here is an assessment of the overall accuracy of our survey results, which are based on a semi-empirical generalized model of asteroid thermal emission. The NASA Spitzer Space Telescope has been operated in the so-called Warm Spitzer mission phase since the cryogen was depleted in 2009 May, with the two shortest-wavelength channels, centered at 3.6 {mu}m and 4.5 {mu}m, of the Infrared Array Camera continuing to provide valuable data. The set of some 170 NEOs in our current Warm Spitzer results catalog contains 28 for which published taxonomic classifications are available, and 14 for which relatively reliable published diameters and albedos are available. A comparison of the Warm Spitzer results with previously published results ('ground truth'), complemented by a Monte Carlo error analysis, indicates that the rms Warm Spitzer diameter and albedo errors are {+-}20% and {+-}50%, respectively. Cases in which agreement with results from the literature is worse than expected are highlighted and discussed; these include the potential spacecraft target 138911 2001 AE{sub 2}. We confirm that 1.4 appears to be an appropriate overall default value for the relative reflectance between the V band and the Warm Spitzer wavelengths, for use in correction of the Warm Spitzer fluxes for reflected solar radiation.

  8. Spitzer Infrared Array Camera (IRAC) Pipeline: final modifications and lessons learned

    NASA Astrophysics Data System (ADS)

    Lowrance, Patrick J.; Carey, Sean J.; Surace, Jason A.; Ingalls, James G.; Glaccum, William; Krick, Jessica E.; Stauffer, John

    2016-07-01

    In more than ten years of operations, the Spitzer Space Telescope has conducted a wide range of investigations from observing nearby asteroids to probing atmospheric properties of exoplanets to measuring masses of the most distance galaxies. Observations using the Infrared Array Camera (IRAC) at 3.6 and 4.5um will continue through mid-2019 when the James Webb Space Telescope will succeed Spitzer. In anticipation of the eventual end of the mission, the basic calibrated data reduction pipeline designed to produce flux-calibrated images has been finalized and used to reprocess all the data taken during the Spitzer warm mission. We discuss all final modifications made to the pipeline.

  9. COsmic-ray Soil Moisture Observing System (COSMOS): soil moisture and beyond

    NASA Astrophysics Data System (ADS)

    Zreda, Marek; Shuttleworth, William J.; Zeng, Xubin; Zweck, Chris; Franz, Trenton; Rosolem, Rafael

    2013-04-01

    COSMOS, a project funded by the US National Science Foundation, was designed to measure average soil moisture in the top 10-70 cm of soil over the horizontal footprint of approximately 700 m by measuring cosmic-ray neutrons in air above the ground surface. It is in its fourth, final, year of the feasibility phase in which 60 neutron probes have been installed in the USA to provide continental-scale soil moisture data. The cosmic-ray neutron probe responds to all sources of hydrogen present within the footprint. Therefore, in addition to soil moisture, other pools of hydrogen can be measured; these include atmospheric water vapor, organic matter in soil, water in soil minerals, biomass water (including hydrogen bound in cellulose), and snow on the ground and on the canopy. All these pools of hydrogen form the "total surface moisture" that is measured by COSMOS probes. The first four pools are measured independently (water vapor) or are implicitly included in the probe calibration (water in minerals and organic matter, biomass water). The other two can be separated from one another to produce time series of soil moisture and snow water equivalent. Work is in progress to assimilate neutron data into land-surface models, to produce soil moisture profiles, to validate satellite soil moisture products (the current SMOS mission and the future SMAP mission), to measure temporal variations in biomass, and to measure area-average unsaturated hydraulic properties of soils. Separately, mobile COSMOS probe, called COSMOS rover, is being developed. COSMOS rover can be used to map soil moisture over large areas or along long transects. Cosmic-ray sensing of moisture at the land surface has gained popularity outside of the USA. Approximately 60 probes have been purchased in addition to the 60 probes in the COSMOS project. Funds for additional 80 probes, most of them in Germany, have been secured, and large new proposals will be submitted in the USA and Australia in 2013. These

  10. Dissemination of metabolomics results: role of MetaboLights and COSMOS.

    PubMed

    Salek, Reza M; Haug, Kenneth; Steinbeck, Christoph

    2013-05-17

    With ever-increasing amounts of metabolomics data produced each year, there is an even greater need to disseminate data and knowledge produced in a standard and reproducible way. To assist with this a general purpose, open source metabolomics repository, MetaboLights, was launched in 2012. To promote a community standard, initially culminated as metabolomics standards initiative (MSI), COordination of Standards in MetabOlomicS (COSMOS) was introduced. COSMOS aims to link life science e-infrastructures within the worldwide metabolomics community as well as develop and maintain open source exchange formats for raw and processed data, ensuring better flow of metabolomics information.

  11. Remote Sensing of Soil Moisture and the Effects of Biomass as it Pertains to COSMOS

    NASA Astrophysics Data System (ADS)

    Irvin, S.; Hornbuckle, B. K.; Patton, J.; Wang, C.; Logsdon, S. D.; Kaleita, A.; Van Arkel, Z.

    2011-12-01

    In November 2009, the Soil Moisture and Ocean Salinity (SMOS) satellite was launched by the European Space Agency (ESA). This satellite orbits the earth every 2 or 3 days while taking measurements of soil moisture and ocean salinity. It has a spatial view of ~ 40 km, which is impressive considering the resolution of current weather and climate models, and measures soil moisture to a depth of a few centimeters. Soil moisture is important because of its affect on weather and climate in a manner similar to sea surface temperature. However, future weather and climate models will operate at smaller spatial scales and a deeper soil moisture measurement is more desirable. The Cosmic-ray Soil Moisture Observing System (COSMOS) is beneficial in this regard because these sensors have a footprint of ~700 meters and are sensitive to a depth of 12-70 cm. COSMOS sensors also produce hourly data with a precision as good as or better than SMOS. There is a COSMOS sensor located at the Iowa Validation Site, maintained by Iowa State University, south of Ames, Iowa. This site was a field of maize during the 2011 growing season. A COSMOS sensor counts fast neutrons that are scattered by hydrogen contained in soil in order to determine soil moisture. There is a potential problem when significant vegetation is present -since COSMOS is sensitive to the hydrogen contained in the plants as well. The question becomes how to distinguish between the two pools of hydrogen in order to obtain an accurate reading of soil moisture. Not only is the presence of the biomass problematic in finding the soil moisture, but the rate at which the vegetation is growing needs to be taken into account. We will compare the soil moisture estimated by the COSMOS sensor with in-situ soil moisture measurements made with TDR, gravimetric samples, and a neutron probe over the course of the growing season. To characterize the amount of vegetation, a correlation was found between the stem diameter and canopy height of

  12. Analysis of HD 149026b Spitzer Data Using a New Intrapixel Technique

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Harrington, J.; Nymeyer, S.; Fortney, J. J.; Hardy, R. A.; Cubillos, P.; Bowman, W. C.

    2010-10-01

    The Saturn-sized exoplanet HD 149026b transits a large, relatively hot parent star at a distance of only 0.042 AU. The planet's high average density suggests that most of HD 149026b's mass must be in it's large, icy/rocky core. Using the Spitzer Space Telescope to observe the system during secondary eclipse, previous authors report contradicting eclipse depths at 8.0 μm. We re-analyze these data, combine the results with two new observations at 8.0 μm, and use additional observations in other Spitzer channels to present constraints on the atmospheric composition of HD 149026b. We also present a new technique that models Spitzer's position-dependent (intrapixel) sensitivity effect to a high degree of precision. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA, which provided support for this work.

  13. Cicero's Cosmos: Somnium Scipionis ("The Dream of Scipio")

    NASA Astrophysics Data System (ADS)

    Miller, N.

    2011-06-01

    The Dream of Scipio (b. 185 BCE) is the concluding excerpt of Cicero's dialogue in his De Republica ("On the Republic"), which has survived in the neo-Platonic commentaries on the text by Macrobius in the 4th century CE. A variation of its model Plato's Republic, the dialogue is set in 129 BCE. Parallels exist between Plato's closing with the myth of Er, recounting the structure of the cosmos and ordering of the planets and Cicero's cosmology updated by post-Hellenistic astronomical speculation. The Dream begins with his adoptive grandfather Cornelius Scipio Africanus appearing to his son Scipio in heaven as he looks down on Earth, a distant sphere amidst spheres of the universe. The deceased father presents the conditions of his legacy-to do upon Earth as his ancestors have done: "love justice and wisdom", and be devoted to your country, the highest form of virtue. Gazing on the stars-the Milky Way, home of the departed souls, Scipio realizes the relative insignificance of the Earth compared to the stars (analogy with the Roman Empire, a "pinpoint […] of this small Earth"). Africanus orders Scipio to look at the universe, the nine concentric spheres at the very center. Thus, fixed in place, the Earth does not move. Scipio then hears sounds-the music of the spheres in motion, its basis in mathematics and harmonic proportions. Comparisons between the works of Plato and Cicero are revealing. Both stress the relationship of city and state, and both share concern with justice and moral behavior. Whereas Plato focuses on the journey of the soul in the afterlife, Cicero's purpose is to show how public service, the importance of civic life, is a divinely sanctioned activity: "And remember that the most splendid deeds you can do are those which serve your country". The two major themes are the immortality of the soul and the relationship between human society and the divine order of the universe. Scipio must "contemplate the heavens in order to act rightly on Earth". The

  14. Analysis and Implications of the Iridium 33-Cosmos 2251 Collision

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.

    On 2009 February 10, Iridium 33--an operational US communications satellite in low-Earth orbit--was struck and destroyed by Cosmos 2251--a long-defunct Russian communications satellite. This is the first time since the dawn of the Space Age that two satellites have collided in orbit. To better understand the circumstances of this event and the ramifications for avoiding similar events in the future, this paper provides a detailed analysis of the predictions leading up to the collision, using various data sources, and looks in detail at the collision, the evolution of the debris clouds, and the long-term implications for satellite operations. The only publicly available system available to satellite operators for screening for close approaches, SOCRATES, did predict this close approach, but it certainly wasn't the closest approach predicted for the week of February 10. In fact, at the time of the collision, SOCRATES ranked this close approach 152 of the 11,428 within 5 km of any payload. A detailed breakdown is provided to help understand the limitations of screening for close approaches using the two-line orbital element sets. Information is also provided specifically for the Iridium constellation to provide an understanding of how these limitations affect decision making for satellite operators. Post-event analysis using high-accuracy orbital data sources will be presented to show how that information might have been used to prevent this collision, had it been available and used. Analysis of the collision event, along with the distribution of the debris relative to the original orbits, will be presented to help develop an understanding of the geometry of the collision and the near-term evolution of the resulting debris clouds. Additional analysis will be presented to show the long-term evolution of the debris clouds, including orbital lifetimes, and estimate the increased risk for operations conducted by Iridium and other satellite operators in the low-Earth orbit

  15. Spitzer Observations of Massive, Red Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Moustakas, L. A.; Dickinson, M.; Le Floc'h, E.; Rieke, G. H.; Daddi, E.; Alexander, D. M.; Bauer, F.; Brandt, W. N.; Dahlen, T.; Egami, E.; Eisenhardt, P.; Elbaz, D.; Ferguson, H. C.; Giavalisco, M.; Lucas, R. A.; Mobasher, B.; Pérez-González, P. G.; Stutz, A.; Rieke, M. J.; Yan, H.

    2006-03-01

    We study massive galaxies at z~1-3.5 using HST optical imaging, ground-based near-IR imaging, and Spitzer observations at 3-24 μm. From Ks-selected galaxies in the ~=130 arcmin2 GOODS-S field, we identify 153 distant red galaxies (DRGs) with (J-Ks)Vega>=2.3. This sample is approximately complete in stellar mass for passively evolving galaxies above 1011 Msolar and z<=3. Roughly half of the DRGs are objects whose optical and near-IR rest-frame light is dominated by evolved stars combined with ongoing star formation (at zmed~2.5), and the others are galaxies whose light is dominated by heavily reddened (A1600>~4-6 mag) starbursts (at zmed~1.7). Very few DRGs (<~10%) have no indication of current star formation. DRGs at z~1.5-3 with stellar masses >=1011 Msolar have specific star formation rates (SFRs per unit mass) including the reradiated far-IR emission that range from 0.2 to 10 Gyr-1. Based on the X-ray luminosities and rest-frame near-IR colors, roughly one-quarter of the DRGs contain AGNs, implying that the growth of supermassive black holes coincides with the formation of massive galaxies. At 1.5<=z<=3, the DRGs with M>=1011 Msolar have an integrated specific SFR comparable to the global value of all galaxies. In contrast, galaxies at z~0.3-0.75 with M>=1011 Msolar have an integrated specific SFR less than the global value and more than an order of magnitude lower than that for massive DRGs. At z<~1, lower mass galaxies dominate the overall cosmic mass assembly. This suggests that the bulk of star formation in massive galaxies occurs at early cosmic epochs and is largely complete by z~1.5. Further mass assembly in these galaxies takes place with low specific SFRs. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407; on observations taken with the NASA/ESA Hubble Space Telescope, which is operated by the Association of

  16. Structure simulation with calculated NMR parameters - integrating COSMOS into the CCPN framework.

    PubMed

    Schneider, Olaf; Fogh, Rasmus H; Sternberg, Ulrich; Klenin, Konstantin; Kondov, Ivan

    2012-01-01

    The Collaborative Computing Project for NMR (CCPN) has build a software framework consisting of the CCPN data model (with APIs) for NMR related data, the CcpNmr Analysis program and additional tools like CcpNmr FormatConverter. The open architecture allows for the integration of external software to extend the abilities of the CCPN framework with additional calculation methods. Recently, we have carried out the first steps for integrating our software Computer Simulation of Molecular Structures (COSMOS) into the CCPN framework. The COSMOS-NMR force field unites quantum chemical routines for the calculation of molecular properties with a molecular mechanics force field yielding the relative molecular energies. COSMOS-NMR allows introducing NMR parameters as constraints into molecular mechanics calculations. The resulting infrastructure will be made available for the NMR community. As a first application we have tested the evaluation of calculated protein structures using COSMOS-derived 13C Cα and Cβ chemical shifts. In this paper we give an overview of the methodology and a roadmap for future developments and applications. PMID:22942007

  17. Uses of wonder in popular science: Cosmos: A Personal Voyage and the origin of life

    NASA Astrophysics Data System (ADS)

    Helsing, Daniel

    2016-10-01

    This paper analyses the use of wonder in the TV-series Cosmos: A Personal Voyage (1980). Popular science has been studied extensively (e.g. Broks 2006; Leane 2007; Perrault 2013), and wonder has been studied moderately (e.g. Daston & Park 1998; Fuller 2006; Vasalou 2015). However, there are very few studies of wonder in popular science. This paper explores how and why wonder is used in Cosmos, with the wider aim of understanding uses of wonder in popular science. The studies that discuss wonder in popular science (Fahnestock 1986; Perrault 2013) argue that wonder is used to enthuse the audience about science, but they do not discuss why wonder has this ability, nor whether wonder has other functions. This paper argues that Fuller's (2006) psychological and evolutionary account of wonder can elucidate why wonder has the ability to enthuse; it discerns three senses of 'wonder' (related to objects, emotions and attitudes); and it discusses other functions of wonder (existential, aesthetic and ethical). Due to the centrality of astrobiological questions in Cosmos, this paper also highlights the relation of these questions to the senses and functions of wonder in Cosmos.

  18. US monkey and rat experiments flown on the Soviet Satellite Cosmos 1514

    NASA Technical Reports Server (NTRS)

    Mains, R. C. (Editor); Gomersall, E. W. (Editor)

    1986-01-01

    On December 14, 1983, the U.S.S.R. launched Cosmos 1514, an unmanned spacecraft carrying biological and radiation physics experiments from nine countries, including five from the United States. This was the fourth flight with U.S. experiments aboard one of the Soviet unmanned spacecraft. The Cosmos 1514 flight was limited to five days duration because it was the first nonhuman primate flight. Cosmos 1514 marked a significant departure from earlier flights both in terms of Soviet goals and the degree of cooperation between the U.S.S.R. and the United States. This flight included more than 60 experiments on fish, crawfish eggs, plants and seeds, 10 Wistar pregnant rats, and 2 young adult rhesus monkeys as human surrogates. United States specialist participated in postflight data transfer and specimen transfer, and conducted rat neonatal behavioral studies. An overview of the mission is presented focusing on preflight, on-orbit, and postflight activites pertinent to the five U.S. experiments aboard Cosmos.

  19. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.

    PubMed

    Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco

    2014-08-30

    Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert.

  20. [Experiments with cultures of mammalian cells aboard the biosatellite "Cosmos-782"].

    PubMed

    Sushkov, F V; Rudneva, S V; Nadtocheĭ, G A; Polikarpova, S I; Portugalov, V V

    1977-10-01

    A considerable contribution to the investigation on biological importance of weightlessness was made by the experiments with animals in the artificial Earth satelites (AES) of "Cosmos" type. Cell cultures can serve as an ideal model to get a direct cell response to the effect of external factors. For the experiment in the AES "Cosmos-782", two thoroughly examined cell strains (L and 237) were chosen, which differed in a number of parameters (for example, duration of their mitotic cycles). Density of cell seeding and temperature of their cultivation in the laboratory experiment were calculated in such a way that the whole cycle of the culture development should take place under the conditions of weightlessness: the beginning of lag-phase--before launching and the stationary phase--after landing. The weightlessness was not shown to result in any genetical shifts revealed at chromosomal level. When cultivated after the flight, the cells do not change their mitotic cycle parameters, mitotic course and structural organization. The data obtained in the experiments with AES "Cosmos-368" and "Cosmos-782" (increase of mitotic index, some forms of mitotic pathology during the first terms of cultivation after the flight and enlargement of cellular nuclei) demonstrate the changes in the cell population which have formed under the conditions of weightlessness. Similar changes are observed while the cells propagate in the laboratory conditions. Indirect data on an earlier cell culture aging during the flight do not exclued the possibility that under weightlessness the rate of cell propagation could differ from that under gravitation.

  1. Calibration and validation of the COSMOS rover for surface soil moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mobile COsmic-ray Soil Moisture Observing System (COSMOS) rover may be useful for validating satellite-based estimates of near surface soil moisture, but the accuracy with which the rover can measure 0-5 cm soil moisture has not been previously determined. Our objectives were to calibrate and va...

  2. Structure simulation with calculated NMR parameters - integrating COSMOS into the CCPN framework.

    PubMed

    Schneider, Olaf; Fogh, Rasmus H; Sternberg, Ulrich; Klenin, Konstantin; Kondov, Ivan

    2012-01-01

    The Collaborative Computing Project for NMR (CCPN) has build a software framework consisting of the CCPN data model (with APIs) for NMR related data, the CcpNmr Analysis program and additional tools like CcpNmr FormatConverter. The open architecture allows for the integration of external software to extend the abilities of the CCPN framework with additional calculation methods. Recently, we have carried out the first steps for integrating our software Computer Simulation of Molecular Structures (COSMOS) into the CCPN framework. The COSMOS-NMR force field unites quantum chemical routines for the calculation of molecular properties with a molecular mechanics force field yielding the relative molecular energies. COSMOS-NMR allows introducing NMR parameters as constraints into molecular mechanics calculations. The resulting infrastructure will be made available for the NMR community. As a first application we have tested the evaluation of calculated protein structures using COSMOS-derived 13C Cα and Cβ chemical shifts. In this paper we give an overview of the methodology and a roadmap for future developments and applications.

  3. From Tripod to Cosmos: A New Metaphor for the Language Arts.

    ERIC Educational Resources Information Center

    Baines, Lawrence A.

    1998-01-01

    Argues that the contemporary language arts curriculum encompasses eight areas: literature, language, composition, speech and drama, critical thinking, technology, media literacy, and interdisciplinary studies. Offers a rationale for "cosmos" as a new metaphor for the language arts. Discusses the content of each of the eight curricular areas, and…

  4. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    PubMed

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material.

  5. The US/USSR Biological Satellite Program: COSMOS 936 Mission Overview

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1978-01-01

    On August 3, 1977, the Soviet Union launched Cosmos 936, an unmanned spacecraft carrying biology and physics experiments from 9 countries, including both the Soviet Union and U.S. The launch marked the second time the Soviet Union has flown U.S. experiments aboard one of its spacecraft, the first being Cosmos 782 launched Nov. 25, 1975, which remained in orbit 19.5 days. Aboard Cosmos 936 were: 30 young male Wistar SPF rats, 20 of which was exposed to hypogravity during flight while the remainder were subjected to a l x g acceleration by continuous configuration; 2) experiments with plants and fruit flies; 3) radiation physics experiments; and 4) a heat convection experiment. After 18.5 days in orbit, the spacecraft landed in central Asia where a Soviet recovery team began experiment operations, including animal autopsies, within 4.5 hr of landing. Half of the animals were autopsied at the recovery site and the remainder returned to Moscow and allowed to readapt to terrestrial gravity for 25 days after which they, too, were autopsied. Specimens for U.S. were initially prepared at the recovery site or Soviet laboratories and transferred to U.S. laboratories for complete analyses. An overview of the mission focusing on preflight, on-orbit, and postflight activities pertinent to the seven U.S. experiments aboard Cosmos 936 will be presented.

  6. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    PubMed

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material. PMID:27149148

  7. Debris Disks Among the Shell Stars: Insights from Spitzer

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Weinberger, Alycia; Teske, Johanna

    2008-01-01

    Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.

  8. Estimation Filter for Alignment of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2007-01-01

    A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.

  9. On circumstellar disks: Spitzer identifies two possible evolutionary paths

    NASA Astrophysics Data System (ADS)

    Teixeira, Paula S.; Lada, Charles J.; Marengo, Massimo; Lada, Elizabeth

    Multi-wavelength surveys have vastly improved our understanding of many astrophysical objects, in particular, circumstellar disks. We present our results for the disk population of the young cluster NGC 2264. Our study was based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer on board the Spitzer Space Telescope combined with previously published optical data. We divide the disk population into 3 classes based on their spectral energy distribution shapes: optically thick disks, homologously depleted anemic disks, and radially depleted transition disks. We find that there are two distinct evolutionary paths for disks: a homologous one, where the disk emission decreases uniformly in NIR and mid-infrared wavelengths (anemic disks) and throughout which most sources pass, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (transition disks). Whether a disk evolves in a homologously or radially depleted fashion is still unknown and may depend on the nature of planet formation in the disk.

  10. Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE

    NASA Astrophysics Data System (ADS)

    Indebetouw, R.; Robitaille, T. P.; Whitney, B. A.; Churchwell, E.; Babler, B.; Meade, M.; Watson, C.; Wolfire, M.

    2007-09-01

    We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point-source spectral energy distributions, select candidate YSOs, and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive YSO that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars.'' We confirm the youth of NGC 6611 by a large fraction of infrared excess sources and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.

  11. HST and Spitzer Rotational Phase Mapping of Brown Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Apai, Daniel; Buenzli, E.; Radigan, J.; Burrows, A. S.; Metchev, S. A.; Flateau, D. C.; Reid, I. N.; Heinze, A.; Jayawardhana, R.

    2013-01-01

    The physics and chemistry of condensate clouds play pivotal but poorly understood roles in the atmospheric structure and composition of ultracool brown dwarfs and giant exoplanets. Unresolved observations can only provide limited insights into the structure of clouds or the processes behind the transition from the cloudy L-type sources to the cloud-free T-type ones. We will review exciting results from a new technique, rotational phase mapping, of ultracool atmospheres. Using precision infrared Spitzer photometry and HST spectroscopy covering entire rotation periods of brown dwarfs, we have obtained detailed spectrally and spatially resolved information of their atmospheres. The key results include the identification of cloud structures in L/T brown dwarfs, evidence for longitudinal and vertical cloud heterogeneities, and spectral constraints on the composition and types of clouds. We show that L/T transition brown dwarfs often have thin cloud covers with patches of cold, thick clouds, which introduce strong but only weakly wavelength-dependent extinction. The same thick cloud patches seen in our varying brown dwarf targets, if extended to the entire surface, predict near-infrared colors/magnitudes matching the range occupied by the "underluminous" directly imaged exoplanets. This supports the models in which thick clouds are responsible for the near-infrared properties of underluminous exoplanets.

  12. Inter-pixel Size Variations as Source of Spitzer Systematics

    NASA Astrophysics Data System (ADS)

    Himes, Michael David; Harrington, Joseph; Lust, Nathaniel B.

    2016-10-01

    In the astrophysical sciences imaging devices are commonly assumed to contain evenly sized pixels, with each pixel converting light to signal with a slightly different efficiency. These variations are accounted for by exposing the detector to a uniform light source and comparing each value to the mean of the exposure and dividing by the result (flatfielding) . If the detector instead had pixels which varied in size, the same variations to uniform illumination would be recorded and subsequently removed. However, in the presence of a flux gradient such as a star, the flatfielding will alter these flux values which in turn affects any analysis of the data. This alteration would be due to varying size pixels being corrected to a unit area through the flatfield, when the pixels themselves rightfully record a non-uniform area of the point-spread function (PSF). We believe that this may be the source of Spitzer's systematic error attributed to gain variations. We demonstrate what an imaging device with inter-pixel size differences looks like from a data standpoint, its effects on estimating the widths of a point source, and investigations to properly account for size variations without altering flux values.

  13. Spitzer's Last Look at the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sloan, Greg; Kraemer, Kathleen; Kraemer, K. E.; Kirkpatrick, J. D.; Gordon, K. D.; Bolatto, A. D.; Boyer, M. L.; Groenewegen, M.; Jones, O. C.; Kemper, F.; Lloyd, J. P.; McDonald, I.; Meixner, M.; Oliveira, J. M.; Sargent, B. A.; Sewilo, M.; Srinivasan, S.; van Loon, J. Th.; Zijlstra, A. A.

    2016-08-01

    We will map 30 square degrees of sky covering the Small Magellanic Cloud (SMC) and the Bridge toward the LMC at 3.6 and 4.5 um, in two epochs in late 2017. Coupled with similar maps obtained in 2008 and surveys in the core of the SMC starting in 2005, the new epochs will give us a temporal baseline of 12 years in the heart of the SMC and 9 years in its outer regions. The Spitzer observations probe deeper than WISE and at higher resolution, allowing us to study fainter sources and sources in more crowded regions in this nearby metal-poor dwarf galaxy. We will use these data to better characterize how variability and dust production are intertwined in the final evolutionary stages of a star's lifetime. The long temporal baseline also enables searches for brown dwarfs near the Sun which are undetectable with Gaia or WISE, and the crowded background formed by the SMC makes any newly discovered brown dwarfs excellent candidates for microlensing studies which would reveal their masses. The long baseline may also reveal transients in star-forming regions in the SMC and in the population of background galaxies. We request 172.1 hours, with no proprietary period, to complete this project.

  14. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  15. Spitzer Space Telescope Albedo Survey of Small Jovian Trojans

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Jewitt, D. C.; Grisetti, R.; Igyarto, C.

    2006-09-01

    We will present preliminary results from our Spitzer Space Telescope (SST) survey of small Jovian Trojan asteroids. For the first time, we have been able to make thermophysical measurements of objects at the faint end of the known Trojan magnitude distribution. Our scientific goal is to determine the mean albedo of these small Trojans. Our sample contains 35 objects with approximate absolute magnitudes (H) between 13 and 14 (diameter 10 to 15 km for 0.05 albedo). For this survey we obtained 24-micron (mid-IR) photometry with the MIPS instrument aboard SST, and visible-wavelength CCD photometry using the University of Hawaii 88-inch Telescope. This lets us constrain each Trojan's effective radius and geometric albedo. While the two datasets were not simultaneous, this is not detrimental to the achievement of our goal since we only need for the effect of the rotational context to average out. In an earlier survey, we found that the mean V-band geometric albedo for large Trojans (sample median diameter of 110 km) is 0.041±0.002 (Fernandez et al. 2003, AJ 126, 1563). If the small Trojans' mean albedo is significantly higher, this would be evidence for a significant volatile component in the Trojan population having survived since formation, and would have implications for the contribution of Trojan asteroids to the Jupiter-family comet population. This research was made possible through a SIRTF Fellowship to YRF and through a GO data analysis grant from SSC to YRF and DCJ.

  16. Compton thick AGN in the XMM-COSMOS survey

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Ranalli, P.; Georgantopoulos, I.; Georgakakis, A.; Delvecchio, I.; Akylas, T.; Berta, S.; Bongiorno, A.; Brusa, M.; Cappelluti, N.; Civano, F.; Comastri, A.; Gilli, R.; Gruppioni, C.; Hasinger, G.; Iwasawa, K.; Koekemoer, A.; Lusso, E.; Marchesi, S.; Mainieri, V.; Merloni, A.; Mignoli, M.; Piconcelli, E.; Pozzi, F.; Rosario, D. J.; Salvato, M.; Silverman, J.; Trakhtenbrot, B.; Vignali, C.; Zamorani, G.

    2015-01-01

    Heavily obscured, Compton thick (CT, NH> 1024 cm-2) active galactic nuclei (AGN) may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background at its peak. However, unambiguously identifying CT AGN beyond the local Universe is a challenging task even in the deepest X-ray surveys, and given the expected low spatial density of these sources in the 2-10 keV band, large area surveys are needed to collect sizable samples. Through direct X-ray spectra analysis, we selected 39 heavily obscured AGN (NH>3 × 1023 cm-2) at bright X-ray fluxes (F2-10 ≳ 10-14 erg s-1 cm-2) in the 2 deg2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the shallow XMM-Newton data, the presence of bona fide CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample comprises ten CT AGN (six of them also have a detected Fe Kα line with EW ~ 1 keV), spanning a wide range of redshifts (z ~ 0.1-2.5) and luminosity (L2-10 ~ 1043.5-1045 erg s-1) and is complemented by 29 heavily obscured AGN spanning the same redshift and luminosity range. We collected the rich multi-wavelength information available for all these sources, in order to study the distribution of super massive black hole and host properties, such as black hole mass (MBH), Eddington ratio (λEdd), stellar mass (M∗), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller MBH and higher λEdd with respect to unobscured sources, while a weaker evolution in M∗ is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshifts. We also present and briefly discuss optical spectra, broadband spectral energy distribution (SED) and morphology for the sample of ten CT AGN. Both

  17. Spitzer IR Colors and ISM Distributions of Virgo Cluster Spirals

    NASA Astrophysics Data System (ADS)

    Kenney, Jeffrey D.; Wong, I.; Kenney, Z.; Murphy, E.; Helou, G.; Howell, J.

    2012-01-01

    IRAC infrared images of 44 spiral and peculiar galaxies from the Spitzer Survey of the Virgo Cluster help reveal the interactions which transform galaxies in clusters. We explore how the location of galaxies in the IR 3.6-8μm color-magnitude diagram is related to the spatial distributions of ISM/star formation, as traced by PAH emission in the 8μm band. Based on their 8μm/PAH radial distributions, we divide the galaxies into 4 groups: normal, truncated, truncated/compact, and anemic. Normal galaxies have relatively normal PAH distributions. They are the "bluest" galaxies, with the largest 8/3.6μm ratios. They are relatively unaffected by the cluster environment, and have probably never passed through the cluster core. Truncated galaxies have a relatively normal 8μm/PAH surface brightness in the inner disk, but are abruptly truncated with little or no emission in the outer disk. They have intermediate ("green") colors, while those which are more severely truncated are "redder". Most truncated galaxies have undisturbed stellar disks and many show direct evidence of active ram pressure stripping. Truncated/compact galaxies have high 8μm/PAH surface brightness in the very inner disk (central 1 kpc) but are abruptly truncated close to center with little or no emission in the outer disk. They have intermediate global colors, similar to the other truncated galaxies. While they have the most extreme ISM truncation, they have vigorous circumnuclear star formation. Most of these have disturbed stellar disks, and they are probably produced by a combination of gravitational interaction plus ram pressure stripping. Anemic galaxies have a low 8μm/PAH surface brightness even in the inner disk. These are the "reddest" galaxies, with the smallest 8/3.6μm ratios. The origin of the anemics seems to a combination of starvation, gravitational interactions, and long-ago ram pressure stripping.

  18. A new data analysis technique for Spitzer transit observations

    NASA Astrophysics Data System (ADS)

    Morello, Giuseppe; Waldmann, Ingo Peter; Tinetti, Giovanna; Howarth, Ian D.; Micela, Giuseppina

    2015-08-01

    Observations of exoplanetary transits are a powerful tool to investigate the nature of planets around other stars. Transits are revealed through periodic drops in the apparent stellar brightness, due to the interposition of a planet between the star and the observer. Multi-wavelength observations can be used to characterize the atmospheres of exoplanets, through differences in the transit depths, typically at the level of one part in 10^4 in stellar flux for giant planets. Although this method has been successfully used to detect a list of molecules on several exoplanets, some controversial results are present in the literature. Instrumental systematics are often difficult to disentangle from the signal, and the use of different parameterizations of the systematics can affect the results. We present a blind source separation method, based on an Independent Component Analysis of individual pixel time series, to decorrelate the planetary signal without any prior instrument model or astrophysical information, hence ensuring a higher degree of objectivity. This method has been applied to a few Spitzer/IRAC light-curves of HD189733b and GJ436b, obtaining for the first time coherent and repeatable results over different epochs (Morello et al. 2014, ApJ, 786, 22, Morello et al. 2015, accepted by ApJ). We will present here the technique (Morello 2015, submitted), and the results of its application to different observations, in addition to the already published ones. A uniform re-analysis of other archive data with this technique will provide improved parameters for a list of exoplanets, and in particular some other results which are debated in the literature.

  19. Spitzer/IRAC Photometry Of The Four Largest Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Cartwright, Richard; Emery, J.; Rivkin, A.; Trilling, D.

    2012-10-01

    The surfaces of the four largest Uranian satellites are dominated by water ice and a spectrally neutral constituent that is likely carbonaceous in composition. CO2 ice has been detected on Ariel, Umbriel, and Titania, with no detection on the furthest regular Uranian satellite, Oberon (Grundy et al., 2003, 2006). Whether CO2 ice is primordial or is actively produced in the Uranian system is unclear; however, it seems unlikely that primordial CO2 ice would remain exposed on an icy satellite surface over the age of the Solar System. One possible mechanism for producing CO2 ice is bombardment of water ice and carbonaceous material by charged particles caught in Uranus’ magnetic field. Unlike the other large Uranian satellites, Oberon spends part of its orbit outside the confines of Uranus’ magnetic field, which might help explain why CO2 ice has yet to be detected on Oberon. We are using photometric data gathered by the Infrared Array Camera (IRAC), onboard the Spitzer Space Telescope (SST), in order to search for the signature of CO2 ice on Oberon, and confirm its presence on Ariel, Umbriel, and Titania at longer wavelengths than previous studies. IRAC collects data in four different channels, which are centered roughly at 3.6, 4.5, 5.8, and 8.0 µm. Additionally, we are gathering spectroscopic data using SpeX on IRTF, at similar longitudes to the IRAC observations, in order to characterize the distribution of CO2 ice on these icy satellites over a wide range of near-infrared wavelengths. Our preliminary photometry results for Oberon indicate that there is a steep reduction in reflected solar flux from channel 1 to channel 2, suggesting that surface materials are absorbing photons at wavelengths within the bandpass of channel 2. We will present the results of our photometric analysis of the four largest Uranian moons.

