Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.
Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J
2018-01-02
Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634
Regulation of insulin preRNA splicing by glucose
Wang, Juehu; Shen, Luping; Najafi, Habiba; Kolberg, Janice; Matschinsky, Franz M.; Urdea, Mickey; German, Michael
1997-01-01
Glucose tightly regulates the synthesis and secretion of insulin by β cells in the pancreatic islets of Langerhans. To investigate whether glucose regulates insulin synthesis at the level of insulin RNA splicing, we developed a method to detect and quantify a small amount of RNA by using the branched DNA (bDNA) signal-amplification technique. This assay is both sensitive and highly specific: mouse insulin II mRNA can be detected from a single β cell (βTC3 cells or mouse islets), whereas 1 million non-insulin-producing α cells (αTC1.6 cells) give no signal. By using intron and exon sequences, oligonucleotide probes were designed to distinguish the various unspliced and partially spliced insulin preRNAs from mature insulin mRNA. Insulin RNA splicing rates were estimated from the rate of disappearance of insulin preRNA signal from β cells treated with actinomycin D to block transcription. We found that the two introns in mouse insulin II are not spliced with the same efficiency. Intron 2 is spliced out more efficiently than intron 1. As a result, some mRNA retaining intron 1 enters the cytoplasm, making up ≈2-10% of insulin mRNA in the cell. This partially spliced cytoplasmic mRNA is quite stable, with a half-life similar to the completely spliced form. When islets grown in high glucose are shifted to low glucose medium, the level of insulin preRNA and the rate of splicing fall significantly. We conclude that glucose stimulates insulin gene transcription and insulin preRNA splicing. Previous estimates of insulin transcription rates based on insulin preRNA levels that did not consider the rate of splicing may have underestimated the effect of glucose on insulin gene transcription. PMID:9113994
Dynamic integration of splicing within gene regulatory pathways
Braunschweig, Ulrich; Gueroussov, Serge; Plocik, Alex; Graveley, Brenton R.; Blencowe, Benjamin J.
2013-01-01
Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive cross-talk between gene regulatory layers takes advantage of dynamic spatial, physical and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control. PMID:23498935
Long-read sequencing of nascent RNA reveals coupling among RNA processing events.
Herzel, Lydia; Straube, Korinna; Neugebauer, Karla M
2018-06-14
Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2 , the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3' end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation. © 2018 Herzel et al.; Published by Cold Spring Harbor Laboratory Press.
Modelling reveals kinetic advantages of co-transcriptional splicing.
Aitken, Stuart; Alexander, Ross D; Beggs, Jean D
2011-10-01
Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.
Alternative splicing of natriuretic peptide A and B receptor transcripts in the rat brain.
Francoeur, F; Gossard, F; Hamet, P; Tremblay, J
1995-12-01
1. In the present study we searched for variants of alternative splicing of guanylyl cyclase A and B mRNA in rats in vivo. 2. Guanylyl cyclase A2 and guanylyl cyclase B2 isoforms of guanylyl cyclase produced by alternative splicing leading to the deletion of exon 9 of both transcripts were quantified in several rat organs. 3. Only one alternative splicing was found in the regulatory domain, encoded by exons 8-15. 4. Quantification of the guanylyl cyclase B2 isoform in different rat organs and in cultured aortic smooth muscle cells showed that this alternative splicing was tissue-specific and occurred predominantly in the central nervous system where the alternatively spliced variant represented more than 50% of the guanylyl cyclase B mRNA. 5. The same alternative splicing existed for guanylyl cyclase A mRNA but at very low levels in the organs studied. 6. Alternative splicing of guanylyl cyclase B exon 9 in the brain may play an important role in signal transduction, since the expressed protein possesses a constitutionally active guanylyl cyclase acting independently of C-type natriuretic peptide regulation.
