Science.gov

Sample records for spitzer 24mic cosmos

  1. Completing the Legacy of Spitzer/IRAC over COSMOS

    NASA Astrophysics Data System (ADS)

    Labbe, Ivo; Caputi, Karina; McLeod, Derek; Cowley, Will; Dayal, Pratika; Behroozi, Peter; Ashby, Matt; Franx, Marijn; Dunlop, James; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Ilbert, Olivier; Tasca, Lidia; de Barros, Stephane; Oesch, Pascal; Bouwens, Rychard; Muzzin, Adam; Illingworth, Garth; Stefanon, Mauro; Schreiber, Corentin; Hutter, Anne; van Dokkum, Pieter

    2016-08-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of reionization at z=6-8 with ~10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 < z < 11, 3) trace the growth of stellar mass at 1 < z < 8 and the co-evolution of galaxies and their dark matter halos, 4) identify (proto)clusters and large scale structures, and 5) reveal dust enshrouded starbursts and the first quiescent galaxies at 3 < z < 6. The Spitzer Legacy over COSMOS will enable a wide range of discoveries beyond these science goals owing to the unique array of multiwavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  2. SPITZER 70 AND 160 {mu}m OBSERVATIONS OF THE COSMOS FIELD

    SciTech Connect

    Frayer, D. T.; Huynh, M. T.; Bhattacharya, B.; Fadda, D.; Helou, G.; Sanders, D. B.; Le Floc'h, E.; Ilbert, O.; Kartaltepe, J. S.; Lee, N.; Surace, J. A.; Capak, P.; Murphy, E.; Aussel, H.; Salvato, M.; Scoville, N. Z.; Fu, H.; Afonso-Luis, A.; Sargent, M. T.

    2009-11-15

    We present Spitzer 70 and 160 {mu}m observations of the COSMOS Spitzer survey (S-COSMOS). The data processing techniques are discussed for the publicly released products consisting of images and source catalogs. We present accurate 70 and 160 {mu}m source counts of the COSMOS field and find reasonable agreement with measurements in other fields and with model predictions. The previously reported counts for GOODS-North and the extragalactic First Look Survey are updated with the latest calibration, and counts are measured based on the large area SWIRE survey to constrain the bright source counts. We measure an extragalactic confusion noise level of {sigma} {sub c} = 9.4 {+-} 3.3 mJy (q = 5) for the MIPS 160 {mu}m band based on the deep S-COSMOS data and report an updated confusion noise level of {sigma} {sub c} = 0.35 {+-} 0.15 mJy (q = 5) for the MIPS 70 {mu}m band.

  3. The contribution of SUBARU-HSC faint galaxies to the Spitzer-CIB fluctuations in COSMOS

    NASA Astrophysics Data System (ADS)

    Guo, Joyce; Cappelluti, Nico; Li, Yanxia; Cooper, Rachel Ann

    2017-01-01

    We investigate the possible contribution of the diffuse background of optical galaxies to the source subtracted cosmic infrared background fluctuations of the COSMOS field. Using data from the COSMOS catalogue and from HSC observations, we artificially created optical galaxies images of the COSMOS. The power spectrum at four different AB magnitude intervals, [mlim, mlim-2, mlim-4, mlim-6], and four redshift intervals, [0-1, 1-2, 2-3, 3-4], for these images were then calculated and compared to the power spectrum of an infrared image of the same field. We found that the coherence of these two images was close to zero and determined that the optical galaxies must only contribute a negligible contribution to the infrared background in the COSMOS field.

  4. The Spitzer Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Werner, M. W.

    2005-01-01

    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is about five years. Spitzer is thus both a scientific and a technical precursor to the infrared astronomy missions of the future. This very brief paper refers interested readers to several sets of recent publications which describe both the scientific and the technical features of Spitzer in detail. Note that, until 2003 December, Spitzer was known as the Space Infrared Telescope Facility (SIRTF).

  5. The Cosmos

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Filippenko, Alex

    2013-10-01

    Preface; About the authors; 1. A grand tour of the heavens; 2. Light, matter and energy: powering the Universe; 3. Light and telescopes: extending our senses; 4. Observing the stars and planets: clockwork of the Universe; 5. Gravitation and motion: the early history of astronomy; 6. The terrestrial planets: Earth, Moon, and their relatives; 7. The Jovian planets: windswept giants; 8. Pluto, comets, and space debris; 9. Our Solar System and others; 10. Our star: the Sun; 11. Stars: distant suns; 12. How the stars shine: cosmic furnaces; 13. The death of stars: recycling; 14. Black holes: the end of space and time; 15. The Milky Way: our home in the Universe; 16. A Universe of galaxies; 17. Quasars and active galaxies; 18. Cosmology: the birth and life of the cosmos; 19. In the beginning; 20. Life in the Universe; Epilogue; Appendices; Selected readings; Glossary; Index.

  6. Cosmos 2229

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie; Roy, Roland R.; Hodgson, John A.

    1993-01-01

    The 6 weeks preflight activities of the Cosmos project during 1993 included: modification of EMG connector to improve the reliability of EMG recording; 24 hour cage activity recording from all but two of the flight animals (monkeys); attempts to record from flight candidates during foot lever task; and force transducer calibrations on all flight candidate animals. The 4 week postflight recordings included: postflight recordings from flight animals; postflight recordings on 3 control (non-flight) animals; postflight recalibration of force transducers on 1 flight and 4 control (non-flight) animals; and attempts to record EMG and video data from the flight animals during postflight locomotion and postural activity. The flight EMG recordings suggest that significant changes in muscle control may occur in spaceflight. It is also clear from recordings that levels of EMG recorded during spaceflight can attain values similar to those measured on earth. Amplifier gain settings should therefore probably not be changed for spaceflight.

  7. Spitzer Clusters

    NASA Astrophysics Data System (ADS)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  8. Efficient Mosaicking of Spitzer Space Telescope Images

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  9. Carl Sagan Cosmos Voyager

    NASA Video Gallery

    Excerpt from "Cosmos", read by Carl Sagan, part of the NASA.gov multimedia piece celebrating NASA's 50th anniversary in 2008. Used by permission of Carl Sagan Associates. To see the whole interacti...

  10. Signals from the Cosmos.

    ERIC Educational Resources Information Center

    Lichtman, Jeffrey M.

    1991-01-01

    Introduces the basics of radio astronomy and describes how to assemble several simple systems for receiving radio signals from the cosmos. Includes schematics, parts lists, working drawings, and contact information for radio astronomy suppliers. (11 references) (Author/JJK)

  11. Visualizing the cosmos

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2016-01-01

    Space, as Douglas Adams once wrote, is big. Really big. But just how big is it? And what else, aside from our own planet Earth, is out there in it? Cosmos: the Infographic Book of Space answers these questions in a stunning fashion, but to describe it as a beautiful book full of interesting facts does not do it justice.

  12. Image processing with COSMOS

    NASA Astrophysics Data System (ADS)

    Stobie, R. S.; Dodd, R. J.; MacGillivray, H. T.

    1981-12-01

    It is noted that astronomers have for some time been fascinated by the possibility of automatic plate measurement and that measuring engines have been constructed with an ever increasing degree of automation. A description is given of the COSMOS (CoOrdinates, Sizes, Magnitudes, Orientations, and Shapes) system at the Royal Observatory in Edinburgh. An automatic high-speed microdensitometer controlled by a minicomputer is linked to a very fast microcomputer that performs immediate image analysis. The movable carriage, whose position in two coordinates is controlled digitally to an accuracy of 0.5 micron (0.0005 mm) will take plates as large as 356 mm on a side. It is noted that currently the machine operates primarily in the Image Analysis Mode, in which COSMOS must first detect the presence of an image. It does this by scanning and digitizing the photograph in 'raster' fashion and then searching for local enhancements in the density of the exposed emulsion.

  13. Cosmos: 1989 immunology studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    The effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM were determined. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies performed on Cosmos 1887. Spleen and bone marrow cells were obtained from flown, vivarium control, synchronous control, and suspended rats. The cells were stained with a series of monoclonal antibodies directed against rat leukocyte cell surface antigens. Control cells were stained with a monoclonal antibody directed against an irrelevant species or were unstained. Cells were then analyzed for fluorescence using a FACSCAN flow cytometer. Bone marrow cells were placed in culture with GM-CSF in McCoy's 5a medium and incubated for 5 days. Cultures were then evaluated for the number of colonies of 50 cells or greater.

  14. Engines for the Cosmos

    NASA Technical Reports Server (NTRS)

    Rodgers, Stephen L.; Reisz, Al; Wyckoff, James (Technical Monitor)

    2002-01-01

    Galactic forces spiral across the cosmos fueled by nuclear fission and fusion and atoms in plasmatic states with throes of constraints of gravitational forces and magnetic fields, In their wanderings these galaxies spew light, radiation, atomic and subatomic particles throughout the universe. Throughout the ages of man visions of journeying through the stars have been wondered. If humans and human devices from Earth are to go beyond the Moon and journey into deep space, it must be accomplished with like forces of the cosmos such as electrical fields, magnetic fields, ions, electrons and energies generated from the manipulation of subatomic and atomic particles. Forms of electromagnetic waves such as light, radio waves and lasers must control deep space engines. We won't get far on our Earth accustomed hydrocarbon fuels.

  15. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  16. CXB and CIB joint fluctuations in COSMOS, EGS, UDS and HDFN

    NASA Astrophysics Data System (ADS)

    Cappelluti, Nico; Li, Yanxia; Cooper, Rachel Ann; Guo, Joyce; Urry, C. Megan; Hasinger, Guenther; Arendt, Richard G.; Kashlinsky, Alexander

    2017-01-01

    I will present new results on the joint CIB and CXB joint fluctuations in the COSMOS, EGS, UDS and HDFN surveys. We used the deepest wide Chandra, XMM and Spitzer data available so far and cross-correlate with known optical galaxies. We demonstrate that the these joint fluctuations are produced by extremely faint sources mAB>28. We tested the hypothesis that early supermassive black holes could produce the observed signal

  17. The New Cosmos

    NASA Astrophysics Data System (ADS)

    Eicher, David J.; Filippenko, Alex

    2015-12-01

    Foreword Alex Filippenko; 1. The awakening of astronomy; 2. How the Sun will die; 3. The end of life on Earth; 4. How the moon formed; 5. Where has all the water gone?; 6. Why did Venus turn inside-out?; 7. Is Pluto a planet?; 8. Planets everywhere; 9. The Milky Way as barred spiral; 10. Here comes Milkomeda; 11. The Big Bang's cosmic echo; 12. How large is the universe?; 13. The mystery of dark matter; 14. The bigger mystery of dark energy; 15. Black holes are ubiquitous; 16. What is the universe's fate?; 17. The meaning of life in the cosmos; Glossary; Bibliography; Index.

  18. Cosmos-1989 immunology studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The current study involved a determination of the effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies carried out on Cosmos 1887.

  19. COSMOS 2044 Mission: Overview

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  20. Spitzer Spies Spectacular Sombrero

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a 'sombrero,' but here looks more like a 'bulls-eye.'

    Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions.

    Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen.

    The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun.

    This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features.

    In figure 1, the new picture of Messier 104 combines a recent infrared observation from NASA's Spitzer Space Telescope with a well

  1. Cosmos 1887 - Science overview

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.

    1990-01-01

    Twenty two groups of U.S. investigators participated in joint studies of ten male rats flown on the Cosmos 1887 biosatellite. A summary of these studies embracing skeletal muscle, bone, endocrine, neural, intestinal, metabolic, immunology, cardiac, and gonadal investigations is presented. Three general objectives of the rat experiments are outlined - verification of previous observations of the biological responses to microgravity; clarification of the effects of microgravity on both the tissues investigated and the measurements performed; and relation of biological responses to flight duration. It is concluded that the first objective is met fully and the second with a varying degree of success. The confounding effects of overshooting the designated landing site and delayed recovery of the animals largely precluded meeting the last objective. It is also noted that investigations were performed for the first time on brain and spinal cord enzymes, a neurotransmitter, transmitter receptors, hypothalamic regulatory factors, pineal metabolites, atrial granules, liver histology, and jejunal mitotic rate in spaceflight animals.

  2. SPLASH: Spitzer Large Area Survey with Hyper-Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Capak, Peter; Aussel, Herve; Bundy, Kevin; Bethermin, Matthieu; Carollo, Marcella; Chary, Ranga-Ram; Civano, Francesca; Coupon, Jean; Diener, Catrina; Donley, Jennifer; Dunlop, Jim; Elvis, Martin; Faisst, Andreas; Foucaud, Sebastien; Green, Jenny; Gunn, Jim; Hashimoto, Yasuhiro; Hassinger, Gunther; Hsieh, Bau-Ching; Huang, Lijin; Ilbert, Olivier; LeFloc'h, Emeric; LeFevre, Olivier; Lilly, Simon; Lin, Lihwai; Lin, Yen-Ting; Miyazaki, Satoshi; Mobasher, Bahram; Moriya, Takashi; Nagao, Tohru; Ono, Yoshiaki; Ouchi, Massami; Petric, Andrea; Pych, Wojtek; Quimby, Robert; Saito, Tomoki; Salvato, Mara; Sanders, Dave; Scarlata, Claudia; Schinnerer, Eva; Scoville, Nick; Sheth, Kartik; Shimasaku, Kazuhiro; Silverman, John; Smolcic, Vernesa; Steinhardt, Charles; Strauss, Michael; Surace, Jason; Tanaka, Masaomi; Tanaka, Massayuki; Taniguchi, Yoshi; Teplitz, Harry; Toshida, Naoki; Wang, Wei-Hao; Urata, Yuji

    2013-10-01

    We propose 1650h to complete SPLASH, building a foundation for comprehensive investigations of the earliest stages of galaxy, AGN and large-scale structure formation on cosmologically important scales, providing deep mid-IR imaging for two major 1.8deg^2 fields (COSMOS and SXDS). These two fields have been the target of, and are scheduled for, unparalleled deep imaging in the optical, sub-mm and radio. The Spitzer data are essential for immediate science goals and the legacy of these unique equatorial fields. The major science enabled by the proposed Spitzer observations includes: the co-evolution of cosmic large scale structure and the assembly and growth of galaxies and AGN; understanding the relative importance of smooth gas accretion vs. mergers for galaxy growth in the early universe; probing re-ionization through Infrared Background Fluctuations; constraining the Initial Mass Function at high redshift, AGN activity in the early universe, and the physics of supernova through transient studies. None of these are possible with existing Spitzer surveys. The two fields proposed here will have unique, Hyper-Suprime-Cam (HSC) imaging (to ~27-28 magAB for broad bands across the 0.4-1.0um wavelength range) and science will be immediately enabled by Spitzer using pre-existing deep X-ray to radio multi-wavelength data, including: UV (Galex), X-ray (Chandra/XMM), optical (HST), near-infrared, mid-Infrared (Spitzer/Herschel), sub-mm, and radio. The COSMOS field is the primary deep field for the Nu-Star mission and both fields have been ranked as high priority deep-field targets for Euclid. These fields also have extensive spectroscopy with Keck (>50nt), Subaru-FMOS (>30nt), VLT (>1000h), and are the primary targets for the future Subaru Prime Focus Spectrograph (PFS) surveys. The legacy impact of these data will be enormous, and will provide a treasure trove of targets for JWST. This is part 1 (SXDS) of the awarded time.

  3. SPLASH: Spitzer Large Area Survey with Hyper-Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Capak, Peter; Aussel, Herve; Bundy, Kevin; Carollo, Marcella; Chary, Ranga Ram; Civano, Francesca; Coupon, Jean; Diener, Catrina; Donley, Jenifer; Dunlop, Jim; Elvis, Martin; Foucaud, Sebastien; Green, Jenny; Gunn, Jim; Hashimoto, Yasuhiro; Hassinger, Gunther; Hsieh, Bau-Ching; Huang, Lijin; Ilbert, Olivier; LeFloc'h, Emeric; LeFevre, Olivier; Lilly, Simon; Lin, Lihwai; Lin, Yen-Ting; Miyazaki, Satoshi; Mobasher, Bahram; Moriya, Takashi; Nagao, Tohru; Ono, Yoshiaki; Ouchi, Massami; Quimby, Robert; Saito, Tomoki; Salvato, Mara; Sanders, Dave; Schinnerer, Eva; Scoville, Nick; Shimasaku, Kazuhiro; Silverman, John; Smolcic, Vernesa; Strauss, Michael; Surace, Jason; Tanaka, Massayuki; Taniguchi, Yoshi; Teplitz, Harry; Wang, Wei-Hao; Urata, Yuji

    2012-09-01

    We propose a 2475h survey to build the foundation for comprehensive investigations of the earliest stages of galaxy, AGN and large-scale structure formation on cosmologically important scales, providing deep mid-IR imaging for two major 1.8deg^2 fields (COSMOS and SXDS). These two fields have been the target of, and are scheduled for, unparalleled deep imaging in the optical, sub-mm and radio. The Spitzer data is essential for immediate science goals and the legacy of these unique equatorial fields. The major science enabled by the proposed Spitzer observations includes: the co-evolution of cosmic large scale structure and the assembly and growth of galaxies and AGN; understanding the relative importance of smooth gas accretion vs. mergers for galaxy growth in the early universe; probing re-ionization through Infrared Background Fluctuations; constraining the Initial Mass Function at high redshift, AGN activity in the early universe, and the physics of supernova through transient studies. None of these are possible with existing Spitzer surveys, which are limited by both insufficient contiguous area, insufficient depth of ancillary data and/or temporal cadence. The two fields proposed here will have unique, Hyper-Suprime-Cam (HSC) imaging (to ~27-28 magAB for broad bands across the 0.4?1.0um wavelength range) and science will be immediately enabled by Spitzer using pre-existing deep X-ray to radio multi-wavelength data, including: UV (Galex), X-ray (Chandra/XMM), optical (HST), near-infrared, mid-Infrared (Spitzer/Herschel), sub-mm, and radio. The COSMOS field is the primary deep field for the Nu-Star mission and both fields have been ranked as high priority deep-field targets for Euclid. These fields also have extensive spectroscopy with Keck (>50nt), Subaru-FMOS (>30nt), VLT (>1000h), and are the primary targets for the future Subaru Prime Focus Spectrograph (PFS) surveys. The legacy impact of these data will be enormous, and will provide a treasure trove of

  4. Spitzer Makes 'Invisible' Visible

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

  5. Scheduling Spitzer: The SIRPASS Story

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Hawkins, Robert

    2013-01-01

    NASA's Spitzer Space Telescope was launched on August 25, 2003 from Florida's Cape Canaveral Air Force Base. Drifting in a unique Earth-trailing orbit around the Sun, Spitzer sees an optically invisible universe dominated by dust and stars. Since 1997, the Spitzer Integrated Resource Planning and Scheduling System (SIRPASS) has helped produce spacecraft activity plans for the Spitzer Space Telescope. SIRPASS is used by members of the Observatory Planning and Scheduling Team to plan, schedule and sequence the Telescope from data made available to them from the science and engineering community. Because of the volume of data that needs to be scheduled, SIRPASS offers a variety of automated assistants to aid in this task. This paper will describe the functional elements of the SIRPASS software system -- emphasizing the role that automation plays in the system -- and will highlight lessons learned for the software developer from a decade of Spitzer Space Telescope operations experience.

  6. The Chemically Controlled Cosmos

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.; Williams, D. A.

    1996-06-01

    Simple chemistry governs a host of the exotic objects that populate our cosmos. For example, molecules in the early Universe acted as natural temperature regulators, keeping the primordial gas cool and, in turn, allowing galaxies and stars to form. What are the tools of the trade for the cosmic chemist and what can they teach us about the Universe we live in? These are the questions answered in this engaging and informative guide--the first book for nonspecialists on molecular astrophysics. In clear, nontechnical terms, and without formal mathematics, Hartquist and Williams show how to study and understand the behavior of molecules in a host of astronomical situations. Readers will learn about the secretive formation of stars deep within interstellar clouds; the origin of our own solar system; the cataclysmic deaths of many massive stars that explode as supernovae; and the hearts of active galactic nuclei, the most powerful objects in the universe. This book provides an accessible introduction to a wealth of astrophysics, and an understanding of how cosmic chemistry allows the investigation of many of the most exciting questions concerning astronomy today.

  7. Cosmos, an international center for advanced studies

    NASA Technical Reports Server (NTRS)

    Ryzhov, Iurii; Alifanov, Oleg; Sadin, Stanley; Coleman, Paul

    1990-01-01

    The concept of Cosmos, a Soviet operating center for aerospace activities, is presented. The main Cosmos participants are the Institute for Aerospace Education, the Institute for Research and Commercial Development, and the Department of Space Policy and Socio-Economic Studies. Cosmos sponsors a number of educational programs, basic research, and studies of the social impact of space-related technologies.

  8. New Worlds in the Cosmos

    NASA Astrophysics Data System (ADS)

    Mayor, Michel; Frei, Pierre-Yves; Roukema, Boud

    2003-09-01

    Preface; 1. The quest begins; 2. Infinity and beyond; 3. New arrivals in the Solar System; 4. Why stars wobble; 5. Neutron planets; 6. Brown dwarfs in the headlines; 7. Sirens in the cosmos; 8. Foreign planets different to our home-grown ones; 9. Destination: earths!; 10. Further yet: life.

  9. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  10. The COSMOS2015 Catalog: Exploring the 1 < z < 6 Universe with Half a Million Galaxies

    NASA Astrophysics Data System (ADS)

    Laigle, C.; McCracken, H. J.; Ilbert, O.; Hsieh, B. C.; Davidzon, I.; Capak, P.; Hasinger, G.; Silverman, J. D.; Pichon, C.; Coupon, J.; Aussel, H.; Le Borgne, D.; Caputi, K.; Cassata, P.; Chang, Y.-Y.; Civano, F.; Dunlop, J.; Fynbo, J.; Kartaltepe, J. S.; Koekemoer, A.; Le Fèvre, O.; Le Floc'h, E.; Leauthaud, A.; Lilly, S.; Lin, L.; Marchesi, S.; Milvang-Jensen, B.; Salvato, M.; Sanders, D. B.; Scoville, N.; Smolcic, V.; Stockmann, M.; Taniguchi, Y.; Tasca, L.; Toft, S.; Vaccari, Mattia; Zabl, J.

    2016-06-01

    We present the COSMOS201524 catalog, which contains precise photometric redshifts and stellar masses for more than half a million objects over the 2deg2 COSMOS field. Including new {{YJHK}}{{s}} images from the UltraVISTA-DR2 survey, Y-band images from Subaru/Hyper-Suprime-Cam, and infrared data from the Spitzer Large Area Survey with the Hyper-Suprime-Cam Spitzer legacy program, this near-infrared-selected catalog is highly optimized for the study of galaxy evolution and environments in the early universe. To maximize catalog completeness for bluer objects and at higher redshifts, objects have been detected on a χ 2 sum of the {{YJHK}}{{s}} and z ++ images. The catalog contains ˜ 6× {10}5 objects in the 1.5 deg2 UltraVISTA-DR2 region and ˜ 1.5× {10}5 objects are detected in the “ultra-deep stripes” (0.62 deg2) at {K}{{s}}≤slant 24.7 (3σ, 3″, AB magnitude). Through a comparison with the zCOSMOS-bright spectroscopic redshifts, we measure a photometric redshift precision of {σ }{{Δ }z/(1+{z}s)} = 0.007 and a catastrophic failure fraction of η = 0.5%. At 3\\lt z\\lt 6, using the unique database of spectroscopic redshifts in COSMOS, we find {σ }{{Δ }z/(1+{z}s)} = 0.021 and η = 13.2 % . The deepest regions reach a 90% completeness limit of {10}10{M}⊙ to z = 4. Detailed comparisons of the color distributions, number counts, and clustering show excellent agreement with the literature in the same mass ranges. COSMOS2015 represents a unique, publicly available, valuable resource with which to investigate the evolution of galaxies within their environment back to the earliest stages of the history of the universe. The COSMOS2015 catalog is distributed via anonymous ftp and through the usual astronomical archive systems (CDS, ESO Phase 3, IRSA).

  11. SACS: Spitzer Archival Cluster Survey

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys

  12. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as pink dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. Red shows heated dust that pervades the region's cavities, while green highlights dense clouds.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  13. Seven Wonders of the Cosmos

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant Vishnu

    1999-04-01

    Our cosmic tour begins here. As we leave the secure confines of the Earth and journey into space, we find a plethora of strange and unexpected phenomena. Little can we anticipate from the quiet, star-studded sky the violent events in the cosmos. Stars explode. Powerful radio sources eject matter in jets. The ever-changing Universe grows more beautiful and more complex the deeper into it we go. Professor Narlikar skillfully steers us through a cosmic journey of discovery, starting from the Earth and Solar System and stepping out to the farthest reaches of the Universe. Using simple analogies, humorous anecdotes, and a wealth of illustrations, he conveys the thrill of observing strange and surprising features of the Universe. The seven wonders represent a range of mysterious phenomena, a class of spectacular events, or remarkable cosmic objects that have challenged human curiosity and defied explanation. They concern the giants and dwarfs of the stellar world, the catastrophic explosion of massive stars, pulsars--the ultimate timekeepers of the cosmos, the strange effects of gravity, illusions of space, and the majestic expansion of the Universe as a whole. With lucid prose, the author weaves together a host of exciting recent discoveries in astronomy and shows us how these motivate astronomers to unravel the wonders of tomorrow.

  14. CLASSIFICATION OF EXTREMELY RED OBJECTS IN THE COSMOS FIELD

    SciTech Connect

    Kong Xu; Fang Guanwen; Wang Min; Arimoto, Nobuo

    2009-09-10

    We present a study of the classification of z {approx} 1 extremely red objects (EROs), using a combination of Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS), Spitzer Infrared Array Camera (IRAC), and ground-based images of the COSMOS field. Our sample includes {approx}5300 EROs with i - K{sub s} {>=} 2.45 (AB, equivalently I - K{sub s} = 4 in Vega) and K{sub s} {<=} 21.1 (AB). For EROs in our sample, we compute, using the ACS F814W images, their concentration, asymmetry, as well as their Gini coefficient and the second moment of the brightest 20% of their light. Using those morphology parameters and the Spitzer IRAC [3.6] - [8.0] color, the spectral energy distribution (SED) fitting method, we classify EROs into two classes: old galaxies (OGs) and young, dusty starburst galaxies (DGs). We found that the fraction of OGs and DGs in our sample is similar, about 48% of EROs in our sample are OGs, and 52% of them are DGs. To reduce the redundancy of these three different classification methods, we performed a principal component analysis on the measurements of EROs, and find that morphology parameters and SEDs are efficient in segregating OGs and DGs. The [3.6] - [8.0] color, which depends on reddening, redshift, and photometric accuracy, is difficult to separate EROs around the discriminating line between starburst and elliptical. We investigate the dependence of the fraction of EROs on their observational properties, and the results suggest that DGs become increasingly important at fainter magnitudes, redder colors, and higher redshifts. The clustering of the entire EROs, DGs, and OGs was estimated by calculating their correlation function, and we find that the clustering of EROs is much stronger than that of full K-limited samples of galaxies; the clustering amplitude of OGs is a factor of {approx}2 larger than that of DGs.

  15. Spitzer Space Telescope mission design

    NASA Technical Reports Server (NTRS)

    Kwok, Johnny H.; Garcia, Mark D.; Bonfiglio, Eugene; Long, Stacia M.

    2004-01-01

    This paper gives a description of the mission design, launch, orbit, and navigation results for the Spitzer space telescope mission. The Spitzer telescope was launched by the Delta II Heavy launch vehicle into a heliocentric Earth trailing orbit. This orbit is flown for the first time and will be used by several future astronomical missions such as Kepler, SIM, and LISA. This paper describes the launch strategy for a winter versus a summer launch and how it affects communications. It also describes how the solar orbit affects the design and operations of the Observatory. It describes the actual launch timeline, launch vehicle flight performance, and the long term behavior of the as flown orbit. It also provides the orbit knowledge from in-flight navigation data.

  16. Exoplanet Characterization With Spitzer Eclipses

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  17. COSMOS Galaxy Morphology Pilot Project

    NASA Astrophysics Data System (ADS)

    Prescott, M.; Impey, C.; Scoville, N.; COSMOS Collaboration

    2004-05-01

    The COSMOS (Cosmic Evolution Survey) project will be the largest HST imaging survey ever, covering two square degrees with the ACS instrument. The survey is designed to sample the full range of cosmic structures up to scales of 100 Mpc, map the evolution of galaxy morphology, galaxy merging, and star formation out to z of 2, use weak lensing to reconstruct the dark matter distribution out to z of 1, and study the joint evolution of galaxies and black holes via the AGN population. Extensive multi-wavelength observations of the field have also been committed for X-ray, UV, FIR, NIR, millimeter, and radio wavelengths. We present results from a pilot project using only the central 10.4 by 10.4 arcmin portion of the field. The goal is to understand the reliability of galaxy morphological information derived from GALFIT and other methods. Morphology has been derived from both g and i ACS images in terms of bulge/disk ratio and Sersic index. These measures have been augmented by CAS and Gini coefficients as a way of identifying galaxies that are disturbed or interacting, or where the axisymmetric assumptions of GALFIT are not warranted. We present results on how morphology correlates with global quantities such as luminosity, scale length, and mean surface brightness as well as with various broad band color combinations, which serve as proxies for overall stellar populations and ages. Using photo-z's we study all these relationships in terms of cosmic evolution. This pilot project will be used to optimize analysis strategies for the much larger amount of data in the overall COSMOS project. Funding for this work was provided by a NSF Graduate Fellowship and a NASA/HST GO Grant.

  18. Station Astronauts Do Experiment for 'Cosmos'

    NASA Video Gallery

    Aboard the International Space Station, Expedition 38 Commander Koichi Wakata of the Japan Aerospace Exploration Agency and Flight Engineer Rick Mastracchio of NASA help 'Cosmos' host Neil deGrasse...

  19. A tour de force of the cosmos

    NASA Astrophysics Data System (ADS)

    London, Lionel

    2017-02-01

    I find Priyamvada Natarajan's book Mapping the Heavens: the Radical Scientific Ideas that Reveal the Cosmos to be an instructive and thought-provoking exploration of the connections, tensions and mishaps that so often accompany scientific venture.

  20. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way.

    Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky.

    The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight.

    Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila.

    Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered.

    This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

    Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the

  1. The Spitzer Local Volume Legacy

    NASA Astrophysics Data System (ADS)

    Kennicutt, Robert; Lee, J. C.; Engelbracht, C.; Begum, A.; Block, M.; Calzetti, D.; Dalcanton, J.; Dale, D.; Funes, J.; Gil de Paz, A.; Gordon, K.; Johnson, B.; Sakai, S.; Skillman, E.; van Zee, L.; Walter, F.; Weisz, D.; Williams, B.; Wu, Y.

    2007-12-01

    The Local Volume Legacy (LVL) is a Spitzer Cycle 4 Legacy project, aimed at obtaining IRAC and MIPS imaging for a complete sample of 258 galaxies within 11 Mpc. Our observations probe the spatially- resolved star formation, dust, and red stellar populations of galaxies that have been drawn from a statistically robust local sample, in which a full diversity of galaxy properties such as luminosities, surface brightnesses, metallicities are represented. Our sample includes: (i) a complete volume-limited galaxy sample within 3.5 Mpc, and (ii) an unbiased sample of S-Irr galaxies within an 11 Mpc sphere. LVL will produce a multi-wavelength census of the Galactic neighborhood, extending to the faintest limits of the galactic luminosity function and exploiting the highest spatial resolution and absolute depth achievable with Spitzer. Our ancillary dataset includes H-alpha and UV imaging from the GALEX 11HUGS and NGS surveys, stellar population mapping from the HST ANGST Treasury survey, HI mapping with the VLA and GMRT, and optical broad-band imaging and spectroscopy. By homogeneously filling in critical gaps in the current Spitzer coverage of the Local Volume, and providing SED coverage from the UV to the FIR, LVL will supply an enduring homogeneous core dataset on the Galactic neighborhood for the astronomical community. Science issues to be addressed include: constraining the physical mechanisms underlying dust heating and understanding correlations between FIR emission, dust content and global galaxy properties; establishing the primary factors which influence PAH emission and evaluating the robustness of PAH emission as a SFR indicator, particularly at low metallicities and high specific SFRs; probing the temporal variation of star formation as a function of global properties, with special focus on dwarf galaxies. This poster will highlight the scientific goals and design of the survey, and present early results from the imaging campaign.

  2. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This picture was taken with Spitzer's infrared array camera. It is a four-color composite, in which light with a wavelength of 3.6 microns is blue; 4.5-micron light is green; 5.8-micron light is orange; and 8-micron light is red.

  3. Spitzer - Hot & Colorful Student Activities

    NASA Astrophysics Data System (ADS)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  4. Muscle Feasibility for Cosmos Rhesus

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie (Principal Investigator); Roland, Roy R.; Hodgson, John A.

    1994-01-01

    The following tasks were proposed for the Cosmos project: 1) Complete recordings of all preflight candidates during performance of a foot pedal motor control task while in the space capsule mock-up. 2) Complete recordings of all preflight candidates during locomotion and postural tasks. 3) Complete recordings of 24-hour spontaneous cage activity in the two flight monkeys before and after flight and of at least three control (non-flight) monkeys after the flight has been completed. 4) Complete recordings of the foot pedal and motor control tasks during flight and postflight as scheduled. 5) Complete recordings of the vertical drop test pre, during and postflight for the two flight and three control monkeys. 6) Complete recordings of locomotion and posture tests of the two flight monkeys postflight. 7) Complete recordings of locomotion and postural tests of at least three control (non-flight) monkeys during the postflight period. 8) Recalibrate buckles of the two flight and of at least three control monkeys postflight. 9) Complete analysis of the 24 hour EMG recordings of all monkeys. 10) Complete analysis of the foot pedal, locomotor and postural motor control tasks for the two flight and three control monkeys. It was proposed that efforts in the first postflight year be concentrated on the two flight animals and three postflight animals.

  5. Spitzer Digs Up Hidden Stars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4

    Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope.

    The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image.

    The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is

  6. VizieR Online Data Catalog: COSMOS photometric redshift catalog (Ilbert+, 2009)

    NASA Astrophysics Data System (ADS)

    Ilbert, O.; Capak, P.; Salvato, M.; Aussel, H.; McCracken, H. J.; Sanders, D. B.; Scoville, N.; Kartaltepe, J.; Arnouts, S.; Le Floc'h, E.; Mobasher, B.; Taniguchi, Y.; Lamareille, F.; Leauthaud, A.; Sasaki, S.; Thompson, D.; Zamojski, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Brusa, M.; Caputi, K. I.; Carollo, C. M.; Contini, T.; Cook, R.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Hasinger, G.; Iovino, A.; Kampczyk, P.; Kneib, J.-P.; Knobel, C.; Kovac, K.; Le Borgne, J. F.; Le Brun, V.; Fevre, O. L.; Lilly, S.; Looper, D.; Maier, C.; Mainieri, V.; Mellier, Y.; Mignoli, M.; Murayama, T.; Pello, R.; Peng, Y.; Perez-Montero, E.; Renzini, A.; Ricciardelli, E.; Schiminovich, D.; Scodeggio, M.; Shioya, Y.; Silverman, J.; Surace, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.

    2017-03-01

    Compared with the previous optical/NIR catalog (Capak et al., 2007ApJS..172...99C, Cat. II/284), the new photometry implements 14 new medium/narrowband data from the Subaru Telescope, deep ground-based NIR data (J and K bands), and Spitzer-IRAC data. The spectroscopic sample used to calibrate/test the photo-z is 10 times larger at i+AB<22.5 than that of Mobasher et al. (2007ApJS..172..117M). The spectroscopic sample is supplemented with faint IR selected sources and a deep, faint spectroscopic sample at z>1.5. Hereafter, we detail the photometric and spectroscopic data used to measure the photo-z. Fluxes are measured in 30 bands from data taken on the Subaru (4200-9000Åg), CFHT (3900-21500Å), UKIRT (12500Å), Spitzer (3.6-8um), and GALEX (1500.2300Å) telescopes. We refer to P. Capak et al. (2008, in preparation) for a complete description of the observations, data reduction, and the photometry catalog. Photometric catalogue from P. Capak Photo-z catalogue from O. Ilbert PIs of the photometric data: D.B. Sanders, N. Scoville, Y. Tanigushi Data reducers: H. Aussel, P. Capak, H. McCracken, M. Salvato, S. Sasaki,D. Thompson, O. Ilbert, J. Kartaltepe, E. Le Floc'h, D. Looper, D.B. Sanders, N. Scoville Spectroscopic redshifts for validation from the zCOSMOS team (PI S. Lilly), from J. Kartaltepe and from P. Capak Identification of the Xray sources in the optical catalogue M. Brusa, G. Hasinger and the COSMOS/XMM team. (1 data file).

  7. CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOS Survey Field

    NASA Astrophysics Data System (ADS)

    Nayyeri, H.; Hemmati, S.; Mobasher, B.; Ferguson, H. C.; Cooray, A.; Barro, G.; Faber, S. M.; Dickinson, M.; Koekemoer, A. M.; Peth, M.; Salvato, M.; Ashby, M. L. N.; Darvish, B.; Donley, J.; Durbin, M.; Finkelstein, S.; Fontana, A.; Grogin, N. A.; Gruetzbauch, R.; Huang, K.; Khostovan, A. A.; Kocevski, D.; Kodra, D.; Lee, B.; Newman, J.; Pacifici, C.; Pforr, J.; Stefanon, M.; Wiklind, T.; Willner, S. P.; Wuyts, S.; Castellano, M.; Conselice, C.; Dolch, T.; Dunlop, J. S.; Galametz, A.; Hathi, N. P.; Lucas, R. A.; Yan, H.

    2017-01-01

    We present a multi-wavelength photometric catalog in the COSMOS field as part of the observations by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The catalog is based on Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) and Advanced Camera for Surveys observations of the COSMOS field (centered at R.A.: {10}{{h}}{00}{{m}}{28}{{s}}, Decl.: +02^\\circ 12\\prime {21}\\prime\\prime ). The final catalog has 38671 sources with photometric data in 42 bands from UV to the infrared (∼ 0.3{--}8 μ {{m}}). This includes broadband photometry from HST, CFHT, Subaru, the Visible and Infrared Survey Telescope for Astronomy, and Spitzer Space Telescope in the visible, near-infrared, and infrared bands along with intermediate- and narrowband photometry from Subaru and medium-band data from Mayall NEWFIRM. Source detection was conducted in the WFC3 F160W band (at 1.6 μm) and photometry is generated using the Template FITting algorithm. We further present a catalog of the physical properties of sources as identified in the HST F160W band and measured from the multi-band photometry by fitting the observed spectral energy distributions of sources against templates.

  8. G10/COSMOS: 38 band (far-UV to far-IR) panchromatic photometry using LAMBDAR

    NASA Astrophysics Data System (ADS)

    Andrews, S. K.; Driver, S. P.; Davies, L. J. M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Wright, Angus H.

    2017-01-01

    We present a consistent total flux catalogue for a ˜1 deg2 subset of the Cosmic Evolution Survey (COSMOS) region (RA ∈ [149.55°, 150.65°], Dec. ∈ [1.80°, 2.73°]) with near-complete coverage in 38 bands from the far-ultraviolet to the far-infrared. We produce aperture matched photometry for 128 304 objects with i < 24.5 in a manner that is equivalent to the Wright et al. catalogue from the low-redshift (z < 0.4) Galaxy and Mass Assembly (GAMA) survey. This catalogue is based on publicly available imaging from GALEX, Canada-France-Hawaii Telescope, Subaru, Visible and Infrared Survey Telescope for Astronomy, Spitzer and Herschel, contains a robust total flux measurement or upper limit for every object in every waveband and complements our re-reduction of publicly available spectra in the same region. We perform a number of consistency checks, demonstrating that our catalogue is comparable to existing data sets, including the recent COSMOS2015 catalogue. We also release an updated Davies et al. spectroscopic catalogue that folds in new spectroscopic and photometric redshift data sets. The catalogues are available for download at http://cutout.icrar.org/G10/dataRelease.php. Our analysis is optimised for both panchromatic analysis over the full wavelength range and for direct comparison to GAMA, thus permitting measurements of galaxy evolution for 0 < z < 1 while minimizing the systematic error resulting from disparate data reduction methods.

  9. Cosmos: An Information Retrieval System that Works.

    ERIC Educational Resources Information Center

    Clay, Katherine; Grossman, Alvin

    1980-01-01

    Briefly described is the County of San Mateo Online System (COSMOS) which was developed and is used by the San Mateo Educational Resources Center (SMERC) to access the Educational Resources Information Center (ERIC) and Fugitive Information Data Organizer (FIDO) databases as well as the curriculum guides housed at SMERC. (TG)

  10. NASA Facts, American Experiments on Cosmos 782.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is a summary report of the American experiments conducted on the Soviet Cosmos 782 satellite in November and December, l975. Each of the four passive and seven cooperating experiments developed by the U.S. National Aeronautics and Space Administration (NASA) are reviewed. (SL)

  11. 1.75 h {sup -1} kpc SEPARATION DUAL ACTIVE GALACTIC NUCLEI AT z = 0.36 IN THE COSMOS FIELD

    SciTech Connect

    Comerford, Julia M.; Davis, Marc; Griffith, Roger L.; Stern, Daniel; Gerke, Brian F.; Newman, Jeffrey A.

    2009-09-01

    We present strong evidence for dual active galactic nuclei (AGNs) in the z = 0.36 galaxy COSMOS J100043.15+020637.2. COSMOS Hubble Space Telescope (HST) imaging of the galaxy shows a tidal tail, indicating that the galaxy recently underwent a merger, as well as two bright point sources near the galaxy's center. The luminosities of these sources (derived from the HST image) and their emission line flux ratios (derived from Keck/DEIMOS slit spectroscopy) suggest that both are AGNs and not star-forming regions or supernovae. Observations from zCOSMOS, the Sloan Digital Sky Survey, XMM-Newton, Spitzer, and the Very Large Array fortify the evidence for AGN activity. With HST imaging we measure a projected spatial offset between the two AGNs of 1.75 {+-} 0.03 h {sup -1} kpc, and with DEIMOS we measure a 150 {+-} 40 km s{sup -1} line-of-sight velocity offset between the two AGNs. Combined, these observations provide substantial evidence that COSMOS J100043.15+020637.2 is a merger-remnant galaxy with dual AGNs.

  12. Neptune Variability with SpitzerNeptune Variability with Spitzer

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Krick, Jessica; Rebull, Luisa; Carey, Sean; Marley, Mark

    2015-12-01

    During Campaign 3 of the repurposed Kepler mission (dubbed K2), Kepler was used to obtain a long-duration, high-accuracy, fast cadence, optical light curve for Neptune. That light curve shows variability with peak-to-peak amplitude of order 2% and with remarkable structure due to the "beating" of several signals with similar periods. The data have been interpreted to be dominated by rotational modulation of discrete "clouds" in the planet's atmosphere, with the different periods corresponding to spots at different latitudes. Because approximately contemporaneous HST and Keck imaging of Neptune exists, it is possible to connect specific spots at specific latitudes to the specific periods identified in the periodogram. As a proof of concept for what could be a longer-duration observation that would be proposed in Cycle 13, we propose to obtain light curves for Neptune in both IRAC channels with the duration set equal to the planet's equatorial rate. Neptune has strong methane absorption bands that fall within Ch1 of IRAC; it also has strong emission lines from flourescently excited CO that fall in the Ch2 wavelength range. It is therefore possible that there could be rotational modulation of similar or larger amplitude in the IRAC channels as in the optical. If detected, the shape and amplitude of these variations could help constrain the vertical structure and composition of Neptune's atmosphere. Our proposed observation of Neptune is best done when Neptune shows as little apparent motion on the sky as possible. As seen from Spitzer, this next occurs on about Feb. 19 and Feb. 20, 2016.

  13. The Nature of Hard X-Ray (3–24 keV) Detected Luminous Infrared Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta; Ueda, Yoshihiro

    2017-04-01

    We investigate the nature of far-infrared (70 μm) and hard X-ray (3–24 keV) selected galaxies in the COSMOS field detected with both Spitzer and the Nuclear Spectroscopic Telescope Array (NuSTAR). By matching the Spitzer-COSMOS catalog with the NuSTAR-COSMOS catalog, we obtain a sample consisting of a hyperluminous infrared galaxy with {log}({L}{IR}/{L}ȯ )≥slant 13, 12 ultraluminous infrared galaxies with 12≤slant {log} ({L}{IR}/{L}ȯ )≤slant 13, and 10 luminous infrared galaxies with 11≤slant {log} ({L}{IR}/{L}ȯ )≤slant 12, i.e., 23 Hy/U/LIRGs in total. Using their X-ray hardness ratios, we find that 12 sources are obscured active galactic nuclei (AGNs) with absorption column densities of {N}{{H}}> {10}22 cm‑2, including several Compton-thick ({N}{{H}}∼ {10}24 cm‑2) AGN candidates. On the basis of the infrared (60 μm) and intrinsic X-ray luminosities, we examine the relation between star formation (SF) and AGN luminosities of the 23 Hy/U/LIRGs. We find that the correlation is similar to that of the optically selected AGNs reported by Netzer, whereas local, far-infrared selected U/LIRGs show higher SF-to-AGN luminosity ratios than the average of our sample. This result suggests that our Hy/U/LIRGs detected both with Spitzer and NuSTAR are likely situated in a transition epoch between AGN-rising and cold-gas diminishing phases in SF-AGN evolutional sequences. The nature of a Compton-thick AGN candidate newly detected above 8 keV with NuSTAR (ID 245 in Civano et al.) is briefly discussed.

  14. Mining the Spitzer Legacy Science Data Archive

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Storrie-Lombardi, L.; Squires, G.; Alexov, A.

    2005-12-01

    The original Spitzer Legacy Science Program is now approaching completion with the basic observations archived and the `enhanced' data products populating dedicated Spitzer and IRSA archives. To date the Legacy teams of C2D, FEPS, GLIMPSE, GOODS, SINGS and SWIRE have delivered more than half of the total planned `enhanced' data products to the public archives. The archives include fully reduced and calibrated imaging, spectra, and tabular data derived from the Spitzer IRAC, MIPS and IRS observations, as well as ancillary ground-based imaging and spectroscopy. Science results are now flowing from the Legacy teams, addressing the fundamental questions that the Spitzer observations where designed and optimized to answer. However, the data archives are mostly untapped in their science potential, offering a rich resource for astronomical data mining. We describe the archives in detail, spanning their structure, content and accessibility. User friendly resources for mining the data are showcased, including the Spitzer Science Center archive tool Leopard and the Infrared Science Archive services Atlas and RADAR.

  15. HR-COSMOS: Kinematics of star-forming galaxies at z 0.9

    NASA Astrophysics Data System (ADS)

    Pelliccia, D.; Tresse, L.; Epinat, B.; Ilbert, O.; Scoville, N.; Amram, P.; Lemaux, B. C.; Zamorani, G.

    2017-02-01

    We present the kinematic analysis of a sub-sample of 82 galaxies at 0.75 < z < 1.2 from our new survey HR-COSMOS aimed to obtain the first statistical sample to study the kinematics of star-forming galaxies in the treasury COSMOS field at 0 < z < 1.2. We observed 766 emission line galaxies using the multi-slit spectrograph ESO-VLT/VIMOS in high-resolution mode (R = 2500). To better extract galaxy kinematics, VIMOS spectral slits have been carefully tilted along the major axis orientation of the galaxies, making use of the position angle measurements from the high spatial resolution HST/ACS COSMOS images. We constrained the kinematics of the sub-sample at 0.75 < z < 1.2 by creating high-resolution semi-analytical models. We established the stellar-mass Tully-Fisher relation at z ≃ 0.9 with high-quality stellar mass measurements derived using the latest COSMOS photometric catalog, which includes the latest data releases of UltraVISTA and Spitzer. In doubling the sample at these redshifts compared with the literature, we estimated the relation without setting its slope, and found it consistent with previous studies in other deep extragalactic fields assuming no significant evolution of the relation with redshift at z ≲ 1. We computed dynamical masses within the radius R2.2 and found a median stellar-to-dynamical mass fraction equal to 0.2 (assuming Chabrier IMF), which implies a contribution of gas and dark matter masses of 80% of the total mass within R2.2, in agreement with recent integral field spectroscopy surveys. We find no dependence of the stellar-mass Tully-Fisher relation with environment probing up to group scale masses. This study shows that multi-slit galaxy surveys remain a powerful tool to derive kinematics for large numbers of galaxies at both high and low redshift. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 083.A-0935.

  16. Parallax: The Race to Measure the Cosmos

    NASA Astrophysics Data System (ADS)

    Hirshfeld, A. W.

    2001-05-01

    The new book "Parallax: The Race to Measure the Cosmos" chronicles the centuries-long struggle to secure the first distance to a star through detection of stellar parallax. Beginning with the naked-eye attempts of Tycho Brahe and proceeding through the telescopic studies of Robert Hooke, James Bradley, and William Herschel, all three of whom employed observational strategies suggested by Galileo, the effort to measure stellar parallax gained momentum in the early 19th century with dramatic improvements in telescope technology by German craftsmen such as Joseph Fraunhofer. Three near-contemporaneous announcements of stellar parallaxes were made in the late 1830s by Thomas Henderson (Alpha Centauri), Wilhelm Struve (Vega), and Friedrich Bessel (61 Cygni). By consensus of the astronomical community, Bessel was credited with the first successful measurement of a star's distance. With its biographical focus, "Parallax: The Race to Measure the Cosmos" highlights the human dimensions of scientific achievement.

  17. Cosmos 1129 - Spaceflight and bone changes

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey-Holton, E.; Jee, W. S. S.

    1980-01-01

    Male Wistar rats were placed in orbit for an 18.5 day period aboard the Soviet Cosmos 1129 biological satellite. The skeletal changes which occurred during spaceflight were determined to be a reduced rate of periosteal bone formation in the tibial and humeral diaphyses, and a decreased trabecular bone volume and an increased fat content of the bone marrow in the proximal tibial metaphysis.

  18. COSMOS - a study comparing peripheral intravenous systems.

    PubMed

    López, Juan Luis González; Del Palacio, Encarnación Ferenández; Marti, Carmen Benedicto; Corral, Javier Olivares; Portal, Pilar Herrera; Vilela, Ana Arribi

    In many areas of the world, safety peripheral intravenous systems have come into widespread use. The Madrid region was the first in Spain to adopt such an approach. These systems, though initially introduced to protect users from sharps injuries, have now evolved to include patient protection features as well. Patient protection, simply stated, means closing the system to pathogen entry. The authors' purpose was to investigate, in a prospective and randomized study, the clinical performance of a closed safe intravenous system versus an open system (COSMOS - Compact Closed System versus Mounted Open System). COSMOS is designed to provide definitive answers, from a nursing perspective, to many topics related to peripheral venous catheterization, which have important implications in intravenous therapy and which have not been validated scientifically. Furthermore, it forms pioneering research in that it is the first clinical trial on medical devices in a legislated environment carried out entirely by nurses and whose promoter and principal investigator is a nurse. The objectives of COSMOS are to compare the effectiveness (as defined by time of survival without complications) and rates of catheter-related complications, such as phlebitis, pain, extravasation, blockage and catheter-related infections. It also looks at rates of catheter colonization, the ease of handling of both systems and overall costs. This article outlines the authors' approach, both in preparing hospital units for such an evaluation as well as in the choice of parameters and their method of study. Further articles will detail the results and findings of the study.

  19. Modelling mid-Pliocene climate with COSMOS

    NASA Astrophysics Data System (ADS)

    Stepanek, C.; Lohmann, G.

    2012-10-01

    In this manuscript we describe the experimental procedure employed at the Alfred Wegener Institute in Germany in the preparation of the simulations for the Pliocene Model Intercomparison Project (PlioMIP). We present a description of the utilized Community Earth System Models (COSMOS, version: COSMOS-landveg r2413, 2009) and document the procedures that we applied to transfer the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project mid-Pliocene reconstruction into model forcing fields. The model setup and spin-up procedure are described for both the paleo- and preindustrial (PI) time slices of PlioMIP experiments 1 and 2, and general results that depict the performance of our model setup for mid-Pliocene conditions are presented. The mid-Pliocene, as simulated with our COSMOS setup and PRISM boundary conditions, is both warmer and wetter in the global mean than the PI. The globally averaged annual mean surface air temperature in the mid-Pliocene standalone atmosphere (fully coupled atmosphere-ocean) simulation is 17.35 °C (17.82 °C), which implies a warming of 2.23 °C (3.40 °C) relative to the respective PI control simulation.

  20. The Ultimate Spitzer Phase Curve Survey

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Feng, Y. Katherina; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam

    2016-08-01

    Exoplanet phase curves are sure to be one of the main enduring legacies of Spitzer. They provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that will continue to open new doors of scientific inquiry and propel future investigations for years to come. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. Instead, a new potential trend is emerging, one that connects heat redistribution efficiency with planet rotation rate. We will test this hypothesis by performing Spitzer phase curve observations of seven exoplanets with physical properties that span the parameter space. We have identified high-contrast targets with short orbital periods around bright host stars to ensure the observations reveal robust phase curve results. Spitzer is uniquely suited for this program because we can achieve our primary goals using broadband photometry. Part of the phase curve legacy will be to combine our archived Spitzer data with transmission and dayside emission spectra from HST and JWST. Adding energy transport and cloud coverage constraints to the measured dayside abundances and thermal profiles will yield a fundamental understanding of these exoplanets' atmospheres that can be leveraged into new avenues of investigation.

  1. Observations of Near Earth Objects with Spitzer

    NASA Astrophysics Data System (ADS)

    Trilling, David E.; Mommert, Michael; Hora, Joseph L.; Chesley, Steven R.; Emery, Joshua P.; Fazio, Giovanni G.; Harris, Alan; Mueller, Michael; Smith, Howard Alan

    2016-10-01

    We are carrying out an Exploration Science Warm Spitzer program entitled NEOSurvey in which we are observing 550 Near Earth Objects in 710 hours of Spitzer time. For each object we use a thermal model to derive diameter and albedo. For each object we also derive a (partial) lightcurve; total elapsed observing times range from 15 minutes to 3.2 hours. This catalog of 500+ NEO lightcurves is a substantial increase over the number of NEO lightcurves presently known. In addition to creating a large catalog of NEO properties, we are also able to study the properties of individual NEOs, including those with low delta V values (i.e., accessible asteroids) and those that might be dead comets. The final observations in this program will be obtained by 30 Sept 2016, so at the DPS meeting we will present a first look at our entire catalog of results. All results are posted at nearearthobjects.nau.edu usually within days of the data being released by the Spitzer Science Center. This work was supported in part by funding from the Spitzer Science Center.

  2. CoSMoS unravels mysteries of transcription initiation.

    PubMed

    Gourse, Richard L; Landick, Robert

    2012-02-17

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters.

  3. COSMOS (County of San Mateo Online System). A Searcher's Manual.

    ERIC Educational Resources Information Center

    San Mateo County Superintendent of Schools, Redwood City, CA. Educational Resources Center.

    Operating procedures are explained for COSMOS (County of San Mateo Online System), a computerized information retrieval system designed for the San Mateo Educational Resources Center (SMERC), which provides interactive access to both ERIC and a local file of fugitive documents. COSMOS hardware and modem compatibility requirements are reviewed,…

  4. VizieR Online Data Catalog: COSMOS/UltraVISTA Ks-selected catalogs v4.1 (Muzzin+, 2013)

    NASA Astrophysics Data System (ADS)

    Muzzin, A.; Marchesini, D.; Stefanon, M.; Franx, M.; Milvang-Jensen, B.; Dunlop, J. S.; Fynbo, J. P. U.; Brammer, G.; Labbe, I.; van Dokkum, P.

    2016-07-01

    The current catalog release, v4.1 is a Ks-selected catalog of the COSMOS field based on the imaging from the DR1 UltraVISTA release (see McCracken+, 2012, J/A+A/544/A156). The catalog covers a total area of 1.62deg2, and has photometry in 30 bands including the GALEX, Subaru, CFHT, UltraVISTA, and Spitzer imaging. The 90% completeness limit of the survey is Ks,tot=23.4 AB. Photometry has been determined in a color aperture by PSF matching all bands, including additional source-fitting for the large-PSF space-based imaging such as GALEX and IRAC/MIPS. (6 data files).

  5. Adaptation of skeletal muscle to spaceflight: Cosmos rhesus project. Cosmos 2044 and 2229

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue

    1994-01-01

    The proposed experiments were designed to determine the effects of the absence of weight support on hindlimb muscles of the monkey: an ankle flexor (tibialis anterior, TA), two ankle extensors (medial gastrocnemius, MG and soleus, SOL), and a knee extensor (vastus lateralis, VL). These effects were assessed by examining the biochemical and morphological properties of muscle fibers obtained from biopsies in young Rhesus monkeys (3-4 Kg). Biopsies taken from ground base experiments were analyzed to determine: (1) the effects of chair restraint at 1 G on muscle properties and (2) the growth rate of flexor and extensor muscles in the Rhesus. In addition, two sets of biopsies were taken from monkeys which were in the flight pool and the four monkeys that flew on the Cosmos 2044 and 2229 biosatellite missions. Based on data collected in rats it is generally assumed that extensors atrophy to a greater extent than flexors in response to spaceflight or hindlimb suspension. Consequently, the finding that fibers in the TA (a fast flexor) of the flight monkeys atrophied, whereas fibers in the Sol (a predominantly slow extensor) and MG (a fast extensor) grew after a 14-day spaceflight (Cosmos 2044) and 12-day spaceflight (Cosmos 2229) was unexpected. In Cosmos 2044, the TA in both flight monkeys had a 21 percent decrease in fiber size, whereas the Sol and MG both had a 79 percent increase in fiber size. In Cosmos 2229, the TA in both flight monkeys showed significant atrophy, whereas the Sol and MG showed slight growth in one monkey (906) and slight atrophy in the other monkey (151).

  6. Modelling mid-Pliocene climate with COSMOS

    NASA Astrophysics Data System (ADS)

    Stepanek, C.; Lohmann, G.

    2012-04-01

    In this manuscript we describe the experimental procedure employed at the Alfred Wegener Institute in Germany in the preparation of the simulations for the Pliocene Model Intercomparison Project (PlioMIP). We present a description of the utilized community earth system models (COSMOS) and document the procedures which we applied to transfer the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM) mid-Pliocene reconstruction into model forcing fields. The model setup and spin-up procedure are described for both the paleo and preindustrial (PI) time-slices of PlioMIP experiments 1 and 2, and general results that depict the performance of our model setup for mid-Pliocene conditions are presented. The mid-Pliocene as simulated with our COSMOS-setup and PRISM boundary conditions is both warmer and wetter than the PI. The globally averaged annual mean surface air temperature in the mid-Pliocene standalone atmosphere (fully coupled atmosphere-ocean) simulation is 17.35 °C (17.82 °C), which implies a warming of 2.23 °C (3.40 °C) relative to the respective PI control simulation.