  20. PSF subtraction to search for distant Jupiters with SPITZER

    NASA Astrophysics Data System (ADS)

    Rameau, Julien; Artigau, Etienne; Baron, Frédérique; Lafrenière, David; Doyon, Rene; Malo, Lison; Naud, Marie-Eve; Delorme, Philippe; Janson, Markus; Albert, Loic; Gagné, Jonathan; Beichman, Charles

    2015-12-01

    In the course of the search for extrasolar planets, a focus has been made towards rocky planets very close (within few AUs) to their parent stars. However, planetary systems might host gas giants as well, possibly at larger separation from the central star. Direct imaging is the only technique able to probe the outer part of planetary systems. With the advent of the new generation of planet finders like GPI and SPHERE, extrasolar systems are now studied at the solar system scale. Nevertheless, very extended planetary systems do exist and have been found (Gu Ps, AB Pic b, etc.). They are easier to detect and characterize. They are also excellent proxy for close-in gas giants that are detected from the ground. These planets have no equivalent in our solar system and their origin remain a matter of speculation. In this sense, studying planetary systems from its innermost to its outermost part is therefore mandatory to have a clear understanding of its architecture, hence hints of its formation and evolution. We are carrying out a space-based survey using SPITZER to search for distant companions around a well-characterized sample of 120 young and nearby stars. We designed an observing strategy that allows building a very homogeneous PSF library. With this library, we perform a PSF subtraction to search for planets from 10’’ down to 1’’. In this poster, I will present the library, the different algorithms used to subtract the PSF, and the promising detection sensitivity that we are able to reach with this survey. This project to search for the most extreme planetary systems is unique in the exoplanet community. It is also the only realistic mean of directly imaging and subsequently obtaining spectroscopy of young Saturn or Jupiter mass planets in the JWST-era.

  1. GALACTIC CEPHEIDS WITH SPITZER. II. SEARCH FOR EXTENDED INFRARED EMISSION

    SciTech Connect

    Barmby, P.; Marengo, M.; Evans, N. R.; Huelsman, D.; Fazio, G. G.; Bono, G.; Su, K. Y. L.; Welch, D. L.

    2011-02-15

    A deep and detailed examination of 29 classical Cepheids with the Spitzer Space Telescope has revealed three stars with strong nearby extended emission detected in multiple bands which appears to be physically associated with the stars. RS Pup was already known to possess extended infrared emission, while the extended emission around the other two stars (S Mus and {delta} Cep) is newly discovered in our observations. Four other stars (GH Lup, l Car, T Mon, and X Cyg) show tentative evidence for extended infrared emission. An unusual elongated extended object next to SZ Tau appears to be a background or foreground object in a chance alignment with the Cepheid. The inferred mass-loss rate upper limits for S Mus and {delta} Cep are in the range from 10{sup -9} to 10{sup -8} M{sub sun} yr{sup -1}, with the upper limit for RS Pup as high as 10{sup -6} M{sub sun} yr{sup -1}. Mass loss during post-main-sequence evolution has been proposed as a resolution to the discrepancy between pulsational and dynamical masses of Cepheid variable stars: dust in the lost material would make itself known by the presence of an infrared bright nebula or unresolved infrared excess. The observed frequency of infrared circumstellar emission (<24%) and the mass-loss rate we estimate for our sources show that dusty mass loss can only account for part of the Cepheid mass-loss discrepancy. Nevertheless, our direct evidence that mass loss is active during the Cepheid phase is an important confirmation that these processes need to be included in evolutionary and pulsation models of these stars and should be taken into account in the calibration of the Cepheid distance scale.

  2. SPITZER SPECTROSCOPY OF THE TRANSITION OBJECT TW Hya

    SciTech Connect

    Najita, Joan R.; Strom, Stephen E.; Carr, John S.; Watson, Dan M.; Pascucci, Ilaria; Hollenbach, David; Gorti, Uma; Keller, Luke

    2010-03-20

    We report sensitive Spitzer IRS spectroscopy in the 10-20 {mu}m region of TW Hya, a nearby T Tauri star. The unusual spectral energy distribution of the source, that of a 'transition object', indicates that the circumstellar disk in the system has experienced significant evolution, possibly as a result of planet formation. The spectrum we measure is strikingly different from that of other classical T Tauri stars reported in the literature, displaying no strong emission features of H{sub 2}O, C{sub 2}H{sub 2}, or HCN. The difference suggests that the inner planet formation region ({approx}<5 AU) of the gaseous disk has evolved physically and/or chemically away from the classical T Tauri norm. Nevertheless, TW Hya does show a rich spectrum of emission features of atoms (H I, [Ne II], and [Ne III]) and molecules (H{sub 2}, OH, CO{sub 2}, HCO{sup +}, and possibly CH{sub 3}), some of which are also detected in classical T Tauri spectra. The properties of the neon emission are consistent with an origin for the emission in a disk irradiated by X-rays (with a possible role for additional irradiation by stellar EUV). The OH emission we detect, which also likely originates in the disk, is hot, arising from energy levels up to 23,000 K above ground, and may be produced by the UV photodissociation of water. The H I emission is surprisingly strong, with relative strengths that are consistent with case B recombination. While the absence of strong molecular emission in the 10-20 {mu}m region may indicate that the inner region of the gaseous disk has been partly cleared by an orbiting giant planet, chemical and/or excitation effects may be responsible instead. We discuss these issues and how our results bear on our understanding of the evolutionary state of the TW Hya disk.

  3. A New Spitzer IRAC Technique to Characterize Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Krick, Jessica; Ingalls, J.; Carey, S.; von Braun, K.

    2012-05-01

    Spitzer’s extended warm mission gives us the opportunity to contribute to its legacy by performing comparative science on atmospheres of extrasolar planets. Observation of phase curves produce maps of the longitudinal brightness/temperature distributions in the planetary atmospheres, which are then used to calculate energy redistribution efficiencies between the hot dayside and cooler nightside - exoplanetary weather. Recent improvements in the calibration of IRAC make possible a new observing technique which will be much more efficient than standard staring mode observations by using snapshot observations to emulate a full phase curve. The challenge with using snapshot observations is in making sure all observing epochs can be tied together with high enough photometric precision. The dominant source of error in this task is intrapixel gain variations on sub pixel levels. We have effectively removed this source of error by using the Pointing Calibration and Reference Sensor (PCRS) onboard Spitzer for pointing repeatability that is significantly better than random pointing. Because we have achieved this excellent repeatability, we are able to build up a map of the intrapixel gain, which is then used to independently correct IRAC photometry as a function of position on the pixel. We discuss additional sources of noise below the gain variations, at the sub percent level, such as pixel-wise nonlinearities, and our efforts to remove them. We present preliminary 4.5 micron data of HD209458 where we compare staring mode observations to snapshots taken with this new technique, corrected by the gain and residual nonlinearity map, and comment on the scientific implications of the resultant phase curve.

  4. Spitzer observations of the thermal emission from WASP-43b

    SciTech Connect

    Blecic, Jasmina; Harrington, Joseph; Stevenson, Kevin B.; Hardy, Ryan A.; Cubillos, Patricio E.; Hardin, Matthew; Bowman, Oliver; Nymeyer, Sarah; Madhusudhan, Nikku; Anderson, David R.; Hellier, Coel; Smith, Alexis M. S.; Cameron, Andrew Collier

    2014-02-01

    WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a = 0.01526 ± 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (T {sub *} = 4520 ± 120 K), giving the planet a modest equilibrium temperature of T {sub eq} = 1440 ± 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. The eclipse depths and brightness temperatures from our jointly fit model are 0.347% ± 0.013% and 1670 ± 23 K at 3.6 μm and 0.382% ± 0.015% and 1514 ± 25 K at 4.5 μm. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347436 ± 1.4 × 10{sup –7} days) and put an upper limit on the eccentricity (e=0.010{sub −0.007}{sup +0.010}). We use our Spitzer eclipse depths along with four previously reported ground-based photometric observations in the near-infrared to constrain the atmospheric properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich compositions are able to explain all the available data. However, a wide range of metallicities and C/O ratios can explain the data. The data suggest low day-night energy redistribution in the planet, consistent with previous studies, with a nominal upper limit of about 35% for the fraction of energy incident on the dayside that is redistributed to the nightside.

  5. NEOs in the mid-infrared: from Spitzer to JWST

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Thomas, Cristina A.

    2016-10-01

    Near-Earth Objects (NEOs) account for a surprisingly large fraction of the Spitzer observing time devoted to Solar System science. As a community, we should think of ways to repeat that success with JWST. JWST is planning an open Early Release Science Program, with the expected deadline for letters of intent in early 2017. We can't wait for next year's DPS to develop ideas. The time is now!In order to stir up the discussion, we will present ideas for NEO observing programs that are well adapted to JWST's capabilities and limitations, based on our recent PASP paper (Thomas et al., 2016). Obvious measurement objectives would include* size and albedo from thermal continuum (MIRI photometry)* thermal inertia for objects with well-known shape and spin state (MIRI)* taxonomy through reflection spectroscopy and emission spectroscopy in the NIR and MIR; NIR colors for faint objects.In all cases, JWST's sensitivity will allow us to go deeper than currently possible by at least an order of magnitude. Meter-sized NEOs similar to 2009 BD or 2011 MD are easy targets for MIRI spectrophotometry!The following limitations must be kept in mind, however: JWST's large size makes it slow to move. Most problematic for NEOs is probably the resulting 'speed limit': non-sidereal tracking is supported up to a rate of 30 mas/s, NEOs can easily move faster than that (ways to relax this constraint are under discussion). The average slew to a new target is budgeted to take 30 min, effectively ruling out programs many-target programs like ExploreNEOs or NEOSurvey (see D. Trilling's paper). Additionally, JWST will only observe close to quadrature, translating to large solar phase angles for NEO observations; this is familiar from other space-based IR facilities.

  6. Spitzer Observations of the Thermal Emission from WASP-43b

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Madhusudhan, Nikku; Stevenson, Kevin B.; Hardy, Ryan A.; Cubillos, Patricio E.; Hardin, Matthew; Bowman, Oliver; Nymeyer, Sarah; Anderson, David R.; Hellier, Coel; Smith, Alexis M. S.; Collier Cameron, Andrew

    2014-02-01

    WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a = 0.01526 ± 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (T * = 4520 ± 120 K), giving the planet a modest equilibrium temperature of T eq = 1440 ± 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. The eclipse depths and brightness temperatures from our jointly fit model are 0.347% ± 0.013% and 1670 ± 23 K at 3.6 μm and 0.382% ± 0.015% and 1514 ± 25 K at 4.5 μm. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347436 ± 1.4 × 10-7 days) and put an upper limit on the eccentricity (e = 0.010^{+0.010}_{-0.007}). We use our Spitzer eclipse depths along with four previously reported ground-based photometric observations in the near-infrared to constrain the atmospheric properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich compositions are able to explain all the available data. However, a wide range of metallicities and C/O ratios can explain the data. The data suggest low day-night energy redistribution in the planet, consistent with previous studies, with a nominal upper limit of about 35% for the fraction of energy incident on the dayside that is redistributed to the nightside.

  7. The scale invariant power spectrum of the primordial curvature perturbations from the coupled scalar tachyon bounce cosmos

    SciTech Connect

    Li, Changhong; Cheung, Yeuk-Kwan E. E-mail: cheung@nju.edu.cn

    2014-07-01

    We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified parameter space for a systematic study of inflationary and bounce cosmologies. The CSTB cosmos is dual-in Wands's sense-to slow-roll inflation as can be visualized with the aid of this parameter space. Guaranteed by the dynamical attractor behavior of the CSTB Cosmos, the scale invariance of its power spectrum is free of the fine-tuning problem, in contrast to the slow-roll inflation model.

  8. Spitzer Student Research Project: Summary for Z Cha research and data interpretation

    NASA Astrophysics Data System (ADS)

    Jones, Virginia; Tetler, J.; Thomas, B.; Zielinski, L.; Carter, B.; Dzakovich, M.; Hopkins, S.; Kong, C.; McDunn, M.; Mendoza, M.; Milos, W.; Rice, L.

    2009-01-01

    Z Cha is an eclipsing cataclysmic variable star with some unusual features. This binary system consists of a white dwarf, which pulls a stream of mass away from its red dwarf companion, resulting to the formation of an accretion disk around the white dwarf. We hereby present the first mid-infrared (Spitzer/IRAC 4.5 and 8 micron) light curves of the system and compare it with the optical counterpart. Scientists, students and teachers involved with the Spitzer Teacher Observing Program obtained data of the eclipsing cataclysmic variable Z Cha with the Spitzer Space Telescope, May 14, 2008. These observations yielded a light curve for Z Cha in channels 2 (4.493 microns) and 4 (7.872 microns) from IRAC. Photometric observations were also made in March of 2008 with the 0.9-meter telescope of the Cerro Tololo Inter-American Observatory, located in Chile, and light curves were constructed from these data as well. Data reduction of both the Spitzer and ground-based photometric observations completed by the students and analyzed by our team using the Image Reduction and Analysis Facility (IRAF) package. The scientific results of these observations will be presented in a separate poster. The teachers and students developed inquiry-based educational materials and activities that convey the conceptual background necessary to interpret these light curves, cataclysmic variables, and stellar evolution. The Spitzer Science Center, and the National Optical Astronomy Observatory supported this work.

  9. Millimeter Detection of Spitzer-selected High Redshift Hyperluminus Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Omont, A.; del Carmen Polletta, M.; Zylka, R.; Shupe, D.; Smith, H. E., Jr.; Berta, S.; Bavouzet, N.; Lagache, G.; Farrah, D.; Bertoldi, F.; Cox, P.; de Breuck, C.; Dole, H.; Lutz, D.; Tacconi, L.; Perez-Fournon, I.; Aussel, H.; McCracken, H.; Clements, D.; Rowan-Robinson, M.; Franceschini, A.; Frayer, D.; Surace, J.; Siana, B.

    2006-12-01

    We have used the Mambo instrument on the IRAM 30m telescope to observe at 1.2mm 63 Spitzer-selected z>1 hyperluminous infrared galaxy candidates (HLIRGs) with starburst-dominated mid-infrared (MIR) spectral energy distributions from the SWIRE Legacy survey. The primary selection criteria are a peak in the IRAC 5.8μm band due to the rest frame near-infrared spectrum of evolved stars, a bright detection at 24μm, and very faint optical counterparts. The detection rate with Mambo is very high at 45%, and both the detection rate and the average 1.2mm/24μm flux ratio are much higher than found for previous Spitzer MIR-selected samples, due to the fact that earlier samples favored systems with AGN-dominated MIR emission. Our sample, on the other hand, shows systematically lower 1.2mm/24μm ratios than a sample of Spitzer-detected submillimeter-selected galaxies (SMGs) in a similar redshift range. Thus Spitzer MIR selection complements submillimeter selection of high redshift starburst-dominated HLIRGs, finding a population with substantially different SED shapes. The large MIR/submillimeter flux ratios probably indicate exceptionally luminous 7.7μm PAH emission, based on Spitzer IRS spectra for a subset of these objects (Weedman et al. 2007).

  10. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  11. The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.

    PubMed

    Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G

    2012-03-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  12. Primate circadian rhythms during spaceflight: results from Cosmos 2044 and 2229.

    PubMed

    Fuller, C A; Hoban-Higgins, T M; Klimovitsky, V Y; Griffin, D W; Alpatov, A M

    1996-07-01

    The circadian timing system (CTS) coordinates an animal's physiology and behavior both internally and with the 24-h day. Previous studies have suggested that the CTS is sensitive to changes in gravity. To examine this question, the expression of the CTS in four juvenile male rhesus macaques (Macaca mulatta) were studied in space. These animals were flown on the Cosmos 2044 and 2229 missions. Activity, heart rate, and axillary and brain (Cosmos 2229) temperatures were recorded. In both flights, the subjects exhibited delays in the phasing of their temperature rhythms and a decrease in mean heart rate compared with ground control studies. These data are in support of other studies that demonstrate that the CTS is sensitive to changes in the gravitational environment. Furthermore, the data also support the concept of a multioscillator organization of the primate CTS due to the differential responses of the rhythms measured.

  13. An ear turned to ``The Cosmos'': 50 projects to discover the universe

    NASA Astrophysics Data System (ADS)

    del Puerto, Carmen

    2011-06-01

    In 1609, as Galileo pointed the sky with a telescope, he observed Jupiter's satellites and changed our vision of the universe. Four hundred years later, we celebrate this event all over the world, and also in the Canaries. 2009, the International Year of Astronomy, is a very special year for the Science and Cosmos Museum (Museo de la Ciencia y el Cosmos). This was the first museum in Spain supported by a public entity, The Local Government of Tenerife (Cabildo de Tenerife), through its Autonomous Council of Museums (Organismo Autónomo de Museos y Centros), and a research centre, the Instituto de Astrofísica de Canarias. Fifteen years later, this museum, which receives 50,000 visitors a year, celebrates the International Year of Astronomy with fifty projects described in this paper.

  14. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  15. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    SciTech Connect

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-12-10

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 < z < 5.2 using all three cameras on board the Spitzer Space Telescope. The resulting spectral energy distributions unambiguously show a stellar population in 46 sources and hot dust emission associated with the active nucleus in 59. Using a new rest-frame S{sub 3{sub {mu}m}}/S{sub 1.6{sub {mu}m}} versus S{sub 5{sub {mu}m}}/S{sub 3{sub {mu}m}} criterion, we identify 42 sources where the rest-frame 1.6 {mu}m emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10{sup 11} M{sub sun}, and remarkably constant within the range 1 < z < 3. At z>3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z {approx} 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 {mu}m hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  16. Spitzer Observations of Exoplanets Discovered with the Kepler K2 Mission

    NASA Astrophysics Data System (ADS)

    Beichman, Charles; Livingston, John; Werner, Michael; Gorjian, Varoujan; Krick, Jessica; Deck, Katherine; Knutson, Heather; Wong, Ian; Petigura, Erik; Christiansen, Jessie; Ciardi, David; Greene, Thomas P.; Schlieder, Joshua E.; Line, Mike; Crossfield, Ian; Howard, Andrew; Sinukoff, Evan

    2016-05-01

    We have used the Spitzer Space Telescope to observe two transiting planetary systems orbiting low-mass stars discovered in the Kepler K2 mission. The system K2-3 (EPIC 201367065) hosts three planets, while K2-26 (EPIC 202083828) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with Spitzer will be critical for future observations of these and other K2 targets. For K2-3b we find marginally significant evidence for a transit timing variation between the K2 and Spitzer epochs.

  17. Investigating the long-lived clouds of early L dwarfs with Spitzer and K2.

    NASA Astrophysics Data System (ADS)

    Gizis, John; Lowrance, Patrick; Paudel, Rishi

    2016-08-01

    We propose to monitor two bright L0 dwarfs with Spitzer. Unlike cooler brown dwarfs whose clouds evolve on timescales of hours and days, the best studied L1 dwarf star has a cloud feature that lasted for over two years. This discovery was enabled by Kepler optical photometry combined with Spitzer mid-infrared photometry. The upcoming K2 Campaign 10 happens to include two bright L0 dwarfs, and they will repeated in K2 Campaign 17, providing two uniquely accurate optical light curves that sample timescales from minutes to years. By probing higher altitudes in the L dwarf atmospheres, the Spitzer IRAC photometry would enable us to test whether the optical variability in these two objects also come from long-lived clouds. This would establish whether the Kepler field L1 dwarf is a fluke or whether the weather and cloud lifetimes in warm (~2300K) atmospheres are qualititatively different than in cooler brown dwarfs.

  18. Non-Spitzer heat flow in a steadily ablating laser-produced plasma

    SciTech Connect

    Bell, A.R.

    1985-06-01

    Electron energy transport in a laser-produced ablating plasma is modeled by the Vlasov--Fokker--Planck equation for electrons and the fluid equations for cold ions. These equations are solved using approximations which maintain good accuracy but allow faster computational solution than was previously possible. It is found that the spatial profiles for temperature and density in planar geometry differ very little from those calculated from the Spitzer conductivity. At high laser intensities, the plasma flow diverges as it flows away from the solid target and the effects of nonplanar flow are important. This is modeled by the adoption of spherical geometry, and it is found that the Spitzer conductivity breaks down and the temperature and density profiles differ significantly from those calculated using the Spitzer conductivity.

  19. Physics of the Cosmos Program Analysis Group (PhysPAG) Report

    NASA Astrophysics Data System (ADS)

    Nousek, John A.

    2015-01-01

    The Physics of the Cosmos Program Analysis Group (PhysPAG) serves as a forum for soliciting and coordinating input and analysis from the scientific community in support of the PCOS program objectives. I will outline the activities of the PhysPAG over the past year, since the last meeting during the AAS meeting in National Harbor, and mention the activities of the PhysPAG related Scientific Interest Groups.

  20. THE zCOSMOS-SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS

    SciTech Connect

    Mancini, C.; Renzini, A.; Foerster Schreiber, N. M.; Hicks, E. K. S.; Genzel, R.; Tacconi, L.; Davies, R.; Cresci, G.; Peng, Y.; Lilly, S.; Carollo, M.; Oesch, P.; Vergani, D.; Pozzetti, L.; Zamorani, G.; Daddi, E.; McCracken, H. J.; Bouche, N.; Shapiro, K.; and others

    2011-12-10

    The zCOSMOS-SINFONI project is aimed at studying the physical and kinematical properties of a sample of massive z {approx} 1.4-2.5 star-forming galaxies, through SINFONI near-infrared integral field spectroscopy (IFS), combined with the multiwavelength information from the zCOSMOS (COSMOS) survey. The project is based on one hour of natural-seeing observations per target, and adaptive optics (AO) follow-up for a major part of the sample, which includes 30 galaxies selected from the zCOSMOS/VIMOS spectroscopic survey. This first paper presents the sample selection, and the global physical characterization of the target galaxies from multicolor photometry, i.e., star formation rate (SFR), stellar mass, age, etc. The H{alpha} integrated properties, such as, flux, velocity dispersion, and size, are derived from the natural-seeing observations, while the follow-up AO observations will be presented in the next paper of this series. Our sample appears to be well representative of star-forming galaxies at z {approx} 2, covering a wide range in mass and SFR. The H{alpha} integrated properties of the 25 H{alpha} detected galaxies are similar to those of other IFS samples at the same redshifts. Good agreement is found among the SFRs derived from H{alpha} luminosity and other diagnostic methods, provided the extinction affecting the H{alpha} luminosity is about twice that affecting the continuum. A preliminary kinematic analysis, based on the maximum observed velocity difference across the source and on the integrated velocity dispersion, indicates that the sample splits nearly 50-50 into rotation-dominated and velocity-dispersion-dominated galaxies, in good agreement with previous surveys.

  1. Creating a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Daou, D.; Pompea, S.; Thaller, M.

    2004-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have created a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Space Telescope (SST) archives, and to receive training in infrared astronomy and observational techniques. The teachers will also attend a workshop offered by the SSC to learn about the observation planning process, and telescope and instrument capabilities. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the SST and work with the SST archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. Leveraging on a well-established teacher professional development, the SSC is offering this program to teachers in the Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing program at the NOAO. This NSF-sponsored program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. The Spitzer educational research program also reaches an additional national audience of students through an informal education program based at the University of Arizona's Astronomy Camp, directed by Dr. Don McCarthy. During this camp, the teachers and their students will learn about the SST through the vast amount of data available in the Spitzer archives.

  2. Commissioning COSMOS: Detection of Lithium in Young Stars in Lupus 3 through Multi-Object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackey, Kyle; Briceno, Cesar; Elias, Jonathan H.

    2015-01-01

    COSMOS, a multi-object spectrograph and imager, is a new instrument on the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory. In order to demonstrate the instrument's operations during commissioning, we used COSMOS, its red grism and three custom slit masks to conduct a spectroscopic survey of the star-forming core of the Lupus 3 dark cloud in an effort to detect the presence of Lithium in the T Tauri stars that have been previously identified in that region. We detected the Li I 6708 Angstrom resonance transition in several (but not all) stars that were observed, consistent with prior studies that have observed Lithium in other young stars at the center of the Lupus 3 dark cloud and in other star-forming regions. These results also demonstrate the ability of COSMOS to significantly reduce the time required to complete spectroscopic surveys, relative to single-object instruments.Lackey was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  3. THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG

    SciTech Connect

    Schinnerer, E.; Sargent, M. T.; Bondi, M.; Smolcic, V.; Bertoldi, F.; Datta, A.; Carilli, C. L.; Blain, A.; Scoville, N. Z.; Ciliegi, P.; Koekemoer, A.

    2010-06-15

    In the context of the VLA-COSMOS Deep project, additional VLA A array observations at 1.4 GHz were obtained for the central degree of the COSMOS field and combined with the existing data from the VLA-COSMOS Large project. A newly constructed Deep mosaic with a resolution of 2.''5 was used to search for sources down to 4{sigma} with 1{sigma} {approx} 12 {mu}Jy beam{sup -1} in the central 50' x 50'. This new catalog is combined with the catalog from the Large project (obtained at 1.''5 x 1.''4 resolution) to construct a new Joint catalog. All sources listed in the new Joint catalog have peak flux densities of {>=}5{sigma} at 1.''5 and/or 2.''5 resolution to account for the fact that a significant fraction of sources at these low flux levels are expected to be slightly resolved at 1.''5 resolution. All properties listed in the Joint catalog, such as peak flux density, integrated flux density, and source size, are determined in the 2.''5 resolution Deep image. In addition, the Joint catalog contains 43 newly identified multi-component sources.

  4. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  5. Seeing the Sky through Hubble's Eye: The COSMOS SkyWalker

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Sánchez, S. F.; Koekemoer, A.

    2006-08-01

    Large, high-resolution space-based imaging surveys produce a volume of data that is difficult to present to the public in a comprehensible way. While megapixel-sized images can still be printed out or downloaded via the World Wide Web, this is no longer feasible for images with 109 pixels (e.g., the Hubble Space Telescope Advanced Camera for Surveys [ACS] images of the Galaxy Evolution from Morphology and SEDs [GEMS] project) or even 1010 pixels (for the ACS Cosmic Evolution Survey [COSMOS]). We present a Web-based utility called the COSMOS SkyWalker that allows viewing of the huge ACS image data set, even through slow Internet connections. Using standard HTML and JavaScript, the application successively loads only those portions of the image at a time that are currently being viewed on the screen. The user can move within the image by using the mouse or interacting with an overview image. Using an astrometrically registered image for the COSMOS SkyWalker allows the display of calibrated world coordinates for use in science. The SkyWalker ``technique'' can be applied to other data sets. This requires some customization, notably the slicing up of a data set into small (e.g., 2562 pixel) subimages. An advantage of the SkyWalker is the use of standard Web browser components; thus, it requires no installation of any software and can therefore be viewed by anyone across many operating systems.

  6. Bulgarian Activities in the Project COSMOS: An Advanced Scientific Repository for Science Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Marchev, D.; Kyurkchieva, D.; Borisov, B.; Radeva, V.

    2010-09-01

    One of the main purposes of the European educational project COSMOS (co-funded by the European Commission under the program eContentplus), is to create an experimental laboratory for the school of tomorrow in order to improve the education in astronomy by expanding the resources for teaching and learning in schools and universities and by providing more challenging and authentic learning experiences for students. A large educational database was created as a result of the project activities made by 15 partner institutions. The unusual electronic "library" offers to students and teachers unique educational resources: learning scenarios, images, presentations, videos and animations (most of them are impossible to produce in any scientific laboratory). It is freely accessible to anyone, anywhere, anytime. Our poster presents the contribution of the Shumen university (the only partner from Bulgaria) in the project: uploading more than 12000 astronomical images in the COSMOS portal; creation of 45 learning scenarios; holding 5 teaching workshops at different places for more than 100 Bulgarian teachers to use the possibilities of the COSMOS portal (including creation of their own learning scenarios). Our analysis of the questionnaires filled-in by the participating teachers shows the necessity of such projects and workshops.

  7. Pituitary oxytocin and vasopressin content of rats flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Keil, L.; Evans, J.; Grindeland, R.; Krasnov, I.

    1992-01-01

    Preliminary studies in rats (COSMOS 1887) suggested that levels of posterior pituitary hormones were reduced by exposure to spaceflight. To confirm these preliminary findings, pituitary tissue from rats flown for 14 days on Cosmos 2044 is obtained. Posterior pituitary content of oxytocin (OT) and vasopressin (VP) were measured in these tissues as well as those from ground-based controls. The synchronous control group had feeding and lighting schedules synchronized to those in the spacecraft and were maintained in flight-type cages. Another group was housed in vivarium cages; a third group was tail suspended (T), a method used to simulate microgravity. Flight rats showed an average reduction of 27 in pituitary OT and VP compared with the three control groups. When hormone content was expressed in terms of pituitary protein (microg hormone/mg protein), the average decrease in OT and VP for the flight animals ranged from 20 to 33 percent compared with the various control groups. Reduced levels of pituitary OT and VP were similar to preliminary measurements from the Cosmos 1887 mission and appear to result from exposure to spaceflight. These data suggest that changes in the rate of hormone secretion or synthesis may have occurred during exposure to microgravity.

  8. Activity of the sympathetic-adrenomedullary system in rats after space flight on the Cosmos biosatellites.

    PubMed

    Kvetnansky, R; Vigas, M; Tigranyan, R A; Nemeth, S; Macho, L

    1981-01-01

    The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydrozylase (TH) and dopamine-beta-hydrozylase (DBH) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5-19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.

  9. Pituitary oxytocin and vasopressin content of rats flown on COSMOS 2044.

    PubMed

    Keil, L; Evans, J; Grindeland, R; Krasnov, I

    1992-08-01

    Preliminary studies in rats (COSMOS 1887) suggested that levels of posterior pituitary hormones were reduced by exposure to spaceflight. To confirm these preliminary findings, we obtained pituitary tissue from rats flown for 14 days on COSMOS 2044. Posterior pituitary content of oxytocin (OT) and vasopressin (VP) were measured in these tissues as well as those from ground-based controls. The synchronous control group had feeding and lighting schedules synchronized to those in the spacecraft and were maintained in flight-type cages. Another group was housed in vivarium cages; a third group was tail suspended (T), a method used to stimulate microgravity. Flight rats showed an average reduction of 27% (P less than 0.05) in pituitary OT and VP compared with the three control groups. When hormone content was expressed in terms of pituitary protein (micrograms hormone/mg protein), the average decrease in OT and VP for the flight animals ranged from 20 to 33% (P less than 0.05) compared with the various control groups. Reduced levels of pituitary OT and VP were similar to preliminary measurements from the COSMOS 1887 mission and appear to result from exposure to spaceflight. These data suggest that changes in the rate of hormone secretion or synthesis may have occurred during exposure to microgravity.

  10. Activity of the sympathetic-adrenomedullary system in rats after space flight on the COSMOS biosatellites

    NASA Astrophysics Data System (ADS)

    Kvetňanský, R.; Vigaš, M.; Németh, Š.; Macho, L.; Tigranyan, R. A.

    The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5-19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.

  11. Protein composition in human plasma after long-term orbital missions and in rodent plasma after spaceflights on biosatellites "Cosmos-1887" and "Cosmos-2044".

    PubMed

    Larina, O N

    1991-02-01

    The two-dimensional plasma protein map of crewmembers of long-duration "Mir" expeditions obtained the day after the recovery shows a manifold increase in the content of several proteins normally seen in trace amounts. The emergence of several unusual protein spots occurs as well, some of them probably due to charge shifts provided by the events influencing posttranslational modification processes. By the 8 postflight day these phenomena were disappeared. In the "Cosmos-1887" biosatellite experiment, the plasma samples obtained two days after the landing as well as plasma of synchronous animals exhibited the higher fibrinogen levels when compared to those of vivarium animals. The protein consisting of a number of fractions with molecular weight of 50 to 60 kD and pI 5 to 6 had protein spots of similar size in flight and synchronous animals while in vivarium rats one of the spots was larger in size as opposed to the others. The plasma protein spectrum of flight and synchronous groups of animals in "Cosmos-1887" experiment where plasma samples were prepared in the period of time from 5 to 10 hours after spaceflight coincided with the pattern of vivarium animals. The data suggest that the protein changes described above develop during postflight period and accelerations, vibrations, readaptation to 1 G gravity, emotional stress could be the cause of these alterations.

  12. Identification of Spitzer-IRS staring mode targets in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ruffle, Paul M. E.; Woods, Paul M.; Kemper, Francisca

    2012-08-01

    The SAGE-LMC, SAGE-SMC and HERITAGE surveys have mapped the Magellanic Clouds in the infrared using the Spitzer and Herschel Space Telescopes. Over 8.5 million point sources were detected and catalogued in the LMC alone. Staring mode observations using the InfraRed Spectrograph (IRS) on board Spitzer have been obtained for 1,000 positions in the LMC and ~250 in the SMC. From the infrared spectroscopy we have identified the nature of the sources for which spectroscopy is available. These IRS staring mode targets represent an important contribution to the SED of these dwarf galaxies. Here we report on our latest results.

  13. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  14. Design of a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Daou, D.; Thaller, M.

    2004-12-01

    Under the sponsorship of the NASA Spitzer Science Center, we have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Science Center Archives, observation planning process, and telescope and instrument capabilities in order to plan observations. They also received fundamental training in infrared astronomy and infrared observational techniques, before they began planning their observing program. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the OSS/NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work with infrared archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. With the goal of leveraging on a well-established teacher professional development, the program serves teachers in the NSF-sponsored Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing Public Affairs and Educational Outreach Department program at the National Optical Astronomy Observatory (NOAO) in Tucson. The program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. There are currently 68 teachers (and their students) participating in TLRBSE with an additional 57 teachers in the still-supported precursor RBSE program. The Spitzer educational research program also reaches an additional national audience

  15. Spitzer mid-IR detection of optical transient in NGC 3344 and candidate progenitor

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.

    2012-10-01

    We report on analysis of archival Spitzer data of the recent optical transient discovered and reported in the CBAT TOCP by M. Tsuboi at RA = 10:43:34.05 and DEC = +24:53:29.0 in the nearby galaxy NGC 3344 at 6.4 Mpc (from Virgo-corrected recession velocity via NED). The host galaxy has been observed with Spitzer IRAC (Apr. 2004 and Jul. 2012) and MIPS (Jan. 2008) instruments by different programs: 69 (PI: Fazio), 40204 (PI: Kennicutt), and 80025 (PI: van Zee).

  16. Dust in Intermediate Polars: Light Curves from the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Belle, Kunegunda E.; Hoard, D. W.; Howell, S. B.