Sun, Bing; Zheng, Yun-Ling
2018-01-01
Currently there is no sensitive, precise, and reproducible method to quantitate alternative splicing of mRNA transcripts. Droplet digital™ PCR (ddPCR™) analysis allows for accurate digital counting for quantification of gene expression. Human telomerase reverse transcriptase (hTERT) is one of the essential components required for telomerase activity and for the maintenance of telomeres. Several alternatively spliced forms of hTERT mRNA in human primary and tumor cells have been reported in the literature. Using one pair of primers and two probes for hTERT, four alternatively spliced forms of hTERT (α-/β+, α+/β- single deletions, α-/β- double deletion, and nondeletion α+/β+) were accurately quantified through a novel analysis method via data collected from a single ddPCR reaction. In this chapter, we describe this ddPCR method that enables direct quantitative comparison of four alternatively spliced forms of the hTERT messenger RNA without the need for internal standards or multiple pairs of primers specific for each variant, eliminating the technical variation due to differential PCR amplification efficiency for different amplicons and the challenges of quantification using standard curves. This simple and straightforward method should have general utility for quantifying alternatively spliced gene transcripts.
Genomic overview of mRNA 5′-leader trans-splicing in the ascidian Ciona intestinalis
Satou, Yutaka; Hamaguchi, Makoto; Takeuchi, Keisuke; Hastings, Kenneth E. M.; Satoh, Nori
2006-01-01
Although spliced leader (SL) trans-splicing in the chordates was discovered in the tunicate Ciona intestinalis there has been no genomic overview analysis of the extent of trans-splicing or the make-up of the trans-spliced and non-trans-spliced gene populations of this model organism. Here we report such an analysis for Ciona based on the oligo-capping full-length cDNA approach. We randomly sampled 2078 5′-full-length ESTs representing 668 genes, or 4.2% of the entire genome. Our results indicate that Ciona contains a single major SL, which is efficiently trans-spliced to mRNAs transcribed from a specific set of genes representing ∼50% of the total number of expressed genes, and that individual trans-spliced mRNA species are, on average, 2–3-fold less abundant than non-trans-spliced mRNA species. Our results also identify a relationship between trans-splicing status and gene functional classification; ribosomal protein genes fall predominantly into the non-trans-spliced category. In addition, our data provide the first evidence for the occurrence of polycistronic transcription in Ciona. An interesting feature of the Ciona polycistronic transcription units is that the great majority entirely lack intercistronic sequences. PMID:16822859
NASA Astrophysics Data System (ADS)
Shih, Shin-Ru; Nemeroff, Martin E.; Krug, Robert M.
1995-07-01
The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA_3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA_3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA_3. Only when the mRNA_3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA_3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.
Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo
2013-11-01
Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC 3 (NM_003786.3:c.1783-1G>A), KLHDC 1 (NM_172193.1:c.568-2A>G), HOOK 1 (NM_015888.4:c.1662-1G>A), SMAD 9 (NM_001127217.2:c.1004-1C>T), and DNAH 9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC 3, HOOK 1. In ABCC 3 and HOOK 1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK 1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4-6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis.
Alternative RNA splicing and cancer
Liu, Sali; Cheng, Chonghui
2015-01-01
Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697
Can the HIV-1 splicing machinery be targeted for drug discovery?