  7. SPS Fabric of the Cosmos Cafe

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anish

    2012-02-01

    Hosted by Brian Greene and based on his best-selling book of the same title, The Fabric of the Cosmos is a new four- part NOVA series that explores the deepest mysteries of space and time. The program was kicked-off by 30 ``Cosmic Cafes'' being held around the country funded by an NSF grant which allows SPS-NOVA to fund SPS chapters for these events. During the summer I assisted in planning this kick-off, reviewing and suggesting revisions of resources related to the NOVA series to make them relevant to an SPS audience. I also got to organize and moderate the first ``Cosmic Cafe.'' The Cosmic cafe that I organized was discussion based, with our speaker Dr. James Gates starting with a short talk and then opening the floor up for questions. By organizing a ``Cosmic cafe,'' I got real hand experience about the challenges an SPS chapter would face while organizing a cafe themselves. Based on my experience I shall also discuss the effectiveness of the first ever themed science cafe blitz. A science caf'e is an informal discussion with an expert in a very casual location, usually a restaurant, coffee shop, or a bar. A science cafe is mostly discussion based, but has a lot of freedom for the format. A ``Cosmic'' cafe is a science cafe which is based around the topics discussed in the documentary ``The Fabric of the Cosmos.''

  8. Lyman Spitzer, Jr. (1914-1997)

    NASA Astrophysics Data System (ADS)

    Field, George B.

    1998-03-01

    Lyman Spitzer, Jr., the Bruce Medalist of the Astronomical Society of the Pacific for 1973, died on 1997 March 31. An intrepid leader, he founded the Princeton Plasma Physics Laboratory and was Principal Investigator on NASA's Copernicus Orbiting Astronomical Observatory. He established the theoretical foundations for the modern study of the interstellar medium and contributed to the theory of evolution of stellar clusters. His 1955 monograph, The Physics of Fully Ionized Gases (2d ed., 1962), his Diffuse Matter in Space (1968), and his Physical Processes in the Interstellar Medium (1978) all became the standard references in their fields. The success of the Hubble Space Telescope is due in large part to his foresight and leadership in pursuing this project. An avid rock climber, Spitzer ascended many peaks around the world. His scientific achievements enriched astronomy for decades to come.

  9. Lyman Spitzer: Astronomer, Physicist, Engineer, and Mountaineer

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2006-12-01

    NASA's naming of the Spitzer Space Telescope after Lyman Spitzer was a most appropriate choice, recognizing an outstanding scientist who also contributed extensively to space astronomy. As an astronomer he was a leading authority in the physics of both the interstellar medium and stellar dynamics, wrote textbooks for both fields, and guided many research students. As a physicist he conceived the Stellarator for magnetic confinement, managed a laboratory for controlled fusion, and wrote a textbook on plasma physics. As an engineer he led the development of the payload for the successful Copernicus satellite, which fulfilled his 1946 proposal for an extraterrestrial observatory. His mountaineering included first ascents on Baffin Island and in the Canadian Rockies as well as the summit of the challenging Mt Waddington in the Coast Range.

  10. Stellar Jewels Shine in New Spitzer Image

    NASA Technical Reports Server (NTRS)

    2004-01-01

    One of the most prolific birthing grounds in our Milky Way galaxy, a nebula called RCW 49, is exposed in superb detail for the first time in this new image from NASA's Spitzer Space Telescope. Located 13,700 light-years away in the southern constellation Centaurus, RCW 49 is a dark and dusty stellar nursery that houses more than 2,200 stars.

    Because many of the stars in RCW 49 are deeply embedded in plumes of dust, they cannot be seen at visible wavelengths. When viewed with Spitzer's infrared eyes, however, RCW 49 becomes transparent. Like cracking open a quartz rock to discover its jewels inside, the nebula's newborn stars have been dramatically exposed.

    This image taken by Spitzer's infrared array camera highlights the nebula's older stars (blue stars in center pocket), its gas filaments (green) and dusty tendrils (pink). Speckled throughout the murky clouds are more than 300 never-before-seen newborn stars.

    Astronomers are interested in further studying these newfound proto-stars because they offer a fresh look at star formation in our own galaxy.

    This image was taken on Dec. 23, 2003, and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  11. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    PubMed

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  12. Antioxidative and antigenotoxic activity of extracts from cosmos (Cosmos bipinnatus) flowers.

    PubMed

    Jang, In-Cheol; Park, Jae-Hee; Park, Eunju; Park, Hae-Ryong; Lee, Seung-Cheol

    2008-12-01

    The Cosmos bipinnatus has been used in a traditional herbal remedy for various diseases such as jaundice, intermittent fever, and splenomegaly. The present study describes the preliminary evaluation of antioxidant activities and antigenotoxic effect of Cosmos bipinnatus flowers according to four different colors (white, pink, orange, and violet). The antioxidants properties were evaluated by determining TPC, DPPH RSA, ABTS RSA, and RP. The highest TPC of methanolic CFE (at concentration of 1 mg/ml) showed in violet colored CF (1,013 microM), and IC(50) of DPPH RSA, ABTS RSA, and RP were also the lowest in violet colored CFE with values of 0.61, 1.48, and 0.82 mg/ml, respectively. The antigenotoxic effect of the CFE on DNA damage induced by H(2)O(2) in human leukocytes was evaluated by Comet assay. Pretreatments with CFE produced significant reductions in oxidative DNA damage at the concentration of 500 microg/ml, except for violet colored CFE. The ED(50) value of white colored CFE has shown the highest inhibition (0.40 mg/ml) on H(2)O(2) induced DNA damage, followed by orange > pink > violet color. These results suggested that Cosmos bipinnatus has significant antioxidant activity and protective effect against oxidative DNA damage.

  13. Biological investigations aboard the biosatellite Cosmos-1129

    NASA Astrophysics Data System (ADS)

    Tairbekov, M. G.; Parfyonov, G. P.; Platonova, R. W.; Abramova, V. M.; Golov, V. K.; Rostopshina, A. V.; Lyubchenko, V. Yu.; Chuchkin, V. G.

    Experiments on insects, higher plants and lower fungi were carried out aboard the biological satellite Cosmos-1129, in Earth orbit, from 25 September to 14 October 1979. The main objective of these experiments was to gain more profound knowledge of the effect of weightlessness on living organisms and to study the mechanisms by which these various organisms with different life cycles can adjust and develop in weightlessness. Experiments on insects (Drosophila melanogaster) were made with a view towards understanding gravitational preference in flies, the life cycle of which took place on board the biosatellite under conditions of artificial gravity. Experiments on higher plants (Zea mays, Arabidopsis taliana, Lycopersicum esculentum) and lower fungi (Physarum polycephalum) were performed.

  14. Investigations onboard the biosatellite Cosmos-1667

    NASA Astrophysics Data System (ADS)

    Gazenko, O. G.; Ilyin, E. A.

    The program of the 7-day flight of the biosatellite Cosmos-1667 launched in July 1985 included experiments on two rhesus monkeys, ten Wistar SPF rats, ten newts, Drosophila flies, maize seedlings, lettuce sprouts, and unicellular organisms - Tetrahymena. The primate study demonstrated that transition to orbital flight was accompanied by a greater excitability of the vestibular apparatus and an increased linear blood flow velocity in the common carotid artery. The rat studies showed that atrophy of antigravity muscles and osteoporosis of limb bones developed even during short-term exposure to microgravity. The experiments on other living systems revealed no microgravity effects on the cell division rate, proliferative activity of cells of regenerating tissues and organs, energy metabolism of developing insects, structure or chemical composition of higher plant seedlings.

  15. A Runaway Black Hole in COSMOS

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    2010-09-01

    We ask for 80ks of HRC imaging observation to unambiguously resolve the X-ray emission, and unveil the nature, of two optical sources hosted by a galaxy in the COSMOS field {CID-42} and separated by only 0.495??. One of the two sources is the best candidate to date for being a recoiling super-massive black hole {SMBH} with both spectroscopic and imaging signatures, in a recently merged system. CID-42 is a possible ??Rosetta stone?? for the study of SMBH mergers that are believed to occur during galaxy-galaxy mergers. Is CID-42 {1} a GW recoiling SMBH from a recent merger or {2} a slingshot recoiling SMBH in a triple SMBH system? HRC imaging will decide clearly.

  16. A Runaway Black Hole in COSMOS

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    2010-09-01

    We ask for 80ks of HRC imaging observation to unambiguously resolve the X-ray emission, and unveil the nature, of two optical sources hosted by a galaxy in the COSMOS field (CID-42) and separated by only 0.495''. One of the two sources is the best candidate to date for being a recoiling super-massive black hole (SMBH) with both spectroscopic and imaging signatures, in a recently merged system. CID-42 is a possible ``Rosetta stone'' for the study of SMBH mergers that are believed to occur during galaxy-galaxy mergers. Is CID-42 (1) a GW recoiling SMBH from a recent merger or (2) a slingshot recoiling SMBH in a triple SMBH system? HRC imaging will decide clearly.

  17. Hubble's new view of the cosmos

    PubMed

    Villard, R

    1996-05-01

    Since the December 1993 repair of NASA's Hubble Space Telescope's (HST) optics by the crew of the Space Shuttle Endeavour, the rapid-fire scientific achievements have brought a new era of discovery to the field of astronomy. Hubble has confirmed some astronomical theories, challenged others, and often come up with complete surprises. Some images are so unexpected that astronomers have to develop new theories to explain what they are seeing. The HST has detected galaxies out to the visible horizon of the cosmos, and has made an attempt at pinning down the universe's expansion rate. Both of these key research areas should ultimately yield answers to age-old questions: What has happened since the beginning of time, and will the universe go on forever?

  18. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  19. Photometric Redshifts of Galaxies in COSMOS

    NASA Astrophysics Data System (ADS)

    Mobasher, B.; Capak, P.; Scoville, N. Z.; Dahlen, T.; Salvato, M.; Aussel, H.; Thompson, D. J.; Feldmann, R.; Tasca, L.; Le Fevre, O.; Lilly, S.; Carollo, C. M.; Kartaltepe, J. S.; McCracken, H.; Mould, J.; Renzini, A.; Sanders, D. B.; Shopbell, P. L.; Taniguchi, Y.; Ajiki, M.; Shioya, Y.; Contini, T.; Giavalisco, M.; Ilbert, O.; Iovino, A.; Le Brun, V.; Mainieri, V.; Mignoli, M.; Scodeggio, M.

    2007-09-01

    We present photometric redshifts for the COSMOS survey derived from a new code, optimized to yield accurate and reliable redshifts and spectral types of galaxies down to faint magnitudes and redshifts out to z~1.2. The technique uses χ2 template fitting, combined with luminosity function priors and with the option to estimate the internal extinction [or E(B-V)]. The median most probable redshift, best-fit spectral type and reddening, absolute magnitude, and stellar mass are derived in addition to the full redshift probability distributions. Using simulations with sampling and noise similar to those in COSMOS, the accuracy and reliability is estimated for the photometric redshifts as a function of the magnitude limits of the sample, S/N ratios, and the number of bands used. We find from the simulations that the ratio of derived 95% confidence interval in the χ2 probability distribution to the estimated photometric redshift (D95) can be used to identify and exclude the catastrophic failures in the photometric redshift estimates. To evaluate the reliability of the photometric redshifts, we compare the derived redshifts with high-reliability spectroscopic redshifts for a sample of 868 normal galaxies with z<1.2 from zCOSMOS. Considering different scenarios, depending on using prior, no prior, and/or extinction, we compare the photometric and spectroscopic redshifts for this sample. The rms scatter between the estimated photometric redshifts and known spectroscopic redshifts is σ(Δ(z))=0.031, where Δ(z)=(zphot-zspec)/(1+zspec) with a small fraction of outliers (<2.5%) [outliers are defined as objects with Δ(z)>3σ(Δ(z)), where σ(Δ(z)) is the rms scatter in Δ(z)]. We also find good agreement [σ(Δ(z))=0.10] between photometric and spectroscopic redshifts for type II AGNs. We compare results from our photometric redshift procedure with three other independent codes and find them in excellent agreement. We show preliminary results, based on photometric redshifts

  20. Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.; Spitzer Science Center

    2016-01-01

    The Spitzer Space Telescope, launched on 2003 August 25, continues to produce new and exciting views of the Universe as seen in infrared light. Spitzer is the fourth and final space telescope in NASA's Great Observatory series. Originally it consisted of a liquid-helium-cooled 85-cm telescope and three imaging and spectroscopic instruments capable of observing infrared light (3-160 micron wavelength) from regions of space invisible to optical telescopes. In mid-2009 Spitzer's cryogen was exhausted, leaving the observatory with two operating imaging arrays at 3.6 and 4.5 micron wavelength. "Warm" Spitzer, as it is now called, continues to match the sensitivity achieved at these wavelengths during the cryogenic mission and remains very much in demand. The Spitzer Space Telescope has changed our view of the Universe. Spitzer's scientific results include the study of the formation and evolution of galaxies in the early Universe, star formation and evolution, exoplanets, the structure and evolution of planetary disks around nearby stars, the cosmic distance scale, clusters of galaxies, near-Earth asteroids, and comets. After a brief description of the Spitzer mission, achievements of Spitzer's extragalactic and galactic observational programs will be presented, including many of Spitzer's very spectacular images.

  1. The SuperCOSMOS Science Archive

    NASA Astrophysics Data System (ADS)

    Hambly, N.; Read, M.; Mann, R.; Sutorius, E.; Bond, I.; MacGillivray, H.; Williams, P.; Lawrence, A.

    2004-07-01

    The SuperCOSMOS Sky Survey (SSS {http://www-wfau.roe.ac.uk/sss}; Hambly et al., 2001) consists of digitised scans of Schmidt photographic survey material in a multi-colour (BRI), multi-epoch, uniformly calibrated product. It covers the whole southern hemisphere, with an extension into the north currently underway. Public online access to the 2 Tbytes of SSS pixel data and object catalogues has been available for some time; data are being downloaded at a rate of several gigabytes per week, and many new science results are emerging from community use of the data. In this poster we describe the terabyte-scale SuperCOSMOS Science Archive {http://thoth.roe.ac.uk/ssa} (SSA), which is a recasting of the SSS object catalogue system from flat files into an RDBMS, with an enhanced user interface. We describe some aspects of the hardware and schema design of the SSA, which aims to produce a high performance, VO-compatible database, suitable for data mining by `power users', while maintaining the ease of use praised in the old SSS system. Initially, the SSA will allow access through web forms and a flexible SQL interface. It acts as the prototype for the next generation survey archives to be hosted by the University of Edinburgh's Wide Field Astronomy Unit, such as the WFCAM Science Archive of infrared sky survey data, as well as being a scalability testbed for use by AstroGrid, the UK's Virtual Observatory project. As a result of these roles, it will display subsequently an expanding functionality, as web - and later, Grid - services are deployed on it.

  2. 12. Historic American Buildings Survey Topographic Survey of Cosmos Club, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic American Buildings Survey Topographic Survey of Cosmos Club, 1950, by Bernard Locroft, Civil Engineer (Showing Grounds as They Were at End of Sumner Welles Era) SITE PLAN - Townsend House, 2121 Massachusetts Avenue Northwest, Washington, District of Columbia, DC

  3. Fingerprints of the first black holes? Crosscorrelationg the Near-Infrared and X-ray background in COSMOS

    NASA Astrophysics Data System (ADS)

    Hasinger, Guenther

    Unresolved cosmic backgrounds carry information about the populations of stars and black holes not accessible by any other current observational technique. Studies using both Spitzer and AKARI have revealed large-scale fluctuations in the Cosmic Infrared Background (CIB) after subtracting resolved sources to faint levels. The signal, which is stronger than all foreground contributions, has been attributed to the earliest light in the universe. Other teams, by using Spitzer and CIBER, suggested that this signal could originate from stars tidally stripped from their parent galaxies at low redshift as a result of mergers. Only sensitive multi-wavelength observations can distinguish between these radically different interpretations. Recently our team discovered an intriguing cross-correlation signal between the unresolved CIB and X-ray background (CXB) suggesting significant black hole populations among the CIB sources (C13). The analysis used data from Spitzer and Chandra in an overlapping 8'x45' region of the All-Wavelength Extended Groth strip International Survey (AEGIS), probing the clustering of the underlying sources to angular scales 20', but the experiment is limited by the size and the elongated configuration of the field. Here we propose to use the much more extended multiwavelength observations in the COSMOS field to obtain new constraints on this important debate. Spitzer has recently completed the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH), which observed the full 2 square degree COSMOS field to about half the depth of the AEGIS field, but a 20 times larger sky area. SPLASH, focusing on the COSMOS field with excellent multi-wavelength coverage from space and ground-based observatories, is ideally suited to study the CIB to better precision and at larger scales than available so far. We propose to cross-correlate the Spitzer unresolved CIB to the unresolved CXB observed by Chandra and XMM-Newton. Chandra has covered the full 2 deg2 COSMOS

  4. Performance of a newly designed continuous soot monitoring system (COSMOS).

    PubMed

    Miyazaki, Yuzo; Kondo, Yutaka; Sahu, Lokesh K; Imaru, Junichi; Fukushima, Nobuhiko; Kano, Minoru

    2008-10-01

    We designed a continuous soot monitoring system (COSMOS) for fully automated, high-sensitivity, continuous measurement of light absorption by black carbon (BC) aerosols. The instrument monitors changes in transmittance across an automatically advancing quartz fiber filter tape using an LED at a 565 nm wavelength. To achieve measurements with high sensitivity and a lower detectable light absorption coefficient, COSMOS uses a double-convex lens and optical bundle pipes to maintain high light intensity and signal data are obtained at 1000 Hz. In addition, sampling flow rate and optical unit temperature are actively controlled. The inlet line for COSMOS is heated to 400 degrees C to effectively volatilize non-refractory aerosol components that are internally mixed with BC. In its current form, COSMOS provides BC light absorption measurements with a detection limit of 0.45 Mm(-1) (0.045 microg m(-3) for soot) for 10 min. The unit-to-unit variability is estimated to be within +/- 1%, demonstrating its high reproducibility. The absorption coefficients determined by COSMOS agreed with those by a particle soot absorption photometer (PSAP) to within 1% (r2 = 0.97). The precision (+/- 0.60 Mm(-1)) for 10 min integrated data was better than that of PSAP and an aethalometer under our operating conditions. These results showed that COSMOS achieved both an improved detection limit and higher precision for the filter-based light absorption measurements of BC compared to the existing methods.

  5. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    SciTech Connect

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie; Song, Inseok

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  6. An IRAC@Spitzer survey of GGCs.

    NASA Astrophysics Data System (ADS)

    Fabbri, S.; Origlia, L.; Rood, R. T.; Ferraro, F. R.; Fusi Pecci, F.; Rich, M.

    A mid-IR deep survey of the central regions of 17 Galactic globular clusters (GGCs), spanning the entire range of metallicity between approximately a hundredth solar up to solar, has been made using the InfraRed Array Camera (IRAC) on board the Spitzer Space Telescope. IRAC is a four-channel camera that provides simultaneous 5.2'×5.2' images at 3.6, 4.5, 5.8 and 8.0 microns. The main goal of our project is the detailed study of mass loss (ML) in first ascent Population II giants whit varying stellar parameters, metal content and Horizontal Branch (HB) morphology.

  7. Cosmic Star Formation from 0.5Spitzer

    NASA Technical Reports Server (NTRS)

    Chary, Ranga-Ram

    2006-01-01

    This viewgraph presentation reviews some findings from the Spitzer telescope about star formation. The presentation shows charts summarizing information from the Spitzer Telescope and other observations.

  8. Spitzer Sees Water Loud and Clear

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B.

    The data were captured by NASA's Spitzer Space Telescope using an instrument called a spectrograph. A spectrograph collects light and sorts it according to color, or wavelength. In this case, infrared light from NGC 1333-IRAS 4B was broken up into the wavelengths listed on the horizontal axis of the plot. The sharp spikes, called spectral lines, occur at wavelengths at which the stellar object is particularly bright. The signature of water vapor is revealed in the pattern of wavelengths at which the spikes appear.

    By comparing the observed data to a model (lower curve), astronomers can also determine the physical and chemical details of the region. For example, astronomers say these data suggest that ice in a cocoon surrounding the forming star is falling inward. The ice then smacks supersonically into a dusty planet-forming disk surrounding the stellar embryo, heats up and vaporizes quickly, releasing the infrared light that Spitzer collected.

  9. The Euclid/WFIRST Spitzer Legacy Survey

    NASA Astrophysics Data System (ADS)

    Capak, Peter; Arendt, R.; Arnouts, S.; Bartlett, J.; Bouwens, R.; Brinchman, J.; Brodwin, M.; Carollo, M.; Castander, F.; Charlot, S.; Chary, R.-R.; Cohen, J.; Cooray, A.; Conselice, C.; Coupon, J.; Cuby, J.-G.; Culliandre, J.; Davidzon, I.; Dole, H.; Dunlop, J.; Eisenhardt, P.; Ferrara, A.; Gardner, J.; Hasinger, G.; Hildebrandt, H.; Ho, S.; Ilbert, O.; Jouvel, S.; Kashlinsky, A.; LeFevre, O.; LeFloc'h, E.; Maraston, C.; Masters, D.; McCracken, H. J.; Mei, S.; Mellier, Y.; Mitchell-Wynn, K.; Moustakas, L.; Nayyeri, H.; Paltani, S.; Rhodes, J.; Salvato, M.; Sanders, D.; Scaramella, R.; Scarlata, C.; Scoville, N.; Silverman, J.; Speagle, J.; Stanford, S.; Stern, D.; Teplitz, H.; Toft, S.

    2016-08-01

    We propose 5286h of Spitzer Legacy Science Time to carry out a precursor survey for Euclid, WFIRST, and JWST. The primary goal is to enable definitive studies of reionization, z>7 galaxy formation, and the first massive black holes. The proposed data will also enhance the cosmological constraints provided by Euclid and WFIRST. The survey will cover 20 square degrees to 2h per pointing, split between the Chandra Deep Field South (CDFS) and the North Ecliptic Pole. These are some of the darkest and most observable fields on the sky and have existing multi-wavelength data that will enable immediate science. The survey parameters are designed to enable stellar mass measurement at 3Spitzer can probe this region of survey space at 3-5um, a wavelength range that uniquely enables stellar mass estimates at z>3 enabling a direct probe of galaxy growth during the epoch of re-ionization.

  10. Optimal Calibration of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David; Kang, Bryan; Brugarolas, Paul; Boussalis, Dhemetrio

    2007-01-01

    A document discusses the focal-plane calibration of the Spitzer Space Telescope by use of the instrument pointing frame (IPF) Kalman filter, which was described in Kalman Filter for Calibrating a Telescope Focal Plane (NPO-40798), NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 62. To recapitulate: In the IPF Kalman filter, optimal estimates of both engineering and scientific focal-plane parameters are obtained simultaneously, using data taken in each focalplane survey activity. The IPF Kalman filter offers greater efficiency and economy, relative to prior calibration practice in which scientific and engineering parameters were estimated by separate teams of scientists and engineers and iterated upon each other. In the Spitzer Space Telescope application, the IPF Kalman filter was used to calibrate 56 frames for precise telescope pointing, estimate >1,500 parameters associated with focal-plane mapping, and process calibration runs involving as many as 1,338 scientific image centroids. The final typical survey calibration accuracy was found to be 0.09 arc second. The use of the IPF Kalman filter enabled a team of only four analysts to complete the calibration processing in three months. An unanticipated benefit afforded by the IPF Kalman filter was the ability to monitor health and diagnose performance of the entire end-to-end telescope-pointing system.

  11. Spitzer Secondary Eclipses of WASP-32b

    NASA Astrophysics Data System (ADS)

    Garland, Justin; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Foster, Andrew S.; Bowman, Oliver Oliver; Maxted, Pierre F. L.

    2016-10-01

    We report two secondary eclipses of the exoplanet WASP-32b. Discovered Maxted et al. in 2010, this hot-Jupiter exoplanet has a mass of 3.6 ± 0.07 Mj a radius of 1.18 ± 0.07 Rj and an orbital period of 2.71865 ± 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 μm} and 4.5 μm channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse depth measurements of 0.0013 ± 0.00023 in the 4.5 μm band and a three sigma upper limit on the eclipse depth in the 3.6 μm band of 0.04 ± 0.0333. We also report an infrared brightness temperature of 1538 ± 110 K in the 4.5 μm channel and refinements of orbital parameters for WASP-32b from our eclipse timing as well as amatuer and professional data that reduce the uncertanties of previous results.

  12. SPITZER SECONDARY ECLIPSES OF WASP-18b

    SciTech Connect

    Nymeyer, Sarah; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Campo, Christopher J.; Blecic, Jasmina; Bowman, William C.; Britt, Christopher B. T.; Cubillos, Patricio; Madhusudhan, Nikku; Collier-Cameron, Andrew; Maxted, Pierre F. L.; Loredo, Thomas J.; Hellier, Coel; Anderson, David R.; Gillon, Michael; Hebb, Leslie; Wheatley, Peter J.; Pollacco, Don

    2011-11-20

    The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzer's Infrared Array Camera in the 3.6 {mu}m and 5.8 {mu}m bands on 2008 December 20, and in the 4.5 {mu}m and 8.0 {mu}m bands on 2008 December 24. We report eclipse depths of 0.30% {+-} 0.02%, 0.39% {+-} 0.02%, 0.37% {+-} 0.03%, 0.41% {+-} 0.02%, and brightness temperatures of 3100 {+-} 90, 3310 {+-} 130, 3080 {+-} 140, and 3120 {+-} 110 K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered-as hot as an M-class star. The planet's pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day side to the night side of the planet.

  13. 77 FR 23318 - Culturally Significant Object Imported for Exhibition Determinations: “African Cosmos: Stellar Arts”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Object Imported for Exhibition Determinations: ``African Cosmos: Stellar Arts... Cosmos: Stellar Arts,'' imported from abroad for temporary exhibition within the United States, is...

  14. Panel Discussion: Life in the Cosmos

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Water appears to be essential to all life on Earth. For this reason, "Follow the Water" has been adopted as a mantra for the search for Life in the Cosmos. Expeditions have helped to establish the limits and biodiversity of life in the most extreme environments on Earth. Microbial extremophiles inhabit acidic streams; hypersaline and hyperalkaline lakes and pools; the cold deep sea floor, permafrost, rocks, glaciers, and perennially ice-covered lakes of the polar environments; geysers, volcanic fumaroles, hydrothermal vents and hot rocks deep within the Earth's crust. The ESA Venus Express Spacecraft entered Venusian Orbit in 2006 and continues to produce exciting results. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument made the first detection of hydroxyl in the atmosphere of Venus, indicating it is much more similar to Earth and Mars than previously thought. Huge hurricane-like vortices have been found above the poles of the planet and as yet unidentified UV absorbers that form mysterious dark bands in the upper atmosphere. At 70 km and below, water vapor and sulfur dioxide combine to form sulfuric acid droplets that create a haze above the cloud tops. Thermophilic acidophiles, such as have recently been discovered on Earth, could possibly survive in the hot sulfuric acid droplets that exist in the upper atmosphere of Venus. In order to understand how to search for life elsewhere in the Solar System, over 40 VIRTIS images of Earth from Venus have been obtained to search for evidence of life on Earth. The signatures of water and molecular Oxygen were detected in the Earth s atmosphere, but the atmosphere of Venus also exhibits these signatures. The water and water ice are far more abundant on comet, the polar caps and permafrost of Mars and the icy moons of Jupiter and Saturn. These "frozen worlds" of our Solar System, are much more promising regimes where extant or extinct microbial life may exist. The ESA Mars Advanced Radar for

  15. Qualitative and Quantitative Analysis of Flower Pigments in Chocolate Cosmos, Cosmos atrosanguineus, and its Hybrids.

    PubMed

    Amamiya, Kotarou; Iwashina, Tsukasa

    2016-01-01

    Two major anthocyanins, cyanidin 3-O-glucoside and 3-O-rutinoside, were isolated from the black flowers of Cosmos atrosanguineus cultivar 'Choco Mocha', together with three minor anthocyanins, cyanidin 3-O-malonylglucoside, pelargonidin 3-O-glucoside and 3-O-rutinoside. A chalcone, butein 4'-O-glucoside and three minor flavanones were isolated from the red flowers of C. atrosanguineis x C. sulphureus cultivar 'Rouge Rouge'. The anthocyanins and chalcone accumulation of cultivar 'Choco Mocha' and its hybrid cultivars 'Brown Rouge', 'Forte Rouge', 'Rouge Rouge' and 'Noel Rouge' was surveyed by quantitative HPLC. Total anthocyanins of black flower cultivars 'Choco Mocha' and 'Brown Rouge' were 3-4-folds higher than that of the red flower cultivar 'Noel Rouge'. On the other hand, total chalcone of 'Noel Rouge' was 10-77-folds higher compared with those of other cultivars, 'Brown Rouge', 'Forte Rouge' and 'Rouge Rouge'. It was shown that the flower color variations from red to black of Chocolate Cosmos and its hybrids are due to the difference in the relative amounts of anthocyanins and chalcone.

  16. The Subaru COSMOS 20: Subaru optical imaging of the HST COSMOS field with 20 filters*

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshiaki; Kajisawa, Masaru; Kobayashi, Masakazu A. R.; Shioya, Yasuhiro; Nagao, Tohru; Capak, Peter L.; Aussel, Herve; Ichikawa, Akie; Murayama, Takashi; Scoville, Nick Z.; Ilbert, Olivier; Salvato, Mara; Sanders, David B. B.; Mobasher, Bahram; Miyazaki, Satoshi; Komiyama, Yutaka; Le Fèvre, Olivier; Tasca, Lidia; Lilly, Simon; Carollo, Marcella; Renzini, Alvio; Rich, Michael; Schinnerer, Eva; Kaifu, Norio; Karoji, Hiroshi; Arimoto, Nobuo; Okamura, Sadanori; Ohta, Kouji; Shimasaku, Kazuhiro; Hayashino, Tomoki

    2015-12-01

    We present both the observations and the data reduction procedures of the Subaru COSMOS 20 project, an optical imaging survey of the HST COSMOS field, carried out by using Suprime-Cam on the Subaru Telescope with the following 20 optical filters: six broad-band (B, g', V, r', i', and z'), two narrow-band (NB711 and NB816), and 12 intermediate-band filters (IA427, IA464, IA484, IA505, IA527, IA574, IA624, IA679, IA709, IA738, IA767, and IA827). Part of this project is described in Taniguchi et al. (2007, ApJS, 172, 9) and Capak et al. (2007, ApJS, 172, 99) for the six broad-band and one narrow-band (NB816) filter data. In this paper, we present details of the observations and data reduction for the remaining 13 filters (the 12 IA filters and NB711). In particular, we describe the accuracy of both the photometry and astrometry in all the filter bands. We also present the optical properties of the Suprime-Cam IA filter system in appendices.

  17. RR Lyrae period luminosity relations with Spitzer

    NASA Astrophysics Data System (ADS)

    Neeley, Jillian R.; Marengo, Massimo; CRRP Team

    2017-01-01

    RR Lyrae variable stars have long been known to be valuable distance indicators, but only recently has a well defined period luminosity relationship been utilized at infrared wavelengths. In my thesis, I am combining Spitzer Space Telescope data of RR Lyrae stars obtained as part of the Carnegie RR Lyrae Program with ground based NIR data to characterize the period-luminosity-metallicity (PLZ) relation and provide an independent Population II calibration of the cosmic distance scale. I will discuss the ongoing efforts to calibrate this relation using objects such as M4 and NGC 6441 and how the first data release from the Gaia mission impacts our findings. I will also compare my preliminary empirical relations to theoretical PLZ relations derived from stellar pulsation models.

  18. Galactic Distribution of Planets Spitzer Microlens Parallaxes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Carey, Sean; Yee, Jennifer

    2016-08-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 700 events, including 18 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by 1 AU in projection. As we have demonstrated in two previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. For non-planetary events it can be combined with a Galactic model to estimate these quantities with factor 1.4 precision. Hence, the cumulative distributions of planetary events and all events can be compared to determine the relative frequency of planets in the Galactic disk and bulge. The results will be combined with those of current/previous Spitzer campaigns and the current Kepler campaign. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the new KMTNet observing strategy that covers 80 sq.deg at >0.4/hr cadence, 24/7 from 3 southern observatories. This same observing program also provides a unique probe of dark objects. It will yield the first mass-measurement based determination of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  19. Caltrans Keeps the Spitzer Pipelines Moving

    NASA Technical Reports Server (NTRS)

    Lee, Wen; Laher, Russ; Fowler, John; Moshir, Mehrdad

    2004-01-01

    The computer pipelines used to process digital infrared astronomical images from NASA's Spitzer Space Telescope require various input calibration-data files for characterizing the attributes and behaviors of the onboard focal-plane-arrays and their detector pixels, such as operability, dark-current offset, linearity, non- uniformity, muxbleed, droop, and point-response functions. The telescope has three very different science instruments, each with three or four spectral-band-pass channels, depending on the instrument. Moreover, each instrument has various operating modes (e-g., full array or sub-array in one case) and parameters (e.g., integration time). Calibration data that depend on these considerations are needed by pipelines for generating both science products (production pipelines) and higher-level calibration products (calibration pipelines). The calibration files are created in various formats either 'off-line' or by the aforementioned calibration pipelines, depending on the above configuration details. Also, the calibration files are generally applicable to a certain time period and therefore must be selected accordingly for a given raw input image to be correctly processed. All of this complexity in selecting and retrieving calibration files for pipeline processing is handled by a procedural software-program called 'caltrans' . This software, which is implemented in C and interacts with an Informix database, was developed at the Spitzer Science Center (SSC) and is now deployed in SSC daily operations. The software is rule-based, very flexible, and, for efficiency, capable of retrieving multiple calibration files with a single software-execution command.

  20. SPITZER OBSERVATIONS OF HOTSPOTS IN RADIO LOBES

    SciTech Connect

    Werner, Michael W.; Murphy, David W.; Livingston, John H.; Gorjian, Varoujan; Jones, Dayton L.; Meier, David L.; Lawrence, Charles R.

    2012-11-10

    We have carried out a systematic search with Spitzer Warm Mission and archival data for infrared emission from the hotspots in radio lobes that have been described by Hardcastle et al. These hotspots have been detected with both radio and X-ray observations, but an observation at an intermediate frequency in the infrared can be critical to distinguish between competing models for particle acceleration and radiation processes in these objects. Between the archival and warm mission data, we report detections of 18 hotspots; the archival data generally include detections at all four IRAC bands, the Warm Mission data only at 3.6 {mu}m. Using a theoretical formalism adopted from Godfrey et al., we fit both archival and warm mission spectral energy distributions (SEDs)-including radio, X-ray, and optical data from Hardcastle as well as the Spitzer data-with a synchrotron self-Compton (SSC) model, in which the X-rays are produced by Compton scattering of the radio frequency photons by the energetic electrons which radiate them. With one exception, an SSC model requires that the magnetic field be less or much less than the equipartition value which minimizes total energy and has comparable amounts of energy in the magnetic field and in the energetic particles. This conclusion agrees with those of comparable recent studies of hotspots, and with the analysis presented by Hardcastle et al. We also show that the infrared data rule out the simplest synchrotron-only models for the SEDs. We briefly discuss the implications of these results and of alternate interpretations of the data.

  1. Candidate Clusters of Galaxies at z > 1.3 Identified in the Spitzer South Pole Telescope Deep Field Survey

    NASA Astrophysics Data System (ADS)

    Rettura, A.; Martinez-Manso, J.; Stern, D.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Gettings, D.; Gonzalez, A. H.; Stanford, S. A.; Bartlett, J. G.

    2014-12-01

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg2 Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z <= 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density nc = (0.7+6.3-0.6) × 10-7 h3 {Mpc}-3 and a spatial clustering correlation scale length r 0 = (32 ± 7) h -1 Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M min, we derive that at z = 1.5 these clusters reside in halos larger than Mmin = 1.5+0.9-0.7 × 1014 h-1 M⊙ . We find that the mean mass of our cluster sample is equal to Mmean = 1.9+1.0-0.8 × 1014 h-1 M⊙ ; thus, our sample contains the progenitors of present-day massive galaxy clusters.

  2. CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY

    SciTech Connect

    Rettura, A.; Stern, D.; Martinez-Manso, J.; Gettings, D.; Gonzalez, A. H.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Stanford, S. A.; Bartlett, J. G.

    2014-12-20

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg{sup 2} Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density n{sub c}=(0.7{sub −0.6}{sup +6.3})×10{sup −7} h{sup 3} Mpc{sup −3} and a spatial clustering correlation scale length r {sub 0} = (32 ± 7) h {sup –1} Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M {sub min}, we derive that at z = 1.5 these clusters reside in halos larger than M{sub min}=1.5{sub −0.7}{sup +0.9}×10{sup 14} h{sup −1} M{sub ⊙}. We find that the mean mass of our cluster sample is equal to M{sub mean}=1.9{sub −0.8}{sup +1.0}×10{sup 14} h{sup −1} M{sub ⊙}; thus, our sample contains the progenitors of

  3. GREEN GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Pan, Zhizheng; Kong, Xu; Fan, Lulu E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  4. Fitness of the Cosmos for Life

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Conway Morris, Simon; Freeland, Stephen J.; Harper, Charles L., Jr.

    2007-12-01

    Foreword: The improbability of life George M. Whitesides; Part I. The Fitness of 'Fitness' - Henderson in Context: 1. Locating 'fitness' and Lawrence J. Henderson Everett Mendelsohn; 2. Revisiting The Fitness of the Environment Owen Gingerich; 3. Is fine-tuning remarkable? John F. Haught; 4. Complexity in context: the metaphysical implications of evolutionary theory Edward T. Oakes; 5. Tuning fine-tuning Ernan Mcmullin; Part II. The Fitness of the Cosmic Environment: 6. Fitness and the cosmic environment Paul C. W. Davies; 7. The interconnections between cosmology and life Mario Livio; 8. Chemistry and sensitivity John D. Barrow; 9. Fitness of the cosmos for the origin and evolution of life: from biochemical fine-tuning to the Anthropic Principle Julian Chela-Flores; Part III. The Fitness of the Terrestrial Environment: 10. How biofriendly is the universe? Christian de Duve; 11. Tuning into the frequencies of life: a roar of static or a precise signal? Simon Conway Morris; 12. Life on earth: the role of proteins Jayanth R. Banavar and Amos Maritan; 13. Protein-based life as an emergent property of matter: the nature and biological fitness of the protein folds Michael J. Denton; 14. Could an intelligent alien predict earth's biochemistry? Stephen J. Freeland; 15. Would Venus evolve on Mars? Bioenergetic constraints, allometric trends, and the evolution of life-history invariants Jeffrey P. Schloss; Part IV. The Fitness of the Chemical Environment: 16. Creating a perspective for comparing Albert Eschenmoser; 17. Fine-tuning and interstellar chemistry William Klemperer; 18. Framing the question of fine-tuning for intermediary metabolism Eric Smith and Harold J. Morowitz; 19. Coarse-tuning the origin of life? Guy Ourisson; 20. Plausible lipid-like peptides: prebiotic molecular self-assembly in water Shuguang Zhang; 21. Evolution revisited by inorganic chemists R. J. P. Williams and J. J. R. Fraústo da Silva; Index.

  5. Fitness of the Cosmos for Life

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Conway Morris, Simon; Freeland, Stephen J.; Harper, Charles L., Jr.

    2012-08-01

    Foreword: The improbability of life George M. Whitesides; Part I. The Fitness of 'Fitness' - Henderson in Context: 1. Locating 'fitness' and Lawrence J. Henderson Everett Mendelsohn; 2. Revisiting The Fitness of the Environment Owen Gingerich; 3. Is fine-tuning remarkable? John F. Haught; 4. Complexity in context: the metaphysical implications of evolutionary theory Edward T. Oakes; 5. Tuning fine-tuning Ernan Mcmullin; Part II. The Fitness of the Cosmic Environment: 6. Fitness and the cosmic environment Paul C. W. Davies; 7. The interconnections between cosmology and life Mario Livio; 8. Chemistry and sensitivity John D. Barrow; 9. Fitness of the cosmos for the origin and evolution of life: from biochemical fine-tuning to the Anthropic Principle Julian Chela-Flores; Part III. The Fitness of the Terrestrial Environment: 10. How biofriendly is the universe? Christian de Duve; 11. Tuning into the frequencies of life: a roar of static or a precise signal? Simon Conway Morris; 12. Life on earth: the role of proteins Jayanth R. Banavar and Amos Maritan; 13. Protein-based life as an emergent property of matter: the nature and biological fitness of the protein folds Michael J. Denton; 14. Could an intelligent alien predict earth's biochemistry? Stephen J. Freeland; 15. Would Venus evolve on Mars? Bioenergetic constraints, allometric trends, and the evolution of life-history invariants Jeffrey P. Schloss; Part IV. The Fitness of the Chemical Environment: 16. Creating a perspective for comparing Albert Eschenmoser; 17. Fine-tuning and interstellar chemistry William Klemperer; 18. Framing the question of fine-tuning for intermediary metabolism Eric Smith and Harold J. Morowitz; 19. Coarse-tuning the origin of life? Guy Ourisson; 20. Plausible lipid-like peptides: prebiotic molecular self-assembly in water Shuguang Zhang; 21. Evolution revisited by inorganic chemists R. J. P. Williams and J. J. R. Fraústo da Silva; Index.

  6. 10th Symposium on Nuclei in the Cosmos (NIC X)

    NASA Astrophysics Data System (ADS)

    Nuclei in the Cosmos is the most important international meeting in the field of nuclear astrophysics. It brings together nuclear experimentalists, nuclear theorists, astronomers, theoretical astrophysicists, cosmochemists, and others interested in the scientific questions at the interface of nuclear physics and astrophysics. These questions concern, for example, the origin of the elements in the cosmos and the nuclear reactions that occur in the big bang, in stars, and in stellar explosions. Past meetings have been held in Geneva - Switzerland 2006, Vancouver - Canada (2004), Fuji-Yoshida - Japan (2002), Aarhus - Denmark (2000), Volos - Greece (1998), Notre Dame - USA (1996), Gran Sasso - Italy (1994), Karlsruhe - Germany (1992), Baden bei Wien - Austria (1990).

  7. Cosmic infrared background fluctuations of the COSMOS field in the SPLASH survey: new measurements and the cosmological explanations

    NASA Astrophysics Data System (ADS)

    Li, Yanxia

    2017-01-01

    The cosmic infrared background (CIB) is the integrated emission of all sources through cosmic time and carries an abundance of information about the star formation and galaxy growth in the Universe. Due to significant and complex foregrounds from our Galaxy, the optimal way to study the unresolved background is to actually study its fluctuations, especially at large angular scales where they reflect the clustering of unresolved galaxies. Our new measurements of the CIB fluctuations reach the largest angular scale to date for such a study, thanks to new observations of the COSMOS field from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). We analyzed Spitzer IRAC 3.6 and 4.5 um data of the whole field, with an average depth of 1.33 hour/pixel over 4 epochs spanning 2 years. We found that the auto-power spectra are consistent among various epochs and are correlated at the two channels. We confirmed the previously detected excess flux at large scales of the power spectra.The cross-correlation of the CIB fluctuations with backgrounds at other wavelengths is an extremely useful technique to understand the excess flux. The previously seen CIB and X-ray background (CXB) cross-correlation suggests significant contribution to the CIB fluctuations from accreting black holes that is much higher than among any known populations, and such a cross-correlation is also used as an evidence for the existence of direct collapse black holes in the early Universe.In this talk, we will present the first CIB fluctuation measurements of the COSMOS field using the new SPLASH data and we will also revisit the CIB and CXB cross-correlation in this field, which is about 20 times larger than the previous study and therefore with much improved significance levels. Measuring CIB fluctuations is a powerful tool to study the large-scale structure of the Universe. The CIB and CXB cross-correlation can not only provide observational constrains on the theoretical modeling of the CIB

  8. Star-forming galaxies versus low- and high-excitation radio AGN in the VLA-COSMOS 3GHz Large Project

    NASA Astrophysics Data System (ADS)

    Baran, Nikola; Smolcic, Vernesa; Delvecchio, Ivan; Novak, Mladen; Delhaize, Jacinta; Laigle, Clotilde; Ilbert, Olivier; (Vla-)Cosmos Collaboration

    2016-08-01

    We study the composition of the faint radio population selected from the VLA-COSMOS 3GHz Large Project, a radio continuum survey performed at 10 cm wavelength. The survey covers the full 2 square degree COSMOS field with mean rms ˜ 2.3 μJy/beam, cataloging 10,899 source components above 5× rms. By combining these radio data with UltraVISTA, optical, nearinfrared, and Spitzer/IRAC mid-infrared data, as well as X-ray data from the Chandra Legacy, Chandra COSMOS surveys, we gain insight into the emission mechanisms within our radio sources out to redshifts of z ˜ 5. From these emission characteristics we classify our sources as star forming galaxies or AGN. Using their multi-wavelength properties we further separate the AGN into sub-samples dominated by radiatively efficient and inefficient AGN, often referred to as high- and low-excitation emission line AGN.We compare our method with other results based on fitting of the sources' spectral energy distributions using both galaxy and AGN spectral models, and those based on the infrared-radio correlation. We study the fractional contributions of these sub-populations down to radio flux levels of ˜10 μJy. We find that at 3 GHz flux densities above ˜400 μJy quiescent, red galaxies, consistent with the low-excitation radio AGN class constitute the dominant fraction. Below densities of ˜200 μJy star-forming galaxies begin to constitute the largest fraction, followed by the low-excitation, and X-ray- and IR-identified high-excitation radio AGN.

  9. Spitzer Secondary Eclipses of Two Hubble-observed Exoplanets

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Benneke, Bjoern; Fraine, Jonathan; Knutson, Heather; Lewis, Nikole; Mandell, Avi; Sing, David; Todorov, Kamen

    2015-10-01

    We propose Spitzer secondary eclipse observations of two key exoplanets (WASP-76b and HAT-P-38b) that are approved for transmission spectroscopy by HST/WFC3 in our Large Cycle-23 program. Spitzer eclipse data will provide temperature information needed to determine their atmospheric scale heights, and thereby infer their atmospheric water abundances (proxy for metallicity) from the WFC3 spectra. Potential molecular absorption that falls within the Spitzer bandpasses will also help to measure the atmospheric metallicity of these planets, and will be minimally affected by clouds - that can often frustrate transmission spectroscopy. Beyond the utility to our Hubble analyses, both planets have high scientific value for Spitzer eclipse observations in their own right. WASP-76b is a strongly irradiated and very hot, large radius giant planet. Its combination of strong irradiation and large radius puts it in an atmospheric regime where few planets have been observed by Spitzer in eclipse. HAT-P-38b is a sub-Saturn mass planet in a relatively cool temperature regime (1080 Kelvins) where Kammer et al. recently found that the ratio of planetary brightness temperature in the two Spitzer bands is potentially correlated with planetary mass. The low mass of HAT-P-38b (0.27 Jupiters) gives it substantial leverage to test that correlation.

  10. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J.-P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J.-F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy \\sigma _{\\Delta z/(1+z_{spec})}\\sim 0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band. Based on observations by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under

  11. US experiment flown on the Soviet biosatellite Cosmos 1667

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Editor); Skidmore, Michael G. (Editor)

    1994-01-01

    Two male young-adult rhesus monkeys were flown on the Soviet Biosatellite Cosmos 1667 for seven days from July 10-17, 1985. Both animals were instrumented to record neurophysiological parameters. One animal, Gordyy, was additionally instrumented to record cardiovascular changes. Space capsule and environmental parameters were very similar to those of previous missions. On Cosmos 1514, which flew for five days in 1983, one animal was fitted with a left carotid artery cuff to measure blood pressure and flow velocity. An additional feature of Cosmos 1667 was a postflight control study using the flight animal. Intermittent postural tilt tests were also conducted before and after spaceflight and synchronous control studies, to simulate the fluid shifts associated with spaceflight. The experiment results support the conclusion derived from Cosmos 1514 that significant cardiovascular changes occur with spaceflight. The changes most clearly seen were rapid initial decreases in heart rate and further decreases with continued exposure to microgravity. The triggering mechanism appeared to be a headward shift in blood and tissue fluid volume which, in turn, triggered adaptive cardiovascular changes. Adaptive changes took place rapidly and began to stabilize after the first two days of flight. However, these changes did not plateau in the animal by the last day of the mission.

  12. US experiments flown on the Soviet satellite COSMOS 936

    NASA Technical Reports Server (NTRS)

    Rosenzweig, S. N.; Souza, K. A.

    1978-01-01

    Results of spaceborne experiments onboard the Cosmos 936 satellite are reported. Alterations in normal bone chemistry, muscle structure, and general physiology resulting from spaceflight are covered along with measurements of cosmic radiation and its potential hazard to man during prolonged spaceflights. Postflight activities involving the seven U.S. experiments are emphasized.

  13. [COSMOS motion design optimization in the CT table].

    PubMed

    Shang, Hong; Huang, Jian; Ren, Chao

    2013-03-01

    Through the CT Table dynamic simulation by COSMOS Motion, analysis the hinge of table and the motor force, then optimize the position of the hinge of table, provide the evidence of selecting bearing and motor, meanwhile enhance the design quality of the CT table and reduce the product design cost.

  14. An Interactive Multimedia Learning Environment for VLSI Built with COSMOS

    ERIC Educational Resources Information Center

    Angelides, Marios C.; Agius, Harry W.

    2002-01-01

    This paper presents Bigger Bits, an interactive multimedia learning environment that teaches students about VLSI within the context of computer electronics. The system was built with COSMOS (Content Oriented semantic Modelling Overlay Scheme), which is a modelling scheme that we developed for enabling the semantic content of multimedia to be used…

  15. Bijuralism in Law's Empire and in Law's Cosmos.

    ERIC Educational Resources Information Center

    Kasirer, Nicholas

    2002-01-01

    Using the example of McGill University's bijural program, explores how teaching the common and civil law traditions together provides an opportunity to teach in law's "cosmos" rather than its "empire," so that a bijural legal education can plainly and confidently ally itself with the great university tradition of prizing…

  16. Emerging Adolescence: Finding One's Place in the Cosmos.

    ERIC Educational Resources Information Center

    Schaefer, Patricia

    2000-01-01

    Discusses emerging characteristics of early adolescents from a Montessorian perspective. Considers adolescents' revelations related to cosmic education, their need to serve, their need to think and to feel, and their need to know the cosmos through finding one's place in it. Discusses samples from students' cosmic autobiographies. (KB)

  17. (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. III. Environments

    NASA Astrophysics Data System (ADS)

    Smolčić, V.; Miettinen, O.; Tomičić, N.; Zamorani, G.; Finoguenov, A.; Lemaux, B. C.; Aravena, M.; Capak, P.; Chiang, Y.-K.; Civano, F.; Delvecchio, I.; Ilbert, O.; Jurlin, N.; Karim, A.; Laigle, C.; Le Fèvre, O.; Marchesi, S.; McCracken, H. J.; Riechers, D. A.; Salvato, M.; Schinnerer, E.; Tasca, L.; Toft, S.

    2017-01-01

    We investigate the environment of 23 submillimetre galaxies (SMGs) drawn from a signal-to-noise (S/N)-limited sample of SMGs originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey of a Cosmic Evolution Survey (COSMOS) subfield and then followed up with the Submillimetre Array and Plateau de Bure Interferometer at 890 μm and 1.3 mm, respectively. These SMGs already have well-defined multiwavelength counterparts and redshifts. We also analyse the environments of four COSMOS SMGs spectroscopically confirmed to lie at redshifts zspec > 4.5, and one at zspec = 2.49 resulting in a total SMG sample size of 28. We search for overdensities using the COSMOS photometric redshifts based on over 30 UV-NIR photometric measurements including the new UltraVISTA data release 2 and Spitzer/SPLASH data, and reaching an accuracy of σΔz/ (1 + z) = 0.0067 (0.0155) at z < 3.5 (>3.5). To identify overdensities we apply the Voronoi tessellation analysis, and estimate the redshift-space overdensity estimator δg as a function of distance from the SMG and/or overdensity centre. We test and validate our approach via simulations, X-ray detected groups or clusters, and spectroscopic verifications using VUDS and zCOSMOS catalogues which show that even with photometric redshifts in the COSMOS field we can efficiently retrieve overdensities out to z ≈ 5. Our results yield that 11 out of 23 (48%) JCMT/AzTEC 1.1 mm SMGs occupy overdense environments. Considering the entire JCMT/AzTEC 1.1 mm S/N ≥ 4 sample and taking the expected fraction of spurious detections into account, this means that 35-61% of the SMGs in the S/N-limited sample occupy overdense environments. We perform an X-ray stacking analysis in the 0.5-2 keV band using a 32″ aperture and our SMG positions, and find statistically significant detections. For our z < 2 subsample we find an average flux of (4.0 ± 0.8) × 10-16 erg s-1 cm-2 and a corresponding total mass of M200 = 2.8 × 1013M

  18. SPITZER observations of luminous obscured Quasars

    NASA Astrophysics Data System (ADS)

    Bellocchi, E.; Pozzi, F.; Fritz, J.; Comastri, A.; Vignali, C.; Mignoli, M.

    2008-10-01

    Si presentano i risultati di uno studio della distribuzione di energia spettrale (SED) di un campione di sorgenti a z = 0.7-2 selezionate in banda 2-10 keV dalla survey HELLAS2XMM, caratterizzate da luminosita` L_(2-10) keV ~ 10^44 erg/sec e densita` di colonna N_H > 10^22 cm^-2 che le distingue come quasar di tipo II (oscurati). Si sono analizzati i dati ottenuti da Spitzer (4 bande IRAC e MIPS a 24 micron). Le SED sono state modellate utilizzando sia templates empirici di quasar di tipo I (Elvis et al. 1994; Richards et al. 2006) con diversi livelli di estinzione, sia un modello teorico (Fritz et al. 2006) in grado di vincolare i parametri fisici piu` importanti del toro stesso (ad esempio, lo spessore ottico del toro, l'angolo con cui viene osservata la sorgente e il covering factor). Per ciascuna sorgente del campione si e` stimata la luminosita` bolometrica nucleare (10^45-10^47 erg/s) e la correzione bolometrica k_(bol,2-10 keV), definita come il rapporto tra la luminosita` bolometrica e la luminosita` misurata in banda 2-10 keV. Infine, si evidenzia come l'utilizzo dei dati MIPS a 70 e 160 micron sia importante nel vincolare ulteriormente il modello di toro e, di conseguenza, nel fornire una migliore stima della luminosita` infrarossa e bolometrica.

  19. Spitzer Meets K2: Spitzer Studies of Candidate Exoplanets Identified by K2

    NASA Astrophysics Data System (ADS)

    Werner, Michael W.; Spitzer/K2 Study Team

    2016-01-01

    We are in the midst of a ~450 hr program of Spitzer photometry of candidate transiting planets orbiting M dwarf stars, identified in the K2 fields. Whereas the Kepler prime mission eschewed M stars, they have become a major focus of the community-driven target selection for K2. M stars are the most common stars in the galaxy, and planets orbiting M stars can be very attractive candidates for transit and eclipse atmospheric studies, including studies aimed at exploring potentially habitable exoplanets. We will review and show the results of the observations planned and executed to date, which total 21 transits of 16 planets orbiting 13 stars. Our results greatly improve on the characterization of the exoplanets and their orbits over what is possible from the K2 data alone. In addition, the improved ephemerides we generate will facilitate studies of interesting K2 targets from JWST. __________________________________________This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  20. VizieR Online Data Catalog: Spitzer-CANDELS catalog within 5 deep fields (Ashby+, 2015)

    NASA Astrophysics Data System (ADS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Dunlop, J. S.; Egami, E.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hora, J. L.; Huang, J.-S.; Koekemoer, A. M.; Labbe, I.; Wang, Z.

    2015-08-01

    We chose to locate S-CANDELS inside the wider and shallower fields already covered by Spitzer Extended Deep Survey (SEDS), in regions that enjoy deep optical and NIR imaging from HST/CANDELS. These S-CANDELS fields are thus the Extended GOODS-south (aka the GEMS field, hereafter ECDFS; Rix et al. 2004ApJS..152..163R; Castellano et al. 2010A&A...511A..20C), the Extended GOODS-north (HDFN; Giavalisco et al. 2004, II/261; Wang et al. 2010, J/ApJS/187/251; Hathi et al. 2012ApJ...757...43H; Lin et al. 2012ApJ...756...71L), the UKIDSS UDS (aka the Subaru/XMM Deep Field, Ouchi et al. 2001ApJ...558L..83O; Lawrence et al. 2007, II/319), a narrow field within the EGS (Davis et al. 2007ApJ...660L...1D; Bielby et al. 2012A&A...545A..23B), and a strip within the UltraVista deep survey of the larger COSMOS field (Scoville et al. 2007ApJS..172...38S; McCracken et al. 2012, J/A+A/544/A156). The S-CANDELS observing strategy was designed to maximize the area covered to full depth within the CANDELS area. Each field was visited twice with six months separating the two visits. Table 1 lists the epochs for each field. All of the IRAC full-depth coverage is within the SEDS area (Ashby et al. 2013, J/ApJ/769/80), and almost all is within the area covered by HST for CANDELS. (6 data files).

  1. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; Croton, D.; Dave, R.; Dunlop, J. S.; Egami, E.; Faber, S.; Finlator, K.; Grogin, N. A.; Guhathakurta, P.; Hernquist, L.; Hora, J. L.; Illingworth, G.; Kashlinsky, A; Koekmoer, A. M.; Koo, D. C.; Moseley, H.

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  2. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    SciTech Connect

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bouwens, R.; Cattaneo, A.; Croton, D.; Dave, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.; and others

    2013-05-20

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg{sup 2} to a depth of 26 AB mag (3{sigma}) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 {mu}m. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 {+-} 1.0 and 4.4 {+-} 0.8 nW m{sup -2} sr{sup -1} at 3.6 and 4.5 {mu}m to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  3. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    SciTech Connect

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard E-mail: mlacy@nrao.edu E-mail: eilat.glikman@yale.edu E-mail: bschulz@ipac.caltech.edu

    2012-10-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 A emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  4. Colors of Ellipticals from GALEX to Spitzer

    NASA Astrophysics Data System (ADS)

    Schombert, James M.

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV, ugri, JHK and 3.6 μm. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color-magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from -0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  5. S-CANDELS: The Spitzer-Cosmic Assembly Near-Infrared Deep Extragalactic Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Astrophysics Data System (ADS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Dunlop, J. S.; Egami, E.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hora, J. L.; Huang, J.-S.; Koekemoer, A. M.; Labbé, I.; Wang, Z.