    2010-12-01

    Here we present Spitzer 4.5 μm light curves of two intermediate polars (IPs)-DQ Her and EX Hya-obtained with Cycle 6 observations. Our initial evaluation of the light curves of DQ Her and EX Hya shows that these two IPs exhibit similar behavior as that seen in non-magnetic systems (specifically WZ Sge). The binary eclipses seen in the Spitzer light curves of DQ Her and EX Hya are about three times longer than their optical counterparts, indicating that a reservoir of dust extends beyond the outer edge of the optically visible accretion disk.

  17. SPIRITS16tn: Spitzer Discovery of a Possible Supernova in Messier 108 at 8.8 Mpc

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Adams, S.; Kasliwal, M. M.; Tinyanont, S.; Cao, Y.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Khan, R.; Bond, H. E.; Monson, A.; Bally, J.; Levesque, E.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Fox, O.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2016-08-01

    We report the discovery of a possible, nearby supernova in Messier 108 (NGC 3556) designated as SPIRITS16tn. This luminous infrared transient was discovered during ongoing monitoring of nearby galaxies with the Spitzer InfraRed Intensive Transients Survey (SPIRITS; ATEL#6644, Kasliwal et al. 2016, ApJ submitted), using the Infrared Array Camera on the Spitzer Space Telescope.

  18. Evolution of the Fraction of Clumpy Galaxies at 0.2 < z < 1.0 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.; Kobayashi, M. A. R.; Shioya, Y.; Capak, P.; Ilbert, O.; Koekemoer, A. M.; Salvato, M.; Scoville, N. Z.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M star > 109.5 M ⊙ decreases with time from ~0.35 at 0.8 < z < 1.0 to ~0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with M star > 1010.5 M ⊙ at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ~ 0.9 to z ~ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with

  19. A high definition view of the COSMOS Wall at z ~ 0.73

    NASA Astrophysics Data System (ADS)

    Iovino, A.; Petropoulou, V.; Scodeggio, M.; Bolzonella, M.; Zamorani, G.; Bardelli, S.; Cucciati, O.; Pozzetti, L.; Tasca, L.; Vergani, D.; Zucca, E.; Finoguenov, A.; Ilbert, O.; Tanaka, M.; Salvato, M.; Kovač, K.; Cassata, P.

    2016-08-01

    Aims: We present a study of a large filamentary structure at z ~ 0.73 in the field of the COSMOS survey, the so-called COSMOS Wall. This structure encompasses a comprehensive range of environments from a dense cluster and a number of galaxy groups to filaments, less dense regions, and adjacent voids. It thus provides a valuable laboratory for the accurate mapping of environmental effects on galaxy evolution at a look-back time of ~6.5 Gyr, when the Universe was roughly half its present age. Methods: We performed deep spectroscopic observations with VIMOS at VLT of a K-band selected sample of galaxies in this complex structure, building a sample of galaxies complete in galaxy stellar mass down to a lower limit of log(ℳ∗/ℳ⊙) ~ 9.8, which is significantly deeper than previously available data. Thanks to its location within the COSMOS survey, each galaxy benefits from a wealth of ancillary information: HST-ACS data with I-band exposures down to IAB ~ 28 complemented by extensive multiwavelength ground- and space-based observations spanning the entire electromagnetic spectrum. Results: In this paper we detail the survey strategy and weighting scheme adopted to account for the biases introduced by the photometric preselection of our targets. We present our galaxy stellar mass and rest-frame magnitudes estimates together with a group catalog obtained with our new data and their member galaxies color/mass distribution. Conclusions: Owing to our new sample we can perform a detailed, high definition mapping of the complex COSMOS Wall structure. The sharp environmental information, coupled with high quality spectroscopic information and rich ancillary data available in the COSMOS field, enables a detailed study of galaxy properties as a function of local environment in a redshift slice where environmental effects are important, and in a stellar mass range where mass and environment driven effects are both at work. Based on observations collected at the European

  20. Hot Jupiter atmospheres with the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Todorov, Kamen O.

    I analyze Spitzer Space Telescope observations of seven transiting hot Jupiters during the time of secondary eclipse, the portion of the planet's orbit when it is behind the star from the point of view of a Solar System observer. For six of them, HAT-P-3b, HAT-P-4b, HAT-P-6b, HAT-P-8b, HAT-P-12b and XO-4b, I analyze broadband photometric light curves at 3.6 and 4.5 microm. I compare the resulting eclipse depths, which are a measure of the planets' dayside emission, to model emergent spectra by Burrows et al. and Fortney et al. The atmosphere of XO-4b has a strong temperature inversion, HAT-P-6b has weak or no temperature inversion, HAT-P-8 has a non-inverted atmosphere. The models are inconclusive about the temperature structure of the atmospheres of HAT-P-3b and HAT-P-4b. I find that HAT-P-3b, HAT-P-4b and HAT-P-8b have relatively inefficient heat transport from their day sides to their night sides. The models suggest moderate to low heat transport for XO-4b and HAT-P-6b. I discuss the physical implications of my results in the context of theoretical and empirical hypotheses on correlations related to the temperature-pressure structures of the atmospheres and the efficiency of energy transfer to the night side of the planet. In particular, I focus on the idea by Knutson et al. that planets with chromospherically active host stars may in general not have a stratosphere-like temperature inversions, while a quiet host star may lead to an inverted atmosphere. Another hypothesis I examine is that by Cowan and Agol and Perna et al. who suggest that the hottest planets have a narrow range of permitted heat redistribution efficiencies and, thus, high day-night contrasts. The seventh object I study is HD 189733b. I examine the time series spectroscopy during 18 eclipses between wavelengths of 5 and 14 microm. This is the most extensive data set observed for the emission spectrum of any exoplanet to date. Some of these data sets have been analyzed in the past by Grillmair

  1. Spitzer Light Curves of Dusty AGB Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Meixner, Margaret; Riebel, David; Vijh, Uma; Hora, Joe; Boyer, Martha; Cook, Kem; Groenewegen, Martin; Whitelock, Patricia; Ita, Yoshifusa; Feast, Michael; Kemper, Ciska; Marengo, Massimo; Otsuka, Masaaki; Srinivasan, Sundar

    2014-12-01

    Asymptotic giant branch (AGB) variable stars are, together with supernovae, the main sources of enrichment of the interstellar medium (ISM) in processed material, particularly carbon, nitrogen and heavy s-process elements. The dustiest, extreme AGB stars contribute the largest enrichment per star. We propose to measure the first light curves for 32 of the dustiest AGB variable stars in the Small Magellanic Cloud (SMC) using the warm Spitzer mission's IRAC 3.6 and 4.5 micron imaging for monthly imaging measurements. We know most are variable based on dual-epoch observations from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) surveys of the SMC and ground-based near-infrared observations, but we have not observed these dusty SMC stars at the mid-infrared wavelengths available to Spitzer. Only Spitzer will be able to measure the light curve of this key phase of the AGB: the dustiest and indeed final stage of the AGB. Without this information, our developing picture of AGB evolution is decidedly incomplete. The observations we propose will test the validity of AGB evolution models, and, thus, their predictions of the return of mass and nucleosynthetic products to the ISM. A value-added component to this study is that we will obtain variability information on other AGB stars that lie within the fields of view of our observations. This proposal continues the studies we have begun with our Cycle 9 program (pid 90219) and our Cycle 10 program (pid 10154).

  2. The IC 5146 star forming complex and its surroundings with 2MASS, WISE and Spitzer

    NASA Astrophysics Data System (ADS)

    Nunes, N. A.; Bonatto, C.; Bica, E.

    2016-02-01

    Throughout the last decade sensitive infrared observations obtained by the Spitzer Space Telescope significantly increased the known population of YSOs associated with nearby molecular clouds. With such a census recent studies have characterized pre-main sequence stars (PMS) and determined parameters from different wavelengths. Given the restricted Spitzer coverage of some of these clouds, relative to their extended regions, these YSO populations may represent a limited view of star formation in these regions. We are taking advantage of mid-infrared observations from the NASA Wide Field Infrared Survey Explorer (WISE), which provides an all sky view and therefore full coverage of the nearby clouds, to assess the degree to which their currently known YSO population may be representative of a more complete population. We extend the well established classification method of the Spitzer Legacy teams to archived WISE observations. We have adopted 2MASS photometry as a "standard catalogue" for comparisons. Besides the massive embedded cluster IC 5146 we provide a multiband view of five new embedded clusters in its surroundings that we discovered with WISE. In short, the analysis involves the following for the presently studied cluster sample: (i) extraction of 2MASS/WISE/Spitzer photometry in a wide circular region; (ii) field-star decontamination to enhance the intrinsic Colour-magnitude diagram (CMD) morphology (essential for a proper derivation of reddening, age, and distance from the Sun); and (iii) construction of Colour-magnitude filters, for more contrasted stellar radial density profiles (RDPs).

  3. A SPITZER-MIPS SEARCH FOR DUST IN COMPACT HIGH-VELOCITY H I CLOUDS

    SciTech Connect

    Williams, Rik J.; Mathur, Smita; Poindexter, Shawn; Elvis, Martin; Nicastro, Fabrizio

    2012-04-15

    We employ three-band Spitzer-MIPS observations to search for cold dust emission in three neutral hydrogen compact high-velocity clouds (CHVCs) in the vicinity of the Milky Way. Far-infrared emission correlated with H I column density was previously reported in HVC Complex C, indicating that this object contains dust heated by the Galactic radiation field at its distance of {approx}10 kpc. Assuming published Spitzer, IRAS, and Planck, IR-H I correlations for Complex C, our Spitzer observations are of sufficient depth to directly detect 160 {mu}m dust emission in the CHVCs if it is present at the same level as in Complex C, but no emission is detected in any of the targets. For one of the targets (CHVC289) which has well-localized H I clumps, we therefore conclude that it is fundamentally different from Complex C, with either a lower dust-to-gas ratio or a greater distance from the Galactic disk (and consequently cooler dust temperature). Firm conclusions cannot be drawn for the other two Spitzer-observed CHVCs since their small-scale H I structures are not sufficiently well known; nonetheless, no extended dust emission is apparent despite their relatively high H I column densities. The lack of dust emission in CHVC289 suggests that at least some compact high-velocity clouds objects may exhibit very low dust-to-gas ratios and/or greater Galactocentric distances than large HVC complexes.

  4. THE MID-INFRARED TULLY-FISHER RELATION: SPITZER SURFACE PHOTOMETRY

    SciTech Connect

    Sorce, Jenny G.; Courtois, Helene M.; Tully, R. Brent

    2012-11-01

    The availability of photometric imaging of several thousand galaxies with the Spitzer Space Telescope enables a mid-infrared calibration of the correlation between luminosity and rotation in spiral galaxies. The most important advantage of the new calibration in the 3.6 {mu}m band, IRAC Channel 1, is photometric consistency across the entire sky. Additional advantages are minimal obscuration, observations of flux dominated by old stars, and sensitivity to low surface brightness levels due to favorable backgrounds. Roughly 3000 galaxies have been observed through Spitzer cycle 7 and images of these are available from the Spitzer archive. In cycle 8, a program called Cosmic Flows with Spitzer was initiated, which will increase the available sample of spiral galaxies with inclinations greater than 45 Degree-Sign from face-on that are suitable for distance measurements by 1274. This paper describes procedures, based on the photometry package Archangel, that are being employed to analyze both the archival and new data in a uniform way. We give results for 235 galaxies, our calibrator sample for the Tully-Fisher relation. Galaxy magnitudes are determined with uncertainties held below 0.05 mag for normal spiral systems. A subsequent paper will describe the calibration of the [3.6] luminosity-rotation relation.

  5. Spitzer Observations of L429: A Near-collapse or Collapsing Starless Core

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Bourke, Tyler L.; Rieke, George H.; Bieging, John H.; Misselt, Karl A.; Myers, Philip C.; Shirley, Yancy L.

    2009-01-01

    We present Spitzer infrared (IR) observations of the starless core L429. The IR images of this core show an absorption feature, caused by the dense core material, at wavelengths <= 70 μ. The core has a steep density profile, and reaches AV > 35 mag near the center. We show that L429 is either collapsing or in a near-collapse state.

  6. Spitzer to the Rescue! Improved Ephemerides Preserve K2 Planets for Future Studies With JWST

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Werner, Michael W.; Beichman, Charles A.; Benneke, Björn; Christiansen, Jessie; Crossfield, Ian; Gorjian, Varoujan; Knutson, Heather; Krick, Jessica; Livingston, John H.; Petigura, Erik; Spitzer/K2 Study Team

    2016-06-01

    The NASA K2 mission has detected hundreds of planet candidates, including dozens of tantalizing targets for future atmospheric characterization with the James Webb Space Telescope. However, the future transit windows for the longest period planet candidates are poorly constrained because these planets transit only a few times during a 70-80 day K2 observing campaign. We are reducing the uncertainties in the transit times of these planets by conducting follow-up transit observations with the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope. In addition to reducing the typical timing uncertainty by a factor of five, our Spitzer/IRAC observations allow us to place coarse limits on possible color-dependent differences in transit depth. I will discuss our target selection process and present the results of our ongoing 450-hr Spitzer program. We have already observed 26 transit opportunities of 21 planets and we have an additional three stars scheduled for observation this spring.This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  7. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    NASA Technical Reports Server (NTRS)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; Donoso, Emilio; Jarrett, Thomas H.; Lonsdale, Carol; Mace, Gregory; Mainzer, A.; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E.; Skrutskie, Michael F.; Stanford, Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  8. Excavating the Mass Loss History in the Circumstellar Dust Shells of Evolved Stars (Spitzer-MLHES)

    NASA Astrophysics Data System (ADS)

    Ueta, Toshiya; Izumiura, Hideyuki; Speck, Angela; Stencel, Robert

    2007-05-01

    Using Spitzer/MIPS's unique observing capabilities, we propose to observe the spatial distribution of the far-IR emission from extended circumstellar dust shells (CDSs) of 37 asymptotic giant branch (AGB) stars. Our sample is volume-limited (< 500 pc) and includes all known extended AGB CDSs whose internal structures can be resolved by Spitzer at 70 microns. We will determine the dust distribution in these shells and thus, (a) directly characterize AGB mass loss variations in the CDSs; (b) confront our observational data with a range of theoretical predictions to determine the effect of dust chemistry on mass loss and the cause of the aspherical CDS structures; and (c) constrain the masses of the progenitor stars. Most importantly, we will achieve our science goals by deriving statistically sound conclusions using a complete structure-resolvable sample in the solar neighborhood. The mechanisms by which these evolved stars lose their mass to the surrounding space are not well understood. The AGB CDSs contain the fossil record of their mass loss, and therefore have the potential to verify many aspects of stellar evolution. IRAS and ISO data indicate that extended AGB CDSs exist showing evidence for mass-loss variations that correlate with evolutionary changes in the star itself. However, previous observations lacked both quantity (data are scarce) and quality (sensitivity and spatial resolution) to investigate the full extent and detailed structure of these large CDSs in statistically meaningful ways. Hence, it is more than timely to apply the powerful capabilities of Spitzer/MIPS to study the far-IR structure and evolution of these extended CDSs at moderately high resolution and sensitivity, for which there are presently no superior alternatives to Spitzer. The AGB CDSs are being detected at a high rate (> 60%) in an on-going AKARI-MLHES study at lower resolution and sensitivity: the likelihood for success of this proposed Spitzer-MLHES program at higher resolution

  9. Observing Comet C/2012 S1 (ISON) With the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Vervack, R. J.; Weaver, H. A.; Bauer, J. M.; Fernandez, Y. R.; Kelley, M. S.; Knight, M. M.; Li, J.; Hines, D. C.; Reach, W. T.; Sitko, M.; Yanamandra-Fisher, P. A.; Meech, K. J.; Rayner, J.

    2013-12-01

    In this talk we discuss the design, implementation, and reduction of observations of Comet ISON from space using the Spitzer Space Telescope on 13.00 - 23.12 Jun UT and from the ground at Lowell Observatory on Jun 11.16 UT and from APO on 14.13 Jun UT. The comet was at distance r_h = 3.34 AU from the Sun, distance Δ_Spitzer = 3.29 AU and 17.4 deg phase from SST, and distance Δ_Earth = 4.25 AU and 6.8 - 7.3 deg phase at the time of observation. Preliminary analyses show ISON's Spitzer coma morphology was relatively compact and simple, with a linear anti-solar dust tail > 3x10**5 km in length and a 1/p profile gas coma extending > 10**5 km from the nucleus. Afp values in an 18,200 km radius aperture of 840, 890, and 840 × 80 cm were found at VRI, and 650 × 100 cm were found at 3.6 micron. Together, the ground-based and Spitzer photometry imply near-neutral dust scattering from the visual through the infrared. An excess at 4.5 μm due to emission from a neutral gas coma is clearly found both morphologically and photometrically. The gas coma total flux and spatial profile and ISON's discovery distance imply a coma dominated by the stronger CO_2 line emission at 4.67 μm, but we cannot rule out a preponderance of CO emission at 4.26 μm. No variability in our Spitzer photometry at the 0.03 mag level over 24 hrs was seen. We present our imagery, spectrophotometry, and lightcurves, and discuss the physical implications of these observations of the comet made well outside the water ice line.

  10. Dust around R Coronae Borealis Stars. I. Spitzer/Infrared Spectrograph Observations

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Rao, N. Kameswara; Lambert, David L.

    2011-09-01

    Spitzer/infrared spectrograph (IRS) spectra from 5 to 37 μm for a complete sample of 31 R Coronae Borealis stars (RCBs) are presented. These spectra are combined with optical and near-infrared photometry of each RCB at maximum light to compile a spectral energy distribution (SED). The SEDs are fitted with blackbody flux distributions and estimates are made of the ratio of the infrared flux from circumstellar dust to the flux emitted by the star. Comparisons for 29 of the 31 stars are made with the Infrared Astronomical Satellite (IRAS) fluxes from three decades earlier: Spitzer and IRAS fluxes at 12 μm and 25 μm are essentially equal for all but a minority of the sample. For this minority, the IRAS to Spitzer flux ratio exceeds a factor of three. The outliers are suggested to be stars where formation of a dust cloud or dust puff is a rare event. A single puff ejected prior to the IRAS observations may have been reobserved by Spitzer as a cooler puff at a greater distance from the RCB. RCBs which experience more frequent optical declines have, in general, a circumstellar environment containing puffs subtending a larger solid angle at the star and a quasi-constant infrared flux. Yet, the estimated subtended solid angles and the blackbody temperatures of the dust show a systematic evolution to lower solid angles and cooler temperatures in the interval between IRAS and Spitzer. Dust emission by these RCBs and those in the LMC is similar in terms of total 24 μm luminosity and [8.0]-[24.0] color index.

  11. Development Of International Data Standards For The COSMOS/PEER-LL Virtual Data Center

    NASA Astrophysics Data System (ADS)

    Swift, J. N.

    2005-12-01

    The COSMOS -PEER Lifelines Project 2L02 completed a Pilot Geotechnical Virtual Data Center (GVDC) system capable of both archiving geotechnical data and of disseminating data from multiple linked geotechnical databases. The Pilot GVDC system links geotechnical databases of four organizations: the California Geological Survey, Caltrans, PG&E, and the U. S. Geological Survey The System was presented and reviewed in the COSMOS-PEER Lifelines workshop on June 21 - 23, 2004, which was co-sponsored by the Federal Highway Administration (FHWA) and included participation by the United Kingdom Highways Agency (UKHA) , the Association of Geotechnical and Geoenvironmental Specialists in the United Kingdom (AGS), the United States Army Corp of Engineers (USACOE), Caltrans, United States Geological Survey (USGS), California Geological Survey (CGS), a number of state Departments of Transportation (DOTs), county building code officials, and representatives of academic institutions and private sector geotechnical companies. As of February 2005 COSMOS-PEER Lifelines Project 2L03 is currently funded to accomplish the following tasks: 1) expand the Pilot GVDC Geotechnical Data Dictionary and XML Schema to include data definitions and structures to describe in-situ measurements such as shear wave velocity profiles, and additional laboratory geotechnical test types; 2) participate in an international cooperative working group developing a single geotechnical data exchange standard that has broad international acceptance; and 3) upgrade the GVDC system to support corresponding exchange standard data dictionary and schema improvements. The new geophysical data structures being developed will include PS-logs, downhole geophysical logs, cross-hole velocity data, and velocity profiles derived using surface waves. A COSMOS-PEER Lifelines Geophysical Data Dictionary Working Committee constituted of experts in the development of data dictionary standards and experts in the specific data to be

  12. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    SciTech Connect

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Mainieri, V.; Capak, P.; Caputi, K.; and others

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  13. The Self-Evolving Cosmos: A Phenomenological Approach to Nature's Unity-in-Diversity

    NASA Astrophysics Data System (ADS)

    Rosen, Steven M.

    ch. 1. Introduction: individuation and the quest for unity -- ch. 2. The obstacle to unification in modern physics. 2.1. Introduction. 2.2. Does contemporary mathematical physics actually depart from the classical formulation? -- ch. 3. The phenomenological challenge to the classical formula -- ch. 4. Topological phenomenology. 4.1. Introduction. 4.2. Phenomenological intuition, topology, and the Klein bottle. 4.3. The physical significance of the Klein bottle -- ch. 5. The dimensional family of topological spinors. 5.1. Generalization of intuitive topology. 5.2. Topodimensional spin matrix -- ch. 6. Basic principles of dimensional transformation. 6.1. Synsymmetry and the self-transformation of space. 6.2. From symmetry breaking to dimensional generation. 6.3. The three basic stages of dimensional generation. 6.4. Kleinian topogeny -- ch. 7. Waves carrying waves: the co-evolution of lifeworlds -- ch. 8. The forces of nature. 8.1. The phenomenon of light. 8.2. Phenomenological Kaluza-Klein theory. 8.3. Summary comparison of conventional and topo-phenomenological approaches to Kaluza-Klein theory -- ch. 9. Cosmogony, symmetry, and phenomenological intuition. 9.1. Conventional view of the evolving cosmos. 9.2. The problem of symmetry. 9.3. A new kind of clarity -- ch. 10. The self-evolving cosmos. 10.1. Introduction to the cosmogonic matrix. 10.2. Overview of cosmic evolution. 10.3. The role of the fermions in dimensional generation. 10.4. Projective stages of cosmogony: dimensional divergence. 10.5. Proprioceptive stages of cosmogony: dimensional convergence. 10.6. Conclusion: wider horizons of cosmic evolution -- ch. 11. The psychophysics of cosmogony. 11.1. Psychical aspects of the fundamental particles. 11.2. Toward a reflexive physics. 11.3. Concretization of the self-evolving cosmos.

  14. Current twin studies in Germany: report on CoSMoS, SOEP, and ChronoS.

    PubMed

    Hahn, Elisabeth; Gottschling, Juliana; Spinath, Frank M

    2013-02-01

    This article summarizes the status of three recent German twin studies: CoSMoS, SOEP, and ChronoS. The German twin study on Cognitive Ability, Self-Reported Motivation, and School Achievement (CoSMoS) is a three-wave longitudinal study of monozygotic and dizygotic twins reared together, and aims to investigate predictors of and influences on school performance. In the first wave of the data collection in 2005, 408 pairs of twins aged between 7 and 11 as well as their parents participated in CoSMoS. The SOEP twin study is an extended twin study, which has combined data from monozygotic and dizygotic twins reared together with additional data from full sibling pairs, mother-child, and grandparent-child dyads who participated in the German Socio-Economic Panel (GSOEP) study. The SOEP twin project comprises about 350 twin and 950 non-twin pairs aged between 17 and 70. Data were collected between 2009 and 2010, with a focus on personality traits, wellbeing, education, employment, income, living situation, life-satisfaction, and several attitudes. The aim of the Chronotype twin study (ChronoS) was to examine genetic and environmental influences on chronotype (morningness and eveningness), coping strategies, and several aspects of the previous SOEP twin project in a sample of 301 twin pairs aged between 19 and 76 years, recruited in 2010 and 2011. Part of the ChronoS twin sample also participated in the earlier SOEP twin study, representing a second wave of assessments. We briefly describe the design and contents of these three studies as well as selected recent findings.

  15. Catecholamines and their enzymes in discrete brain areas of rats after space flight on biosatellites Cosmos.

    PubMed

    Kvetnansky, R; Culman, J; Serova, L V; Tigranjan, R A; Torda, T; Macho, L

    1983-01-01

    The activity of the catecholaminergic system was measured in the hypothalamus of rats which had experienced an 18.5-19.5-day-long stay in the state of weightlessness during space flights on board Soviet biosatellites of the type Cosmos. In the first two experiments, Cosmos 782 and 936, the concentration of norepinephrine and the activities of synthesizing enzymes tyrosine hydroxylase and dopamine-beta-hydroxylase and of the degrading enzyme monoamine oxidase were measured in the total hypothalamus. None of the given parameters was changed after space flight. In the light of the changes of these parameters recorded after exposure to acute stress on Earth, this finding indicates that long-term state of weightlessness does not represent an intensive stressogenic stimulus for the system studied. In the space experiment Cosmos 1129, the concentration of norepinephrine, epinephrine, and dopamine was studied in isolated nuclei of the hypothalamus of rats within 6-10 hr following return from space. Norepinephrine was found to be significantly reduced in the arcuate nucleus, median eminence and periventricular nucleus, epinephrine in the median eminence, periventricular and suprachiasmatic nuclei, whereas dopamine was not significantly changed after space flight. The decreased catecholamine levels found in some hypothalamic nuclei of rats which had undergone space flight indicate that no chronic intensive stressor could have acted during the flight, otherwise the catecholamine concentration would have been increased in the nuclei. The decreased levels must have been induced by the effect of a stressogenic factor acting for a short time only, and that either during the landing maneuver or immediately after landing. Thus long-term exposure of the organism to the state of weightlessness does not represent a stressogenic stimulus for the catecholaminergic system in the hypothalamus, which is one of the regulators of the activation of neuroendocrine reactions under stress.

  16. Experimental and calculated LET distributions in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Dudkin, V. E.; Karpov, O. N.; Potapov, Yu. V.; Akopova, A. B.; Magradze, N. V.; Moiseenko, A. A.; Benton, E. V.; Frank, A. L.

    1995-01-01

    During the flight of the Cosmos-2044 biosatellite, joint U.S.S.R.-U.S.A. investigations of different characteristics of cosmic radiation (CR) in the near-Earth environment were carried out. The U.S. dielectric track detectors CR-39 and Soviet BYa- and BR-type nuclear photo-emulsions were used as detectors. The present work shows some results of experimental measurements of linear energy transfer (LET) spectra of CR particles obtained with the use of these detectors, which were placed both inside and outside the satellite. The LET spectra measurements with plastic detectors is composed of two parts: the measurement of galactic cosmos rays (GCR) particles, and of short-range particles. The contributions of these components to the total LET distribution at various thicknesses of the shielding were analyzed and the results of these studies are presented. Calculated LET spectra in the Cosmos-2044 orbit were compared with experimental data. On the basis of experimental and calculated values of the LET spectra, absorbed and equivalent CR doses were calculated. In the shielding range of 1-1.5 g cm(exp -2), outside the spacecraft, the photo-emulsions yielded 10.3 mrad d(exp -1) and 13.4 mrem d(exp -1) (LET greater than or equal to 40 MeV cm(exp -1)). Inside the spacecraft (greater than or equal to 10 g cm(exp -2) the photo-emulsions yielded 8.9 mrad d(exp -1) and 14.5 mrem d(exp -1).

  17. Radiation experiments on Cosmos 2044: K-7-41, parts A, B, C, D, E

    NASA Technical Reports Server (NTRS)

    Frank, A. L.; Benton, E. V.; Benton, E. R.; Dudkin, V. E.; Marenny, A. M.

    1990-01-01

    The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 deg and attitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10(exp -4) and 3.05 x 10(exp -4)/sq cm/s/sr, of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(sub infinity)-H2O is greater than or equal to 4 keV/micron. Neutron measurements yielded 0.018 mrem/d in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra were compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 deg) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCRs, and higher LET particles, in the heavy particle fluxes.

  18. UltraVISTA: a new ultra-deep near-infrared survey in COSMOS

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Milvang-Jensen, B.; Dunlop, J.; Franx, M.; Fynbo, J. P. U.; Le Fèvre, O.; Holt, J.; Caputi, K. I.; Goranova, Y.; Buitrago, F.; Emerson, J. P.; Freudling, W.; Hudelot, P.; López-Sanjuan, C.; Magnard, F.; Mellier, Y.; Møller, P.; Nilsson, K. K.; Sutherland, W.; Tasca, L.; Zabl, J.

    2012-08-01

    In this paper we describe the first data release of the UltraVISTA near-infrared imaging survey of the COSMOS field. We summarise the key goals and design of the survey and provide a detailed description of our data reduction techniques. We provide stacked, sky-subtracted images in YJHKs and narrow-band filters constructed from data collected during the first year of UltraVISTA observations. Our stacked images reach 5σAB depths in an aperture of 2″ diameter of ~25 in Y and ~24 in JHKs bands and all have sub-arcsecond seeing. To this 5σ limit, our Ks catalogue contains 216 268 sources. We carry out a series of quality assessment tests on our images and catalogues, comparing our stacks with existing catalogues. The 1σ astrometric rms in both directions for stars selected with 17.0 < Ks(AB) < 19.5 is ~0.08″ in comparison to the publicly-available COSMOS ACS catalogues. Our images are resampled to the same pixel scale and tangent point as the publicly available COSMOS data and so may be easily used to generate multi-colour catalogues using this data. All images and catalogues presented in this paper are publicly available through ESO's "phase 3" archiving and distribution system and from the UltraVISTA web site. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.Catalogs are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A156

  19. US plant and radiation dosimetry experiments flown on the Soviet satellite Cosmos 1129

    NASA Technical Reports Server (NTRS)

    Heinrich, M. R. (Editor); Souza, K. A. (Editor)

    1981-01-01

    Experiments included: 30 young male Wistar SPF rats used for wide range physiological studies; experiments with plants, fungi, insects, and mammalian tissue cultures; radiation physics experiments; a heat convection study; a rat embryology experiment in which an attempt was made to breed 2 male and 5 female rats during the flight; and fertile quail eggs used to determine the effects of spaceflight on avian embryogenesis. Specimens for US experiments were initially prepared at the recovery site or in Moscow and transferred to US laboratories for complete analyses. An overview of the mission focusing on preflight, on orbit, and postflight activities pertinent to the fourteen US experiments aboard Cosmos 1129 is presented.

  20. Effects of the Cosmos 1129 Soviet paste diet on body composition in the growing rat

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.; Pitts, G. C.

    1981-01-01

    Six Simonsen albino rats (45 days of age) were placed on a regimen of 40 g/day the semipurified Soviet paste diet used in the 18.5 day Cosmos 1129 spacecraft was to support the rats for various experiments on the physiological effects of weightlessness. The animals were maintained on the Soviet paste diet for 35 days, metabolic rate was measured and body composition was determined by direct analysis. The results were compared with a control group of rates of the same age, which had been kept on a standard commercial grain diet during the same period of time.

  1. [Principal results of physiological experiments with mammals aboard biosatellite "Cosmos-936"].

    PubMed

    Gazenko, O G; Il'in, E A; Genin, A M; Kotovskaia, A R; Korol'kov, V I

    1980-01-01

    The program of the 18.5-day flight of the biosatellite Cosmos-936 included studies of physiological effects of prolonged weightlessness (20 rats) and artificial gravity (10 rats). The latter produced a normalizing effect on the function of the myocardium, musculo-skeletal system and excretory system. Simultaneously, artificial gravity exerted an adverse effect on the functions dependent on several sensors, primarily optic, vestibular and motor sensors. It is postulated that the adverse effects are associated with a relatively high rate of rotation and a short arm of the centrifuge. PMID:6967134

  2. Cosmos 1887 mission overview - Effects of microgravity on rat body and adrenal weights and plasma constituents

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Vasques, M.; Arnaud, S. B.; Popova, I. A.

    1990-01-01

    Tissues of male, specific pathogen-free Wistar rats flown on the Cosmos 1887 biosatellite are studied. First the mission is described, and then analytical methods are outlined. It is noted that flight rats grew more slowly and had larger adrenal glands than earth gravity controls. Analysis of plasma reveals increased concentrations of hepatic alkaline phosphatase, glucose, urea nitrogen, and creatinine in flight rats. In contrast, electrolytes, total protein, albumin, corticosteron, prolactin, and immunoreactive growth hormone levels are unchanged. However, testosterone concentration is marginally decreased after flight and thyroid hormone levels are suggestive of reduced thyroid function.

  3. Analyses of plasma for metabolic and hormonal changes in rats flown aboard Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Mullins, Richard E.; Grindeland, Richard E.; Popova, Irina A.

    1992-01-01

    Plasmas samples from rats flown aboard Cosmos 2044 were analyzed for the levels of key metabolites, electrolytes, enzymes, and hormones. The major differences between the flight group and the synchronous control were elevations in glucose, cholesterol, phosphate, creatinine, blood urea nitrogen, lactate dehydrogenase, and aspartate aminotransferase and decreased levels of thyroxine. Most of these differences were not mimicked by tail suspension of ground-based rats; however, both flight and suspended rats exhibited inhibited testosterone secretion. Corticosterone, immunoreactive growth hormone, and prolactin showed inconsistent differences from the various control groups, suggesting that the levels of these hormones were not due to actual or simulated microgravity.

  4. VizieR Online Data Catalog: zCOSMOS-bright catalog (Lilly+, 2007)

    NASA Astrophysics Data System (ADS)

    Lilly, S. J.; Fevre, O. L.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Carollo, C. M.; Hasinger, G.; Kneib, J.-P.; Iovino, A.; Le Brun, V.; Maier, C.; Mainieri, V.; Mignoli, M.; Silverman, J.; Tasca, L. A. M.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Caputi, K.; Cimatti, A.; Cucciati, O.; Daddi, E.; Feldmann, R.; Franzetti, P.; Garilli, B.; Guzzo, L.; Ilbert, O.; Kampczyk, P.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J.-F.; McCracken, H. J.; Marinoni, C.; Pello, R.; Ricciardelli, E.; Scarlata, C.; Vergani, D.; Sanders, D. B.; Schinnerer, E.; Scoville, N.; Taniguchi, Y.; Arnouts, S.; Aussel, H.; Bardelli, S.; Brusa, M.; Cappi, A.; Ciliegi, P.; Finoguenov, A.; Foucaud, S.; Franceschini, R.; Halliday, C.; Impey, C.; Knobel, C.; Koekemoer, A.; Kurk, J.; Maccagni, D.; Maddox, S.; Marano, B.; Marconi, G.; Meneux, B.; Mobasher, B.; Moreau, C.; Peacock, J. A.; Porciani, C.; Pozzetti, L.; Scaramella, R.; Schiminovich, D.; Shopbell, P.; Smail, I.; Thompson, D.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Zucca, E.