Dlamini, Zodwa; Hull, Rodney
2017-01-01
HIV-1 is able to express multiple protein types and isoforms from a single 9 kb mRNA transcript. These proteins are also expressed at particular stages of viral development, and this is achieved through the control of alternative splicing and the export of these transcripts from the nucleus. The nuclear export is controlled by the HIV protein Rev being required to transport incompletely spliced and partially spliced mRNA from the nucleus where they are normally retained. This implies a close relationship between the control of alternate splicing and the nuclear export of mRNA in the control of HIV-1 viral proliferation. This review discusses both the processes. The specificity and regulation of splicing in HIV-1 is controlled by the use of specific splice sites as well as exonic splicing enhancer and exonic splicing silencer sequences. The use of these silencer and enhancer sequences is dependent on the serine arginine family of proteins as well as the heterogeneous nuclear ribonucleoprotein family of proteins that bind to these sequences and increase or decrease splicing. Since alternative splicing is such a critical factor in viral development, it presents itself as a promising drug target. This review aims to discuss the inhibition of splicing, which would stall viral development, as an anti-HIV therapeutic strategy. In this review, the most recent knowledge of splicing in human immunodeficiency viral development and the latest therapeutic strategies targeting human immunodeficiency viral splicing are discussed. PMID:28331370
Rrp6 is recruited to transcribed genes and accompanies the spliced mRNA to the nuclear pore
Hessle, Viktoria; von Euler, Anne; González de Valdivia, Ernesto; Visa, Neus
2012-01-01
Rrp6 is an exoribonuclease involved in the quality control of mRNA biogenesis. We have analyzed the association of Rrp6 with the Balbiani ring pre-mRNPs of Chironomus tentans to obtain insight into the role of Rrp6 in splicing surveillance. Rrp6 is recruited to transcribed genes and its distribution along the genes does not correlate with the positions of exons and introns. In the nucleoplasm, Rrp6 is bound to both unspliced and spliced transcripts. Rrp6 is released from the mRNPs in the vicinity of the nuclear pore before nucleo-cytoplasmic translocation. We show that Rrp6 is associated with newly synthesized transcripts during all the nuclear steps of gene expression and is associated with the transcripts independently of their splicing status. These observations suggest that the quality control of pre-mRNA splicing is not based on the selective recruitment of the exoribonuclease Rrp6 to unprocessed mRNAs. PMID:22745224
Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.
Fryer, J P; Oetting, W S; Brott, M J; King, R A
2001-11-01
We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.
Mitrovich, Quinn M.; Anderson, Philip
2000-01-01
Messenger RNA surveillance, the selective and rapid degradation of mRNAs containing premature stop codons, occurs in all eukaryotes tested. The biological role of this decay pathway, however, is not well understood. To identify natural substrates of mRNA surveillance, we used a cDNA-based representational difference analysis to identify mRNAs whose abundance increases in Caenorhabditis elegans smg(−) mutants, which are deficient for mRNA surveillance. Alternatively spliced mRNAs of genes encoding ribosomal proteins L3, L7a, L10a, and L12 are abundant natural targets of mRNA surveillance. Each of these genes expresses two distinct mRNAs. A productively spliced mRNA, whose abundance does not change in smg(−) mutants, encodes a normal, full-length, ribosomal protein. An unproductively spliced mRNA, whose abundance increases dramatically in smg(−) mutants, contains premature stop codons because of incomplete removal of an alternatively spliced intron. In transgenic animals expressing elevated quantities of RPL-12, a greater proportion of endogenous rpl-12 transcript is spliced unproductively. Thus, RPL-12 appears to autoregulate its own splicing, with unproductively spliced mRNAs being degraded by mRNA surveillance. We demonstrate further that alternative splicing of rpl introns is conserved among widely diverged nematodes. Our results suggest that one important role of mRNA surveillance is to eliminate unproductive by-products of gene regulation. PMID:10970881
Alternative Splicing in Neurogenesis and Brain Development.
Su, Chun-Hao; D, Dhananjaya; Tarn, Woan-Yuh
2018-01-01
Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.
Heart failure-associated changes in RNA splicing of sarcomere genes.
Kong, Sek Won; Hu, Yong Wu; Ho, Joshua W K; Ikeda, Sadakatsu; Polster, Sean; John, Ranjit; Hall, Jennifer L; Bisping, Egbert; Pieske, Burkert; dos Remedios, Cristobal G; Pu, William T
2010-04-01
Alternative mRNA splicing is an important mechanism for regulation of gene expression. Altered mRNA splicing occurs in association with several types of cancer, and a small number of disease-associated changes in splicing have been reported in heart disease. However, genome-wide approaches have not been used to study splicing changes in heart disease. We hypothesized that mRNA splicing is different in diseased hearts compared with control hearts. We used the Affymetrix Exon array to globally evaluate mRNA splicing in left ventricular myocardial RNA from controls (n=15) and patients with ischemic cardiomyopathy (n=15). We observed a broad and significant decrease in mRNA splicing efficiency in heart failure, which affected some introns to a greater extent than others. The profile of mRNA splicing separately clustered ischemic cardiomyopathy and control samples, suggesting distinct changes in mRNA splicing between groups. Reverse transcription-polymerase chain reaction validated 9 previously unreported alternative splicing events. Furthermore, we demonstrated that splicing of 4 key sarcomere genes, cardiac troponin T (TNNT2), cardiac troponin I (TNNI3), myosin heavy chain 7 (MYH7), and filamin C, gamma (FLNC), was significantly altered in ischemic cardiomyopathy and in dilated cardiomyopathy and aortic stenosis. In aortic stenosis samples, these differences preceded the onset of heart failure. Remarkably, the ratio of minor to major splice variants of TNNT2, MYH7, and FLNC classified independent test samples as control or disease with >98% accuracy. Our data indicate that mRNA splicing is broadly altered in human heart disease and that patterns of aberrant RNA splicing accurately assign samples to control or disease classes.
Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy
Ames, EG; Lawson, MJ; Mackey, AJ; Holmes, JW
2013-01-01
Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are reexpressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy. We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA. We find a striking degree of overlap between the isoforms expressed differentially in fetal and pressure-overloaded hearts compared to control: forty-four percent of the isoforms with significantly altered expression in TAC hearts are also expressed at significantly different levels in fetal hearts compared to control (P < 0.001). The isoforms that are shared between hypertrophy and fetal heart development are significantly enriched for genes involved in cytoskeletal organization, RNA processing, developmental processes, and metabolic enzymes. Our data strongly support the concept that mRNA splicing patterns normally associated with heart development recur as part of the hypertrophic response to pressure overload. These findings suggest that cardiac hypertrophy shares post-transcriptional as well as transcriptional regulatory mechanisms with fetal heart development. PMID:23688780
Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert
2013-01-01
Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682
Coupling mRNA processing with transcription in time and space
Bentley, David L.
2015-01-01
Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3′ end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes. PMID:24514444
Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo
2013-01-01
Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC3 (NM_003786.3:c.1783-1G>A), KLHDC1 (NM_172193.1:c.568-2A>G), HOOK1 (NM_015888.4:c.1662-1G>A), SMAD9 (NM_001127217.2:c.1004-1C>T), and DNAH9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC3, HOOK1. In ABCC3 and HOOK1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4–6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis. PMID:24498620
Designing oligo libraries taking alternative splicing into account
NASA Astrophysics Data System (ADS)
Shoshan, Avi; Grebinskiy, Vladimir; Magen, Avner; Scolnicov, Ariel; Fink, Eyal; Lehavi, David; Wasserman, Alon
2001-06-01
We have designed sequences for DNA microarrays and oligo libraries, taking alternative splicing into account. Alternative splicing is a common phenomenon, occurring in more than 25% of the human genes. In many cases, different splice variants have different functions, are expressed in different tissues or may indicate different stages of disease. When designing sequences for DNA microarrays or oligo libraries, it is very important to take into account the sequence information of all the mRNA transcripts. Therefore, when a gene has more than one transcript (as a result of alternative splicing, alternative promoter sites or alternative poly-adenylation sites), it is very important to take all of them into account in the design. We have used the LEADS transcriptome prediction system to cluster and assemble the human sequences in GenBank and design optimal oligonucleotides for all the human genes with a known mRNA sequence based on the LEADS predictions.
Kawarai, Toshitaka; Miyamoto, Ryosuke; Mori, Atsuko; Oki, Ryosuke; Tsukamoto-Miyashiro, Ai; Matsui, Naoko; Miyazaki, Yoshimichi; Orlacchio, Antonio; Izumi, Yuishin; Nishida, Yoshihiko; Kaji, Ryuji
2015-12-15
We identified a novel homozygous mutation in the splice site donor (SSD) of intron 30 (c.5866+1G>A) in consanguineous Japanese SPG11 siblings showing late-onset spastic paraplegia using the whole-exome sequencing. Phenotypic variability was observed, including age-at-onset, dysarthria and pes cavus. Coding DNA sequencing revealed that the mutation affected the recognition of the constitutive SSD of intron 30, splicing upstream onto a nearby cryptic SSD in exon 30. The use of constitutive splice sites of intron 29 was confirmed by sequencing. The mutant transcripts are mostly subject to degradation by the nonsense-mediated mRNA decay system. SPG11 transcripts, escaping from the nonsense-mediated mRNA decay pathway, would generate a truncated protein (p.Tyr1900Phefs5X) containing the first 1899 amino acids and followed by 4 aberrant amino acids. This study showed a successful clinical application of whole-exome sequencing in spastic paraplegia and demonstrated a further evidence of allelic heterogeneity in SPG11. The confirmation of aberrant transcript by splice site mutation is a prerequisite for a more precise molecular diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
A role for exon sequences in alternative splicing of the human fibronectin gene.