    2015-06-01

    The Spitzer-Cosmic Assembly Deep Near-infrared Extragalactic Legacy Survey (S-CANDELS; PI G.Fazio) is a Cycle 8 Exploration Program designed to detect galaxies at very high redshifts (z\\gt 5). To mitigate the effects of cosmic variance and also to take advantage of deep coextensive coverage in multiple bands by the Hubble Space Telescope (HST) Multi-cycle Treasury Program CANDELS, S-CANDELS was carried out within five widely separated extragalactic fields: the UKIDSS Ultra-deep Survey, the Extended Chandra Deep Field South, COSMOS, the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon the existing coverage of these fields from the Spitzer Extended Deep Survey (SEDS), a Cycle 6 Exploration Program, by increasing the integration time from SEDS’ 12 hr to a total of 50 hr but within a smaller area, 0.16 deg2. The additional depth significantly increases the survey completeness at faint magnitudes. This paper describes the S-CANDELS survey design, processing, and publicly available data products. We present Infrared Array Camera (IRAC) dual-band 3.6+4.5 μ {{m}} catalogs reaching to a depth of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by S-CANDELS are consistent with models based on known galaxy populations. The increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a significant additional contribution from discrete sources to the diffuse Cosmic Infrared Background (CIB). Thus it remains true that only roughly half of the estimated CIB flux from COBE/DIRBE is resolved.

  6. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    SciTech Connect

    Novati, S. Calchi; Beichman, C.; Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Poleski, R.; Yee, J. C.; Bryden, G.; Henderson, C. B.; Shvartzvald, Y.; Carey, S.; Udalski, A.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Collaboration: Spitzer team; OGLE group; and others

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  7. Investigating Space Weather Events Impacting the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Cheng, Leo Y.; Hunt, Joseph C. Jr.; Stowers, Kennis; Lowrance, Patrick; Stewart, Andrzej; Travis, Paul

    2014-01-01

    Our understanding of the dynamical process in the space environment has increased dramatically. A relatively new field of study called "Space Weather" has emerged in the last few decades. Fundamental to the study of space weather is an understanding of how space weather events such as solar flares and coronal mass ejections impact spacecraft in varying orbits and distances around the Sun. Specialized space weather satellite monitoring systems operated by the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) allow scientists to predict space weather events affecting critical systems on and orbiting the Earth. However, the Spitzer Space Telescope is in an orbit far outside the areas covered by those space weather monitoring systems. This poses a challenge for the Spitzer's Mission Operations Team in determining whether space weather events affect Spitzer.

  8. Coastal Storm Modeling System (CoSMoS)

    USGS Publications Warehouse

    Barnard, Patrick; Erikson, Li; Foxgrover, Amy; Herdman, Liv; Limber, Patrick W; O'Neill, Andrea; Vitousek, Sean

    2015-01-01

    The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future SLR scenarios, as well as long-term shoreline change and cliff retreat. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase I data for Southern California includes 100-year storm flood hazard information for the coast from the Mexican Border to Pt. Conception. Flood projection data in the initial November release is limited to coastal areas within Los Angeles, San Diego, and Orange counties.

  9. Cardiac morphology after conditions of microgravity during Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Goldstein, Margaret A.; Edwards, Robert J.; Schroeter, John P.

    1992-01-01

    Light- and electron-microscopic studies were performed on cardiac muscle from rats flown on Cosmos 2044 and from four control groups. Average cross-sectional area of myofibers was measured by video analysis of the light-microscopic images of papillary and ventricular muscle samples from all animals. This cross-sectional area was significantly decreased in flight rats (P = 0.03) compared with synchronous controls. Additional findings at the electron microscopic level consistent with this atrophy were obtained by stereological analysis and optical diffraction analysis of papillary muscle samples. Slightly higher mitochondrial volume density values and mitochondria-to-myofibril ratios as well as normal A-band spacings (d1,0) and Z-band spacings of myofibrils were observed in the tail-suspension and flight groups. General morphological features similar to those in ventricular samples from the previous Cosmos 1887 flight were observed.

  10. The US Experiments Flown on the Soviet Biosatellite Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)

    1990-01-01

    Cosmos 1887, a biosatellite containing biological and radiation experiments from the Soviet Union, the United States and seven other countries, was launched on September 29, 1987. One Rhesus monkey's feeder stopped working two days into the flight and a decision was made to terminate the mission after 12 1/2 days. The biosatellite returned to Earth on October 12, 1987. A system malfunction, during the reentry procedure, caused the Cosmos 1887 spacecraft to land approximately 1800 miles beyond the intended landing site and delayed the start of the postflight procedures by approximately 44 hours. Further information on the conditions at landing and postflight activities is included in the Mission Operations portion of this document. U.S. and U.S.S.R. specialists jointly conducted 26 experiments on this mission, including the postflight transfer of data, hardware and biosamples to the U.S.

  11. 11th Symposium on Nuclei in the Cosmos

    NASA Astrophysics Data System (ADS)

    Nuclei in the Cosmos is the most important international meeting in the field of nuclear astrophysics. It brings together nuclear experimentalists, nuclear theorists, astronomers, theoretical astrophysicists, cosmochemists, and others interested in the scientific questions at the interface of nuclear physics and astrophysics. These questions concern, for example, the origin of the elements in the cosmos and the nuclear reactions that occur in the big bang, in stars, and in stellar explosions. Past meetings have been held in Mackinac Island - USA (2008), Geneva - Switzerland (2006), Vancouver - Canada (2004), Fuji-Yoshida - Japan (2002), Aarhus - Denmark (2000), Volos - Greece (1998), Notre Dame - USA (1996), Gran Sasso - Italy (1994), Karlsruhe - Germany (1992), Baden bei Wien - Austria (1990).

  12. XII International Symposium on Nuclei in the Cosmos

    NASA Astrophysics Data System (ADS)

    Lattanzio, John; Karakas, Amanda; Lugaro, Maria; Dracoulis, George

    Nuclei in the Cosmos is the most important international meeting in the field of nuclear astrophysics. It brings together nuclear experimentalists, nuclear theorists, astronomers, theoretical astrophysicists, cosmochemists, and others interested in the scientific questions at the interface of nuclear physics and astrophysics. These questions concern, for example, the origin of the elements in the cosmos and the nuclear reactions that occur in the big bang, in stars, and in stellar explosions. Past meetings have been held in Heidelberg - Germany (2010), Mackinac Island - USA (2008), Geneva - Switzerland (2006), Vancouver - Canada (2004), Fuji-Yoshida - Japan (2002), Aarhus - Denmark (2000), Volos - Greece (1998), Notre Dame - USA (1996), Gran Sasso - Italy (1994), Karlsruhe - Germany (1992), Baden bei Wien - Austria (1990).

  13. Panel Discussion: Life in the Cosmos

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Water appears to be essential to all life on Earth. For this reason, "Follow the Water" has been adopted as a mantra for the search for Life in the Cosmos. Expeditions have helped to establish the limits and biodiversity of life in the most extreme environments on Earth. Microbial extremophiles inhabit acidic streams; hypersaline and hyperalkaline lakes and pools; the cold deep sea floor, permafrost, rocks, glaciers, and perennially ice-covered lakes of the polar environments; geysers, volcanic fumaroles, hydrothermal vents and hot rocks deep within the Earth's crust. The ESA Venus Express Spacecraft entered Venusian Orbit in 2006 and continues to produce exciting results. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument made the first detection of hydroxyl in the atmosphere of Venus, indicating it is much more similar to Earth and Mars than previously thought. Huge hurricane-like vortices have been found above the poles of the planet and as yet unidentified UV absorbers that form mysterious dark bands in the upper atmosphere. At 70 km and below, water vapor and sulfur dioxide combine to form sulfuric acid droplets that create a haze above the cloud tops. Thermophilic acidophiles, such as have recently been discovered on Earth, could possibly survive in the hot sulfuric acid droplets that exist in the upper atmosphere of Venus. In order to understand how to search for life elsewhere in the Solar System, over 40 VIRTIS images of Earth from Venus have been obtained to search for evidence of life on Earth. The signatures of water and molecular Oxygen were detected in the Earth s atmosphere, but the atmosphere of Venus also exhibits these signatures. The water and water ice are far more abundant on comet, the polar caps and permafrost of Mars and the icy moons of Jupiter and Saturn. These "frozen worlds" of our Solar System, are much more promising regimes where extant or extinct microbial life may exist. The ESA Mars Advanced Radar for

  14. Spitzer's contribution to the AGN population

    NASA Astrophysics Data System (ADS)

    Donley, Jennifer Lynn

    2009-06-01

    Using large multiwavelength datasets, we study obscured AGN in the distant universe that have been missed via traditional selection techniques (e.g. UV/ optical/X-ray). To do so, we take particular advantage of the mid-IR, which is minimally affected by obscuration. We first select as AGN candidates those objects whose radio emission is significantly brighter, relative to the mid-IR, than would be predicted by the well known radio/infrared correlation, indicating that the radio emission originates in the central engine. We find that of the 27 such sources identified in the CDF-N, 60% lack solid X-ray detections and 25% lack even 2s X-ray emission. The absorbing columns of the faint X-ray-detected objects indicate that they are obscured but unlikely to be Compton thick, whereas the radio-excess AGN which are X-ray non-detected are Compton-thick candidates. We similarly use the infrared emission to select IRAC (3.6-8.0 mm) power-law AGN. In these luminous AGN, the hot dust emission from the AGN fills in the gap in a galaxy's SED between the 1.6 mm stellar bump and the long-wavelength dust emission feature. While sources selected in this way are more luminous than the radio-excess AGN, we find a similar X-ray detection fraction. Of the 62 power- law galaxies in the CDF-N, only 55% are detected in the X-ray, and 15% lack evidence for even weak 2s X-ray emission. A study of their X-ray properties indicates that ~ 75% are obscured. Finally, we test IRAC color-color and infrared-excess selection criteria. We find that while these selection techniques identify a number of obscured AGN, they may also select a significant number of star-forming galaxies. By combining only the secure AGN candidates selected via all methods discussed above, we estimate that the addition of Spitzer-selected AGN candidates to the deepest X-ray selected AGN samples directly increases the number of known AGN by 54-77%, and implies a total increase to the number of AGN of 71-94%.

  15. Time for a relook at Spitzer's laws of neonatology?

    PubMed

    Gou, P; Ryan, C A

    2013-11-01

    Thirty years ago, 20 tongue-in-cheek aphorisms relating to the practice of neonatology were published and became known as Spitzer's laws of neonatology (SLN). They became widely cited, perhaps because they resonated with some of the experiences of practicing neonatologists at that time. The purpose of this study was to see if Spitzer's laws still resonated with doctors currently practicing in neonatology. A questionnaire containing the 20 Spitzer's laws was distributed to 17 pediatric doctors during their neonatology placement. Each statement has the options of it being noted as rubbish, funny, intuitively correct or evidence based. Respondents were allowed to give more than one opinion for each statement. Less than a quarter (23.5%, n=4) of 17 doctors had previously heard of Spitzer's laws. Of the 355 opinions on Spitzer's statements, almost half (42%) were said to be rubbish, less than a third (31%) were intuitively correct and one-fifth (21%) were said to be funny. Only 5% were thought to be evidence based. Statement 7 'The milder the RDS, the sooner the infant will find himself on 100% oxygen and maximal ventilatory support', scored the highest as being the most rubbish statement (94%). It was also felt to be neither evidence based (0%), funny (0%) nor intuitively correct (6%). The aphorism,'The month you are on service always has three times as many days as any other month on the calendar', scored the highest (45%) as being the funniest. Statement 16, 'If they ain't breathin', they may be seizin'' was considered the aphorism most likely to be evidence based (35%, n=7). A third (35%) of the doctors said they would use Spitzer's laws for teaching future medical students. Many current neonatal practitioners still find SLN humorous but largely irrelevant and not evidence based.

  16. THE SPITZER ARCHIVAL FAR-INFRARED EXTRAGALACTIC SURVEY

    SciTech Connect

    Hanish, D. J.; Capak, P.; Teplitz, H. I.; Desai, V.; Armus, L.; Brinkworth, C.; Brooke, T.; Colbert, J.; Fadda, D.; Noriega-Crespo, A.; Paladini, R.; Edwards, L.; Frayer, D.; Huynh, M.; Lacy, M.; Murphy, E.; Scarlata, C.; Shenoy, S.

    2015-03-15

    We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared (FIR) extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of FIR data in two wavelength bands (70 and 160 μm) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40,000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals.

  17. SPS 'Fabric of the Cosmos' Science Cafés

    NASA Astrophysics Data System (ADS)

    Chakrabarti, A.

    2011-12-01

    Hosted by Brian Greene and based on his best selling book of the same title, The Fabric of the Cosmos is a new four part NOVA series that explores the deepest mysteries of space and time. The program was kicked off by more than 30 'Cosmic Cafes' around the country, as part of a Society of Physics Students, NOVA outreach effort funded by an NSF grant. A Cosmic Café is a science café based on the topics discussed in The Fabric of the Cosmos. Science cafes are open events for non-scientists, where they can have an informal discussion with a scientist in a very casual location, usually a restaurant, coffee shop, or a bar. During the summer I assisted in planning this kick off, by reviewing science café and The Fabric of the Cosmos resources and suggesting revisions to make them more relevant for an SPS audience. I also organized and moderated the first Cosmic Café. The café that I organized was discussion based, with the speaker, Dr. James Gates, starting with a short talk and then opening up the floor for questions. Organizing a Cosmic Café gave me first-hand experience with the challenges an SPS chapter might face while organizing a café themselves. I will discuss lessons learned and the effectiveness of the first ever themed science café blitz.

  18. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE

    SciTech Connect

    Lilly, Simon J.; Maier, Christian; Carollo, Marcella; Caputi, Karina; Le Brun, Vincent; Kneib, Jean-Paul; Le Fevre, Olivier; De la Torre, Sylvain; De Ravel, Loic; Mainieri, Vincenzo; Mignoli, Marco; Zamorani, Gianni; Bardelli, Sandro; Bolzonella, Micol; Coppa, Graziano; Scodeggio, Marco; Contini, Thierry; Bongiorno, Angela; Cucciati, Olga

    2009-10-01

    We present spectroscopic redshifts of a large sample of galaxies with I {sub AB} < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s{sup -1}, independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.

  19. Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Liou, Jer-Chi

    2010-01-01

    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models.

  20. A Spitzer View of Star Formation in the Cyngus X North Complex

    DTIC Science & Technology

    2009-11-10

    new images and photometry of the massive star forming complex Cygnus X obtained with the Infrared Array Camera ( IRAC ) and the Multiband Imaging...Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. A combination of IRAC , MIPS, UKIRT Deep Infrared Sky Survey (UKIDSS), and Two Micron All...photometry from the Spitzer Infrared Array Camera ( IRAC ) (Fazio et al. 2004) and the Multiband Imaging Photometer for Spitzer (MIPS) (Rieke et al

  1. SpIES:The Spitzer IRAC Equatorial Survey

    NASA Astrophysics Data System (ADS)

    Timlin, John; Ross, Nicholas; Richards, Gordon T.; Lacy, Mark; Bauer, Franz E.; Brandt, W. Niel; Fan, Xiaohui; Haggard, Daryl; Makler, Martin; Myers, Adam D.; Strauss, Michael A.; Urry, C. Megan; SpIES Team

    2015-01-01

    The Spitzer-IRAC Equatorial Survey, SpIES, is an Exploration Science program using Warm Spitzer to map over 100deg^2 of the SDSS Stripe 82 field, and is the largest extragalactic area surveyed by Spitzer. The primary science drivers are: the measurement of z>3 quasar clustering and the luminosity function in order to test different "AGN feedback'' models; to identify obscured AGN (and take advantage of the wide range of multi-wavelength, multi-epoch ancillary data on the Stripe 82 field); to identify z>6 quasars, and to support other wide-field ancillary science. With our observations very recently completed, we present the first preliminary science results from SpIES. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  2. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; Simon, Amy A.; Wong, Michael H.

    2016-01-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 microns. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 microns and 0.6 mag at 4.5 microns. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 microns) and W2 (4.6 microns) from the Wide-field Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude approximately 0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude approximately 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune's atmosphere than for K2. Methane gas is the dominant opacity source in Neptune's atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 micron filters.

  3. Galactic Distribution of Planets from Spitzer Microlens Parallaxes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Carey, Sean; Yee, Jennifer

    2014-12-01

    We will measure the 'microlens parallaxes' of about 120 microlensing events that peak during Spitzer's 'bulge window' (2015 Jun 09 - Jul 19), by comparing simultaneous Spitzer and ground-based microlensing lightcurves, making use of Spitzer's location about 1 AU from Earth. These measurements will enable mass and distance measurements of about 4 microlensing planets. The ensemble of planet and non-planet distance measurements will yield the first probe of the Galactic distribution of planets Microlens planet mass measurements are very rare and have proved extremely interesting in every case. Microlensing identifies planets at and beyond the snowline, probing unique parameter space and providing vital information to constrain planet formation and migration theories. But the sample of ground-based microlens-parallax measurements is highly biased toward special systems. Spitzer would provide the first unbiased study. The same survey would provide a unique probe of brown dwarf binaries, and yield the first mass-based (not light-based) measurement of the stellar mass function (i.e., including dark objects such as black holes). A very successful 2014 'Pilot Program' demonstrates that this project is technically and scientifically viable. (As in the previous 'Pilot Program', we request zero day proprietary period.)

  4. First Solar System Results of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    VanCleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer's capabilities and first general results were presented at the January 2004 AAS meeting. In this poster, we focus on Spitzer's performance for moving targets, and the first Solar System results. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets

  5. Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bliss, David A.

    2006-01-01

    The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.

  6. New Transiting Exoplanets: Targets of Opportunity for Spitzer's Legacy

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Bakos, Gaspar; Deming, Drake; Fischer, Debra; Gillon, Michael; Iro, Nicolas; Laughlin, Gregory; Seager, Sara; Stevenson, Kevin; Wheatley, Peter

    2008-03-01

    We propose a Target of Opportunity (ToO) program to observe photometric eclipses and transits of new extrasolar planets. The measurements constrain models of composition, chemistry, and atmospheric dynamics. We will populate a figure of predicted equillibrium vs. observed brightness temperature, which is starting to show a separate class of chemically-distinct planets. The events also inform follow-on work. As Spitzer's cryogen dwindles, rapid response is crucial. Well below Spitzer's nominal sensitivity, these measurements require optimized observing and analysis techniques. Our goals, begun with our Cycle-3 and -4 ToO programs and continued here, are to ensure that each bandpass is observed for every planet with good predicted S/N, to obtain the best possible observations, to make these high-impact data public for everyone to use in planning followups, and to make the process of observing exoplanets smooth for observers and Spitzer by allocating a predictable number of events for the community through the TAC process. Based on discovery statistics, 20-30 new transiting planets will be announced in 2008. Of these, 1-2 might be bright enough for six bandpasses, and many more will be observable in one or more IRAC bands. We thus request 120 hours to cover ~17 7:40-hour eclipse events in low-impact ToOs. This will cover 3-6 planets in all useful bands, depending on their brightnesses. We give criteria for activating ToOs, focusing on bright/unusual objects (eccentric, hot, cool, small, etc.). Our Legacy product is archivally-prepared calibrated lightcurves, submitted as electronic attachments with journal articles. Transiting extrasolar planets are among the least anticipated, most productive, and most publicly stimulating targets for Spitzer. These direct measurements provide the only emission fluxes possible with current telescopes for extrasolar planets, and stand as a Spitzer legacy for posterity. No comparable opportunity to observe exoplanets will be available

  7. A Spitzer Census of the IC 348 Nebula

    NASA Astrophysics Data System (ADS)

    Muench, August A.; Lada, Charles J.; Luhman, K. L.; Muzerolle, James; Young, Erick

    2007-07-01

    Spitzer mid-infrared surveys enable an accurate census of young stellar objects by sampling large spatial scales, revealing very embedded protostars, and detecting low-luminosity objects. Taking advantage of these capabilities, we present a Spitzer-based census of the IC 348 nebula and embedded star cluster, covering a 2.5 pc region and comparable in extent to the Orion Nebula. Our Spitzer census supplemented with ground-based spectra has added 42 Class II T Tauri sources to the cluster membership and identified ~20 Class 0/I protostars. The population of IC 348 likely exceeds 400 sources after accounting statistically for unidentified diskless members. Our Spitzer census of IC 348 reveals a population of Class I protostars that is anticorrelated spatially with the Class II/III T Tauri members, which comprise the centrally condensed cluster around a B star. The protostars are instead found mostly at the cluster periphery about ~1 pc from the B star and spread out along a filamentary ridge. We further find that the star formation rate in this protostellar ridge is consistent with that rate which built the older exposed cluster, while the presence of 15 cold, starless, millimeter cores intermingled with this protostellar population indicates that the IC 348 nebula has yet to finish forming stars. Moreover, we show that the IC 348 cluster is of order 3-5 crossing times old, and, as evidenced by its smooth radial profile and confirmed mass segregation, is likely relaxed. While it seems apparent that the current cluster configuration is the result of dynamical evolution and its primordial structure has been erased, our finding of a filamentary ridge of Class I protostars supports a model in which embedded clusters are built up from numerous smaller subclusters. Finally, the results of our Spitzer census indicate that the supposition that star formation must progress rapidly in a dark cloud should not preclude these observations that show it can be relatively long lived.

  8. Quantitative Analysis of the Usage of the COSMOS Science Education Portal

    ERIC Educational Resources Information Center

    Sotiriou, Sofoklis; Bogner, Franz X.; Neofotistos, George

    2011-01-01

    A quantitative method of mapping the web usage of an innovative educational portal is applied to analyze the behaviour of users of the COSMOS Science Education Portal. The COSMOS Portal contains user-generated resources (that are uploaded by its users). It has been designed to support a science teacher's search, retrieval and access to both,…

  9. Occurrence of Leaf Blight on Cosmos Caused by Alternaria cosmosa in Korea.

    PubMed

    Deng, Jian Xin; Lee, Ji Hye; Paul, Narayan Chandra; Cho, Hye Sun; Lee, Hyang Burm; Yu, Seung Hun

    2015-03-01

    In 2011, a leaf blight disease was observed on cosmos (Cosmos bipinnatus) leaves in Nonsan, Korea. The causal pathogen was isolated and identified based on morphological and molecular approaches. Morphological characteristics of the pathogen matched well with the Alternaria cosmosa and also easily distinguishable from Alternaria zinniae reported from cosmos seeds by producing branched beak. Phylogenetically, the pathogen could not be distinguished from A. passiflorae based on the sequence analysis of a combined data set of Alt a1 and gpd genes. However, A. passiflorae was distinguished from the present species by having conidiophores with 4 to 5 conidiogenous loci. The results indicate that the present Alternaria species is A. cosmosa. Pathogenicity tests revealed that the isolate was pathogenic to the leaves of Cosmos bipinnatus. This is the first report of Alternaria blight disease caused by A. cosmosa on cosmos in Korea.

  10. Experiment K-7-41: Radiation Experiments on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Benton, E. R.; Frank, A. L.; Dudkin, V. E.; Marenny, A. M.; Kovalev, E. E.

    1994-01-01

    The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 degrees and altitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq. cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10-4 and 3.05 x 10(exp -4) cm(exp -2).s(exp -1).sr(exp -4) of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(infinity).H2O is greater than or equal to 4 keV/micro-m. Neutron measurements yielded 0.018 mremld in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra have been compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 degrees) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCR's, and higher LET particles, in the heavy particle fluxes.

  11. The Concept of Fractal Cosmos: III. Present State

    NASA Astrophysics Data System (ADS)

    Grujic, P.

    2011-06-01

    This is the sequel to the previous accounts on the rise and development of the concept of fractal cosmos, up to year 2001 (Grujic 2001, 2002). Here we give an overview of the present-day state of art, with the emphasis on the latest developments and controversies concerning the model of hierarchical universe. We describe both the theoretical advances and the latest empirical evidence concerning the observation of the large-scale structure of the observable universe. Finally we address a number of epistemological points, putting the fractal paradigm into a broader cosmological frame.

  12. Islet in weightlessness: Biological experiments on board COSMOS 1129 satellite

    NASA Technical Reports Server (NTRS)

    Zhuk, Y.

    1980-01-01

    Biological experiments planned as an international venture for COSMOS 1129 satellite include tests of: (1) adaptation of rats to conditions of weightlessness, and readaption to Earth's gravity; (2) possibility of fertilization and embryonic development in weightlessness; (3) heat exchange processes; (4) amount of gravity force preferred by fruit flies for laying eggs (given a choice of three centrifugal zones); (5) growth of higher plants from seeds; (6) effects of weightlessness on cells in culture and (7) radiation danger from heavy nuclei, and electrostatic protection from charged particles.

  13. THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG

    SciTech Connect

    Elvis, Martin; Civano, Francesca; Aldcroft, T. L.; Fruscione, Antonella; Vignali, Cristian; Puccetti, Simonetta; Fiore, Fabrizio; Cappelluti, Nico; Brusa, Marcella; Finoguenov, Alexis; Brunner, Hermann; Zamorani, G.; Comastri, Andrea; Gilli, Roberto; Miyaji, Takamitsu; Damiani, Francesco; Koekemoer, Anton M.; Urry, C.M.; Silverman, John; Mainieri, Vincenzo

    2009-09-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg{sup 2} of the COSMOS field (centered at 10 {sup h}, +02 deg.) with an effective exposure of {approx}160 ks, and an outer 0.4 deg{sup 2} area with an effective exposure of {approx}80 ks. The limiting source detection depths are 1.9 x 10{sup -16} erg cm{sup -2} s{sup -1} in the soft (0.5-2 keV) band, 7.3 x 10{sup -16} erg cm{sup -2} s{sup -1} in the hard (2-10 keV) band, and 5.7 x 10{sup -16} erg cm{sup -2} s{sup -1} in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 x 10{sup -5} (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily ({approx}50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform ({+-}12%) exposure across the inner 0.5 deg{sup 2} field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.

  14. COSMOS 2044: Lung morphology study, experiment K-7-28

    NASA Technical Reports Server (NTRS)

    Elliott, Ann R.; Mathieu-Costello, Odile; West, John B.

    1991-01-01

    Researchers examined the effect of microgravity during spaceflight on lung tissue. The ultrastructure of the left lungs of 5 Czechoslovakian Wister rats flown on the 13 day, 19+ hour Cosmos 2044 mission was examined and compared to 5 vivarium and 5 synchronous controls at 1-g conditions, and 5 rats exposed to 14 days of tail suspension. Pulmonary hemorrage and alveolar adema of unknown origin occurred to a greater extent in the flight, tail-suspended, and synchronous control animals, and in the dorsal regions of the lung when compared with the vivarium controls. The cause of these changes, which are possibly due to an increase in pulmonary vascular pressure, requires further investigation.

  15. Spitzer Finds Clarity in the Inner Milky Way

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

    The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array

  16. Spitzer Space Telescope Spectroscopy of the Kepler Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Onaka, T.

    2004-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope was used for observations of the Kepler supernova remnant, with all four instrument modules targeted on the bright infrared knot located at 17h30m35.80s,-21d28m54.0s (J2000). The low spectral resolution modules data show a dust continuum spectrum consistent with dust grains heated by high-energy electrons, while the high resolution modules data show atomic emission line ratios consistent with excitation by a high velocity shock of greater than 100 kilometers per second and electron densities of approximately 1,000 per centimeter. The abundance ratios for the six detected elements show signs of heavy-element enhancement. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology. Support for this work was provided by NASA's Office of Space Science.

  17. THE SPITZER-WISE SURVEY OF THE ECLIPTIC POLES

    SciTech Connect

    Jarrett, T. H.; Masci, F.; Cutri, R. M.; Marsh, K.; Padgett, D.; Tsai, C. W.; Cohen, M.; Wright, E.; Petty, S.; Stern, D.; Eisenhardt, P.; Mainzer, A.; Ressler, M.; Benford, D.; Blain, A.; Carey, S.; Surace, J.; Lonsdale, C.; Skrutskie, M.; Stanford, S.

    2011-07-10

    We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg{sup 2} for the EP-N and 1.28 deg{sup 2} for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 {mu}m, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of {approx}1.5 deg{sup 2} for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 {mu}m channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 {mu}m), W2 (4.6 {mu}m), W3 (12 {mu}m), and W4 (22 {mu}m), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and the

  18. Mineralogy of Asteroids from Observations with the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Emery, J. P.; Cruikshank, D. P.; Cleve, J. Van; Stansberry, J. A.

    2005-01-01

    Visible and near-infrared (approximately 0.3 to 4.0 microns) spectroscopy has been successfully employed since the early 1970 s to infer the surface compositions of asteroids. Spectroscopic observations in the thermal infrared (approximately 5 to 40 microns) are similarly promising. Silicate spectra in this range are dominated by Si-O stretch and bend fundamentals, and other minerals have similarly diagnostic bands. Observations in this spectral range are difficult from the ground due to strong telluric absorptions and background emission. Nevertheless, spectral structure has been detected on a few asteroids in the 8 to 14-micron range from the ground, as well as from orbit with the ISO satellite. The Spitzer Space Telescope can observe asteroids with much higher sensitivity over a broader wavelength range than is possible from the ground or was possible with ISO. We present results of measurements of asteroids with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope.

  19. The VLA-COSMOS Survey - V. 324 MHz continuum observations

    NASA Astrophysics Data System (ADS)

    Smolčić, Vernesa; Ciliegi, Paolo; Jelić, Vibor; Bondi, Marco; Schinnerer, Eva; Carilli, Chris L.; Riechers, Dominik A.; Salvato, Mara; Brković, Alen; Capak, Peter; Ilbert, Olivier; Karim, Alexander; McCracken, Henry; Scoville, Nick Z.

    2014-09-01

    We present 90 cm Very Large Array imaging of the COSMOS field, comprising a circular area of 3.14 square degrees at 8.0arcsec × 6.0arcsec angular resolution with an average rms of 0.5 mJy beam-1. The extracted catalogue contains 182 sources (down to 5.5σ), 30 of which are multicomponent sources. Using Monte Carlo artificial source simulations, we derive the completeness of the catalogue, and we show that our 90 cm source counts agree very well with those from previous studies. Using X-ray, NUV-NIR and radio COSMOS data to investigate the population mix of our 90 cm radio sample, we find that our sample is dominated by active galactic nuclei. The average 90-20 cm spectral index (Sν ∝ να, where Sν is the flux density at frequency ν and α the spectral index) of our 90 cm selected sources is -0.70, with an interquartile range from -0.90 to -0.53. Only a few ultra-steep-spectrum sources are present in our sample, consistent with results in the literature for similar fields. Our data do not show clear steepening of the spectral index with redshift. Nevertheless, our sample suggests that sources with spectral indices steeper than -1 all lie at z ≳ 1, in agreement with the idea that ultra-steep-spectrum radio sources may trace intermediate-redshift galaxies (z ≳ 1).

  20. IRS Legacy Survey of the Green Valley in COSMOS

    NASA Astrophysics Data System (ADS)

    Scoville, Nicholas; Aussel, Herve; Capak, Peter; Frayer, David; Ilbert, Olivier; Kneib, Jean-Paul; Le Floc'h, Emeric; McCracken, Henry; Salvato, Mara; Sanders, David; Schinnerer, Eva; Sheth, Kartik; Surace, Jason; Yan, Lin

    2008-03-01

    We propose IRS low resolution spectroscopy is obtained for a complete flux-limited sample of 55 MIPS 24micron selected galaxies in the HST/ACS-COSMOS survey field at z = 0.65-0.85. All of the galaxies have S(24) > 0.7 mJy and confirmed IRAC counterparts. The IRS observations yield the PAH and silicate features, the mid-IR continuum SED and the Ne emission lines (for the brighter sources). These tracers provide diagnostics for the nature of the energy sources (starburst and/or AGN) in these dust obscured galaxies. This COSMOS IRS Legacy survey samples the full range of optical (e.g. U-V) color and absolute optical magnitude exhibited by luminous infrared-selected galaxies at our selected redshifts. Our sample of 24 micron sources allow us to better understand the role played by IR-selected galaxies in galaxy evolution, and provide a critical test of evolutionary models which suggest that sources in the Green Valley represent a transition stage as dusty spirals in the Blue Cloud merge and evolve into massive gas-poor elipticals on the Red Sequence.

  1. Radio-optical galaxy shape correlations in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Tunbridge, Ben; Harrison, Ian; Brown, Michael L.

    2016-12-01

    We investigate the correlations in galaxy shapes between optical and radio wavelengths using archival observations of the Cosmic Evolution Survey (COSMOS) field. Cross-correlation studies between different wavebands will become increasingly important for precision cosmology as future large surveys may be dominated by systematic rather than statistical errors. In the case of weak lensing, galaxy shapes must be measured to extraordinary accuracy (shear systematics of <0.01 per cent) in order to achieve good constraints on dark energy parameters. By using shape information from overlapping surveys in optical and radio bands, robustness to systematics may be significantly improved without loss of constraining power. Here we use HST-ACS (Hubble Space Telescope-Advanced Camera for Surveys) optical data, Very Large Array (VLA) radio data and extensive simulations to investigate both our ability to make precision measurements of source shapes from realistic radio data and to constrain the intrinsic astrophysical scatter between the shapes of galaxies as measured in the optical and radio wavebands. By producing a new image from the VLA-COSMOS L-band radio visibility data that are well suited to galaxy shape measurements, we are able to extract precise measurements of galaxy position angles. Comparing to corresponding measurements from the HST optical image, we set a lower limit on the intrinsic astrophysical scatter in position angles, between the optical and radio bands, of σα > 0.212π rad (or 38.2°) at a 95 per cent confidence level.

  2. The Spitzer First Look Survey - Ecliptic Plane Component

    NASA Astrophysics Data System (ADS)

    Meadows, V. S.; Bhattacharya, B.; Reach, W. T.; Grillmair, C.; Noriega-Crespo, A.; Ryan, E. L.; Tyler, S. R.; Rebull, L. M.; Giorgini, J. D.; Elliot, J. L.

    2004-11-01

    The Spitzer First Look Survey (FLS) provided an initial characterization of the infrared sky at Spitzer wavelengths and sensitivities. The ecliptic plane component (EPC) of the FLS was executed on Jan 21, 2004, and concentrated on two 0.13 deg2 fields at a solar elongation of 115 degrees, and ecliptic latitudes of 0 and +5 degrees. The FLS-EPC explored the small asteroid counts at 8 and 24μ m, with an initial detection limit down to 0.08 and 0.8 mJy, respectively, and a completeness limit almost twice as deep as the 8μ m equivalent flux density of the previous deepest mid-IR survey. Fifteen known and 19 unknown asteroids were identified, and asteroids detected at both wavelengths displayed similar 8 to 24μ m flux ratios of 0.11±0.02. Corrected number counts per square degree for objects down to 0.1mJy at 8μ m were 150± 40 for the 0 degree field, and 130± 30 for the +5 degree field. Comparing number counts for the ecliptic latitude 0 degree and +5 degree fields indicates a slower-than-anticipated drop-off in contrast to predicted scale heights, possibly due to the presence of higher inclination objects in the small population sampled by Spitzer. This work is based on observations made with the Spitzer Space Telescope, which is is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  3. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; Simon, Amy A.; Wong, Michael H.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μm. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μm and 0.6 mag at 4.5 μm. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μm) and W2 (4.6 μm) from the Wide-feld Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude ˜0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude ˜0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μm filters.

  4. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cao, Yi; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Jencson, Jacob; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andy

    2016-08-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 147 explosive transients and 1948 eruptive variables. Of these 147 infrared transients, 35 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black-hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of only those 104 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEa. Scaling from the SPIRITS discovery rate, we estimate finding 22 new SPRITEs and 6 new supernovae over the next two years. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  5. ALBEDOS OF SMALL HILDA GROUP ASTEROIDS AS REVEALED BY SPITZER

    SciTech Connect

    Ryan, Erin Lee; Woodward, Charles E. E-mail: chelsea@astro.umn.edu

    2011-06-15

    We present thermal 24 {mu}m observations from the Spitzer Space Telescope of 62 Hilda asteroid group members with diameters ranging from 3 to 12 km. Measurements of the thermal emission, when combined with reported absolute magnitudes, allow us to constrain the albedo and diameter of each object. From our Spitzer sample, we find the mean geometric albedo, p{sub V} = 0.07 {+-} 0.05, for small (D < 10 km) Hilda group asteroids. This Spitzer-derived value of p{sub V} is greater than and spans a larger range in albedo space than the mean albedo of large (D {approx}> 10 km) Hilda group asteroids which is p{sub V} = 0.04 {+-} 0.01. Though this difference may be attributed to space weathering, the small Hilda group population reportedly displays greater taxonomic range from C-, D-, and X-type whose albedo distributions are commensurate with the range of determined albedos. We discuss the derived Hilda size-frequency distribution, color-color space, and geometric albedo for our survey sample in the context of the expected migration induced 'seeding' of the Hilda asteroid group with outer solar system proto-planetesimals as outlined in the 'Nice' formalism.

  6. Spitzer Observations Suggest a Low Kepler False Postive Rate.

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel; Charbonneau, D.; Fressin, F.; Ballard, S.; Kepler Team

    2011-09-01

    I present the results from a large project that uses 800 hours of the Spitzer Space Telescope to gather near-infrared photometric measurements of Kepler Object of Interest (KOI). The project's main purposes are to validate the planetary status of the Kepler candidates and to estimate observationally the Kepler false positive rate. A small amount of this telescope time is also dedicated to study the atmospheres of confirmed planets. I revue the project and introduce our target sample which is composed of 34 candidates selected amongst the first 400 KOIs. This list contains mainly sub-Neptune sizes candidates orbiting a wide range of spectral type stars. I present the analysis of the complete sample. By comparing the transit light curves of candidates observed with Kepler and Spitzer, we can exclude significant sources of astrophysical false positives resulting from blends (eclipsing binaries, hierarchical triples, etc...) that can mimic an exoplanetary signature in the Kepler bandpass. I show that our measured Spitzer transit depths are almost entirely in agreement with the Kepler depths. Our results suggest that the Kepler false positive rate is extremely low.

  7. GALACTIC CEPHEIDS WITH SPITZER. I. LEAVITT LAW AND COLORS

    SciTech Connect

    Marengo, M.; Evans, N. R.; Barmby, P.; Bono, G.; Welch, D. L.; Romaniello, M.

    2010-01-20

    Classical Cepheid variable stars have been important indicators of extragalactic distance and Galactic evolution for over a century. The Spitzer Space Telescope has opened the possibility of extending the study of Cepheids into the mid- and far-infrared, where interstellar extinction is reduced. We have obtained photometry from images of a sample of Galactic Cepheids with the Infrared Array Camera (IRAC) and Multiband Infrared Photometer for Spitzer instruments on Spitzer. Here we present the first mid-infrared period-luminosity relations for Classical Cepheids in the Galaxy, and the first ever Cepheid period-luminosity relations at 24 and 70 mum. We compare these relations with theoretical predictions, and with period-luminosity relations obtained in recent studies of the Large Magellanic Cloud. We find a significant period-color relation for the [3.6] - [8.0] IRAC color. Other mid-infrared colors for both Cepheids and non-variable supergiants are strongly affected by variable molecular spectral features, in particular deep CO absorption bands. We do not find strong evidence for mid-infrared excess caused by warm (approx500 K) circumstellar dust. We discuss the possibility that recent detections with near-infrared interferometers of circumstellar shells around delta Cep, l Car, Polaris, Y Oph, and RS Pup may be a signature of shocked gas emission in a dust-poor wind associated with pulsation-driven mass loss.

  8. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Astrophysics Data System (ADS)

    Timlin, John; Ross, Nicholas; Richards, Gordon T.; Lacy, Mark; Bauer, Franz E.; Brandt, W. Niel; Fan, Xiaohui; Haggard, Daryl; Makler, Martin; Myers, Adam D.; Schneider, Donald P.; Strauss, Michael A.; Urry, C. Megan; Zakamska, Nadia L.; SpIES Team

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of the Equatorial SDSS Stripe 82 field using Warm Spitzer. SpIES was designed to probe enough volume to perform measurements of the z>3 quasar clustering and luminosity function in order to test various "AGN feedback'' models. Additionally, the wide range of multi-wavelength, multi-epoch ancillary data makes SpIES a prime location to identify both high-redshift (z>6) quasars as well as obscured quasars missed by optical surveys. SpIES maps ~115deg2 of Stripe 82 to depths of 6.3 uJy (21.9 AB Magnitudes) and 5.75 uJy (22.0 AB Magnitudes) at [3.6] and [4.5] microns respectively; depths significantly greater than WISE. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. Amongst our preliminary science results, we show high significance detections of spectroscopically confirmed, z~5 quasars in the SpIES data. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  9. Pointing History Engine for the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David; Ahmed, Asif; Brugarolas, Paul

    2007-01-01

    The Pointing History Engine (PHE) is a computer program that provides mathematical transformations needed to reconstruct, from downlinked telemetry data, the attitude of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility) as a function of time. The PHE also serves as an example for development of similar pointing reconstruction software for future space telescopes. The transformations implemented in the PHE take account of the unique geometry of the Spitzer telescope-pointing chain, including all data on relative alignments of components, and all information available from attitude-determination instruments. The PHE makes it possible to coordinate attitude data with observational data acquired at the same time, so that any observed astronomical object can be located for future reference and re-observation. The PHE is implemented as a subroutine used in conjunction with telemetry-formatting services of the Mission Image Processing Laboratory of NASA s Jet Propulsion Laboratory to generate the Boresight Pointing History File (BPHF). The BPHF is an archival database designed to serve as Spitzer s primary astronomical reference documenting where the telescope was pointed at any time during its mission.

  10. A PUBLIC K{sub s} -SELECTED CATALOG IN THE COSMOS/ULTRAVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS {sup ,}

    SciTech Connect

    Muzzin, Adam; Franx, Marijn; Labbe, Ivo; Marchesini, Danilo; Stefanon, Mauro; Milvang-Jensen, Bo; Fynbo, J. P. U.; Dunlop, James S.; Brammer, Gabriel; Van Dokkum, Pieter

    2013-05-01

    We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {sub 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.

  11. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples.

    PubMed

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-05-05

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis.

  12. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples

    PubMed Central

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-01-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  13. The SAGE-Spec Spitzer Legacy program: Identification of Spitzer-IRS staring mode targets in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Jones, Olivia; Sage-Spec Team

    2017-01-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed over 1000 point sources in the Large Magellanic Cloud (LMC). As a follow up to the SAGE-Spec legacy program (Kemper et al. 2010), we have now extended the initial classification of 197 sources in the LMC (Woods et al. 2011) to all 1000 Spitzer-IRS staring mode targets in the SAGE footprint. We classify these point sources into evolutionary and chemical types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership, and variability information. This spectral classification will allow us improve our understanding of the stellar populations in the LMC, study the composition, and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. Finally we discuss the application of mid-IR spectral and photometric classifications to data that will be obtained from the MIRI instrument on JWST.

  14. The SuperCOSMOS all-sky galaxy catalogue

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.

    2016-10-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

  15. The most obscured AGN in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Cappelluti, N.; Comastri, A.; Gilli, R.; Gruppioni, C.; Mignoli, M.; Pozzi, F.; Vietri, G.; Vignali, C.; Zamorani, G.

    2015-06-01

    Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH ≳ 1024 cm-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 1024 cm-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH ≳ 1025 cm-2), intrinsically luminous (L2-10 > 1044 erg s-1) AGN at z = 0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6 μm luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a ≳1025 cm-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (LBol/LEdd = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z ~ 2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.

  16. Stellar mass assembly and star formation history from z=0.2 out to z=6 in the COSMOS and VIPERS fields

    NASA Astrophysics Data System (ADS)

    Ilbert, Olivier

    2015-08-01

    A clear and comprehensive picture describing the physical processes which regulate the stellar mass assembly is still missing in galaxy formation scenario. I will present a measurement of the galaxy stellar mass function and stellar mass density from z=0.2 out to z=6. Our study relies on deep near-infrared imaging over wide fields: the WIRCAM/CFHT coverage of the 20 sq-deg VIPERS fields combined with the new IRAC/Spitzer coverage (the SPLASH survey) of the 2 sq-deg COSMOS field. Our analysis is based on photometric redshifts of 1,5 million of galaxies reaching a precision around 4% at 4

  17. Interpreting the SPITZER View of Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Governato, Fabio; Dalcanton, Julianne; Giavalisco, Mauro; Mayer, Lucio; Quinn, Thomas; Valenzuela, Octavio; Willman, Beth

    2005-06-01

    We request the equivalent of about 9 months of salary funding for the PI to direct the comparison between the prediction of breakthrough N-body simulations of galaxy formation with the detailed, panchromatic observables of the internal structure of field galaxies provided by GOODS, GLIMPSE and SINGS. We will focus on (a) star formation rates and histories (SFH) as a function of galaxy stellar mass and morphology (b) the cosmic SFH at high redshift (c) the evolution of galaxy sizes and disk surface brightness of spiral galaxies and specifically of the progenitors of our own Milky Way and (d) the evolution of disks and spheroids through dynamical instabilities and the formation of the thick/thin disk components. Our project carries significant improvements over previous work: -We resolve in a full cosmological context the ISM and stellar structure of a small set of galaxies down to giant star-forming regions with a sub-kpc spatial resolution. -We describe SN feedback and star formation with a physically motivated model that reproduces the basic properties of z=0 galaxies. -We will provide predictions directly comparable with observed quantities obtained with Spitzer's instruments, including the effects of dust reprocessing on the SED of galaxies. -We sample galaxy masses from giant spirals to dwarfs. -We include in our team observers strongly involved with some of the mentioned Spitzer's surveys. -We will update the freely available and widely used software TIPSY (Theoretical Image Processing System) developed by co-PI T.Quinn to produce images from simulations in the passbands of Spitzer's instruments. Delivery of results will happen between Summer 05 and Spring 06. 80% of the simulations have been completed to date using 2.5e5 CPU hrs.

  18. Developing Astrometric Drift Scans for the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Carey, Sean J.; Ingalls, J.; Stauffer, J. R.; Grillmair, C. J.

    2014-01-01

    We are currently developing and optimizing a new observing mode using the IRAC instrument on-board the Spitzer Space Telescope. The new method which uses a constant rate drift scan while the instrument collects data is based on the successful HST drift scan method for producing high astrometric precision (20 micro-arcsecond) parallaxes to improve the cosmological distance scale. The HST experience indicates that a factor of 10 improvement in astrometric precision is possible. Currently Spitzer astrometric precision is of order 20-40 milli-arcseconds per epoch. Increasing the precision by even a factor of three greatly facilitates studies of nearby brown dwarfs and increases our ability to measure parallaxes to these intrinsically faint and cool sources out to ~30 parsecs. Initial tests of the method with observations of NGC 2516 at 3.6 and 4.5 microns have shown that useful data are taken in drift scan mode and the scans are in the specified direction and rate. We have developed a tool to measure source centroids in the stacks of images taken while scanning. The tool groups the centroids into tracklets which can then be simultaneously fit to remove telescope jitter and instrumental distortion. We present our latest results in the analysis of this mode and the prospects for the scientific exploitation of this method. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  19. Spitzer Trigonometric Parallaxes of the Solar Neighborhood's Coldest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy; Gelino, Christopher; Beichman, Charles; Tinney, Christopher; Smart, Richard; Faherty, Jacqueline; Cushing, Michael; Wright, Edward; Lowrance, Patrick

    2012-09-01

    There are rare times in astronomy when - by fortuitous circumstances, careful planning, or both - giant leaps forward in our understanding can be made within a very short time. The combination of WISE, Spitzer, and HST is now capable of fast forwarding our knowledge of the immediate Solar Neighborhood. With just six months of survey operations, WISE was able to give us an unprecedented view of the entire sky that revealed the positions of the coldest brown dwarfs with effective temperatures as cold as ~300K (i.e., room temperature). With the investment of two years of Spitzer follow-up, we are capable of having distances measured for all of them. In this proposal, we consider a volume-limited (d < 20 pc) sample of the coldest known spectral types, T6 through early Y. These are the objects that give us the most leverage in discerning the shape of the low-mass end of the field mass function as well as defining the low-mass cutoff itself. Although on-going ground-based programs will provide astrometric monitoring of about half of the sample, Spitzer Cycle 9+10 is needed to measure trigonometric parallaxes for the other half (79 objects), which include the faintest and coldest objects and hence those most difficult to monitor. A combination of current ground-based and HST Cycle 20 spectroscopy will complete the picture by providing the spectral classfications needed for temperature determination on this sample. Having distances and temperature determinations for all of the coldest objects in the the Sun's environs allows us an unprecedented look at the modern-day products of past star formation and our most comprehensive, three-dimensional view to date of the Solar Neighborhood.

  20. Spitzer Trigonometric Parallaxes of the Solar Neighborhood's Coldest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J.

    2012-10-01

    There are rare times in astronomy when - by fortuitous circumstances, careful planning, or both - giant leaps forward in our understanding can be made within a very short time. The combination of WISE, Spitzer, and HST is now capable of fast forwarding our knowledge of the immediate Solar Neighborhood. With just six months of survey operations, WISE was able to give us an unprecedented view of the entire sky that revealed the positions of the coldest brown dwarfs with effective temperatures as cold as 300K {i.e., room temperature}. With the investment of two years of Spitzer follow-up, we are capable of having distances measured for all of them. In this proposal, we consider a volume-limited {d < 20 pc} sample of the coldest known spectral types, T6 through early Y. These are the objects that give us the most leverage in discerning the shape of the low-mass end of the field mass function as well as defining the low-mass cutoff itself. Although ongoing ground-based programs will provide astrometric monitoring of about half of the sample, Spitzer Cycle 9+10 is needed to measure trigonometric parallaxes for the other half {79 objects}, which include the faintest and coldest objects and hence those most difficult to monitor. A combination of current ground-based and HST Cycle 20 spectroscopy will complete the picture by providing the spectral classfications needed for temperature determination on this sample. Having distances and temperature determinations for all of the coldest objects in the the Sun's environs allows us an unprecedented look at the modern-day products of past star formation and our most comprehensive, three-dimensional view to date of the Solar Neighborhood.

  1. The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

    NASA Astrophysics Data System (ADS)

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Gil de Paz, A.; Kennicutt, R. C.; Lee, J. C.; Begum, A.; Block, M.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Marble, A. R.; Sakai, S.; Skillman, E. D.; van Zee, L.; Walter, F.; Weisz, D. R.; Williams, B.; Wu, S.-Y.; Wu, Y.

    2009-09-01

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Hα, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Hα and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  2. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    SciTech Connect

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-09-20

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Halpha, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Halpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 {mu}m polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  3. A Spitzer Survey for Dust in Type IIn Supernovae

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  4. A Spitzer Survey for Dust in Type IIn Supernovae

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low Type IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. vVhile previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from ten targets (approx. 15 %) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests these SNe "turn off" at " approx. 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors having similar mass-loss histories.

  5. A Spitzer Survey for Dust in Type IIn Supernovae

    NASA Astrophysics Data System (ADS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-11-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets (~15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ~1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  6. NEOLegacy: The ultimate Spitzer survey of Near Earth Objects

    NASA Astrophysics Data System (ADS)

    Trilling, David; Mommert, Michael; Hora, Joseph; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Michael; Smith, Howard

    2016-08-01

    Near Earth Objects (NEOs) are bodies whose orbits bring them close to the Earth's orbit. NEOs are valuable tracers of the evolution of our Solar System, and are also key components of current and future space exploration. Finally, the study of NEOs is relevant for civil defense through understanding the impact threat. We propose here an efficient and comprehensive survey to measure the diameters, albedos, and lightcurves of 1154 NEOs. We include only targets that are too faint to be detected by NEOWISE. This catalog will complete a database of diameters and albedos for nearly 3000 NEOs -- more than 20% of all known objects. Our primary goal, in line with the planetary science priorities for Spitzer Cycle 13, is to create a large and uniform catalog of NEO properties. From this catalog we will calculate an independent estimate of the NEO size distribution, addressing a current controversy, and measure the compositional distribution of NEOs as a function of size. We will increase by up to a factor of five the number of NEO lightcurves with relatively well known periods and amplitudes. The legacy value of this project is most evident in the fact that there will not ever in the foreseeable future be another opportunity to measure thousands of NEO diameters and carry out the type of science described above. Our online database will be the single most valuable resource of NEO diameters and albedos for years to come. Only Spitzer is sensitive and efficient enough to create such an important catalog of this scale. Our team has unmatched experience observing NEOs with Spitzer.

  7. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    SciTech Connect

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-11-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets ({approx}15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at {approx}1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  8. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    SciTech Connect

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Spitzbart, B.; Megeath, S. T.; Gutermuth, R.

    2012-01-10

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 {mu}m. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 {mu}m. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 {mu}m observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of {approx}3 pc. Assuming a velocity of 100 km s{sup -1} for the jet material gives an age of 3 Multiplication-Sign 10{sup 4} yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  9. Spitzer Science operations: the good, the bad, and the ugly

    NASA Astrophysics Data System (ADS)

    Levine, Deborah A.

    2008-07-01

    We review the Spitzer Space Telescope Science Center operations teams and processes and their interfaces with other Project elements -- what we planned early in the development of the science center, what we had at a launch and what we have now and why. We also explore the checks and balances behind building an organizational structure that supports constructive airing of conflicts and a timely resolution that balances the inputs and provides for very efficient on-orbit operations. For example, what organizational roles are involved in reviewing observing schedules, what constituency do they represent and who has authority to approve or disapprove the schedule.

  10. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.

    2004-01-01

    PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. This paper will focus on recent applications of the NASA Ames PAH IR spectral Database to interpret astronomical observations made by the Spitzer Space telescope and other space based infrared instruments. Examples will be given showing how changes in the spectral characteristics of different objects reveal interstellar PAH characteristics such as structure, size and composition, as well as provide insight into the chemical history and physical nature of the emission zones.

  11. Spitzer ultra faint survey program (surfs up). I. An overview

    SciTech Connect

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori; Ryan, Russell; Casertano, Stefano; Lemaux, Brian C.; Schrabback, Tim; Hildebrandt, Hendrik; Gonzalez, Anthony H.; Allen, Steve; Von der Linden, Anja; Gladders, Mike; Hinz, Joannah; Zaritsky, Dennis; Treu, Tommaso

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  12. The Spitzer-HETDEX Exploratory Large-area Survey

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S. L.; Bassett, R.; Behroozi, P.; Blanc, G. A.; de Jong, R. S.; DePoy, D. L.; Drory, N.; Gawiser, E.; Gebhardt, K.; Gronwall, C.; Hill, G. J.; Hopp, U.; Jogee, S.; Kawinwanichakij, L.; Marshall, J. L.; McLinden, E.; Mentuch Cooper, E.; Somerville, R. S.; Steinmetz, M.; Tran, K.-V.; Tuttle, S.; Viero, M.; Wechsler, R.; Zeimann, G.

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ˜ 800 spectroscopy will produce ˜200,000 redshifts from the Lyα emission for galaxies in the range 1.9 < z < 3.5, and an additional ˜200,000 redshifts from the [O ii] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ˜0.5 Gpc3 at 1.9 < z < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μm images. The catalogs reach limiting sensitivities of 1.1 μJy at both 3.6 and 4.5 μm (1σ, for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  13. Spitzer Secondary Eclipses of HAT-P-13b

    NASA Astrophysics Data System (ADS)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  14. A SPITZER VIEW OF THE YOUNG OPEN CLUSTER NGC 2264

    SciTech Connect

    Sung, Hwankyung; Stauffer, John R.; Bessell, Michael S. E-mail: stauffer@ipac.caltech.edu

    2009-10-15

    We have performed mid-IR photometry of the young open cluster NGC 2264 using the images obtained with the Spitzer Space Telescope Infrared Array Camera and Multiband Imaging Photometer for Spitzer instruments and presented a normalized classification scheme of young stellar objects in various color-color diagrams to make full use of the information from multicolor photometry. These results are compared with the classification scheme based on the slope of the spectral energy distribution (SED). From the spatial distributions of Class I and II stars, we have identified two subclusterings of Class I objects in the CONE region of Sung et al. The disked stars in the other star-forming region S Mon are mostly Class II objects. These three regions show a distinct difference in the fractional distribution of SED slopes as well as the mean value of SED slopes. The fraction of stars with primordial disks is nearly flat between log m = 0.2 and -0.5 and that of transition disks is very high for solar mass stars. In addition, we have derived a somewhat higher value of the primordial disk fraction for NGC 2264 members located below the main pre-main-sequence locus (so-called BMS stars). This result supports the idea that BMS stars are young stars with nearly edge-on disks. We have also found that the fraction of primordial disks is very low near the most massive star S Mon and increases with distance from S Mon.

  15. Validation and characterization of Kepler exoplanet candidates with Warm Spitzer

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel; Charbonneau, D.; Kepler Science Team

    2011-05-01

    I present the status and results from an ongoing project that uses 800 hours of the Spitzer Space Telescope to gather near-infrared photometric measurements of transiting extrasolar planet candidates detected by the Kepler Mission. The main purposes of this project is to validate planetary candidates, and to characterize confirmed planets. By comparing the light curves spanning times of primary transit for candidates observed with Kepler and Spitzer, we can exclude significant sources of astrophysical false positives resulting from blends (e.g. background eclipsing binaries) that mimic an exoplanetary signature in the Kepler bandpass. I show how our infrared observations can help to validate the planetary nature of several candidates with small radii, which could be rocky in composition. By combining occultation measurements of the reflected starlight in the optical with estimates of the thermal emission in the near-infrared, we are able to constrain the energy budget of a handful of hot-Jupiters and compare such constraints to those for other giant planets.

  16. SURVEY OF NEARBY FGK STARS AT 160 mum WITH SPITZER

    SciTech Connect

    Tanner, Angelle; Beichman, Charles; Bryden, Geoff; Lisse, Carey

    2009-10-10

    The Spitzer Space Telescope has advanced debris disk science tremendously with a wealth of information on debris disks around nearby A, F, G, K, and M stars at 24 and 70 mum with the MIPS photometer and at 8-34 mum with IRS. Here we present 160 mum observations of a small subset of these stars. At this wavelength, the stellar photospheric emission is negligible and any detected emission corresponds to cold dust in extended Kuiper Belt analogs. However, the Spitzer 160 mum observations are limited in sensitivity by the large beam size which results in significant 'noise' due to cirrus and extragalactic confusion. In addition, the 160 mum measurements suffer from the added complication of a light leak next to the star's position whose flux is proportional to the near-infrared flux of the star. We are able to remove the contamination from the leak and report 160 mum measurements or upper limits for 24 stars. Three stars (HD 10647, HD 207129, and HD 115617) have excesses at 160 mum that we use to constrain the properties of the debris disks around them. A more detailed model of the spectral energy distribution of HD 10647 reveals that the 70 and 160 mum emission could be due to small water ice particles at a distance of 100 AU, consistent with Hubble Space Telescope optical imaging of circumstellar material in the system.

  17. Spitzer IRS Spectra of Basaltic Asteroids: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nick; Stewart, Heather; Marchis, Frank

    2008-01-01

    We present preliminary results of a Spitzer program to observe the 5.2--38 micron spectra of small basaltic asteroids using the Spitzer IRS (Infrared Spectrograph). Our targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), four outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid (NEA) 4055 Magellan. We will compare the compositions and thermophysical properties of the non-Vestoid objects with those of the dynamical vestoids to provide insight on the extent of metal-silicate differentiation on planetsimals during the epoch of planet formation in the early Solar System. As of this writing, spectra of asteroids 10537 (1991 RY16) and 2763 Jeans have been returned. Analysis of these data are ongolng. Observations of 956 Elisa, 2653 Principia, 4215 Kamo, 7472 Kumakiri, and 1459 Magnya have been scheduled and are expected to be available by the time of the DPS meeting. NIR spectra and lightcurves o f the target asteroids are also being observed in support of this program.