    2009-02-01

    A total of 10643 spectra could be extracted from the VIMOS observations and are presented in this release. Throughout the zCOSMOS-bright survey, 1arcsec wide slits have been used with a wavelength range of approximately 5500 to 9700{AA} sampled at roughly 2.5{AA}/pixel. The primary input catalogue for slit-mask design was generated using SExtractor (Bertin et al., 1996A&AS..117..393B) applied to the COSMOS F814W HST/ACS images sampled at 0.03arcsec/pixel (Koekemoer et al., 2007ApJS..172..196K, Leauthaud et al., 2007ApJS..172..219L) in a "hot and cold" two-pass process to first identify bright objects. This substantially reduced the tendency of the HST-based catalogue to "over-resolve" extended galaxies into multiple components. This initial SExtractor catalogue was then "cleaned" by carrying out a detailed comparison with one extracted from a stack of i* images obtained with MEGACAM on the 3.6m Canada-France-Hawaii telescope and processed at the TERAPIX data reduction center in Paris. This catalogue was also used to supplement the ACS catalogue for regions where the ACS images were unavailable or unusable. The zCOSMOS-bright target catalogue is intended to be simply defined as having an ACS/HST SExtractor "magauto" brightness in the range 15.00AB(814)<22.50. Generally, objects to be inserted into the slit mask are chosen randomly from the target catalogue. However, a few percent of targets (generally X-ray sources) are designated as "compulsory" targets and inserted into the masks with first priority. As a result, they are over-represented in the spectroscopic catalogue, by a factor which happens to be close to 2.0. Objects strongly suspected of being stars on the basis of morphology and spectral energy distribution are not included in the masks as targets and are classified as "forbidden". These are about 15% of the I<22.5 sample. However, the criteria for this exclusion are deliberately quite conservative and about 4% of the spectroscopic targets turn out to be

  5. Gamma-Ray Detectors: From Homeland Security to the Cosmos (443rd Brookhaven Lecture)

    SciTech Connect

    Bolotnikov, Aleksey

    2008-12-03

    Many radiation detectors are first developed for homeland security or industrial applications. Scientists, however, are continuously realizing new roles that these detectors can play in high-energy physics and astrophysics experiments. On Wednesday, December 3, join presenter Aleksey Bolotnikov, a physicist in the Nonproliferation and National Security Department (NNSD) and a co-inventor of the cadmium-zinc-telluride Frisch-ring (CdZnTe) detector, for the 443rd Brookhaven Lecture, entitled Gamma-Ray Detectors: From Homeland Security to the Cosmos. In his lecture, Bolotnikov will highlight two primary radiation-detector technologies: CdZnTe detectors and fluid-Xeon (Xe) detectors.

  6. US plant and radiation dosimetry experiments flown on the soviet satellite COSMOS 1129. Final report

    SciTech Connect

    Heinrich, M.R.; Souza, K.A.

    1981-05-01

    Experiments included: 30 young male Wistar SPF rats used for wide range physiological studies Kosmos Satellites experiments with plants, fungi, insects, and mammalian tissue cultures; radiation physics experiments; a heat convection study; a rat embryology experiment in which an attempt was made to breed 2 male and 5 female rats during the flight; and fertile quail eggs used to determine the effects of spaceflight on avian embryogenesis. Specimens for US experiments were initially prepared at the recovery site or in Moscow and transferred to US laboratories for complete analyses. An overview of the mission focusing on preflight, on orbit, and postflight activities pertinent to the fourteen US experiments aboard Cosmos 1129 is presented.

  7. Measurement of spectra and neutron fluxes on artificial earth satellites from the Cosmos series

    NASA Technical Reports Server (NTRS)

    Dudkin, V. Y.; Kovalev, Y. Y.; Novikova, M. R.; Potapov, Y. V.; Skvortsov, S. S.; Smirennyy, L. N.

    1975-01-01

    In 1966-1967 measurements were carried out at the altitudes of 200 to 400 km to determine the spectra and fluxes of fast neutrons inside the hermetically sealed artificial earth satellites of the Cosmos series. The detectors used were nuclear emulsions of the B9 and BR types and an emulsion of the P9 type, filled with Li and P. Spectra and fluxes of neutrons in the range of energies from thermal energies to 10 MeV are presented. Neutron doses are also estimated.

  8. Final Science Reports of the US Experiments Flown on the Russian Biosatellite Cosmos 2229

    NASA Technical Reports Server (NTRS)

    Connolly, James P. (Editor); Skidmore, Michael G. (Editor); Helwig, Denice A. (Editor)

    1997-01-01

    Cosmos 2229 was launched on December 29, 1992, containing a biological payload including two young male rhesus monkeys, insects, amphibians, and cell cultures. The biosatellite was launched from the Plesetsk Cosmodrome in Russia for a mission duration of 11.5 days. The major research objectives were: (1) Study of adaptive response mechanisms of mammals during flight; and (2) Study of physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases. American scientists and their Russian collaborators conducted 11 experiments on this mission which included extensive preflight and postflight studies with rhesus monkeys. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included the development of experiment protocols, the fabrication of some flight instrumentation and experiment-specific ground-based hardware, the conducting of preflight and postflight testing and the analysis of biospecimens and data for the U.S. experiments. A description of the Cosmos 2229 mission is presented in this report including preflight, on-orbit and postflight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and Russia is also described, along with the associated preflight testing ot the U.S. hardware. Final Science Reports for the experiments are also included.

  9. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    SciTech Connect

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.

    2013-11-20

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.

  10. The effects of Cosmos caudatus (Ulam Raja) supplementation on bone biochemical parameters in ovariectomized rats.

    PubMed

    Mohamed, Norazlina; Yin, Chai Mei; Shuid, Ahmad Nazrun; Muhammad, Norliza; Babji, Abdul Salam; Soelaiman, Ima Nirwana

    2013-09-01

    Cosmos caudatus (ulam raja) contains high mineral content and possesses high antioxidant activity which may be beneficial in bone disorder such as postmenopausal osteoporosis. The effects of C. caudatus on bone metabolism biomarkers in ovariectomized rats were studied. 48 Sprague-Dawley rats aged three months were divided into 6 groups. One group of rats was sham-operated while the remaining rats were ovariectomized. The ovariectomized rats were further divided into 5 groups: the control, three groups force-fed with C. caudatus at the doses of 100mg/kg, 200mg/kg or 300mg/kg and another group supplemented with calcium 1% ad libitum. Treatments were given 6 days per week for a period of eight weeks. Blood samples were collected twice; before and after treatment. Parameters measured were bone resorbing cytokine; interleukin-1 and the bone biomarkers; osteocalcin and pyridinoline. Serum IL-1 and pyridinoline levels were significantly increased in ovariectomized rats. Supplementation of C. caudatus was able to prevent the increase of IL-1 and pyridinoline in ovariectomized rats. Besides that, C. caudatus showed the same effect as calcium 1% on biochemical parameters of bone metabolism in ovariectomized rats. In conclusion, Cosmos caudatus was as effective as calcium in preventing the increase in bone resorption in ovariectomized rats.

  11. MAMBO Observations of the COSMOS Field: Probing High Redshift, Dusty Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Bertoldi, F.; Schinnerer, E.; Voss, H.; Smolcic, V.; Blain, A.; Scoville, N. Z.; Menten, K.; Lutz, D.; Cosmos

    2005-12-01

    The inner 20×20 arcmin2 of the COSMOS field was imaged at 250 GHz (1.2 mm) to an rms noise level of 1 mJy per 11 arcsec beam using the Max-Planck Millimeter Bolometer Array (MAMBO-2) at the IRAM 30-m telescope. We detect 23 sources at significance between 3.5 and 7σ , about half of which are also detected at 1.4 GHz with the VLA with a flux density >3σ = 30 μ Jy. The 250 GHz source areal density in the COSMOS field is comparable to that seen in other deep mm fields. We present the multi-frequency properties of the MAMBO sources, including: (i) HST/ACS i magnitudes (or limits) and morphologies, (ii) ground-based optical and near-IR magnitudes, (iii) XMM X-ray flux densities, and (iv) VLA radio flux densities. We compare radio and optical photometric redshifts, discuss the AGN fraction derived from the X-ray data, and describe the host galaxy properties apparent from the HST and ground based optical imaging. We highlight some relatively bright MAMBO sources that do not show obvious optical counterparts to very faint levels (i'AB > 26.9). These sources could be dusty starburst galaxies at redshifts >3.

  12. Einstein's steady-state theory: an abandoned model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  13. Radio-Optical Galaxy Shape Correlations in theCOSMOS Field

    NASA Astrophysics Data System (ADS)

    Tunbridge, Ben; Harrison, Ian; Brown, Michael L.

    2016-09-01

    We investigate the correlations in galaxy shapes between optical and radio wavelengths using archival observations of the COSMOS field. Cross-correlation studies between different wavebands will become increasingly important for precision cosmology as future large surveys may be dominated by systematic rather than statistical errors. In the case of weak lensing, galaxy shapes must be measured to extraordinary accuracy (shear systematics of <0.01%) in order to achieve good constraints on dark energy parameters. By using shape information from overlapping surveys in optical and radio bands, robustness to systematics may be significantly improved without loss of constraining power. Here we use HST-ACS optical data, VLA radio data, and extensive simulations to investigate both our ability to make precision measurements of source shapes from realistic radio data, and to constrain the intrinsic astrophysical scatter between the shapes of galaxies as measured in the optical and radio wavebands. By producing a new image from the VLA-COSMOS L-band radio visibility data that is well suited to galaxy shape measurements, we are able to extract precise measurements of galaxy position angles. Comparing to corresponding measurements from the HST optical image, we set a lower limit on the intrinsic astrophysical scatter in position angles, between the optical and radio bands, of σα > 0.212π radians (or 38.2°) at a 95% confidence level.

  14. COSMOS: COsmic-ray Soil Moisture Observing System planned for the United States

    NASA Astrophysics Data System (ADS)

    Zweck, C.; Zreda, M.; Shuttleworth, J.; Zeng, X.

    2008-12-01

    Because soil water exerts a critical control on weather, climate, ecosystem, and water cycle, understanding soil moisture changes in time and space is crucial for many fields within natural sciences. A serious handicap in soil moisture measurements is the mismatch between limited point measurements using contact methods and remote sensing estimates over large areas. We present a novel method to measure soil moisture non- invasively at an intermediate spatial scale that will alleviate this problem. The method takes advantage of the dependence of cosmic-ray neutron intensity on the hydrogen content of soils (Zreda et al., Geophysical Research Letters, accepted). Low-energy cosmic-ray neutrons are produced and moderated in the soil, transported from the soil into the atmosphere where they are measured with a cosmic-ray neutron probe to provide integrated soil moisture content over a footprint of several hundred meters and a depth of a few decimeters. The method and the instrument are intended for deployment in the continental-scale COSMOS network that is designed to cover the contiguous region of the USA. Fully deployed, the COSMOS network will consist of up to 500 probes, and will provide continuous soil moisture content (together with atmospheric pressure, temperature and relative humidity) measured and reported hourly. These data will be used for initialization and assimilation of soil moisture conditions in weather and short-term (seasonal) climate forecasting, and for other land-surface applications.

  15. The Effects of Cosmos caudatus on Structural Bone Histomorphometry in Ovariectomized Rats.

    PubMed

    Mohamed, Norazlina; Gwee Sian Khee, Sharon; Shuid, Ahmad Nazrun; Muhammad, Norliza; Suhaimi, Farihah; Othman, Faizah; Babji, Abdul Salam; Soelaiman, Ima-Nirwana

    2012-01-01

    Osteoporosis is considered a serious debilitating disease. Cosmos caudatus (ulam raja), a plant containing antioxidant compounds and minerals, may be used to treat and prevent osteoporosis. This study determines the effectiveness of C. caudatus as bone protective agent in postmenopausal osteoporosis rat model. Thirty-two female rats, aged 3 months old, were divided into 4 groups. Group one was sham operated (sham) while group two was ovariectomized. These two groups were given ionized water by forced feeding. Groups three and four were ovariectomized and given calcium 1% ad libitum and force-fed with C. caudatus at the dose of 500 mg/kg, respectively. Treatments were given six days per week for a period of eight weeks. Body weight was monitored every week and structural bone histomorphometry analyses of the femur bones were performed. Ovariectomy decreased trabecular bone volume (BV/TV), decreased trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Both calcium 1% and 500 mg/kg C. caudatus reversed the above structural bone histomorphometric parameters to normal level. C. caudatus shows better effect compared to calcium 1% on trabecular number (Tb.N) and trabecular separation (Tb.Sp). Therefore, Cosmos caudatus 500 mg/kg has the potential to act as the therapeutic agent to restore bone damage in postmenopausal women.

  16. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    SciTech Connect

    Olivier, S; Cook, K; Fasenfest, B; Jefferson, D; Jiang, M; Leek, J; Levatin, J; Nikolaev, S; Pertica, A; Phillion, D; Springer, K; De Vries, W

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellite collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  17. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Hao Heng; Huchra, John P.; Merloni, Andrea; Bongiorno, Angela; Brusa, Marcella; Cappelluti, Nico; McCarthy, Patrick J.; Koekemoer, Anton; Nagao, Tohru; Salvato, Mara; Scoville, Nick Z.

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.

  18. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Beaujean, R.; Heilmann, C.

    1995-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the Linear Energy Transfer (LET) spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm (exp -2) shielding) and outside (1 g cm(exp -2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d (exp -1), respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d(exp -1). The effects of the flight parameters on the total fluence of, and on the dose from the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  19. A SPITZER SEARCH FOR PLANETARY-MASS BROWN DWARFS WITH CIRCUMSTELLAR DISKS: CANDIDATE SELECTION

    SciTech Connect

    Harvey, Paul M.; Jaffe, Daniel T.; Allers, Katelyn; Liu, Michael E-mail: dtj@astro.as.utexas.ed E-mail: mliu@ifa.hawaii.ed

    2010-09-10

    We report on initial results from a Spitzer program to search for very low mass brown dwarfs in Ophiuchus. This program is an extension of an earlier study by Allers et al. which had resulted in an extraordinary success rate, 18 confirmed out of 19 candidates. Their program combined near-infrared and Spitzer photometry to identify objects with very cool photospheres together with circumstellar disk emission to indicate youth. Our new program has obtained deep IRAC photometry of a 0.5 deg{sup 2} field that was part of the original Allers et al. study. We report 18 new candidates whose luminosities extend down to 10{sup -4} L{sub sun}, which suggests masses down to {approx}2 M{sub J} if confirmed. We describe our selection techniques, likely contamination issues, and follow-on photometry and spectroscopy that are in progress.

  20. Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Street, R. A.; Udalski, A.; Calchi Novati, S.; Hundertmark, M. P. G.; Zhu, W.; Gould, A.; Yee, J.; Tsapras, Y.; Bennett, D. P.; RoboNet Project, The; Consortium, MiNDSTEp; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bachelet, E.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Cassan, A.; Ciceri, S.; D'Ago, G.; Dong, Subo; Evans, D. F.; Gu, Sheng-hong; Harkonnen, H.; Hinse, T. C.; Horne, Keith; Figuera Jaimes, R.; Kains, N.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Menzies, J.; Mao, S.; Peixinho, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Ranc, C.; Tronsgaard Rasmussen, R.; Scarpetta, G.; Schmidt, R.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; Steele, I. A.; Surdej, J.; Unda-Sanzana, E.; Verma, P.; von Essen, C.; Wambsganss, J.; Wang, Yi-Bo.; Wertz, O.; OGLE Project, The; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Spitzer Team; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Shvartzvald, Y.; The MOA Collaboration; Abe, F.; Asakura, Y.; Bhattacharya, A.; Bond, I. A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Inayama, K.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Nishioka, T.; Ohnishi, K.; Oyokawa, H.; Rattenbury, N.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, J.; Wakiyama, Y.; Yonehara, A.; KMTNet Modeling Team; Han, C.; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.

    2016-03-01

    We report the detection of a cold Neptune mplanet = 21 ± 2 M⊕ orbiting a 0.38 M⊙ M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  1. An Integrated Optimal Estimation Approach to Spitzer Space Telescope Focal Plane Survey

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, D.

    2004-01-01

    This paper discusses an accurate and efficient method for focal plane survey that was used for the Spitzer Space Telescope. The approach is based on using a high-order 37-state Instrument Pointing Frame (IPF) Kalman filter that combines both engineering parameters and science parameters into a single filter formulation. In this approach, engineering parameters such as pointing alignments, thermomechanical drift and gyro drifts are estimated along with science parameters such as plate scales and optical distortions. This integrated approach has many advantages compared to estimating the engineering and science parameters separately. The resulting focal plane survey approach is applicable to a diverse range of science instruments such as imaging cameras, spectroscopy slits, and scanning-type arrays alike. The paper will summarize results from applying the IPF Kalman Filter to calibrating the Spitzer Space Telescope focal plane, containing the MIPS, IRAC, and the IRS science Instrument arrays.

  2. Synoptic Monitoring of YSOs in Four Young Custers with FLAMINGOS and Spitzer

    NASA Astrophysics Data System (ADS)

    Gutermuth, Rob; Stauffer, John; Covey, Kevin; Plavchan, Peter; Morales, Maria; Megeath, Tom

    2010-02-01

    We propose to use FLAMINGOS on the KPNO 2.1m to obtain synoptic monitoring over a 10 night period at J and Ks bands of > 100 Class I and II young stellar objects in the dense cores of four nearby, star- forming clusters: L1688, Serpens Main, Serpens South, and IRAS 20050+2720. These data will be used to complement time-series photometry we will be obtaining with IRAC on the Spitzer Space Telescope as part of a recently approved "Exploration Science" program to be carried out during the Spitzer warm mission. The goal of this program is to use the multi-wavelength photometric monitoring data to determine the physical mechanisms responsible for the near-IR and mid-IR variability of these YSOs, and therefore, shed new light on the processes involved in accreting matter onto the youngest stars (beyond the realm of steady-state accretion from axially symmetric disks).

  3. Support for Spitzer observations of tremendous outburst amplitude dwarf novae (TOADs)

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2008-05-01

    Dr. Steve Howell (NOAO) requests monitoring of a subset of the known and suspected tremendous outburst amplitude dwarf novae (TOADs) in support of Spitzer Space Telescope observations of these objects. The campaign will run from May 16, 2008, through May 2009. Once an object has been verified in superoutburst, Spitzer observations will be scheduled within 2-4 weeks of maximum, and will be repeated twice -- 4-6 weeks and 6-10 weeks later. Observers are asked to provide nightly monitoring of these stars, and to begin intensive observations if and when any of them go into outburst to determine whether the star is in superoutburst. We note that several of these objects -- notably the WZ Sge stars WZ Sge, GW Lib, and V455 And -- are not expected to superoutburst during the next year, but observations are still encouraged in case they exhibit unexpected behavior. Observations should be submitted to the AAVSO International Database.

  4. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    SciTech Connect

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  5. New Software for Ensemble Creation in the Spitzer-Space-Telescope Operations Database

    NASA Technical Reports Server (NTRS)

    Laher, Russ; Rector, John

    2004-01-01

    Some of the computer pipelines used to process digital astronomical images from NASA's Spitzer Space Telescope require multiple input images, in order to generate high-level science and calibration products. The images are grouped into ensembles according to well documented ensemble-creation rules by making explicit associations in the operations Informix database at the Spitzer Science Center (SSC). The advantage of this approach is that a simple database query can retrieve the required ensemble of pipeline input images. New and improved software for ensemble creation has been developed. The new software is much faster than the existing software because it uses pre-compiled database stored-procedures written in Informix SPL (SQL programming language). The new software is also more flexible because the ensemble creation rules are now stored in and read from newly defined database tables. This table-driven approach was implemented so that ensemble rules can be inserted, updated, or deleted without modifying software.

  6. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Esplin, T. L.; Luhman, K. L.

    2016-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  7. Spitzer Space Telescope observations of the slow classical nova V1186 Sco

    NASA Astrophysics Data System (ADS)

    Schwarz, G. J.; Woodward, C. E.; Lynch, D. K.; Rudy, R.; Ruch, G.; Helton, A.; Venturini, C. C.; Lyke, J. E.; Bode, M. F.; Spitzer CY1 GO ToO Nova Team

    2005-12-01

    The first classical nova observed in our Spitzer Cycle 1 ToO program (PID 2333) was V1186 Sco. This slow nova exhibited a light curve with multiple secondary peaks similar to PW Vul. Visual maximum occurred on 9 July 2004 while the time to decline 2 magnitudes, t2, was 25 days. However, the erratic nature of the light curve makes any determination of intrinsic properties based on the decline times (e.g. luminosity) problematic. Spitzer 5-37 micron spectra were obtained of V1186 Sco and V1187 Sco in late September 2004 and March 2005. V1187 Sco was a very fast nova that was discovered only a few days after V1186 Sco. The first spectra of V1187 Sco showed strong forbidden lines, primarily of neon and magnesium, superimposed on a weak hydrogen recombination spectrum (Lynch et al. 2005, ApJ in press). Both the early and late evolutionary epoch spectra of V1186 Sco were dominated by hydrogen lines. Not unexpected due to its extreme decline time and likely ONeMg white dwarf progenitor, V1187 Sco was dominated by very high ionization "coronal" lines of [Mg V], [Mg VII], [Ar V], [Ne V], and [Ne VI] when Spitzer observations resumed in March 2005. Due to its much slower evolution, the Spitzer data of V1186 Sco obtained the same month showed a greatly weakened hydrogen recombination spectrum with a surprising emergence of the [Ne II] (12.8 micron) as the strongest line. It is not clear if the V1186 Sco outburst occurred on a an ONeMg white dwarf as our complementary ground based optical and near-IR spectroscopy obtained during this later epoch show none of the typical characteristics of an ONeMg nova. However, given the rather slow development of this object it might be too early to make any determination of the white dwarf progenitor.

  8. Serendipitous discovery of an infrared bow shock near PSR J1549–4848 with Spitzer

    SciTech Connect

    Wang, Zhongxiang; Kaplan, David L.; Slane, Patrick; Morrell, Nidia; Kaspi, Victoria M.

    2013-06-01

    We report on the discovery of an infrared cometary nebula around PSR J1549–4848 in our Spitzer survey of a few middle-aged radio pulsars. Following the discovery, multi-wavelength imaging and spectroscopic observations of the nebula were carried out. We detected the nebula in Spitzer Infrared Array Camera 8.0, Multiband Imaging Photometer for Spitzer 24 and 70 μm imaging, and in Spitzer IRS 7.5-14.4 μm spectroscopic observations, and also in the Wide-field Infrared Survey Explorer all-sky survey at 12 and 22 μm. These data were analyzed in detail, and we find that the nebula can be described with a standard bow shock shape, and that its spectrum contains polycyclic aromatic hydrocarbon and H{sub 2} emission features. However, it is not certain which object drives the nebula. We analyze the field stars and conclude that none of them can be the associated object because stars with a strong wind or mass ejection that usually produce bow shocks are much brighter than the field stars. The pulsar is approximately 15'' away from the region in which the associated object is expected to be located. In order to resolve the discrepancy, we suggest that a highly collimated wind could be emitted from the pulsar and produce the bow shock. X-ray imaging to detect the interaction of the wind with the ambient medium- and high-spatial resolution radio imaging to determine the proper motion of the pulsar should be carried out, which will help verify the association of the pulsar with the bow shock nebula.

  9. THE XMM-NEWTON WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Brusa, M.; Cappelluti, N.; Merloni, A.; Bongiorno, A.; Civano, F.; Elvis, M.; Hao, H.; Comastri, A.; Zamorani, G.; Gilli, R.; Miyaji, T.; Salvato, M.; Hasinger, G.; Fiore, F.; Mainieri, V.; Capak, P.; Jahnke, K.; Koekemoer, A. M.; Ilbert, O.; Le Floc'h, E.

    2010-06-10

    We report the final optical identifications of the medium-depth ({approx}60 ks), contiguous (2 deg{sup 2}) XMM-Newton survey of the COSMOS field. XMM-Newton has detected {approx}1800 X-ray sources down to limiting fluxes of {approx}5 x 10{sup -16}, {approx}3 x 10{sup -15}, and {approx}7 x 10{sup -15} erg cm{sup -2} s{sup -1} in the 0.5-2 keV, 2-10 keV, and 5-10 keV bands, respectively ({approx}1 x 10{sup -15}, {approx}6 x 10{sup -15}, and {approx}1 x 10{sup -14} erg cm{sup -2} s{sup -1}, in the three bands, respectively, over 50% of the area). The work is complemented by an extensive collection of multiwavelength data from 24 {mu}m to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for {approx}>50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 ({approx}95%) have IRAC counterparts, and 1394 ({approx}78%) have MIPS 24 {mu}m detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of log L{sub X} > 44.5 active galactic nuclei (AGNs) is at z {approx} 2. Spectroscopically identified obscured and unobscured AGNs, as well as normal and star-forming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of {approx}150 high-redshift (z > 1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L{sub X} > 10{sup 44} erg s{sup -1}) X-ray luminosity is {approx}15%-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a

  10. SURFACE TEMPERATURE OF PROTOPLANETARY DISKS PROBED BY ANNEALING EXPERIMENTS REFLECTING SPITZER OBSERVATIONS

    SciTech Connect

    Roskosz, Mathieu; Gillot, Jessy; Leroux, Hugues; Capet, Frederic; Roussel, Pascal

    2009-12-20

    Pyroxenes and olivines are the dominant crystalline silicates observed in protoplanetary disks. Recent spectral observations from the Spitzer Space Telescope indicate that the abundance of olivine, generally associated with silica polymorphs, relative to pyroxene is higher in the outer cold part of the disk than in the inner warmer part. The interpretation of these unexpected results requires a comprehensive knowledge of the thermal processing of Mg-rich silicate dust. In this respect, amorphous analogs were thermally annealed to identify microscopic crystallization mechanisms. We show that pyroxenes are not produced in significant proportions below the glass transition temperature of the amorphous precursor. The annealing of amorphous enstatite leads to a mineralogical assemblage dominated by forsterite, with only minute amounts of pyroxenes at temperatures as high as the glass transition temperature of enstatite (1050 K). The decoupling of cation mobility in amorphous silicates, favors the crystallization of the most Mg-enriched silicates. These results are consistent with Spitzer observations of silicate dust and also with the documented mineralogy of presolar silicates, making the low-temperature annealing a likely formation process for these objects. Based on these laboratory experiments and Spitzer observations, it appears that the reported zoned mineralogy may directly records and calibrates the thermal gradient at the scale of protoplanetary disks.

  11. The infrared database of extragalactic observables from Spitzer - I. The redshift catalogue

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Spoon, Henrik W. W.; Lebouteiller, Vianney; Rupke, David S. N.; Barry, Donald P.

    2016-01-01

    This is the first of a series of papers on the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). In this work, we describe the identification of optical counterparts of the infrared sources detected in Spitzer Infrared Spectrograph (IRS) observations, and the acquisition and validation of redshifts. The IDEOS sample includes all the spectra from the Cornell Atlas of Spitzer/IRS Sources (CASSIS) of galaxies beyond the Local Group. Optical counterparts were identified from correlation of the extraction coordinates with the NASA Extragalactic Database (NED). To confirm the optical association and validate NED redshifts, we measure redshifts with unprecedented accuracy on the IRS spectra (σ(Δz/(1+z)) ˜ 0.0011) by using an improved version of the maximum combined pseudo-likelihood method (MCPL). We perform a multistage verification of redshifts that considers alternate NED redshifts, the MCPL redshift, and visual inspection of the IRS spectrum. The statistics is as follows: the IDEOS sample contains 3361 galaxies at redshift 0 < z < 6.42 (mean: 0.48, median: 0.14). We confirm the default NED redshift for 2429 sources and identify 124 with incorrect NED redshifts. We obtain IRS-based redshifts for 568 IDEOS sources without optical spectroscopic redshifts, including 228 with no previous redshift measurements. We provide the entire IDEOS redshift catalogue in machine-readable formats. The catalogue condenses our compilation and verification effort, and includes our final evaluation on the most likely redshift for each source, its origin, and reliability estimates.

  12. NEOSurvey: An Spitzer Exploration Science Survey of Near Earth Object Properties

    NASA Astrophysics Data System (ADS)

    Trilling, David E.; Mommert, Michael; Hora, Joseph; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Michael; Smith, Howard

    2015-11-01

    We are carrying out a Spitzer Cycle 11 (2015-2016) Exploration Science program entitled NEOSurvey in which we are observing 597 known Near Earth Objects (NEOs) in 710 hours of observing time. Each object is observed at 4.5 microns. The primary goal of our program is to use a thermal model to create a catalog of NEO diameters and albedos that can be used for a wide range of science goals. From this catalog we will derive the size distribution of NEOs down to 100 meters and measure the compositional distribution of NEOs as a function of size. We include in our target list only objects that are too faint to be detected by NEOWISE. This catalog is therefore highly complementary to existing and forthcoming samples, and will complete a database of diameters and albedos for nearly 2000 NEOs (including results from our previous Spitzer program, ExploreNEOs, as well as objects observed by NEOWISE). We will present the status of the program and results to date, some nine months into the execution of the program. All observational and model results are published immediately online at nearearthobjects.nau.edu . Support for this work is provided by the Spitzer Science Center.

  13. Results of the 2015 Spitzer Exoplanet Data Challenge: Repeatability and Accuracy of Exoplanet Eclipse Depths

    NASA Astrophysics Data System (ADS)

    Ingalls, James G.; Krick, Jessica E.; Carey, Sean J.; Stauffer, John R.; Grillmair, Carl J.; Lowrance, Patrick

    2016-06-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. At infrared wavelengths secondary eclipses and phase curves are powerful tools for studying a planet’s atmosphere. Extracting information about atmospheres, however, is extremely challenging due to the small differential signals, which are often at the level of 100 parts per million (ppm) or smaller, and require the removal of significant instrumental systematics. For the IRAC 3.6 and 4.5μm InSb detectors that remain active on post-cryogenic Spitzer, the interplay of residual telescope pointing fluctuations with intrapixel gain variations in the moderately under sampled camera is the largest source of time-correlated noise. Over the past decade, a suite of techniques for removing this noise from IRAC data has been developed independently by various investigators. In summer 2015, the Spitzer Science Center hosted a Data Challenge in which seven exoplanet expert teams, each using a different noise-removal method, were invited to analyze 10 eclipse measurements of the hot Jupiter XO-3 b, as well as a complementary set of 10 simulated measurements. In this contribution we review the results of the Challenge. We describe statistical tools to assess the repeatability, reliability, and validity of data reduction techniques, and to compare and (perhaps) choose between techniques.

  14. Spitzer IRS Spectra of Debris Disks in the Scorpius-Centaurus OB Association

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Manoj, P.; Watson, Dan; Lisse, Carey M.; Nesvold, Erika; Kuchner, Marc

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius-Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  15. Analysis of HAT-P-2b Warm Spitzer Full Orbit Light Curve

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole; Knuston, H.; Showman, A. P.; Fortney, J. J.; Agol, E.; Burrows, A.; Charbonneau, D.; Cowan, N. B.; Deming, D.; Desert, J.; Langton, J.; Laughlin, G.; Mighell, K. J.

    2011-05-01

    The Spitzer warm mission has already greatly expanded the field of exoplanet characterization with over 3000 hours of time dedicated to exoplanet observations. Observations of eclipsing systems with Spitzer are at the heart of these advances, as they allow us to move beyond simple mass and period estimates to determine planetary radius, dayside emission, and emission variations as a function of orbital phase. The eclipsing system HAT-P-2 is of special interest because the massive Jovian sized planet in this system is on a highly eccentric orbit (e=0.5171). Because HAT-P-2b's orbit is eccentric, the planet is subject to time variable heating and probable non-synchronous rotation. Circulation patterns that we expect to develop in HAT-P-2b's atmosphere will likely vary with both planetary local time and orbital phase. Here we present an analysis of a full orbit light curve from the HAT-P-2 system obtained during the most recent cycle of the Spitzer warm mission and discuss the constraints it imposes on the atmospheric circulation of HAT-P-2b. Support for this work was provided by NASA.

  16. SPITZER IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION

    SciTech Connect

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Lisse, Carey M.; Manoj, P.; Watson, Dan; Nesvold, Erika; Kuchner, Marc

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  17. WATER IN COMETS 71P/CLARK AND C/2004 B1 (LINEAR) WITH SPITZER

    SciTech Connect

    Bockelee-Morvan, Dominique; Woodward, Charles E.; Kelley, Michael S.; Wooden, Diane H. E-mail: chelsea@astro.umn.edu E-mail: d.h.wooden@nasa.gov

    2009-05-10

    We present 5.5-7.6 {mu}m spectra of comets 71P/Clark (2006 May 27.56 UT, r{sub h} = 1.57 AU pre-perihelion) and C/2004 B1 (LINEAR) (2005 October 15.22 UT, r{sub h} = 2.21 AU pre-perihelion and 2006 May 16.22 UT, r{sub h} = 2.06 AU post-perihelion) obtained with the Spitzer Space Telescope. The {nu}{sub 2} vibrational band of water is detected with a signal-to-noise ratio of 11-50. Fitting the spectra using a fluorescence model of water emission yields a water rotational temperature of < 18 K for 71P/Clark and {approx_equal}14 {+-} 2 K (pre-perihelion) and 23 {+-} 4 K (post-perihelion) for C/2004 B1 (LINEAR). The water ortho-to-para ratio in C/2004 B1 (LINEAR) is measured to be 2.31 {+-} 0.18, which corresponds to a spin temperature of 26{sup +3} {sub -2} K. Water production rates are derived. The agreement between the water model and the measurements is good, as previously found for Spitzer spectra of C/2003 K4 (LINEAR). The Spitzer spectra of these three comets do not show any evidence for emission from polycyclic aromatic hydrocarbons and carbonate minerals, in contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp)

  18. DISK EVOLUTION IN OB ASSOCIATIONS: DEEP SPITZER/IRAC OBSERVATIONS OF IC 1795

    SciTech Connect

    Roccatagliata, Veronica; Bouwman, Jeroen; Henning, Thomas; Gennaro, Mario; Sicilia-Aguilar, Aurora; Feigelson, Eric; Kim, Jinyoung Serena; Lawson, Warrick A.

    2011-06-01

    We present a deep Spitzer/Infrared Array Camera (IRAC) survey of the OB association IC 1795 carried out to investigate the evolution of protoplanetary disks in regions of massive star formation. Combining Spitzer/IRAC data with Chandra/Advanced CCD Imaging Spectrometer observations, we find 289 cluster members. An additional 340 sources with an infrared excess, but without X-ray counterpart, are classified as cluster member candidates. Both surveys are complete down to stellar masses of about 1 M{sub sun}. We present pre-main-sequence isochrones computed for the first time in the Spitzer/IRAC colors. The age of the cluster, determined via the location of the Class III sources in the [3.6]-[4.5]/[3.6] color-magnitude diagram, is in the range of 3-5 Myr. As theoretically expected, we do not find any systematic variation in the spatial distribution of disks within 0.6 pc of either O-type star in the association. However, the disk fraction in IC 1795 does depend on the stellar mass: sources with masses >2 M{sub sun} have a disk fraction of {approx}20%, while lower mass objects (2-0.8 M{sub sun}) have a disk fraction of {approx}50%. This implies that disks around massive stars have a shorter dissipation timescale.