Mardon, H J; Sebastio, G; Baralle, F E
1987-01-01
Exon EDIIIA of the fibronectin (Fn) gene is alternatively spliced via pathways which either skip or include the whole exon in the messenger RNA (mRNA). We have investigated the role of EDIIIA exon sequences in the human Fn gene in determining alternative splicing of this exon during transient expression of alpha globin/Fn minigene hybrids in HeLa cells. We demonstrate that a DNA sequence of 81bp within the central region of exon EDIIIA is required for alternative splicing during processing of the primary transcript to generate both EDIIIA+ and EDIIIA- mRNA's. Furthermore, alternative splicing of EDIIIA only occurs when this sequence is present in the correct orientation since when it is in antisense orientation splicing always occurs via exon-skipping generating EDIIIA- mRNA. Images PMID:3671064
Alternative Splicing Control of Abiotic Stress Responses.
Laloum, Tom; Martín, Guiomar; Duque, Paula
2018-02-01
Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants.
Shang, Xudong; Cao, Ying; Ma, Ligeng
2017-02-20
Gene expression can be regulated through transcriptional and post-transcriptional mechanisms. Transcription in eukaryotes produces pre-mRNA molecules, which are processed and spliced post-transcriptionally to create translatable mRNAs. More than one mRNA may be produced from a single pre-mRNA by alternative splicing (AS); thus, AS serves to diversify an organism's transcriptome and proteome. Previous studies of gene expression in plants have focused on the role of transcriptional regulation in response to environmental changes. However, recent data suggest that post-transcriptional regulation, especially AS, is necessary for plants to adapt to a changing environment. In this review, we summarize recent advances in our understanding of AS during plant development in response to environmental changes. We suggest that alternative gene splicing is a novel means of regulating the environmental fitness of plants.
Hartmann, Linda; Neveling, Kornelia; Borkens, Stephanie; Schneider, Hildegard; Freund, Marcel; Grassman, Elke; Theiss, Stephan; Wawer, Angela; Burdach, Stefan; Auerbach, Arleen D.; Schindler, Detlev; Hanenberg, Helmut; Schaal, Heiner
2010-01-01
The U1 small nuclear RNA (U1 snRNA) as a component of the major U2-dependent spliceosome recognizes 5′ splice sites (5′ss) containing GT as the canonical dinucleotide in the intronic positions +1 and +2. The c.165+1G>T germline mutation in the 5′ss of exon 2 of the Fanconi anemia C (FANCC) gene commonly predicted to prevent correct splicing was identified in nine FA patients from three pedigrees. RT-PCR analysis of the endogenous FANCC mRNA splicing pattern of patient-derived fibroblasts revealed aberrant mRNA processing, but surprisingly also correct splicing at the TT dinucleotide, albeit with lower efficiency. This consequently resulted in low levels of correctly spliced transcript and minute levels of normal posttranslationally processed FANCD2 protein, indicating that this naturally occurring TT splicing might contribute to the milder clinical manifestations of the disease in these patients. Functional analysis of this FANCC 5′ss within splicing reporters revealed that both the noncanonical TT dinucleotide and the genomic context of FANCC were required for the residual correct splicing at this mutant 5′ss. Finally, use of lentiviral vectors as a delivery system to introduce expression cassettes for TT-adapted U1 snRNAs into primary FANCC patient fibroblasts allowed the correction of the DNA-damage-induced G2 cell-cycle arrest in these cells, thus representing an alternative transcript-targeting approach for genetic therapy of inherited splice-site mutations. PMID:20869034
Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano
2015-07-15
Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colonmore » cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.« less
Advanced cell-based modeling of the royal disease: characterization of the mutated F9 mRNA.