  18. The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

    NASA Astrophysics Data System (ADS)

    Dale, Daniel; LVL Team

    2010-01-01

    The survey description and infrared properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, H-alpha, and HST imaging from 11HUGS and ANGST. LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8um PAH emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between infrared-to-ultraviolet ratio and ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  19. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  20. Structure of the Zodiacal Emission by Spitzer Archive Data

    NASA Astrophysics Data System (ADS)

    Verebélyi, Erika

    2015-08-01

    Dust in the Interplanetary Dust Cloud not just reflects the sunlight (known as zodiacal light) but also has its own thermal emission. At the heliocentric distance of Earth the peak of this emission (with particle size 100 μm) is close to 20 μm. In this study we used the data of four programs completed with the MIPS camera of the Spitzer Space Telescope at 24 μm to probe the large scale brightness distribution as well as the small-scale (subarcmin) structure of the Zodiacal Could. The four programs were:1. The Production of Zodiacal Dust by Asteroids and Comets (ID: 2317)2. High Latitude Dust Bands in the Main Asteroid Belt: Fingerprints of Recent Breakup Events (ID: 20539)3. A New Source of Interplanetary Dust: Type II Dust Trails (ID: 30545)4. First Look Survey - Ecliptic Plane Component (ID: 98)We take into account that while the Spitzer Space Telescope carried out the measurements it was orbiting the Sun at an Earth-trailing orbit and looked at different parts of the Zodiacal Cloud, in many cases looking through the same parts of the cloud from different locations. This gives us the chance to investigate the 3D distribution of zodiacal dust in addition to its large and small scale structure.

  1. A Warm Spitzer Survey of Circulation Patterns in Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Knutson, H.

    2011-12-01

    The atmospheres of close-in extrasolar planets experience strong, asymmetrically distributed radiative forcing that can potentially lead to dramatic variations in both temperature and composition between the day- and night-side hemispheres. However, secondary eclipse observations only tell us about the properties of the dayside atmosphere, while transmission spectroscopy probes the region around the day-night terminator. By measuring changes in the infrared emission spectra of these planets as a function of orbital phase, we can resolve thermal and compositional gradients in these atmospheres, allowing us to obtain a complete picture of their local properties. The most extensively studied planet to date, HD 189733b, appears to have a relatively modest day-night temperature gradient as seen in the 8 and 24 micron Spitzer bands, suggesting that compositional gradients in its atmosphere are likely to be minimal. We present new, full-orbit phase curves at 3.6 and 4.5 um obtained with warm Spitzer, which we use to construct improved multi-color maps and to constrain variations in the pressure-temperature profile and atmospheric composition as a function of longitude. We also present preliminary results for complementary full-orbit observations of HAT-P-7b in the same bands, and discuss an emerging pattern in which the most highly irradiated (>2000 K) planets appear to undergo a shift towards large day-night temperature gradients, perhaps due to Lorentz braking or other MHD processes.

  2. SPITZER, GAIA, AND THE POTENTIAL OF THE MILKY WAY

    SciTech Connect

    Price-Whelan, Adrian M.; Johnston, Kathryn V.

    2013-11-20

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ∼10 kpc. This ''horizon'' for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy.

  3. Spitzer mid-infrared spectroscopic observations of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Mata, H.; Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Toalá, J. A.; Fang, X.; Rubio, G.; Kemp, S. N.; Navarro, S. G.; Corral, L. J.

    2016-06-01

    We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of 11 planetary nebulae (PNe). The observations, acquired with the Spitzer Infrared Spectrograph (IRS), cover the spectral range 5.2-14.5 μm that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltzmann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ≃900 ± 70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon features in a few cases. The decline of the [Ar III]/[Ne II] line ratio with the stellar effective temperature can be explained either by a true neon enrichment or by high density circumstellar regions of PNe that presumably descend from higher mass progenitor stars.

  4. Using The Cornell Atlas of Spitzer/IRS Sources

    NASA Astrophysics Data System (ADS)

    Samsonyan, A. L.

    2016-06-01

    I summarize my research studying details of the emission line profiles of the mid infrared [NeII] 12.8 microns and [NeIII] 15.6 microns emission lines. Observations are from the Spitzer Infrared Spectrograph (IRS) (Houck et al. 2004), so I illustrate use of the archive of these spectra. The IRS team developed the Cornell Atlas of Spitzer IRS Sources (CASSIS) found at cassis.sirtf.com. At present, all low resolution (Lebouteiller et al. 2011) and high resolution (Lebouteiller et al. 2015) staring observations with the IRS are available (more than 20,000 spectra of about 15,000 distinct sources). Spectra are provided in various formats to enable easy viewing or measurements. Spectra cover 5 microns to 37 microns in low resolution (R ˜ 60 to 125) and 10 microns to 37 microns in high resolution (R ˜ 600) modes. CASSIS is intended as a long term resource for the astronomical community so that this fundamental data base of mid-infrared spectra will be easily usable perpetually, and I demonstrate some examples of its use.

  5. SMASH: Spitzer Merger History and Shape of the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn; Scowcroft, Vicky; Madore, Barry; Freedman, Wendy; Scowcroft, Victoria; Clementini, Gisella; Cioni, Maria-Rosa; van der Marel, Roeland; Udalski, Andrzej; Pietrzynski, Grzegorz; Soszynski, Igor; Nidever, David; Kallivayalil, Nitya; Besla, Gurtina; Majewski, Steve; Monson, Andy; Seibert, Mark; Smith, Horace; Preston, George; Kollmeier, Juna; Bono, Giuseppe; Marengo, Massimo; Persson, Eric; Law, David; Grillmair, Carl; Cohen, Judy; Sesar, Branimir; Price-Whelan, Adrian; Fabrizio, Michele

    2013-10-01

    The existence of a period-luminosity relation for RR Lyrae variables as measured at IRAC mid-infrared wavelengths allows Spitzer to estimate distances to individual stars with 2% errors. The SMASH program will exploit this unprecedented opportunity to precisely map structures throughout the halo of our Galaxy. SMASH will construct the first 3-D map of one of the larger satellites of the Milky Way (Sagittarius), it will determine precise distances to four more satellites (Ursa Minor, Carina, Sculptor & Bootes) and make the only measurements of stars in tidal streams accurate enough to determine their individual positions within the debris. This proposal describes some of the ground-breaking science enabled by this program, from increased accuracy in determining the orbits of satellite galaxies, to revolutionary constraints on the mass, shape and orientation of our Milky Way's dark matter halo. The foundational importance of these data sets cannot be overstated. These Milky Way structures lie far beyond the reach of any current or proposed future direct parallax measurements. Moreover, the combination of the SMASH results with proper motions from ESA's upcoming astrometric mission, Gaia, can effectively stretch Gaia's horizon for full 6D phase-space maps of our Galaxy by nearly four orders of magnitude in volume! These data and the resulting distance measurements will become Spitzer's legacy to the Galactic Astronomy community for years to come.

  6. Quantitative Analysis of the Usage of the COSMOS Science Education Portal

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Bogner, Franz X.; Neofotistos, George

    2011-08-01

    A quantitative method of mapping the web usage of an innovative educational portal is applied to analyze the behaviour of users of the COSMOS Science Education Portal. The COSMOS Portal contains user-generated resources (that are uploaded by its users). It has been designed to support a science teacher's search, retrieval and access to both, scientific and educational resources. It also aims to introduce in and familiarize teachers with an innovative methodology for designing, expressing and representing educational practices in a commonly understandable way through the use of user-friendly authoring tools that are available through the portal. As a new science education portal that includes user-generated content, the COSMOS Portal encounters the well-known "new product/service challenge": to convince the users to use its tools, which facilitate quite fast lesson planning and lesson preparation activities. To respond to this challenge, the COSMOS Portal operators implemented a validation process by analyzing the usage data of the portal in a 10 month time-period. The data analyzed comprised: (a) the temporal evolution of the number of contributors and the amount of content uploaded to the COSMOS Portal; (b) the number of portal visitors (categorized as all-visitors, new-visitors, and returning-visitors) and (c) visitor loyalty parameters (such as page-views; pages/visit; average time on site; depth of visit; length of visit). The data is augmented with data associated with the usage context (e.g. the time of day when most of the activities in the portal take place). The quantitative results indicate that the exponential growth of the contributors to the COSMOS Portal is followed by an exponential growth of the uploaded content. Furthermore, the web usage statistics demonstrate significant changes in users' behaviour during the period under study, with returning visitors using the COSMOS Portal more frequently, mainly for lesson planning and preparation (in the

  7. HST AND SPITZER OBSERVATIONS OF THE HD 207129 DEBRIS RING

    SciTech Connect

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Rieke, George H.; Su, K. Y. L.; Gaspar, Andras; Chen, Christine C.; Beichman, Charles A.; Hines, Dean C.; Rebull, Luisa M.; Tanner, Angelle; Trilling, David E.; Clampin, Mark

    2010-10-15

    A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in scattered visible light with the ACS coronagraph on the Hubble Space Telescope (HST) and in thermal emission using MIPS on the Spitzer Space Telescope at {lambda} = 70 {mu}m (resolved) and 160 {mu}m (unresolved). Spitzer IRS ({lambda} = 7-35 {mu}m) and MIPS ({lambda} = 55-90 {mu}m) spectrographs measured disk emission at {lambda}> 28 {mu}m. In the HST image the disk appears as a {approx}30 AU wide ring with a mean radius of {approx}163 AU and is inclined by 60{sup 0} from pole-on. At 70 {mu}m, it appears partially resolved and is elongated in the same direction and with nearly the same size as seen with HST in scattered light. At 0.6 {mu}m, the ring shows no significant brightness asymmetry, implying little or no forward scattering by its constituent dust. With a mean surface brightness of V = 23.7 mag arcsec{sup -2}, it is the faintest disk imaged to date in scattered light. We model the ring's infrared spectral energy distribution (SED) using a dust population fixed at the location where HST detects the scattered light. The observed SED is well fit by this model, with no requirement for additional unseen debris zones. The firm constraint on the dust radial distance breaks the usual grain size-distance degeneracy that exists in modeling of spatially unresolved disks, and allows us to infer a minimum grain size of {approx}2.8 {mu}m and a dust size distribution power-law spectral index of -3.9. An albedo of {approx}5% is inferred from the integrated brightness of the ring in scattered light. The low-albedo and isotropic scattering properties are inconsistent with Mie theory for astronomical silicates with the inferred grain size and show the need for further modeling using more complex grain shapes or compositions. Brightness limits are also presented for six other main-sequence stars with strong Spitzer excess around which HST detects no circumstellar nebulosity (HD 10472, HD 21997, HD

  8. Cosmos 2229 immunology study (Experiment K-8-07)

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    The purpose of the current study was to further validate use of the rhesus monkey as a model for humans in future space flight testing. The areas of immunological importance examined in the Cosmos 2229 flight were represented by two sets of studies. The first set of studies determined the effect of space flight on the ability of bone marrow cells to respond to granulocyte/monocyte colony stimulating factor (GM-CSF). GM-CSF is an important regulator in the differentiation of bone marrow cells of both monocyte/macrophage and granulocyte lineages and any change in the ability of these cells to respond to GM-CSF can result in altered immune function. A second set of studies determined space flight effects on the expression of cell surface markers on both spleen and bone marrow cells. Immune cell markers included in this study were those for T-cell, B-cell, natural killer cell, and interleukin-2 populations. Variations from a normal cell population percentage, as represented by these markers, can be correlated with alterations in immunological function. Cells were stained with fluorescein-labelled antibodies directed against the appropriate antigens, and then analyzed using a flow cytometer.

  9. Physics of the Cosmos (PCOS) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  10. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  11. X-ray Surveys of the Hot and Energetic Cosmos

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Urry, C. Megan

    A science meeting is an opportunity to exchange ideas with colleagues, to hear of new results and to learn from comprehensive reviews of a topic. Much of it happens in the meeting room and much of it also happens in the corridors of the meeting venue and in restaurants and perhaps bars near the meeting location. Its a combination of people and of place that is a bit [hard to predict] but when it goes well, you know it. All these elements came together for IAU Focus Meeting 6, X-ray Surveys of the Hot and Energetic Cosmos, in Honolulu last August. There are not many places more pleasant for an astronomical meeting than Hawaii, and the speakers did an outstanding job of reviewing the field and relaying the latest results. X-ray surveys have been a staple of astrophysics for nearly 50 years. There are large surveys and small, deep surveys and shallow, soft X-ray energies and hard. The combination gives us invaluable information about the hottest and/or most relativistic environments known. Theory helps us interpret the data in terms of the underlying physics. The heady combination of all of the above shaken and mixed in Hawaiian paradise has given us all a deeper understanding of the Universe. Please read on to see why.

  12. A 6 GHz Synoptic Survey of the COSMOS Deep Field with the JVLA

    NASA Astrophysics Data System (ADS)

    Sink, Joseph R.; Myers, Steven T.

    2016-01-01

    The Cosmic Evolution Survey (COSMOS) covers two square degrees, and is observed over a large portion of the electromagnetic spectrum from X-ray to Radio. Key science goals of COSMOS include probing the evolution of galaxies, AGN, and large scale structures of the Universe. As well as constraining cosmological models and the star and structure formation history of the Universe. The wide range of frequencies and deep surveys are suitable for many astrophysical studies.Beginning in 2013, observations of the COSMOS field in C-band (4 - 8 GHz) using the JVLA have been carried out in every configuration spanning 21 months (April 2013 - Jan 2015) for a total of 13 observations. The observations are comprised of 1 hour time blocks using a technique called On-The-Fly Mosaicking (OTFM). Using OTFM we see an increased efficiency for an allotted observation block by collecting data as the array scans across the field, rather than a pointed mosaic which requires settle down time after each new pointing. Each observation consists of 2160 1-second integrations on 432 phase centers that require calibration and image processing before they can be mosaicked to create the final image of the entire COSMOS field.The primary science goal of this survey is to identify, catalog, and study the variable and transient radio sources in the COSMOS field, comparing these to other radio, optical, IR, and X-ray observations. The main class of variables we are interested in Active Galactic Nuclei.

  13. THE CHANDRA SURVEY OF THE COSMOS FIELD. II. SOURCE DETECTION AND PHOTOMETRY

    SciTech Connect

    Puccetti, S.; Vignali, C.; Cappelluti, N.; Brunner, H.; Brusa, M.; Fruscione, A.; Finoguenov, A.; Fiore, F.; Zamorani, G.; Gilli, R.; Comastri, A.; Aldcroft, T. L.; Elvis, M.; Civano, F.; Miyaji, T.; Damiani, F.; Koekemoer, A. M.; Mainieri, V.

    2009-12-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that covers the central contiguous {approx}0.92 deg{sup 2} of the COSMOS field. C-COSMOS is the result of a complex tiling, with every position being observed in up to six overlapping pointings (four overlapping pointings in most of the central {approx}0.45 deg{sup 2} area with the best exposure, and two overlapping pointings in most of the surrounding area, covering an additional {approx}0.47 deg{sup 2}). Therefore, the full exploitation of the C-COSMOS data requires a dedicated and accurate analysis focused on three main issues: (1) maximizing the sensitivity when the point-spread function (PSF) changes strongly among different observations of the same source (from {approx}1 arcsec up to {approx}10 arcsec half-power radius); (2) resolving close pairs; and (3) obtaining the best source localization and count rate. We present here our treatment of four key analysis items: source detection, localization, photometry, and survey sensitivity. Our final procedure consists of a two step procedure: (1) a wavelet detection algorithm to find source candidates and (2) a maximum likelihood PSF fitting algorithm to evaluate the source count rates and the probability that each source candidate is a fluctuation of the background. We discuss the main characteristics of this procedure, which was the result of detailed comparisons between different detection algorithms and photometry tools, calibrated with extensive and dedicated simulations.

  14. Spitzer Imaging of Herschel-atlas Gravitationally Lensed Submillimeter Sources

    NASA Astrophysics Data System (ADS)

    Hopwood, R.; Wardlow, J.; Cooray, A.; Khostovan, A. A.; Kim, S.; Negrello, M.; da Cunha, E.; Burgarella, D.; Aretxaga, I.; Auld, R.; Baes, M.; Barton, E.; Bertoldi, F.; Bonfield, D. G.; Blundell, R.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooke, J.; Dannerbauer, H.; Dariush, A.; de Zotti, G.; Dunlop, J.; Dunne, L.; Dye, S.; Eales, S.; Fritz, J.; Frayer, D.; Gurwell, M. A.; Hughes, D. H.; Ibar, E.; Ivison, R. J.; Jarvis, M. J.; Lagache, G.; Leeuw, L.; Maddox, S.; Michałowski, M. J.; Omont, A.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Scott, D.; Serjeant, S.; Smail, I.; Smith, D. J. B.; Temi, P.; Thompson, M. A.; Valtchanov, I.; van der Werf, P.; Verma, A.; Vieira, J. D.

    2011-02-01

    We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 μm, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 μm data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with A V ~ 4-5 and star formation rates of ~100 M sun yr-1. They have low gas fractions and low dynamical masses compared with 850 μm selected galaxies.

  15. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  16. SPITZER IMAGING OF HERSCHEL-ATLAS GRAVITATIONALLY LENSED SUBMILLIMETER SOURCES

    SciTech Connect

    Hopwood, R.; Negrello, M.; Wardlow, J.; Cooray, A.; Khostovan, A. A.; Kim, S.; Barton, E.; Da Cunha, E.; Cooke, J.; Burgarella, D.; Aretxaga, I.; Auld, R.; Baes, M.; Bertoldi, F.; Bonfield, D. G.; Blundell, R.; Buttiglione, S.; Cava, A.; Dannerbauer, H.

    2011-02-10

    We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 {mu}m, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 {mu}m data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with A{sub V} {approx} 4-5 and star formation rates of {approx}100 M{sub sun} yr{sup -1}. They have low gas fractions and low dynamical masses compared with 850 {mu}m selected galaxies.

  17. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  18. Unusual Slowly Rotating Brown Dwarfs Discovered through Precision Spitzer Photometry

    NASA Astrophysics Data System (ADS)

    Heinze, Aren; Metchev, S.

    2014-01-01

    Many brown dwarfs exhibit low-amplitude rotationally modulated variability due to photospheric inhomogeneities caused by condensate clouds in their atmospheres. The Spitzer Space Telescope 'Weather on Other Worlds' (WoW) project has monitored 44 brown dwarfs at unprecedented photometric precision from space. We present one of several important new results from WoW: the discovery of brown dwarfs with unexpectedly slow rotation periods. While most brown dwarfs have periods of 2-12 hours, we have identified two with well-constrained periods of 13±1 and >20 hours, respectively, and 2 others that show more tentative evidence of longer than 20-hour periods. By serving as almost non-rotating standards, these objects will allow more accurate calibration of spectroscopic measurements of brown dwarfs' projected rotational velocities. The existence of such slowly-rotating objects also constrains models of brown dwarf formation and angular momentum evolution.

  19. Spitzer's View of NGC2264's Circumstellar Disk Population

    NASA Astrophysics Data System (ADS)

    Teixeira, Paula S.; Lada, Charles J.; Marengo, Massimo; Lada, Elizabeth

    We present a Spitzer study of the pre-main sequence population of the young cluster NGC 2264. The disk population is divided into three classes, based on individual spectral energy distributions: optically thick disks, in a homologous manner depleted or anemic disks, and radially depleted transition disks. Our analysis indicated that there may be two distinct evolutionary paths; disks evolve from optically thick to anemic via the first path, and from optically thick to transition in the second. Most of the disks seem to follow the first path. It is yet unknown what physical mechanism triggers this evolutionary differentiation - it could be directly connected to the nature of planet formation within the disk.

  20. SPITZER IRAC DETECTION AND ANALYSIS OF SHOCKED MOLECULAR HYDROGEN EMISSION

    SciTech Connect

    Ybarra, Jason E.; Lada, Elizabeth A.

    2009-04-10

    We use statistical equilibrium equations to investigate the Infrared Array Camera (IRAC) color space of shocked molecular hydrogen. The location of shocked H{sub 2} in [3.6] - [4.5] versus [4.5] - [5.8] color is determined by the gas temperature and density of neutral atomic hydrogen. We find that high excitation H{sub 2} emission falls in a unique location in the color-color diagram and can unambiguously be distinguished from stellar sources. In addition to searching for outflows, we show that the IRAC data can be used to map the thermal structure of the shocked gas. We analyze archival Spitzer data of Herbig-Haro object HH 54 and create a temperature map, which is consistent with spectroscopically determined temperatures.

  1. Preliminary Results of the Spitzer SWIRE Brown Dwarf Survey

    NASA Astrophysics Data System (ADS)

    Padgett, D. L.; Lonsdale, C.; Stapelfeldt, K. R.; O'Linger-Luscusk, J.; SWIRE Legacy Team

    2005-12-01

    SWIRE (The Spitzer Wide-area Infrared Extragalactic survey) is a Spitzer Legacy project which has mapped nearly 50 square degrees in 5 optical (U, g, r, i, z - not yet complete) and 7 infrared bands (3.6, 4.5, 5.8, 8.0, 24, 70, and 160 microns). The survey observed low background sky to a depth of a few microJy at 3.6 and 4.5 microns. While this observing program was designed for extragalactic science, its phenominal depth at the T dwarf SED peak near 4.5 microns makes it ideal for discovering previously unknown field brown dwarfs. Using the current team source catalogs covering about 25 square degrees in three fields, we have identified about 100 sources which fulfill the [4.5] - [3.6] > 0.75 color criteria for brown dwarfs later than T5 (Patten et al. 2005) and are optically invisible down to mr = 26. Careful examination of individual sources to eliminate cosmic rays and extended sources reveal that about 10 are reliable, pointlike, and worthy of spectroscopic followup. Among the false alarms is a class of pointlike optically invisible, but mid-IR bright extragalactic sources which are excluded from the list of brown dwarf candidates by their brightness at 8 and 24 microns. By the time of the January meeting, we will report brown dwarf candidate statistics from nearly the entire SWIRE survey. Further sources may be identified in the already analyzed fields by searching for objects only detected at 4.5 microns.

  2. SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM SPITZER

    SciTech Connect

    Beerer, Ingrid M.; Knutson, Heather A.; Burrows, Adam; Fortney, Jonathan J.; Laughlin, Gregory; Agol, Eric; Cowan, Nicolas B.; Charbonneau, David; Desert, Jean-Michel; Deming, Drake; Langton, Jonathan; Lewis, Nikole K.; Showman, Adam P.

    2011-01-20

    We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 {mu}m taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzer's extended warm mission. We find secondary eclipse depths of 0.319% {+-} 0.031% and 0.343% {+-} 0.027% for the 3.6 and 4.5 {mu}m bands, respectively, and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have inversions, perhaps due the presence of an unknown absorber in the upper atmosphere. This result might be explained by the modestly enhanced activity level of WASP-4b's G7V host star, which could increase the amount of UV flux received by the planet, therefore reducing the abundance of the unknown stratospheric absorber in the planetary atmosphere as suggested in Knutson et al. We also find no evidence for an offset in the timing of the secondary eclipse and place a 2{sigma} upper limit on |ecos {omega}| of 0.0024, which constrains the range of tidal heating models that could explain this planet's inflated radius.

  3. SPECTROSCOPICALLY SELECTED SPITZER 24 {mu}m ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Choi, P. I.; Yan Lin; Helou, G.; Storrie-Lombardi, L. J.; Shim, H.; Fadda, D.; Im, M.

    2011-05-01

    We investigate the active galactic nucleus (AGN) sub-population of a 24 {mu}m flux-limited galaxy sample in the Spitzer Extragalactic First Look Survey. Using deep Keck optical spectroscopy and a series of emission-line diagnostics, we identify AGN-dominated systems over broad redshift 0 < z < 3.5 and luminosity 9 < log (L{sub TIR}) < 14 ranges, with sample means of (z) = 0.85 and (log (L{sub TIR})) = 11.5. We find that down to the flux limits of our Spitzer MIPS sample (f{sub 24} > 200 {mu}Jy), 15%-20% of sources exhibit strong AGN signatures in their optical spectra. At this flux limit, the AGN population accounts for as much as 25%-30% of the integrated 24 {mu}m flux. This corresponds to an MIR AGN contribution {approx}2-3 x greater than that found in ISOCAM 15 {mu}m studies that used X-ray AGN identifications. Based on our spectroscopically selected AGN sample, we also investigate the merits of Infrared Array Camera (IRAC) color selection for AGN identification. Our comparison reveals that although there is considerable overlap, a significant fraction of spectroscopic AGNs are not identifiable based on their MIR colors alone. Both the measured completeness and reliability of the IRAC color selections are found to be strongly dependent on the MIR flux limit. Finally, our spectroscopic AGN sample implies as much as a 3 x higher AGN surface density at high redshift (z > 1.2) than that of recent optical surveys at comparable optical flux limits, suggestive of a population of heavily obscured, optical/UV reddened AGNs.

  4. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Technical Reports Server (NTRS)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon, T.; Lacy, Mark; Ryan, Erin L.; Stone, Robert B.; Bauer, Franz, E.; Brandt, W. N.; Fan, Xiaohui; Glikman, Eilat; Lamassa, Stephanie M.; Urry, C. Megan; Wollack, Edward J.

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of approx.115 sq deg in the Equatorial SDSS Stripe 82 field using Spitzer during its "warm" mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > or = 3 to test various models for "feedback" from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > or = 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5 sigma depths of 6.13 µJy (21.93 AB magnitude) and 5.75 µJy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively-depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (approx.98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > or = 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 microns only detection catalog containing approx. 6.1 million sources, a 4.5 microns only detection catalog containing approx. 6.5 million sources, and a dual-band detection catalog containing approx. 5.4 million sources.

  5. Spitzer Finds Cosmic Neon and Sulfur's Sweet Spot

    NASA Astrophysics Data System (ADS)

    Rubin, Robert

    Elemental abundances are the fossil remnants of the life history of a galaxy. Abundance ratios indicate the effects of star formation and the release of nuclear processed heavy elements via planetary nebulae and supernovae, plus other mechanisms. By deriving the elemental abundances and judicious modeling, astronomers are able to determine the relative importance of these processes in the chemical evolution of a galaxy. Modeling requires the input of nucleosynthetic yields from stellar evolution and supernova calculations. Since most fusion reaction rates cannot be measured in any earthly laboratory, the observed elemental ratios provide good tests of fusion reaction rate calculations. This proposal addresses the means by which we determine elemental abundances. H II regions are the prime laboratory for the measurement of the most abundant elements- He, C, N, O, Ne, S, and Ar, (usually with respect to hydrogen)- because these elements have strong lines in the ionization states produced by the Lyman continuum photons from massive O-stars. With Spitzer's Infrared Spectrograph (IRS) Short-High (SH) module (wavelength range 9.9-19.6 microns), we have the unique opportunity to measure lines from the two ions of neon (Ne+ & Ne++) and the two most abundant ions of sulfur (S++ & S+3) that are seen in H II regions: [Ne II] 12.8, [Ne III] 15.6, [S III] 18.7, and [S IV] 10.5 microns. These co-spatial/coeval spectra enable unprecedented accuracy for the measurement of these four lines and the estimate of the Ne/S abundance ratio. In Spitzer Cycles 1, 2, and 4 we measured respectively the Ne/S ratios for the galaxies M83 (a barred spiral), M33 (a local group spiral), and NGC 6822 (a local group dwarf irregular). With other GO programs, in Cycle 1 we measured the abundances in two Milky Way H II regions & the Arched Filaments in the Galactic Center, and in Cycle 5, the Orion Nebula. We propose to estimate the Ne and S abundances in many more H II regions, both extragalactic and

  6. ExploreNEOs. II. THE ACCURACY OF THE WARM SPITZER NEAR-EARTH OBJECT SURVEY

    SciTech Connect

    Harris, A. W.; Mommert, M.; Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.; Mueller, M.; Delbo, M.; Trilling, D. E.; Thomas, C. A.; Bhattacharya, B.; Chesley, S.; Mainzer, A.; Emery, J. P.; Penprase, B.; Stansberry, J. A.

    2011-03-15

    We report on results of observations of near-Earth objects (NEOs) performed with the NASA Spitzer Space Telescope as part of our ongoing (2009-2011) Warm Spitzer NEO survey ('ExploreNEOs'), the primary aim of which is to provide sizes and albedos of some 700 NEOs. The emphasis of the work described here is an assessment of the overall accuracy of our survey results, which are based on a semi-empirical generalized model of asteroid thermal emission. The NASA Spitzer Space Telescope has been operated in the so-called Warm Spitzer mission phase since the cryogen was depleted in 2009 May, with the two shortest-wavelength channels, centered at 3.6 {mu}m and 4.5 {mu}m, of the Infrared Array Camera continuing to provide valuable data. The set of some 170 NEOs in our current Warm Spitzer results catalog contains 28 for which published taxonomic classifications are available, and 14 for which relatively reliable published diameters and albedos are available. A comparison of the Warm Spitzer results with previously published results ('ground truth'), complemented by a Monte Carlo error analysis, indicates that the rms Warm Spitzer diameter and albedo errors are {+-}20% and {+-}50%, respectively. Cases in which agreement with results from the literature is worse than expected are highlighted and discussed; these include the potential spacecraft target 138911 2001 AE{sub 2}. We confirm that 1.4 appears to be an appropriate overall default value for the relative reflectance between the V band and the Warm Spitzer wavelengths, for use in correction of the Warm Spitzer fluxes for reflected solar radiation.

  7. SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE XMM-COSMOS SAMPLE

    SciTech Connect

    Elvis, M.; Hao, H.; Civano, F.; Brusa, M.; Salvato, M.; Bongiorno, A.; Cappelluti, N.; Capak, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Jahnke, K.; Lusso, E.; Cisternas, M.; Mainieri, V.; Trump, J. R.; Ho, L. C.; Aussel, H.; Frayer, D.; Hasinger, G. E-mail: hhao@cfa.harvard.edu; and others

    2012-11-01

    The 'Cosmic Evolution Survey' (COSMOS) enables the study of the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present an SED catalog of 413 X-ray (XMM-Newton)-selected type 1 (emission line FWHM > 2000 km s{sup -1}) AGNs with Magellan, SDSS, or VLT spectrum. The SEDs are corrected for Galactic extinction, broad emission line contributions, constrained variability, and host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest-frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame {approx}8 {mu}m-4000 A), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available online.

  8. Spitzer Infrared Array Camera (IRAC) Pipeline: final modifications and lessons learned

    NASA Astrophysics Data System (ADS)

    Lowrance, Patrick J.; Carey, Sean J.; Surace, Jason A.; Ingalls, James G.; Glaccum, William; Krick, Jessica E.; Stauffer, John

    2016-07-01

    In more than ten years of operations, the Spitzer Space Telescope has conducted a wide range of investigations from observing nearby asteroids to probing atmospheric properties of exoplanets to measuring masses of the most distance galaxies. Observations using the Infrared Array Camera (IRAC) at 3.6 and 4.5um will continue through mid-2019 when the James Webb Space Telescope will succeed Spitzer. In anticipation of the eventual end of the mission, the basic calibrated data reduction pipeline designed to produce flux-calibrated images has been finalized and used to reprocess all the data taken during the Spitzer warm mission. We discuss all final modifications made to the pipeline.

  9. Differences in glycogen, lipids, and enzymes in livers from rats flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Laroque, Regina; Mullins, Richard E.; Morgan, Edward T.; Hargrove, James L.; Bonkovsky, Herbert L.; Popova, Irina A.

    1992-01-01

    Livers from rats flown aboard Cosmos 2044 were analyzed for protein, carbohydrate (glycogen), and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. The major differences between the flight group and the synchronous control were elevations in microsomal protein, liver glycogen content, tyrosine aminotransferase, and tryptophan oxygenase and reductions in sphingolipids and the rate-limiting enzyme of heme biosynthesis delta-aminolevulinic acid synthase. These results provide further evidence that spaceflight has pronounced and diverse effects on liver function; however, some of the results with samples from Cosmos 2044 differed notably from those from previous spaceflights. This may be due to conditions of spaceflight and/or the postflight recovery period for Cosmos 2044.

  10. VizieR Online Data Catalog: The COSMOS-Legacy Survey (CLS) catalog (Civano+, 2016)

    NASA Astrophysics Data System (ADS)

    Civano, F.; Marchesi, S.; Comastri, A.; Urry, M. C.; Elvis, M.; Cappelluti, N.; Puccetti, S.; Brusa, M.; Zamorani, G.; Hasinger, G.; Aldcroft, T.; Alexander, D. M.; Allevato, V.; Brunner, H.; Capak, P.; Finoguenov, A.; Fiore, F.; Fruscione, A.; Gilli, R.; Glotfelty, K.; Griffiths, R. E.; Hao, H.; Harrison, F. A.; Jahnke, K.; Kartaltepe, J.; Karim, A.; Lamassa, S. M.; Lanzuisi, G.; Miyaji, T.; Ranalli, P.; Salvato, M.; Sargent, M.; Scoville, N. J.; Schawinski, K.; Schinnerer, E.; Silverman, J.; Smolcic, V.; Stern, D.; Toft, S.; Trakhenbrot, B.; Treister, E.; Vignali, C.

    2016-05-01

    The half-a-field shift tiling strategy was designed to uniformly cover the COSMOS Hubble area in depth and point-spread function (PSF) size by combining the old C-COSMOS (Elvis+, 2009, J/ApJS/184/158) observations with the new Chandra ones (see Figure 1). We summarize the main properties of the new ACIS-I Chandra COSMOS-Legacy observations in Table 1. The observations took place in four blocks: 2012 November to 2013 January; 2013 March to July; 2013 October to 2014 January; and 2014 March. The mean net effective exposure time per field was 48.8ks after all the cleaning and reduction operations. (2 data files).

  11. Some results of radiobiological studies performed on Cosmos-110 biosatellite.

    PubMed

    Antipov, V V; Delone, N L; Nikitin, M D; Parfyonov, G P; Saxonov, P P

    1969-01-01

    The experiment carried out on the Cosmos 110 biosatellite is a step further in radiobiological investigations performed in outer space and differs appreciably from flight experiments conducted on board the Vostok and Voskhod spacecraft. The difference lies, firstly, in the integral dose of cosmic radiation. According to the onboard dosimeter readings, it was 12 rad at an average dose rate of 500 mrad/day during the biosatellite flight, whereas in previous biological flight experiments, as is well known, the total dose was below 80 mrad (on a five-day flight of Vostok 5) at a dose rate of 80 to 20 mrad/day. Secondly, during the biosatellite mission, cosmic radiation originated not from the primary cosmic radiation as was the case in the Vostok and Voskhod flights but mainly from the Earth's radiation belts. Thirdly, the duration of the Cosmos 110 flight was far longer than that of any previous mission: the effect of weightlessness lasted for about 22 days. The paper presents results of investigations performed on E. coli K-12 lambda lysogenic bacteria, Tradescantia microspores, dry seeds of higher plants, different Chlorella strains and an intact plant of Tradescantia paludosa. The biological effect of space flight factors was evaluated by various physiological, cytogenetic, genetic and microbiological techniques. Similar to previous experiments carried out on board the Vostok 3-6 spacecraft, tests with lysogenic bacteria revealed a statistically significant induction of moderate bacteriophage. The induction value was shown to lag behind the mission duration dependence level. This seems to be related to a change of inducibility properties of lysogenic bacteria and a reduction of the yield range of phages per bacterial cell. Other tests (duration of the latent period, formation pattern of phage components) indicated no significant differences between test and control objects (N.N. Zhukov-Verezhnikov, N.I. Rybakov, V.A. Kozlov et al.). A study of protective properties

  12. Measuring Total Surface Moisture with the COSMOS Rover

    NASA Astrophysics Data System (ADS)

    Chrisman, B. B.; Zreda, M.; Franz, T. E.; Rosolem, R.

    2012-12-01

    The COSMOS rover is the mobile application of the cosmic-ray soil moisture probe. By quantifying the relative amount of the hydrogen molecules within the instrument's support volume (~335 m radius in air, 10-70 cm depth in soil) the instrument makes an area-average surface moisture measurement. We call this measurement "total surface moisture". Quantifying hydrogen in all major stocks (soils, infrastructure, vegetation, and water vapor) allows for an isolation of the volumetric fraction of the exchangeable surface moisture. By isolating the hydrogen molecule we can measure the exchangeable surface moisture over all land cover types including those with built-up infrastructure and dense vegetation; two environments which have been challenging to existing technologies. . The cosmic-ray rover has the capability to improve hydrologic, climate, and weather models by parameterizing the exchangeable surface moisture status over complex landscapes. It can also fill a gap in the verification and development processes of surface moisture satellite missions, such as SMOS and SMAP. In our current research program, 2D transects are produced twice a week and 3D maps are produced once a week during the 2012 monsoon season (July-September) within the Tucson Basin. The 40 km x 40 km area includes four land cover classes; developed, scrub (natural Sonoran Desert), crops, and evergreen forest. The different land cover types show significant differences in their surface moisture behavior with irrigation acting as the largest controlling factor in the developed and crop areas. In addition we investigated the use of the cosmic-ray rover data to verify/compare with satellite derived soil moisture. A Maximum Entropy model is being used to create soil moisture profiles from shallow surface measurements (SMOS data). With the cosmic-ray penetration depth and weighting function known, the satellite measurement can be interpolated, weighted and compared with the cosmic-ray measurement when the

  13. The Chandra COSMOS-Legacy Survey: The z>3 Sample

    NASA Astrophysics Data System (ADS)

    Marchesi, S.; Civano, F.; Salvato, M.; Shankar, F.; Comastri, A.; Elvis, M.; Lanzuisi, G.; Trakhtenbrot, B.; Vignali, C.; Zamorani, G.; Allevato, V.; Brusa, M.; Fiore, F.; Gilli, R.; Griffiths, R.; Hasinger, G.; Miyaji, T.; Schawinski, K.; Treister, E.; Urry, C. M.

    2016-08-01

    We present the largest high-redshift (3 < z < 6.85) sample of X-ray-selected active galactic nuclei (AGNs) on a contiguous field, using sources detected in the Chandra COSMOS-Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift and the other 87 with photometric redshift (z phot). In this work, we treat z phot as a probability-weighted sum of contributions, adding to our sample the contribution of sources with z phot < 3 but z phot probability distribution >0 at z > 3. We compute the number counts in the observed 0.5-2 keV band, finding a decline in the number of sources at z > 3 and constraining phenomenological models of the X-ray background. We compute the AGN space density at z > 3 in two different luminosity bins. At higher luminosities (logL(2-10 keV) > 44.1 erg s-1), the space density declines exponentially, dropping by a factor of ˜20 from z ˜ 3 to z ˜ 6. The observed decline is ˜80% steeper at lower luminosities (43.55 erg s-1 < logL(2-10 keV) < 44.1 erg s-1) from z ˜ 3 to z ˜ 4.5. We study the space density evolution dividing our sample into optically classified Type 1 and Type 2 AGNs. At logL(2-10 keV) > 44.1 erg s-1, unobscured and obscured objects may have different evolution with redshift, with the obscured component being three times higher at z ˜ 5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGNs. These models significantly overpredict the number of expected AGNs at logL (2-10 keV) > 44.1 erg s-1 with respect to our data.

  14. Merging Galaxies with Tidal Tails in COSMOS to z = 1

    NASA Astrophysics Data System (ADS)

    Wen, Zhang Zheng; Zheng, Xian Zhong

    2016-11-01

    Tidal tails are created in major mergers involving disk galaxies. It remains to be explored how the tidal tails trace the assembly history of massive galaxies. We identify a sample of 461 merging galaxies with long tidal tails, from 35,076 galaxies mass-complete at {M}\\star ≥slant {10}9.5 {M}⊙ and 0.2≤slant z≤slant 1, based on Hubble Space Telescope/ACS F814W imaging data and public catalogs of the COSMOS field. The long tails refer to those with length equal to or greater than the diameter of their host galaxies. The mergers with tidal tails are selected using our novel {A}{{O}}-{D}{{O}} technique for strong asymmetric features, along with visual examination. Our results show that the fraction of tidal-tailed mergers evolves mildly with redshift, as ˜ {(1+z)}2.0+/- 0.4, and becomes relatively higher in less-massive galaxies, out to z = 1. With a timescale of 0.5 Gyr for the tidal-tailed mergers, we obtain that the occurrence rate of such mergers follows 0.01+/- 0.007{(1+z)}2.3+/- 1.4 Gyr-1, and corresponds to ˜0.3 events since z = 1, as well as roughly one-third of the total budget of major mergers from the literature. For disk-involved major mergers, nearly half of them have undergone a phase with long tidal tails.

  15. Ecos del Cosmos: A radio astroexperience at the Universitat de Valencia

    NASA Astrophysics Data System (ADS)

    Marco, E.; Ballesteros, F. J.; Ortiz-Gil, A.

    2017-03-01

    During the last three years Ecos del Cosmos has been a radio program dedicated to spreading astronomical hot news to the Universitat de València community and beyond, and also topics of general astronomical interest. To do this, this program by Ràdio Universitat has conducted live interviews with researchers, explored relationships of astronomy with humanities and society, performed contests and explained in a simple way the main monthly ephemerides. A version of Ecos del Cosmos was broadcasted in the Onda Cero’s summer program ''Jelo en verano''conducted by Arturo Tellez.

  16. Dissemination of metabolomics results: role of MetaboLights and COSMOS.

    PubMed

    Salek, Reza M; Haug, Kenneth; Steinbeck, Christoph

    2013-05-17

    With ever-increasing amounts of metabolomics data produced each year, there is an even greater need to disseminate data and knowledge produced in a standard and reproducible way. To assist with this a general purpose, open source metabolomics repository, MetaboLights, was launched in 2012. To promote a community standard, initially culminated as metabolomics standards initiative (MSI), COordination of Standards in MetabOlomicS (COSMOS) was introduced. COSMOS aims to link life science e-infrastructures within the worldwide metabolomics community as well as develop and maintain open source exchange formats for raw and processed data, ensuring better flow of metabolomics information.

  17. COsmic-ray Soil Moisture Observing System (COSMOS): soil moisture and beyond

    NASA Astrophysics Data System (ADS)

    Zreda, Marek; Shuttleworth, William J.; Zeng, Xubin; Zweck, Chris; Franz, Trenton; Rosolem, Rafael

    2013-04-01

    COSMOS, a project funded by the US National Science Foundation, was designed to measure average soil moisture in the top 10-70 cm of soil over the horizontal footprint of approximately 700 m by measuring cosmic-ray neutrons in air above the ground surface. It is in its fourth, final, year of the feasibility phase in which 60 neutron probes have been installed in the USA to provide continental-scale soil moisture data. The cosmic-ray neutron probe responds to all sources of hydrogen present within the footprint. Therefore, in addition to soil moisture, other pools of hydrogen can be measured; these include atmospheric water vapor, organic matter in soil, water in soil minerals, biomass water (including hydrogen bound in cellulose), and snow on the ground and on the canopy. All these pools of hydrogen form the "total surface moisture" that is measured by COSMOS probes. The first four pools are measured independently (water vapor) or are implicitly included in the probe calibration (water in minerals and organic matter, biomass water). The other two can be separated from one another to produce time series of soil moisture and snow water equivalent. Work is in progress to assimilate neutron data into land-surface models, to produce soil moisture profiles, to validate satellite soil moisture products (the current SMOS mission and the future SMAP mission), to measure temporal variations in biomass, and to measure area-average unsaturated hydraulic properties of soils. Separately, mobile COSMOS probe, called COSMOS rover, is being developed. COSMOS rover can be used to map soil moisture over large areas or along long transects. Cosmic-ray sensing of moisture at the land surface has gained popularity outside of the USA. Approximately 60 probes have been purchased in addition to the 60 probes in the COSMOS project. Funds for additional 80 probes, most of them in Germany, have been secured, and large new proposals will be submitted in the USA and Australia in 2013. These

  18. Remote Sensing of Soil Moisture and the Effects of Biomass as it Pertains to COSMOS

    NASA Astrophysics Data System (ADS)

    Irvin, S.; Hornbuckle, B. K.; Patton, J.; Wang, C.; Logsdon, S. D.; Kaleita, A.; Van Arkel, Z.

    2011-12-01

    In November 2009, the Soil Moisture and Ocean Salinity (SMOS) satellite was launched by the European Space Agency (ESA). This satellite orbits the earth every 2 or 3 days while taking measurements of soil moisture and ocean salinity. It has a spatial view of ~ 40 km, which is impressive considering the resolution of current weather and climate models, and measures soil moisture to a depth of a few centimeters. Soil moisture is important because of its affect on weather and climate in a manner similar to sea surface temperature. However, future weather and climate models will operate at smaller spatial scales and a deeper soil moisture measurement is more desirable. The Cosmic-ray Soil Moisture Observing System (COSMOS) is beneficial in this regard because these sensors have a footprint of ~700 meters and are sensitive to a depth of 12-70 cm. COSMOS sensors also produce hourly data with a precision as good as or better than SMOS. There is a COSMOS sensor located at the Iowa Validation Site, maintained by Iowa State University, south of Ames, Iowa. This site was a field of maize during the 2011 growing season. A COSMOS sensor counts fast neutrons that are scattered by hydrogen contained in soil in order to determine soil moisture. There is a potential problem when significant vegetation is present -since COSMOS is sensitive to the hydrogen contained in the plants as well. The question becomes how to distinguish between the two pools of hydrogen in order to obtain an accurate reading of soil moisture. Not only is the presence of the biomass problematic in finding the soil moisture, but the rate at which the vegetation is growing needs to be taken into account. We will compare the soil moisture estimated by the COSMOS sensor with in-situ soil moisture measurements made with TDR, gravimetric samples, and a neutron probe over the course of the growing season. To characterize the amount of vegetation, a correlation was found between the stem diameter and canopy height of

  19. NASA and IYA: Bringing the Cosmos to the Public

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Summers, F.; Hasan, H.; Steel, S.; Dussault, M.; Lestition, K.; Arcand, K.; Watzke, M.; Squires, G.; Hurt, R.; Thaller, M.; Gurton, S.; Berendsen, M.; White, V.; Lowes, L.; Mendez, B.; Thieman, J.

    2009-01-01

    NASA Science Mission Directorate missions and research programs share the wonders of the universe with students, educators, and the public through a wide array of award-winning education and public outreach programs. During 2009, these programs are providing a variety of professional development experiences for educators, observing opportunities, and community-based events to advance the U.S. goal for the International Year of Astronomy (IYA). This presentation highlights examples of NASA-supported IYA activities that use imagery, amateur astronomer networks, and online telescopes to empower learners of all ages to discover the universe for themselves. To help "kick-off” the year, NASA's Great Observatories, Hubble, Chandra, and Spitzer, are providing large image prints to science centers, museums, and planetaria nationwide to illustrate the contributions of multi-wavelength observations to astronomy. The Task Group for the "From Earth to the Universe” Global Cornerstone Project has assembled a collection of more than 90 high-resolution images that individual communities are using to create their own image exhibitions in "non-traditional” settings. The "Visions of the Universe: Four Centuries of Discovery” traveling exhibit will use a spectacular arrangement of historic sketches and contemporary images to show library audiences how our view of the universe has changed since the time of Galileo. NASA's IYA Web site will contain a collection of articles on hot topics in space science - one for each month of 2009 - and a celestial object that can be observed through the unaided eye, binoculars, or a small telescope. The Night Sky Network provides a Cosmic Calendar of related observing opportunities and educational activities offered through amateur astronomy clubs. Through the MicroObservatory online telescope network, users can be Galileo for a night to celebrate IYA, and use a telescope to observe the same objects as Galileo.

  20. SINFONI spectra of heavily obscured AGNs in COSMOS: Evidence of outflows in a MIR/O target at z ~ 2.5

    NASA Astrophysics Data System (ADS)

    Perna, M.; Brusa, M.; Salvato, M.; Cresci, G.; Lanzuisi, G.; Berta, S.; Delvecchio, I.; Fiore, F.; Lutz, D.; Le Floc'h, E.; Mainieri, V.; Riguccini, L.

    2015-11-01

    Aims: We present new data for four candidate obscured Compton-Thick (CT) quasars at z ~ 1-2.5 observed with the SINFONI VLT spectrograph in adaptive optics (AO) mode. These sources were selected from a 24 μm Spitzer MIPS survey of the COSMOS field, on the basis of red mid-infrared to optical and optical to near-infrared colours, with the intention of identifying active galactic nuclei (AGNs) in dust enshrouded environments, where most of the black hole mass is assembled. Methods: Near-infrared spectra were analysed to check for emission line features and to search for broad components in the [OIII]-Hβ and Hα-[NII] regions. We also employed X-ray spectral analysis, radio and MIR diagnostics, and SED fitting to study the nature of the sources. Results: We successfully identified three objects for which we had only a photometric redshift estimate. Based on their emission line diagnostics and on ancillary multi-wavelength constraints, we find that all four targets harbour obscured AGNs. Broad profiles, which could be attributed to the effects of outflows, are revealed in only one target, MIRO20581. In particular, we clearly resolved a fast (~1600 km s-1) and extended (~5 kpc) outflow in the [OIII]5007 emission line. This feature, the commonly used indicator for ionised outflowing gas, was only sampled and detected for this target; hence, we cannot exclude the presence of outflows in the other sources. Overall, the constraints we obtain from our targets and from other comparative samples from the literature suggest that these optically faint luminous infrared galaxies, hosting obscured AGNs, may represent a brief evolutionary phase between the post-merger starburst and the unobscured quasar phases. Based on observations with SINFONI VLT spectrograph, ESO program 092.A-0884(A).

  1. Analysis and Implications of the Iridium 33-Cosmos 2251 Collision

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.

    On 2009 February 10, Iridium 33--an operational US communications satellite in low-Earth orbit--was struck and destroyed by Cosmos 2251--a long-defunct Russian communications satellite. This is the first time since the dawn of the Space Age that two satellites have collided in orbit. To better understand the circumstances of this event and the ramifications for avoiding similar events in the future, this paper provides a detailed analysis of the predictions leading up to the collision, using various data sources, and looks in detail at the collision, the evolution of the debris clouds, and the long-term implications for satellite operations. The only publicly available system available to satellite operators for screening for close approaches, SOCRATES, did predict this close approach, but it certainly wasn't the closest approach predicted for the week of February 10. In fact, at the time of the collision, SOCRATES ranked this close approach 152 of the 11,428 within 5 km of any payload. A detailed breakdown is provided to help understand the limitations of screening for close approaches using the two-line orbital element sets. Information is also provided specifically for the Iridium constellation to provide an understanding of how these limitations affect decision making for satellite operators. Post-event analysis using high-accuracy orbital data sources will be presented to show how that information might have been used to prevent this collision, had it been available and used. Analysis of the collision event, along with the distribution of the debris relative to the original orbits, will be presented to help develop an understanding of the geometry of the collision and the near-term evolution of the resulting debris clouds. Additional analysis will be presented to show the long-term evolution of the debris clouds, including orbital lifetimes, and estimate the increased risk for operations conducted by Iridium and other satellite operators in the low-Earth orbit

  2. Cicero's Cosmos: Somnium Scipionis ("The Dream of Scipio")

    NASA Astrophysics Data System (ADS)

    Miller, N.

    2011-06-01

    The Dream of Scipio (b. 185 BCE) is the concluding excerpt of Cicero's dialogue in his De Republica ("On the Republic"), which has survived in the neo-Platonic commentaries on the text by Macrobius in the 4th century CE. A variation of its model Plato's Republic, the dialogue is set in 129 BCE. Parallels exist between Plato's closing with the myth of Er, recounting the structure of the cosmos and ordering of the planets and Cicero's cosmology updated by post-Hellenistic astronomical speculation. The Dream begins with his adoptive grandfather Cornelius Scipio Africanus appearing to his son Scipio in heaven as he looks down on Earth, a distant sphere amidst spheres of the universe. The deceased father presents the conditions of his legacy-to do upon Earth as his ancestors have done: "love justice and wisdom", and be devoted to your country, the highest form of virtue. Gazing on the stars-the Milky Way, home of the departed souls, Scipio realizes the relative insignificance of the Earth compared to the stars (analogy with the Roman Empire, a "pinpoint […] of this small Earth"). Africanus orders Scipio to look at the universe, the nine concentric spheres at the very center. Thus, fixed in place, the Earth does not move. Scipio then hears sounds-the music of the spheres in motion, its basis in mathematics and harmonic proportions. Comparisons between the works of Plato and Cicero are revealing. Both stress the relationship of city and state, and both share concern with justice and moral behavior. Whereas Plato focuses on the journey of the soul in the afterlife, Cicero's purpose is to show how public service, the importance of civic life, is a divinely sanctioned activity: "And remember that the most splendid deeds you can do are those which serve your country". The two major themes are the immortality of the soul and the relationship between human society and the divine order of the universe. Scipio must "contemplate the heavens in order to act rightly on Earth". The

  3. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  4. CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES

    SciTech Connect

    Lebouteiller, V.; Barry, D. J.; Spoon, H. W. W.; Bernard-Salas, J.; Sloan, G. C.; Houck, J. R.; Weedman, D. W.

    2011-09-01

    We present the spectral atlas of sources observed in low resolution with the Infrared Spectrograph on board the Spitzer Space Telescope. More than 11,000 distinct sources were extracted using a dedicated algorithm based on the SMART software with an optimal extraction (AdOpt package). These correspond to all 13,000 low-resolution observations of fixed objects (both single source and cluster observations). The pipeline includes image cleaning, individual exposure combination, and background subtraction. Particular attention is given to bad pixel and outlier rejection at the image and spectra levels. Most sources are spatially unresolved so that optimal extraction reaches the highest possible signal-to-noise ratio. For all sources, an alternative extraction is also provided that accounts for all of the source flux within the aperture. CASSIS provides publishable quality spectra through an online database together with several important diagnostics, such as the source spatial extent and a quantitative measure of detection level. Ancillary data such as available spectroscopic redshifts are also provided. The database interface will eventually provide various ways to interact with the spectra, such as on-the-fly measurements of spectral features or comparisons among spectra.

  5. Spitzer's Last Look at the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sloan, Greg; Kraemer, Kathleen; Kraemer, K. E.; Kirkpatrick, J. D.; Gordon, K. D.; Bolatto, A. D.; Boyer, M. L.; Groenewegen, M.; Jones, O. C.; Kemper, F.; Lloyd, J. P.; McDonald, I.; Meixner, M.; Oliveira, J. M.; Sargent, B. A.; Sewilo, M.; Srinivasan, S.; van Loon, J. Th.; Zijlstra, A. A.

    2016-08-01

    We will map 30 square degrees of sky covering the Small Magellanic Cloud (SMC) and the Bridge toward the LMC at 3.6 and 4.5 um, in two epochs in late 2017. Coupled with similar maps obtained in 2008 and surveys in the core of the SMC starting in 2005, the new epochs will give us a temporal baseline of 12 years in the heart of the SMC and 9 years in its outer regions. The Spitzer observations probe deeper than WISE and at higher resolution, allowing us to study fainter sources and sources in more crowded regions in this nearby metal-poor dwarf galaxy. We will use these data to better characterize how variability and dust production are intertwined in the final evolutionary stages of a star's lifetime. The long temporal baseline also enables searches for brown dwarfs near the Sun which are undetectable with Gaia or WISE, and the crowded background formed by the SMC makes any newly discovered brown dwarfs excellent candidates for microlensing studies which would reveal their masses. The long baseline may also reveal transients in star-forming regions in the SMC and in the population of background galaxies. We request 172.1 hours, with no proprietary period, to complete this project.

  6. Ongoing evolution of proposal reviews in the Spitzer warm mission

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, Lisa J.; Dodd, Suzanne R.; Silbermann, Nancy A.; Rebull, L. M.; Laine, Seppo; Crane, Megan; Stauffer, John; Armus, Lee

    2016-07-01

    The Spitzer Space Telescope is executing the seventh year of extended warm mission science. The cryogenic mission operated from 2003 to 2009. The observing proposal review process has evolved from large, week-long, in-person meetings during the cryogenic mission to the introduction of panel telecon reviews in the warm mission. Further compression of the schedule and budget for the proposal solicitation and selection process led to additional changes in 2014. Large proposals are still reviewed at an in-person meeting but smaller proposals are no longer discussed by a topical science panel. This hybrid process, involving an in-person committee for the larger proposals and strictly external reviewers for the smaller proposals, has been successfully implemented through two observing cycles. While people like the idea of not having to travel to a review it is still the consensus opinion, in our discussions with the community, that the in-person review panel discussions provide the most satisfying result. We continue to use in-person reviews for awarding greater than 90% of the observing time.

  7. On circumstellar disks: Spitzer identifies two possible evolutionary paths

    NASA Astrophysics Data System (ADS)

    Teixeira, Paula S.; Lada, Charles J.; Marengo, Massimo; Lada, Elizabeth

    Multi-wavelength surveys have vastly improved our understanding of many astrophysical objects, in particular, circumstellar disks. We present our results for the disk population of the young cluster NGC 2264. Our study was based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer on board the Spitzer Space Telescope combined with previously published optical data. We divide the disk population into 3 classes based on their spectral energy distribution shapes: optically thick disks, homologously depleted anemic disks, and radially depleted transition disks. We find that there are two distinct evolutionary paths for disks: a homologous one, where the disk emission decreases uniformly in NIR and mid-infrared wavelengths (anemic disks) and throughout which most sources pass, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (transition disks). Whether a disk evolves in a homologously or radially depleted fashion is still unknown and may depend on the nature of planet formation in the disk.

  8. SPITZER OBSERVATIONS OF ABELL 1763. I. INFRARED AND OPTICAL PHOTOMETRY

    SciTech Connect

    Edwards, Louise O. V.; Fadda, Dario; Biviano, Andrea

    2010-02-15

    We present a photometric analysis of the galaxy cluster Abell 1763 at visible and infrared wavelengths. Included are fully reduced images in r', J, H, and K{sub s} obtained using the Palomar 200in telescope, as well as the IRAC and MIPS images from Spitzer. The cluster is covered out to approximately 3 virial radii with deep 24 {mu}m imaging (a 5{sigma} depth of 0.2 mJy). This same field of {approx}40' x 40' is covered in all four IRAC bands as well as the longer wavelength MIPS bands (70 and 160 {mu}m). The r' imaging covers {approx}0.8 deg{sup 2} down to 25.5 mag, and overlaps with most of the MIPS field of view. The J, H, and K{sub s} images cover the cluster core and roughly half of the filament galaxies, which extend toward the neighboring cluster, Abell 1770. This first, in a series of papers on Abell 1763, discusses the data reduction methods and source extraction techniques used for each data set. We present catalogs of infrared sources (with 24 and/or 70 {mu}m emission) and their corresponding emission in the optical (u', g', r', i', z'), and near- to far-IR (J, H, K{sub s} , IRAC, and MIPS 160 {mu}m). We provide the catalogs and reduced images to the community through the NASA/IPAC Infrared Science Archive.

  9. A SPITZER/IRAC MEASURE OF THE ZODIACAL LIGHT

    SciTech Connect

    Krick, Jessica E.; Glaccum, William J.; Carey, Sean J.; Lowrance, Patrick J.; Surace, Jason A.; Ingalls, James G.; Hora, Joseph L.; Reach, William T.