  19. Mass Loss from Evolved Stars in the LMC: A Spitzer SAGE View

    NASA Astrophysics Data System (ADS)

    Blum, Robert D.; Volk, K.; Srinivasan, S.; Markwick-Kemper, F.; Meixner, M.; Points, S.; Olsen, K.; Gordon, K.; Engelbracht, C.; For, B.; Block, M.; Misselt, K.; Whitney, B.; Meade, M.; Babler, B.; Indebetouw, R.; Hora, J.; Vijh, U.; Leitherer, C.; Mould, J.; SAGE Team

    2006-12-01

    I will present preliminary results for Evolved Star properties and their mass--loss contribution to the Large Magellanic Cloud (LMC) as viewed from color--magnitude diagrams (CMDs) obtained with the Spitzer space telescope SAGE (Surveying the Agents of a Galaxy's Evolution) survey. These data represent the deepest, widest mid--infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the LMC from which we can deduce the relative contributions to the complete mass--loss budget. I will show initial fits to the spectral energy distributions of the LMC stars using dust radiative transfer models and assumptions about the evolved star envelopes guided by existing observations of luminous stars. Owing to the high angular resolution and sensitivity of Spitzer, we can identify essentially all the important mass--loss sources in the galaxy. Indeed, there is strong evidence from the 24 micron channel of Spitzer that previously unexplored, lower luminosity oxygen--rich AGB stars contribute significantly to the mass loss budget. This work has been funded by generous grants from the NASA SST program.

  20. MEASURING ORGANIC MOLECULAR EMISSION IN DISKS WITH LOW-RESOLUTION SPITZER SPECTROSCOPY

    SciTech Connect

    Teske, Johanna K.; Najita, Joan R.; Carr, John S.; Pascucci, Ilaria; Apai, Daniel; Henning, Thomas E-mail: najita@noao.edu E-mail: pascucci@stsci.edu E-mail: henning@mpia.de

    2011-06-10

    We explore the extent to which Spitzer Infrared Spectrograph (IRS) spectra taken at low spectral resolution can be used in quantitative studies of organic molecular emission from disks surrounding low-mass young stars. We use Spitzer IRS spectra taken in both the high- and low-resolution modules for the same sources to investigate whether it is possible to define line indices that can measure trends in the strength of the molecular features in low-resolution data. We find that trends in the HCN emission strength seen in the high-resolution data can be recovered in low-resolution data. In examining the factors that influence the HCN emission strength, we find that the low-resolution HCN flux is modestly correlated with stellar accretion rate and X-ray luminosity. Correlations of this kind are perhaps expected based on recent observational and theoretical studies of inner disk atmospheres. Our results demonstrate the potential of using the large number of low-resolution disk spectra that reside in the Spitzer archive to study the factors that influence the strength of molecular emission from disks. Such studies would complement results for the much smaller number of circumstellar disks that have been observed at high resolution with IRS.

  1. Thinking Problems of the Present Collision Warning Work by Analyzing the Intersection Between Cosmos 2251 and Iridium 33

    NASA Astrophysics Data System (ADS)

    Wang, R. L.; Liu, W.; Yan, R. D.; Gong, J. C.

    2013-08-01

    After Cosmos 2251 and Iridium 33 collision breakup event, the institutions at home and abroad began the collision warning analysis for the event. This paper compared the results from the different research units and discussed the problems of the current collision warning work, then gave the suggestions of further study.

  2. Field-scale moisture estimates using COSMOS sensors: a validation study with temporary networks and leaf-area-indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...

  3. Renin-angiotensin-aldosterone system and electrolyte metabolism in rat blood after flight aboard Cosmos-1129 biosatellite

    SciTech Connect

    Kvetnansky, R.; Tigranyan, R.A.; Jindra, A.; Viting, T.A.

    1982-08-01

    Blood plasma aldosterone concentration and renin activity were studied in rats flow in space on the Cosmos 1129 satellite using radioimmunoassay techniques. Immediately after the flight, the animals presented significant decreases in plasma renin activity, as compared to rats in the vivarium control and animals in the synchronous experiment. R. J.

  4. Spitzer Follow-up of HST Observations of Star Formation in H II Regions

    NASA Astrophysics Data System (ADS)

    Hester, Jeff; Bally, John; Desch, Steve; Healy, Kevin; Snider, Keely

    2005-06-01

    Images of regions of star formation taken with HST have given us an extraordinary view of young stellar objects and their natal environments. These views differ tremendously between low-mass YSOs seen in regions of isolated low-mass star formation such as Taurus-Auriga, and the proplyds, EGGs, and other structures seen in regions of massive star formation. While YSOs in Taurus spend their adolescence buried in the dark interiors of molecular clouds, YSOs near massive stars quickly find themselves overrun by ionization fronts and exposed to the intense UV radiation from nearby massive stars. This difference in environment has a profound effect on the way in which the protoplanetary disk around a star evolves -- a fact that is of great importance to us, given the strength of the evidence suggesting that the Sun formed near a massive star. But HST while HST can inform us about the evolution of YSOs in HII region environments once they are overrun by ionization fronts, it cannot show us the birth of the stars themselves. These remain hidden in the dense molecular material beyond the ionized volumes of these regions. Only Spitzer can show us the properties of the YSOs that lie hidden in the dark shadows of HST images of HII regions, and only Spitzer can provide us with information about PDRs, warm dust, and other tracers of the interaction of massive stars with their surroundings. The combination of HST and Spitzer observations of star forming regions is far greater than the sum of its parts. If we are to build a complete picture of low-mass star formation and the evolution of disks near massive stars, we need to combine HST and Spitzer observations of the same regions. In this proposal we request time to obtain both IRAC and MIPS 24 micron images of each HII region that has been observed by HST, but has yet to be observed with Spitzer. Together with previous images obtained from the archives, this will comprise an indispensible data set for testing hypotheses about

  5. Spectacular Spitzer images of the Trifid Nebula: Protostars in a young, massive-star-forming region

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Reach, W. T.; Lefloch, B.; Fazio, G.

    2005-07-01

    Spitzer IRAC and MIPS images of the Trifid Nebula (M20) reveal its spectacular appearance in infrared light, demonstrating its special evolutionary stage: recently-formed massive protostars and numerous young stars, including a single O star that illuminates the surrounding molecular cloud from which it formed and unveiling large-scale, filamentary dark clouds. The hot dust grains show contrasting infrared colors in shells, arcs, bow-shocks and dark cores. Multiple protostars, previously defined as Class 0 from dust continuum and molecular outflow observations, are revealed in the infrared within the cold dust continuum peaks TC3 and TC4. The cold dust continuum cores of TC1 and TC2 contain only one protostar each; the newly-discovered infrared protostar in TC2 is the driving source of the HH399 jet. The Spitzer color-color diagram allowed us to identify ~150 young stellar objects (YSO) and classify them into different evolutionary stages, and also revealed a new class of YSO which are bright at 24μm but with spectral energy distribution peaking at 5-8μm; we name these sources ``Hot excess'' YSO. Despite of expectation that Class 0 sources would be ``starless'' cores, the Spitzer images, with unprecedented sensitivity, uncover mid-infrared emission from these Class 0 protostars. The mid-infrared detections of Class 0 protostars show that the emission escapes the dense, cold envelope of young protostars; the mid-infrared emission cannot arise from the same location as the mm-wave emission, and instead must arise from a much smaller region with less intervening extinction to the central accretion. The presence of multiple protostars within the cold cores of Class 0 objects implies that clustering occurs at this early stage of star formation. The most massive stars are located at the center of the cluster and are formed simultaneously with low-mass stars. The angular and mass distributions of protostars within the dust cores imply that these early protostars are

  6. Inquiry-based Science Activities Using The Infrared Zoo and Infrared Yellowstone Resources at Cool Cosmos

    NASA Astrophysics Data System (ADS)

    Daou, D.; Gauthier, A.

    2003-12-01

    Inquiry-based activities that utilize the Cool Cosmos image galleries have been designed and developed by K12 teachers enrolled in The Invisible Universe Online for Teachers course. The exploration activities integrate the Our Infrared World Gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/our_ir_world_gallery.html) with either the Infrared Zoo gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/ir_zoo/index.html) or the Infrared Yellowstone image http://coolcosmos.ipac.caltech.edu/image_galleries/ir_yellowstone/index.html) and video (http://coolcosmos.ipac.caltech.edu/videos/ir_yellowstone/index.html) galleries. Complete instructor guides have been developed for the activities and will be presented by the authors in poster and CD form. Although the activities are written for middle and highschool learners, they can easily be adapted for college audiences. The Our Infrared World Gallery exploration helps learners think critically about visible light and infrared light as they compare sets of images (IR and visible light) of known objects. For example: by taking a regular photograph of a running faucet, can you tell if it is running hot or cold water? What new information does the IR image give you? The Infrared Zoo activities encourage learners to investigate the differences between warm and cold blooded animals by comparing sets of IR and visible images. In one activity, learners take on the role of a pit viper seeking prey in various desert and woodland settings. The main activities are extended into the real world by discussing and researching industrial, medical, and societal applications of infrared technologies. The Infrared Yellowstone lessons give learners a unique perspective on Yellowstone National Park and it's spectacular geologic and geothermal features. Infrared video technology is highlighted as learners make detailed observations about the visible and infrared views of the natural phenomena. The "Cool Cosmos" EPO activities are

  7. Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Lowry, Oliver H.; Krasnov, Igor; Kakueva, E. Ilyina; Nemeth, Patti M.; Mcdougal, David B., Jr.; Choksi, Rati; Carter, Joyce G.; Chi, Maggie M. Y.; Manchester, Jill K.; Pusateri, Mary Ellen

    1990-01-01

    The effects of microgravity and hind limb suspension on the enzyme patterns are assessed within a slow twitch muscle (soleus) and a fast twitch muscle (tibialis anterior). Studies were made on 95 soleus fibers and about 300 tibialis anterior (TA) fibers. Over 2200 individual enzyme measurements were made. Six key metabolic enzymes (hexokinase, pyruvate kinease, citrate kinase, beta-hydroxyacyl CoA dehydrogenase, glucose-6-P dehydrogenase, and aspartate aminotransferase) plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate, and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight, and tail suspension rats. Major differences were observed in the normal distribution of each enzyme and amine acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

  8. Kepler's cosmos

    NASA Astrophysics Data System (ADS)

    Kemp, Martin

    1998-05-01

    Copernicus's system of the Universe was revolutionary but his method of representing it on paper was anything but. It was left to Kepler to apply Renaissance techniques of spatial visualization to make the theory come alive.

  9. Last call for Spitzer support of sample-return mission Hayabusa 2: measuring the thermal inertia of 1999 JU3

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Emery, Joshua; Rivkin, Andrew; Trilling, David; Hora, Joe; Delbo, Marco; Sugita, Seiji; Hasegawa, Sunao; Ishiguro, Masateru; Choi, Young-Jun; Mommert, Michael

    2012-12-01

    The JAXA mission Hayabusa 2, scheduled to launch in 2014/2015, will visit the low-albedo near-Earth asteroid 1999 JU3, and will return a regolith sample to Earth in 2020. An international observation campaign has amassed a large body of data toward the physical characterization of the target asteroid, informing the mission planning and maximizing the mission's scientific return. While the physical characterization of JU3 has advanced significantly in the past years, open questions remain that only Spitzer can answer: * Just what is the object's thermal inertia? Thermal inertia governs the surface temperature distribution, crucial knowledge for near-surface operations and sampling, and is an indicator for the presence or absence of regolith. Previous thermal observations led to inconclusive results. * Is there any surface variability in thermal inertia or albedo? There is tantalizing evidence for a variable 0.7-micron spectral feature, which may indicate further reaching surface heterogeneity. The only way to answer these questions before Hayabusa-2's arrival at its target is through Spitzer observations in 2013. Only Spitzer affords the required sensitivity and repeatability at thermal-infrared wavelengths. Additionally, due to JU3's peculiar orbit, 2013 is the last chance to obtain Spitzer observations through the end of 2016 (Horizons does not provide Spitzer-centric ephemerides beyond this date). JU3 is already too poorly placed for Earth-based observations to be obtained of sufficient quality to address these critical science questions. The 2013 apparition is uniquely favorable for thermal-inertia measurements from Spizter due to the wide range spanned in solar phase angle and sub-Spitzer latitude. We propose observations at 2 times 7 phase angles, with Spitzer-centric latitudes on both the Northern and Southern hemisphere. Additional thermal lightcurves will provide evidence for the presence of absence of thermal-inertia variegation over the surface.

  10. Alterations in erythrocyte survival parameters in rats after 19.5 days aboard Cosmos 782

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Serova, L. V.; Cummins, J.; Landaw, S. A.

    1978-01-01

    Rats were subjected to 19.5 days of weightless space flight aboard the Soviet biosatellite, Cosmos 782. Based on the output of CO-14, survival parameters of a cohort of erythrocytes labeled 15.5 days preflight were evaluated upon return from orbit. These were compared to vivarium control rats injected at the same time. Statistical evaluation indicates that all survival factors were altered by the space flight. The mean potential lifespan, which was 63.0 days in the control rats, was decreased to 59.0 days in the flight rats, and random hemolysis was increased three-fold in the flight rats. The measured size of the cohort was decreased, lending further support to the idea that hemolysis was accelerated during some portion of the flight. A number of factors that might be contributory to these changes are discussed, including forces associated with launch and reentry, atmospheric and environmental parameters, dietary factors, radiation, and weightlessness.

  11. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    NASA Technical Reports Server (NTRS)

    Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.

    1994-01-01

    Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.

  12. Lemaître's Prescience: The Beginning and End of the Cosmos

    NASA Astrophysics Data System (ADS)

    Carr, Bernard

    Lemaître anticipated what are now assumed to be the most plausible models for both the beginning and the end of cosmos. He was also prescient in forging a link between microphysics and macrophysics, a process which is only culminating today, and his solutions with a cosmological constant provide a particularly interesting version of the modern-day multiverse scenario. Although some of his ideas were at first regarded sceptically by mainstream physics, their later reception illustrates that the boundary between cosmology and meta-cosmology is always evolving. He was generally reluctant to link cosmological and theological ideas but I will argue that cosmology offers some scope for productive science-religion dialogue and suggest that mind may be a fundamental rather than incidental feature of the universe.

  13. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    SciTech Connect

    2010-09-08

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  14. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    SciTech Connect

    2010-09-07

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  15. Serching for AGNs with VST: optical variability in the COSMOS and CDFS regions

    NASA Astrophysics Data System (ADS)

    Paolillo, M.; de Cicco, Demetra; Falocco, S.; Poulain, M.; Vst-Sudare/Voice Team

    2016-08-01

    Active Galactic Nuclei (AGN) are characterised by strong variability at all wavelengths. We exploited 3 years of VST monitoring observations of the COSMOS and CDFS regions, performed within the SUDARE/VOICE surveys, to assemble a sample of AGN candidates based on variability. Variability selection does not make strong a-priori assumptions about the properties of the sources and can thus integrate and complete samples selected by other techniques. We investigate the effectiveness and reliability of this selection method by comparing it with spectroscopic, X-ray and IR selected samples, showing that variability-selection can yield extremely pure samples, with completeness >50% with respect of X-ray and IR selections. We explore the dependence of variability from obscuration, mass and accretion rate, and predict the performance that can be expected by future monitoring surveys such as LSST.

  16. Process development of beam-lead silicon-gate COS/MOS integrated circuits

    NASA Technical Reports Server (NTRS)

    Baptiste, B.; Boesenberg, W.

    1974-01-01

    Two processes for the fabrication of beam-leaded COS/MOS integrated circuits are described. The first process utilizes a composite gate dielectric of 800 A of silicon dioxide and 450 A of pyrolytically deposited A12O3 as an impurity barrier. The second process utilizes polysilicon gate metallization over which a sealing layer of 1000 A of pyrolytic Si3N4 is deposited. Three beam-lead integrated circuits have been implemented with the first process: (1) CD4000BL - three-input NOR gate; (2) CD4007BL - triple inverter; and (3) CD4013BL - dual D flip flop. An arithmetic and logic unit (ALU) integrated circuit was designed and implemented with the second process. The ALU chip allows addition with four bit accuracy. Processing details, device design and device characterization, circuit performance and life data are presented.

  17. Cardiovascular results from a rhesus monkey flown aboard the Cosmos 1514 spaceflight

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Hines, J.; Benjamin, B. A.; Halpryn, B. M.; Krotov, V. P.

    1987-01-01

    The results of the Cosmos 1514 cardiovascular experiment, in which the blood flow to the head and the carotid pressure of a rhesus monkey were measured during the 5-d spaceflight, are reported. A single cylindrical probe containing both pressure and flow transducers was chronically implanted as a cuff around the left common carotid artery; measurements were obtained for 4 min every 2 h and compared to identical recordings obtained during a preflight control period and during 12 h on a launch pad. Immediately on its insertion into orbit, mean arterial pressure increased by 10 percent and has maintained a 16-27 percent increase over the first few hours of flight before returning to baseline level. Blood flow showed reciprocal changes to pressure on orbital insertion. Cardiovascular system changes persisted into the second day of flight, with the signs of adaptation appearing on days 3-5.

  18. A comparative study of seminiferous tubular epithelium from rats flown on Cosmos 1887 and SL3

    NASA Technical Reports Server (NTRS)

    Sapp, Walter J.; Williams, Carol S.; Kato, K.; Philpott, Delbert E.; Stevenson, J.; Serova, L. V.

    1989-01-01

    Space flight, with its unique environmental constraints such as immobilization, decreased and increased pressures, and radiation, is known to affect testicular morphology and spermatogenesis. Among the several biological experiments and animals on board COSMOS 1887 Biosputnik flight were 10 rats, from which were collected testicular tissue. Average weights of flight tests were 6.4 pct. below that of the vivarium control when normalized for weight loss/100 grams body weight. Counts of surviving spermatogonia per tubule cross section indicated an average of 39 spermatogonia for flight animals, 40 for synchronous controls and 44 for the vivarium controls. Serum testosterone was significantly decreased when compared to basal controls but the decrease was not significant when compared in vivarium and synchronous control groups. The significant decrease in spermatogonia and the decrease in serum testosterone are similar to that in animals flown on Space Lab 3 (Challenger Shuttle).

  19. Fate of the grafted ovaries from female salamander Pleurodeles waltl embarked on the cosmos 2229 flight

    NASA Astrophysics Data System (ADS)

    Bautz, A.; Houillon, Ch.; Aimar, C.; Mitashov, V.; Dournon, C.

    The flight procedure of ``Experience Triton'' on Cosmos 2229 made necessary to sacrifice the embarked females just after landing. In order to detect genetic abnormalities in the progeny of these adult females, we have performed a surgical procedure based on the transplantation of an ovarian piece on a recipient animal. One year later, as observed after laparotomy, the grafted ovaries exhibit oogonies and some growing oocytes. In present time, out of 10 castrated and grafted adult females only one is still alive bearing a large grafted ovary. Out of 5 castred and grafted juvenile males, three are still alive, two of them exhibit a developping grafted ovary. The grafted animals will be ready for mating within a few months. Therefore, it will soon be possible to study the progeny of animals that have been submitted to space conditions.

  20. A Ly{alpha} GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD

    SciTech Connect

    Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta; Cooper, Michael; Weiner, Benjamin E-mail: James.Rhoads@asu.edu E-mail: m.cooper@uci.edu

    2012-06-20

    Ly{alpha} emitting galaxies can be used to study cosmological reionization, because a neutral intergalactic medium (IGM) scatters Ly{alpha} photons into diffuse halos whose surface brightness falls below typical survey detection limits. Here, we present the Ly{alpha} emitting galaxy LAE J095950.99+021219.1, identified at redshift z = 6.944 in the COSMOS field using narrowband imaging and follow-up spectroscopy with the IMACS instrument on the Magellan I Baade telescope. With a single object spectroscopically confirmed so far, our survey remains consistent with a wide range of IGM neutral fraction at z Almost-Equal-To 7, but further observations are planned and will help clarify the situation. Meantime, the object we present here is only the third Ly{alpha}-selected galaxy to be spectroscopically confirmed at z {approx}> 7, and is {approx}2-3 times fainter than the previously confirmed z Almost-Equal-To 7 Ly{alpha} galaxies.

  1. The UCI COSMOS Astronomy and Astrophysics Cluster: A Summer Program for Talented High School Students

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, T. A.

    2013-04-01

    COSMOS is a month-long, summer residential program in science and engineering for high school students held each year at four University of California (UC) campuses. Its goals are to expand the scientific horizons of our most talented students by exposing them to exciting fields of research and encouraging them to pursue STEM careers. Students live on campus and choose to study one of seven or eight different subject areas called “clusters.” We run the extremely successful Astronomy & Astrophysics Cluster at UC Irvine (UCI). Over four weeks, students take lecture courses in astrophysics, perform computer lab experiments, and complete a research project conducted in a small group under the supervision of a faculty member or teaching assistant (TA). Here we discuss our curriculum, lessons learned, and quantify student outcomes. We find that putting on a summer program for high school students is highly rewarding for the students as well as the faculty and graduate students.

  2. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    ScienceCinema

    None

    2016-07-12

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  3. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    ScienceCinema

    None

    2016-07-12

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  4. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    ScienceCinema

    None

    2016-07-12

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  5. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    SciTech Connect

    Bell, T.F.; Inan, U.S.; Lauben, D.; Sonwalkar, V.S.; Helliwell, R.A.; Sobolev, Ya.P.; Chmyrev, V.M.; Gonzalez, S.

    1994-04-15

    Past work demonstrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength {lambda}. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which {lambda} {le} 3.5 m when excitation occurs at a frequency roughly equal to the lower hybrid resonance frequency. This wavelength limit is a factor of {approximately} 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H{sup +} ions with energy {le} 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells. 19 refs., 3 figs.

  6. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    SciTech Connect

    2010-09-08

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  7. EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS

    SciTech Connect

    Scoville, N.; Benson, A.; Fu, Hai; Arnouts, S.; Aussel, H.; Bongiorno, A.; Bundy, K.; Calvo, M. A. A.; Capak, P.; Carollo, M.; Faisst, A.; Civano, F.; Elvis, M.; Dunlop, J.; Finoguenov, A.; Guo, Q.; Giavalisco, M.; Ilbert, O.; Iovino, A.; Kajisawa, M.; and others

    2013-05-01

    Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between the mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.

  8. Cluster candidates around low-power radio galaxies at z ∼ 1-2 in cosmos

    SciTech Connect

    Castignani, G.; Celotti, A.; De Zotti, G.; Chiaberge, M.; Norman, C.

    2014-09-10

    We search for high-redshift (z ∼1-2) galaxy clusters using low power radio galaxies (FR I) as beacons and our newly developed Poisson probability method based on photometric redshift information and galaxy number counts. We use a sample of 32 FR Is within the Cosmic Evolution Survey (COSMOS) field from the Chiaberge et al. catalog. We derive a reliable subsample of 21 bona fide low luminosity radio galaxies (LLRGs) and a subsample of 11 high luminosity radio galaxies (HLRGs), on the basis of photometric redshift information and NRAO VLA Sky Survey radio fluxes. The LLRGs are selected to have 1.4 GHz rest frame luminosities lower than the fiducial FR I/FR II divide. This also allows us to estimate the comoving space density of sources with L {sub 1.4} ≅ 10{sup 32.3} erg s{sup –1} Hz{sup –1} at z ≅ 1.1, which strengthens the case for a strong cosmological evolution of these sources. In the fields of the LLRGs and HLRGs we find evidence that 14 and 8 of them reside in rich groups or galaxy clusters, respectively. Thus, overdensities are found around ∼70% of the FR Is, independently of the considered subsample. This rate is in agreement with the fraction found for low redshift FR Is and it is significantly higher than that for FR IIs at all redshifts. Although our method is primarily introduced for the COSMOS survey, it may be applied to both present and future wide field surveys such as Sloan Digital Sky Survey Stripe 82, LSST, and Euclid. Furthermore, cluster candidates found with our method are excellent targets for next generation space telescopes such as James Webb Space Telescope.

  9. Cosmos Education: Under African Skies and other Youth Initiatives for hands-on Education using Space

    NASA Astrophysics Data System (ADS)

    Marshall, W.; Hand, K.; Delegates, Sgs

    2002-01-01

    'Under African Skies', a project of the charity organization Cosmos Education, undertook an excursion to sub-Saharan Africa to teach science and technology to children in primary and secondary schools. The role of science and technology for the purpose of development was emphasized, and the project directly addresses one of the recommendations of UNISPACE-III Vienna Declaration. Teaching primarily focused on astronomy and space science. Over 3500 primary and secondary school students in 5 different countries were reached. Although it is hard to quantify the impact of the teaching, the students' enthusiasm and questions demonstrated that they acquired knowledge and interest in science. In this talk we will summarize the objectives and achievements of the trip and future planned trips by Cosmos Education. We will also show coverage of the trip by the BBC program 'Final Frontier'. The youth perspective on education is outlined in the Global Space Education Curriculum, a project initiated at the UNISPACE III Space Generation Forum (SGF). This initiative is being further developed at the Space Generation Summit (SGS), an event at World Space Congress (WSC) that will unite international students and young professionals to develop a youth vision and strategy for the peaceful uses of space. SGS, endorsed by the United Nations, will take place from October 11-13th, during which the 200 delegates will discuss ongoing youth space activities, particularly those stemming from the UNISPACE-III/SGF and taken forward by the Space Generation Advisory Council. Delegates will address a variety of topics with the goal of devising new recommendations according to the theme, 'Accelerating Our Pace in Space'. The material presented here and in other technical sessions throughout WSC includes the results of these discussions.

  10. Multi-wavelength properties of Spitzer selected starbursts at z ~ 2

    NASA Astrophysics Data System (ADS)

    Fiolet, N.; Omont, A.; Polletta, M.; Owen, F.; Berta, S.; Shupe, D.; Siana, B.; Lonsdale, C.; Strazzullo, V.; Pannella, M.; Baker, A. J.; Beelen, A.; Biggs, A.; De Breuck, C.; Farrah, D.; Ivison, R.; Lagache, G.; Lutz, D.; Tacconi, L. J.; Zylka, R.

    2009-12-01

    Context: Wide-field Spitzer surveys allow identification of thousands of potentially high-z submillimeter galaxies (SMGs) through their bright 24 μm emission and their mid-IR colors. Aims: We want to determine the average properties of such z˜2 Spitzer-selected SMGs by combining millimeter, radio, and infrared photometry for a representative IR-flux (λ_rest˜ 8 μm) limited sample of SMG candidates. Methods: A complete sample of 33 sources believed to be starbursts (“5.8 μm-peakers”) was selected in the (0.5 deg^2) J1046+56 field with selection criteria F24 μ m > 400 μJy, the presence of a redshifted stellar emission peak at 5.8 μm, and r^prime_Vega > 23. The field, part of the SWIRE Lockman Hole field, benefits from very deep VLA/GMRT 20 cm, 50 cm, and 90 cm radio data (all 33 sources are detected at 50 cm), and deep 160 μm and 70 μm Spitzer data. The 33 sources, with photometric redshifts 1.5-2.5, were observed at 1.2 mm with IRAM-30m/MAMBO to an rms 0.7-0.8 mJy in most cases. Their millimeter, radio, 7-band Spitzer, and near-IR properties were jointly analyzed. Results: The entire sample of 33 sources has an average 1.2 mm flux density of 1.56 ± 0.22 mJy and a median of 1.61 mJy, so the majority of the sources can be considered SMGs. Four sources have confirmed 4σ detections, and nine were tentatively detected at the 3σ level. Because of its 24 μm selection, our sample shows systematically lower F_1.2 mm/F24 μ m flux ratios than classical SMGs, probably because of enhanced PAH emission. A median FIR SED was built by stacking images at the positions of 21 sources in the region of deepest Spitzer coverage. Its parameters are T_dust = 37 ± 8 K, L_FIR = 2.5 × 1012 L⊙, and SFR = 450 M⊙ yr-1. The FIR-radio correlation provides another estimate of L_FIR for each source, with an average value of 4.1 × 1012 L⊙; however, this value may be overestimated because of some AGN contribution. Most of our targets are also luminous star-forming Bz

  11. Enhancing the Legacy of Spitzer and Herschel with the MOSFIRE Deep Evolution Field Survey

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen

    The next frontier for comprehensive galaxy surveys is the epoch at z~1.5-3.5, the peak of star formation and black hole activity. Despite the new windows that Spitzer and Herschel have opened up into the stellar and dust emission of distant galaxies and AGN during this key epoch, these studies have been limited by the lack of spectroscopic redshifts and the unknown physical conditions (e.g., metallicities, ionization) within the targeted galaxies. To realize the full potential of Spitzer and Herschel, we require a large spectroscopic survey that will: (a) efficiently assemble spectroscopic redshifts for large samples of galaxies at z=1.4-3.8; (b) yield the physical conditions, including the ionization and metallicities of these galaxies; and (c) easily obtain spectroscopic redshifts even for very dusty/confused galaxies. To this end, our team has been allocated a large program of 47 Keck nights with the multi-object near-IR spectrograph MOSFIRE to carry out the MOSFIRE Deep Evolution Field Survey (MOSDEF) in three of the Hubble CANDELS fields. MOSDEF will obtain rest-optical spectra of ~1500 galaxies at redshifts z=1.4-3.8, targeting many of the optical nebular emission lines and continuum features (e.g., [OII], [OIII], H-beta, H-alpha, [NII], [SII], 4000 Angstrom break, Ca H and K, and Mbg) that until now have been inaccessible for large samples of distant galaxies, but which are routinely used to measure the SFRs, dust attenuation, metal and gas content, and ionization and dynamical properties in nearby galaxies. MOSDEF spectroscopy provides a critical supporting role for the analysis of Spitzer and Herschel observations of distant galaxies. With this transformative dataset, we will perform the following analyses. First, we will use Spitzer and Herschel imaging, aided with spectroscopic redshifts from MOSDEF, to construct individual and mean dust SEDs for galaxies at redshifts 1.4

  12. Refinement of the Spitzer Space Telescope Pointing History Based on Image Registration Corrections from Multiple Data Channels

    NASA Astrophysics Data System (ADS)

    McCallon, Howard L.; Fowler, John W.; Laher, Russ R.; Masci, Frank J.; Moshir, Mehrdad

    2007-11-01

    Position reconstruction for images acquired by the Infrared Array Camera (IRAC), one of the science instruments onboard the Spitzer Space Telescope, is a multistep procedure that is part of the routine processing done at the Spitzer Science Center (SSC). The IRAC instrument simultaneously images two different sky footprints, each with two independent infrared passbands (channels). The accuracy of the initial Spitzer pointing reconstruction is typically slightly better than 1". The well-known technique of position matching imaged point sources to even more accurate star catalogs to refine the pointing further is implemented for SSC processing of IRAC data as well. Beyond that, the optimal processing of redundant pointing information from multiple instrument channels to yield an even better solution is also performed at the SSC. Our multichannel data processing approach is particularly beneficial when the star-catalog matches are sparse in one channel but copious in others. A thorough review of the algorithm as implemented for the Spitzer mission reveals that the mathematical formalism can be fairly easily generalized for application to other astronomy missions. The computation of pointing uncertainties, the interpolation of pointing corrections and their uncertainties between measurements, and the estimation of random-walk deviations from linearity are special areas of importance when implementing the method. After performing the operations described in this paper on the initial Spitzer pointing, the uncertainty in the observatory pointing history file is reduced 10-15 fold.

  13. The Pilot Warm Spitzer Near Earth Object Survey: Probing the size distribution of the most abundant Near Earth Objects

    NASA Astrophysics Data System (ADS)

    Trilling, David; Delbo, Marco; Emery, Joshua; Fazio, Giovanni; Fuentes, Cesar; Harris, Alan; Hora, Joseph; Mommert, Michael; Mueller, Michael; Smith, Howard

    2012-12-01

    We propose a Warm Spitzer search for Near Earth Objects (NEOs), bodies whose orbits bring them close to the Earth's orbit. Previous work has measured the properties of larger NEOs, but the physical properties of the smallest and most numerous NEOs are poorly constrained. We will capitalize on Spitzer's unparalleled sensitivity and unique geometry to measure the size distribution of NEOs down to 100 meters, where completeness from previous surveys is poor. This allows us to probe the dynamical history of near-Earth space and meet the Congressional mandate to determine the impact threat from objects >140 m. This project will also serve as a scientific and technical pathfinder for a future large Spitzer proposal that will increase our knowledge of the small NEO size distribution by another order of magnitude. Both projects will also be sensitive to previously unseen NEO populations. This proposed work significantly surpasses recent results from both our ExploreNEOS program and NEOWISE. Future ground- and space-based missions have been proposed to carry out similar work at costs of $500M or more, but this fundamental work can be done now, with Spitzer, for far less money. Our team has unmatched scientific and technical expertise in observations and modeling of Spitzer-observed NEOs.

  14. CHANDRA AND SPITZER IMAGING OF THE INFRARED CLUSTER IN NGC 2071

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R.; Megeath, S. Thomas; Guedel, Manuel; Audard, Marc; Flaherty, Kevin M.; Meyer, Michael R.; Damineli, Augusto

    2009-08-10

    We present results of a sensitive Chandra X-ray observation and Spitzer mid-infrared (mid-IR) observations of the IR cluster lying north of the NGC 2071 reflection nebula in the Orion B molecular cloud. We focus on the dense cluster core known as NGC 2071-IR, which contains at least nine IR sources within a 40'' x 40'' region. This region shows clear signs of active star formation including powerful molecular outflows, Herbig-Haro objects, and both OH and H{sub 2}O masers. We use Spitzer Infrared Array Camera (IRAC) images to aid in X-ray source identification and to determine young stellar object (YSO) classes using mid-IR colors. Spitzer IRAC colors show that the luminous source IRS 1 is a class I protostar. IRS 1 is believed to be driving a powerful bipolar molecular outflow and may be an embedded B-type star or its progenitor. Its X-ray spectrum reveals a fluorescent Fe emission line at 6.4 keV, arising in cold material near the protostar. The line is present even in the absence of large flares, raising questions about the nature of the ionizing mechanism responsible for producing the 6.4 keV fluorescent line. Chandra also detects X-ray sources at or near the positions of IRS 2, IRS 3, IRS 4, and IRS 6 and a variable X-ray source coincident with the radio source VLA 1, located just 2'' north of IRS 1. No IR data are yet available to determine a YSO classification for VLA 1, but its high X-ray absorption shows that it is even more deeply embedded than IRS 1, suggesting that it could be an even younger, less-evolved protostar.