Martorell, L; Luce, E; Vazquez, J L; Richaud-Patin, Y; Jimenez-Delgado, S; Corrales, I; Borras, N; Casacuberta-Serra, S; Weber, A; Parra, R; Altisent, C; Follenzi, A; Dubart-Kupperschmitt, A; Raya, A; Vidal, F; Barquinero, J
2017-11-01
Essentials The Royal disease (RD) is a form of hemophilia B predicted to be caused by a splicing mutation. We generated an iPSC-based model of the disease allowing mechanistic studies at the RNA level. F9 mRNA analysis in iPSC-derived hepatocyte-like cells showed the predicted abnormal splicing. Mutated F9 mRNA level was very low but we also found traces of wild type transcripts. Background The royal disease is a form of hemophilia B (HB) that affected many descendants of Queen Victoria in the 19th and 20th centuries. It was found to be caused by the mutation F9 c.278-3A>G. Objective To generate a physiological cell model of the disease and to study F9 expression at the RNA level. Methods Using fibroblasts from skin biopsies of a previously identified hemophilic patient bearing the F9 c.278-3A>G mutation and his mother, we generated induced pluripotent stem cells (iPSCs). Both the patient's and mother's iPSCs were differentiated into hepatocyte-like cells (HLCs) and their F9 mRNA was analyzed using next-generation sequencing (NGS). Results and Conclusion We demonstrated the previously predicted aberrant splicing of the F9 transcript as a result of an intronic nucleotide substitution leading to a frameshift and the generation of a premature termination codon (PTC). The F9 mRNA level in the patient's HLCs was significantly reduced compared with that of his mother, suggesting that mutated transcripts undergo nonsense-mediated decay (NMD), a cellular mechanism that degrades PTC-containing mRNAs. We also detected small proportions of correctly spliced transcripts in the patient's HLCs, which, combined with genetic variability in splicing and NMD machineries, could partially explain some clinical variability among affected members of the European royal families who had lifespans above the average. This work allowed the demonstration of the pathologic consequences of an intronic mutation in the F9 gene and represents the first bona fide cellular model of HB allowing the study of rare mutations at the RNA level. © 2017 International Society on Thrombosis and Haemostasis.
Harun, Fatimah; Jalaludin, Muhammad Yazid; Lim, Chor Yin; Ng, Khoon Leong
2014-01-01
The c.2268dup mutation in thyroid peroxidase (TPO) gene was reported to be a founder mutation in Taiwanese patients with dyshormonogenetic congenital hypothyroidism (CH). The functional impact of the mutation is not well documented. In this study, homozygous c.2268dup mutation was detected in two Malaysian-Chinese sisters with goitrous CH. Normal and alternatively spliced TPO mRNA transcripts were present in thyroid tissues of the two sisters. The abnormal transcript contained 34 nucleotides originating from intron 12. The c.2268dup is predicted to generate a premature termination codon (PTC) at position 757 (p.Glu757X). Instead of restoring the normal reading frame, the alternatively spliced transcript has led to another stop codon at position 740 (p.Asp739ValfsX740). The two PTCs are located at 116 and 201 nucleotides upstream of the exons 13/14 junction fulfilling the requirement for a nonsense-mediated mRNA decay (NMD). Quantitative RT-PCR revealed an abundance of unidentified transcripts believed to be associated with the NMD. TPO enzyme activity was not detected in both patients, even though a faint TPO band of about 80 kD was present. In conclusion, the c.2268dup mutation leads to the formation of normal and alternatively spliced TPO mRNA transcripts with a consequential loss of TPO enzymatic activity in Malaysian-Chinese patients with goitrous CH. PMID:24745015
The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis.