    2012-07-20

    The dominant non-instrumental background source for space-based infrared observatories is the zodiacal light (ZL). We present Spitzer Infrared Array Camera (IRAC) measurements of the ZL at 3.6, 4.5, 5.8, and 8.0 {mu}m, taken as part of the instrument calibrations. We measure the changing surface brightness levels in approximately weekly IRAC observations near the north ecliptic pole over a period of roughly 8.5 years. This long time baseline is crucial for measuring the annual sinusoidal variation in the signal levels due to the tilt of the dust disk with respect to the ecliptic, which is the true signal of the ZL. This is compared to both Cosmic Background Explorer Diffuse Infrared Background Experiment data and a ZL model based thereon. Our data show a few-percent discrepancy from the Kelsall et al. model including a potential warping of the interplanetary dust disk and a previously detected overdensity in the dust cloud directly behind the Earth in its orbit. Accurate knowledge of the ZL is important for both extragalactic and Galactic astronomy including measurements of the cosmic infrared background, absolute measures of extended sources, and comparison to extrasolar interplanetary dust models. IRAC data can be used to further inform and test future ZL models.

  10. Debris Disks Among the Shell Stars: Insights from Spitzer

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Weinberger, Alycia; Teske, Johanna

    2008-01-01

    Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.

  11. The US/USSR Biological Satellite Program: COSMOS 936 Mission Overview

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1978-01-01

    On August 3, 1977, the Soviet Union launched Cosmos 936, an unmanned spacecraft carrying biology and physics experiments from 9 countries, including both the Soviet Union and U.S. The launch marked the second time the Soviet Union has flown U.S. experiments aboard one of its spacecraft, the first being Cosmos 782 launched Nov. 25, 1975, which remained in orbit 19.5 days. Aboard Cosmos 936 were: 30 young male Wistar SPF rats, 20 of which was exposed to hypogravity during flight while the remainder were subjected to a l x g acceleration by continuous configuration; 2) experiments with plants and fruit flies; 3) radiation physics experiments; and 4) a heat convection experiment. After 18.5 days in orbit, the spacecraft landed in central Asia where a Soviet recovery team began experiment operations, including animal autopsies, within 4.5 hr of landing. Half of the animals were autopsied at the recovery site and the remainder returned to Moscow and allowed to readapt to terrestrial gravity for 25 days after which they, too, were autopsied. Specimens for U.S. were initially prepared at the recovery site or Soviet laboratories and transferred to U.S. laboratories for complete analyses. An overview of the mission focusing on preflight, on-orbit, and postflight activities pertinent to the seven U.S. experiments aboard Cosmos 936 will be presented.

  12. Uses of wonder in popular science: Cosmos: A Personal Voyage and the origin of life

    NASA Astrophysics Data System (ADS)

    Helsing, Daniel

    2016-10-01

    This paper analyses the use of wonder in the TV-series Cosmos: A Personal Voyage (1980). Popular science has been studied extensively (e.g. Broks 2006; Leane 2007; Perrault 2013), and wonder has been studied moderately (e.g. Daston & Park 1998; Fuller 2006; Vasalou 2015). However, there are very few studies of wonder in popular science. This paper explores how and why wonder is used in Cosmos, with the wider aim of understanding uses of wonder in popular science. The studies that discuss wonder in popular science (Fahnestock 1986; Perrault 2013) argue that wonder is used to enthuse the audience about science, but they do not discuss why wonder has this ability, nor whether wonder has other functions. This paper argues that Fuller's (2006) psychological and evolutionary account of wonder can elucidate why wonder has the ability to enthuse; it discerns three senses of 'wonder' (related to objects, emotions and attitudes); and it discusses other functions of wonder (existential, aesthetic and ethical). Due to the centrality of astrobiological questions in Cosmos, this paper also highlights the relation of these questions to the senses and functions of wonder in Cosmos.

  13. 14th International Symposium on Nuclei in the Cosmos (NIC2016)

    NASA Astrophysics Data System (ADS)

    Kubono, Shigeru; Kajino, Toshitaka; Nishimura, Shunji; Isobe, TadaAki; Nagataki, Shigehiro; Shima, Tatsushi; Takeda, Yoichi

    2017-02-01

    Nuclei in the Cosmos is the foremost bi-annual conference of nuclear physicists, astrophysicists, cosmochemists, and others to survey the recent achievements in Nuclear Astrophysics. As an interdisciplinary meeting it promotes mutual understanding and collaboration over fields fundamental to solve a range of open questions, from the origin of the elements to stellar evolution.

  14. US monkey and rat experiments flown on the Soviet Satellite Cosmos 1514

    NASA Technical Reports Server (NTRS)

    Mains, R. C. (Editor); Gomersall, E. W. (Editor)

    1986-01-01

    On December 14, 1983, the U.S.S.R. launched Cosmos 1514, an unmanned spacecraft carrying biological and radiation physics experiments from nine countries, including five from the United States. This was the fourth flight with U.S. experiments aboard one of the Soviet unmanned spacecraft. The Cosmos 1514 flight was limited to five days duration because it was the first nonhuman primate flight. Cosmos 1514 marked a significant departure from earlier flights both in terms of Soviet goals and the degree of cooperation between the U.S.S.R. and the United States. This flight included more than 60 experiments on fish, crawfish eggs, plants and seeds, 10 Wistar pregnant rats, and 2 young adult rhesus monkeys as human surrogates. United States specialist participated in postflight data transfer and specimen transfer, and conducted rat neonatal behavioral studies. An overview of the mission is presented focusing on preflight, on-orbit, and postflight activites pertinent to the five U.S. experiments aboard Cosmos.

  15. Structure simulation with calculated NMR parameters - integrating COSMOS into the CCPN framework.

    PubMed

    Schneider, Olaf; Fogh, Rasmus H; Sternberg, Ulrich; Klenin, Konstantin; Kondov, Ivan

    2012-01-01

    The Collaborative Computing Project for NMR (CCPN) has build a software framework consisting of the CCPN data model (with APIs) for NMR related data, the CcpNmr Analysis program and additional tools like CcpNmr FormatConverter. The open architecture allows for the integration of external software to extend the abilities of the CCPN framework with additional calculation methods. Recently, we have carried out the first steps for integrating our software Computer Simulation of Molecular Structures (COSMOS) into the CCPN framework. The COSMOS-NMR force field unites quantum chemical routines for the calculation of molecular properties with a molecular mechanics force field yielding the relative molecular energies. COSMOS-NMR allows introducing NMR parameters as constraints into molecular mechanics calculations. The resulting infrastructure will be made available for the NMR community. As a first application we have tested the evaluation of calculated protein structures using COSMOS-derived 13C Cα and Cβ chemical shifts. In this paper we give an overview of the methodology and a roadmap for future developments and applications.

  16. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.

    PubMed

    Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco

    2014-08-30

    Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert.

  17. From Tripod to Cosmos: A New Metaphor for the Language Arts.

    ERIC Educational Resources Information Center

    Baines, Lawrence A.

    1998-01-01

    Argues that the contemporary language arts curriculum encompasses eight areas: literature, language, composition, speech and drama, critical thinking, technology, media literacy, and interdisciplinary studies. Offers a rationale for "cosmos" as a new metaphor for the language arts. Discusses the content of each of the eight curricular areas, and…

  18. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    PubMed

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material.

  19. Calibration and validation of the COSMOS rover for surface soil moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mobile COsmic-ray Soil Moisture Observing System (COSMOS) rover may be useful for validating satellite-based estimates of near surface soil moisture, but the accuracy with which the rover can measure 0-5 cm soil moisture has not been previously determined. Our objectives were to calibrate and va...

  20. [Experiments with cultures of mammalian cells aboard the biosatellite "Cosmos-782"].

    PubMed

    Sushkov, F V; Rudneva, S V; Nadtocheĭ, G A; Polikarpova, S I; Portugalov, V V

    1977-10-01

    A considerable contribution to the investigation on biological importance of weightlessness was made by the experiments with animals in the artificial Earth satelites (AES) of "Cosmos" type. Cell cultures can serve as an ideal model to get a direct cell response to the effect of external factors. For the experiment in the AES "Cosmos-782", two thoroughly examined cell strains (L and 237) were chosen, which differed in a number of parameters (for example, duration of their mitotic cycles). Density of cell seeding and temperature of their cultivation in the laboratory experiment were calculated in such a way that the whole cycle of the culture development should take place under the conditions of weightlessness: the beginning of lag-phase--before launching and the stationary phase--after landing. The weightlessness was not shown to result in any genetical shifts revealed at chromosomal level. When cultivated after the flight, the cells do not change their mitotic cycle parameters, mitotic course and structural organization. The data obtained in the experiments with AES "Cosmos-368" and "Cosmos-782" (increase of mitotic index, some forms of mitotic pathology during the first terms of cultivation after the flight and enlargement of cellular nuclei) demonstrate the changes in the cell population which have formed under the conditions of weightlessness. Similar changes are observed while the cells propagate in the laboratory conditions. Indirect data on an earlier cell culture aging during the flight do not exclued the possibility that under weightlessness the rate of cell propagation could differ from that under gravitation.

  1. [Behavior of rats in the labyrinth after a flight on the Cosmos-690 biosatellite].

    PubMed

    Livshits, N N; Apanasenko, Z I; Kuznetsova, M A; Meĭzerova, E S

    1978-01-01

    Rats irradiated aboard the biosatellite Cosmos-690 and in the synchronous mockup showed deteriorated retention and recovery of the skill of traversing the maze. The rats irradiated on the Earth displayed greater changes in the parameters. The rats irradiated inflight exhibited an increased fatigue during enhanced activity. All the exposed animals showed an insignificant change in the capacity to transfer their experience.

  2. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    DTIC Science & Technology

    2010-12-29

    I. Catalogue of Spitzer IRAC and MIPS sources? Stefan Uttenthaler1, Matthias Stute2,3,4, Raghvendra Sahai2, Joris A. D. L. Blommaert1, Mathias...its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields...unprece- dented sensitivity using the Infrared Array Camera ( IRAC ; Fazio et al. 2004) and the Multiband Imaging Photometer for Spitzer ? Table 5 as well

  3. SPITZER-IRAC Identification of HERSCHEL-ATLAS SPIRE Sources

    NASA Astrophysics Data System (ADS)

    Kim, Sam; Wardlow, Julie L.; Cooray, Asantha; Fleuren, S.; Sutherland, W.; Khostovan, A. A.; Auld, R.; Baes, M.; Bussmann, R. S.; Buttiglione, S.; Cava, A.; Clements, D.; Dariush, A.; De Zotti, G.; Dunne, L.; Dye, S.; Eales, S.; Fritz, J.; Hopwood, R.; Ibar, E.; Ivison, R.; Jarvis, M.; Maddox, S.; Michałowski, M. J.; Pascale, E.; Pohlen, M.; Rigby, E.; Scott, D.; Smith, D. J. B.; Temi, P.; van der Werf, P.

    2012-09-01

    We use Spitzer-IRAC data to identify near-infrared counterparts to submillimeter galaxies detected with Herschel-SPIRE at 250 μm in the Herschel Astrophysical Terahertz Large Area Survey. Using a likelihood ratio analysis we identify 146 reliable IRAC counterparts to 123 SPIRE sources out of the 159 in the survey area. We find that, compared to the field population, the SPIRE counterparts occupy a distinct region of the 3.6 and 4.5 μm color-magnitude space, and we use this property to identify 23 further counterparts to 13 SPIRE sources. The IRAC identification rate of 86% is significantly higher than those that have been demonstrated with wide-field ground-based optical and near-IR imaging of Herschel fields. We estimate a false identification rate of 3.6%, corresponding to 4-5 sources. Among the 73 counterparts that are undetected in Sloan Digital Sky Survey, 57 have both 3.6 and 4.5 μm coverage. Of these, 43 have [3.6] - [4.5] > 0, indicating that they are likely to be at z >~ 1.4. Thus, ~40% of identified SPIRE galaxies are likely to be high-redshift (z >~ 1.4) sources. We discuss the statistical properties of the IRAC-identified SPIRE galaxy sample including far-IR luminosities, dust temperatures, star formation rates, and stellar masses. The majority of our detected galaxies have 1010-1011 L ⊙ total IR luminosities and are not intense starbursting galaxies as those found at z ~ 2, but they have a factor of 2-3 above average specific star formation rates compared to near-IR selected galaxy samples.

  4. Spitzer observations of the thermal emission from WASP-43b

    SciTech Connect

    Blecic, Jasmina; Harrington, Joseph; Stevenson, Kevin B.; Hardy, Ryan A.; Cubillos, Patricio E.; Hardin, Matthew; Bowman, Oliver; Nymeyer, Sarah; Madhusudhan, Nikku; Anderson, David R.; Hellier, Coel; Smith, Alexis M. S.; Cameron, Andrew Collier

    2014-02-01

    WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a = 0.01526 ± 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (T {sub *} = 4520 ± 120 K), giving the planet a modest equilibrium temperature of T {sub eq} = 1440 ± 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. The eclipse depths and brightness temperatures from our jointly fit model are 0.347% ± 0.013% and 1670 ± 23 K at 3.6 μm and 0.382% ± 0.015% and 1514 ± 25 K at 4.5 μm. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347436 ± 1.4 × 10{sup –7} days) and put an upper limit on the eccentricity (e=0.010{sub −0.007}{sup +0.010}). We use our Spitzer eclipse depths along with four previously reported ground-based photometric observations in the near-infrared to constrain the atmospheric properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich compositions are able to explain all the available data. However, a wide range of metallicities and C/O ratios can explain the data. The data suggest low day-night energy redistribution in the planet, consistent with previous studies, with a nominal upper limit of about 35% for the fraction of energy incident on the dayside that is redistributed to the nightside.

  5. GLIMPSE360: Completing the Spitzer Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Whitney, Barbara; Arendt, Richard; Babler, Brian; Benjamin, Robert; Beuther, Henrick; Bhattacharya, Bidushi; Blum, Robert; Bracker, Steve; Brunt, Chris; Carey, Sean; Churchwell, Ed; Clemens, Dan; Cohen, Martin; Elmegreen, Bruce; Frinchaboy, Peter; Heitsch, Fabian; Hoare, Melvin; Hora, Joseph; Indebetouw, Remy; Jackson, James; Jarrett, Thomas; Kerton, Charles; Kobulnicky, Henry; Kraemer, Kathleen; Lucas, Phil; Majewski, Steve; Marengo, Massimo; Meade, Marilyn; Meixner, Margaret; Mizuno, Don; Molinari, Sergio; Povich, Matt; Price, Steve; Rathborne, Jill; Reach, William; Reid, Neill; Rho, Jeonghee; Robitaille, Thomas; Sewilo, Marta; Shenoy, Sachindev; Smith, Howard; Smith, Nathan; Stauffer, John; Stolovy, Susan; Ubeda, Leonardo; van Dyk, Schuyler; Volk, Kevin; Watson, Christer; Wolff, Michael; Yusef-Zadeh, Farhad; Zasowski, Gail; van Loon, Jacco

    2008-12-01

    We propose to map the remaining 187 degrees of the Galactic Plane that have not been observed with the Spitzer Space Telescope. The survey will cover longitude lD65-265 degrees excluding l 102-109 and l 76-82. The latitude range will be 3.1 degrees, wider than the previous GLIMPSE surveys (2 degrees) because the disk flares more in the Outer Galaxy. The latitude center will follow the Galactic warp. Three visits on each sky position with 0.6&12s HDR frames will provide a high dynamic range of sensitivity that exceeds both GLIMPSE and the planned WISE mission surveys at both ends. This will allow us to determine the edge of the Galactic stellar disk, study low and high mass star formation in the nearby Perseus arm as well as in the Far Outer Galaxy, and study evolved stars throughout the Galaxy. The combination of GLIMPSE360 and the previous GLIMPSE (\\|l\\|<65 deg.) and smaller surveys will provide us with a lasting global dataset, encompassing most of the stars and star formation in our Galaxy. This database will allow us to determine the star-formation rate in the Galaxy, how the stellar disk scale heights and lengths vary across the Galaxy, and how the dust extinction law varies with location in the disk. In addition, we will catalog stars, star clusters, PAH bubbles, supernova remnants, infrared dark clouds, outflows from massive protostars, planetary nebulae, external galaxies in the Zone of Avoidance, and many other types of objects. Following the tradition of the previous GLIMPSE Legacy programs, we will deliver enhanced data products for the survey-source lists and cleaned mosaics-to the community.

  6. Spitzer/IRAC Photometry Of The Four Largest Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Cartwright, Richard; Emery, J.; Rivkin, A.; Trilling, D.

    2012-10-01

    The surfaces of the four largest Uranian satellites are dominated by water ice and a spectrally neutral constituent that is likely carbonaceous in composition. CO2 ice has been detected on Ariel, Umbriel, and Titania, with no detection on the furthest regular Uranian satellite, Oberon (Grundy et al., 2003, 2006). Whether CO2 ice is primordial or is actively produced in the Uranian system is unclear; however, it seems unlikely that primordial CO2 ice would remain exposed on an icy satellite surface over the age of the Solar System. One possible mechanism for producing CO2 ice is bombardment of water ice and carbonaceous material by charged particles caught in Uranus’ magnetic field. Unlike the other large Uranian satellites, Oberon spends part of its orbit outside the confines of Uranus’ magnetic field, which might help explain why CO2 ice has yet to be detected on Oberon. We are using photometric data gathered by the Infrared Array Camera (IRAC), onboard the Spitzer Space Telescope (SST), in order to search for the signature of CO2 ice on Oberon, and confirm its presence on Ariel, Umbriel, and Titania at longer wavelengths than previous studies. IRAC collects data in four different channels, which are centered roughly at 3.6, 4.5, 5.8, and 8.0 µm. Additionally, we are gathering spectroscopic data using SpeX on IRTF, at similar longitudes to the IRAC observations, in order to characterize the distribution of CO2 ice on these icy satellites over a wide range of near-infrared wavelengths. Our preliminary photometry results for Oberon indicate that there is a steep reduction in reflected solar flux from channel 1 to channel 2, suggesting that surface materials are absorbing photons at wavelengths within the bandpass of channel 2. We will present the results of our photometric analysis of the four largest Uranian moons.

  7. FAR-INFRARED PROPERTIES OF SPITZER-SELECTED LUMINOUS STARBURSTS

    SciTech Connect

    Kovacs, A.; Omont, A.; Fiolet, N.; Beelen, A.; Dole, H.; Lagache, G.; Lonsdale, C.; Polletta, M.; Greve, T. R.; Borys, C.; Dowell, C. D.; Bell, T. A.; Cox, P.; De Breuck, C.; Farrah, D.; Menten, K. M.; Owen, F.

    2010-07-01

    We present SHARC-2 350 {mu}m data on 20 luminous z {approx} 2 starbursts with S{sub 1.2{sub mm}} > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S{sub 350{sub {mu}m}} > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass-temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6 {mu}m-2 mm measurements of local starbursts. We find characteristic single-component temperatures T{sub 1} {approx_equal} 35.5 {+-} 2.2 K and integrated infrared (IR) luminosities around 10{sup 12.9{+-}0.1} L{sub sun} for the SWIRE-selected sources. Molecular gas masses are estimated at {approx_equal}4 x 10{sup 10} M{sub sun}, assuming {kappa}{sub 850{sub {mu}m}} = 0.15 m{sup 2} kg{sup -1} and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply {approx_gt}2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 {mu}m flux densities, provides an effective means for the study of SMGs at z {approx} 1.5-2.5.

  8. Spitzer Space Telescope Observations of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Temim, T.; Woodward, C. E.; Gehrz, R. D.; Polomski, E. F.; Rudnick, L.; Davidson, K. D.

    2005-05-01

    Supernova events play an important role in the study of nucleosynthesis of heavy elements and the enrichment of the interstellar medium. The Crab Nebula was formed by a supernova explosion in 1054 A.D. making it one of the youngest known supernova remnants and one of the most studied objects in the Galaxy. Here we present the first high resolution infrared images of the Crab Nebula obtained with the Spitzer Space Telescope Infrared Array Camera (IRAC) at all bands as well as the MIPS 24 micron image. The 8.0 micron image resembles the general morphology of H-α and [Fe II] line emission, while the 3.6 and 4.5 micron images seem to be dominated by continuum emission. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from 0.2 to 0.7 across the nebula, with an overall index of 0.42. The ratio map also reveals local flux enhancements that suggest the presence of dust in the nebula. These correspond to absorption features at visible wavelengths, the cores of filaments at 8.0 microns, and the brightest features in the 24 micron image. One of these features includes the ropelike structure identified in HST WFPC2 images (see Blair et al. 1997, ApJS, 109, 473). We also find evidence for point-like emission in all bands that is coincident with the position of the puslar. Support for this work is in part provided by NASA through contracts 1256406 and 1215746 issued by JPL/Caltech to the University of Minnesota as well as an NSF grant, Ast 02-05814.

  9. Spitzer IR Colors and ISM Distributions of Virgo Cluster Spirals

    NASA Astrophysics Data System (ADS)

    Kenney, Jeffrey D.; Wong, I.; Kenney, Z.; Murphy, E.; Helou, G.; Howell, J.

    2012-01-01

    IRAC infrared images of 44 spiral and peculiar galaxies from the Spitzer Survey of the Virgo Cluster help reveal the interactions which transform galaxies in clusters. We explore how the location of galaxies in the IR 3.6-8μm color-magnitude diagram is related to the spatial distributions of ISM/star formation, as traced by PAH emission in the 8μm band. Based on their 8μm/PAH radial distributions, we divide the galaxies into 4 groups: normal, truncated, truncated/compact, and anemic. Normal galaxies have relatively normal PAH distributions. They are the "bluest" galaxies, with the largest 8/3.6μm ratios. They are relatively unaffected by the cluster environment, and have probably never passed through the cluster core. Truncated galaxies have a relatively normal 8μm/PAH surface brightness in the inner disk, but are abruptly truncated with little or no emission in the outer disk. They have intermediate ("green") colors, while those which are more severely truncated are "redder". Most truncated galaxies have undisturbed stellar disks and many show direct evidence of active ram pressure stripping. Truncated/compact galaxies have high 8μm/PAH surface brightness in the very inner disk (central 1 kpc) but are abruptly truncated close to center with little or no emission in the outer disk. They have intermediate global colors, similar to the other truncated galaxies. While they have the most extreme ISM truncation, they have vigorous circumnuclear star formation. Most of these have disturbed stellar disks, and they are probably produced by a combination of gravitational interaction plus ram pressure stripping. Anemic galaxies have a low 8μm/PAH surface brightness even in the inner disk. These are the "reddest" galaxies, with the smallest 8/3.6μm ratios. The origin of the anemics seems to a combination of starvation, gravitational interactions, and long-ago ram pressure stripping.

  10. Deep Spitzer/IRAC Imaging of the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Egami, Eiichi; Cohen, Seth; Fan, Xiaohui; Ly, Chun; Mechtley, Matthew; Windhorst, Rogier

    2013-10-01

    The last decade saw great progress in our understanding of the distant Universe as a number of objects at z > 6 were discovered. The Subaru Deep Field (SDF) project has played an important role on study of high-z galaxies. The SDF is unique: it covers a large area of 850 sq arcmin; it has extremely deep optical images in a series of broad and narrow bands; it has the largest sample of spectroscopically-confirmed galaxies known at z >= 6, including ~100 Lyman alpha emitters (LAEs) and ~50 Lyman break galaxies (LBGs). Here we propose to carry out deep IRAC imaging observations of the central 75% of the SDF. The proposed observations together with those from our previous Spitzer programs will reach a depth of ~10 hours, and enable the first complete census of physical properties and stellar populations of spectroscopically-confirmed galaxies at the end of cosmic reionization. IRAC data is the key to measure stellar masses and constrain stellar populations in high-z galaxies. From SED modeling with secure redshifts, we will characterize the physical properties of these galaxies, and trace their mass assembly and star formation history. In particular, it allows us, for the first time, to study stellar populations in a large sample of z >=6 LAEs. We will also address some critical questions, such as whether LAEs and LBGs represent physically different galaxy populations. All these will help us to understand the earliest galaxy formation and evolution, and better constrain the galaxy contribution to reionization. The IRAC data will also cover 10,000 emission-line selected galaxies at z < 1.5, 50,000 UV and mass selected LBGs at 1.5 < z < 3, and more than 5,000 LBGs at 3 < z < 6. It will have a legacy value for SDF-related programs.

  11. NEOs in the mid-infrared: from Spitzer to JWST

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Thomas, Cristina A.

    2016-10-01

    Near-Earth Objects (NEOs) account for a surprisingly large fraction of the Spitzer observing time devoted to Solar System science. As a community, we should think of ways to repeat that success with JWST. JWST is planning an open Early Release Science Program, with the expected deadline for letters of intent in early 2017. We can't wait for next year's DPS to develop ideas. The time is now!In order to stir up the discussion, we will present ideas for NEO observing programs that are well adapted to JWST's capabilities and limitations, based on our recent PASP paper (Thomas et al., 2016). Obvious measurement objectives would include* size and albedo from thermal continuum (MIRI photometry)* thermal inertia for objects with well-known shape and spin state (MIRI)* taxonomy through reflection spectroscopy and emission spectroscopy in the NIR and MIR; NIR colors for faint objects.In all cases, JWST's sensitivity will allow us to go deeper than currently possible by at least an order of magnitude. Meter-sized NEOs similar to 2009 BD or 2011 MD are easy targets for MIRI spectrophotometry!The following limitations must be kept in mind, however: JWST's large size makes it slow to move. Most problematic for NEOs is probably the resulting 'speed limit': non-sidereal tracking is supported up to a rate of 30 mas/s, NEOs can easily move faster than that (ways to relax this constraint are under discussion). The average slew to a new target is budgeted to take 30 min, effectively ruling out programs many-target programs like ExploreNEOs or NEOSurvey (see D. Trilling's paper). Additionally, JWST will only observe close to quadrature, translating to large solar phase angles for NEO observations; this is familiar from other space-based IR facilities.

  12. SPITZER SPECTROSCOPY OF THE TRANSITION OBJECT TW Hya

    SciTech Connect

    Najita, Joan R.; Strom, Stephen E.; Carr, John S.; Watson, Dan M.; Pascucci, Ilaria; Hollenbach, David; Gorti, Uma; Keller, Luke

    2010-03-20

    We report sensitive Spitzer IRS spectroscopy in the 10-20 {mu}m region of TW Hya, a nearby T Tauri star. The unusual spectral energy distribution of the source, that of a 'transition object', indicates that the circumstellar disk in the system has experienced significant evolution, possibly as a result of planet formation. The spectrum we measure is strikingly different from that of other classical T Tauri stars reported in the literature, displaying no strong emission features of H{sub 2}O, C{sub 2}H{sub 2}, or HCN. The difference suggests that the inner planet formation region ({approx}<5 AU) of the gaseous disk has evolved physically and/or chemically away from the classical T Tauri norm. Nevertheless, TW Hya does show a rich spectrum of emission features of atoms (H I, [Ne II], and [Ne III]) and molecules (H{sub 2}, OH, CO{sub 2}, HCO{sup +}, and possibly CH{sub 3}), some of which are also detected in classical T Tauri spectra. The properties of the neon emission are consistent with an origin for the emission in a disk irradiated by X-rays (with a possible role for additional irradiation by stellar EUV). The OH emission we detect, which also likely originates in the disk, is hot, arising from energy levels up to 23,000 K above ground, and may be produced by the UV photodissociation of water. The H I emission is surprisingly strong, with relative strengths that are consistent with case B recombination. While the absence of strong molecular emission in the 10-20 {mu}m region may indicate that the inner region of the gaseous disk has been partly cleared by an orbiting giant planet, chemical and/or excitation effects may be responsible instead. We discuss these issues and how our results bear on our understanding of the evolutionary state of the TW Hya disk.

  13. Hα kinematics of the Spitzer Infrared Nearby Galaxies Survey - II

    NASA Astrophysics Data System (ADS)

    Dicaire, I.; Carignan, C.; Amram, P.; Hernandez, O.; Chemin, L.; Daigle, O.; de Denus-Baillargeon, M.-M.; Balkowski, C.; Boselli, A.; Fathi, K.; Kennicutt, R. C.

    2008-04-01

    This is the second part of an Hα kinematics follow-up survey of the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample. The aim of this paper is to shed new light on the role of baryons and their kinematics and on the dark/luminous matter relation in the star-forming regions of galaxies, in relation with studies at other wavelengths. The data for 37 galaxies are presented. The observations were made using Fabry-Perot interferometry with the photon-counting camera FaNTOmM on four different telescopes, namely the Canada-France-Hawaii 3.6-m, the ESO La Silla 3.6-m, the William Herschel 4.2-m and the Observatoire du mont Mégantic 1.6-m telescopes. The velocity fields are computed using custom IDL routines designed for an optimal use of the data. The kinematical parameters and rotation curves are derived using the GIPSY software. It is shown that non-circular motions associated with galactic bars affect the kinematical parameters fitting and the velocity gradient of the rotation curves. This leads to incorrect determinations of the baryonic and dark matter distributions in the mass models derived from those rotation curves. Based on observations made with the ESO 3.60-m telescope at La Silla Observatories under programme ID 076.B-0859 and on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. E-mail: isabelle@astro.umontreal.ca (ID);claude.carignan@umontreal.ca (CC) ‡ Visiting Astronomer, Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii.

  14. Galactic Cepheids with Spitzer. II. Search for Extended Infrared Emission

    NASA Astrophysics Data System (ADS)

    Barmby, P.; Marengo, M.; Evans, N. R.; Bono, G.; Huelsman, D.; Su, K. Y. L.; Welch, D. L.; Fazio, G. G.

    2011-02-01

    A deep and detailed examination of 29 classical Cepheids with the Spitzer Space Telescope has revealed three stars with strong nearby extended emission detected in multiple bands which appears to be physically associated with the stars. RS Pup was already known to possess extended infrared emission, while the extended emission around the other two stars (S Mus and δ Cep) is newly discovered in our observations. Four other stars (GH Lup, ell Car, T Mon, and X Cyg) show tentative evidence for extended infrared emission. An unusual elongated extended object next to SZ Tau appears to be a background or foreground object in a chance alignment with the Cepheid. The inferred mass-loss rate upper limits for S Mus and δ Cep are in the range from 10-9 to 10-8 M sun yr-1, with the upper limit for RS Pup as high as 10-6 M sun yr-1. Mass loss during post-main-sequence evolution has been proposed as a resolution to the discrepancy between pulsational and dynamical masses of Cepheid variable stars: dust in the lost material would make itself known by the presence of an infrared bright nebula or unresolved infrared excess. The observed frequency of infrared circumstellar emission (<24%) and the mass-loss rate we estimate for our sources show that dusty mass loss can only account for part of the Cepheid mass-loss discrepancy. Nevertheless, our direct evidence that mass loss is active during the Cepheid phase is an important confirmation that these processes need to be included in evolutionary and pulsation models of these stars and should be taken into account in the calibration of the Cepheid distance scale.

  15. The Spitzer Space Telescope Research Program for Teachers and Students: Overview

    NASA Astrophysics Data System (ADS)

    Rebull, Luisa M.; Gorjian, V.; Hermans, L.; Howell, S.; Isbell, D.; Pompea, S.; Rudnick, G.; Thaller, M.; Spitzer Teacher Program Team

    2007-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with Spitzer and work with Spitzer archival data. This program allows a team of teachers and their students to use Director's Discretionary Time on the Spitzer Space Telescope for educational observations, thereby getting scientific research into the classroom. More than fifteen conference posters or journal articles have resulted from this project, with more being presented at this AAS meeting. We have won a NASA group achievement award in 2007. We believe that this project provides a potential model for outreach efforts on other NASA missions, including particularly WISE, where plans are already underway to follow this model. For more information, please see our companion poster (Spuck et al.) or visit the wiki on which we are sharing materials developed by our teacher-scientist teams: https://coolwiki.ipac.caltech.edu/

  16. Spitzer Observations of Exoplanets Discovered with the Kepler K2 Mission

    NASA Astrophysics Data System (ADS)

    Beichman, Charles; Livingston, John; Werner, Michael; Gorjian, Varoujan; Krick, Jessica; Deck, Katherine; Knutson, Heather; Wong, Ian; Petigura, Erik; Christiansen, Jessie; Ciardi, David; Greene, Thomas P.; Schlieder, Joshua E.; Line, Mike; Crossfield, Ian; Howard, Andrew; Sinukoff, Evan

    2016-05-01

    We have used the Spitzer Space Telescope to observe two transiting planetary systems orbiting low-mass stars discovered in the Kepler K2 mission. The system K2-3 (EPIC 201367065) hosts three planets, while K2-26 (EPIC 202083828) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with Spitzer will be critical for future observations of these and other K2 targets. For K2-3b we find marginally significant evidence for a transit timing variation between the K2 and Spitzer epochs.

  17. Investigating the long-lived clouds of early L dwarfs with Spitzer and K2.

    NASA Astrophysics Data System (ADS)

    Gizis, John; Lowrance, Patrick; Paudel, Rishi

    2016-08-01

    We propose to monitor two bright L0 dwarfs with Spitzer. Unlike cooler brown dwarfs whose clouds evolve on timescales of hours and days, the best studied L1 dwarf star has a cloud feature that lasted for over two years. This discovery was enabled by Kepler optical photometry combined with Spitzer mid-infrared photometry. The upcoming K2 Campaign 10 happens to include two bright L0 dwarfs, and they will repeated in K2 Campaign 17, providing two uniquely accurate optical light curves that sample timescales from minutes to years. By probing higher altitudes in the L dwarf atmospheres, the Spitzer IRAC photometry would enable us to test whether the optical variability in these two objects also come from long-lived clouds. This would establish whether the Kepler field L1 dwarf is a fluke or whether the weather and cloud lifetimes in warm (~2300K) atmospheres are qualititatively different than in cooler brown dwarfs.

  18. AEGIS: A MULTIWAVELENGTH STUDY OF SPITZER POWER-LAW GALAXIES

    SciTech Connect

    Park, S. Q.; Barmby, P.; Willner, S. P.; Ashby, M. L. N.; Fazio, G. G.; Georgakakis, A.; Ivison, R. J.; Konidaris, N. P.; Rosario, D. J.; Nandra, K.

    2010-07-10

    This paper analyzes a sample of 489 Spitzer/Infrared Array Camera (IRAC) sources in the Extended Groth Strip (EGS), whose spectral energy distributions fit a red power law (PL) from 3.6 to 8.0 {mu}m. The median redshift for sources with known redshifts is (z) = 1.6. Though all or nearly all of the sample galaxies are likely to be active galactic nuclei (AGNs), only 33% were detected in the EGS X-ray survey (AEGIS-X) using 200 ks Chandra observations. The detected sources are X-ray luminous with L {sub X}>10{sup 43} erg s{sup -1} and moderately to heavily obscured with N {sub H}>10{sup 22} cm{sup -2}. Stacking the X-ray-undetected sample members yields a statistically significant X-ray signal, suggesting that they are on average more distant or more obscured than sources with X-ray detections. The ratio of X-ray to mid-infrared fluxes suggests that a substantial fraction of the sources undetected in X-rays are obscured at the Compton-thick level, in contrast to the X-ray-detected sources, all of which appear to be Compton thin. For the X-ray-detected PL sources with redshifts, an X-ray luminosity L {sub X} {approx} 10{sup 44} erg s{sup -1} marks a transition between low-luminosity, blue sources dominated by the host galaxy to high-luminosity, red PL sources dominated by nuclear activity. X-ray-to-optical ratios, infrared variability, and 24 {mu}m properties of the sample are consistent with the identification of infrared PL sources as active nuclei, but a rough estimate is that only 22% of AGNs are selected by the PL criteria. Comparison of the PL selection technique and various IRAC color criteria for identifying AGNs confirms that high-redshift samples selected via simple IRAC colors may be heavily contaminated by starlight-dominated objects.

  19. Creating a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Daou, D.; Pompea, S.; Thaller, M.

    2004-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have created a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Space Telescope (SST) archives, and to receive training in infrared astronomy and observational techniques. The teachers will also attend a workshop offered by the SSC to learn about the observation planning process, and telescope and instrument capabilities. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the SST and work with the SST archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. Leveraging on a well-established teacher professional development, the SSC is offering this program to teachers in the Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing program at the NOAO. This NSF-sponsored program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. The Spitzer educational research program also reaches an additional national audience of students through an informal education program based at the University of Arizona's Astronomy Camp, directed by Dr. Don McCarthy. During this camp, the teachers and their students will learn about the SST through the vast amount of data available in the Spitzer archives.

  20. Validating and Characterizing Transiting Exoplanets from Space with EPOXI, Kepler, and Warm Spitzer

    NASA Astrophysics Data System (ADS)

    Ballard, Sarah

    2012-01-01

    My thesis work comprises analyses of transiting exoplanets with observations from three space-based instruments. The Extrasolar Planet Observation and Characterization (EPOCh) component of the EPOXI mission repurposed the Deep Impact Spacecraft to gather photometry of six known transiting exoplanet systems. I systematically searched the EPOXI light curves for additional transiting planets, and identified one such candidate in the exoplanet system GJ 436. I gathered Warm Spitzer light curves of GJ 436 during a predicted transit of this putative planet: while I ruled out the presence of the hypothesized planet, I developed a novel reduction technique for Warm Spitzer observations and demonstrated the sensitivity of that instrument to sub-Earth-sized transiting planets. I next applied these techniques to a sample of super-Earth-sized planetary candidates identified by the Kepler mission. In the absence of radial velocity confirmation (challenging for such low-mass planets), it is nonetheless possible to make a statistical argument for the planetary nature of the candidate, if the combined likelihood of all false positive scenarios is sufficiently smaller than the planet scenario. An authentic planet will exhibit an achromatic transit depth, as measured in the optical with Kepler and near-infrared with Warm Spitzer. The eclipse from a stellar blend, in contrast, would likely vary with wavelength. I presented the discovery of the Kepler-19 system, applying Warm Spitzer observations toward validation of the transiting 2.2 REarth planet, Kepler-19b. I identified systematic variations in the transit times of Kepler-19b, which led to the first robust detection of a non-transiting planet using the transit timing variation method: Kepler-19c. Support for EPOXI was provided by NASA's Discovery Program via Agreement NNX08AB64A. This work is based on observations made with the Spitzer Space Telescope. Support for Spitzer observations is provided by NASA through an award issued

  1. An ear turned to ``The Cosmos'': 50 projects to discover the universe

    NASA Astrophysics Data System (ADS)

    del Puerto, Carmen

    2011-06-01

    In 1609, as Galileo pointed the sky with a telescope, he observed Jupiter's satellites and changed our vision of the universe. Four hundred years later, we celebrate this event all over the world, and also in the Canaries. 2009, the International Year of Astronomy, is a very special year for the Science and Cosmos Museum (Museo de la Ciencia y el Cosmos). This was the first museum in Spain supported by a public entity, The Local Government of Tenerife (Cabildo de Tenerife), through its Autonomous Council of Museums (Organismo Autónomo de Museos y Centros), and a research centre, the Instituto de Astrofísica de Canarias. Fifteen years later, this museum, which receives 50,000 visitors a year, celebrates the International Year of Astronomy with fifty projects described in this paper.

  2. Optically Elusive AGN in the 3XMM Catalog and the Chandra-COSMOS field

    NASA Astrophysics Data System (ADS)

    Pons, Estelle; Watson, Mike; Elvis, Martin; Civano, Francesca M.

    2015-01-01

    'Optically elusive AGN' are powerful X-ray sources (LHX > 1042 erg/s), but are not detected as AGN in the optical. Pons and Watson (2014) showed that in XMM these AGNs are a mix of Narrow Line Seyfert 1s, True Seyfert 2's and weak Seyfert 2s. The nature of these objects, coming from the cross-match of 3XMM with the SDSS-DR9 spectroscopic catalog, has been investigated through a detailed analysis of their IR/optical and X-ray properties. The fainter Chandra-COSMOS field should be rich in optically elusive AGNs as ¾ of the AGNs there are narrow-lined. There are ~850 Chandra-COSMOS galaxy spectra, mainly from five different telescopes (SDSS, Magellan, MMT, VLT and Keck). To find optically elusive objects, we investigate the optical classification using emission line diagnostic diagrams. For low redshift galaxies (z~<0.7) the standard BPT diagram ([OIII

  3. The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.

    PubMed

    Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G

    2012-03-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  4. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  5. Cool White Dwarfs from the SuperCOSMOS and Sloan Digital Sky Surveys

    NASA Astrophysics Data System (ADS)

    Hambly, N. C.; Digby, A. P.; Oppenheimer, B. R.

    2005-07-01

    We have used datamining techniques in the SuperCOSMOS Science Archive (http://surveys.roe.ac.uk/ssa) to obtain a large, well defined proper motion and magnitude selected sample of cool white dwarfs. Using accurate 5-colour photometry from the Sloan Digital Sky Survey DR1 and SuperCOSMOS Sky Survey photometry and astrometry, we demonstrate the power of reduced proper motion in obtaining a sample of >700 white dwarfs. We examine the characteristics of these objects in various two-colour diagrams in conjunction with new model atmosphere predictions recently computed in the SDSS photometric system. Ultimately, we intend to analyse these data with techniques similar to those already used to examine the subdwarf luminosity function (Digby et al. 2003). In this way, we aim to decompose the contribution of thin disk, thick disk and spheroid white dwarfs in the sample to enable computation of accurate luminosity functions for those respective populations.

  6. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  7. SPIRITS16tn: Spitzer Discovery of a Possible Supernova in Messier 108 at 8.8 Mpc

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Adams, S.; Kasliwal, M. M.; Tinyanont, S.; Cao, Y.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Van Dyk, S. D.; Cody, A.; Boyer, M. L.; Khan, R.; Bond, H. E.; Monson, A.; Bally, J.; Levesque, E.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Fox, O.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2016-08-01

    We report the discovery of a possible, nearby supernova in Messier 108 (NGC 3556) designated as SPIRITS16tn. This luminous infrared transient was discovered during ongoing monitoring of nearby galaxies with the Spitzer InfraRed Intensive Transients Survey (SPIRITS; ATEL#6644, Kasliwal et al. 2016, ApJ submitted), using the Infrared Array Camera on the Spitzer Space Telescope.

  8. Design of a Teacher-Student Research Program Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Daou, D.; Thaller, M.

    2004-12-01

    Under the sponsorship of the NASA Spitzer Science Center, we have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Science Center Archives, observation planning process, and telescope and instrument capabilities in order to plan observations. They also received fundamental training in infrared astronomy and infrared observational techniques, before they began planning their observing program. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the OSS/NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the Spitzer Space Telescope and work with infrared archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. With the goal of leveraging on a well-established teacher professional development, the program serves teachers in the NSF-sponsored Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing Public Affairs and Educational Outreach Department program at the National Optical Astronomy Observatory (NOAO) in Tucson. The program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. There are currently 68 teachers (and their students) participating in TLRBSE with an additional 57 teachers in the still-supported precursor RBSE program. The Spitzer educational research program also reaches an additional national audience

  9. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  10. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  11. Physics of the Cosmos Program Analysis Group (PhysPAG) Report

    NASA Astrophysics Data System (ADS)

    Nousek, John A.

    2015-01-01

    The Physics of the Cosmos Program Analysis Group (PhysPAG) serves as a forum for soliciting and coordinating input and analysis from the scientific community in support of the PCOS program objectives. I will outline the activities of the PhysPAG over the past year, since the last meeting during the AAS meeting in National Harbor, and mention the activities of the PhysPAG related Scientific Interest Groups.

  12. THE zCOSMOS-SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS

    SciTech Connect

    Mancini, C.; Renzini, A.; Foerster Schreiber, N. M.; Hicks, E. K. S.; Genzel, R.; Tacconi, L.; Davies, R.; Cresci, G.; Peng, Y.; Lilly, S.; Carollo, M.; Oesch, P.; Vergani, D.; Pozzetti, L.; Zamorani, G.; Daddi, E.; McCracken, H. J.; Bouche, N.; Shapiro, K.; and others

    2011-12-10

    The zCOSMOS-SINFONI project is aimed at studying the physical and kinematical properties of a sample of massive z {approx} 1.4-2.5 star-forming galaxies, through SINFONI near-infrared integral field spectroscopy (IFS), combined with the multiwavelength information from the zCOSMOS (COSMOS) survey. The project is based on one hour of natural-seeing observations per target, and adaptive optics (AO) follow-up for a major part of the sample, which includes 30 galaxies selected from the zCOSMOS/VIMOS spectroscopic survey. This first paper presents the sample selection, and the global physical characterization of the target galaxies from multicolor photometry, i.e., star formation rate (SFR), stellar mass, age, etc. The H{alpha} integrated properties, such as, flux, velocity dispersion, and size, are derived from the natural-seeing observations, while the follow-up AO observations will be presented in the next paper of this series. Our sample appears to be well representative of star-forming galaxies at z {approx} 2, covering a wide range in mass and SFR. The H{alpha} integrated properties of the 25 H{alpha} detected galaxies are similar to those of other IFS samples at the same redshifts. Good agreement is found among the SFRs derived from H{alpha} luminosity and other diagnostic methods, provided the extinction affecting the H{alpha} luminosity is about twice that affecting the continuum. A preliminary kinematic analysis, based on the maximum observed velocity difference across the source and on the integrated velocity dispersion, indicates that the sample splits nearly 50-50 into rotation-dominated and velocity-dispersion-dominated galaxies, in good agreement with previous surveys.

  13. Pituitary oxytocin and vasopressin content of rats flown on COSMOS 2044.

    PubMed

    Keil, L; Evans, J; Grindeland, R; Krasnov, I

    1992-08-01

    Preliminary studies in rats (COSMOS 1887) suggested that levels of posterior pituitary hormones were reduced by exposure to spaceflight. To confirm these preliminary findings, we obtained pituitary tissue from rats flown for 14 days on COSMOS 2044. Posterior pituitary content of oxytocin (OT) and vasopressin (VP) were measured in these tissues as well as those from ground-based controls. The synchronous control group had feeding and lighting schedules synchronized to those in the spacecraft and were maintained in flight-type cages. Another group was housed in vivarium cages; a third group was tail suspended (T), a method used to stimulate microgravity. Flight rats showed an average reduction of 27% (P less than 0.05) in pituitary OT and VP compared with the three control groups. When hormone content was expressed in terms of pituitary protein (micrograms hormone/mg protein), the average decrease in OT and VP for the flight animals ranged from 20 to 33% (P less than 0.05) compared with the various control groups. Reduced levels of pituitary OT and VP were similar to preliminary measurements from the COSMOS 1887 mission and appear to result from exposure to spaceflight. These data suggest that changes in the rate of hormone secretion or synthesis may have occurred during exposure to microgravity.

  14. Activity of the sympathetic-adrenomedullary system in rats after space flight on the COSMOS biosatellites

    NASA Astrophysics Data System (ADS)

    Kvetňanský, R.; Vigaš, M.; Németh, Š.; Macho, L.; Tigranyan, R. A.

    The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5-19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.

  15. Seeing the Sky through Hubble's Eye: The COSMOS SkyWalker

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Sánchez, S. F.; Koekemoer, A.

    2006-08-01

    Large, high-resolution space-based imaging surveys produce a volume of data that is difficult to present to the public in a comprehensible way. While megapixel-sized images can still be printed out or downloaded via the World Wide Web, this is no longer feasible for images with 109 pixels (e.g., the Hubble Space Telescope Advanced Camera for Surveys [ACS] images of the Galaxy Evolution from Morphology and SEDs [GEMS] project) or even 1010 pixels (for the ACS Cosmic Evolution Survey [COSMOS]). We present a Web-based utility called the COSMOS SkyWalker that allows viewing of the huge ACS image data set, even through slow Internet connections. Using standard HTML and JavaScript, the application successively loads only those portions of the image at a time that are currently being viewed on the screen. The user can move within the image by using the mouse or interacting with an overview image. Using an astrometrically registered image for the COSMOS SkyWalker allows the display of calibrated world coordinates for use in science. The SkyWalker ``technique'' can be applied to other data sets. This requires some customization, notably the slicing up of a data set into small (e.g., 2562 pixel) subimages. An advantage of the SkyWalker is the use of standard Web browser components; thus, it requires no installation of any software and can therefore be viewed by anyone across many operating systems.

  16. VizieR Online Data Catalog: UDS/COSMOS HiZELS galaxies (Sobral+, 2013)

    NASA Astrophysics Data System (ADS)

    Sobral, D.; Smail, I.; Best, P. N.; Geach, J. E.; Matsuda, Y.; Stott, J. P.; Cirasuolo, M.; Kurk, J.

    2014-01-01

    Optical imaging data were obtained with Suprime-Cam using the NB921 narrow-band filter. The COSMOS field was observed in service mode in 2010 December with four different pointings covering the central 1.1deg2. Total exposure times were 2.9ks per pointing, composed of individual exposures of 360s dithered over eight different positions. The UDS field has also been observed with the NB921 filter (see Ouchi et al., 2010ApJ...723..869O), and these data have been extracted from the archive. The COSMOS and UKIDSS UDS fields were observed with WFCAM on UKIRT , using the NBJ, NBH and NBK narrow-band filters. The UKIDSS UDS and COSMOS fields were observed with the HAWK-I instrument on the VLT during 2009. A single dithered pointing was obtained in each of the fields using the H2 filter, characterized by λc=2.124um and δλ=0.030um (note that the filter is slightly wider than that on WFCAM). (4 data files).

  17. Pituitary oxytocin and vasopressin content of rats flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Keil, L.; Evans, J.; Grindeland, R.; Krasnov, I.

    1992-01-01

    Preliminary studies in rats (COSMOS 1887) suggested that levels of posterior pituitary hormones were reduced by exposure to spaceflight. To confirm these preliminary findings, pituitary tissue from rats flown for 14 days on Cosmos 2044 is obtained. Posterior pituitary content of oxytocin (OT) and vasopressin (VP) were measured in these tissues as well as those from ground-based controls. The synchronous control group had feeding and lighting schedules synchronized to those in the spacecraft and were maintained in flight-type cages. Another group was housed in vivarium cages; a third group was tail suspended (T), a method used to simulate microgravity. Flight rats showed an average reduction of 27 in pituitary OT and VP compared with the three control groups. When hormone content was expressed in terms of pituitary protein (microg hormone/mg protein), the average decrease in OT and VP for the flight animals ranged from 20 to 33 percent compared with the various control groups. Reduced levels of pituitary OT and VP were similar to preliminary measurements from the Cosmos 1887 mission and appear to result from exposure to spaceflight. These data suggest that changes in the rate of hormone secretion or synthesis may have occurred during exposure to microgravity.

  18. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  19. Commissioning COSMOS: Detection of Lithium in Young Stars in Lupus 3 through Multi-Object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackey, Kyle; Briceno, Cesar; Elias, Jonathan H.

    2015-01-01

    COSMOS, a multi-object spectrograph and imager, is a new instrument on the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory. In order to demonstrate the instrument's operations during commissioning, we used COSMOS, its red grism and three custom slit masks to conduct a spectroscopic survey of the star-forming core of the Lupus 3 dark cloud in an effort to detect the presence of Lithium in the T Tauri stars that have been previously identified in that region. We detected the Li I 6708 Angstrom resonance transition in several (but not all) stars that were observed, consistent with prior studies that have observed Lithium in other young stars at the center of the Lupus 3 dark cloud and in other star-forming regions. These results also demonstrate the ability of COSMOS to significantly reduce the time required to complete spectroscopic surveys, relative to single-object instruments.Lackey was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  20. Hot Jupiter atmospheres with the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Todorov, Kamen O.

    I analyze Spitzer Space Telescope observations of seven transiting hot Jupiters during the time of secondary eclipse, the portion of the planet's orbit when it is behind the star from the point of view of a Solar System observer. For six of them, HAT-P-3b, HAT-P-4b, HAT-P-6b, HAT-P-8b, HAT-P-12b and XO-4b, I analyze broadband photometric light curves at 3.6 and 4.5 microm. I compare the resulting eclipse depths, which are a measure of the planets' dayside emission, to model emergent spectra by Burrows et al. and Fortney et al. The atmosphere of XO-4b has a strong temperature inversion, HAT-P-6b has weak or no temperature inversion, HAT-P-8 has a non-inverted atmosphere. The models are inconclusive about the temperature structure of the atmospheres of HAT-P-3b and HAT-P-4b. I find that HAT-P-3b, HAT-P-4b and HAT-P-8b have relatively inefficient heat transport from their day sides to their night sides. The models suggest moderate to low heat transport for XO-4b and HAT-P-6b. I discuss the physical implications of my results in the context of theoretical and empirical hypotheses on correlations related to the temperature-pressure structures of the atmospheres and the efficiency of energy transfer to the night side of the planet. In particular, I focus on the idea by Knutson et al. that planets with chromospherically active host stars may in general not have a stratosphere-like temperature inversions, while a quiet host star may lead to an inverted atmosphere. Another hypothesis I examine is that by Cowan and Agol and Perna et al. who suggest that the hottest planets have a narrow range of permitted heat redistribution efficiencies and, thus, high day-night contrasts. The seventh object I study is HD 189733b. I examine the time series spectroscopy during 18 eclipses between wavelengths of 5 and 14 microm. This is the most extensive data set observed for the emission spectrum of any exoplanet to date. Some of these data sets have been analyzed in the past by Grillmair

  1. An Analysis of the FY-1C, Iridium 33, and Cosmos 2251 Fragments

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2014-01-01

    The beginning of the year 2013 marks the sixth anniversary of the destruction of the Fengyun-1C (FY-1C) weather satellite as the result of an anti-satellite test conducted by China in January 2007 and the fourth anniversary of the accidental collision between Cosmos 2251 and the operational Iridium 33 in February 2009. These two events represent the worst satellite breakups in history. A total of 5579 fragments have been cataloged by the U.S. Space Surveillance Network (SSN), and almost 5000 of them were still in orbit in January 2013. In addition to these cataloged objects, hundreds of thousands (or more) of fragments down to the millimeter size regime were also generated during the breakups. These fragments are too small to be tracked by the SSN, but are large enough to be a safety concern for human space activities and robotic missions in low Earth orbit (LEO, the region below 2000 km altitude). Like their cataloged siblings, many of them remain in orbit today. These two breakup events dramatically changed the landscape of the orbital debris environment in LEO. The spatial density of the cataloged population in January 2013 is shown as the top blue curve. The combined FY-1C, Iridium 33, and Cosmos 2251 fragments (black curve) account for about 50 percent of the cataloged population below an altitude of 1000 km. They are also responsible for the concentrations at 770 km and 850 km, altitudes at which the collisions occurred. The effects of the FY-1C, Iridium 33, and Cosmos 2251 fragments will continue to be felt for decades to come. For example, approximately half of the generated FY-1C fragments will remain in orbit 20 years from now. In general, the Iridium 33 and Cosmos 2251 fragments will decay faster than the FY-1C fragments because of their lower altitudes. Of the Iridium 33 and Cosmos 2251 fragments, the former have much shorter orbital lifetimes than the latter, because lightweight composite materials were heavily used in the construction of the Iridium

  2. A high definition view of the COSMOS Wall at z ~ 0.73

    NASA Astrophysics Data System (ADS)

    Iovino, A.; Petropoulou, V.; Scodeggio, M.; Bolzonella, M.; Zamorani, G.; Bardelli, S.; Cucciati, O.; Pozzetti, L.; Tasca, L.; Vergani, D.; Zucca, E.; Finoguenov, A.; Ilbert, O.; Tanaka, M.; Salvato, M.; Kovač, K.; Cassata, P.

    2016-08-01

    Aims: We present a study of a large filamentary structure at z ~ 0.73 in the field of the COSMOS survey, the so-called COSMOS Wall. This structure encompasses a comprehensive range of environments from a dense cluster and a number of galaxy groups to filaments, less dense regions, and adjacent voids. It thus provides a valuable laboratory for the accurate mapping of environmental effects on galaxy evolution at a look-back time of ~6.5 Gyr, when the Universe was roughly half its present age. Methods: We performed deep spectroscopic observations with VIMOS at VLT of a K-band selected sample of galaxies in this complex structure, building a sample of galaxies complete in galaxy stellar mass down to a lower limit of log(ℳ∗/ℳ⊙) ~ 9.8, which is significantly deeper than previously available data. Thanks to its location within the COSMOS survey, each galaxy benefits from a wealth of ancillary information: HST-ACS data with I-band exposures down to IAB ~ 28 complemented by extensive multiwavelength ground- and space-based observations spanning the entire electromagnetic spectrum. Results: In this paper we detail the survey strategy and weighting scheme adopted to account for the biases introduced by the photometric preselection of our targets. We present our galaxy stellar mass and rest-frame magnitudes estimates together with a group catalog obtained with our new data and their member galaxies color/mass distribution. Conclusions: Owing to our new sample we can perform a detailed, high definition mapping of the complex COSMOS Wall structure. The sharp environmental information, coupled with high quality spectroscopic information and rich ancillary data available in the COSMOS field, enables a detailed study of galaxy properties as a function of local environment in a redshift slice where environmental effects are important, and in a stellar mass range where mass and environment driven effects are both at work. Based on observations collected at the European

  3. The Crafoord Prize 1985 in Astronomy to Professor Lyman Spitzer Jr.

    NASA Astrophysics Data System (ADS)

    Gahm, G.

    The Royal Swedish Academy of Sciences has awarded the Crafoord Prize 1985 of 135000 US$ to Professor Lyman Spitzer Jr., Princeton, U.S.A., for his "Fundamental pioneering studies of practically every aspect of the interstellar medium, culminating in the results obtained using the Copernicus satellite".

  4. The IC 5146 star forming complex and its surroundings with 2MASS, WISE and Spitzer

    NASA Astrophysics Data System (ADS)

    Nunes, N. A.; Bonatto, C.; Bica, E.

    2016-02-01

    Throughout the last decade sensitive infrared observations obtained by the Spitzer Space Telescope significantly increased the known population of YSOs associated with nearby molecular clouds. With such a census recent studies have characterized pre-main sequence stars (PMS) and determined parameters from different wavelengths. Given the restricted Spitzer coverage of some of these clouds, relative to their extended regions, these YSO populations may represent a limited view of star formation in these regions. We are taking advantage of mid-infrared observations from the NASA Wide Field Infrared Survey Explorer (WISE), which provides an all sky view and therefore full coverage of the nearby clouds, to assess the degree to which their currently known YSO population may be representative of a more complete population. We extend the well established classification method of the Spitzer Legacy teams to archived WISE observations. We have adopted 2MASS photometry as a "standard catalogue" for comparisons. Besides the massive embedded cluster IC 5146 we provide a multiband view of five new embedded clusters in its surroundings that we discovered with WISE. In short, the analysis involves the following for the presently studied cluster sample: (i) extraction of 2MASS/WISE/Spitzer photometry in a wide circular region; (ii) field-star decontamination to enhance the intrinsic Colour-magnitude diagram (CMD) morphology (essential for a proper derivation of reddening, age, and distance from the Sun); and (iii) construction of Colour-magnitude filters, for more contrasted stellar radial density profiles (RDPs).