  15. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  16. Radio Emission and Properties of Spitzer Selected Starbursts at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Omont, A.; Fiolet, N.; Polletta, M.; Owen, F.; Lonsdale, C.; Berta, S.; Swimambo Collaboration

    2009-09-01

    Our recent observations at IRAM with 1.2mm bolometer camera MAMBO have confirmed the possibility of identifying a subclass of starburst ULIRGs at z ˜2, mostly Sub-Millimeter Galaxies (SMGs), in Spitzer wide surveys through their 24μm emission and the characteristic 1.6μm stellar maximum redshifted into the IRAC bands (Lonsdale et al. 2009, Fiolet et al. in preparation). These 1.2mm observations include a complete sample of 33 such sources with F24 μm > 400 μJy in a 0.5 deg^2 field with exceptionally deep 1.4 GHz VLA and 610 MHz GMRT data. The entire sample has an average 1.2 mm flux of 1.56±0.14 mJy, and the average far-IR luminosity is 2.5×1012 L_{⊙, so that most of the sources are z ˜2 ULIRGs and the majority may be considered SMGs. The combination of radio, mm and Spitzer data allows the discrimination between AGN and starburst sources and estimating the star formation rate and the stellar mass of these objects. There are several thousand galaxies easily identifiable among SWIRE galaxies with similar criteria. They could be progenitors of massive ellipticals in the process of one of their last major gaseous mergers, with possibly extended starburst. These results show the power of combining radio, mm/submm and Spitzer data. Very deep radio data will thus be crucial for analyzing various wide field surveys with Herschel.

  17. Using Spitzer to Estimate the Kepler False Positive Rate and to Validate Kepler Candidates.

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel; Charbonneau, D.; Fressin, F.; Torres, G.

    2012-01-01

    I present the results from an ongoing large campaign with the Spitzer Space Telescope to gather near-infrared photometric measurements of Kepler Objects of Interest (KOI). Our goals are (1) to validate the planetary status of these Kepler candidates, (2) to estimate observationally the false positive rate, and (3) to study the atmospheres of confirmed planets through measurements of their secondary eclipses. Our target list spans of wide range of candidate sizes and periods orbiting various spectral type stars. The Spitzer observations provide constraints on the possibility of astrophysical false positives resulting from stellar blends, including eclipsing binaries and hierarchical triples. The number of possible blends per star is estimated using stellar population synthesis models and observational probes of the KOI close environments from direct imaging (e.g. Adaptive Optics, Speckle images, Kepler centroids). Combining all the above information with the shape of the transit lightcurves from the Kepler photometry, we compute odd ratios for the 34 candidates we observed in order to determine their false positive probability. Our results suggest that the Kepler false positive rate in this subset of candidates is low. I finally present a new list of Kepler candidates that we were able to validate using this method. This work is based on observations made with the Spitzer, which is operated by JPL/Caltech, under a contract with NASA. Support was provided by NASA through an award issued by JPL/Caltech. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  18. Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations

    NASA Astrophysics Data System (ADS)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Vieira Martins, R.; Berthier, J.; Vachier, F.; Cruikshank, D. P.; Lim, L. F.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2012-11-01

    We collected mid-IR spectra from 5.2 to 38 μm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Γ ⩽ ∼100 J s-1/2 K-1 m-2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cm3 (P-, C-type) to ∼2 g/cm3 (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 ± 0.9 g/cm3). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  19. Spectacular Spitzer Images of the Trifid Nebula: Protostars in a Young, Massive-Star-forming Region

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Reach, William T.; Lefloch, Bertrand; Fazio, Giovanni G.

    2006-06-01

    Spitzer IRAC and MIPS images of the Trifid Nebula (M20) reveal its spectacular appearance in infrared light, highlighting the nebula's special evolutionary stage. The images feature recently formed massive protostars and numerous young stellar objects, and a single O star that illuminates the surrounding molecular cloud from which it formed, and unveil large-scale, filamentary dark clouds. Multiple protostars are detected in the infrared, within the cold dust cores of TC3 and TC4, which were previously defined as Class 0. The cold dust continuum cores of TC1 and TC2 contain only one protostar each. The Spitzer color-color diagram allowed us to identify ~160 young stellar objects (YSOs) and classify them into different evolutionary stages. The diagram also revealed a unique group of YSOs that are bright at 24 μm but have the spectral energy distribution peaking at 5-8 μm. Despite expectation that Class 0 sources would be ``starless'' cores, the Spitzer images, with unprecedented sensitivity, uncover mid-infrared emission from these Class 0 protostars. The mid-infrared detections of Class 0 protostars show that the emission escapes the dense, cold envelope of young protostars. The mid-infrared emission of the protostars can be fit by two temperatures of 150 and 400 K; the hot core region is probably optically thin in the mid-infrared regime, and the size of hot core is much smaller than that of the cold envelope. The presence of multiple protostars within the cold cores of Class 0 objects implies that clustering occurs at this early stage of star formation. The most massive star in the TC3 cluster is located at the center of the cluster and at the bottom of the gravitational potential well.

  20. A Spitzer view of the giant molecular cloud Mon OB1 East/NGC 2264

    SciTech Connect

    Rapson, V. A.; Pipher, J. L.; Gutermuth, R. A.; Megeath, S. T.; Allen, T. S.; Myers, P. C.; Allen, L. E.

    2014-10-20

    We present Spitzer 3.6, 4.5, 5.8, 8.0, and 24 μm images of the Mon OB1 East giant molecular cloud, which contains the young star forming region NGC 2264, as well as more extended star formation. With Spitzer data and Two Micron All Sky Survey photometry, we identify and classify young stellar objects (YSOs) with dusty circumstellar disks and/or envelopes in Mon OB1 East by their infrared-excess emission and study their distribution with respect to cloud material. We find a correlation between the local surface density of YSOs and column density of molecular gas as traced by dust extinction that is roughly described as a power law in these quantities. NGC 2264 follows a power-law index of ∼2.7, exhibiting a large YSO surface density for a given gas column density. Outside of NGC 2264 where the surface density of YSOs is lower, the power law is shallower and the region exhibits a larger gas column density for a YSO surface density, suggesting the star formation is more recent. In order to measure the fraction of cloud members with circumstellar disks/envelopes, we estimate the number of diskless pre-main-sequence stars by statistical removal of background star detections. We find that the disk fraction of the NGC 2264 region is 45%, while the surrounding, more distributed regions show a disk fraction of 19%. This may be explained by the presence of an older, more dispersed population of stars. In total, the Spitzer observations provide evidence for heterogenous, non-coeval star formation throughout the Mon OB1 cloud.

  1. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.; Cruikshank, D. P.; Lim, L. F.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda < or = approx.100 J/1/2 s/K/sq m2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  2. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    SciTech Connect

    Fraine, Jonathan D.; Deming, Drake; Gillon, Michaeel; Jehin, Emmanueel; Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara; Lewis, Nikole K.; Knutson, Heather; Desert, Jean-Michel

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  3. Using Spitzer Data To Obtain Dust Distribution Arounfd The Active Galactic Nucleus NGC 4051

    NASA Astrophysics Data System (ADS)

    Pereira, Vincent; Burrell, A.; Chavez, O.; Fawcett, E.; Elias, R.; Lugo, T.; Morillo, E.; Purpura, M.; Sorokin, S.; Gorjian, V.; Adkins, J.; Borders, K.; Kelly, S.; Martin, C.; Mendez, B.; Paradis, J.; Pittman, P.; Sepulveda, B.

    2010-01-01

    We have used the Rees'model of Seyfert I galaxies to make detailed calculations of dust distribution as a function of the slope of the spectral intensity versus frequency curve in the infra-red. From these results and our observations of the active galactic nucleus NGC 4051 with the Spitzer Space Telescope Infrared Array Camera (IRAC) we obtain the dust distribution function for this nucleus. We feel that this research project with its underlying physical concepts serves as a good introduction to the physics of Seyfert galaxies for high school students.

  4. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    NASA Technical Reports Server (NTRS)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  5. Repeatability of Spitzer/IRAC Exoplanetary Eclipses with Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Morello, G.; Waldmann, I. P.; Tinetti, G.

    2016-04-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  6. Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path toward Breaking Strong Microlens Degeneracies

    NASA Astrophysics Data System (ADS)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.; Calchi Novati, S.; Bond, I. A.; Han, C.; Hundertmark, M.; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Soszyński, I.; Ulaczyk, K.; OGLE Group; and; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Gould, A.; Henderson, C. B.; Pogge, R. W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Abe, F.; Asakura, Y.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Inayama, K.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Nishioka, T.; Ohnishi, K.; Oyokawa, H.; Rattenbury, N.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Wakiyama, Y.; Yonehara, A.; MOA Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Dominik, M.; Jørgensen, U. G.; Andersen, M. I.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Kains, N.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Rasmussen, R. T.; Scarpetta, G.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; Surdej, J.; Unda-Sanzana, E.; von Essen, C.; Wang, Y.-B.; Wertz, O.; MiNDSTEp; Maoz, D.; Friedmann, M.; Kaspi, S.; Wise Group

    2016-03-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.

  7. A Galex/Spitzer/Wise View Of The White Dwarf Population In The Galaxy

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin

    We propose to use a unique dataset made available by NASA's Galaxy Evolution Explorer (GALEX), Spitzer Space Telescope, and the Wide-Field Infrared Survey Explorer (WISE) to characterize the local white dwarf population in the Galaxy. We have recently identified 40,000 white dwarfs in the Sloan Digital Sky Survey through high proper motion and optical spectroscopy observations. About 32,000 of these have GALEX ultraviolet observations and 6,000 have Spitzer or WISE infrared observations. Spitzer imaging observations of around 3,000 white dwarfs are available in nearly 8,000 Astronomical Observation Requests. The majority of these data were taken as part of non-white dwarf related projects and they have never been analyzed for our targets. We will use these data and combine ultraviolet, optical, and mid-infrared photometry as well as state of the art model atmospheres to study the Galactic population of white dwarfs. By exploiting the full range of the electromagnetic spectrum available from these missions, we will constrain the physical parameters of 40,000 white dwarfs in the solar neighborhood, create precise white dwarf luminosity functions and constrain the ages and the star formation histories of the Galactic disk and halo. Any deviation from the predicted spectral energy distributions would indicate the presence of companions or circumstellar debris disks. This will be the largest survey of its kind and it will provide the best constraints on the white dwarf luminosity function, and the frequency of stellar and substellar companions, and debris disks around white dwarfs and their progenitor main-sequence stars. These are all exciting results that can realistically be completed within the timescale of this proposal. The 2011 version of the NASA Strategic plan states ``In conjunction with ground and airborne telescopes, our strategy is to design and launch space telescopes that exploit the full range of the electromagnetic spectrum to view the broad diversity

  8. New z>2 clusters unveiled by Planck, Herschel & Spitzer - prospects for JWST, Euclid, WFIRST

    NASA Astrophysics Data System (ADS)

    Dole, Herve A.

    2015-08-01

    Searching for z>2 clusters/protoclusters is an active field in cosmology, and quite successfull using wide near-infrared surveys (e.g. Spitzer). We present a new approach by selecting highly star forming high-z cluster candidates over the whole sky using Planck, taking benefit of the redshifted far-infrared peak into the Planck submillimetre channels and a clean component separation (among which Galactic cirrus & CMB). Out of more than 1000 Planck high-z candidates, about 230 were confirmed by a Herschel/SPIRE follow-up as significant overdensities of red sources, confirming their high-z spectral energy distribution and high star formation rates (typically 700 Msun/yr per SPIRE source, and >5000 Msun/yr for each structure). These overdensities could be protoclusters in their intense star formation phase. Few targets have spectroscopic redshift (in the NIR and mm) confirmations, all in the range 1.7-2.3, while photometric analysis indicates z>2 for all the Planck counterparts.The key points here are the wavelength plus the angular and resolution coverage from Planck, Herschel and Spitzer. 40 fields were followed-up by Spitzer down to 1uJy 5sigma, and show unambiguous presence of galaxy overdensities compatible with z~2 based on color analysis on 4 band photometry (J, K, 3.6 and 4.5um). These targetted Spitzer observations can serve as pilot project for the more extended data coming in the next decade with JWST and Euclid.This new window on the high-z (z>2) protocluster may yield powerful constraints on structure formation (e.g., SFR vs environnement at high-z, z>2 mass assembly in clusters, bias). Furthermore, these objects will allow to better quantify the prediction for clusters to be detected by WFIRST and Euclid. Finally, these clusters will help us extending the current search for high-z clusters, in nice complementarity with current selections in the near-infrared (dominated by stellar mass) and the millimeter (dominated by hot gas and SZ effect), using the

  9. New z>2 clusters unveiled by Planck, Herschel & Spitzer - prospects for JWST & Euclid

    NASA Astrophysics Data System (ADS)

    Dole, Herve A.

    2015-08-01

    Searching for z>2 clusters/protoclusters is an active field in cosmology, and quite successfull using wide near-infrared surveys (e.g. Spitzer). We present a new approach by selecting highly star forming high-z cluster candidates over the whole sky using Planck, taking benefit of the redshifted far-infrared peak into the Planck submillimetre channels and a clean component separation (among which Galactic cirrus & CMB). Out of more than 1000 Planck high-z candidates, about 230 were confirmed by a Herschel/SPIRE follow-up as significant overdensities of red sources, confirming their high-z spectral energy distribution and high star formation rates (typically 700 Msun/yr per SPIRE source, and >5000 Msun/yr for each structure). These overdensities could be protoclusters in their intense star formation phase. Few targets have spectroscopic redshift (in the NIR and mm) confirmations, all in the range 1.7-2.3, while photometric analysis indicates z>2 for all the Planck counterparts.The key points here are the wavelength plus the angular and resolution coverage from Planck, Herschel and Spitzer. 40 fields were followed-up by Spitzer down to 1uJy 5sigma, and show unambiguous presence of galaxy overdensities compatible with z~2 based on color analysis on 4 band photometry (J, K, 3.6 and 4.5um). These targetted Spitzer observations can serve as pilot project for the more extended data coming in the next decade with JWST and Euclid.This new window on the high-z (z>2) protocluster may yield powerful constraints on structure formation (e.g., SFR vs environnement at high-z, z>2 mass assembly in clusters, bias). Furthermore, these objects will allow to better quantify the prediction for clusters to be detected by WFIRST and Euclid. Finally, these clusters will help us extending the current search for high-z clusters, in nice complementarity with current selections in the near-infrared (dominated by stellar mass) and the millimeter (dominated by hot gas and SZ effect), using the

  10. Revealing spectacular, young and sequential star forming regions of the Trifid Nebula with Spitzer

    NASA Astrophysics Data System (ADS)

    Rho, J.; Reach, W. T.; Lefloch, B.; Fazio, G.

    2004-12-01

    Spitzer IRAC and MIPS images of a young HII region, the Trifid Nebula (M20), reveal its spectacular appearance in infrared light, with recently formed massive protostars and numerous young stars illuminating the surrounding molecular clouds from which they formed and unveiling large scale filamentary dark clouds, which demonstrate a special evolutionary stage of HII regions. The hot dust grains show contrasting infrared colors in shells, arcs, bow-shocks and dark cores. Infrared emission is detected from the central O star complex, including the protoplanetary disks. Large populations of young stars including three dozen protostars (Classes I and 0) and over one hundred Class II pre-main sequence stars, are identified. The protostars are clustered along the filamentary dark lanes on western side of M20, which include the reflection nebula in the northern portion of the Trifid. Class II stars are distributed along the ionization front at the circular shape of HII regions. We suggest that the distribution of the protostars revealed by Spitzer is a result of sequential star formation triggered by the expansion of the young HII region of the Trifid Nebula along the filamentary dark clouds, where the massive stars tend to form in groups. The Spitzer images revealed clusters of protostars within the Class 0 objects, which were previously believed to be "starless" cores. These Spitzer images, with unprecedented sensitivity, now uncover the Class 0 protostars in infrared that are powering the SiO and CO outflows. Clusters of protostars are also detected from each of the continuum peaks TC3 and TC4, and some of these sources feature silicate absorption lines in their spectral energy distribution. The driving infrared source of a SiO outflow and submillimeter core TC1, near the exciting O star, is detected within a heated, infrared shell surrounding a dark, cold envelope. Lastly, the images also unveil three infrared sources lying along axis of the photoionized jet HH399 and

  11. The impact of endorsing Spitzer's proposed criteria for PTSD in the forthcoming DSM-V on male and female Veterans.

    PubMed

    Miller, Lyndsey N; Chard, Kathleen M; Schumm, Jeremiah A; O'Brien, Carol

    2011-06-01

    This study explored differences between Spitzer's proposed model of posttraumatic stress disorder (PTSD) and the current DSM-IV diagnostic classification scheme in 353 Veterans. The majority of Veterans (89%) diagnosed with PTSD as specified in the DSM-IV also met Spitzer's proposed criteria. Veterans who met both DSM-IV and Spitzer's proposed criteria had significantly higher Clinician Administered PTSD Scale severity scores than Veterans only meeting DSM-IV criteria. Logistic regression indicated that being African American and having no comorbid diagnosis of major depressive disorder or history of a substance use disorder were found to predict those Veterans who met current, but not proposed criteria. These findings have important implications regarding proposed changes to the diagnostic classification criteria for PTSD in the forthcoming DSM-V.

  12. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; Uchid, K. I.

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  13. Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2015-09-01

    We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.

  14. Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ruffle, Paul M. E.; Kemper, F.; Jones, O. C.; Sloan, G. C.; Kraemer, K. E.; Woods, Paul M.; Boyer, M. L.; Srinivasan, S.; Antoniou, V.; Lagadec, E.; Matsuura, M.; McDonald, I.; Oliveira, J. M.; Sargent, B. A.; Sewiło, M.; Szczerba, R.; van Loon, J. Th.; Volk, K.; Zijlstra, A. A.

    2015-08-01

    The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.

  15. Spitzer characterization of dust in the ionized medium of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Paradis, D.; Paladini, R.; Noriega-Crespo, A.; Lagache, G.; Kawamura, A.; Onishi, T.; Fukui, Y.

    2011-12-01

    Dust emission associated with ionized gas has so far been detected only in our Galaxy, and for wavelengths longer than 60 μm. Spitzer data now offer the opportunity to carry out a similar analysis in the Large Magellanic Cloud, and to separate dust emission into components associated with different phases of the gas, i.e. atomic, molecular and ionized. We perform a correlation study using infrared Spitzer data as part of the Surveying the Agents of a Galaxy's Evolution (SAGE) and IRAS 12-100 μm combined with gas tracers such as the ATCA/Parkes HI data, for the atomic phase, the NANTEN ^{12}CO data, for the molecular phase, and both the SHASSA Hα and the radio Parkes 5 GHz data, for the ionized phase. In particular, we investigate the presence of dust for different physical regimes of the ionized gas, spanning emission measures from 1 pc cm^{-6} (diffuse medium) to 10^3 pc cm^{-6} (HII regions).

  16. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dweek, Eli; Blair, William P.; Ghavamian, Parviz; Hwang, Una; Long, Knox X.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-01-01

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 micrometers shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  17. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE II LEGACY SURVEY

    SciTech Connect

    Zhang Yong; Sun Kwok E-mail: sunkwok@hku.h

    2009-11-20

    We report the result of a search for the infrared counterparts of 37 planetary nebulae (PNs) and PN candidates in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire II (GLIMPSE II) survey. The photometry and images of these PNs at 3.6, 4.5, 5.8, 8.0, and 24 mum, taken through the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS), are presented. Most of these nebulae are very red and compact in the IRAC bands, and are found to be bright and extended in the 24 mum band. The infrared morphology of these objects are compared with Halpha images of the Macquarie-AAO-Strasbourg (MASH) and MASH II PNs. The implications for morphological difference in different wavelengths are discussed. The IRAC data allow us to differentiate between PNs and H II regions and be able to reject non-PNs from the optical catalog (e.g., PNG 352.1 - 00.0). Spectral energy distributions are constructed by combing the IRAC and MIPS data with existing near-, mid-, and far-IR photometry measurements. The anomalous colors of some objects allow us to infer the presence of aromatic emission bands. These multi-wavelength data provide useful insights into the nature of different nebular components contributing to the infrared emission of PNs.

  18. Dissecting the Spitzer colour-magnitude diagrams of extreme Large Magellanic Cloud asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Ventura, P.; García Hernández, D. A.; Schneider, R.; Di Criscienzo, M.; Brocato, E.; D'Antona, F.; Rossi, C.

    2014-07-01

    We trace the full evolution of low- and intermediate-mass stars (1 ≤ M ≤ 8 M⊙) during the asymptotic giant branch (AGB) phase in the Spitzer two-colour and colour-magnitude diagrams. We follow the formation and growth of dust particles in the circumstellar envelope with an isotropically expanding wind, in which gas molecules impinge upon pre-existing seed nuclei, favour their growth. These models are the first able to identify the main regions in the Spitzer data occupied by AGB stars in the Large Magellanic Cloud (LMC). The main diagonal sequence traced by LMC extreme stars in the [3.6] - [4.5] versus [5.8] - [8.0] and [3.6] - [8.0] versus [8.0] planes is nicely fit by carbon stars models; it results to be an evolutionary sequence with the reddest objects being at the final stages of their AGB evolution. The most extreme stars, with [3.6] - [4.5] > 1.5 and [3.6] - [8.0] > 3, are 2.5-3 M⊙ stars surrounded by solid carbon grains. In higher mass (>3 M⊙) models dust formation is driven by the extent of hot bottom burning (HBB) - most of the dust formed is in the form of silicates and the maximum obscuration phase by dust particles occurs when the HBB experienced is strongest, before the mass of the envelope is considerably reduced.

  19. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    SciTech Connect

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B.; Udalski, A.; Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Han, C.; Bozza, V.; Novati, S. Calchi; Friedmann, M.; Hundertmark, M.; Beichman, C.; Carey, S.; Kerr, T.; Varricatt, W.; Yee, J. C.; Collaboration: and; Spitzer team; OGLE group; KMTNet group; Wise group; RoboNet; MiNDSTEp; and others

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  20. Simultaneous Ground Based Monitoring of Brown Dwarfs Being Observed with Spitzer

    NASA Astrophysics Data System (ADS)

    Heinze, Aren; Metchev, Stanimir; Apai, Daniel; Flateau, Davin

    2012-08-01

    Brown dwarfs are the only objects beyond the solar system on which we can currently observe weather. Patchy clouds cause periodic, rotationally modulated photometric variability in some brown dwarfs; others show apparently non-periodic variations, potentially because rapid cloud evolution washes out the rotational photometric modulation. Measuring the relative amplitudes of a brown dwarf's photometric variability at different wavelengths reveals the altitude and other physical properties of its clouds. However, non-periodic variations require that the amplitudes be measured simultaneously in time. We propose to obtain simultaneous, multi-band photometry of brown dwarfs by observing them in the optical or near-IR at the same time as they are being monitored at longer wavelengths with Spitzer. These observations will have unique leverage to constrain the properties of brown dwarf clouds. Given the uncertain future of the Spitzer Warm Mission and the lack of any other mission with similar capability, the present semester represents a limited window of opportunity for carrying out such observations.

  1. The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Definition and Goals

    NASA Astrophysics Data System (ADS)

    Mauduit, J.-C.; Lacy, M.; Farrah, D.; Surace, J. A.; Jarvis, M.; Oliver, S.; Maraston, C.; Vaccari, M.; Marchetti, L.; Zeimann, G.; Gonzáles-Solares, E. A.; Pforr, J.; Petric, A. O.; Henriques, B.; Thomas, P. A.; Afonso, J.; Rettura, A.; Wilson, G.; Falder, J. T.; Geach, J. E.; Huynh, M.; Norris, R. P.; Seymour, N.; Richards, G. T.; Stanford, S. A.; Alexander, D. M.; Becker, R. H.; Best, P. N.; Bizzocchi, L.; Bonfield, D.; Castro, N.; Cava, A.; Chapman, S.; Christopher, N.; Clements, D. L.; Covone, G.; Dubois, N.; Dunlop, J. S.; Dyke, E.; Edge, A.; Ferguson, H. C.; Foucaud, S.; Franceschini, A.; Gal, R. R.; Grant, J. K.; Grossi, M.; Hatziminaoglou, E.; Hickey, S.; Hodge, J. A.; Huang, J.-S.; Ivison, R. J.; Kim, M.; LeFevre, O.; Lehnert, M.; Lonsdale, C. J.; Lubin, L. M.; McLure, R. J.; Messias, H.; Martínez-Sansigre, A.; Mortier, A. M. J.; Nielsen, D. M.; Ouchi, M.; Parish, G.; Perez-Fournon, I.; Pierre, M.; Rawlings, S.; Readhead, A.; Ridgway, S. E.; Rigopoulou, D.; Romer, A. K.; Rosebloom, I. G.; Rottgering, H. J. A.; Rowan-Robinson, M.; Sajina, A.; Simpson, C. J.; Smail, I.; Squires, G. K.; Stevens, J. A.; Taylor, R.; Trichas, M.; Urrutia, T.; van Kampen, E.; Verma, A.; Xu, C. K.

    2012-07-01

    We present the Spitzer Extragalactic Representative Volume Survey (SERVS), an 18 deg2 medium-deep survey at 3.6 and 4.5 μm with the postcryogenic Spitzer Space Telescope to ≈2 μJy (AB = 23.1) depth of five highly observed astronomical fields (ELAIS-N1, ELAIS-S1, Lockman Hole, Chandra Deep Field South, and XMM-LSS). SERVS is designed to enable the study of galaxy evolution as a function of environment from z ~ 5 to the present day and is the first extragalactic survey that is both large enough and deep enough to put rare objects such as luminous quasars and galaxy clusters at z gsim 1 into their cosmological context. SERVS is designed to overlap with several key surveys at optical, near- through far-infrared, submillimeter, and radio wavelengths to provide an unprecedented view of the formation and evolution of massive galaxies. In this article, we discuss the SERVS survey design, the data processing flow from image reduction and mosaicking to catalogs, and coverage of ancillary data from other surveys in the SERVS fields. We also highlight a variety of early science results from the survey. Since this article was published online on 4 August 2012, corrections have been made. An erratum appears in the October 2012 issue of the journal. The current online version was corrected on 10 October 2012.

  2. A SPITZER VIEW OF STAR FORMATION IN THE CYGNUS X NORTH COMPLEX

    SciTech Connect

    Beerer, I. M.; Koenig, X. P.; Hora, J. L.; Keto, E.; Smith, H. A.; Fazio, G. G.; Gutermuth, R. A.; Bontemps, S.; Schneider, N.; Megeath, S. T.; Motte, F.; Simon, R.; Allen, L. E.; Kraemer, K. E.; Price, S.; Mizuno, D.; Adams, J. D.; Hernandez, J.; Lucas, P. W.

    2010-09-01

    We present new images and photometry of the massive star-forming complex Cygnus X obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. A combination of IRAC, MIPS, UKIRT Deep Infrared Sky Survey, and Two Micron All Sky Survey data are used to identify and classify young stellar objects (YSOs). Of the 8231 sources detected exhibiting infrared excess in Cygnus X North, 670 are classified as class I and 7249 are classified as class II. Using spectra from the FAST Spectrograph at the Fred L. Whipple Observatory and Hectospec on the MMT, we spectrally typed 536 sources in the Cygnus X complex to identify the massive stars. We find that YSOs tend to be grouped in the neighborhoods of massive B stars (spectral types B0 to B9). We present a minimal spanning tree analysis of clusters in two regions in Cygnus X North. The fraction of infrared excess sources that belong to clusters with {>=}10 members is found to be 50%-70%. Most class II objects lie in dense clusters within blown out H II regions, while class I sources tend to reside in more filamentary structures along the bright-rimmed clouds, indicating possible triggered star formation.

  3. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  4. Sensitive Spitzer Photometry of Supermassive Black Holes at the Final Stage of Adolescence

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    2011-05-01

    We propose to obtain sensitive Spitzer snapshot observations of a unique sample of 35 Sloan Digital Sky Survey quasars at redshift 4.8 for which we obtained reliable, Mg II-based determinations of the supermassive black hole (SMBH) mass and normalized accretion rate (L/L_Edd). These quasars appear to mark the final stage of SMBH `adolescence' in the history of the Universe as their SMBHs are significantly less massive and their L/L_Edd values are significantly higher with respect to their counterparts at lower redshifts. Our observations will provide both 1) deep coverage of the fields around these quasars which will be utilized as crucial priors for our approved Herschel/SPIRE observations of these sources, and 2) coverage of the rest-frame optical SEDs of these fast accreting quasars. The results will maximize our ability to measure the star-formation rate in the host galaxies of these quasars using Herschel. We will thus be able to investigate correlations between SMBH growth and star-forming activity in the early Universe. The Spitzer photometry will also provide invaluable information about the shape of the rest-frame optical continuum in these quasars which will be used to search for extreme disk properties that may be signatures of the remarkably high accretion rates in these sources.

  5. Near-Infrared Spectroscopy of Warm Spitzer-observed Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Emery, J. P.; Trilling, D. E.; Delbo, M.; Hora, J. L.; Mueller, M.

    2013-10-01

    We have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program. ExploreNEOs or “The Warm Spitzer NEO Survey: Exploring the history of the inner Solar System and near-Earth space” was allocated 500 hours over two years (2009-2011) to determine diameters and albedos for approximately 600 near-Earth objects using the 3.6 and 4.5 micron IRAC bands. We present the results of the SpeX component of our campaign. In order to increase our sample size we also include all near-infrared observations of ExploreNEOs targets in the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our complete dataset includes 125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey. The combination of the two surveys includes near-infrared spectroscopy of 187 ExploreNEOs targets. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We identified all potential ordinary chondrites within our sample and determined likely ordinary chondrite types using the equations derived by Dunn et al. 2010. Our resulting proportions of H, L, and LL ordinary chondrites are different than those previously calculated for ordinary chondrite-like near-Earth objects and meteorite falls.

  6. Spitzer Microlens Measurement of a Massive Remnant in a Well-separated Binary

    NASA Astrophysics Data System (ADS)

    Shvartzvald, Y.; Udalski, A.; Gould, A.; Han, C.; Bozza, V.; Friedmann, M.; Hundertmark, M.; and; Beichman, C.; Bryden, G.; Calchi Novati, S.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Kerr, T.; Pogge, R. W.; Varricatt, W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Maoz, D.; Kaspi, S.; Wise Group; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Bramich, D. M.; Horne, Keith; Snodgrass, C.; Steele, I. A.; Menzies, J.; Figuera Jaimes, R.; Wambsganss, J.; Schmidt, R.; Cassan, A.; Ranc, C.; Mao, S.; Dong, Subo; RoboNet; D'Ago, G.; Scarpetta, G.; Verma, P.; Jørgensen, U. G.; Kerins, E.; Skottfelt, J.; MiNDSTEp

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  7. Enhancement of the Spitzer Infrared Array Camera (IRAC) distortion correction for parallax measurements

    NASA Astrophysics Data System (ADS)

    Lowrance, Patrick J.; Carey, Sean J.; Ingalls, James G.; Surace, Jason A.; Capak, Peter; Stauffer, John; Beichman, Chas; Shupe, David; Kirkpatrick, J. Davy

    2014-08-01

    The Spitzer Space Telescope Infrared Array (IRAC) offers a rare opportunity to measure distances and determine physical properties of the faintest and coldest brown dwarfs. The current distortion correction is a 3rd order polynomial represented by TAN-SIP parameters within the headers. The current correction, good to 100 mas, was derived from deep imaging, using marginally resolved galaxies in some cases, and has remained stable throughout both the cryogenic and warm mission. Using recent Spitzer calibration observations mapped to HST/ACS calibration observations of 47 Tuc with an absolute accuracy good to 1 mas, we are working towards a possible 5th order polynomial correction that theoretically could allow measurements to within 20 mas. Extensive testing, using observations of 47 Tuc, NGC 6791 and NGC 2264, are underway, after which the new parameters will be used to update all the 3.6 and 4.5um data taken within warm and cryogenic missions. We anticipate if achievable, this new accuracy could be combined with other ongoing enhancements (Ingalls et al, 9143-52) that will permit measurements of parallaxes out to about 50 pc, increasing the volume surveyed by a factor of 100, and enabling new capabilities such as luminosity measurements of the population of young brown dwarfs in the beta Pictoris moving group.

  8. Spitzer IRAC Sparsely Sampled Phase Curve of the Exoplanet Wasp-14B

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Ingalls, J.; Carey, S.; von Braun, K.; Kane, S. R.; Ciardi, D.; Plavchan, P.; Wong, I.; Lowrance, P.

    2016-06-01

    Motivated by a high Spitzer IRAC oversubscription rate, we present a new technique of randomly and sparsely sampling the phase curves of hot Jupiters. Snapshot phase curves are enabled by technical advances in precision pointing as well as careful characterization of a portion of the central pixel on the array. This method allows for observations which are a factor of approximately two more efficient than full phase curve observations, and are furthermore easier to insert into the Spitzer observing schedule. We present our pilot study from this program using the exoplanet WASP-14b. Data of this system were taken both as a sparsely sampled phase curve as well as a staring-mode phase curve. Both data sets, as well as snapshot-style observations of a calibration star, are used to validate this technique. By fitting our WASP-14b phase snapshot data set, we successfully recover physical parameters for the transit and eclipse depths as well as the amplitude and maximum and minimum of the phase curve shape of this slightly eccentric hot Jupiter. We place a limit on the potential phase to phase variation of these parameters since our data are taken over many phases over the course of a year. We see no evidence for eclipse depth variations compared to other published WASP-14b eclipse depths over a 3.5 year baseline.

  9. Spitzer IRAC mid-infrared photometry of 500-750 brown dwarf

    SciTech Connect

    Saumon, Didier; Leggett, Sandy K; Albert, Loic; Artigau, Etienne; Burningham, Ben; Delfosse, Xavier; Delorme, Philippe; Forveille, Thierry; Lucas, Philip W; Marley, Mark S; Pinfield, David J; Reyle, Celine; Smart, Richard L; Warren, Stephen J

    2010-10-26

    Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T{sub eff}) drops from 800K to 400K, the fraction of flux emitted beyond 3 {mu}m increases rapidly, from about 40% to > 75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon and Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T{sub eff} {approx} 500K to 750K.

  10. Carnegie-Spitzer-IMACS Survey: The Rise of Galaxy Groups Since z=1

    NASA Astrophysics Data System (ADS)

    Williams, Rik J.; Kelson, D.; Dressler, A.; McCarthy, P.; Mulchaey, J.; Oemler, A., Jr.; Shectman, S.