  5. Spitzer Observations of L429: A Near-collapse or Collapsing Starless Core

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Bourke, Tyler L.; Rieke, George H.; Bieging, John H.; Misselt, Karl A.; Myers, Philip C.; Shirley, Yancy L.

    2009-01-01

    We present Spitzer infrared (IR) observations of the starless core L429. The IR images of this core show an absorption feature, caused by the dense core material, at wavelengths <= 70 μ. The core has a steep density profile, and reaches AV > 35 mag near the center. We show that L429 is either collapsing or in a near-collapse state.

  6. The Spitzer Local Volume Legacy Survey: Infrared Imaging and Photometry for 258 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; LVL Team

    2009-01-01

    Near-, mid-, and far-infrared flux properties are presented for the Local Volume Legacy survey, a Spitzer Space Telescope legacy program built upon a foundation of GALEX ultraviolet and ground-based Hα imaging of 258 galaxies within 11 Mpc. The Local Volume Legacy survey covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the faintest absolute depth and highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies (such as from SINGS, the Spitzer Infrared Nearby Galaxies Survey) with improved sampling of the low-luminosity dwarf galaxy population. LVL's unique sample selection results in a large spread in mid-infrared colors, likely due to the conspicuous deficiency of PAH emission from low-metallicity galaxies. Conversely, the LVL sample shows a tighter correlation in the infrared-to-ultraviolet ratio versus ultraviolet spectral slope, due in large part to the lack of luminous early-type galaxies in the Local Volume.

  7. A SPITZER-MIPS SEARCH FOR DUST IN COMPACT HIGH-VELOCITY H I CLOUDS

    SciTech Connect

    Williams, Rik J.; Mathur, Smita; Poindexter, Shawn; Elvis, Martin; Nicastro, Fabrizio

    2012-04-15

    We employ three-band Spitzer-MIPS observations to search for cold dust emission in three neutral hydrogen compact high-velocity clouds (CHVCs) in the vicinity of the Milky Way. Far-infrared emission correlated with H I column density was previously reported in HVC Complex C, indicating that this object contains dust heated by the Galactic radiation field at its distance of {approx}10 kpc. Assuming published Spitzer, IRAS, and Planck, IR-H I correlations for Complex C, our Spitzer observations are of sufficient depth to directly detect 160 {mu}m dust emission in the CHVCs if it is present at the same level as in Complex C, but no emission is detected in any of the targets. For one of the targets (CHVC289) which has well-localized H I clumps, we therefore conclude that it is fundamentally different from Complex C, with either a lower dust-to-gas ratio or a greater distance from the Galactic disk (and consequently cooler dust temperature). Firm conclusions cannot be drawn for the other two Spitzer-observed CHVCs since their small-scale H I structures are not sufficiently well known; nonetheless, no extended dust emission is apparent despite their relatively high H I column densities. The lack of dust emission in CHVC289 suggests that at least some compact high-velocity clouds objects may exhibit very low dust-to-gas ratios and/or greater Galactocentric distances than large HVC complexes.

  8. Statistics of 24 Micron Field Asteroids in the Spitzer Space Telescope Taurus Legacy Science Survey

    NASA Astrophysics Data System (ADS)

    Hines, Dean C.; Stapelfeldt, K. R.; Padgett, D. L.; Brooke, T. Y.; Noriega-Crespo, A.; Rebull, L. M.; McCabe, C.; Huard, T. L.; Fukagawa, M.; Terebey, S.; Hillenbrand, L. A.; Guedel, M.; Audard, M.; Monin, J.; Guieu, S.; Knapp, G. R.; Evans, N. J., II; Taurus Spitzer Legacy Science Team

    2007-12-01

    We report on field asteroids detected in MIPS 24 micron scan maps from the Taurus legacy science survey. The data were acquired in two observation epochs separated by 3-6 hours, and reach a 5-sigma sensitivity near 1 mJy - sufficient to detect main-belt objects with diameters below 1 km. We find a source density of about 250 asteroids per square degree on the ecliptic plane, with a cumulative brightness distribution which follows a -1.2 power law in flux density. We relate this to the intrinsic asteroid size distribution using a Monte Carlo model of the main belt population and the standard thermal model to predict the observed flux density distribution. An intrinsic size distribution with power-law slope of -2.3 with radius produces an observed brightness distribution that matches the Spitzer results. This result is in good agreement with previous determinations from the Sloan survey for objects in this size range. We further discuss how our analysis can be extended to other large area Spitzer surveys to enable us to characterize the source counts and size distributions over a range of ecliptic latitudes, and to search for radial differences within the main belt. Support for this work was provided by NASA to the Spitzer GO-1 and GO-3 Taurus survey projects (PIDs 3584 & 30816). The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  9. Spitzer to the Rescue! Improved Ephemerides Preserve K2 Planets for Future Studies With JWST

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Werner, Michael W.; Beichman, Charles A.; Benneke, Björn; Christiansen, Jessie; Crossfield, Ian; Gorjian, Varoujan; Knutson, Heather; Krick, Jessica; Livingston, John H.; Petigura, Erik; Spitzer/K2 Study Team

    2016-06-01

    The NASA K2 mission has detected hundreds of planet candidates, including dozens of tantalizing targets for future atmospheric characterization with the James Webb Space Telescope. However, the future transit windows for the longest period planet candidates are poorly constrained because these planets transit only a few times during a 70-80 day K2 observing campaign. We are reducing the uncertainties in the transit times of these planets by conducting follow-up transit observations with the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope. In addition to reducing the typical timing uncertainty by a factor of five, our Spitzer/IRAC observations allow us to place coarse limits on possible color-dependent differences in transit depth. I will discuss our target selection process and present the results of our ongoing 450-hr Spitzer program. We have already observed 26 transit opportunities of 21 planets and we have an additional three stars scheduled for observation this spring.This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  10. PDR properties and spatial structures probed by Herschel and Spitzer spectroscopy

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Berné, O.; Pilleri, P.; Dedes, C.; Gonzalez, M.; Joblin, C.; Kramer, C.; Ossenkopf, V.; Mookerjea, B.; Röllig, M.

    2011-11-01

    We report the analysis of the mid-infrared spectral maps observed by Spitzer/IRS toward star-forming regions where the Herschel key program WADI has observed / will observe with HIFI and PACS. The IRS spectra are fitted using 4 components of small grains: PAH0, PAH+, PAHx, and evaporating VSG, and the spatial distributions of these components are derived.

  11. Impact Summary: The Spitzer Space Telescope Research Program for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Spuck, Timothy; Pompea, S.; Rebull, L.; Gorjian, V.; Howell, S.; Johnson, C.; Kennedy, S.; Thomas, B.; Walentosky, M.; Wheeler, S.; Spitzer Teacher Program Team

    2010-01-01

    The Spitzer Space Telescope Research Program for Teachers and Students was a four-year joint project between the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) that concluded in 2009. Through the program, teams of teachers and students were provided with unique opportunities to observe with the Spitzer Space Telescope and work with Spitzer and NOAO scientists. This study finds evidence of significant success. From the eleven major research projects sponsored by the program, 31 scientific posters have been presented, and a number of scientific papers have been published. Records indicate there have been nearly 100 newspaper, radio, and TV reports, and numerous Internet articles reporting on various aspects of teacher and student involvement in the project, and over 100 students feel the program has influenced them to pursue careers in science. This highly successful program has now become the NASA/IPAC Teacher Archive Research Project (NITARP), with funding from the NASA ADP program and the archives at IPAC.

  12. THE MID-INFRARED TULLY-FISHER RELATION: SPITZER SURFACE PHOTOMETRY

    SciTech Connect

    Sorce, Jenny G.; Courtois, Helene M.; Tully, R. Brent

    2012-11-01

    The availability of photometric imaging of several thousand galaxies with the Spitzer Space Telescope enables a mid-infrared calibration of the correlation between luminosity and rotation in spiral galaxies. The most important advantage of the new calibration in the 3.6 {mu}m band, IRAC Channel 1, is photometric consistency across the entire sky. Additional advantages are minimal obscuration, observations of flux dominated by old stars, and sensitivity to low surface brightness levels due to favorable backgrounds. Roughly 3000 galaxies have been observed through Spitzer cycle 7 and images of these are available from the Spitzer archive. In cycle 8, a program called Cosmic Flows with Spitzer was initiated, which will increase the available sample of spiral galaxies with inclinations greater than 45 Degree-Sign from face-on that are suitable for distance measurements by 1274. This paper describes procedures, based on the photometry package Archangel, that are being employed to analyze both the archival and new data in a uniform way. We give results for 235 galaxies, our calibrator sample for the Tully-Fisher relation. Galaxy magnitudes are determined with uncertainties held below 0.05 mag for normal spiral systems. A subsequent paper will describe the calibration of the [3.6] luminosity-rotation relation.

  13. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    NASA Technical Reports Server (NTRS)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; Donoso, Emilio; Jarrett, Thomas H.; Lonsdale, Carol; Mace, Gregory; Mainzer, A.; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E.; Skrutskie, Michael F.; Stanford, Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  14. Development Of International Data Standards For The COSMOS/PEER-LL Virtual Data Center

    NASA Astrophysics Data System (ADS)

    Swift, J. N.

    2005-12-01

    The COSMOS -PEER Lifelines Project 2L02 completed a Pilot Geotechnical Virtual Data Center (GVDC) system capable of both archiving geotechnical data and of disseminating data from multiple linked geotechnical databases. The Pilot GVDC system links geotechnical databases of four organizations: the California Geological Survey, Caltrans, PG&E, and the U. S. Geological Survey The System was presented and reviewed in the COSMOS-PEER Lifelines workshop on June 21 - 23, 2004, which was co-sponsored by the Federal Highway Administration (FHWA) and included participation by the United Kingdom Highways Agency (UKHA) , the Association of Geotechnical and Geoenvironmental Specialists in the United Kingdom (AGS), the United States Army Corp of Engineers (USACOE), Caltrans, United States Geological Survey (USGS), California Geological Survey (CGS), a number of state Departments of Transportation (DOTs), county building code officials, and representatives of academic institutions and private sector geotechnical companies. As of February 2005 COSMOS-PEER Lifelines Project 2L03 is currently funded to accomplish the following tasks: 1) expand the Pilot GVDC Geotechnical Data Dictionary and XML Schema to include data definitions and structures to describe in-situ measurements such as shear wave velocity profiles, and additional laboratory geotechnical test types; 2) participate in an international cooperative working group developing a single geotechnical data exchange standard that has broad international acceptance; and 3) upgrade the GVDC system to support corresponding exchange standard data dictionary and schema improvements. The new geophysical data structures being developed will include PS-logs, downhole geophysical logs, cross-hole velocity data, and velocity profiles derived using surface waves. A COSMOS-PEER Lifelines Geophysical Data Dictionary Working Committee constituted of experts in the development of data dictionary standards and experts in the specific data to be

  15. Radiation experiments on Cosmos 2044: K-7-41, parts A, B, C, D, E

    NASA Technical Reports Server (NTRS)

    Frank, A. L.; Benton, E. V.; Benton, E. R.; Dudkin, V. E.; Marenny, A. M.

    1990-01-01

    The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 deg and attitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10(exp -4) and 3.05 x 10(exp -4)/sq cm/s/sr, of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(sub infinity)-H2O is greater than or equal to 4 keV/micron. Neutron measurements yielded 0.018 mrem/d in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra were compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 deg) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCRs, and higher LET particles, in the heavy particle fluxes.

  16. Catecholamines and their enzymes in discrete brain areas of rats after space flight on biosatellites Cosmos

    NASA Astrophysics Data System (ADS)

    Kvetǹanskỳ, R.; Čulman, J.; Serova, L. V.; Tigranjan, R. A.; Torda, T.; Macho, L.

    The activity of the catecholaminergic system was measured in the hypothalamus of rats which had experienced an 18.5-19.5-day-long stay in the state of weightlessness during space flights on board Soviet biosatellites of the type Cosmos. In the first two experiments, Cosmos 782 and 936, the concentration of norepinephrine and the activities of synthesizing enzymes tyrosine hydroxylase and dopamine-β-hydroxylase and of the degrading enzyme monoamine oxidase were measured in the total hypothalamus. None of the given parameters was changed after space flight. In the light of the changes of these parameters recorded after exposure to acute stress on Earth, this finding indicates that long-term state of weightlessness does not represent an intensive stressogenic stimulus for the system studied. In the space experiment Cosmos 1129, the concentration of norepinephrine, epinephrine, and dopamine was studied in isolated nuclei of the hypothalamus of rats within 6-10 hr following return from space. Norepinephrine was found to be significantly reduced in the arcuate nucleus, median eminence and periventricular nucleus, epinephrine in the median eminence, periventricular and suprachiasmatic nuclei, whereas dopamine was not significantly changed after space flight. The decreased catecholamine levels found in some hypothalamic nuclei of rats which had undergone space flight indicate that no chronic intensive stressor could have acted during the flight, otherwise the catecholamine concentration would have been increased in the nuclei. The decreased levels must have been induced by the effect of a stressogenic factor acting for a short time only, and that either during the landing maneuver or immediately after landing. Thus long-term exposure of the organism to the state of weightlessness does not represent a stressogenic stimulus for the catecholaminergic system in the hypothalamus, which is one of the regulators of the activation of neuroendocrine reactions under stress.

  17. Experimental and calculated LET distributions in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Dudkin, V. E.; Karpov, O. N.; Potapov, Yu. V.; Akopova, A. B.; Magradze, N. V.; Moiseenko, A. A.; Benton, E. V.; Frank, A. L.

    1995-01-01

    During the flight of the Cosmos-2044 biosatellite, joint U.S.S.R.-U.S.A. investigations of different characteristics of cosmic radiation (CR) in the near-Earth environment were carried out. The U.S. dielectric track detectors CR-39 and Soviet BYa- and BR-type nuclear photo-emulsions were used as detectors. The present work shows some results of experimental measurements of linear energy transfer (LET) spectra of CR particles obtained with the use of these detectors, which were placed both inside and outside the satellite. The LET spectra measurements with plastic detectors is composed of two parts: the measurement of galactic cosmos rays (GCR) particles, and of short-range particles. The contributions of these components to the total LET distribution at various thicknesses of the shielding were analyzed and the results of these studies are presented. Calculated LET spectra in the Cosmos-2044 orbit were compared with experimental data. On the basis of experimental and calculated values of the LET spectra, absorbed and equivalent CR doses were calculated. In the shielding range of 1-1.5 g cm(exp -2), outside the spacecraft, the photo-emulsions yielded 10.3 mrad d(exp -1) and 13.4 mrem d(exp -1) (LET greater than or equal to 40 MeV cm(exp -1)). Inside the spacecraft (greater than or equal to 10 g cm(exp -2) the photo-emulsions yielded 8.9 mrad d(exp -1) and 14.5 mrem d(exp -1).

  18. Current twin studies in Germany: report on CoSMoS, SOEP, and ChronoS.

    PubMed

    Hahn, Elisabeth; Gottschling, Juliana; Spinath, Frank M

    2013-02-01

    This article summarizes the status of three recent German twin studies: CoSMoS, SOEP, and ChronoS. The German twin study on Cognitive Ability, Self-Reported Motivation, and School Achievement (CoSMoS) is a three-wave longitudinal study of monozygotic and dizygotic twins reared together, and aims to investigate predictors of and influences on school performance. In the first wave of the data collection in 2005, 408 pairs of twins aged between 7 and 11 as well as their parents participated in CoSMoS. The SOEP twin study is an extended twin study, which has combined data from monozygotic and dizygotic twins reared together with additional data from full sibling pairs, mother-child, and grandparent-child dyads who participated in the German Socio-Economic Panel (GSOEP) study. The SOEP twin project comprises about 350 twin and 950 non-twin pairs aged between 17 and 70. Data were collected between 2009 and 2010, with a focus on personality traits, wellbeing, education, employment, income, living situation, life-satisfaction, and several attitudes. The aim of the Chronotype twin study (ChronoS) was to examine genetic and environmental influences on chronotype (morningness and eveningness), coping strategies, and several aspects of the previous SOEP twin project in a sample of 301 twin pairs aged between 19 and 76 years, recruited in 2010 and 2011. Part of the ChronoS twin sample also participated in the earlier SOEP twin study, representing a second wave of assessments. We briefly describe the design and contents of these three studies as well as selected recent findings.

  19. A spectral energy distribution analysis of AGN host galaxies in the Chandra-COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Civano, Francesca M.; Hasinger, Guenther; Elvis, Martin; Marchesi, Stefano

    2015-01-01

    We present the host galaxy properties of a large sample of ~ 4000 X-ray selected Active Galactic Nuclei (AGN) in the Chandra COSMOS Legacy Survey to investigate the connection between BH accretion and host galaxy. The COSMOS Legacy survey reaching X-ray fluxes of 2x10-16 (cgs) in the 0.5-2 keV band, bridges the gap between large area shallow surveys and pencil beamed one. Making use of the existing multi-wavelength photometric data available for 96.6% of the sources, COSMOS Legacy survey provides a uniquely large sample to derive host galaxy properties for both obscured and unobscured sources. We perform a multi-component modeling from far-infrared (500 μm) when available to UV (1500 Å) using a 3-component fitting (nuclear hot dust, galaxy and starburst components) for obscured AGN and a 4-component fitting (nuclear hot dust, AGN big blue bump, galaxy, and starburst components) for unobscured AGN. Galaxy templates are from the stellar population synthesis models of Bruzual & Charlot (2003), nuclear hot dust templates are taken from Silva et al. (2004), and AGN big blue bump templates are from Richards et al. (2006). We use the column density information measured in the X-ray to constrain the AGN in the infrared band when available. Through detailed analysis of the broad-band spectral energy distribution, we derive the stellar masses and the star formation rates of the host galaxy as well as the nuclear and galaxy contribution at each frequency. We study the dependence of host galaxy properties on redshifts, luminosities, and black hole masses to infer the growth history of galaxies and black holes and we compare with a sample of inactive galaxies.

  20. Analyses of plasma for metabolic and hormonal changes in rats flown aboard Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Mullins, Richard E.; Grindeland, Richard E.; Popova, Irina A.

    1992-01-01

    Plasmas samples from rats flown aboard Cosmos 2044 were analyzed for the levels of key metabolites, electrolytes, enzymes, and hormones. The major differences between the flight group and the synchronous control were elevations in glucose, cholesterol, phosphate, creatinine, blood urea nitrogen, lactate dehydrogenase, and aspartate aminotransferase and decreased levels of thyroxine. Most of these differences were not mimicked by tail suspension of ground-based rats; however, both flight and suspended rats exhibited inhibited testosterone secretion. Corticosterone, immunoreactive growth hormone, and prolactin showed inconsistent differences from the various control groups, suggesting that the levels of these hormones were not due to actual or simulated microgravity.

  1. The Collision of Iridium 33 and Cosmos 2251: The Shape of Things to Come

    NASA Technical Reports Server (NTRS)

    Nicholas, Johnson

    2009-01-01

    The collision of Iridium 33 and Cosmos 2251 was the most severe accidental fragmentation on record. More than 1800 debris approx. 10 cm and larger were produced. If solar activity returns to normal, half of the tracked debris will reenter within five years. Less than 60 cataloged debris had reentered by 1 October 2009. Some debris from both satellites will remain in orbit through the end of the century. The collision rate of one every five years will increase without future removal of large derelict spacecraft and launch vehicle orbital stages.

  2. Effects of the Cosmos 1129 Soviet paste diet on body composition in the growing rat

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.; Pitts, G. C.

    1981-01-01

    Six Simonsen albino rats (45 days of age) were placed on a regimen of 40 g/day the semipurified Soviet paste diet used in the 18.5 day Cosmos 1129 spacecraft was to support the rats for various experiments on the physiological effects of weightlessness. The animals were maintained on the Soviet paste diet for 35 days, metabolic rate was measured and body composition was determined by direct analysis. The results were compared with a control group of rates of the same age, which had been kept on a standard commercial grain diet during the same period of time.

  3. Cosmos 1887 mission overview - Effects of microgravity on rat body and adrenal weights and plasma constituents

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Vasques, M.; Arnaud, S. B.; Popova, I. A.

    1990-01-01

    Tissues of male, specific pathogen-free Wistar rats flown on the Cosmos 1887 biosatellite are studied. First the mission is described, and then analytical methods are outlined. It is noted that flight rats grew more slowly and had larger adrenal glands than earth gravity controls. Analysis of plasma reveals increased concentrations of hepatic alkaline phosphatase, glucose, urea nitrogen, and creatinine in flight rats. In contrast, electrolytes, total protein, albumin, corticosteron, prolactin, and immunoreactive growth hormone levels are unchanged. However, testosterone concentration is marginally decreased after flight and thyroid hormone levels are suggestive of reduced thyroid function.

  4. Gamma-Ray Detectors: From Homeland Security to the Cosmos (443rd Brookhaven Lecture)

    SciTech Connect

    Bolotnikov, Aleksey

    2008-12-03

    Many radiation detectors are first developed for homeland security or industrial applications. Scientists, however, are continuously realizing new roles that these detectors can play in high-energy physics and astrophysics experiments. On Wednesday, December 3, join presenter Aleksey Bolotnikov, a physicist in the Nonproliferation and National Security Department (NNSD) and a co-inventor of the cadmium-zinc-telluride Frisch-ring (CdZnTe) detector, for the 443rd Brookhaven Lecture, entitled Gamma-Ray Detectors: From Homeland Security to the Cosmos. In his lecture, Bolotnikov will highlight two primary radiation-detector technologies: CdZnTe detectors and fluid-Xeon (Xe) detectors.

  5. US plant and radiation dosimetry experiments flown on the Soviet satellite Cosmos 1129

    NASA Technical Reports Server (NTRS)

    Heinrich, M. R. (Editor); Souza, K. A. (Editor)

    1981-01-01

    Experiments included: 30 young male Wistar SPF rats used for wide range physiological studies; experiments with plants, fungi, insects, and mammalian tissue cultures; radiation physics experiments; a heat convection study; a rat embryology experiment in which an attempt was made to breed 2 male and 5 female rats during the flight; and fertile quail eggs used to determine the effects of spaceflight on avian embryogenesis. Specimens for US experiments were initially prepared at the recovery site or in Moscow and transferred to US laboratories for complete analyses. An overview of the mission focusing on preflight, on orbit, and postflight activities pertinent to the fourteen US experiments aboard Cosmos 1129 is presented.

  6. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    SciTech Connect

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  7. The Spitzer Space Telescope Research Program for Teachers and Students: The Wiki

    NASA Astrophysics Data System (ADS)

    Spuck, Timothy; Rebull, L.; Roelofsen Moody, T.; Sepulveda, B.; Weehler, C.; Kelley, N.; Sibble, Y.; Walentosky, M.; Weiser, S.; Yeager, D.

    2007-12-01

    The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have designed a program for teacher and student research using observing time on the Spitzer Space Telescope. (For more information on this program, please see our companion poster, Rebull et al.) As part of this program, we are developing a wiki, where the scientists, teachers, and students can share the materials they have developed and interact with each other. The wiki currently has background information, some general lessons and discussion pages; it also provides a place for the teams to continue working on their specific research projects. This poster will describe some of the wiki contents, and our plans for future development.

  8. Spectroscopy of Spitzer-discovered Protostars in the Elephant Trunk Nebula

    NASA Astrophysics Data System (ADS)

    Reach, William; Boogert, Adwin; Carey, Sean; Ciardi, David; Morris, Patrick; Rho, Jeonghee

    2004-09-01

    We propose to obtain spectra of protostellar candidates discovered in the early Spitzer observation of IC 1396N. No protostars were known or suspected in the globule before the Spitzer observations, and the properties of such objects are not known. The IRS observations were designed with sufficient signal-to-noise to detect absorption features due to silicates and ices. The shape of the spectral energy distribution and the depth of the silicate feature will be used to determine the ratio of stellar core to envelope mass and determine the evolutionary state of these new objects. This is a unique sample having a range of suspected evolutionary states all located in the same globule.

  9. New Software for Ensemble Creation in the Spitzer-Space-Telescope Operations Database

    NASA Technical Reports Server (NTRS)

    Laher, Russ; Rector, John

    2004-01-01

    Some of the computer pipelines used to process digital astronomical images from NASA's Spitzer Space Telescope require multiple input images, in order to generate high-level science and calibration products. The images are grouped into ensembles according to well documented ensemble-creation rules by making explicit associations in the operations Informix database at the Spitzer Science Center (SSC). The advantage of this approach is that a simple database query can retrieve the required ensemble of pipeline input images. New and improved software for ensemble creation has been developed. The new software is much faster than the existing software because it uses pre-compiled database stored-procedures written in Informix SPL (SQL programming language). The new software is also more flexible because the ensemble creation rules are now stored in and read from newly defined database tables. This table-driven approach was implemented so that ensemble rules can be inserted, updated, or deleted without modifying software.

  10. Support for Spitzer observations of tremendous outburst amplitude dwarf novae (TOADs)

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2008-05-01

    Dr. Steve Howell (NOAO) requests monitoring of a subset of the known and suspected tremendous outburst amplitude dwarf novae (TOADs) in support of Spitzer Space Telescope observations of these objects. The campaign will run from May 16, 2008, through May 2009. Once an object has been verified in superoutburst, Spitzer observations will be scheduled within 2-4 weeks of maximum, and will be repeated twice -- 4-6 weeks and 6-10 weeks later. Observers are asked to provide nightly monitoring of these stars, and to begin intensive observations if and when any of them go into outburst to determine whether the star is in superoutburst. We note that several of these objects -- notably the WZ Sge stars WZ Sge, GW Lib, and V455 And -- are not expected to superoutburst during the next year, but observations are still encouraged in case they exhibit unexpected behavior. Observations should be submitted to the AAVSO International Database.

  11. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    SciTech Connect

    Street, R. A.; Bachelet, E.; Udalski, A.; Novati, S. Calchi; Hundertmark, M. P. G.; Jørgensen, U. G.; Zhu, W.; Gould, A.; Yee, J.; Tsapras, Y.; Bennett, D. P.; Dominik, M.; Andersen, M. I.; Bozza, V.; Bramich, D. M.; Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  12. Synoptic Monitoring of YSOs in Four Young Custers with FLAMINGOS and Spitzer

    NASA Astrophysics Data System (ADS)

    Gutermuth, Rob; Stauffer, John; Covey, Kevin; Plavchan, Peter; Morales, Maria; Megeath, Tom

    2010-02-01

    We propose to use FLAMINGOS on the KPNO 2.1m to obtain synoptic monitoring over a 10 night period at J and Ks bands of > 100 Class I and II young stellar objects in the dense cores of four nearby, star- forming clusters: L1688, Serpens Main, Serpens South, and IRAS 20050+2720. These data will be used to complement time-series photometry we will be obtaining with IRAC on the Spitzer Space Telescope as part of a recently approved "Exploration Science" program to be carried out during the Spitzer warm mission. The goal of this program is to use the multi-wavelength photometric monitoring data to determine the physical mechanisms responsible for the near-IR and mid-IR variability of these YSOs, and therefore, shed new light on the processes involved in accreting matter onto the youngest stars (beyond the realm of steady-state accretion from axially symmetric disks).

  13. Spitzer Mission Operation System Planning for IRAC Warm-Instrument Characterization

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Sarrel, Marc A.; Mahoney, William A.

    2010-01-01

    This paper will describe how the Spitzer Mission Operations System planned and executed the characterization phase between Spitzer's cryogenic mission and its warm mission. To the largest extend possible, the execution of this phase was done with existing processing and procedures. The modifications that were made were in response to the differences of the characterization phase compared to normal phases before and after. The primary two categories of difference are: unknown date of execution due to uncertainty of knowledge of the date of helium depletion, and the short cycle time for data analysis and re-planning during execution. In addition, all of the planning and design had to be done in parallel with normal operations, and we had to transition smoothly back to normal operations following the transition. This paper will also describe the re-planning we had to do following an anomaly discovered in the first days after helium depletion.

  14. Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Street, R. A.; Udalski, A.; Calchi Novati, S.; Hundertmark, M. P. G.; Zhu, W.; Gould, A.; Yee, J.; Tsapras, Y.; Bennett, D. P.; RoboNet Project, The; Consortium, MiNDSTEp; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bachelet, E.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Cassan, A.; Ciceri, S.; D'Ago, G.; Dong, Subo; Evans, D. F.; Gu, Sheng-hong; Harkonnen, H.; Hinse, T. C.; Horne, Keith; Figuera Jaimes, R.; Kains, N.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Menzies, J.; Mao, S.; Peixinho, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Ranc, C.; Tronsgaard Rasmussen, R.; Scarpetta, G.; Schmidt, R.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; Steele, I. A.; Surdej, J.; Unda-Sanzana, E.; Verma, P.; von Essen, C.; Wambsganss, J.; Wang, Yi-Bo.; Wertz, O.; OGLE Project, The; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Spitzer Team; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Shvartzvald, Y.; MOA Collaboration; Abe, F.; Asakura, Y.; Bhattacharya, A.; Bond, I. A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Inayama, K.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Nishioka, T.; Ohnishi, K.; Oyokawa, H.; Rattenbury, N.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, J.; Wakiyama, Y.; Yonehara, A.; KMTNet Modeling Team; Han, C.; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.

    2016-03-01

    We report the detection of a cold Neptune mplanet = 21 ± 2 M⊕ orbiting a 0.38 M⊙ M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  15. An Integrated Optimal Estimation Approach to Spitzer Space Telescope Focal Plane Survey

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, D.

    2004-01-01

    This paper discusses an accurate and efficient method for focal plane survey that was used for the Spitzer Space Telescope. The approach is based on using a high-order 37-state Instrument Pointing Frame (IPF) Kalman filter that combines both engineering parameters and science parameters into a single filter formulation. In this approach, engineering parameters such as pointing alignments, thermomechanical drift and gyro drifts are estimated along with science parameters such as plate scales and optical distortions. This integrated approach has many advantages compared to estimating the engineering and science parameters separately. The resulting focal plane survey approach is applicable to a diverse range of science instruments such as imaging cameras, spectroscopy slits, and scanning-type arrays alike. The paper will summarize results from applying the IPF Kalman Filter to calibrating the Spitzer Space Telescope focal plane, containing the MIPS, IRAC, and the IRS science Instrument arrays.

  16. Serendipitous discovery of an infrared bow shock near PSR J1549–4848 with Spitzer

    SciTech Connect

    Wang, Zhongxiang; Kaplan, David L.; Slane, Patrick; Morrell, Nidia; Kaspi, Victoria M.

    2013-06-01

    We report on the discovery of an infrared cometary nebula around PSR J1549–4848 in our Spitzer survey of a few middle-aged radio pulsars. Following the discovery, multi-wavelength imaging and spectroscopic observations of the nebula were carried out. We detected the nebula in Spitzer Infrared Array Camera 8.0, Multiband Imaging Photometer for Spitzer 24 and 70 μm imaging, and in Spitzer IRS 7.5-14.4 μm spectroscopic observations, and also in the Wide-field Infrared Survey Explorer all-sky survey at 12 and 22 μm. These data were analyzed in detail, and we find that the nebula can be described with a standard bow shock shape, and that its spectrum contains polycyclic aromatic hydrocarbon and H{sub 2} emission features. However, it is not certain which object drives the nebula. We analyze the field stars and conclude that none of them can be the associated object because stars with a strong wind or mass ejection that usually produce bow shocks are much brighter than the field stars. The pulsar is approximately 15'' away from the region in which the associated object is expected to be located. In order to resolve the discrepancy, we suggest that a highly collimated wind could be emitted from the pulsar and produce the bow shock. X-ray imaging to detect the interaction of the wind with the ambient medium- and high-spatial resolution radio imaging to determine the proper motion of the pulsar should be carried out, which will help verify the association of the pulsar with the bow shock nebula.

  17. VizieR Online Data Catalog: Spitzer interstellar bubbles (Hou+, 2014)

    NASA Astrophysics Data System (ADS)

    Hou, L. G.; Gao, X. Y.

    2014-11-01

    The interstellar bubble catalogue adopted in this work is from the recently released MWP (Simpson et al., 2012MNRAS.424.2442S, Cat. J/MNRAS/424/2442), containing 5106 bubbles identified by visual inspection of the Spitzer/GLIMPSE (Benjamin et al., 2003PASP..115..953B, Cat. II/293) and MIPSGAL (Carey et al., 2009PASP..121...76C) survey images. (2 data files).

  18. Spitzer IRS Observations of Edge-on Protoplanetary Disks and Infrared Companions

    NASA Astrophysics Data System (ADS)

    Kruger, Andrew J.

    2011-01-01

    Lahuis et al. (2006) showed that Spitzer IRS observations of gas phase molecular absorption toward young stars could be used to determine physical conditions within a few AU of the star. The pencil beam nature of this method requires an edge-on disk geometry with a large column between the observer and the emitting source. Molecular gas absorption has also been detected towards GV Tau N, a classical infrared companion (Koresko et al. 1997) that is likely a circumstellar disk seen near edge-on (Correia et al. 2007). We were granted time with Spitzer IRS to obtain high signal-to-noise spectra of 7 YSOs, three classified as disks seen near edge-on and four classical IRCs, to search for molecular absorption. We present findings from this Spitzer IRS project, along with near-infrared spectroscopy of CO fundamental transitions and mid-infrared imaging. We find that although DG Tau B shows CO2 gas absorption at a temperature similar to IRS 46 and GV Tau N, it likely originates from a moderately different region of the disk, indicating that the detection of organic molecules, even in edge-on disks, is highly sensitive to the line of sight. We further find DG Tau B likely displays high amounts of dust grain growth and settling, and we provide support for the VV CrA binary disk geometry where the absorption seen towards the IRC is due to the disk around the Primary being in the line of sight (Smith et al. 2009). This work is supported by NSF grant AST-0708074 and NASA support for Spitzer observations through contract RSA No. 1346810, issued by JPL.

  19. Spitzer Space Telescope: Focal Plane Survey Final Report. Appendix B:; IRAC

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, Dhemetrios

    2004-01-01

    This final report summarizes the results and accuracies of the Spitzer Space Telescope focal plane survey. Accuracies achieved are compared to the focal plane survey calibration requirements put forth in the SIRTF IOC-SV Mission Plan [14] and pre-flight predictions made in [2]. The results of this focal plane survey are presently being used to support in-flight precision pointing, precision incremental offsets, IRS peakup array calibration, and ground pointing reconstruction...

  20. Science Quality Mosaics and Source List for the Spitzer Heritage Archive

    NASA Astrophysics Data System (ADS)

    Capak, Peter L.; Teplitz, H. I.; Brooke, T. Y.; Laher, R.; Science Center, Spitzer

    2013-01-01

    The Spitzer Science Center is providing fully reduced, science quality mosaics for the majority of IRAC and MIPS 24um data taken during the cryogenic mission. These products cover >1000 square degrees on the sky and enable a wide array of science. We will show examples of some of the science enabled by these data along with the quality checks and verification of the data products.

  1. Probing the Physical Properties of High-Redshift Lyman-Alpha Emitters with Spitzer

    NASA Astrophysics Data System (ADS)

    Finkelstein, Keely; Finkelstein, Steven; Rhoads, James E.; Malhotra, Sangeeta

    2015-08-01

    Abstract: Studies of Lyman Alpha emitting galaxies (LAEs) offer insight into an understanding of early galaxies and the build-up of galaxies at early times. To better understand these objects and constrain their stellar properties, we have observed a sample of 162 z=4.5 and 14 z=5.7 LAEs with deep Spitzer IRAC 3.6 and 4.5 micron imaging from the Spitzer Lyman Alpha Survey. This is by far the largest sample of high-redshift LAEs imaged with Spitzer, which probes rest-frame optical wavelengths at these redshifts, dramatically improving constraints on the stellar masses and star-formation rates. By fitting the spectral energy distributions of individual LAEs using ground-based optical, HST near-IR, and Spitzer mid-IR imaging, we show that our sample of LAEs has a wide range of stellar properties. For individual LAEs detected with IRAC, stellar mass ranges from 5x10^8 - 10^11 solar masses. In addition, we find a correlation between stellar mass and star formation rate (SFR), similar to trends measured at lower redshift (e.g. Noeske et al. 2007; Daddi et al. 2007). However for this sample of higher redshift LAEs, the LAE sequence is elevated compared to continuum-selected galaxies at the same redshift, meaning that for a given stellar mass, the LAEs tend to have higher star formation rates. However, a subset of massive LAEs sits on the continuum-selected galaxy trend, tentatively implying that there may be two mechanisms for Lyman alpha escape.

  2. Results of the 2015 Spitzer Exoplanet Data Challenge: Repeatability and Accuracy of Exoplanet Eclipse Depths

    NASA Astrophysics Data System (ADS)

    Ingalls, James G.; Krick, Jessica E.; Carey, Sean J.; Stauffer, John R.; Grillmair, Carl J.; Lowrance, Patrick

    2016-06-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. At infrared wavelengths secondary eclipses and phase curves are powerful tools for studying a planet’s atmosphere. Extracting information about atmospheres, however, is extremely challenging due to the small differential signals, which are often at the level of 100 parts per million (ppm) or smaller, and require the removal of significant instrumental systematics. For the IRAC 3.6 and 4.5μm InSb detectors that remain active on post-cryogenic Spitzer, the interplay of residual telescope pointing fluctuations with intrapixel gain variations in the moderately under sampled camera is the largest source of time-correlated noise. Over the past decade, a suite of techniques for removing this noise from IRAC data has been developed independently by various investigators. In summer 2015, the Spitzer Science Center hosted a Data Challenge in which seven exoplanet expert teams, each using a different noise-removal method, were invited to analyze 10 eclipse measurements of the hot Jupiter XO-3 b, as well as a complementary set of 10 simulated measurements. In this contribution we review the results of the Challenge. We describe statistical tools to assess the repeatability, reliability, and validity of data reduction techniques, and to compare and (perhaps) choose between techniques.

  3. Imaging and Spectroscopy of Outer Planets and Their Satellites with the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Van Cleve, J. E.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.; Houck, J. R.; Meadows, V. S.; Morris, P.; Reach, W.; Reitsema, H.; Rieke, G. H.; Werner, M. W.

    2004-05-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer's imagers and spectrometers cover the 3.6 to 160 micron wavelength range. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets. For example, the "Moons and Planets" program is now examining the principal satellites of outer Solar System planets, as well as Uranus and Neptune, using all SIRTF instruments. In our poster, we present the early results of the Spitzer Space Telescope "Moons and Planets" program, including but not limited to: 1. Photometry and derived albedos of the rings of Uranus and its principal satellites between 3.6 and 15 microns. 2. Images and spectra of Rhea, Titan, Iapetus, and Phoebe. 3. Images and spectra of Neptune and Triton, if those observations are scheduled between April 29 and the beginning of this conference. and interpretation of these data in terms of surface composition, temperature, and thermal inertia. We will also relate the data presented in item 2 to the data that will be collected by Cassini, which is due to encounter Phoebe and enter orbit around Saturn shortly after this conference. This material is based on work supported by the National Aeronautics and Space Administration under Award No. NAS7-03001, The California Institute of Technology, and Cornell University

  4. The infrared database of extragalactic observables from Spitzer - I. The redshift catalogue

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Spoon, Henrik W. W.; Lebouteiller, Vianney; Rupke, David S. N.; Barry, Donald P.

    2016-01-01

    This is the first of a series of papers on the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). In this work, we describe the identification of optical counterparts of the infrared sources detected in Spitzer Infrared Spectrograph (IRS) observations, and the acquisition and validation of redshifts. The IDEOS sample includes all the spectra from the Cornell Atlas of Spitzer/IRS Sources (CASSIS) of galaxies beyond the Local Group. Optical counterparts were identified from correlation of the extraction coordinates with the NASA Extragalactic Database (NED). To confirm the optical association and validate NED redshifts, we measure redshifts with unprecedented accuracy on the IRS spectra (σ(Δz/(1+z)) ˜ 0.0011) by using an improved version of the maximum combined pseudo-likelihood method (MCPL). We perform a multistage verification of redshifts that considers alternate NED redshifts, the MCPL redshift, and visual inspection of the IRS spectrum. The statistics is as follows: the IDEOS sample contains 3361 galaxies at redshift 0 < z < 6.42 (mean: 0.48, median: 0.14). We confirm the default NED redshift for 2429 sources and identify 124 with incorrect NED redshifts. We obtain IRS-based redshifts for 568 IDEOS sources without optical spectroscopic redshifts, including 228 with no previous redshift measurements. We provide the entire IDEOS redshift catalogue in machine-readable formats. The catalogue condenses our compilation and verification effort, and includes our final evaluation on the most likely redshift for each source, its origin, and reliability estimates.

  5. Spitzer IRS Spectra of Debris Disks in the Scorpius-Centaurus OB Association

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Manoj, P.; Watson, Dan; Lisse, Carey M.; Nesvold, Erika; Kuchner, Marc

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius-Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  6. MEASURING HIGH-PRECISION ASTROMETRY WITH THE INFRARED ARRAY CAMERA ON THE SPITZER SPACE TELESCOPE

    SciTech Connect

    Esplin, T. L.; Luhman, K. L.

    2016-01-15

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively.

  7. SPITZER IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION

    SciTech Connect

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Lisse, Carey M.; Manoj, P.; Watson, Dan; Nesvold, Erika; Kuchner, Marc

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  8. MEASURING ORGANIC MOLECULAR EMISSION IN DISKS WITH LOW-RESOLUTION SPITZER SPECTROSCOPY

    SciTech Connect

    Teske, Johanna K.; Najita, Joan R.; Carr, John S.; Pascucci, Ilaria; Apai, Daniel; Henning, Thomas E-mail: najita@noao.edu E-mail: pascucci@stsci.edu E-mail: henning@mpia.de

    2011-06-10

    We explore the extent to which Spitzer Infrared Spectrograph (IRS) spectra taken at low spectral resolution can be used in quantitative studies of organic molecular emission from disks surrounding low-mass young stars. We use Spitzer IRS spectra taken in both the high- and low-resolution modules for the same sources to investigate whether it is possible to define line indices that can measure trends in the strength of the molecular features in low-resolution data. We find that trends in the HCN emission strength seen in the high-resolution data can be recovered in low-resolution data. In examining the factors that influence the HCN emission strength, we find that the low-resolution HCN flux is modestly correlated with stellar accretion rate and X-ray luminosity. Correlations of this kind are perhaps expected based on recent observational and theoretical studies of inner disk atmospheres. Our results demonstrate the potential of using the large number of low-resolution disk spectra that reside in the Spitzer archive to study the factors that influence the strength of molecular emission from disks. Such studies would complement results for the much smaller number of circumstellar disks that have been observed at high resolution with IRS.

  9. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  10. WATER IN COMETS 71P/CLARK AND C/2004 B1 (LINEAR) WITH SPITZER

    SciTech Connect

    Bockelee-Morvan, Dominique; Woodward, Charles E.; Kelley, Michael S.; Wooden, Diane H. E-mail: chelsea@astro.umn.edu E-mail: d.h.wooden@nasa.gov

    2009-05-10

    We present 5.5-7.6 {mu}m spectra of comets 71P/Clark (2006 May 27.56 UT, r{sub h} = 1.57 AU pre-perihelion) and C/2004 B1 (LINEAR) (2005 October 15.22 UT, r{sub h} = 2.21 AU pre-perihelion and 2006 May 16.22 UT, r{sub h} = 2.06 AU post-perihelion) obtained with the Spitzer Space Telescope. The {nu}{sub 2} vibrational band of water is detected with a signal-to-noise ratio of 11-50. Fitting the spectra using a fluorescence model of water emission yields a water rotational temperature of < 18 K for 71P/Clark and {approx_equal}14 {+-} 2 K (pre-perihelion) and 23 {+-} 4 K (post-perihelion) for C/2004 B1 (LINEAR). The water ortho-to-para ratio in C/2004 B1 (LINEAR) is measured to be 2.31 {+-} 0.18, which corresponds to a spin temperature of 26{sup +3} {sub -2} K. Water production rates are derived. The agreement between the water model and the measurements is good, as previously found for Spitzer spectra of C/2003 K4 (LINEAR). The Spitzer spectra of these three comets do not show any evidence for emission from polycyclic aromatic hydrocarbons and carbonate minerals, in contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp)

  11. DISK EVOLUTION IN OB ASSOCIATIONS: DEEP SPITZER/IRAC OBSERVATIONS OF IC 1795

    SciTech Connect

    Roccatagliata, Veronica; Bouwman, Jeroen; Henning, Thomas; Gennaro, Mario; Sicilia-Aguilar, Aurora; Feigelson, Eric; Kim, Jinyoung Serena; Lawson, Warrick A.

    2011-06-01

    We present a deep Spitzer/Infrared Array Camera (IRAC) survey of the OB association IC 1795 carried out to investigate the evolution of protoplanetary disks in regions of massive star formation. Combining Spitzer/IRAC data with Chandra/Advanced CCD Imaging Spectrometer observations, we find 289 cluster members. An additional 340 sources with an infrared excess, but without X-ray counterpart, are classified as cluster member candidates. Both surveys are complete down to stellar masses of about 1 M{sub sun}. We present pre-main-sequence isochrones computed for the first time in the Spitzer/IRAC colors. The age of the cluster, determined via the location of the Class III sources in the [3.6]-[4.5]/[3.6] color-magnitude diagram, is in the range of 3-5 Myr. As theoretically expected, we do not find any systematic variation in the spatial distribution of disks within 0.6 pc of either O-type star in the association. However, the disk fraction in IC 1795 does depend on the stellar mass: sources with masses >2 M{sub sun} have a disk fraction of {approx}20%, while lower mass objects (2-0.8 M{sub sun}) have a disk fraction of {approx}50%. This implies that disks around massive stars have a shorter dissipation timescale.

  12. Parallaxes for 21 late-T and Y dwarfs in the Spitzer Parallax Program

    NASA Astrophysics Data System (ADS)

    Martin, Emily; Kirkpatrick, J. Davy; Beichman, Charles A.; Smart, Richard L.; Lowrance, Patrick; Ingalls, James G.; Cushing, Michael; Wright, Edward L.; Faherty, Jacqueline K.; Gelino, Christopher R.; McLean, Ian S.; Logsdon, Sarah E.; Tinney, Christopher G.

    2017-01-01

    We present parallaxes and proper motions for 21 late-type T and Y dwarfs in the Spitzer Parallax Program (PI: Kirkpatrick). The Spitzer Parallax Program targets all T6 and later dwarfs within the nearest 20pc to produce a volume-limited sample of the coldest brown dwarfs in the solar neighborhood. Measuring distances to the coldest brown dwarfs is an essential step towards completing the census of objects in the solar neighborhood and will aid in our understanding of the low-mass end of the field mass function. We used images from Spitzer’s IRAC channel 2 taken at maximum parallax factor over multiple epochs to determine astrometric fits to each object. Centroiding was performed using APEX/MOPEX with a custom warm-mission Point Response Function and 5th order distortion correction, provided by the Spitzer Science Center. We present first-time distance measurements for 6 newly identified late-T and Y dwarfs in our sample and further constrain distances to 15 others. Our high-quality distance measurements allow us to improve the spectral type vs. absolute magnitude and color vs. absolute magnitude relations for these ultracool dwarfs and further highlight a peculiar Y dwarf outlier.

  13. The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES) in the South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    Baronchelli, I.; Scarlata, C.; Rodighiero, G.; Franceschini, A.; Capak, P. L.; Mei, S.; Vaccari, M.; Marchetti, L.; Hibon, P.; Sedgwick, C.; Pearson, C.; Serjeant, S.; Menéndez-Delmestre, K.; Salvato, M.; Malkan, M.; Teplitz, H. I.; Hayes, M.; Colbert, J.; Papovich, C.; Devlin, M.; Kovacs, A.; Scott, K. S.; Surace, J.; Kirkpatrick, J. D.; Atek, H.; Urrutia, T.; Scoville, N. Z.; Takeuchi, T. T.

    2016-03-01

    We present the Spitzer-IRAC/MIPS Extragalactic survey (SIMES) in the South Ecliptic Pole field. The large area covered (7.7 deg2), together with one of the lowest Galactic cirrus emissions in the entire sky and a very extensive coverage by Spitzer, Herschel, Akari, and GALEX, make the SIMES field ideal for extragalactic studies. The elongated geometry of the SIMES area (≈4:1), allowing for significant cosmic variance reduction, further improves the quality of statistical studies in this field. Here we present the reduction and photometric measurements of the Spitzer/IRAC data. The survey reaches depths of 1.93 and 1.75 μJy (1σ) at 3.6 and 4.5 μm, respectively. We discuss the multiwavelength IRAC-based catalog, completed with optical, mid-, and far-IR observations. We detect 341,000 sources with {F}3.6μ {{m}}≥slant 3σ . Of these, 10% have an associated 24 μm counterpart, while 2.7% have an associated SPIRE source. We release the catalog through the NASA/IPAC Infrared Science Archive. Two scientific applications of these IRAC data are presented in this paper. First, we compute integral number counts at 3.6 μm. Second, we use the [3.6]-[4.5] color index to identify galaxy clusters at z > 1.3. We select 27 clusters in the full area, a result consistent with previous studies at similar depth.

  14. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Bautz, Marshall

    2017-01-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes participation in a space mission to measure gravitational waves from a variety of astrophysical sources, including binary black holes, throughout most of cosmic history, and in another to map the evolution of black hole accretion by means of the accompanying X-ray emission. These missions are envisioned as collaborations with the European Space Agency's Large 3 (L3) and Athena programs, respectively. It also features definition of a large, NASA-led X-ray Observatory capable of tracing the surprisingly rapid growth of supermassive black holes during the first billion years of cosmic history. The program also includes the study of cosmic rays and high-energy gamma-ray photons resulting from range of physical processes, and efforts to characterize both the physics of inflation associated with the birth of the universe and the nature of the dark energy that dominates its mass-energy content today. Finally, we describe the activities of the Physics of the Cosmos Program Analysis Group, which serves as a forum for community analysis and input to NASA.

  15. Final Science Reports of the US Experiments Flown on the Russian Biosatellite Cosmos 2229

    NASA Technical Reports Server (NTRS)

    Connolly, James P. (Editor); Skidmore, Michael G. (Editor); Helwig, Denice A. (Editor)

    1997-01-01

    Cosmos 2229 was launched on December 29, 1992, containing a biological payload including two young male rhesus monkeys, insects, amphibians, and cell cultures. The biosatellite was launched from the Plesetsk Cosmodrome in Russia for a mission duration of 11.5 days. The major research objectives were: (1) Study of adaptive response mechanisms of mammals during flight; and (2) Study of physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases. American scientists and their Russian collaborators conducted 11 experiments on this mission which included extensive preflight and postflight studies with rhesus monkeys. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included the development of experiment protocols, the fabrication of some flight instrumentation and experiment-specific ground-based hardware, the conducting of preflight and postflight testing and the analysis of biospecimens and data for the U.S. experiments. A description of the Cosmos 2229 mission is presented in this report including preflight, on-orbit and postflight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and Russia is also described, along with the associated preflight testing ot the U.S. hardware. Final Science Reports for the experiments are also included.

  16. Intrinsic galaxy shapes and alignments - I. Measuring and modelling COSMOS intrinsic galaxy ellipticities

    NASA Astrophysics Data System (ADS)

    Joachimi, B.; Semboloni, E.; Bett, P. E.; Hartlap, J.; Hilbert, S.; Hoekstra, H.; Schneider, P.; Schrabback, T.

    2013-05-01

    The statistical properties of the ellipticities of galaxy images depend on how galaxies form and evolve, and therefore constrain models of galaxy morphology, which are key to the removal of the intrinsic alignment contamination of cosmological weak lensing surveys, as well as to the calibration of weak lensing shape measurements. We construct such models based on the halo properties of the Millennium Simulation and confront them with a sample of 90 000 galaxies from the COSMOS Survey, covering three decades in luminosity and redshifts out to z = 2. The ellipticity measurements are corrected for effects of point spread function smearing, spurious image distortions and measurement noise. Dividing galaxies into early, late and irregular types, we find that early-type galaxies have up to a factor of 2 lower intrinsic ellipticity dispersion than late-type galaxies. None of the samples shows evidence for redshift evolution, while the ellipticity dispersion for late-type galaxies scales strongly with absolute magnitude at the bright end. The simulation-based models reproduce the main characteristics of the intrinsic ellipticity distributions although which model fares best depends on the selection criteria of the galaxy sample. We observe fewer close-to-circular late-type galaxy images in COSMOS than expected for a sample of randomly oriented circular thick discs and discuss possible explanations for this deficit.

  17. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Hao Heng; Huchra, John P.; Merloni, Andrea; Bongiorno, Angela; Brusa, Marcella; Cappelluti, Nico; McCarthy, Patrick J.; Koekemoer, Anton; Nagao, Tohru; Salvato, Mara; Scoville, Nick Z.

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.

  18. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    SciTech Connect

    Watts, J.W. Jr.; Parnell, T.A.; Dudkin, V.E.; Kovalev, E.E.; Potapov, Yu.V.; Benton, E.V.; Frank, A.L.; Benton, E.R.; Beaujean, R.; Heilmann, C. |||

    1995-03-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the Linear Energy Transfer (LET) spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm {sup {minus}2} shielding) and outside (1 g cm{sup {minus}2}) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d{sup {minus}1}, respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d{sup {minus}1}. The effects of the flight parameters on the total fluence of, and on the dose from the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  19. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    SciTech Connect

    Olivier, S; Cook, K; Fasenfest, B; Jefferson, D; Jiang, M; Leek, J; Levatin, J; Nikolaev, S; Pertica, A; Phillion, D; Springer, K; De Vries, W

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellite collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  20. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    SciTech Connect

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.

    2013-11-20

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.

  1. The effects of Cosmos caudatus (Ulam Raja) supplementation on bone biochemical parameters in ovariectomized rats.

    PubMed

    Mohamed, Norazlina; Yin, Chai Mei; Shuid, Ahmad Nazrun; Muhammad, Norliza; Babji, Abdul Salam; Soelaiman, Ima Nirwana

    2013-09-01

    Cosmos caudatus (ulam raja) contains high mineral content and possesses high antioxidant activity which may be beneficial in bone disorder such as postmenopausal osteoporosis. The effects of C. caudatus on bone metabolism biomarkers in ovariectomized rats were studied. 48 Sprague-Dawley rats aged three months were divided into 6 groups. One group of rats was sham-operated while the remaining rats were ovariectomized. The ovariectomized rats were further divided into 5 groups: the control, three groups force-fed with C. caudatus at the doses of 100mg/kg, 200mg/kg or 300mg/kg and another group supplemented with calcium 1% ad libitum. Treatments were given 6 days per week for a period of eight weeks. Blood samples were collected twice; before and after treatment. Parameters measured were bone resorbing cytokine; interleukin-1 and the bone biomarkers; osteocalcin and pyridinoline. Serum IL-1 and pyridinoline levels were significantly increased in ovariectomized rats. Supplementation of C. caudatus was able to prevent the increase of IL-1 and pyridinoline in ovariectomized rats. Besides that, C. caudatus showed the same effect as calcium 1% on biochemical parameters of bone metabolism in ovariectomized rats. In conclusion, Cosmos caudatus was as effective as calcium in preventing the increase in bone resorption in ovariectomized rats.

  2. The Effects of Cosmos caudatus on Structural Bone Histomorphometry in Ovariectomized Rats.

    PubMed

    Mohamed, Norazlina; Gwee Sian Khee, Sharon; Shuid, Ahmad Nazrun; Muhammad, Norliza; Suhaimi, Farihah; Othman, Faizah; Babji, Abdul Salam; Soelaiman, Ima-Nirwana

    2012-01-01

    Osteoporosis is considered a serious debilitating disease. Cosmos caudatus (ulam raja), a plant containing antioxidant compounds and minerals, may be used to treat and prevent osteoporosis. This study determines the effectiveness of C. caudatus as bone protective agent in postmenopausal osteoporosis rat model. Thirty-two female rats, aged 3 months old, were divided into 4 groups. Group one was sham operated (sham) while group two was ovariectomized. These two groups were given ionized water by forced feeding. Groups three and four were ovariectomized and given calcium 1% ad libitum and force-fed with C. caudatus at the dose of 500 mg/kg, respectively. Treatments were given six days per week for a period of eight weeks. Body weight was monitored every week and structural bone histomorphometry analyses of the femur bones were performed. Ovariectomy decreased trabecular bone volume (BV/TV), decreased trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Both calcium 1% and 500 mg/kg C. caudatus reversed the above structural bone histomorphometric parameters to normal level. C. caudatus shows better effect compared to calcium 1% on trabecular number (Tb.N) and trabecular separation (Tb.Sp). Therefore, Cosmos caudatus 500 mg/kg has the potential to act as the therapeutic agent to restore bone damage in postmenopausal women.

  3. Flying U.S. science on the U.S.S.R. Cosmos biosatellites

    NASA Technical Reports Server (NTRS)

    Ballard, R. W.; Rossberg Walker, K.

    1992-01-01

    The USSR Cosmos Biosatellites are unmanned missions with durations of approximately 14 days. They are capable of carrying a wide variety of biological specimens such as cells, tissues, plants, and animals, including rodents and rhesus monkeys. The absence of a crew is an advantage with respect to the use of radioisotopes or other toxic materials and contaminants, but a disadvantage with respect to the performance of inflight procedures or repair of hardware failures. Thus, experiments hardware and procedures must be either completely automated or remotely controlled from the ground. A serious limiting factor for experiments is the amount of electrical powers available, so when possible experiments should be self-contained with their own batteries and data recording devices. Late loading is restricted to approximately 48 hours before launch and access time upon recovery is not precise since there is a ballistic reentry and the capsule must first be located and recovery vehicles dispatched to the site. Launches are quite reliable and there is a proven track record of nine previous Biosatellite flights. This paper will present data and experience from the seven previous Cosmos flights in which the US has participated as well as the key areas of consideration in planning a flight investigation aboard this Biosatellite platform.

  4. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Beaujean, R.; Heilmann, C.

    1995-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the Linear Energy Transfer (LET) spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm (exp -2) shielding) and outside (1 g cm(exp -2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d (exp -1), respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d(exp -1). The effects of the flight parameters on the total fluence of, and on the dose from the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  5. Einstein's steady-state theory: an abandoned model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  6. Spitzer Follow-up of HST Observations of Star Formation in H II Regions

    NASA Astrophysics Data System (ADS)

    Hester, Jeff; Bally, John; Desch, Steve; Healy, Kevin; Snider, Keely

    2005-06-01

    Images of regions of star formation taken with HST have given us an extraordinary view of young stellar objects and their natal environments. These views differ tremendously between low-mass YSOs seen in regions of isolated low-mass star formation such as Taurus-Auriga, and the proplyds, EGGs, and other structures seen in regions of massive star formation. While YSOs in Taurus spend their adolescence buried in the dark interiors of molecular clouds, YSOs near massive stars quickly find themselves overrun by ionization fronts and exposed to the intense UV radiation from nearby massive stars. This difference in environment has a profound effect on the way in which the protoplanetary disk around a star evolves -- a fact that is of great importance to us, given the strength of the evidence suggesting that the Sun formed near a massive star. But HST while HST can inform us about the evolution of YSOs in HII region environments once they are overrun by ionization fronts, it cannot show us the birth of the stars themselves. These remain hidden in the dense molecular material beyond the ionized volumes of these regions. Only Spitzer can show us the properties of the YSOs that lie hidden in the dark shadows of HST images of HII regions, and only Spitzer can provide us with information about PDRs, warm dust, and other tracers of the interaction of massive stars with their surroundings. The combination of HST and Spitzer observations of star forming regions is far greater than the sum of its parts. If we are to build a complete picture of low-mass star formation and the evolution of disks near massive stars, we need to combine HST and Spitzer observations of the same regions. In this proposal we request time to obtain both IRAC and MIPS 24 micron images of each HII region that has been observed by HST, but has yet to be observed with Spitzer. Together with previous images obtained from the archives, this will comprise an indispensible data set for testing hypotheses about

  7. Field-scale moisture estimates using COSMOS sensors: a validation study with temporary networks and leaf-area-indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...

  8. CoSMoS and TwinPaW: initial report on two new German twin studies.

    PubMed

    Spinath, Frank M; Wolf, Heike

    2006-12-01

    After briefly recapitulating two earlier German twin studies (BiLSAT and GOSAT), we present two new German twin studies with a longitudinal perspective: CoSMoS and TwinPaW. The twin study on Cognitive ability, Self-reported Motivation and School performance (CoSMoS) aims to investigate predictors and influences of school performance in a genetically sensitive design, beginning with children in late elementary school. The Twin study on Personality And Wellbeing (TwinPaW) focuses on adult personality and its relation to physical health as well as health-related behavior in an adult sample of twins. Both studies are characterized by an effort to recruit new large twin samples through a novel recruitment procedure aimed at reducing self-selective sampling. In two German federal states, contact information on persons born on the same day and with the same name was retrieved from record sections. From the resulting pool of more than 36,000 addresses we contacted approximately 2000 parents of twins aged 9 and 10 for CoSMoS, as well as 2000 adult twin pairs for TwinPaW by telephone and mail. Personal contact by telephone proved to be more efficient with agreement rates of 63% in the children sample and 65% in the adult sample. In this article we briefly describe the rationale and the study aims of CoSMoS and TwinPaW as well as the characteristics of the sample we have recruited so far.

  9. Thinking Problems of the Present Collision Warning Work by Analyzing the Intersection Between Cosmos 2251 and Iridium 33

    NASA Astrophysics Data System (ADS)

    Wang, R. L.; Liu, W.; Yan, R. D.; Gong, J. C.

    2013-08-01

    After Cosmos 2251 and Iridium 33 collision breakup event, the institutions at home and abroad began the collision warning analysis for the event. This paper compared the results from the different research units and discussed the problems of the current collision warning work, then gave the suggestions of further study.

  10. Inquiry-based Science Activities Using The Infrared Zoo and Infrared Yellowstone Resources at Cool Cosmos

    NASA Astrophysics Data System (ADS)

    Daou, D.; Gauthier, A.

    2003-12-01

    Inquiry-based activities that utilize the Cool Cosmos image galleries have been designed and developed by K12 teachers enrolled in The Invisible Universe Online for Teachers course. The exploration activities integrate the Our Infrared World Gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/our_ir_world_gallery.html) with either the Infrared Zoo gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/ir_zoo/index.html) or the Infrared Yellowstone image http://coolcosmos.ipac.caltech.edu/image_galleries/ir_yellowstone/index.html) and video (http://coolcosmos.ipac.caltech.edu/videos/ir_yellowstone/index.html) galleries. Complete instructor guides have been developed for the activities and will be presented by the authors in poster and CD form. Although the activities are written for middle and highschool learners, they can easily be adapted for college audiences. The Our Infrared World Gallery exploration helps learners think critically about visible light and infrared light as they compare sets of images (IR and visible light) of known objects. For example: by taking a regular photograph of a running faucet, can you tell if it is running hot or cold water? What new information does the IR image give you? The Infrared Zoo activities encourage learners to investigate the differences between warm and cold blooded animals by comparing sets of IR and visible images. In one activity, learners take on the role of a pit viper seeking prey in various desert and woodland settings. The main activities are extended into the real world by discussing and researching industrial, medical, and societal applications of infrared technologies. The Infrared Yellowstone lessons give learners a unique perspective on Yellowstone National Park and it's spectacular geologic and geothermal features. Infrared video technology is highlighted as learners make detailed observations about the visible and infrared views of the natural phenomena. The "Cool Cosmos" EPO activities are

  11. Kepler's cosmos

    NASA Astrophysics Data System (ADS)

    Kemp, Martin

    1998-05-01

    Copernicus's system of the Universe was revolutionary but his method of representing it on paper was anything but. It was left to Kepler to apply Renaissance techniques of spatial visualization to make the theory come alive.

  12. Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Lowry, Oliver H.; Krasnov, Igor; Kakueva, E. Ilyina; Nemeth, Patti M.; Mcdougal, David B., Jr.; Choksi, Rati; Carter, Joyce G.; Chi, Maggie M. Y.; Manchester, Jill K.; Pusateri, Mary Ellen

    1990-01-01

    The effects of microgravity and hind limb suspension on the enzyme patterns are assessed within a slow twitch muscle (soleus) and a fast twitch muscle (tibialis anterior). Studies were made on 95 soleus fibers and about 300 tibialis anterior (TA) fibers. Over 2200 individual enzyme measurements were made. Six key metabolic enzymes (hexokinase, pyruvate kinease, citrate kinase, beta-hydroxyacyl CoA dehydrogenase, glucose-6-P dehydrogenase, and aspartate aminotransferase) plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate, and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight, and tail suspension rats. Major differences were observed in the normal distribution of each enzyme and amine acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

  13. Alterations in erythrocyte survival parameters in rats after 19.5 days aboard Cosmos 782

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Serova, L. V.; Cummins, J.; Landaw, S. A.

    1978-01-01

    Rats were subjected to 19.5 days of weightless space flight aboard the Soviet biosatellite, Cosmos 782. Based on the output of CO-14, survival parameters of a cohort of erythrocytes labeled 15.5 days preflight were evaluated upon return from orbit. These were compared to vivarium control rats injected at the same time. Statistical evaluation indicates that all survival factors were altered by the space flight. The mean potential lifespan, which was 63.0 days in the control rats, was decreased to 59.0 days in the flight rats, and random hemolysis was increased three-fold in the flight rats. The measured size of the cohort was decreased, lending further support to the idea that hemolysis was accelerated during some portion of the flight. A number of factors that might be contributory to these changes are discussed, including forces associated with launch and reentry, atmospheric and environmental parameters, dietary factors, radiation, and weightlessness.

  14. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    SciTech Connect

    Bell, T.F.; Inan, U.S.; Lauben, D.; Sonwalkar, V.S.; Helliwell, R.A.; Sobolev, Ya.P.; Chmyrev, V.M.; Gonzalez, S.

    1994-04-15

    Past work demonstrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength {lambda}. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which {lambda} {le} 3.5 m when excitation occurs at a frequency roughly equal to the lower hybrid resonance frequency. This wavelength limit is a factor of {approximately} 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H{sup +} ions with energy {le} 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells. 19 refs., 3 figs.

  15. Spectroscopic Properties of Selected Narrow Emission Line Galaxies from the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Colon, Amy M.; Carroll, P.; Roberts, R.; Wong, N.; Liu, C.

    2007-12-01

    We present properties of seven blue narrow emission line galaxies (NELGs) in the redshift range 0.25 < z < 0.73, initially selected as QSO candidates in the COSMOS 2-degree survey field. These galaxies have been selected for the high signal-to-noise of their spectra, as indicated by the presence of the emission line [NeIII] 3869 Angstroms. Emission line diagnostics are used to measure metallicities and star formation rates, and to test the presence of AGN. Hubble ACS images are used to measure their surface brightness distributions and quantitative morphologies. Preliminary results indicate that these objects are forming stars at a rate of 4 to 20 solar masses per year; and their metallicity appears not to vary with the galaxy's concentration index which ranges 0.42 to 0.63.

  16. Fate of the grafted ovaries from female salamander Pleurodeles waltl embarked on the cosmos 2229 flight

    NASA Astrophysics Data System (ADS)

    Bautz, A.; Houillon, Ch.; Aimar, C.; Mitashov, V.; Dournon, C.

    The flight procedure of ``Experience Triton'' on Cosmos 2229 made necessary to sacrifice the embarked females just after landing. In order to detect genetic abnormalities in the progeny of these adult females, we have performed a surgical procedure based on the transplantation of an ovarian piece on a recipient animal. One year later, as observed after laparotomy, the grafted ovaries exhibit oogonies and some growing oocytes. In present time, out of 10 castrated and grafted adult females only one is still alive bearing a large grafted ovary. Out of 5 castred and grafted juvenile males, three are still alive, two of them exhibit a developping grafted ovary. The grafted animals will be ready for mating within a few months. Therefore, it will soon be possible to study the progeny of animals that have been submitted to space conditions.

  17. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    ScienceCinema

    None

    2016-07-12

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  18. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    ScienceCinema

    None

    2016-07-12

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  19. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    SciTech Connect

    Watts, J.W. Jr.; Parnell, T.A.; Akatov, Yu.A.; Dudkin, V.E.; Kovalev, E.E.; Benton, E.V.; Frank, A.L. |

    1995-03-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp {minus}1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD`s) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  20. Retinal changes in rats flown on Cosmos 936 - A cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Corbett, R.; Turnbill, C.; Black, S.; Dayhoff, D.; Mcgourty, J.; Lee, R.; Harrison, G.; Savik, L.

    1980-01-01

    Ten rats, five centrifuged during flight to simulate gravity and five stationary in flight and experiencing hypogravity, orbited the Earth. No differences were noted between flight-stationary and flight-centrifuged animals, but changes were seen between these two groups and ground controls. Morphological alterations were observed comparable to those in the experiment flown on Cosmos 782 and to the retinal cells exposed to high-energy particles at Berkeley. Affected cells in the outer nuclear layer showed swelling, clearing of cytoplasm, and disruption of the membranes. Tissue channels were again found, similar to those seen on 782. After space flight, preliminary data indicated an increase in cell size in montages of the nuclear layer of both groups of flight animals. This experiment shows that weightlessness and environmental conditions other than cosmic radiation do not contribute to the observed damage of retinal cells.

  1. The UCI COSMOS Astronomy and Astrophysics Cluster: A Summer Program for Talented High School Students

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, T. A.

    2013-04-01

    COSMOS is a month-long, summer residential program in science and engineering for high school students held each year at four University of California (UC) campuses. Its goals are to expand the scientific horizons of our most talented students by exposing them to exciting fields of research and encouraging them to pursue STEM careers. Students live on campus and choose to study one of seven or eight different subject areas called “clusters.” We run the extremely successful Astronomy & Astrophysics Cluster at UC Irvine (UCI). Over four weeks, students take lecture courses in astrophysics, perform computer lab experiments, and complete a research project conducted in a small group under the supervision of a faculty member or teaching assistant (TA). Here we discuss our curriculum, lessons learned, and quantify student outcomes. We find that putting on a summer program for high school students is highly rewarding for the students as well as the faculty and graduate students.

  2. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    SciTech Connect

    2010-09-08

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  3. Process development of beam-lead silicon-gate COS/MOS integrated circuits

    NASA Technical Reports Server (NTRS)

    Baptiste, B.; Boesenberg, W.

    1974-01-01

    Two processes for the fabrication of beam-leaded COS/MOS integrated circuits are described. The first process utilizes a composite gate dielectric of 800 A of silicon dioxide and 450 A of pyrolytically deposited A12O3 as an impurity barrier. The second process utilizes polysilicon gate metallization over which a sealing layer of 1000 A of pyrolytic Si3N4 is deposited. Three beam-lead integrated circuits have been implemented with the first process: (1) CD4000BL - three-input NOR gate; (2) CD4007BL - triple inverter; and (3) CD4013BL - dual D flip flop. An arithmetic and logic unit (ALU) integrated circuit was designed and implemented with the second process. The ALU chip allows addition with four bit accuracy. Processing details, device design and device characterization, circuit performance and life data are presented.

  4. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    NASA Technical Reports Server (NTRS)

    Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.

    1994-01-01

    Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.

  5. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.

    1995-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  6. The effect of artificial gravity on plasma and tissue lipids in rats: The Cosmos 936 experiment

    NASA Astrophysics Data System (ADS)

    Ahlers, I.; Praslička, M.; Tigranyan, R. A.

    Plasma and tissue lipids in male SPF Wistar rats flown for 18.5 days aboard the Cosmos 936 biosatellite were analyzed. One group of rats was subjected to artificial gravity by use of a centrifuge during the flight. An experiment simulating known space flight factors other than weightlessness was done on Earth. An increase of total cholesterol in plasma, of nonesterified fatty acids in plasma and brown adipose tissue, of triacylglycerols in plasma, liver, thymus and bone marrow was noted several hours after biosatellite landing. Smaller changes were observed in the terrestrial control experiment. With the exception of triacylglycerol accumulation in bone marrow, these increases disappeared 25 days after biosatellite landing. Exposing the rats aboard the biosatellite to artificial gravity was beneficial in the sense that such exposure inhibited the phospholipid and triacylglycerol increase in plasma and inhibited the increase of triacylglycerol in liver and especially in bone marrow.

  7. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    ScienceCinema

    None

    2016-07-12

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  8. Type-II AGN population from the zCOSMOS survey

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Mignoli, M.; Zamorani, G.; Zcosmos Team

    2008-10-01

    I'll present the first results on the type-II AGN population isolated from the zCOSMOS bright sample which consists of 10k sources, purely magnitude selected at I=22.5. The selected type-II AGN sample consists of about 200 AGN, selected using the diagnostic diagrams up to redshift ~1.0. I'll present the properties of this sample (i.e. SED and morphology) and some preliminary results on the evolution of type-II AGN, as well as on the evolution of their fraction with respect to the total AGN population (Type-I + Type-II), as a function of both luminosity and redshift.

  9. VizieR Online Data Catalog: The VLA-COSMOS Survey. V. 324MHz (Smolcic+, 2014)

    NASA Astrophysics Data System (ADS)

    Smolcic, V.; Ciliegi, P.; Jelic, V.; Bondi, M.; Schinnerer, E.; Carilli, C. L.; Riechers, D. A.; Salvato, M.; Brkovic, A.; Capak, P.; Ilbert, O.; Karim, A.; McCracken, H.; Scoville, N. Z.

    2015-04-01

    Observations were performed in 2008 November with the VLA in its A configuration. The receivers were tuned to 324MHz (90cm, P band). A single pointing towards the COSMOS field (centred at 10:00:28.6, +02:12:21) was targeted, resulting in a primary beam diameter full width at half-maximum of 2.3°, and a resolution of 8.0"x6.0" in the final map. A total of 24h of observations were scheduled during three nights. Due to the upgrade of some VLA antennas, and the incompatibility of the P-band receivers with the upgrade, about half of the data were lost, implying a total integration time of ~12h for a 27-antenna array. (1 data file).

  10. A comparative study of seminiferous tubular epithelium from rats flown on Cosmos 1887 and SL3

    NASA Technical Reports Server (NTRS)

    Sapp, Walter J.; Williams, Carol S.; Kato, K.; Philpott, Delbert E.; Stevenson, J.; Serova, L. V.

    1989-01-01

    Space flight, with its unique environmental constraints such as immobilization, decreased and increased pressures, and radiation, is known to affect testicular morphology and spermatogenesis. Among the several biological experiments and animals on board COSMOS 1887 Biosputnik flight were 10 rats, from which were collected testicular tissue. Average weights of flight tests were 6.4 pct. below that of the vivarium control when normalized for weight loss/100 grams body weight. Counts of surviving spermatogonia per tubule cross section indicated an average of 39 spermatogonia for flight animals, 40 for synchronous controls and 44 for the vivarium controls. Serum testosterone was significantly decreased when compared to basal controls but the decrease was not significant when compared in vivarium and synchronous control groups. The significant decrease in spermatogonia and the decrease in serum testosterone are similar to that in animals flown on Space Lab 3 (Challenger Shuttle).

  11. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    SciTech Connect

    2010-09-08

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  12. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    SciTech Connect

    2010-09-07

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  13. [The state of bone tissue in monkeys in experiments in the Cosmos-1887 biosatellite].

    PubMed

    Rakhmanov, A S; Bakulin, A V; Dubonos, S L; Novikov, V E; Cann, C; Nogues, C

    1991-01-01

    Using invasive and noninvasive techniques, we studied bone changes in primates flown for 13 days on Cosmos-1887 and compared them with the data obtained from vivarium control animals and from the flown primates that were after flight exposed to a ground-based synchronous experiment in the biosatellite mockup. It was found that bone density in the diaphysis of the tibia decreased while its growth rate remained unchanged or diminished. Contact X-raying indicated a higher rate of endosteal resorption in the flown primates when compared with the controls. Histomorphometric measurements of iliac bioptates displayed signs of inhibited bone formation after flight. The above observations are discussed and compared with the results obtained in previous biosatellite flights and ground-based studies.

  14. The Pilot Warm Spitzer Near Earth Object Survey: Probing the size distribution of the most abundant Near Earth Objects

    NASA Astrophysics Data System (ADS)

    Trilling, David; Delbo, Marco; Emery, Joshua; Fazio, Giovanni; Fuentes, Cesar; Harris, Alan; Hora, Joseph; Mommert, Michael; Mueller, Michael; Smith, Howard

    2012-12-01

    We propose a Warm Spitzer search for Near Earth Objects (NEOs), bodies whose orbits bring them close to the Earth's orbit. Previous work has measured the properties of larger NEOs, but the physical properties of the smallest and most numerous NEOs are poorly constrained. We will capitalize on Spitzer's unparalleled sensitivity and unique geometry to measure the size distribution of NEOs down to 100 meters, where completeness from previous surveys is poor. This allows us to probe the dynamical history of near-Earth space and meet the Congressional mandate to determine the impact threat from objects >140 m. This project will also serve as a scientific and technical pathfinder for a future large Spitzer proposal that will increase our knowledge of the small NEO size distribution by another order of magnitude. Both projects will also be sensitive to previously unseen NEO populations. This proposed work significantly surpasses recent results from both our ExploreNEOS program and NEOWISE. Future ground- and space-based missions have been proposed to carry out similar work at costs of $500M or more, but this fundamental work can be done now, with Spitzer, for far less money. Our team has unmatched scientific and technical expertise in observations and modeling of Spitzer-observed NEOs.

  15. Enhancing the Legacy of Spitzer and Herschel with the MOSFIRE Deep Evolution Field Survey

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen

    The next frontier for comprehensive galaxy surveys is the epoch at z~1.5-3.5, the peak of star formation and black hole activity. Despite the new windows that Spitzer and Herschel have opened up into the stellar and dust emission of distant galaxies and AGN during this key epoch, these studies have been limited by the lack of spectroscopic redshifts and the unknown physical conditions (e.g., metallicities, ionization) within the targeted galaxies. To realize the full potential of Spitzer and Herschel, we require a large spectroscopic survey that will: (a) efficiently assemble spectroscopic redshifts for large samples of galaxies at z=1.4-3.8; (b) yield the physical conditions, including the ionization and metallicities of these galaxies; and (c) easily obtain spectroscopic redshifts even for very dusty/confused galaxies. To this end, our team has been allocated a large program of 47 Keck nights with the multi-object near-IR spectrograph MOSFIRE to carry out the MOSFIRE Deep Evolution Field Survey (MOSDEF) in three of the Hubble CANDELS fields. MOSDEF will obtain rest-optical spectra of ~1500 galaxies at redshifts z=1.4-3.8, targeting many of the optical nebular emission lines and continuum features (e.g., [OII], [OIII], H-beta, H-alpha, [NII], [SII], 4000 Angstrom break, Ca H and K, and Mbg) that until now have been inaccessible for large samples of distant galaxies, but which are routinely used to measure the SFRs, dust attenuation, metal and gas content, and ionization and dynamical properties in nearby galaxies. MOSDEF spectroscopy provides a critical supporting role for the analysis of Spitzer and Herschel observations of distant galaxies. With this transformative dataset, we will perform the following analyses. First, we will use Spitzer and Herschel imaging, aided with spectroscopic redshifts from MOSDEF, to construct individual and mean dust SEDs for galaxies at redshifts 1.4

  16. EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS

    SciTech Connect

    Scoville, N.; Benson, A.; Fu, Hai; Arnouts, S.; Aussel, H.; Bongiorno, A.; Bundy, K.; Calvo, M. A. A.; Capak, P.; Carollo, M.; Faisst, A.; Civano, F.; Elvis, M.; Dunlop, J.; Finoguenov, A.; Guo, Q.; Giavalisco, M.; Ilbert, O.; Iovino, A.; Kajisawa, M.; and others

    2013-05-01

    Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between the mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.

  17. Serotonin in individual hypothalamic nuclei of rats after space flight on biosatellite cosmos 1129

    NASA Astrophysics Data System (ADS)

    Čulman, J.; Kvetňansky, T.; Serova, L. V.; Tigranjan, R. A.; Macho, L.

    The experiment on Cosmos 1129 was based on our results obtained in rats exposed to single or repeated restrain stress in the laboratory. These results have convincingly demonstrated a significant increase of serotonin concentration (5-HT) in the hypothalamus in acutely stressed rats. This response, which was found also in the isolated hypothalamic nuclei, was diminished in repeatedly (40 times) immobilized rats. While the concentration of 5-HT was unchanged in the majority of the hypothalamic nuclei of animals subjected to cosmic flight, an increase was recorded only in the supraoptic nucleus (NSO) and a decrease in the periventricular nucleus. These findings demonstrate that only few areas of the hypothalamus respond to cosmic flight with changes of 5-HT concentration and suggest either that long-term cosmic flight cannot be an intensive stressor or that during the flight the rats became already adapted to its long-term effect. However, the exposure of flight rats to repeated immobilization stress resulted in a significant increase of 5-HT in the NSO, paraventricular and dorsomedial (NDM) nuclei. It should be noted that we have never seen any changes of 5-HT concentration, tryptophan hydroxylase and monoamineoxidase activities in repeatedly (40 times) immobilized rats. On the other hand, the increase of 5-HT concentration in the NDM is a typical finding after seven exposures of rats to immobilization on Earth, daily for 150 min. In the experiment COSMOS 1129 such an increase of 5-HT concentration in the NDM was found not only in the flight group but also in the control group of rats subjected to five daily exposures of immobilization stress. With respect to these findings, the increased 5-HT concentrations observed in some isolated hypothalamic nuclei in the flight group of rats exposed after landing to repeated immobilization stress suggest that long-term space flight and the state of weightlessness do not represent a stressogenic factor with respect to the

  18. The Galaxies and Cosmos Explorer Tool: Charting Galaxies over Cosmic Times in The Classroom

    NASA Astrophysics Data System (ADS)

    Jogee, Shardha; Hemenway, M. K.; Miller, S.; Smith, A.; Augustine, A.; Worhatch, R.; Preston, S.; Lester, D.; Fricke, K.

    2007-12-01

    Recent large galaxy surveys conducted with NASA's Hubble Space Telescope Advanced Camera for Surveys (ACS) have provided unprecedented legacy datasets, which allow astronomers to charter the evolution of galaxies over a large fraction of the age of the Universe. The Galaxies and Cosmos Explorer Tool (GCET; http://www.as.utexas.edu/gcet/) is an online web-based tool that allows the general public and students to actively participate in this exciting adventure through quantitative analyses of HST images from the Galaxy Evolution from Morphology and SEDs (GEMS) survey, one of the widest-area galaxy surveys conducted in two filters with ACS to date. The tool allows users to surf the vast cosmos and access ACS images of over 8,000 galaxies over the last eight billion years. For galaxies of interest, users can measure the size, determine the lookback time for concordance cosmology, perform morphological classification on images at two rest-frame wavelengths, and gauge the different stellar populations present. Users can record their measurements, as well as reference information, such as coordinates and redshift, of each galaxy into Excel spreadsheets for further analysis. The celestial coordinates can be used to extract further multiwavelength data from existing archives and upcoming virtual observatories. For undergraduate classes, more advanced IDL or C-based analyses that employ the full samples, can be combined with the visualization capabilities of GCET in order to explore the nature of interesting objects, such as the most massive galaxies, starbursting systems, interacting and merging galaxies. GCET provides a powerful tool for discovery learning in undergraduate science and introductory classes, as well as high schools. We thank the GEMS collaboration, and acknowledge support from NASA grants NAG5-13063 and NASA NNG 06GB99G, NSF grant AST-0607748, and the Faculty And Student Teams for Technology (FAST Tex) award from the University of Texas Division of

  19. Structure, metamorphism, and geochronology of the Cosmos Hills and Ruby Ridge, Brooks Range schist belt, Alaska

    USGS Publications Warehouse

    Christiansen, Peter B.; Snee, Lawrence W.

    1994-01-01

    The boundary of the internal zones of the Brooks Range orogenic belt (the schist belt) is a fault contact that dips toward the hinterland (the Yukon-Koyukuk province). This fault, here referred to as the Cosmos Hills fault zone, juxtaposes oceanic rocks and unmetamorphosed sedimentary rocks structurally above blueschist-to-greenschist facies metamorphic rocks of the schist belt. Near the fault contact, schist belt rocks are increasingly affected by a prominent, subhorizontal transposition foliation that is locally mylonitic in the fault zone. Structural and petrologic observations combined with 40Ar/39Ar incremental-release geochronology give evidence for a polyphase metamorphic and deformational history beginning in the Middle Jurassic and continuing until the Late Cretaceous. Our 40Ar/39Ar cooling age for Jurassic metamorphism is consistent with stratigraphic and other evidence for the onset of Brooks Range orogenesis. Jurassic metamorphism is nearly everywhere overprinted by a regional greenschist-facies event dated at 130–125 Ma. Near the contact with the Cosmos Hills fault zone, the schist belt is increasingly affected by a younger greenschist metamorphism that is texturally related to a prominent foliation that folds and transposes an older fabric. The 40Ar/39Ar results on phengite and fuchsite that define this younger fabric give recrystallization ages ranging from 103 to less than 90 Ma. We conclude that metamorphism that formed the transposition fabric peaked around 100 Ma and may have continued until well after 90 Ma. This age for greenschist metamorphism is broadly synchronous with the depositional age of locally derived, shallow-marine clastic sedimentary strata in the hanging wall of the fault zone and thus substantiates the interpretation that the fault zone accommodated extension in the Late Cretaceous. This extension unroofed and exhumed the schist belt during relative subsidence of the Yukon-Koyukuk province.

  20. Experimental and calculated LET distributions in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Karpov, O. N.; Akopova, A. B.; Magradze, N. V.; Moiseenko, A. A.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr

    1992-01-01

    During the flight of the Cosmos-2044 biosatellite, joint U.S.S.R.-U.S.A. investigations of different characteristics of cosmic radiation (CR) in the near-Earth environment were carried out. The U.S. dielectric track detectors CR-39 and Soviet BYa- and BR-type nuclear photo-emulsions were used as detectors. The present work shows some results of experimental measurements of linear energy transfer (LET) spectra of CR particles obtained with the use of these detectors, which were placed both inside and outside the satellite. The LET spectra measurement with plastic detectors is composed of two parts: the measurement of galactic cosmic rays (GCR) particles, and of short-range particles. The contributions of these components to the total LET distribution at various thicknesses of the shielding were analyzed and the results of these studies are presented. Calculated LET spectra in the Cosmos-2044 orbit were compared with experimental data. On the basis of experimental and calculated values of the LET spectra, absorbed and equivalent CR doses were calculated. In the shielding range of 1-1.5 g cm-2, outside the spacecraft, the photo-emulsions yielded 10.3 mrad d-1 and 27.5 mrem d-1 (LET > or = 2 MeV cm-1) while the CR-39 yielded averages of 1.43 mrad d-1 and 13.4 mrem d-1 (LET > or = 40 MeV cm-1). Inside the spacecraft (> or = 10 g cm-2) the photo-emulsions yielded 8.9 mrad d-1 and 14.5 mrem d-1.

  1. Cluster candidates around low-power radio galaxies at z ∼ 1-2 in cosmos

    SciTech Connect

    Castignani, G.; Celotti, A.; De Zotti, G.; Chiaberge, M.; Norman, C.

    2014-09-10

    We search for high-redshift (z ∼1-2) galaxy clusters using low power radio galaxies (FR I) as beacons and our newly developed Poisson probability method based on photometric redshift information and galaxy number counts. We use a sample of 32 FR Is within the Cosmic Evolution Survey (COSMOS) field from the Chiaberge et al. catalog. We derive a reliable subsample of 21 bona fide low luminosity radio galaxies (LLRGs) and a subsample of 11 high luminosity radio galaxies (HLRGs), on the basis of photometric redshift information and NRAO VLA Sky Survey radio fluxes. The LLRGs are selected to have 1.4 GHz rest frame luminosities lower than the fiducial FR I/FR II divide. This also allows us to estimate the comoving space density of sources with L {sub 1.4} ≅ 10{sup 32.3} erg s{sup –1} Hz{sup –1} at z ≅ 1.1, which strengthens the case for a strong cosmological evolution of these sources. In the fields of the LLRGs and HLRGs we find evidence that 14 and 8 of them reside in rich groups or galaxy clusters, respectively. Thus, overdensities are found around ∼70% of the FR Is, independently of the considered subsample. This rate is in agreement with the fraction found for low redshift FR Is and it is significantly higher than that for FR IIs at all redshifts. Although our method is primarily introduced for the COSMOS survey, it may be applied to both present and future wide field surveys such as Sloan Digital Sky Survey Stripe 82, LSST, and Euclid. Furthermore, cluster candidates found with our method are excellent targets for next generation space telescopes such as James Webb Space Telescope.

  2. Cosmos Education: Under African Skies and other Youth Initiatives for hands-on Education using Space

    NASA Astrophysics Data System (ADS)

    Marshall, W.; Hand, K.; Delegates, Sgs

    2002-01-01

    'Under African Skies', a project of the charity organization Cosmos Education, undertook an excursion to sub-Saharan Africa to teach science and technology to children in primary and secondary schools. The role of science and technology for the purpose of development was emphasized, and the project directly addresses one of the recommendations of UNISPACE-III Vienna Declaration. Teaching primarily focused on astronomy and space science. Over 3500 primary and secondary school students in 5 different countries were reached. Although it is hard to quantify the impact of the teaching, the students' enthusiasm and questions demonstrated that they acquired knowledge and interest in science. In this talk we will summarize the objectives and achievements of the trip and future planned trips by Cosmos Education. We will also show coverage of the trip by the BBC program 'Final Frontier'. The youth perspective on education is outlined in the Global Space Education Curriculum, a project initiated at the UNISPACE III Space Generation Forum (SGF). This initiative is being further developed at the Space Generation Summit (SGS), an event at World Space Congress (WSC) that will unite international students and young professionals to develop a youth vision and strategy for the peaceful uses of space. SGS, endorsed by the United Nations, will take place from October 11-13th, during which the 200 delegates will discuss ongoing youth space activities, particularly those stemming from the UNISPACE-III/SGF and taken forward by the Space Generation Advisory Council. Delegates will address a variety of topics with the goal of devising new recommendations according to the theme, 'Accelerating Our Pace in Space'. The material presented here and in other technical sessions throughout WSC includes the results of these discussions.

  3. Towards Complete Microphysical Modeling of Warm Interstellar Molecules: H2 Collisional Dissociation for Spitzer IR Observations

    NASA Astrophysics Data System (ADS)

    Forrey, Robert; Ferland, Gary; Lee, Teck; Naduvalath, Balakrishnan; Schultz, David; Stancil, Phillip

    2006-05-01

    The role of molecules in a variety of interstellar environments, including photodissociation regions, star-forming regions, circumstellar shells, and other molecular regions, is far-reaching. Molecules are pivotal to determining the thermal and density structure of the gas and provide diagnostics through emission, absorption, and fluorescence. However, these environments are typically of low density, may be exposed to shocks, and are usually irradiated in the UV by nearby hot stars which results in significant departures from equilibrium for the chemical, ionization, and internal energy state of the gas. Therefore, to accurately model these environments, and thereby interpret results from Spitzer spectroscopic observing programs, requires a quantitative understanding of a variety of microphysical processes. We propose here to focus our studies on the most abundant of molecules, H2. To derive significant scientific return from current and future Spitzer observations, we will compute dissociation rate coefficients of H2 due to collisions of H, He, para-H2, and ortho-H2, a process which is competitive with other H2 destruction mechanisms. The rate coefficients will be computed for temperatures between 1 and 50,000 K and from ALL initial bound rotational-vibrational levels of H2 in the ground electronic state, information which is unavailable today. The computations will be performed using established quantum mechanical close-coupling and coupled-states methods on accurate, and well tested, potential energy surfaces. The results will be benchmarked against experiment, where available, and fit to analytic forms with physical low- and high-temperature limits for easy modeling use. The results of this proposal will then enable models, such as those from the widely used and tested spectral synthesis code Cloudy, to reliably simulate H2 in molecular environments, leading to deeper examination and understanding of their physical properties through Spitzer observations.

  4. CHANDRA AND SPITZER IMAGING OF THE INFRARED CLUSTER IN NGC 2071

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R.; Megeath, S. Thomas; Guedel, Manuel; Audard, Marc; Flaherty, Kevin M.; Meyer, Michael R.; Damineli, Augusto

    2009-08-10

    We present results of a sensitive Chandra X-ray observation and Spitzer mid-infrared (mid-IR) observations of the IR cluster lying north of the NGC 2071 reflection nebula in the Orion B molecular cloud. We focus on the dense cluster core known as NGC 2071-IR, which contains at least nine IR sources within a 40'' x 40'' region. This region shows clear signs of active star formation including powerful molecular outflows, Herbig-Haro objects, and both OH and H{sub 2}O masers. We use Spitzer Infrared Array Camera (IRAC) images to aid in X-ray source identification and to determine young stellar object (YSO) classes using mid-IR colors. Spitzer IRAC colors show that the luminous source IRS 1 is a class I protostar. IRS 1 is believed to be driving a powerful bipolar molecular outflow and may be an embedded B-type star or its progenitor. Its X-ray spectrum reveals a fluorescent Fe emission line at 6.4 keV, arising in cold material near the protostar. The line is present even in the absence of large flares, raising questions about the nature of the ionizing mechanism responsible for producing the 6.4 keV fluorescent line. Chandra also detects X-ray sources at or near the positions of IRS 2, IRS 3, IRS 4, and IRS 6 and a variable X-ray source coincident with the radio source VLA 1, located just 2'' north of IRS 1. No IR data are yet available to determine a YSO classification for VLA 1, but its high X-ray absorption shows that it is even more deeply embedded than IRS 1, suggesting that it could be an even younger, less-evolved protostar.

  5. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  6. Using Spitzer to Estimate the Kepler False Positive Rate and to Validate Kepler Candidates.

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel; Charbonneau, D.; Fressin, F.; Torres, G.

    2012-01-01

    I present the results from an ongoing large campaign with the Spitzer Space Telescope to gather near-infrared photometric measurements of Kepler Objects of Interest (KOI). Our goals are (1) to validate the planetary status of these Kepler candidates, (2) to estimate observationally the false positive rate, and (3) to study the atmospheres of confirmed planets through measurements of their secondary eclipses. Our target list spans of wide range of candidate sizes and periods orbiting various spectral type stars. The Spitzer observations provide constraints on the possibility of astrophysical false positives resulting from stellar blends, including eclipsing binaries and hierarchical triples. The number of possible blends per star is estimated using stellar population synthesis models and observational probes of the KOI close environments from direct imaging (e.g. Adaptive Optics, Speckle images, Kepler centroids). Combining all the above information with the shape of the transit lightcurves from the Kepler photometry, we compute odd ratios for the 34 candidates we observed in order to determine their false positive probability. Our results suggest that the Kepler false positive rate in this subset of candidates is low. I finally present a new list of Kepler candidates that we were able to validate using this method. This work is based on observations made with the Spitzer, which is operated by JPL/Caltech, under a contract with NASA. Support was provided by NASA through an award issued by JPL/Caltech. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  7. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.; Cruikshank, D. P.; Lim, L. F.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda < or = approx.100 J/1/2 s/K/sq m2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  8. On the Form of the Spitzer Leavitt Law and Its Dependence on Metallicity

    NASA Astrophysics Data System (ADS)

    Majaess, D.; Turner, D. G.; Gieren, W.

    2013-08-01

    The form and metallicity dependence of Spitzer mid-infrared Cepheid relations are a source of debate. Consequently, Spitzer 3.6 and 4.5 μm period-magnitude and period-color diagrams were re-examined via robust routines, thus providing an alternative interpretation to consider. The relations (nearly mean-magnitude) appear non-linear over an extensive baseline (0.45 < log P 0 < 2.0), particularly the period-color trend, which to first order follows constant (3.6-4.5) color for shorter-period Cepheids and may transition into a bluer convex trough at longer periods. The period-magnitude functions can be described by polynomials (e.g., [3.6 μm] = K 0 - (3.071 ± 0.059)log P 0 - (0.120 ± 0.032)log P 0 2), and Cepheid distances computed using 3.6 and 4.5 μm relations agree with each other and the latter provides a first-order consistency check (CO sampled at 4.5 μm does not seriously compromise those distances). The period-magnitude relations appear relatively insensitive to metallicity variations ([Fe/H] ~ 0 to -0.75 |γ| < 0.1 mag dex-1), a conclusion inferred partly from comparing galaxy distances established from those relations and NED-D (n > 700), yet a solid conclusion awaits comprehensive mid-infrared observations for metal-poor Cepheids in IC 1613 ([Fe/H] ~ -1). The Cepheid-based distances were corrected for dust obscuration using a new ratio (i.e., A 3.6/E B - V = 0.18 ± 0.06) deduced from GLIMPSE (Spitzer) data.

  9. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    SciTech Connect

    Fraine, Jonathan D.; Deming, Drake; Gillon, Michaeel; Jehin, Emmanueel; Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara; Lewis, Nikole K.; Knutson, Heather; Desert, Jean-Michel

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  10. A Spitzer view of the giant molecular cloud Mon OB1 East/NGC 2264

    SciTech Connect

    Rapson, V. A.; Pipher, J. L.; Gutermuth, R. A.; Megeath, S. T.; Allen, T. S.; Myers, P. C.; Allen, L. E.

    2014-10-20

    We present Spitzer 3.6, 4.5, 5.8, 8.0, and 24 μm images of the Mon OB1 East giant molecular cloud, which contains the young star forming region NGC 2264, as well as more extended star formation. With Spitzer data and Two Micron All Sky Survey photometry, we identify and classify young stellar objects (YSOs) with dusty circumstellar disks and/or envelopes in Mon OB1 East by their infrared-excess emission and study their distribution with respect to cloud material. We find a correlation between the local surface density of YSOs and column density of molecular gas as traced by dust extinction that is roughly described as a power law in these quantities. NGC 2264 follows a power-law index of ∼2.7, exhibiting a large YSO surface density for a given gas column density. Outside of NGC 2264 where the surface density of YSOs is lower, the power law is shallower and the region exhibits a larger gas column density for a YSO surface density, suggesting the star formation is more recent. In order to measure the fraction of cloud members with circumstellar disks/envelopes, we estimate the number of diskless pre-main-sequence stars by statistical removal of background star detections. We find that the disk fraction of the NGC 2264 region is 45%, while the surrounding, more distributed regions show a disk fraction of 19%. This may be explained by the presence of an older, more dispersed population of stars. In total, the Spitzer observations provide evidence for heterogenous, non-coeval star formation throughout the Mon OB1 cloud.

  11. Probing the Physical Properties of z = 4.5 Lyman Alpha Emitters with Spitzer

    NASA Astrophysics Data System (ADS)

    Finkelstein, Keely D.; Finkelstein, Steven L.; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James E.; Grogin, Norman A.; Pirzkal, Norbert; Dey, Arjun; Jannuzi, Buell T.; Mobasher, Bahram; Pakzad, Sabrina; Salmon, Brett; Wang, Junxian

    2015-11-01

    We present the results from a stellar population modeling analysis of a sample of 162 z = 4.5 and 14 z = 5.7 Lyα emitting galaxies (LAEs) in the Boötes field, using deep Spitzer/IRAC data at 3.6 and 4.5 μm from the Spitzer Lyα Survey, along with Hubble Space Telescope NICMOS and WFC3 imaging at 1.1 and 1.6 μm for a subset of the LAEs. This represents one of the largest samples of high-redshift LAEs imaged with Spitzer IRAC. We find that 30/162 (19%) of the z = 4.5 LAEs and 9/14 (64%) of the z = 5.7 LAEs are detected at ≥3σ in at least one IRAC band. Individual z = 4.5 IRAC-detected LAEs have a large range of stellar mass, from 5 × 108-1011 {M}⊙ . One-third of the IRAC-detected LAEs have older stellar population ages of 100 Myr-1 Gyr, while the remainder have ages <100 Myr. A stacking analysis of IRAC-undetected LAEs shows this population to be primarily low mass (8-20 × 108 {M}⊙ ) and young (64-570 Myr). We find a correlation between stellar mass and the dust-corrected ultraviolet-based star formation rate (SFR) similar to that at lower redshifts, in that higher mass galaxies exhibit higher SFRs. However, the z = 4.5 LAE correlation is elevated 4-5 times in SFR compared to continuum-selected galaxies at similar redshifts. The exception is the most massive LAEs which have SFRs similar to galaxies at lower redshifts suggesting that they may represent a different population of galaxies than the traditional lower-mass LAEs, perhaps with a different mechanism promoting Lyα photon escape.

  12. Repeatability of Spitzer/IRAC Exoplanetary Eclipses with Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Morello, G.; Waldmann, I. P.; Tinetti, G.

    2016-04-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  13. VizieR Online Data Catalog: Tully-Fisher distances for Spitzer galaxies (Sorce+, 2014)

    NASA Astrophysics Data System (ADS)

    Sorce, J. G.; Tully, R. B.; Courtois, H. M.; Jarrett, T. H.; Neill, J. D.; Shaya, E. J.

    2015-04-01

    The post-basic calibrated data of the 1270 observed galaxies for the CFS programme are available at the Spitzer Heritage Archive. Every galaxy has been observed with the first channel of the IRAC instrument where a point spread function with a FWHM=1.66arcsec is sampled with 1.2arcsec/pixels. The field of view is 5.2x5.2arcmin2 which is adequate to include most galaxies beyond twice their diameter at the 25th isophote (mag/arcsec2) in the B band. (2 data files).

  14. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    SciTech Connect

    Morello, G.; Waldmann, I. P.; Tinetti, G.

    2016-04-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  15. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    NASA Technical Reports Server (NTRS)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  16. SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE

    SciTech Connect

    Bilikova, Jana; Chu Youhua; Gruendl, Robert A.; Su, Kate Y. L.; De Marco, Orsola

    2012-05-01

    Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolved PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of

  17. The Spitzer discovery of a galaxy with infrared emission solely due to AGN activity

    NASA Astrophysics Data System (ADS)

    Hony, S.; Kemper, F.; Woods, P. M.; van Loon, J. Th.; Gorjian, V.; Madden, S. C.; Zijlstra, A. A.; Gordon, K. D.; Indebetouw, R.; Marengo, M.; Meixner, M.; Panuzzo, P.; Shiao, B.; Sloan, G. C.; Roman-Duval, J.; Mullaney, J.; Tielens, A. G. G. M.

    2011-07-01

    Aims: We present an analysis of a galaxy (SAGE1CJ053634.78-722658.5) at a redshift of 0.14 of which the infrared (IR) emission is entirely dominated by emission associated with the active galactic nucleus. Methods: We present the 5-37 μm Spitzer/IRS spectrum and broad wavelength spectral energy distribution (SED) of SAGE1CJ053634.78-722658.5, an IR point-source detected by Spitzer/SAGE. The source was observed in the SAGE-Spec program and was included to determine the nature of sources with deviant IR colours. The spectrum shows a redshifted (z = 0.14 ± 0.005) silicate emission feature with an exceptionally high feature-to-continuum ratio and weak polycyclic aromatic hydrocarbon (PAH) emission bands. We compare the source with models of emission from dusty tori around AGNs. We present a diagnostic diagram that will help to identify similar sources based on Spitzer/MIPS and Herschel/PACS photometry. Results: The SED of SAGE1CJ053634.78-722658.5 is peculiar because it lacks far-IR emissiondue to cold dust and a clear stellar counterpart. We find that the SED and the IR spectrum can be understood as emission originating from the inner ~10 pc around an accreting black hole. There is no need to invoke emission from the host galaxy, either from the stars or from the interstellar medium, although a possible early-type host galaxy cannot be excluded based on the SED analysis. The hot dust around the accretion disk gives rise to a continuum, which peaks at 4 μm, whereas the strong silicate features may arise from optically thin emission of dusty clouds within ~10 pc around the black hole. The weak PAH emission does not appear to be linked to star formation, as star formation templates strongly over-predict the measured far-IR flux levels. Conclusions: The SED of SAGE1CJ053634.78-722658.5 is rare in the local universe but may be more common in the more distant universe. The conspicuous absence of host-galaxy IR emission places limits on the far-IR emission arising from

  18. Exploring for Galaxies in the First Billion Years with Hubble and Spitzer - Pathfinding for JWST

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth D.

    2017-01-01

    Hubble has revolutionized the field of distant galaxies through its deep imaging surveys, starting with the Hubble Deep Field (HDF) in 1995. That first deep survey revealed galaxies at redshift z~1-3 that provided insights into the development of the Hubble sequence. Each new HST instrument has explored new regimes, through the peak of star formation at z~2-3, just 2-3 billion years after the Big Bang, to our first datasets at a billion years at z~6, and then earlier to z~11. HST's survey capabilities were enhanced by 40X with ACS, and then similarly with the WFC3/IR, which opened up the first billion years to an unforeseen degree. I will discuss what we have learned from the remarkable HST and Spitzer imaging surveys (HUDF, GOODS, HUDF09/12 and CANDELS), as well as surveys of clusters like the Hubble Frontier Fields (HFF). Lensing clusters provide extraordinary opportunities for characterizing the faintest earliest galaxies, but also present extraordinary challenges. Together these surveys have resulted in the measurement of the volume density of galaxies in the first billion years down to astonishingly faint levels. The role of faint galaxies in reionizing the universe is still much-discussed, but there is no doubt that such galaxies contribute greatly to the UV ionizing flux, as shown by deep luminosity function studies. Together Hubble and Spitzer have also established the stellar-mass buildup over 97% of cosmic history. Yet some of the greatest surprises have come from the discovery of very luminous galaxies at z~8-11, around 400-650 million years after the Big Bang. Spectroscopic followup by Keck of some of these very rare, bright galaxies has confirmed redshifts from z~7 to z~9, and revealed, surprisingly, strong Lyα emission near the peak of reionization when the HI fraction in the IGM is high. The recent confirmation of a z=11.1 galaxy, just 400 million years after the Big Bang, by a combination of Hubble and Spitzer data, moved Hubble into JWST territory

  19. VizieR Online Data Catalog: SAGE-Spec Spitzer legacy program (Kemper+, 2010)

    NASA Astrophysics Data System (ADS)

    Kemper, F.; Woods, P. M.; Antoniou, V.; Bernard, J.-P.; Blum, R. D.; Boyer, M. L.; Chan, J.; Chen, C.-H. R.; Cohen, M.; Dijkstra, C.; Engelbracht, C.; Galametz, M.; Galliano, F.; Gielen, C.; Gordon, K. D.; Gorjian, V.; Harris, J.; Hony, S.; Hora, J. L.; Indebetouw, R.; Jones, O.; Kawamura, A.; Lagadec, E.; Lawton, B.; Leisenring, J. M.; Madden, S. C.; Marengo, M.; Matsuura, M.; McDonald, I.; McGuire, C.; Meixner, M.; Mulia, A. J.; O'Halloran, B.; Oliveira, J. M.; Paladini, R.; Paradis, D.; Reach, W. T.; Rubin, D.; Sandstrom, K.; Sargent, B. A.; Sewilo, M.; Shiao, B.; Sloan, G. C.; Speck, A. K.; Srinivasan, S.; Szczerba, R.; Tielens, A. G. G. M.; van Aarle, E.; van Dyk, S. D.; van Loon, J. T.; van Winckel, H.; Vijh, U. P.; Volk, K.; Whitney, B. A.; Wilkins, A. N.; Zijlstra, A. A.

    2010-11-01

    The Spitzer SAGE-Spec program (PID: 40159) consists of 224.6hr of spectroscopic observations of targets in the LMC. The targets included point sources and extended regions, both of which were observed using the IRS low-resolution and MIPS SED modes. Observations were done in the IRS staring mode for 196 point sources, and 48 point sources were observed in MIPS SED mode. In addition, 10 extended regions were mapped in both the MIPS SED and IRS observing modes. (4 data files).

  20. Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path toward Breaking Strong Microlens Degeneracies

    NASA Astrophysics Data System (ADS)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.; Calchi Novati, S.; Bond, I. A.; Han, C.; Hundertmark, M.; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Soszyński, I.; Ulaczyk, K.; OGLE Group; and; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Gould, A.; Henderson, C. B.; Pogge, R. W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Abe, F.; Asakura, Y.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Inayama, K.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Nishioka, T.; Ohnishi, K.; Oyokawa, H.; Rattenbury, N.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Wakiyama, Y.; Yonehara, A.; MOA Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Dominik, M.; Jørgensen, U. G.; Andersen, M. I.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Kains, N.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Rasmussen, R. T.; Scarpetta, G.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; Surdej, J.; Unda-Sanzana, E.; von Essen, C.; Wang, Y.-B.; Wertz, O.; MiNDSTEp; Maoz, D.; Friedmann, M.; Kaspi, S.; Wise Group

    2016-03-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.

  1. Machine-learning identification of galaxies in the WISE × SuperCOSMOS all-sky catalogue

    NASA Astrophysics Data System (ADS)

    Krakowski, T.; Małek, K.; Bilicki, M.; Pollo, A.; Kurcz, A.; Krupa, M.

    2016-11-01

    Context. The two currently largest all-sky photometric datasets, WISE and SuperCOSMOS, have been recently cross-matched to construct a novel photometric redshift catalogue on 70% of the sky. Galaxies were separated from stars and quasars through colour cuts, which may leave imperfections because different source types may overlap in colour space. Aims: The aim of the present work is to identify galaxies in the WISE × SuperCOSMOS catalogue through an alternative approach of machine learning. This allows us to define more complex separations in the multi-colour space than is possible with simple colour cuts, and should provide a more reliable source classification. Methods: For the automatised classification we used the support vector machines (SVM) learning algorithm and employed SDSS spectroscopic sources that we cross-matched with WISE × SuperCOSMOS to construct the training and verification set. We performed a number of tests to examine the behaviour of the classifier (completeness, purity, and accuracy) as a function of source apparent magnitude and Galactic latitude. We then applied the classifier to the full-sky data and analysed the resulting catalogue of candidate galaxies. We also compared the resulting dataset with the one obtained through colour cuts. Results: The tests indicate very high accuracy, completeness, and purity (>95%) of the classifier at the bright end; this deteriorates for the faintest sources, but still retains acceptable levels of 85%. No significant variation in the classification quality with Galactic latitude is observed. When we applied the classifier to all-sky WISE × SuperCOSMOS data, we found 15 million galaxies after masking problematic areas. The resulting sample is purer than the one produced by applying colour cuts, at the price of a lower completeness across the sky. Conclusions: The automatic classification is a successful alternative approach to colour cuts for defining a reliable galaxy sample. The identifications we

  2. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; Uchid, K. I.

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  3. The impact of endorsing Spitzer's proposed criteria for PTSD in the forthcoming DSM-V on male and female Veterans.

    PubMed

    Miller, Lyndsey N; Chard, Kathleen M; Schumm, Jeremiah A; O'Brien, Carol

    2011-06-01

    This study explored differences between Spitzer's proposed model of posttraumatic stress disorder (PTSD) and the current DSM-IV diagnostic classification scheme in 353 Veterans. The majority of Veterans (89%) diagnosed with PTSD as specified in the DSM-IV also met Spitzer's proposed criteria. Veterans who met both DSM-IV and Spitzer's proposed criteria had significantly higher Clinician Administered PTSD Scale severity scores than Veterans only meeting DSM-IV criteria. Logistic regression indicated that being African American and having no comorbid diagnosis of major depressive disorder or history of a substance use disorder were found to predict those Veterans who met current, but not proposed criteria. These findings have important implications regarding proposed changes to the diagnostic classification criteria for PTSD in the forthcoming DSM-V.

  4. Execution of the Spitzer In-orbit Checkout and Science Verification Plan

    NASA Technical Reports Server (NTRS)

    Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.

    2004-01-01

    The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges

  5. The Stratospheric Observatory for Infrared Astronomy (SOFIA) - next step after Spitzer/Herschel

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a Boeing 747B fitted with a powerful 2.5m infrared telescope that operates at altitudes of 12-14km and observes light from the near-IR to the far-IR wavelength range that is blocked to reach the ground by the Earth's atmosphere (mainly due to water vapor). SOFIA is a joint project between NASA and the German Aerospace Agency (DLR). This new airborne Observatory started early science observations in 2010 and has recently reached full operational capability, with a suite fo currently 4 instruments (and two more to be commissioned) in Cycle 2. Scientific highlights will be presented which include mid-IR broad-band imaging and far-IR high-resolution spectroscopic results which go beyond those of Spitzer and Herschel (star formation studies and astrochemistry). SOFIA will have a projected lifetime of 20 yrs and will be the premier mid- and far-infrared facility in the post-Spitzer and post-Herschel era for many years to come.

  6. Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ruffle, Paul M. E.; Kemper, F.; Jones, O. C.; Sloan, G. C.; Kraemer, K. E.; Woods, Paul M.; Boyer, M. L.; Srinivasan, S.; Antoniou, V.; Lagadec, E.; Matsuura, M.; McDonald, I.; Oliveira, J. M.; Sargent, B. A.; Sewiło, M.; Szczerba, R.; van Loon, J. Th.; Volk, K.; Zijlstra, A. A.

    2015-08-01

    The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.

  7. A SPITZER VIEW OF STAR FORMATION IN THE CYGNUS X NORTH COMPLEX

    SciTech Connect

    Beerer, I. M.; Koenig, X. P.; Hora, J. L.; Keto, E.; Smith, H. A.; Fazio, G. G.; Gutermuth, R. A.; Bontemps, S.; Schneider, N.; Megeath, S. T.; Motte, F.; Simon, R.; Allen, L. E.; Kraemer, K. E.; Price, S.; Mizuno, D.; Adams, J. D.; Hernandez, J.; Lucas, P. W.

    2010-09-01

    We present new images and photometry of the massive star-forming complex Cygnus X obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. A combination of IRAC, MIPS, UKIRT Deep Infrared Sky Survey, and Two Micron All Sky Survey data are used to identify and classify young stellar objects (YSOs). Of the 8231 sources detected exhibiting infrared excess in Cygnus X North, 670 are classified as class I and 7249 are classified as class II. Using spectra from the FAST Spectrograph at the Fred L. Whipple Observatory and Hectospec on the MMT, we spectrally typed 536 sources in the Cygnus X complex to identify the massive stars. We find that YSOs tend to be grouped in the neighborhoods of massive B stars (spectral types B0 to B9). We present a minimal spanning tree analysis of clusters in two regions in Cygnus X North. The fraction of infrared excess sources that belong to clusters with {>=}10 members is found to be 50%-70%. Most class II objects lie in dense clusters within blown out H II regions, while class I sources tend to reside in more filamentary structures along the bright-rimmed clouds, indicating possible triggered star formation.

  8. VizieR Online Data Catalog: Spitzer observations of Taurus members (Luhman+, 2010)

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2016-03-01

    For our census of the disk population in Taurus, we use images at 3.6, 4.5, 5.8, and 8.0um obtained with Spitzer's Infrared Array Camera (IRAC) and images at 24um obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The cameras produced images with FWHM=1.6"-1.9" from 3.6 to 8.0um and FWHM=5.9" at 24um. The available data were obtained through Guaranteed Time Observations for PID = 6, 36, 37 (G. Fazio), 53 (G. Rieke), 94 (C. Lawrence), 30540 (G. Fazio, J. Houck), and 40302 (J. Houck), Director's Discretionary Time for PID = 462 (L. Rebull), Legacy programs for PID = 139, 173 (N. Evans), and 30816 (D. Padgett), and General Observer programs for PID = 3584 (D. Padgett), 20302 (P. Andre), 20386 (P. Myers), 20762 (J. Swift), 30384 (T. Bourke), 40844 (C. McCabe), and 50584 (D. Padgett). The IRAC and MIPS observations were performed through 180 and 137 Astronomical Observation Requests (AORs), respectively. The characteristics of the resulting images are summarized in Tables 1 and 2. (6 data files).

  9. Spitzer IRAC Sparsely Sampled Phase Curve of the Exoplanet Wasp-14B

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Ingalls, J.; Carey, S.; von Braun, K.; Kane, S. R.; Ciardi, D.; Plavchan, P.; Wong, I.; Lowrance, P.

    2016-06-01

    Motivated by a high Spitzer IRAC oversubscription rate, we present a new technique of randomly and sparsely sampling the phase curves of hot Jupiters. Snapshot phase curves are enabled by technical advances in precision pointing as well as careful characterization of a portion of the central pixel on the array. This method allows for observations which are a factor of approximately two more efficient than full phase curve observations, and are furthermore easier to insert into the Spitzer observing schedule. We present our pilot study from this program using the exoplanet WASP-14b. Data of this system were taken both as a sparsely sampled phase curve as well as a staring-mode phase curve. Both data sets, as well as snapshot-style observations of a calibration star, are used to validate this technique. By fitting our WASP-14b phase snapshot data set, we successfully recover physical parameters for the transit and eclipse depths as well as the amplitude and maximum and minimum of the phase curve shape of this slightly eccentric hot Jupiter. We place a limit on the potential phase to phase variation of these parameters since our data are taken over many phases over the course of a year. We see no evidence for eclipse depth variations compared to other published WASP-14b eclipse depths over a 3.5 year baseline.

  10. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  11. OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

    SciTech Connect

    Moustakas, John; Kennicutt, Robert C. Jr.; Tremonti, Christy A.; Dale, Daniel A.; Smith, John-David T.; Calzetti, Daniela

    2010-10-15

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publicly available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

  12. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dweek, Eli; Blair, William P.; Ghavamian, Parviz; Hwang, Una; Long, Knox X.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-01-01

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 micrometers shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  13. Spitzer Verification of the Coldest WISE-selected Brown Dwarfs. II.

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy; Gelino, Christopher; Griffith, Roger; Cushing, Michael; Skrutskie, Michael; Mainzer, Amanda; Marsh, Kenneth; Wright, Edward; Eisenhardt, Peter

    2011-05-01

    We will use data from WISE to search for brown dwarfs colder than those currently known. The discovery and subsequent study of low-temperature brown dwarfs will expand our knowledge of the low-mass end of the 'stellar' mass function and of the physics of low-Teff, high-pressure atmospheres, the latter of which is important in characterizing exoplanets. Spitzer is an important component in the WISE discovery process because it is the only observatory capable of providing deeper imaging in the same wavelength range used by WISE to select candidates (3 to 5 um). Our WISE selection process uses the W1 (3.4 um) and W2 (4.6 um) color to identify brown dwarf candidates; the resulting, red W1-W2 colors are indicative of deep methane absorption at 3.3 um. For our coldest sources, which are the most important for deciphering the low-mass cutoff of star formation, these will be color limits because the candidate is undetected in W1. Spitzer can easily provide much deeper imaging and measure robust ch1-ch2 colors, which are complementary to W1-W2. The reddest of these sources will also be the faintest since they are expected to be the coldest ones in the list.