    2012-01-01

    We present the first measurements of the evolution of the group stellar mass function (GSMF) since z=1 from the Carnegie-Spitzer-IMACS (CSI) Survey. CSI combines robust mass selection through Spitzer 3.6-micron photometry with low-resolution spectroscopy over a 15 deg2 area, allowing the detailed study of large group (and group/field galaxy) samples over the expected epoch of group formation. From the initial 36,000 CSI galaxy redshifts over 5 deg2, we select groups using a standard friends-of-friends algorithm in angular and redshift space, constructing the GSMF in 3 redshift bins. These mass functions agree well with GSMFs from SDSS at z=0, and with X-ray-selected cluster mass functions at higher masses and redshifts. At all masses the GSMF evolves strongly from z=0.5-1, but only weak evolution is seen in low-mass (log M* ˜ 12.0) groups since z=0.5, indicating that most of these were in place at that epoch. As the majority of low-redshift galaxies reside in groups, the group environment may therefore play an important role in the decline in star formation and evolution of galaxy structures since z=1.

  11. OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

    SciTech Connect

    Moustakas, John; Kennicutt, Robert C. Jr.; Tremonti, Christy A.; Dale, Daniel A.; Smith, John-David T.; Calzetti, Daniela

    2010-10-15

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publicly available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

  12. Execution of the Spitzer In-orbit Checkout and Science Verification Plan

    NASA Technical Reports Server (NTRS)

    Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.

    2004-01-01

    The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges

  13. EXPLORENEOs. I. DESCRIPTION AND FIRST RESULTS FROM THE WARM SPITZER NEAR-EARTH OBJECT SURVEY

    SciTech Connect

    Trilling, D. E.; Thomas, C. A.; Mueller, M.; Delbo, M.; Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.; Harris, A. W.; Bhattacharya, B.; Chesley, S.; Mainzer, A.; Emery, J. P.; Penprase, B.; Stansberry, J. A.

    2010-09-15

    We have begun the ExploreNEOs project in which we observe some 700 Near-Earth Objects (NEOs) at 3.6 and 4.5 {mu}m with the Spitzer Space Telescope in its Warm Spitzer mode. From these measurements and catalog optical photometry we derive albedos and diameters of the observed targets. The overall goal of our ExploreNEOs program is to study the history of near-Earth space by deriving the physical properties of a large number of NEOs. In this paper, we describe both the scientific and technical construction of our ExploreNEOs program. We present our observational, photometric, and thermal modeling techniques. We present results from the first 101 targets observed in this program. We find that the distribution of albedos in this first sample is quite broad, probably indicating a wide range of compositions within the NEO population. Many objects smaller than 1 km have high albedos ({approx}>0.35), but few objects larger than 1 km have high albedos. This result is consistent with the idea that these larger objects are collisionally older, and therefore possess surfaces that are more space weathered and therefore darker, or are not subject to other surface rejuvenating events as frequently as smaller NEOs.

  14. The Characterization of the Cool and Eccentric Exoplanet WASP-8b with Spitzer

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, J.; Madhusudhan, N.; Stevenson, K.; Hardy, R.; Blecic, J.; Anderson, D.; Hardin, M.; Campo, C.

    2012-10-01

    WASP-8b is one of the coldest hot-Jupiter planets observed during secondary eclipse (when the planet passes behind the star) with the Spitzer Space Telescope. We present the our observations of WASP-8b at the 3.6, 4.5, and 8.0-micron wavebands with the Spitzer's IRAC instrument, during secondary eclipse. We will show the resulting light curves of our infrared observations, determining the planet-to-star flux ratios. With this spectral information we further characterized the planet's dayside atmosphere, constraining its chemical composition, recognizing the absence of a thermal inversion, and estimating the energy redistribution regime over its surface. Although having a equilibrium temperature is only 950K, the large eccentricity of the orbit (e=0.31) should make the dayside temperature of WASP-8b oscillate with an amplitude of hundreds of degrees. We modeled these temporal variation of the temperature over the surface of the planet and set constrains on the rotational angular velocity and radiative timescale of the planet, based in the observed hemisphere-averaged brightness temperature during secondary eclipse. This planet is also dynamically interesting since it orbits the primary star of a binary system. Along with a large eccentricity, suggests the presence of an unseen planetary companion. A precise determination of the eclipse mid-times will help to constrain the orbit of such companion.

  15. SPITZER AND HEINRICH HERTZ TELESCOPE OBSERVATIONS OF STARLESS CORES: MASSES AND ENVIRONMENTS

    SciTech Connect

    Stutz, Amelia M.; Balog, Zoltan; Rieke, George H.; Bieging, John H.; Kang, Miju; Peters, William L.; Shirley, Yancy L.; Heitsch, Fabian; Werner, Michael W.

    2009-12-10

    We present Spitzer observations of a sample of 12 starless cores selected to have prominent 24 mum shadows. The Spitzer images show 8 mum and 24 mum shadows and in some cases 70 mum shadows; these spatially resolved absorption features trace the densest regions of the cores. We have carried out a {sup 12}CO (2-1) and {sup 13}CO (2-1) mapping survey of these cores with the Heinrich Hertz Telescope (HHT). We use the shadow features to derive optical depth maps. We derive molecular masses for the cores and the surrounding environment; we find that the 24 mum shadow masses are always greater than or equal to the molecular masses derived in the same region, a discrepancy likely caused by CO freezeout onto dust grains. We combine this sample with two additional cores that we studied previously to bring the total sample to 14 cores. Using a simple Jeans mass criterion, we find that approx2/3 of the cores selected to have prominent 24 mum shadows are collapsing or near collapse, a result that is supported by millimeter line observations. Of this subset at least half have indications of 70 mum shadows. All cores observed to produce absorption features at 70 mum are close to collapse. We conclude that 24 mum shadows, and even more so the 70 mum ones, are useful markers of cloud cores that are approaching collapse.

  16. Spitzer and Heinrich Hertz Telescope Observations of Starless Cores: Masses and Environments

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Rieke, George H.; Bieging, John H.; Balog, Zoltan; Heitsch, Fabian; Kang, Miju; Peters, William L.; Shirley, Yancy L.; Werner, Michael W.

    2009-12-01

    We present Spitzer observations of a sample of 12 starless cores selected to have prominent 24 μm shadows. The Spitzer images show 8 μm and 24 μm shadows and in some cases 70 μm shadows; these spatially resolved absorption features trace the densest regions of the cores. We have carried out a 12CO (2-1) and 13CO (2-1) mapping survey of these cores with the Heinrich Hertz Telescope (HHT). We use the shadow features to derive optical depth maps. We derive molecular masses for the cores and the surrounding environment; we find that the 24 μm shadow masses are always greater than or equal to the molecular masses derived in the same region, a discrepancy likely caused by CO freezeout onto dust grains. We combine this sample with two additional cores that we studied previously to bring the total sample to 14 cores. Using a simple Jeans mass criterion, we find that ~2/3 of the cores selected to have prominent 24 μm shadows are collapsing or near collapse, a result that is supported by millimeter line observations. Of this subset at least half have indications of 70 μm shadows. All cores observed to produce absorption features at 70 μm are close to collapse. We conclude that 24 μm shadows, and even more so the 70 μm ones, are useful markers of cloud cores that are approaching collapse.

  17. Spitzer and HHT Observations of Bok Globule B335: Isolated Star Formation Efficiency and Cloud Structure

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Rubin, Mark; Werner, Michael W.; Rieke, George H.; Bieging, John H.; Keene, Jocelyn; Kang, Miju; Shirley, Yancy L.; Su, K. Y. L.; Velusamy, Thangasamy; Wilner, David J.

    2008-11-01

    We present infrared and millimeter observations of Barnard 335, the prototypical isolated Bok globule with an embedded protostar. Using Spitzer data we measure the source luminosity accurately; we also constrain the density profile of the innermost globule material near the protostar using the observation of an 8.0 μm shadow. Heinrich Hertz Telescope (HHT) observations of 12CO 2-1 confirm the detection of a flattened molecular core with diameter ~10,000 AU and the same orientation as the circumstellar disk (~100 to 200 AU in diameter). This structure is probably the same as that generating the 8.0 μm shadow and is expected from theoretical simulations of collapsing embedded protostars. We estimate the mass of the protostar to be only ~5% of the mass of the parent globule. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  18. The COSMOS-WIRCam Near-Infrared Imaging Survey. I. BzK-Selected Passive and Star-Forming Galaxy Candidates at z gsim 1.4

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Capak, P.; Salvato, M.; Aussel, H.; Thompson, D.; Daddi, E.; Sanders, D. B.; Kneib, J.-P.; Willott, C. J.; Mancini, C.; Renzini, A.; Cook, R.; Le Fèvre, O.; Ilbert, O.; Kartaltepe, J.; Koekemoer, A. M.; Mellier, Y.; Murayama, T.; Scoville, N. Z.; Shioya, Y.; Tanaguchi, Y.

    2010-01-01

    We present a new near-infrared survey covering the 2 deg2 COSMOS field conducted using WIRCam at the Canada-France-Hawaii Telescope. By combining our near-infrared data with Subaru B and z images, we construct a deep, wide-field optical-infrared catalog. At K s < 23 (AB magnitudes), our survey completeness is greater than 90% and 70% for stars and galaxies, respectively, and contains 143,466 galaxies and 13,254 stars. Using the BzK diagram, we divide our galaxy catalog into quiescent and star-forming galaxy candidates. At z ~ 2, our catalogs contain 3931 quiescent and 25,757 star-forming galaxies representing the largest and most secure sample at these depths and redshifts to date. Our counts of quiescent galaxies turns over at K s ~ 22, an effect that we demonstrate cannot be due to sample incompleteness. Both the number of faint and bright quiescent objects in our catalogs exceed the predictions of a recent semi-analytic model of galaxy formation, indicating potentially the need for further refinements in the amount of merging and active galactic nucleus feedback at z ~ 2 in these models. We measure the angular correlation function for each sample and find that the slope of the field galaxy correlation function flattens to 1.5 by K s ~ 23. At small angular scales, the angular correlation function for passive BzK galaxies is considerably in excess of the clustering of dark matter. We use precise 30-band photometric redshifts to derive the spatial correlation length and the redshift distributions for each object class. At K s < 22, we find r γ/1.8 0 = 7.0 ± 0.5h -1 Mpc for the passive BzK candidates and 4.7 ± 0.8 h -1 Mpc for the star-forming BzK galaxies. Our pBzK galaxies have an average photometric redshift of zp ~ 1.4, in approximate agreement with the limited spectroscopic information currently available. The stacked K s image will be made publicly available from IRSA. Based on data collected at the Subaru Telescope, which is operated by the National

  19. COSBO: The MAMBO 1.2 Millimeter Imaging Survey of the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Bertoldi, F.; Carilli, C.; Aravena, M.; Schinnerer, E.; Voss, H.; Smolcic, V.; Jahnke, K.; Scoville, N.; Blain, A.; Menten, K. M.; Lutz, D.; Brusa, M.; Taniguchi, Y.; Capak, P.; Mobasher, B.; Lilly, S.; Thompson, D.; Aussel, H.; Kreysa, E.; Hasinger, G.; Aguirre, J.; Schlaerth, J.; Koekemoer, A.

    2007-09-01

    The inner 20×20 arcmin2 of the COSMOS field was imaged at 250 GHz (1.2 mm) to an rms noise level of ~1 mJy per 11" beam using the Max-Planck Millimeter Bolometer Array (MAMBO-2) at the IRAM 30 m telescope. We detect 15 sources at significance between 4 and 7 σ, 11 of which are also detected at 1.4 GHz with the VLA with a flux density >24 μJy (3 σ). We identify 12 more lower significance mm sources based on their association with faint radio sources. We present the multifrequency identifications of the MAMBO sources, including VLA radio flux densities, optical and near-infrared identifications, as well as the XMM-Newton X-ray detection for two of the mm sources. We compare radio and optical photometric redshifts and briefly describe the host galaxy morphologies. The colors of the identified optical counterparts suggest most of them to be high-redshift (z~2-3) star-forming galaxies. At least three sources appear lensed by a foreground galaxy. We highlight some MAMBO sources that do not show obvious radio counterparts. These sources could be dusty starburst galaxies at redshifts >3.5. The 250 GHz source areal density in the COSMOS field is comparable to that seen in other deep mm fields. Based on observations with the 30 m telescope of the Institute for Radioastronomy at Millimeter Wavelengths (IRAM), which is funded by the German Max-Planck-Society, the French CNRS, and the Spanish National Geographical Institute. Also based on observations with the Very Large Arrray of the National Radio Astronomy Observatory, which is a facility of the National Science Foundation, operated under cooperative agreement by Associated University Inc. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under NASA contract NAS 5-26555 also based on data collected at the Subaru Telescope, which is operated by the National

  20. Late-stage galaxy mergers in cosmos to z ∼ 1

    SciTech Connect

    Lackner, C. N.; Silverman, J. D.; Salvato, M.; Kampczyk, P.; Kartaltepe, J. S.; Sanders, D.; Lee, N.; Capak, P.; Scoville, N.; Civano, F.; Halliday, C.; Ilbert, O.; Le Fèvre, O.; Jahnke, K.; Koekemoer, A. M.; Liu, C. T.; Sheth, K.

    2014-12-01

    The role of major mergers in galaxy and black hole formation is not well-constrained. To help address this, we develop an automated method to identify late-stage galaxy mergers before coalescence of the galactic cores. The resulting sample of mergers is distinct from those obtained using pair-finding and morphological indicators. Our method relies on median-filtering of high-resolution images to distinguish two concentrated galaxy nuclei at small separations. This method does not rely on low surface brightness features to identify mergers, and is therefore reliable to high redshift. Using mock images, we derive statistical contamination and incompleteness corrections for the fraction of late-stage mergers. The mock images show that our method returns an uncontaminated (<10%) sample of mergers with projected separations between 2.2 and 8 kpc out to z∼1. We apply our new method to a magnitude-limited (m{sub FW} {sub 814}<23) sample of 44,164 galaxies from the COSMOS HST/ACS catalog. Using a mass-complete sample with logM{sub ∗}/M{sub ⊙}>10.6 and 0.25COSMOS, we find that the star formation rates and X-ray selected active galactic nucleus (AGN) activity in likely late-stage mergers are higher by factors of ∼2 relative to those of a control sample. Combining our sample with more

  1. Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Fieldsstarf

    NASA Astrophysics Data System (ADS)

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.

    2013-11-01

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute2, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48^{+0.13}_{-0.09}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which

  2. Multi-wavelength seds of Herschel-selected galaxies in the cosmos field

    SciTech Connect

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Hung, Chao-Ling; Scoville, N. Z.; Capak, Peter; Bock, J.; Le Floc'h, Emeric; Aussel, Hervé; Ilbert, Olivier; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Oliver, S. J.; Salvato, Mara; Aravena, M.; Berta, S.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from

  3. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    SciTech Connect

    Civano, F.; Elvis, M.; Lanzuisi, G.; Hao, H.; Aldcroft, T.; Jahnke, K.; Zamorani, G.; Comastri, A.; Bolzonella, M.; Blecha, L.; Loeb, A.; Bongiorno, A.; Brusa, M.; Leauthaud, A.; Mainieri, V.; Piconcelli, E.; Salvato, M.; Scoville, N.; Trump, J.; Vignali, C.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.

  4. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa

    PubMed Central

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa. PMID:25587332

  5. Morphological and biochemical examination of Cosmos 1887 rat heart tissue. Part 1: Ultrastructure

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Popova, I. A.; Kato, K.; Stevenson, J.; Miquel, J.; Sapp, W.

    1990-01-01

    Morphological changes were observed in the left ventricle of rat heart tissue from animals flown on the Cosmos 1887 biosatellite for 12.5 days. These tissues were compared to the synchronous and vivarium control hearts. While many normal myofibrils were observed, others exhibited ultrastructural alterations, i.e., damaged and irregular-shaped mitochondria and generalized myofibrillar edema. Analysis of variance (ANOVA) of the volume density data revealed a statistically significant increase in glycogen and a significant decrease in mitochondria compared to the synchronous and vivarium controls. Point counting indicated an increase in lipid and myeloid bodies and a decrease in microtubules, but these changes were not statistically significant. In addition, the flight animals exhibited some patchy loss of protofibrils (actin and myosin filaments) and some abnormal supercontracted myofibrils that were not seen in the controls. This study was undertaken to gain insight into the mechanistic aspects of cardiac changes in both animals and human beings as a consequence of space travel. Cardiac hypotrophy and fluid shifts have been observed after actual or simulated weightlessness and raise concerns about the functioning of the heart and circulatory system during and after travel in space.

  6. Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Simmons, D. J.; Grynpas, M. D.; Rosenberg, G. D.

    1990-01-01

    We have studied the chemistry, hydroxyapatite crystal size, and maturational changes in bone and dentin from rats exposed to microgravity for 12 days in a Soviet biosatellite (Cosmos 1887). Bone ash was reduced in vertebrae (L5) but not in the non-weight-bearing calvaria or mandibles. All tissues had a relatively normal percentage composition of Ca, P, and Mg. Nevertheless, flight rat calvaria and vertebral tissues tended to exhibit lower Ca/P and higher Ca/Mg ratios that any of their weight-matched controls groups, and gradient density analysis (calvaria) indicated a strong shift to the fractions lower specific gravity that was commensurate with impaired rates of matrix-mineral maturation. X-ray diffraction data were confirmatory. Bone hydroxyapatite crystal growth in the mandibles of flight rats was preferentially altered in such a way as to reduce their size (C-axis dimension). But in the mandibular diastemal region devoid of muscle attachments, flight rat bone and dentin were normal with respect to the Ca, P, Mg, and Zn concentrations and Ca/P and Ca/Mg ratios of age-matched controls. These observations affirm the concept that while microgravity most adversely affects the maturation of newly formed matrix and mineral moieties in weight-bearing bone, such effects occur throughout the skeleton.

  7. Frozen storage stability of beef patties incorporated with extracts from ulam raja leaves (Cosmos caudatus).

    PubMed

    Reihani, S F S; Tan, Thuan-Chew; Huda, Nurul; Easa, Azhar Mat

    2014-07-15

    In Malaysia, fresh ulam raja leaves (Cosmos caudatus) are eaten raw with rice. In this study, beef patties incorporated with extracts of ulam raja (UREX) and commercial green tea extract (GTE) added individually at 200 and 500 mg/kg were stored at -18°C for up to 10 weeks. Lipid oxidation, cooking yield, physicochemical properties, textural properties, proximate composition and sensory characteristics of the beef patties were compared between those incorporated with UREX, GTE and the control (pure beef patty). Incorporation of UREX or GTE at 500 mg/kg into beef patties reduced the extent of lipid oxidation significantly (P<0.05). UREX showed a strong lipid oxidation inhibitory effect, comparable with GTE. In addition, a significant improvement (P<0.05) in cooking yield and textural properties was also recorded. However, incorporation of UREX and GTE into beef patties showed no significant influence (P>0.05) on the colour, pH, proximate composition and overall sensory acceptability of the patties.

  8. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann

    2016-03-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.

  9. Z-FIRE: ISM Properties of the z = 2.095 COSMOS Cluster

    NASA Astrophysics Data System (ADS)

    Kewley, Lisa J.; Yuan, Tiantian; Nanayakkara, Themiya; Kacprzak, Glenn G.; Tran, Kim-Vy H.; Glazebrook, Karl; Spitler, Lee; Cowley, Michael; Dopita, Michael; Straatman, Caroline; Labbé, Ivo; Tomczak, Adam

    2016-03-01

    We investigate the ISM properties of 13 star-forming galaxies within the z∼ 2 COSMOS cluster. We show that the cluster members have [N ii]/Hα and [O iii]/Hβ emission-line ratios similar to z∼ 2 field galaxies, yet systematically different emission-line ratios (by ∼0.17 dex) from the majority of local star-forming galaxies. We find no statistically significant difference in the [N ii]/Hα and [O iii]/Hβ line ratios or ISM pressures among the z∼ 2 cluster galaxies and field galaxies at the same redshift. We show that our cluster galaxies have significantly larger ionization parameters (by up to an order of magnitude) than local star-forming galaxies. We hypothesize that these high ionization parameters may be associated with large specific star formation rates (SFRs; i.e., a large SFR per unit stellar mass). If this hypothesis is correct, then this relationship would have important implications for the geometry and/or the mass of stars contained within individual star clusters as a function of redshift.

  10. Discover the Cosmos - Bringing Cutting Edge Science to Schools across Europe

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    2015-03-01

    The fast growing number of science data repositories is opening enormous possibilities to scientists all over the world. The emergence of citizen science projects is engaging in science discovery a large number of citizens globally. Astronomical research is now a possibility to anyone having a computer and some form of data access. This opens a very interesting and strategic possibility to engage large audiences in the making and understanding of science. On another perspective it would be only natural to imagine that soon enough data mining will be an active part of the academic path of university or even secondary schools students. The possibility is very exciting but the road not very promising. Even in the most developed nations, where all schools are equipped with modern ICT facilities the use of such possibilities is still a very rare episode. The Galileo Teacher Training Program GTTP, a legacy of IYA2009, is participating in some of the most emblematic projects funded by the European Commission and targeting modern tools, resources and methodologies for science teaching. One of this projects is Discover the Cosmos which is aiming to target this issue by empowering educators with the necessary skills to embark on this innovative path: teaching science while doing science.

  11. Potential medicinal benefits of Cosmos caudatus (Ulam Raja): A scoping review

    PubMed Central

    Cheng, Shi-Hui; Barakatun-Nisak, Mohd Yusof; Anthony, Joseph; Ismail, Amin

    2015-01-01

    Cosmos caudatus is widely used as a traditional medicine in Southeast Asia. C. caudatus has been reported as a rich source of bioactive compounds such as ascorbic acid, quercetin, and chlorogenic acid. Studies have shown that C. caudatus exhibits high anti-oxidant capacity and various medicinal properties, including anti-diabetic activity, anti-hypertensive properties, anti-inflammatory responses, bone-protective effect, and anti-microbial activity. This review aims to present the potential medicinal benefits of C. caudatus from the available scientific literature. We searched PubMed and ScienceDirect database for articles published from 1995 to January 2015. Overall, 15 articles related to C. caudatus and its medicinal benefits are reviewed. All these studies demonstrated that C. caudatus is effective, having demonstrated its anti-diabetic, anti-hypertensive, anti-inflammatory, bone-protective, anti-microbial, and anti-fungal activity in both in vitro and animal studies. None of the studies showed any negative effect of C. caudatus related to medicinal use. Currently available evidence suggests that C. caudatus has beneficial effects such as reducing blood glucose, reducing blood pressure, promoting healthy bone formation, and demonstrating anti-inflammatory and anti-microbial properties. However, human clinical trial is warranted. PMID:26929767

  12. The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos

    NASA Astrophysics Data System (ADS)

    Livio, Mario

    2000-12-01

    Advance Praise for The Accelerating Universe "The Accelerating Universe is not only an informative book about modern cosmology. It is rich storytelling and, above all, a celebration of the human mind in its quest for beauty in all things." -Alan Lightman, author of Einstein's Dreams "This is a wonderfully lucid account of the extraordinary discoveries that have made the last years a golden period for observational cosmology. But Mario Livio has not only given the reader one clear explanation after another of what astronomers are up to, he has used them to construct a provocative argument for the importance of aesthetics in the development of science and for the inseparability of science, art, and culture." -Lee Smolin, author of The Life of the Cosmos "What a pleasure to read! An exciting, simple account of the universe revealed by modern astronomy. Beautifully written, clearly presented, informed by scientific and philosophical insights." -John Bahcall, Institute for Advanced Study "A book with charm, beauty, elegance, and importance. As authoritative a journey as can be taken through modern cosmology." -Allan Sandage, Observatories of the Carnegie Institution of Washington

  13. Morphological and biochemical examination of Cosmos 1887 rat heart tissue: Part I--Ultrastructure.

    PubMed

    Philpott, D E; Popova, I A; Kato, K; Stevenson, J; Miquel, J; Sapp, W

    1990-01-01

    Morphological changes were observed in the left ventricle of rat heart tissue from animals flown on the Cosmos 1887 biosatellite for 12.5 days. These tissues were compared to the synchronous and vivarium control hearts. While many normal myofibrils were observed, others exhibited ultrastructural alterations, i.e., damaged and irregular-shaped mitochondria and generalized myofibrillar edema. Analysis of variance (ANOVA) of the volume density data revealed a statistically significant increase in glycogen and a significant decrease in mitochondria compared to the synchronous and vivarium controls. Point counting indicated an increase in lipid and myeloid bodies and a decrease in microtubules, but these changes were not statistically significant. In addition, the flight animals exhibited some patchy loss of protofibrils (actin and myosin filaments) and some abnormal supercontracted myofibrils that were not seen in the controls. This study was undertaken to gain insight into the mechanistic aspects of cardiac changes in both animals and human beings as a consequence of space travel (1). Cardiac hypotrophy and fluid shifts have been observed after actual or simulated weightlessness and raise concerns about the functioning of the heart and circulatory system during and after travel in space (2-4).

  14. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Pham, Thai

    2014-01-01

    NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability.

  15. NASA's Physics of the Cosmos and Cosmic Origins technology development programs

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Pham, Thai

    2014-07-01

    NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability.

  16. Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.

    1991-01-01

    The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.

  17. Histomorphometric and electron microscopic analyses of tibial epiphyseal plates from Cosmos 1887 rats

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Durnova, G.; Montufar-Solis, D.

    1990-01-01

    Previous studies have shown that the changes seen in the bones of growing rats exposed to microgravity are due in part to changes that occur in the growth plate during spaceflight. In this study, growth plates of rats flown aboard Cosmos 1887 (12.5-day flight plus 53.5-h recovery at 1 g) were analyzed using light and electron microscopy and computerized planimetry. The proliferative zone of flight animals was found to be significantly (P less than or equal to 0.01) larger than that of controls, while the reserve and hypertrophic/calcification zones were significantly reduced. Flight animals also had more cells per column in the proliferative zone than did controls and less in the hypertrophic/calcification region. The total number of cells, however, was significantly greater in flight animals. No difference was found in perimeter or in shape factor, but area was significantly less in flight animals. Electron microscopy showed that collagen fibrils in flight animals were wider than in controls. Since the time required for a cell to cycle through the growth plate is 2-3 days at 1 g, the results reported here represent both the effects of exposure to microgravity and the initial stages of recovery from that exposure.

  18. Experiment K-7-20: Pituitary Oxytocin and Vasopressin Content of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Keil, L.; Evans, J.; Grindeland, R. (Editor); Krasnov, I.

    1994-01-01

    Pituitary levels of oxytocin (OT) and vasopressin (VP) were measured in rats exposed to 14 days of spaceflight (FLT) as well as in ground-based controls; one group synchronously maintained in flight-type cages with similar feeding schedules (SYN), one group in vivarium cages (VIV), and a group of tail suspended (SUS) animals. Flight rats had significantly less (p less than 0.05) pituitary OT and VP (4.48 +/- 0.31 and 7.48 +/- 0.53 mg hormone / mg protein, n = 5) than either the SYN (6.66 +/- 0..59 and 10.98 + 1.00, n = 5), VIV (6.14 +/- 0.40 and 10.98 +/- 0..81, n = 5) or SUS (5.73 +/- 0.24, n = 4) control groups, respectively. The reduced levels of pituitary OT and VP are similar to measurements made on rats from the previous 12.5 day Cosmos 1887 mission and appear to be a direct result of exposure to spaceflight.

  19. MetaboLights: towards a new COSMOS of metabolomics data management.

    PubMed

    Steinbeck, Christoph; Conesa, Pablo; Haug, Kenneth; Mahendraker, Tejasvi; Williams, Mark; Maguire, Eamonn; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Salek, Reza M; Griffin, Julian L

    2012-10-01

    Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata (http://www.ebi.ac.uk/metabolights). It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6-8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.

  20. Filimonas endophytica sp. nov., isolated from surface-sterilized root of Cosmos bipinnatus.

    PubMed

    Han, Ji-Hye; Kim, Tae-Su; Joung, Yochan; Kim, Seung Bum

    2015-12-01

    A Gram-stain-negative, yellow, motile by gliding, filamentous bacterium, designated SR 2-06T, was isolated from surface-sterilized root of garden cosmos. 16S rRNA gene sequence analysis indicated that SR 2-06T was related most closely to Filimonas lacunae YT21T of the family Chitinophagaceae at a sequence similarity of 96.90 %, while levels of similarity to other related taxa were less than 93.08 %. Strain SR 2-06T exhibited similar features to F. lacunae in that it contained MK-7 as the major respiratory quinone, and iso-C15 : 1 G, iso-C15 : 0 and a summed feature consisting of C16 : 1ω6c and/or C16 : 1ω7c as the major fatty acids. However, strain SR 2-06T was distinguished from F. lacunae using a combination of physiological and biochemical properties. The cellular polar lipids were phosphatidylethanolamine, unknown aminophospholipids, unknown aminolipids, an unknown phospholipid and unidentified polar lipids. The DNA G+C content was 46.0 mol%. The phenotypic and phylogenetic evidence clearly indicates that strain SR 2-06T represents a novel species of the genus Filimonas, for which the name Filimonas endophytica sp. nov. is proposed. The type strain is SR 2-06T ( = KCTC 42060T = JCM 19844T).

  1. Influence of growth stage and season on the antioxidant constituents of Cosmos caudatus.

    PubMed

    Mediani, Ahmed; Abas, Faridah; Ping, Tan Chin; Khatib, Alfi; Lajis, Nordin H

    2012-12-01

    The impact of tropical seasons (dry and wet) and growth stages (8, 10 and 12 weeks) of Cosmos caudatus on the antioxidant activity (AA), total phenolic content (TPC) as well as the level of bioactive compounds were evaluated using high performance liquid chromatography (HPLC). The plant morphology (plant height) also showed variation between the two seasons. Samples planted from June to August (during the dry season) exhibited a remarkably higher bioactivity and height than those planted from October to December (during the wet season). The samples that were harvested at eight weeks of age during the dry season showed the highest bioactivity with values of 26.04 g GAE/100 g and 22.1 μg/ml for TPC and IC₅₀, respectively. Identification of phytochemical constituents in the C. caudatus extract was carried out by liquid chromatography coupled with diode array detection and electrospray tandem mass (LC-DAD-ESIMS/MS) technique and the confirmation of constituents was achieved by comparison with literature data and/or co-chromatography with authentic standards. Six compounds were indentified including quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, rutin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside and chlorogenic acid. Their concentrations showed significant variance among the 8, 10 and 12-week-old herbs during both seasons.

  2. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa.

    PubMed

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa.

  3. Potential medicinal benefits of Cosmos caudatus (Ulam Raja): A scoping review.

    PubMed

    Cheng, Shi-Hui; Barakatun-Nisak, Mohd Yusof; Anthony, Joseph; Ismail, Amin

    2015-10-01

    Cosmos caudatus is widely used as a traditional medicine in Southeast Asia. C. caudatus has been reported as a rich source of bioactive compounds such as ascorbic acid, quercetin, and chlorogenic acid. Studies have shown that C. caudatus exhibits high anti-oxidant capacity and various medicinal properties, including anti-diabetic activity, anti-hypertensive properties, anti-inflammatory responses, bone-protective effect, and anti-microbial activity. This review aims to present the potential medicinal benefits of C. caudatus from the available scientific literature. We searched PubMed and ScienceDirect database for articles published from 1995 to January 2015. Overall, 15 articles related to C. caudatus and its medicinal benefits are reviewed. All these studies demonstrated that C. caudatus is effective, having demonstrated its anti-diabetic, anti-hypertensive, anti-inflammatory, bone-protective, anti-microbial, and anti-fungal activity in both in vitro and animal studies. None of the studies showed any negative effect of C. caudatus related to medicinal use. Currently available evidence suggests that C. caudatus has beneficial effects such as reducing blood glucose, reducing blood pressure, promoting healthy bone formation, and demonstrating anti-inflammatory and anti-microbial properties. However, human clinical trial is warranted.

  4. HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY

    SciTech Connect

    Hao Heng; Elvis, Martin; Civano, Francesca; Lanzuisi, Giorgio; Brusa, Marcella; Bongiorno, Angela; Lusso, Elisabeta; Zamorani, Gianni; Comastri, Andrea; Impey, Chris D.; Trump, Jonathan R.; Koekemoer, Anton M.; Le Floc'h, Emeric; Sanders, David; Salvato, Mara; Vignali, Cristian E-mail: elvis@cfa.harvard.ed

    2010-11-20

    We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energy distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.

  5. Neutron influences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.; Rshtuni, Sh. B.; Benton, E, V.; Frank, A. L.

    1995-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (E(sub n) less than or equal to 0.2 eV), resonance (0.2 eV less than E(sub n) less than 1.0 MeV) and fast (E(sub n) greater than or equal to 1.0 MeV) neutrons. The first two groups were measured with U.S. (6)LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d(exp -1) were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d(exp -1). Inside the spacecraft, a value of 3.5 mrem d(exp -1) was found.

  6. Neutron fluences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1992-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (En < or = 0.2 eV), resonance (0.2 eV < En < 1.0 MeV) and fast (En > or = 1.0 MeV) neutrons. The first two groups were measured with U.S. 6LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d-1 were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d-1. Inside the spacecraft, a value of 3.5 mrem d-1 was found.

  7. How Does The Universe Work? The Physics Of The Cosmos Program (PCOS)

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.

    2011-09-01

    The Physics of the Cosmos (PCOS) program incorporates cosmology, high-energy astrophysics, and fundamental physics projects aimed at addressing central questions about the nature of complex astrophysical phenomena such as black holes, neutron stars, dark energy, and gravitational waves. Its overarching theme is, How does the Universe work? PCOS includes a suite of operating (Chandra, Fermi, Planck, XMM-Newton, INTEGRAL) and future missions across the electromagnetic spectrum and beyond, which are in concept development and/or formulation. The PCOS program directly supports development of intermediate TRL (4-6) technology relevant to future missions through the Strategic Astrophysics Technology (SAT) program, as well as data analysis, theory, and experimental astrophysics via other R&A avenues (e.g., ADAP, ATP). The Einstein Fellowship is a vital and vibrant PCOS component funded by the program. PCOS receives community input via its Program Analysis Group, the PhysPAG (www.pcos.gsfc.nasa.gov/physpag.php), whose membership and meetings are open to the community at large. In this poster, we describe the detailed science questions addressed within PCOS, with special emphasis on future opportunities. Details about the PhysPAG operations and functions will be provided, as well as an update on future meetings.