  14. Sensitive Spitzer Photometry of Supermassive Black Holes at the Final Stage of Adolescence

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    2011-05-01

    We propose to obtain sensitive Spitzer snapshot observations of a unique sample of 35 Sloan Digital Sky Survey quasars at redshift 4.8 for which we obtained reliable, Mg II-based determinations of the supermassive black hole (SMBH) mass and normalized accretion rate (L/L_Edd). These quasars appear to mark the final stage of SMBH `adolescence' in the history of the Universe as their SMBHs are significantly less massive and their L/L_Edd values are significantly higher with respect to their counterparts at lower redshifts. Our observations will provide both 1) deep coverage of the fields around these quasars which will be utilized as crucial priors for our approved Herschel/SPIRE observations of these sources, and 2) coverage of the rest-frame optical SEDs of these fast accreting quasars. The results will maximize our ability to measure the star-formation rate in the host galaxies of these quasars using Herschel. We will thus be able to investigate correlations between SMBH growth and star-forming activity in the early Universe. The Spitzer photometry will also provide invaluable information about the shape of the rest-frame optical continuum in these quasars which will be used to search for extreme disk properties that may be signatures of the remarkably high accretion rates in these sources.

  15. Enhancement of the Spitzer Infrared Array Camera (IRAC) distortion correction for parallax measurements

    NASA Astrophysics Data System (ADS)

    Lowrance, Patrick J.; Carey, Sean J.; Ingalls, James G.; Surace, Jason A.; Capak, Peter; Stauffer, John; Beichman, Chas; Shupe, David; Kirkpatrick, J. Davy

    2014-08-01

    The Spitzer Space Telescope Infrared Array (IRAC) offers a rare opportunity to measure distances and determine physical properties of the faintest and coldest brown dwarfs. The current distortion correction is a 3rd order polynomial represented by TAN-SIP parameters within the headers. The current correction, good to 100 mas, was derived from deep imaging, using marginally resolved galaxies in some cases, and has remained stable throughout both the cryogenic and warm mission. Using recent Spitzer calibration observations mapped to HST/ACS calibration observations of 47 Tuc with an absolute accuracy good to 1 mas, we are working towards a possible 5th order polynomial correction that theoretically could allow measurements to within 20 mas. Extensive testing, using observations of 47 Tuc, NGC 6791 and NGC 2264, are underway, after which the new parameters will be used to update all the 3.6 and 4.5um data taken within warm and cryogenic missions. We anticipate if achievable, this new accuracy could be combined with other ongoing enhancements (Ingalls et al, 9143-52) that will permit measurements of parallaxes out to about 50 pc, increasing the volume surveyed by a factor of 100, and enabling new capabilities such as luminosity measurements of the population of young brown dwarfs in the beta Pictoris moving group.

  16. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    SciTech Connect

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B.; Udalski, A.; Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Han, C.; Bozza, V.; Novati, S. Calchi; Friedmann, M.; Hundertmark, M.; Beichman, C.; Carey, S.; Kerr, T.; Varricatt, W.; Yee, J. C.; Collaboration: and; Spitzer team; OGLE group; KMTNet group; Wise group; RoboNet; MiNDSTEp; and others

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  17. VizieR Online Data Catalog: SpIES: the Spitzer IRAC Equatorial Survey (Timlin+, 2016)

    NASA Astrophysics Data System (ADS)

    Timlin, J. D.; Ross, N. P.; Richards, G. T.; Lacy, M.; Ryan, E. L.; Stone, R. B.; Bauer, F. E.; Brandt, W. N.; Fan, X.; Glikman, E.; Haggard, D.; Jiang, L.; Lamassa, S. M.; Lin, Y.-T.; Makler, M.; McGehee, P.; Myers, A. D.; Schneider, D. P.; Megan Urry, C.; Wollack, E. J.; Zakamska, N. L.

    2016-09-01

    The observational goal of the SpIES project was to map SDSS Stripe 82 (S82) field located on the Celestial Equator spanning a range of -60°<=α<=60° and -1.25°<=δ<=1.25°. The SpIES observations cover approximately one-third of this region centered on δ=0° and spanning the range from -30°<=α<=35°. See section 2 for further explanations. Spitzer-IRAC Equatorial Survey (SpIES) data were obtained as part of Cycle 9 (2012-2014) of the Spitzer "warm" post-cryogenic mission utilizing the first two channels (3.6 and 4.5um) of IRAC. In total, SpIES is comprised of 154 individual Astronomical Observation Requests (AORs) observed over two epochs separated by no less than five hours in time (77 AORs per epoch), which corresponds to ~70000 IRAC FOVs spanning the full survey area. See section 3 for further explanations. (4 data files).

  18. Diagnosing the Black Hole Accretion Physics of Sgr A*: Spitzer/Chandra Observations

    NASA Astrophysics Data System (ADS)

    Hora, Joseph L.; Fazio, Giovanni G.; Willner, Steven P.; Gurwell, Mark A.; Smith, Howard Alan; Ashby, Matthew; Baganoff, Frederick K.; Witzel, Gunther; Morris, Mark; Ghez, Andrea M.; Meyer, Leo; Becklin, Eric E.; Ingalls, James G.; Glaccum, William J.; Carey, Sean J.; Haggard, Daryl; Marrone, Daniel P.; Gammie, Charles F.

    2017-01-01

    The Galactic center offers the closest opportunity for studying accretion onto a supermassive black hole. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and its flux may originate in either the accretion flow or a jet, or both. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Following our successful Spitzer observations of the variability of Sgr A* in 2013 and 2014, we have undertaken a program of simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. In addition, several ground-based observatories participated in the campaigns, at wavelengths including radio, sub-mm, and the near-infrared. We will present initial Spitzer/Chandra results from the two 24-hour epochs in 2016 July. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon.

  19. Spitzer IRAC mid-infrared photometry of 500-750 brown dwarf

    SciTech Connect

    Saumon, Didier; Leggett, Sandy K; Albert, Loic; Artigau, Etienne; Burningham, Ben; Delfosse, Xavier; Delorme, Philippe; Forveille, Thierry; Lucas, Philip W; Marley, Mark S; Pinfield, David J; Reyle, Celine; Smart, Richard L; Warren, Stephen J

    2010-10-26

    Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T{sub eff}) drops from 800K to 400K, the fraction of flux emitted beyond 3 {mu}m increases rapidly, from about 40% to > 75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon and Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T{sub eff} {approx} 500K to 750K.

  20. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE II LEGACY SURVEY

    SciTech Connect

    Zhang Yong; Sun Kwok E-mail: sunkwok@hku.h

    2009-11-20

    We report the result of a search for the infrared counterparts of 37 planetary nebulae (PNs) and PN candidates in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire II (GLIMPSE II) survey. The photometry and images of these PNs at 3.6, 4.5, 5.8, 8.0, and 24 mum, taken through the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS), are presented. Most of these nebulae are very red and compact in the IRAC bands, and are found to be bright and extended in the 24 mum band. The infrared morphology of these objects are compared with Halpha images of the Macquarie-AAO-Strasbourg (MASH) and MASH II PNs. The implications for morphological difference in different wavelengths are discussed. The IRAC data allow us to differentiate between PNs and H II regions and be able to reject non-PNs from the optical catalog (e.g., PNG 352.1 - 00.0). Spectral energy distributions are constructed by combing the IRAC and MIPS data with existing near-, mid-, and far-IR photometry measurements. The anomalous colors of some objects allow us to infer the presence of aromatic emission bands. These multi-wavelength data provide useful insights into the nature of different nebular components contributing to the infrared emission of PNs.

  1. Spitzer Photometry of  ~1 Million Stars in M31 and 15 Other Galaxies

    NASA Astrophysics Data System (ADS)

    Khan, Rubab

    2017-01-01

    We present Spitzer IRAC 3.6–8 μm and Multiband Imaging Photometer 24 μm point-source catalogs for M31 and 15 other mostly large, star-forming galaxies at distances ∼3.5–14 Mpc, including M51, M83, M101, and NGC 6946. These catalogs contain ∼1 million sources including ∼859,000 in M31 and ∼116,000 in the other galaxies. They were created following the procedures described in Khan et al. through a combination of point-spread function (PSF) fitting and aperture photometry. These data products constitute a resource to improve our understanding of the IR-bright (3.6–24 μm) point-source populations in crowded extragalactic stellar fields and to plan observations with the James Webb Space Telescope. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  2. SPITZER OBSERVATIONS OF DUST DESTRUCTION IN THE PUPPIS A SUPERNOVA REMNANT

    SciTech Connect

    Arendt, Richard G.; Dwek, Eli; Blair, William P.; Hwang, Una; Ghavamian, Parviz; Long, Knox S.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-12-10

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 {mu}m shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  3. The Formation and Evolution of Planetary Systems: First Results from a Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Meyer, M. R.; Hillenbrand, L. A.; Backman, D. E.; Beckwith, S. V. W.; Bouwman, J.; Brooke, T. Y.; Carpenter, J. M.; Cohen, M.; Gorti, U.; Henning, T.; Hines, D. C.; Hollenbach, D.; Kim, J. S.; Lunine, J.; Malhotra, R.; Mamajek, E. E.; Metchev, S.; Moro-Martin, A.; Morris, P.; Najita, J.; Padgett, D. L.; Rodmann, J.; Silverstone, M. D.; Soderblom, D. R.; Stauffer, J. R.; Stobie, E. B.; Strom, S. E.; Watson, D. M.; Weidenschilling, S. J.; Wolf, S.; Young, E.; Engelbracht, C. W.; Gordon, K. D.; Misselt, K.; Morrison, J.; Muzerolle, J.; Su, K.

    2004-09-01

    We present 3-160 μm photometry obtained with the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) instruments for the first five targets from the Spitzer Space Telescope Legacy Science Program ``Formation and Evolution of Planetary Systems'' and 4-35 μm spectrophotometry obtained with the Infrared Spectrograph (IRS) for two sources. We discuss in detail our observations of the debris disks surrounding HD 105 (G0 V, 30+/-10 Myr) and HD 150706 (G3 V, ~700+/-300 Myr). For HD 105, possible interpretations include large bodies clearing the dust inside of 45 AU or a reservoir of gas capable of sculpting the dust distribution. The disk surrounding HD 150706 also exhibits evidence of a large inner hole in its dust distribution. Of the four survey targets without previously detected IR excess, spanning ages 30 Myr to 3 Gyr, the new detection of excess in just one system of intermediate age suggests a variety of initial conditions or divergent evolutionary paths for debris disk systems orbiting solar-type stars.

  4. Spitzer Microlens Measurement of a Massive Remnant in a Well-separated Binary

    NASA Astrophysics Data System (ADS)

    Shvartzvald, Y.; Udalski, A.; Gould, A.; Han, C.; Bozza, V.; Friedmann, M.; Hundertmark, M.; and; Beichman, C.; Bryden, G.; Calchi Novati, S.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Kerr, T.; Pogge, R. W.; Varricatt, W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Maoz, D.; Kaspi, S.; Wise Group; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Bramich, D. M.; Horne, Keith; Snodgrass, C.; Steele, I. A.; Menzies, J.; Figuera Jaimes, R.; Wambsganss, J.; Schmidt, R.; Cassan, A.; Ranc, C.; Mao, S.; Dong, Subo; RoboNet; D'Ago, G.; Scarpetta, G.; Verma, P.; Jørgensen, U. G.; Kerins, E.; Skottfelt, J.; MiNDSTEp

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  5. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 storm-hazard projections

    USGS Publications Warehouse

    Barnard, Patrick; Erikson, Li; O'Neill, Andrea; Foxgrover, Amy; Herdman, Liv

    2017-01-01

    The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future SLR scenarios, as well as long-term shoreline change and cliff retreat.  Resulting projections for future climate scenarios (sea-level rise and storms) provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Several versions of CoSMoS have been implemented for areas of the California coast, including Southern California, Central California, and San Francisco Bay, and further versions will be incorporated as additional regions and improvements are developed.

  6. Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2015-09-01

    We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.

  7. CoSMoS v3.0 Phase 2 flood-hazard projections: San Diego County

    USGS Publications Warehouse

    Barnard, Patrick; Erikson, Li; O'Neill, Andrea; Foxgrover, Amy; Herdman, Liv

    2016-01-01

    CoSMoS (Coastal Storm Modeling System) v3.0 for Southern California. Phase 2 data for Southern California include flood-hazard information for a variety of storm conditions and sea-level rise scenarios. Several changes from Phase 1 projections are reflected in many areas. Data will be disseminated by county, with San Diego County being the first of Phase 2 data releases.

  8. VizieR Online Data Catalog: Type-2 AGN from XMM-COSMOS bolometric output (Lusso+, 2011)

    NASA Astrophysics Data System (ADS)

    Lusso, E.; Comastri, A.; Vignali, C.; Zamorani, G.; Treister, E.; Sanders, D.; Bolzonella, M.; Bongiorno, A.; Brusa, M.; Civano, F.; Gilli, R.; Mainieri, V.; Nair, P.; Aller, M.; Carollo, M.; Koekemoer, A. M.; Merloni, A.; Trump, J. R.

    2011-09-01

    Study of the multi-wavelength properties of a sample of 255 spectroscopically identified X-ray selected Type-2 AGN from the XMM-COSMOS survey. For each source, X-ray ID, spectroscopic redshift, logarithm of the 2-10keV luminosity, logarithm of the bolometric luminosity, bolometric correction, logarithm of the stellar mass, star formation rate, absolute magnitude MU, absolute magnitude MV, absolute magnitude MJ (Johnson-Kron-Cousin system), morphological class. (1 data file).

  9. The COSMOS-WIRCam Near-Infrared Imaging Survey. I. BzK-Selected Passive and Star-Forming Galaxy Candidates at z gsim 1.4

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Capak, P.; Salvato, M.; Aussel, H.; Thompson, D.; Daddi, E.; Sanders, D. B.; Kneib, J.-P.; Willott, C. J.; Mancini, C.; Renzini, A.; Cook, R.; Le Fèvre, O.; Ilbert, O.; Kartaltepe, J.; Koekemoer, A. M.; Mellier, Y.; Murayama, T.; Scoville, N. Z.; Shioya, Y.; Tanaguchi, Y.

    2010-01-01

    We present a new near-infrared survey covering the 2 deg2 COSMOS field conducted using WIRCam at the Canada-France-Hawaii Telescope. By combining our near-infrared data with Subaru B and z images, we construct a deep, wide-field optical-infrared catalog. At K s < 23 (AB magnitudes), our survey completeness is greater than 90% and 70% for stars and galaxies, respectively, and contains 143,466 galaxies and 13,254 stars. Using the BzK diagram, we divide our galaxy catalog into quiescent and star-forming galaxy candidates. At z ~ 2, our catalogs contain 3931 quiescent and 25,757 star-forming galaxies representing the largest and most secure sample at these depths and redshifts to date. Our counts of quiescent galaxies turns over at K s ~ 22, an effect that we demonstrate cannot be due to sample incompleteness. Both the number of faint and bright quiescent objects in our catalogs exceed the predictions of a recent semi-analytic model of galaxy formation, indicating potentially the need for further refinements in the amount of merging and active galactic nucleus feedback at z ~ 2 in these models. We measure the angular correlation function for each sample and find that the slope of the field galaxy correlation function flattens to 1.5 by K s ~ 23. At small angular scales, the angular correlation function for passive BzK galaxies is considerably in excess of the clustering of dark matter. We use precise 30-band photometric redshifts to derive the spatial correlation length and the redshift distributions for each object class. At K s < 22, we find r γ/1.8 0 = 7.0 ± 0.5h -1 Mpc for the passive BzK candidates and 4.7 ± 0.8 h -1 Mpc for the star-forming BzK galaxies. Our pBzK galaxies have an average photometric redshift of zp ~ 1.4, in approximate agreement with the limited spectroscopic information currently available. The stacked K s image will be made publicly available from IRSA. Based on data collected at the Subaru Telescope, which is operated by the National

  10. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    SciTech Connect

    Civano, F.; Elvis, M.; Lanzuisi, G.; Hao, H.; Aldcroft, T.; Jahnke, K.; Zamorani, G.; Comastri, A.; Bolzonella, M.; Blecha, L.; Loeb, A.; Bongiorno, A.; Brusa, M.; Leauthaud, A.; Mainieri, V.; Piconcelli, E.; Salvato, M.; Scoville, N.; Trump, J.; Vignali, C.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.

  11. Multi-wavelength SEDs of Herschel-selected Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Scoville, N. Z.; Hung, Chao-Ling; Le Floc'h, Emeric; Ilbert, Olivier; Aussel, Hervé; Capak, Peter; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Salvato, Mara; Aravena, M.; Berta, S.; Bock, J.; Oliver, S. J.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg2 Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L IR/L ⊙) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λpeak) decreases and the dust mass (M dust) increases with increasing total infrared luminosity (L IR). In the lowest infrared luminosity galaxies (log(L IR/L ⊙) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ~ 7-9 μm), while in the highest infrared luminosity galaxies (L IR > 1012 L ⊙) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M * "main sequence" as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L IR/L 8, and find that galaxies with L IR >~ 1011.3 L ⊙ tend to systematically lie above (× 3-5) the IR8 "infrared main sequence," suggesting either suppressed PAH emission or an increasing contribution from AGN heating.

  12. Multi-wavelength seds of Herschel-selected galaxies in the cosmos field

    SciTech Connect

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Hung, Chao-Ling; Scoville, N. Z.; Capak, Peter; Bock, J.; Le Floc'h, Emeric; Aussel, Hervé; Ilbert, Olivier; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Oliver, S. J.; Salvato, Mara; Aravena, M.; Berta, S.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from

  13. PROTO-GROUPS AT 1.8 < z < 3 IN THE zCOSMOS-DEEP SAMPLE

    SciTech Connect

    Diener, C.; Lilly, S. J.; Knobel, C.; Kampczyk, P.; Carollo, C. M.; Caputi, K.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Lemson, G.; Scoville, N.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Renzini, A.; Scodeggio, M.; Bongiorno, A.; Cucciati, O.; De la Torre, S.; and others

    2013-03-10

    We identify 42 ''candidate groups'' lying between 1.8 < z < 3.0 from a sample of 3502 galaxies with spectroscopic redshifts in the zCOSMOS-deep redshift survey within this same redshift interval. These systems contain three to five spectroscopic galaxies that lie within 500 kpc in projected distance (in physical space) and within 700 km s{sup -1} in velocity. Based on extensive analysis of mock catalogs that have been generated from the Millennium simulation, we examine the likely nature of these systems at the time of observation, and what they will evolve into down to the present epoch. Although few of the ''member'' galaxies are likely to reside in the same halo at the epoch we observe them, 50% of the systems will have, by the present epoch, all of the member galaxies in the same halo, and almost all (93%) will have at least some of the potential members in the same halo. Most of the candidate groups can therefore be described as ''proto-groups''. A crude estimate of the overdensities of these structures is also consistent with the idea that these systems are being seen as they assemble. We also examine present-day halos and ask whether their progenitors would have been seen among our candidate groups. For present-day halos between 10{sup 14} and 10{sup 15} M{sub Sun} h {sup -1}, 35% should have appeared among our candidate groups, and this would have risen to 70% if our survey had been fully sampled, so we can conclude that our sample can be taken as representative of a large fraction of such systems. There is a clear excess of massive galaxies above 10{sup 10} M{sub Sun} around the locations of the candidate groups in a large independent COSMOS photo-z sample, but we see no evidence in this latter data for any color differentiation with respect to the field. This is, however, consistent with the idea that such differentiation arises in satellite galaxies, as indicated at z < 1, if the candidate groups are indeed only starting to be assembled.

  14. Proto-groups at 1.8 < z < 3 in the zCOSMOS-deep Sample

    NASA Astrophysics Data System (ADS)

    Diener, C.; Lilly, S. J.; Knobel, C.; Zamorani, G.; Lemson, G.; Kampczyk, P.; Scoville, N.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Pello, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Coppa, G.; Koekemoer, A. M.; López-Sanjuan, C.; McCracken, H. J.; Moresco, M.; Nair, P.; Pozzetti, L.; Welikala, N.

    2013-03-01

    We identify 42 "candidate groups" lying between 1.8 < z < 3.0 from a sample of 3502 galaxies with spectroscopic redshifts in the zCOSMOS-deep redshift survey within this same redshift interval. These systems contain three to five spectroscopic galaxies that lie within 500 kpc in projected distance (in physical space) and within 700 km s-1 in velocity. Based on extensive analysis of mock catalogs that have been generated from the Millennium simulation, we examine the likely nature of these systems at the time of observation, and what they will evolve into down to the present epoch. Although few of the "member" galaxies are likely to reside in the same halo at the epoch we observe them, 50% of the systems will have, by the present epoch, all of the member galaxies in the same halo, and almost all (93%) will have at least some of the potential members in the same halo. Most of the candidate groups can therefore be described as "proto-groups." A crude estimate of the overdensities of these structures is also consistent with the idea that these systems are being seen as they assemble. We also examine present-day halos and ask whether their progenitors would have been seen among our candidate groups. For present-day halos between 1014 and 1015 M ⊙ h -1, 35% should have appeared among our candidate groups, and this would have risen to 70% if our survey had been fully sampled, so we can conclude that our sample can be taken as representative of a large fraction of such systems. There is a clear excess of massive galaxies above 1010 M ⊙ around the locations of the candidate groups in a large independent COSMOS photo-z sample, but we see no evidence in this latter data for any color differentiation with respect to the field. This is, however, consistent with the idea that such differentiation arises in satellite galaxies, as indicated at z < 1, if the candidate groups are indeed only starting to be assembled.

  15. Late-stage galaxy mergers in cosmos to z ∼ 1

    SciTech Connect

    Lackner, C. N.; Silverman, J. D.; Salvato, M.; Kampczyk, P.; Kartaltepe, J. S.; Sanders, D.; Lee, N.; Capak, P.; Scoville, N.; Civano, F.; Halliday, C.; Ilbert, O.; Le Fèvre, O.; Jahnke, K.; Koekemoer, A. M.; Liu, C. T.; Sheth, K.

    2014-12-01

    The role of major mergers in galaxy and black hole formation is not well-constrained. To help address this, we develop an automated method to identify late-stage galaxy mergers before coalescence of the galactic cores. The resulting sample of mergers is distinct from those obtained using pair-finding and morphological indicators. Our method relies on median-filtering of high-resolution images to distinguish two concentrated galaxy nuclei at small separations. This method does not rely on low surface brightness features to identify mergers, and is therefore reliable to high redshift. Using mock images, we derive statistical contamination and incompleteness corrections for the fraction of late-stage mergers. The mock images show that our method returns an uncontaminated (<10%) sample of mergers with projected separations between 2.2 and 8 kpc out to z∼1. We apply our new method to a magnitude-limited (m{sub FW} {sub 814}<23) sample of 44,164 galaxies from the COSMOS HST/ACS catalog. Using a mass-complete sample with logM{sub ∗}/M{sub ⊙}>10.6 and 0.25COSMOS, we find that the star formation rates and X-ray selected active galactic nucleus (AGN) activity in likely late-stage mergers are higher by factors of ∼2 relative to those of a control sample. Combining our sample with more

  16. Environmental Effects in the Interaction and Merging of Galaxies in zCOSMOS

    NASA Astrophysics Data System (ADS)

    Kampczyk, P.; Lilly, S. J.; de Ravel, L.; Le Fèvre, O.; Bolzonella, M.; Carollo, C. M.; Diener, C.; Knobel, C.; Kovač, K.; Maier, C.; Renzini, A.; Sargent, M. T.; Vergani, D.; Abbas, U.; Bardelli, S.; Bongiorno, A.; Bordoloi, R.; Caputi, K.; Contini, T.; Coppa, G.; Cucciati, O.; de la Torre, S.; Franzetti, P.; Garilli, B.; Iovino, A.; Kneib, J.-P.; Koekemoer, A. M.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Leauthaud, A.; Mainieri, V.; Mignoli, M.; Pello, R.; Peng, Y.; Perez Montero, E.; Ricciardelli, E.; Scodeggio, M.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Zamorani, G.; Zucca, E.; Bottini, D.; Cappi, A.; Cassata, P.; Cimatti, A.; Fumana, M.; Guzzo, L.; Kartaltepe, J.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Oesch, P.; Porciani, C.; Pozzetti, L.; Scaramella, R.

    2013-01-01

    We analyze the environments and galactic properties (morphologies and star formation histories) of a sample of 153 close kinematic pairs in the redshift range 0.2 < z < 1 identified in the zCOSMOS-bright 10 k spectroscopic sample of galaxies. Correcting for projection effects, the fraction of close kinematic pairs is three times higher in the top density quartile than in the lowest one. This translates to a three times higher merger rate because the merger timescales are shown, from mock catalogs based on the Millennium simulation, to be largely independent of environment once the same corrections for projection are applied. We then examine the morphologies and stellar populations of galaxies in the pairs, comparing them to control samples that are carefully matched in environment so as to remove as much of the well-known effects of environment on the properties of the parent population of galaxies as possible. Once the environment is properly taken into account in this way, we find that the early-late morphology mix is the same as for the parent population, but that the fraction of irregular galaxies is boosted by 50%-75%, with a disproportionate increase in the number of irregular-irregular pairs (factor of 4-8 times), due to the disturbance of disk galaxies. Future dry mergers, involving elliptical galaxies comprise less than 5% of all close kinematic pairs. In the closest pairs, there is a boost in the specific star formation rates of star-forming galaxies of a factor of 2-4, and there is also evidence for an increased incidence of post-starburst galaxies. Although significant for the galaxies involved, the "excess" star formation associated with pairs represents only about 5% of the integrated star formation activity in the parent sample. Although most pair galaxies are in dense environments, the effects of interaction appear to be largest in the lower density environments. By preferentially bringing more pairs into the sample in lower density environments

  17. Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS

    NASA Astrophysics Data System (ADS)

    Mainieri, V.; Bongiorno, A.; Merloni, A.; Aller, M.; Carollo, M.; Iwasawa, K.; Koekemoer, A. M.; Mignoli, M.; Silverman, J. D.; Bolzonella, M.; Brusa, M.; Comastri, A.; Gilli, R.; Halliday, C.; Ilbert, O.; Lusso, E.; Salvato, M.; Vignali, C.; Zamorani, G.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Renzini, A.; Scodeggio, M.; Balestra, I.; Bardelli, S.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Nair, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Pozzetti, L.; Ricciardelli, E.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Aussel, H.; Capak, P.; Cappelluti, N.; Elvis, M.; Fiore, F.; Hasinger, G.; Impey, C.; Le Floc'h, E.; Scoville, N.; Taniguchi, Y.; Trump, J.

    2011-11-01

    Aims: We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime ( ⟨ Lbol ⟩ = 8 × 1045 erg s-1) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion. Methods: To derive robust estimates of the host galaxy properties, we use an SED fitting technique to distinguish the AGN and host galaxy emission. We evaluate the effect on galaxy properties estimates of being unable to remove the nuclear emission from the SED. The superb multi-wavelength coverage of the COSMOS field allows us to obtain reliable estimates of the total stellar masses and star formation rates (SFRs) of the hosts. We supplement this information with a morphological analysis of the ACS/HST images, optical spectroscopy, and an X-ray spectral analysis. Results: We confirm that obscured quasars mainly reside in massive galaxies (M ⋆ > 1010M⊙) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. We stress the limitation of the use of rest-frame color - magnitude diagrams as a diagnostic tool for studying galaxy evolution and inferring the influence that AGN activity can have on such a process. We instead use the correlation between SFR and stellar mass found for star-forming galaxies to discuss the physical properties of the hosts. We find that at z ~ 1, ≈62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ≈ 71% at z ~ 2, and 100% at z ~ 3. We also find that the evolution from z ~ 1 to z ~ 3 of the specific SFR of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies. From the morphological analysis, we conclude that most of the objects are bulge

  18. Adding Emission Line Diagnostics To The Infrared Database of Extragalactic Observables from Spitzer (IDEOS)

    NASA Astrophysics Data System (ADS)

    Spoon, Henrik

    During the cryogenic phase of the successful Spitzer mission the Infrared Spectrograph (IRS) made observations of about 15,000 objects. Among these are low-resolution (highresolution) spectra of more than 4200 (1800) galaxies beyond the Local Group. Results have been published in a great number of papers, led not only by hardcore infrared observers but increasingly also by non-native infrared astronomers. As the PI team of the IRS instrument, we are especially proud of the achievements of the IRS spectrograph, and we feel a special obligation to enhance the legacy value of its many observations. In 2011 we completed the Cornell Atlas of Spitzer-IRS Sources (CASSIS), containing homogeneously, expert-reduced low-resolution IRS spectra for over 13,000 observations. Earlier this year we added more than 7,000 spectra obtained with the high-resolution modules. All of these spectra benefit from the availability of our empirically derived super-sampled point-spread functions, which reduce the effects of bad and low-level rogue pixels in all IRS modules. All spectra are available for download from our CASSIS web portal. Building on this legacy, in 2013 we also started working on the soon to be completed Infrared Database of Extragalactic Observables from Spitzer (IDEOS), which contains mid-IR observables extracted from the low-resolution spectra in CASSIS. IDEOS provides astronomers with widely varying scientific interests access to diagnostics that were previously available only for limited samples, or available on the-fly only to expert users. Here we propose to continue these efforts by measuring the emission line fluxes for 3,000-4,500 galaxies in the CASSIS atlas to add powerful emission line diagnostics to our existing suite of mid-IR observables in IDEOS. IDEOS will be a great asset for future users of NASA's James Webb Space Telescope to select their samples and estimate required integration times. The completion of IDEOS will further coincide with the completion of

  19. Searching for Wide, Planetary-Mass Companions in Archival Spitzer/IRAC Data

    NASA Astrophysics Data System (ADS)

    Martinez, Raquel

    2017-01-01

    Over the past decade, a growing population of planetary-mass companions (< 20 MJup PMCs) orbiting young stars have been discovered. These objects are at wide separations (> 100 AU) from their host stars, challenging existing models of both star and planet formation. It is unclear whether these systems represent the low-mass extreme of stellar binary formation or the high-mass and wide-orbit extreme of planet formation theories, as various proposed formation pathways inadequately explain the physical and orbital aspects of these systems. Even so, determining which scenario best reproduces their observed characteristics will come once a statistically robust sample of directly-imaged PMCs are found and studied.We are searching for wide-orbit PMCs to young stars in Spitzer/IRAC images with an automated pipeline. A Markov Chain Monte Carlo (MCMC) algorithm is the backbone of our novel point spread function (PSF) subtraction routine that efficiently creates and subtracts a χ2-minimizing instrumental PSF, producing a residuals image that is also assessed to ascertain the presence of a potential companion. In this work, we present the preliminary results of a Spitzer/IRAC archival imaging study of 11 young, low-mass (0.044-0.88 M⊙ K3.5-M7.5) stars known to have faint, low-mass companions in 3 nearby star-forming regions (Chameleon, Taurus, and Upper Scorpius). Initial runs of the pipeline have recovered 7 of the companions from the 11 systems. An additional binary companion PSF-fitting pipeline is being developed to simultaneously measure astrometry and infrared photometry of these systems across the four IRAC channels (3.6 μm, 4.5 μm, 5.8 μm, and 8 μm). We also find 3 of these systems to have low-mass companions with non-zero [I1] - [I4] colors, potentially signifying the presence of a circum(sub?)stellar disk. Plans for future pipeline improvements and paths forward will also be detailed. Once this computational foundation is optimized, the stage is set to quickly

  20. Morphological parameters of a Spitzer survey of stellar structure in galaxies

    SciTech Connect

    Holwerda, B. W.; Muñoz-Mateos, J.-C.; Sheth, K.; Kim, T.; Meidt, S.; Mizusawa, T.; Hinz, J. L.; Zaritsky, D.; Regan, M. W.; Gil de Paz, A.; Menéndez-Delmestre, K.; Seibert, M.; Ho, L. C.; Gadotti, D. A.; Erroz-Ferrer, S. E-mail: benne.holwerda@gmail.com [Instituto de Astrofísica de Canarias, Vía Láctea s and others

    2014-01-20

    The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), asymmetry (A), smoothness (S), the Gini index (G), the relative contribution of the brightest pixels to the second-order moment of the flux (M {sub 20}), ellipticity (E), and the Gini index of the second-order moment (G{sub M} ) have all been applied to morphologically classify galaxies at various wavelengths. Here, we present a catalog of these parameters for the Spitzer Survey of stellar structure in Galaxies, a volume-limited, near-infrared (NIR) imaging survey of nearby galaxies using the 3.6 and 4.5 μm channels of the Infrared Array Camera on board the Spitzer Space Telescope. Our goal is to provide a reference catalog of NIR quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies—those typically found on the Hubble tuning fork—lie in this parameter space and show that there is a tight relation between concentration (C {sub 82}) and M {sub 20} for normal galaxies. M {sub 20} can be used to classify galaxies into earlier and later types (i.e., to separate spirals from irregulars). Several criteria using these parameters exist to select systems with a disturbed morphology, i.e., those that appear to be undergoing a tidal interaction. We examine the applicability of these criteria to Spitzer NIR imaging. We find that four relations, based on the parameters A and S, G and M {sub 20}, G{sub M} , C, and M {sub 20}, respectively, select outliers in morphological parameter space, but each selects different subsets of galaxies. Two criteria (G{sub M} > 0.6, G > –0.115 × M {sub 20} + 0.384) seem most appropriate to identify possible mergers and the merger fraction in NIR surveys. We find no strong relation between lopsidedness and most of these morphological parameters, except for a weak dependence of lopsidedness on

  1. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES

    SciTech Connect

    Pontoppidan, Klaus M.; Blake, Geoffrey A.; Meijerink, Rowin; Salyk, Colette; Carr, John S.; Najita, Joan

    2010-09-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 {mu}m molecular emission from a large sample of protoplanetary disks, including lines from H{sub 2}O, OH, C{sub 2}H{sub 2}, HCN, and CO{sub 2}. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star-forming regions, including Ophiuchus, Lupus, and Chamaeleon. Spectra showing strong emission lines are used to identify which lines are the best tracers of various physical and chemical conditions within the disks. In total, we identify 22 T Tauri stars with strong mid-infrared H{sub 2}O emission. Integrated water line luminosities, where water vapor is detected, range from 5 x 10{sup -4} to 9 x 10{sup -3} L{sub sun}, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the five transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H{sub 2}), but the sample is too small to conclude whether this is a general property of transitional disks. We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1%-2% line-to-continuum ratios, in the mid-infrared, while more than half of disks around late-type stars (M-G) show sufficiently intense water emission to be detected by Spitzer, with a detection rate approaching 2/3 for disks around K stars. Some Herbig Ae/Be stars show tentative H{sub 2}O/OH emission features beyond 20 {mu}m at the 1%-2% level, however, and one of them shows CO{sub 2} in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks are due to a

  2. Stellar Cartography: A Three-Dimensional View of the Magellanic System using Spitzer

    NASA Astrophysics Data System (ADS)

    Madore, Barry

    We will use the data obtained by the Spitzer SAGE-LMC, SAGE-SMC and SAGE-Var programs to measure the three-dimensional structure of the Magellanic System using Cepheids. Cepheids have been demonstrated to have a narrow period-luminosity relation in the mid-infrared, such that mean magnitudes, and hence distances, can be obtained with high precision. In the Magellanic System we will be able to obtain distances with precisions of 5% to individual Cepheids. Using around 5000 Cepheids --- a factor of 50 more than our previous works --- and with newly discovered Cepheids in the Magellanic Bridge, we will be able to study the 3D structure of the System at an unprecedented fidelity. Understanding the structure of the Magellanic System is key to understanding its evolutionary history. A more precise three dimensional representation of the system will enable us to distinguish between different theoretical models, such as those in which the Clouds experience a close pass and those in which they experience a merger event. We will create templates light curves to phase the mid--IR Cepheid observations with the publicly available optical OGLE light curves to determine accurate mean magnitudes for these stars. We will also create a deep field using the newly released SAGE—Var data in order to measure the old, RR Lyrae population for comparison with the young, Cepheid population. This project is complementary to the on-going Spitzer Exploration Science SMHASH program, which is studying the structure of the Milky Way using mid-infrared observations of RR Lyrae. We will be able to use the results from this work in concert with SMHASH to produce a 3D representation of the MW-LMC-SMC system, bypassing the systematics of using multiple telescopes. The project lays an excellent foundation for future JWST and WFIRST projects studying the evolution of dwarf galaxy systems. The in--depth study of the well resolved, interacting LMC-SMC pair that we will perform will be used as an

  3. Spitzer or neoclassical resistivity: A comparison between measured and model poloidal field profiles on PBX-M

    SciTech Connect

    Kaye, S.M.; Hatcher, R.; Kaita, R.; Kessel, C.; LeBlanc, B.; McCune, D.C.; Paul, S.; Levinton, F.M.

    1992-01-01

    Direct measurements of the radial profile of the magnetic field line pitch on PBX-M coupled with model predictions of these profiles allow a critical comparison with the Spitzer and neoclassical models of plasma parallel resistivity. The measurements of the magnetic field line pitch are made by Motional Stark Effect polarimetry, while the model profiles are determined by solving the poloidal field diffusion equation in the TRANSP transport code using measured plasma profiles and assuming either Spitzer or neoclassical resistivity. The measured field pitch profiles were available for only seven cases, and the model profiles were distinguishable from each other in only three of those cases due to finite resistive diffusion times. The data in two of these three were best matched by the Spitzer model, especially in the inner half of the plasma. Portions of the measured pitch profiles for these two cases and the full profiles for other cases, however, departed significantly from both the Spitzer and neoclassical models, indicating a plasma resistivity profile different from either model.

  4. VizieR Online Data Catalog: Spitzer/IRS survey of Class II objects in Orion A. I. (Kim+, 2016)

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Watson, D. M.; Manoj, P.; Forrest, W. J.; Furlan, E.; Najita, J.; Sargent, B.; Hernandez, J.; Calvet, N.; Adame, L.; Espaillat, C.; Megeath, S. T.; Muzerolle, J.; McClure, M. K.

    2016-10-01

    We present 319 Class II disks observed with Spitzer/IRS in the Orion A star-forming region. We described the Spitzer/IRS and IRTF/SpeX observations and data reduction process in Kim+ (2013, J/ApJ/769/149). The Orion A objects in this paper were selected based on the identification of young stars with disks by IRAC/Two Micron All Sky Survey (2MASS) color-color diagrams (Megeath+ 2012, J/AJ/144/192). We observed them using Spitzer/IRS during campaigns 36, 39, 40, and 44 between 2006 November and 2007 October. To this group we added 16 additional objects (5 in the ONC; 11 in L1641) that were reclassified as Class II from Class 0/I sources observed in the Orion A protostar survey by C. Poteet et al. (2016, in preparation); 14 of these 16 were observed during campaigns 39 and 40, but 2 sources were observed in campaign 56 (see table 1). Of our IRS targets observed in both SL and LL modules in Orion A with Spitzer/IRS, we observed 120 at near-IR (0.8-2.4um) wavelengths with the medium-resolution spectrograph SpeX, on the NASA IRTF on Mauna Kea during the 2010A, 2011A, and 2011B semesters (see table 3). (9 data files).

  5. Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Simmons, D. J.; Grynpas, M. D.; Rosenberg, G. D.

    1990-01-01

    We have studied the chemistry, hydroxyapatite crystal size, and maturational changes in bone and dentin from rats exposed to microgravity for 12 days in a Soviet biosatellite (Cosmos 1887). Bone ash was reduced in vertebrae (L5) but not in the non-weight-bearing calvaria or mandibles. All tissues had a relatively normal percentage composition of Ca, P, and Mg. Nevertheless, flight rat calvaria and vertebral tissues tended to exhibit lower Ca/P and higher Ca/Mg ratios that any of their weight-matched controls groups, and gradient density analysis (calvaria) indicated a strong shift to the fractions lower specific gravity that was commensurate with impaired rates of matrix-mineral maturation. X-ray diffraction data were confirmatory. Bone hydroxyapatite crystal growth in the mandibles of flight rats was preferentially altered in such a way as to reduce their size (C-axis dimension). But in the mandibular diastemal region devoid of muscle attachments, flight rat bone and dentin were normal with respect to the Ca, P, Mg, and Zn concentrations and Ca/P and Ca/Mg ratios of age-matched controls. These observations affirm the concept that while microgravity most adversely affects the maturation of newly formed matrix and mineral moieties in weight-bearing bone, such effects occur throughout the skeleton.

  6. The SuperCosmos South Galactic Cap multi-colour/epoch digitised survey - Online!

    NASA Astrophysics Data System (ADS)

    Hambly, N.; Read, M.

    We describe the first release of data from the SuperCOSMOS Sky Survey programme, the South Galactic Cap survey. This consists of a 3 colour (BRI), one colour (R) at 2 epochs, digital sky survey based on high Galactic latitude (|b|>60o) Schmidt survey plates covering ~5000 square degrees - it is the first digitised sky survey to include both colours and proper motions. Positions are tied to the International Co-ordinate Reference Frame via the Tycho-ACT catalogue and are externally accurate to ~0.3 arcsec; proper motions (also zero-pointed on the extragalactic frame) are typically accurate to ~10 mas yr-1. Photometry in BRI is accurate to ~0.2m and is tied to external CCD zeropoints with field-to-field zeropoint errors minimised using field overlap regions. We describe a simple database interrogation example and show the results. Finally, we describe the future plans for expanding the survey to cover the full southern sky. For full details access the survey homepage on http://www-wfau.roe.ac.uk/sss/.

  7. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann

    2016-03-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.

  8. How Does The Universe Work? The Physics Of The Cosmos Program (PCOS)

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.

    2011-09-01

    The Physics of the Cosmos (PCOS) program incorporates cosmology, high-energy astrophysics, and fundamental physics projects aimed at addressing central questions about the nature of complex astrophysical phenomena such as black holes, neutron stars, dark energy, and gravitational waves. Its overarching theme is, How does the Universe work? PCOS includes a suite of operating (Chandra, Fermi, Planck, XMM-Newton, INTEGRAL) and future missions across the electromagnetic spectrum and beyond, which are in concept development and/or formulation. The PCOS program directly supports development of intermediate TRL (4-6) technology relevant to future missions through the Strategic Astrophysics Technology (SAT) program, as well as data analysis, theory, and experimental astrophysics via other R&A avenues (e.g., ADAP, ATP). The Einstein Fellowship is a vital and vibrant PCOS component funded by the program. PCOS receives community input via its Program Analysis Group, the PhysPAG (www.pcos.gsfc.nasa.gov/physpag.php), whose membership and meetings are open to the community at large. In this poster, we describe the detailed science questions addressed within PCOS, with special emphasis on future opportunities. Details about the PhysPAG operations and functions will be provided, as well as an update on future meetings.

  9. HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY

    SciTech Connect

    Hao Heng; Elvis, Martin; Civano, Francesca; Lanzuisi, Giorgio; Brusa, Marcella; Bongiorno, Angela; Lusso, Elisabeta; Zamorani, Gianni; Comastri, Andrea; Impey, Chris D.; Trump, Jonathan R.; Koekemoer, Anton M.; Le Floc'h, Emeric; Sanders, David; Salvato, Mara; Vignali, Cristian E-mail: elvis@cfa.harvard.ed

    2010-11-20

    We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energy distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.

  10. Histomorphometric and electron microscopic analyses of tibial epiphyseal plates from Cosmos 1887 rats

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Durnova, G.; Montufar-Solis, D.

    1990-01-01

    Previous studies have shown that the changes seen in the bones of growing rats exposed to microgravity are due in part to changes that occur in the growth plate during spaceflight. In this study, growth plates of rats flown aboard Cosmos 1887 (12.5-day flight plus 53.5-h recovery at 1 g) were analyzed using light and electron microscopy and computerized planimetry. The proliferative zone of flight animals was found to be significantly (P less than or equal to 0.01) larger than that of controls, while the reserve and hypertrophic/calcification zones were significantly reduced. Flight animals also had more cells per column in the proliferative zone than did controls and less in the hypertrophic/calcification region. The total number of cells, however, was significantly greater in flight animals. No difference was found in perimeter or in shape factor, but area was significantly less in flight animals. Electron microscopy showed that collagen fibrils in flight animals were wider than in controls. Since the time required for a cell to cycle through the growth plate is 2-3 days at 1 g, the results reported here represent both the effects of exposure to microgravity and the initial stages of recovery from that exposure.

  11. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Pham, Thai

    2014-01-01

    NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability.

  12. Accreting SMBH in the COSMOS field: the connection to their host galaxies .

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Bongiorno, A.

    Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.

  13. The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos

    NASA Astrophysics Data System (ADS)

    Livio, Mario

    2000-12-01

    Advance Praise for The Accelerating Universe "The Accelerating Universe is not only an informative book about modern cosmology. It is rich storytelling and, above all, a celebration of the human mind in its quest for beauty in all things." -Alan Lightman, author of Einstein's Dreams "This is a wonderfully lucid account of the extraordinary discoveries that have made the last years a golden period for observational cosmology. But Mario Livio has not only given the reader one clear explanation after another of what astronomers are up to, he has used them to construct a provocative argument for the importance of aesthetics in the development of science and for the inseparability of science, art, and culture." -Lee Smolin, author of The Life of the Cosmos "What a pleasure to read! An exciting, simple account of the universe revealed by modern astronomy. Beautifully written, clearly presented, informed by scientific and philosophical insights." -John Bahcall, Institute for Advanced Study "A book with charm, beauty, elegance, and importance. As authoritative a journey as can be taken through modern cosmology." -Allan Sandage, Observatories of the Carnegie Institution of Washington

  14. Isotopes of uranium and plutonium in the atmosphere. [Cosmos-954 fall in Canada

    SciTech Connect

    Sakuragi, Y.

    1982-01-01

    The activities of /sup 234/U, /sup 235/U and /sup 238/U were measured in 24 individual rain samples and two composite rains collected at Fayetteville, Arkansas, during the months of March 1979 and March 1980 through May 1981. Uranium-234 and -235 were found to be highly enriched in several rain samples collected during the months of April and May 1980. Uranium-238 concentrations, on the other hand, were unusually high during the months of July, August and early September 1980. The concentrations of /sup 238/Pu and /sup 238/ /sup 240/Pu were measured in 76 individual rain samples and two composite rains which were collected at Fayetteville, Arkansas, during the period from February 1979 through December 1980. Plutonium-238 and plutonium-239,240 concentrations were found to be extremely high during the months of July, August and early September 1980. The anomalous uranium highly enriched in the light isotopes of uranium appears to have originated from the Soviet satellite Cosmos-954 which fell over Canada on 24 January 1978. The uranium fallout occurred just about the time Mount St. Helens erupted on 18 May 1980 and began to inject a large amount of natural uranium into the atmosphere. The pattern of variations of the concentrations of /sup 238/U in rain after the eruption of Mount St. Helens was found to be similar to that of plutonium isotopes.

  15. NASA's Physics of the Cosmos and Cosmic Origins technology development programs

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Pham, Thai

    2014-07-01

    NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability.

  16. Neutron influences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.; Rshtuni, Sh. B.; Benton, E, V.; Frank, A. L.

    1995-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (E(sub n) less than or equal to 0.2 eV), resonance (0.2 eV less than E(sub n) less than 1.0 MeV) and fast (E(sub n) greater than or equal to 1.0 MeV) neutrons. The first two groups were measured with U.S. (6)LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d(exp -1) were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d(exp -1). Inside the spacecraft, a value of 3.5 mrem d(exp -1) was found.

  17. Neutron fluences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1992-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (En < or = 0.2 eV), resonance (0.2 eV < En < 1.0 MeV) and fast (En > or = 1.0 MeV) neutrons. The first two groups were measured with U.S. 6LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d-1 were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d-1. Inside the spacecraft, a value of 3.5 mrem d-1 was found.

  18. Experiment K-7-20: Pituitary Oxytocin and Vasopressin Content of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Keil, L.; Evans, J.; Grindeland, R. (Editor); Krasnov, I.

    1994-01-01

    Pituitary levels of oxytocin (OT) and vasopressin (VP) were measured in rats exposed to 14 days of spaceflight (FLT) as well as in ground-based controls; one group synchronously maintained in flight-type cages with similar feeding schedules (SYN), one group in vivarium cages (VIV), and a group of tail suspended (SUS) animals. Flight rats had significantly less (p less than 0.05) pituitary OT and VP (4.48 +/- 0.31 and 7.48 +/- 0.53 mg hormone / mg protein, n = 5) than either the SYN (6.66 +/- 0..59 and 10.98 + 1.00, n = 5), VIV (6.14 +/- 0.40 and 10.98 +/- 0..81, n = 5) or SUS (5.73 +/- 0.24, n = 4) control groups, respectively. The reduced levels of pituitary OT and VP are similar to measurements made on rats from the previous 12.5 day Cosmos 1887 mission and appear to be a direct result of exposure to spaceflight.

  19. Potential medicinal benefits of Cosmos caudatus (Ulam Raja): A scoping review.

    PubMed

    Cheng, Shi-Hui; Barakatun-Nisak, Mohd Yusof; Anthony, Joseph; Ismail, Amin

    2015-10-01

    Cosmos caudatus is widely used as a traditional medicine in Southeast Asia. C. caudatus has been reported as a rich source of bioactive compounds such as ascorbic acid, quercetin, and chlorogenic acid. Studies have shown that C. caudatus exhibits high anti-oxidant capacity and various medicinal properties, including anti-diabetic activity, anti-hypertensive properties, anti-inflammatory responses, bone-protective effect, and anti-microbial activity. This review aims to present the potential medicinal benefits of C. caudatus from the available scientific literature. We searched PubMed and ScienceDirect database for articles published from 1995 to January 2015. Overall, 15 articles related to C. caudatus and its medicinal benefits are reviewed. All these studies demonstrated that C. caudatus is effective, having demonstrated its anti-diabetic, anti-hypertensive, anti-inflammatory, bone-protective, anti-microbial, and anti-fungal activity in both in vitro and animal studies. None of the studies showed any negative effect of C. caudatus related to medicinal use. Currently available evidence suggests that C. caudatus has beneficial effects such as reducing blood glucose, reducing blood pressure, promoting healthy bone formation, and demonstrating anti-inflammatory and anti-microbial properties. However, human clinical trial is warranted.

  20. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa.

    PubMed

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa.

  1. Frozen storage stability of beef patties incorporated with extracts from ulam raja leaves (Cosmos caudatus).

    PubMed

    Reihani, S F S; Tan, Thuan-Chew; Huda, Nurul; Easa, Azhar Mat

    2014-07-15

    In Malaysia, fresh ulam raja leaves (Cosmos caudatus) are eaten raw with rice. In this study, beef patties incorporated with extracts of ulam raja (UREX) and commercial green tea extract (GTE) added individually at 200 and 500 mg/kg were stored at -18°C for up to 10 weeks. Lipid oxidation, cooking yield, physicochemical properties, textural properties, proximate composition and sensory characteristics of the beef patties were compared between those incorporated with UREX, GTE and the control (pure beef patty). Incorporation of UREX or GTE at 500 mg/kg into beef patties reduced the extent of lipid oxidation significantly (P<0.05). UREX showed a strong lipid oxidation inhibitory effect, comparable with GTE. In addition, a significant improvement (P<0.05) in cooking yield and textural properties was also recorded. However, incorporation of UREX and GTE into beef patties showed no significant influence (P>0.05) on the colour, pH, proximate composition and overall sensory acceptability of the patties.

  2. MetaboLights: towards a new COSMOS of metabolomics data management.

    PubMed

    Steinbeck, Christoph; Conesa, Pablo; Haug, Kenneth; Mahendraker, Tejasvi; Williams, Mark; Maguire, Eamonn; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Salek, Reza M; Griffin, Julian L

    2012-10-01

    Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata (http://www.ebi.ac.uk/metabolights). It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6-8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.

  3. Cloning, functional expression, and characterization of a chalcone 3-hydroxylase from Cosmos sulphureus.

    PubMed

    Schlangen, Karin; Miosic, Silvija; Thill, Jana; Halbwirth, Heidi

    2010-07-01

    A chalcone 3-hydroxylase (CH3H) cDNA clone was isolated and characterized from Cosmos sulphureus petals accumulating butein (2',3,4,4'-tetrahydroxychalcone) derivatives as yellow flower pigments. The recombinant protein catalyses the introduction of an additional hydroxyl group in the B-ring of chalcones, a reaction with high similarity to the hydroxylation of flavonoids catalysed by the well-studied flavonoid 3'-hydroxylase (F3'H). CH3H shows high specificity for chalcones, but a low F3'H activity was also detected. By contrast, the common F3'H from C. sulphureus does not accept chalcones as substrates and is therefore unlikely to be involved in the creation of the B-ring hydroxylation pattern of the yellow flower pigments. CH3H was primarily expressed in young buds, the main tissue for chalcone pigment formation. Expression levels in open flowers and 3-d-old seedlings were lower and almost no CH3H expression was observed in leaves. F3'H, in contrast, showed the highest expression also in buds, but comparable expression rates in all other tissues tested. Recombinant hybrid proteins constructed from CH3H and F3'H fragments demonstrated that amino acid residues at a substrate recognition site and an insertion of four amino acid residues in a putative loop region have an impact on chalcone acceptance. This is the first identification of a CH3H cDNA from any plant species.

  4. Filimonas endophytica sp. nov., isolated from surface-sterilized root of Cosmos bipinnatus.

    PubMed

    Han, Ji-Hye; Kim, Tae-Su; Joung, Yochan; Kim, Seung Bum

    2015-12-01

    A Gram-stain-negative, yellow, motile by gliding, filamentous bacterium, designated SR 2-06T, was isolated from surface-sterilized root of garden cosmos. 16S rRNA gene sequence analysis indicated that SR 2-06T was related most closely to Filimonas lacunae YT21T of the family Chitinophagaceae at a sequence similarity of 96.90 %, while levels of similarity to other related taxa were less than 93.08 %. Strain SR 2-06T exhibited similar features to F. lacunae in that it contained MK-7 as the major respiratory quinone, and iso-C15 : 1 G, iso-C15 : 0 and a summed feature consisting of C16 : 1ω6c and/or C16 : 1ω7c as the major fatty acids. However, strain SR 2-06T was distinguished from F. lacunae using a combination of physiological and biochemical properties. The cellular polar lipids were phosphatidylethanolamine, unknown aminophospholipids, unknown aminolipids, an unknown phospholipid and unidentified polar lipids. The DNA G+C content was 46.0 mol%. The phenotypic and phylogenetic evidence clearly indicates that strain SR 2-06T represents a novel species of the genus Filimonas, for which the name Filimonas endophytica sp. nov. is proposed. The type strain is SR 2-06T ( = KCTC 42060T = JCM 19844T).

  5. Influence of growth stage and season on the antioxidant constituents of Cosmos caudatus.

    PubMed

    Mediani, Ahmed; Abas, Faridah; Ping, Tan Chin; Khatib, Alfi; Lajis, Nordin H

    2012-12-01

    The impact of tropical seasons (dry and wet) and growth stages (8, 10 and 12 weeks) of Cosmos caudatus on the antioxidant activity (AA), total phenolic content (TPC) as well as the level of bioactive compounds were evaluated using high performance liquid chromatography (HPLC). The plant morphology (plant height) also showed variation between the two seasons. Samples planted from June to August (during the dry season) exhibited a remarkably higher bioactivity and height than those planted from October to December (during the wet season). The samples that were harvested at eight weeks of age during the dry season showed the highest bioactivity with values of 26.04 g GAE/100 g and 22.1 μg/ml for TPC and IC₅₀, respectively. Identification of phytochemical constituents in the C. caudatus extract was carried out by liquid chromatography coupled with diode array detection and electrospray tandem mass (LC-DAD-ESIMS/MS) technique and the confirmation of constituents was achieved by comparison with literature data and/or co-chromatography with authentic standards. Six compounds were indentified including quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, rutin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside and chlorogenic acid. Their concentrations showed significant variance among the 8, 10 and 12-week-old herbs during both seasons.

  6. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access.

    PubMed

    Salek, Reza M; Neumann, Steffen; Schober, Daniel; Hummel, Jan; Billiau, Kenny; Kopka, Joachim; Correa, Elon; Reijmers, Theo; Rosato, Antonio; Tenori, Leonardo; Turano, Paola; Marin, Silvia; Deborde, Catherine; Jacob, Daniel; Rolin, Dominique; Dartigues, Benjamin; Conesa, Pablo; Haug, Kenneth; Rocca-Serra, Philippe; O'Hagan, Steve; Hao, Jie; van Vliet, Michael; Sysi-Aho, Marko; Ludwig, Christian; Bouwman, Jildau; Cascante, Marta; Ebbels, Timothy; Griffin, Julian L; Moing, Annick; Nikolski, Macha; Oresic, Matej; Sansone, Susanna-Assunta; Viant, Mark R; Goodacre, Royston; Günther, Ulrich L; Hankemeier, Thomas; Luchinat, Claudio; Walther, Dirk; Steinbeck, Christoph

    Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative 'coordination of standards in metabolomics' (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities' participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards.

  7. Discover the Cosmos - Bringing Cutting Edge Science to Schools across Europe

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    2015-03-01

    The fast growing number of science data repositories is opening enormous possibilities to scientists all over the world. The emergence of citizen science projects is engaging in science discovery a large number of citizens globally. Astronomical research is now a possibility to anyone having a computer and some form of data access. This opens a very interesting and strategic possibility to engage large audiences in the making and understanding of science. On another perspective it would be only natural to imagine that soon enough data mining will be an active part of the academic path of university or even secondary schools students. The possibility is very exciting but the road not very promising. Even in the most developed nations, where all schools are equipped with modern ICT facilities the use of such possibilities is still a very rare episode. The Galileo Teacher Training Program GTTP, a legacy of IYA2009, is participating in some of the most emblematic projects funded by the European Commission and targeting modern tools, resources and methodologies for science teaching. One of this projects is Discover the Cosmos which is aiming to target this issue by empowering educators with the necessary skills to embark on this innovative path: teaching science while doing science.

  8. Morphological and biochemical examination of Cosmos 1887 rat heart tissue. Part 1: Ultrastructure

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Popova, I. A.; Kato, K.; Stevenson, J.; Miquel, J.; Sapp, W.

    1990-01-01

    Morphological changes were observed in the left ventricle of rat heart tissue from animals flown on the Cosmos 1887 biosatellite for 12.5 days. These tissues were compared to the synchronous and vivarium control hearts. While many normal myofibrils were observed, others exhibited ultrastructural alterations, i.e., damaged and irregular-shaped mitochondria and generalized myofibrillar edema. Analysis of variance (ANOVA) of the volume density data revealed a statistically significant increase in glycogen and a significant decrease in mitochondria compared to the sync