  8. Stellar Cartography: A Three-Dimensional View of the Magellanic System using Spitzer

    NASA Astrophysics Data System (ADS)

    Madore, Barry

    We will use the data obtained by the Spitzer SAGE-LMC, SAGE-SMC and SAGE-Var programs to measure the three-dimensional structure of the Magellanic System using Cepheids. Cepheids have been demonstrated to have a narrow period-luminosity relation in the mid-infrared, such that mean magnitudes, and hence distances, can be obtained with high precision. In the Magellanic System we will be able to obtain distances with precisions of 5% to individual Cepheids. Using around 5000 Cepheids --- a factor of 50 more than our previous works --- and with newly discovered Cepheids in the Magellanic Bridge, we will be able to study the 3D structure of the System at an unprecedented fidelity. Understanding the structure of the Magellanic System is key to understanding its evolutionary history. A more precise three dimensional representation of the system will enable us to distinguish between different theoretical models, such as those in which the Clouds experience a close pass and those in which they experience a merger event. We will create templates light curves to phase the mid--IR Cepheid observations with the publicly available optical OGLE light curves to determine accurate mean magnitudes for these stars. We will also create a deep field using the newly released SAGE—Var data in order to measure the old, RR Lyrae population for comparison with the young, Cepheid population. This project is complementary to the on-going Spitzer Exploration Science SMHASH program, which is studying the structure of the Milky Way using mid-infrared observations of RR Lyrae. We will be able to use the results from this work in concert with SMHASH to produce a 3D representation of the MW-LMC-SMC system, bypassing the systematics of using multiple telescopes. The project lays an excellent foundation for future JWST and WFIRST projects studying the evolution of dwarf galaxy systems. The in--depth study of the well resolved, interacting LMC-SMC pair that we will perform will be used as an

  9. A Spitzer-Selected Galaxy Cluster at z=1.62

    NASA Astrophysics Data System (ADS)

    Papovich, Casey J.; Momcheva, I.; Willmer, C. N. A.; Finkelstein, K. D.; Finkelstein, S. L.; Brodwin, M.; Dunlop, J. S.; Farrah, D.; Khan, S.; Lotz, J.; McCarthy, P.; McLure, R. J.; Rieke, M.; Rudnick, G.; Sivanadam, S.; Tran, K.

    2010-01-01

    We report the discovery of a galaxy cluster at z=1.62, located in the XMM-LSS field. This cluster candidate was originally selected as an overdensity of sources with red Spitzer/IRAC colors, satisfying [3.6] - [4.5] > -0.1 AB mag, within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) survey covering 9 square degrees in this field. Photometric redshifts derived from Subaru XMM Deep Survey (BViz-bands), UKIRT Infrared Deep Survey--Ultra-Deep Survey (UKIDSS-UDS, JK-bands), and from the Spitzer Public UDS survey (SpUDS, 3.6-8.0 micron) for the galaxies in and around this cluster show that this structure corresponds to a galaxy surface density of sources at z=1.6 that is >20-sigma times the mean surface density at this redshift. We obtained spectroscopic observations of galaxies in cluster using Magellan/IMACS, and measure redshifts for six galaxies in the range z=1.62-1.65, all within 1.4 arcmin of the cluster center, which corresponds to a radius of 0.5 h-1 Mpc. We measured spectroscopic redshifts for three additional sources with z=1.61-1.63 within 1.4-2.8 arcmin (0.5-1 h-1 Mpc). The cluster appears to be dominated by red galaxies, with (z - J) > 1.7 mag. The photometric redshift distributions for the brightest red galaxies are centrally peaked at z=1.62, coincident with the spectroscopically confirmed galaxies. The J versus z-J color magnitude diagram of the galaxies in this cluster shows a strong red-sequence, which includes the dominant population of red galaxies. The intercept of the red-sequence is consistent with a stellar population formed at z=3 with passive evolution, implying that most of the stellar mass in this cluster formed at that epoch. We will summarize our plans to continue the study of this cluster, and our continuing survey to identify and study other high-redshift clusters. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  10. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES

    SciTech Connect

    Pontoppidan, Klaus M.; Blake, Geoffrey A.; Meijerink, Rowin; Salyk, Colette; Carr, John S.; Najita, Joan

    2010-09-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 {mu}m molecular emission from a large sample of protoplanetary disks, including lines from H{sub 2}O, OH, C{sub 2}H{sub 2}, HCN, and CO{sub 2}. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star-forming regions, including Ophiuchus, Lupus, and Chamaeleon. Spectra showing strong emission lines are used to identify which lines are the best tracers of various physical and chemical conditions within the disks. In total, we identify 22 T Tauri stars with strong mid-infrared H{sub 2}O emission. Integrated water line luminosities, where water vapor is detected, range from 5 x 10{sup -4} to 9 x 10{sup -3} L{sub sun}, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the five transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H{sub 2}), but the sample is too small to conclude whether this is a general property of transitional disks. We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1%-2% line-to-continuum ratios, in the mid-infrared, while more than half of disks around late-type stars (M-G) show sufficiently intense water emission to be detected by Spitzer, with a detection rate approaching 2/3 for disks around K stars. Some Herbig Ae/Be stars show tentative H{sub 2}O/OH emission features beyond 20 {mu}m at the 1%-2% level, however, and one of them shows CO{sub 2} in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks are due to a

  11. Spectacular Spitzer images of the Trifid Nebula: Protostars in a young, massive-star-forming region

    NASA Astrophysics Data System (ADS)

    Rho, J.; Reach, W. T.; Lefloch, B.; Fazio, G.

    Spitzer IRAC and MIPS images of the Trifid Nebula (M20; see Figure 1) reveal its spectacular appearance in infrared light, demonstrating its special evolutionary stage: recently-formed massive protostars and numerous young stars, including a single O star that illuminates the surrounding molecular cloud from which it formed and unveiling large-scale, filamentary dark clouds. The hot dust grains show contrasting infrared colors in shells, arcs, bow-shocks and dark cores. Multiple protostars, previously defined as Class 0 from dust continuum and molecular outflow observations, are revealed in the infrared within the cold dust continuum peaks TC3 and TC4. The cold dust continuum cores of TC1 and TC2 contain only one protostar each; the newly-discovered infrared protostar in TC2 is the driving source of the HH399 jet. The Spitzer color-color diagram allowed us to identify ~150 young stellar objects (YSO) and classify them into different evolutionary stages, and also revealed a new class of YSO which are bright at 24μm but with spectral energy distribution peaking at 5-8μm; we name these sources "Hot excess" YSO. Despite of expectation that Class 0 sources would be "starless" cores, the Spitzer images, with unprecedented sensitivity, uncover mid-infrared emission from these Class 0 protostars. The mid-infrared detections of Class 0 protostars show that the emission escapes the dense, cold envelope of young protostars; the mid-infrared emission cannot arise from the same location as the mm-wave emission, and instead must arise from a much smaller region with less intervening extinction to the central accretion. The presence of multiple protostars within the cold cores of Class 0 objects implies that clustering occurs at this early stage of star formation. The most massive stars are located at the center of the cluster and are formed simultaneously with low-mass stars. The angular and mass distributions of protostars within the dust cores imply that these early

  12. Chandra and Spitzer Observations of the NW Filament of SN 1006

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Winkler, P. F.; Katsuda, S.; Blair, W. P.; Borkowski, K. J.; Ghavamian, P.; Long, K. S.; Petre, R.; Raymond, J. C.; Reynolds, S. P.

    2013-01-01

    We present results from Chandra and Spitzer observations of the NW region of SN1006. Deep X-ray observations from Chandra (companion paper by Winkler et al.) allow us to study the variation in shock velocity around the shell and elucidate the physics of diffusive shock acceleration, and both non-thermal and thermal X-ray emission, in unprecedented detail. Along the thermally-dominated NW limb, X-ray proper motions over an 11-yr baseline indicate a shock velocity of about 3000 km/s, consistent with measurements from optical studies. But even in the NW we find a few regions dominated by non-thermal emission, and proper motions of these small filaments show a velocity of 5000 km/s, virtually identical to that seen along the synchrotron-dominated NE limb. Higher shock speeds in the non-thermal regions than in thermal ones are consistent with the theoretical view of diffusive shock acceleration that faster shocks can enhance synchrotron X-ray emission. The existence of thermal and non-thermal regions, with strongly contrasting X-ray spectra and proper motions, in close proximity to one another indicates that interstellar density inhomogeneities exist on pc scales, even at the location of SN 1006, 550 pc above the Galactic plane. Spitzer IR imaging and spectroscopic observations also indicate an inhomogeneous ISM surrounding SN1006, where the shock has recently encountered a denser region to the NW. The 24 micron image from MIPS clearly shows faint filamentary emission just interior to the NW Balmer filaments that delineate the present position of the expanding shock. This is the first detection of IR radiation from SN 1006 and clearly indicates an origin in shock-heated interstellar dust grains. The spectrum confirms a warm dust origin for the IR emission, and a model of the dust spectrum is consistent with the pre-shock density of 1 cm^-3 derived from optical and X-ray studies. The dust-to-gas mass ratio in the pre-shock ambient medium is a factor of several lower than

  13. Spitzer mid-infrared point sources in the fields of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Bonanos, A. Z.

    2016-03-01

    Aims: To complement the study of transient phenomena and to assist subsequent observations in the mid-infrared, we extract point source photometry from archival mosaics of nearby galaxies with high star formation rates within 4 Mpc. Methods: Point spread function photometry was performed on sources detected in both Spitzer IRAC 3.6 μm and 4.5 μm bands at greater than 3σ above background. These data were then supplemented by aperture photometry in the IRAC 5.8 μm and 8.0 μm bands conducted at the positions of the shorter wavelength sources. For sources with no detected object in the longer wavelengths, we estimated magnitude limits based on the local sky background. Results: We present Spitzer IRAC mid-infrared point source catalogs for mosaics covering the fields of the nearby (≲4 Mpc) galaxies NGC 55, NGC 253, NGC 2366, NGC 4214, and NGC 5253. We detect a total of 20159 sources in these five fields. The individual galaxy point source breakdown is the following: NGC 55, 8746 sources; NGC 253, 9001 sources; NGC 2366, 505 sources; NGC 4214, 1185 sources; NGC 5253, 722 sources. The completeness limits of the full catalog vary with bandpass and were found to be m3.6 = 18.0, m4.5 = 17.5, m5.8 = 17.0, and m8.0 = 16.5 mag. For all galaxies, this corresponds to detection of point sources brighter than M3.6 = -10. These catalogs can be used as a reference for stellar population investigations, individual stellar object studies, and in planning future mid-infrared observations with the James Webb Space Telescope. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.Full Tables 2-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A121

  14. Morphological parameters of a Spitzer survey of stellar structure in galaxies

    SciTech Connect

    Holwerda, B. W.; Muñoz-Mateos, J.-C.; Sheth, K.; Kim, T.; Meidt, S.; Mizusawa, T.; Hinz, J. L.; Zaritsky, D.; Regan, M. W.; Gil de Paz, A.; Menéndez-Delmestre, K.; Seibert, M.; Ho, L. C.; Gadotti, D. A.; Erroz-Ferrer, S. E-mail: benne.holwerda@gmail.com [Instituto de Astrofísica de Canarias, Vía Láctea s and others

    2014-01-20

    The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), asymmetry (A), smoothness (S), the Gini index (G), the relative contribution of the brightest pixels to the second-order moment of the flux (M {sub 20}), ellipticity (E), and the Gini index of the second-order moment (G{sub M} ) have all been applied to morphologically classify galaxies at various wavelengths. Here, we present a catalog of these parameters for the Spitzer Survey of stellar structure in Galaxies, a volume-limited, near-infrared (NIR) imaging survey of nearby galaxies using the 3.6 and 4.5 μm channels of the Infrared Array Camera on board the Spitzer Space Telescope. Our goal is to provide a reference catalog of NIR quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies—those typically found on the Hubble tuning fork—lie in this parameter space and show that there is a tight relation between concentration (C {sub 82}) and M {sub 20} for normal galaxies. M {sub 20} can be used to classify galaxies into earlier and later types (i.e., to separate spirals from irregulars). Several criteria using these parameters exist to select systems with a disturbed morphology, i.e., those that appear to be undergoing a tidal interaction. We examine the applicability of these criteria to Spitzer NIR imaging. We find that four relations, based on the parameters A and S, G and M {sub 20}, G{sub M} , C, and M {sub 20}, respectively, select outliers in morphological parameter space, but each selects different subsets of galaxies. Two criteria (G{sub M} > 0.6, G > –0.115 × M {sub 20} + 0.384) seem most appropriate to identify possible mergers and the merger fraction in NIR surveys. We find no strong relation between lopsidedness and most of these morphological parameters, except for a weak dependence of lopsidedness on

  15. The Potential Of JWST Mid-infrared Instrument (MIRI) Followup Of The Spitzer Sage Survey Of The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret; MIRI Science Team; SAGE Team

    2009-01-01

    The recycling of matter between the interstellar medium (ISM) and stars are key evolutionary drivers of a galaxy's baryonic matter. The Spitzer and JWST/MIRI wavelengths provide a sensitive probe of circumstellar and interstellar dust and hence, allow us to study the physical processes of the ISM, the formation of new stars and the injection of mass by evolved stars and their relationships on the galaxy-wide scale. We have performed a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC, 7x7 degrees), using the IRAC (3.6, 4.5, 5.8 and 8 microns) and MIPS (24, 70, and 160 microns) instruments on board the Spitzer Space Telescope (Spitzer) in order to survey the agents of a galaxy's evolution (SAGE): the ISM, young stellar objects (YSOs) and dusty evolved stars (Meixner et al. 2006). Initial results from SAGE have revealed >1000 new YSOs (Whitney et al. 2008), a detailed map of the dust and ISM mass (Bernard et al. 2008) and estimates of the dusty mass-loss return (Srinivsan et al., submitted) of the 30,000 dusty evolved stars (Blum et al. 2006). Here we describe how the powerful capabilities of the JWST MIRI can be used to followup these new discoveries of SAGE-LMC and also how SAGE-like studies can be extended to nearby galaxies. The SAGE Project is supported by NASA/Spitzer grant 1275598 and MIRI science team work is supported by NASA NAG5-12595.

  16. Modification of classical Spitzer ion-electron energy transfer rate for large ratios of ion to electron temperatures

    NASA Astrophysics Data System (ADS)

    Rider, Todd H.; Catto, Peter J.

    1995-06-01

    Corrections to the classical Spitzer heat transfer rate between ions and electrons are calculated for the case when the ion temperature Ti is significantly higher than the electron temperature Te. It is found that slow electrons are partially depleted by their interactions with the ions, resulting in a decrease in the heat transfer in comparison with the Spitzer rate, which assumes perfectly Maxwellian electrons. The heat transfer steadily decreases from the classical value as Ti/Te increases; for Ti/Te values of several hundred, the heat transfer rate drops to around 60%-80% of the Spitzer result. A useful expression for the heat transfer correction factor in the case when all of the ion species are at the temperature Ti is found to be Pie/(Pie)Spitzer ≊[1+(me/mi)(Ti/Te)]3/2 exp{-[3.5∑i (Z2ini/ne)(me/mi) (Ti/Te)]2/3}. This expression is quite accurate for values of ∑i (Z2ini/ne)(mp/mi)(Ti/Te) less than about 50 (where mp is the proton mass), although it underestimates the heat transfer rate for larger values of Ti/Te, and one must resort to the more accurate but more complex analytical results derived in the paper. In the event that the ion distribution is non-Maxwellian, Ti in the correction factor should be replaced by 2/3, where is the mean ion energy.

  17. Observations of Blazar S5 0716+714 With Ground Based Telescopes and the Spitzer Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Adkins, Jeffery; Lacy, M.; Morton, A.; Travagli, T.; Mulaveesala, M.; Santiago, J.; Rapp, S.; Stefaniak, L.

    2006-12-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2007 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the Global Telescope Network (GTN). One of our targets, S5 0716+714, was observed with the Spitzer Space Telescope MIPS and IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. This data were used to construct light curves over the course of the observation and the Spectral Energy Distribution (SED) of the target using all the sources. These data were compared to models of the dust emission from the torus, synchrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength. Results were compared to observations of 4C 29.45 made last year. This research was supported by the Spitzer Science Center, the National Optical Astronomy Observatory, and the California Department of Education's Specialized Secondary Program.

  18. Spitzer or neoclassical resistivity: A comparison between measured and model poloidal field profiles on PBX-M

    SciTech Connect

    Kaye, S.M.; Levinton, F.M.; Hatcher, R.; Kaita, R.; Kessel, C.; LeBlanc, B.; McCune, D.C.; Paul, S. )

    1992-03-01

    Direct measurements of the radial profile of the magnetic field line pitch on PBX-M (Phys. Fluids B {bold 2}, 1271 (1990)), coupled with model predictions of these profiles allow a critical comparison with the Spitzer and neoclassical models of plasma parallel resistivity. The measurements of the magnetic field line pitch are made by motional Stark effect polarimetry, while the model profiles are determined by solving the poloidal field diffusion equation in the TRANSP transport code using measured plasma profiles and assuming either Spitzer or neoclassical resistivity. The measured field pitch profiles were available for only seven cases, and the model profiles were distinguishable from each other in only three of those cases due to finite resistive diffusion times. The data in two of these three were best matched by the Spitzer model, especially in the inner-half of the plasma. Portions of the measured pitch profiles for these two cases and the full profiles for other cases, however, departed significantly from both the Spitzer and neoclassical models, indicating a plasma resistivity profile different from either model.

  19. The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kemper, F.; Woods, Paul M.; Antoniou, V.; Bernard, J.-P.; Blum, R. D.; Boyer, M. L.; Chan, J.; Chen, C.-H. R.; Cohen, M.; Dijkstra, C.; Engelbracht, C.; Galametz, M.; Galliano, F.; Gielen, C.; Gordon, Karl D.; Gorjian, V.; Harris, J.; Hony, S.; Hora, J. L.; Indebetouw, R.; Jones, O.; Kawamura, A.; Lagadec, E.; Lawton, B.; Leisenring, J. M.; Madden, S. C.; Marengo, M.; Matsuura, M.; McDonald, I.; McGuire, C.; Meixner, M.; Mulia, A. J.; O'Halloran, B.; Oliveira, J. M.; Paladini, R.; Paradis, D.; Reach, W. T.; Rubin, D.; Sandstrom, K.; Sargent, B. A.; Sewilo, M.; Shiao, B.; Sloan, G. C.; Speck, A. K.; Srinivasan, S.; Szczerba, R.; Tielens, A. G. G. M.; van Aarle, E.; Van Dyk, S. D.; van Loon, J. Th.; Van Winckel, H.; Vijh, Uma P.; Volk, K.; Whitney, B. A.; Wilkins, A. N.; Zijlstra, A. A.

    2010-06-01

    The SAGE-Spec Spitzer Legacy program is a spectroscopic follow-up to the SAGE-LMC photometric survey of the Large Magellanic Cloud carried out with the Spitzer Space Telescope. We present an overview of SAGE-Spec and some of its first results. The SAGE-Spec program aims to study the life cycle of gas and dust in the Large Magellanic Cloud and to provide information essential to the classification of the point sources observed in the earlier SAGE-LMC photometric survey. We acquired 224.6 h of observations using the infrared spectrograph and the spectral energy distribution (SED) mode of the Multiband Imaging Photometer for Spitzer. The SAGE-Spec data, along with archival Spitzer spectroscopy of objects in the Large Magellanic Cloud, are reduced and delivered to the community. We discuss the observing strategy, the specific data-reduction pipelines applied, and the dissemination of data products to the scientific community. Initial science results include the first detection of an extragalactic 21 μm feature toward an evolved star and elucidation of the nature of disks around RV Tauri stars in the Large Magellanic Cloud. Toward some young stars, ice features are observed in absorption. We also serendipitously observed a background quasar, at a redshift of z ≈ 0.14, which appears to be hostless.

  20. Transits and Eclipses of the Best of the Best: 23 Hot Jupiters for Atmospheric Characterization by Spitzer, Hubble, and JWST

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Benneke, Bjoern; Fraine, Jonathan; Kataria, Tiffany; Knutson, Heather; Lewis, Nikole; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter; Sheppard, Kyle; Sing, David; Stevenson, Kevin; Todorov, Kamen; Wakeford, Hannah; Wilkins, Ashlee; Burrows, Adam

    2016-08-01

    We propose a program of Spitzer transit and secondary eclipse observations for 23 of the 'best of the best' hot giant planets (R > 0.8 Jupiters). We focus on planets that are already observed by HST, proposed to be observed by HST, or candiates for JWST Early Release Science observations. Our eclipse observations will measure day side temperatures that are needed for HST spectroscopy, and temperatures of the hottest and most favorable planets for JWST spectroscopy and possible phase curve observations. Several of our planets are extremely inflated, with atmospheric scale heights exceeding a thousand kilometers, yielding large atmospheric signatures during transit. Our transit photometry has the potential to detect molecular absorption by comparing transit radii and eclipse depths in the two Spitzer bands. Moreover, our precise transit depths will help to evaluate the magnitude of continuous opacity in the exoplanetary atmospheres, breaking the degeneracy between composition and cloud opacity, as recently demonstrated by Sing et al. We will thereby find the hottest and clearest giant exoplanetary atmospheres, with the largest molecular signatures, for HST and JWST spectroscopy. This will complete the Spitzer hot Jupiter legacy by providing a uniform set of transit and eclipse observations for the most favorable members of the intriguing population of close-in highly-irradiated giant planets. This unique Spitzer data set will guide efforts toward detailed atmospheric characterization of individual hot Jupiters for years to come.

  1. Nova V2362 Cygni (Nova Cygni 2006): Spitzer, Swift, and Ground-Based Spectral Evolution

    NASA Technical Reports Server (NTRS)

    Lynch, David K.; Venturini, Catherine C.; Mazuk, S.; Woodward, Charles; Gehrz, Robert; Rayner, John; Helton, L.A.; Ness, Jan-Uwe; Starrfield, Sumner; Rudy, Richard J.; Russell, Ray W.; Osborne, Julian P.; Page, Kim; Pearson, Richard; Wagner, R. Mark; Puetter, Richard C.; Perry, Raleigh B.; Schwarz, Greg; Vanlandingham, Karen; Black, John; Bode, Michael; Evans, Aneurin; Geballe, Thomas; Greenhouse, Matthew; Hauschildt, Peter

    2008-01-01

    Nova V2362 Cygni has undergone a number of very unusual changes. Ground-based spectroscopy initially revealed a normal sequence of events: the object faded and its near-infrared emission lines gradually shifted to higher excitation conditions until about day 100 when the optical fading reversed and the object slowly brightened. This was accompanied by a rise in the Swift X-ray telescope flux and a sudden shift in excitation of the visible and IR spectrum back to low levels. The new lower excitation spectrum revealed broad line widths and many P-Cygni profiles, all indicative of the ejection of a second shell. Eventually, dust formed, the X-ray brightness -- apparently unaffected by dust formation -- peaked and then declined, and the object faded at all wavelengths. The Spitzer dust spectra revealed a number of solid-state emission features that, at this time, are not identified.

  2. Spitzer Space Telescope: Unprecedented Efficiency and Excellent Science on a Limited Budget

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, L. J.

    2012-09-01

    The Spitzer Space Telescope completed nearly six years of cryogenic operations in 2009 and in August 2011 began the third year of ‘warm’ science observations. Over 50,000 hours of science have been executed in the first 8 years of the mission. Nearly 40% of the cryogenic mission project budget was devoted to data analysis funding provided directly to the astronomical community. For the warm mission, the observatory was effectively reinvented as a new, scientifically productive mission operating at a substantially lower cost. In this paper we discuss how the design of the science operations, observing modes and observing program for the cryogenic mission led to very high observing efficiencies and maximized the observatory time devoted to science. The philosophy of maximizing science output per dollar has continued in the warm mission. The transition to warm operations has maintained an outstanding science program while reducing the project budget by nearly 70% from the cryogenic mission level.

  3. Spitzer Spectroscopy of Low-Mass Dwarfs - Clouds and Chemistry at the Bottom of the IMF

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2006-01-01

    Brown dwarfs and low-mass stars show evidence of complicated atmospheres, including a variety of molecular species and clouds. Infrared observations are one of the best probes of the physics of these objects, but up until recently these observations have been limited in studies from ground-based telescopes by atmospheric absorption and insufficient sensitivity. With the launch of the Spitzer Space Telescope with its Infrared Spectrograph (IRS) instrument we now have the capability to undertake a systematic study of the atmospheric structure and chemistry in these cool objects. The IRS Dim Suns team has compiled spectra from objects ranging from M1 dwarfs with effective temperatures 3,800K of down to T8 dwarfs with effective temperatures of 700. This talk will present these results and discuss their implications for our understanding of cool dwarf atmospheric physics and structure.

  4. VizieR Online Data Catalog: Spitzer/IRAC observations of SMC Cepheids (Scowcroft+, 2016)

    NASA Astrophysics Data System (ADS)

    Scowcroft, V.; Freedman, W. L.; Madore, B. F.; Monson, A.; Persson, S. E.; Rich, J.; Seibert, M.; Rigby, J. R.

    2016-03-01

    For the present survey we selected 92 Harvard variable Cepheids spread over the SMC. These objects have all been extensively studied over the years; archival optical and/or near-IR data is available for all of them and the vast majority were measured by OGLE (Udalski et al. 1992AcA....42..253U, 1997AcA....47..319U; Soszynski et al. 2010, J/AcA/60/17). Ninety fundamental mode SMC type I (and two type II) Cepheids were observed with Spitzer between 2010 August and 2012 January (Program ID 70010, P.I. Madore). Each light curve has 12 epochs, each spaced by approximately P/12 days, where P is the Cepheid's pulsation period. (2 data files).

  5. High-beta extended MHD simulations of stellarators with Spitzer resistivity

    NASA Astrophysics Data System (ADS)

    Bechtel, Torrin

    2015-11-01

    The nonlinear, extended MHD code NIMROD is used to study high-beta, 3D magnetic topology evolution of a toroidal stellarator. The configurations under investigation derive from the geometry of the Compact Toroidal Hybrid (CTH) experiment. However, the vacuum rotational transform profile is artificially raised by modifying applied magnetic fields in an effort to examine the sensitivity of low order rational surfaces and/or magnetic islands. Finite beta plasmas are created using a volumetric heating source and temperature dependent anisotropic heat conduction and resistivity. Flux surface dependent temperature and density profiles are used for the initial condition so that Spitzer resistivity can be applied. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under grant no. DE-FG02-99ER54546.

  6. SPITZER OBSERVATIONS OF WHITE DWARFS: THE MISSING PLANETARY DEBRIS AROUND DZ STARS

    SciTech Connect

    Xu, S.; Jura, M. E-mail: jura@astro.ucla.edu

    2012-01-20

    We report a Spitzer/Infrared Array Camera search for infrared excesses around white dwarfs, including 14 newly observed targets and 16 unpublished archived stars. We find a substantial infrared excess around two warm white dwarfs-J220934.84+122336.5 and WD 0843+516, the latter apparently being the hottest white dwarf known to display a close-in dust disk. Extending previous studies, we find that the fraction of white dwarfs with dust disks increases as the star's temperature increases; for stars cooler than 10,000 K, even the most heavily polluted ones do not have {approx}1000 K dust. There is tentative evidence that the dust disk occurrence is correlated with the volatility of the accreted material. In the Appendix, we modify a previous analysis to clarify how Poynting-Robertson drag might play an important role in transferring materials from a dust disk into a white dwarf's atmosphere.

  7. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli,; Blair, William P.; Ghavamian, Parviz; Long, Knox S.

    2010-01-01

    Imaging and spectral observations of the Puppis A supernova remnant (SNR) with the Spitzer Space Telescope confirm that its IR emission is dominated by the thermal continuum emission of swept-up interstellar dust which is collisionally heated by the X-ray emitting gas of the SNR. Line emission is too weak to affect the fluxes measured in broadband observations, and is poorly correlated with the IR or X-ray emission. Modeling of spectra from regions both in the SNR and in the associated ISM show that the ubiquitous polycyclic aromatic hydrocarbons (PAHs) of the ISM are destroyed within the SNR, along with nearly 25% of the mass of graphite and silicate dust grains.

  8. Swift, INTEGRAL, RXTE, and Spitzer Reveal IGR J16283-4838

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Gehrels, N.; Markwardt, C.; Barthelmy S.; Soldi, S.; Paizis, A.; Mowlavi, N.; Kennca, J. A.; Burrows, D. N.; Chester, M.

    2005-01-01

    We present the first combined study of the recently discovered source IGR J16283-4838 with Swift, INTEGRAL, and RXTE. The source, discovered by INTEGRAL on April 7, 2005, shows a highly absorbed (variable N(sub H) = 0.4-1.7 x 10(exp 23) /sq cm) and flat (Gamma approx. 1) spectrum in the Swift/XRT and RXTE/PCA data. No optical counterpart is detectable (V > 20 mag), but a possible infrared counterpart within the Swift/XRT error radius is detected in the 2MASS and Spitzer/GLIMPSE survey. The observations suggest that IGR J16283-4838 is a high mass X-ray binary containing a neutron star embedded in Compton thick material. This makes IGR J16283-4838 a member of the class of highly absorbed HMXBs, discovered by INTEGRAL.

  9. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    SciTech Connect

    Helton, L. Andrew; Vacca, William D.; Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P.; Wagner, R. Mark; Evans, Aneurin; Krautter, Joachim; Schwarz, Greg J.; Starrfield, Sumner

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  10. Spitzer and near-infrared observations of the young supernova remnant 3C397

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Jarrett, Tom

    2016-06-01

    We present Spitzer IRS, IRAC and MIPS observations and near-infrared imaging and spectroscopy of the young supernova remnant 3C397 (G41.1-0.2). Near-infrared observations were made using the Palomar 200 inch telescope. Both mid- and near-infrared spectra are dominated by Fe lines and near-infrared imaging shows bright Fe emission with a shell-like morphology. There is no molecular hydrogen line belong to the SNR and some are in background. The Ni, Ar, S and Si lines are detected using IRS and hydrogen recombination lines are detected in near-infrared. Two nickel lines at 18.24 and 10.69 micron are detected. 3C397 is ejecta-dominated, and our observations support 3C397 to be a Type Ia supernova.

  11. New constraints on the 2-10 keV X-ray luminosity function from the Chandra COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Marchesi, Stefano; Civano, Francesca M.; Elvis, Martin; Urry, C. Megan; Comastri, Andrea; Chandra Cosmos Legacy Team

    2015-01-01

    In this talk, we present new results on number counts and luminosity function in the 0.5-2 and 2-10 keV bands, obtained in the Chandra COSMOS Legacy Survey. The COSMOS field is the largest (2 deg2) field with a complete coverage at any wavelength, and the Chandra COSMOS-Legacy survey uniformly covers the 1.7 deg2 COSMOS/HST field to ~160 ksec depth, with a total of 2.8 Ms exposure time. This triples the area of the earlier deep C-COSMOS survey (limiting flux ~3e-16 ergs/cm2/s in the 0.5-2 keV band), and together these two projects cover a total area of 2.2 deg2, yielding a sample of ~4100 X-ray sources, ~2300 of which have been detected in the new observations. We describe how the survey improves our knowledge in the galaxy-super massive black hole co-evolution.

  12. THE SPITZER INTERACTING GALAXIES SURVEY: A MID-INFRARED ATLAS OF STAR FORMATION

    SciTech Connect

    Brassington, N. J.; Zezas, A.; Ashby, M. L. N.; Lanz, L.; Smith, Howard A.; Willner, S. P.; Klein, C.

    2015-05-15

    The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength”; the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

  13. A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

    SciTech Connect

    Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.; Lust, Nate B.; Hardy, Ryan A.; Bowman, M. Oliver; Madhusudhan, Nikku

    2014-12-10

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.

  14. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    SciTech Connect

    Mittal, Tushar; Chen, Christine H.; Jang-Condell, Hannah; Manoj, P.; Sargent, Benjamin A.; Watson, Dan M.; Lisse, Carey M.

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  15. The Spitzer Interacting Galaxies Survey: A Mid-infrared Atlas of Star Formation

    NASA Astrophysics Data System (ADS)

    Brassington, N. J.; Zezas, A.; Ashby, M. L. N.; Lanz, L.; Smith, Howard. A.; Willner, S. P.; Klein, C.

    2015-05-01

    The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength” the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

  16. High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ɛ Eridani

    NASA Astrophysics Data System (ADS)

    Janson, Markus; Quanz, Sascha P.; Carson, Joseph C.; Thalmann, Christian; Lafrenière, David; Amara, Adam

    2015-02-01

    Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and ɛ Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120-330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The observations presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 μm flux limit on Fomalhaut b could be further constrained relative to previous data. In the case of ɛ Eri, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These observations validate previous results showing that more than an order of magnitude improvement in performance in the contrast-limited regime can be acquired with respect to conventional methods by applying sophisticated high-contrast techniques to space-based telescopes, thanks to the high degree of PSF stability provided in this environment.

  17. Archival Survey of Orion A with Spitzer, XMM-Newton and Chandra

    NASA Astrophysics Data System (ADS)

    Wolk, Scott; Allen, Lori; Bally, John; Gagne, Marc; Gutermuth, Robert; Hartmann, Lee; Megeath, S. Thomas; Micela, Giusi; Myers, Phil; Oliveira, Joanna; Rebull, Luisa; Salvatore, Salvatore; Stauffer, John; Walter, Fred; Winston, Elaine

    2008-03-01

    We propose an archival project to combine data from the Spitzer GTO surveys of the Orion A cloud with archival XMM-Newton and Chandra observations of the same region and our own ground based spectra to better understand star formation in the nearest giant molecular cloud. To understand the evolution of stars and disks in the first million years requires a large sample. The Spitzer Orion GTO surveys contain 1800+ Class 0, I, and II stars and an unknown number of Class III sources. The X-ray observations, which include over 2000 sources, are the premier method of identifying the remaining young stars WITHOUT disks. Combining these data with ground based optical spectra and sub-mm observations we will: - Identify the PMS stars without disks. - Determine the demographics of stars (clusters, groups, isolation) as a function of evolutionary class. - Study the relative importance of clustered versus isolated star formation. - Examine the effect of environment on star formation and disk evolution. - Examine the relative duration of the Class II and transition disk phases and the commonality of inner disk holes. - Study the evolution of the X-ray emitting plasma from the protostellar to the pre-main sequence phases. - Study the possible effect of X-rays on evolving disk systems. GMCs are the dominant sites of star formation in our Galaxy. The combination of data from optical, infrared and sub-mm surveys will provide the most complete survey of star formation in a GMC to date. With these data, we hope to better understand the star forming process in GMCs, and what distinguishes these massive clouds from nearby dark cloud complexes such as Taurus and Ophiuchus.

  18. FINDING {eta} CAR ANALOGS IN NEARBY GALAXIES USING SPITZER. I. CANDIDATE SELECTION

    SciTech Connect

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S. E-mail: kstanek@astronomy.ohio-state.edu

    2013-04-10

    The late-stage evolution of the most massive stars such as {eta} Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of {eta} Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby ({approx}< 4 Mpc) galaxies to search for such analogs. We find 34 candidates with a flat or rising mid-IR spectral energy distributions toward longer mid-infrared wavelengths that emit >10{sup 5} L{sub Sun} in the IRAC bands (3.6 to 8.0 {mu}m) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 {+-} 6 surviving candidates. Since we would detect true analogs of {eta} Car for roughly 200 years post-eruption, this implies that the rate of eruptions like {eta} Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M{sub Sun} star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 {mu}m, allowing identification of {eta} Car analogs for millennia rather than centuries post-eruption.

  19. Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-cryogenic Spitzer

    NASA Astrophysics Data System (ADS)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M.; Morello, G.; Stevenson, Kevin B.; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μm data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Indepe