Bielli, Pamela; Busà, Roberta; Di Stasi, Savino M; Munoz, Manuel J; Botti, Flavia; Kornblihtt, Alberto R; Sette, Claudio
2014-04-01
Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5' splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival.
The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis
Bielli, Pamela; Busà, Roberta; Di Stasi, Savino M; Munoz, Manuel J; Botti, Flavia; Kornblihtt, Alberto R; Sette, Claudio
2014-01-01
Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5′ splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival. PMID:24514149
Chemotherapy induces alternative transcription and splicing: Facts and hopes for cancer treatment.
Lambert, Charles A; Garbacki, Nancy; Colige, Alain C
2017-10-01
Alternative promoter usage, alternative splicing and alternative cleavage/polyadenylation (referred here as to alternative transcription and splicing) are main instruments to diversify the transcriptome from a limited set of genes. There is a good deal of evidence that chemotherapeutic drugs affect these processes, but the therapeutic incidence of these effects is poorly documented. The scope of this study is to review the impact of chemotherapy on alternative transcription and splicing and to discuss potential implications in cancer therapy. A literature survey identified >2200 events induced by chemotherapeutic drugs. The molecular pathways involved in these regulations are briefly discussed. The GO terms associated with the alternative transcripts are mainly related to cell cycle/division, mRNA processing, DNA repair, macromolecules catabolism and chromatin. A large fraction (43%) of transcripts are also related to the new hallmarks of cancer, mostly genetic instability and replicative immortality. Finally, we ask the question of the impact of alternative transcription and splicing on drug efficacy and of the possible curative benefit of combining chemotherapy and pharmaceutical regulation of this process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Connecting the dots: chromatin and alternative splicing in EMT.
Warns, Jessica A; Davie, James R; Dhasarathy, Archana
2016-02-01
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
LeBlanc, Jason; Weil, Jason; Beemon, Karen
2013-01-01
After reverse transcription of the retroviral RNA genome and integration of the DNA provirus into the host genome, host machinery is used for viral gene expression along with viral proteins and RNA regulatory elements. Here, we discuss co-transcriptional and posttranscriptional regulation of retroviral gene expression, comparing simple and complex retroviruses. Cellular RNA polymerase II synthesizes full-length viral primary RNA transcripts that are capped and polyadenylated. All retroviruses generate a singly spliced env mRNA from this primary transcript, which encodes the viral glycoproteins. In addition, complex viral RNAs are alternatively spliced to generate accessory proteins, such as Rev, which is involved in posttranscriptional regulation of HIV-1 RNA. Importantly, the splicing of all retroviruses is incomplete; they must maintain and export a fraction of their primary RNA transcripts. This unspliced RNA functions both as the major mRNA for Gag and Pol proteins and as the packaged genomic RNA. Different retroviruses export their unspliced viral RNA from the nucleus to the cytoplasm by either Tap-dependent or Rev/CRM1-dependent routes. Translation of the unspliced mRNA involves frame-shifting or termination codon suppression so that the Gag proteins, which make up the capsid, are expressed more abundantly than the Pol proteins, which are the viral enzymes. After the viral polyproteins assemble into viral particles and bud from the cell membrane, a viral encoded protease cleaves them. Some retroviruses have evolved mechanisms to protect their unspliced RNA from decay by nonsense-mediated RNA decay and to prevent genome editing by the cellular APOBEC deaminases. PMID:23754689
X-linked Alport syndrome caused by splicing mutations in COL4A5.
Nozu, Kandai; Vorechovsky, Igor; Kaito, Hiroshi; Fu, Xue Jun; Nakanishi, Koichi; Hashimura, Yuya; Hashimoto, Fusako; Kamei, Koichi; Ito, Shuichi; Kaku, Yoshitsugu; Imasawa, Toshiyuki; Ushijima, Katsumi; Shimizu, Junya; Makita, Yoshio; Konomoto, Takao; Yoshikawa, Norishige; Iijima, Kazumoto
2014-11-07
X-linked Alport syndrome is caused by mutations in the COL4A5 gene. Although many COL4A5 mutations have been detected, the mutation detection rate has been unsatisfactory. Some men with X-linked Alport syndrome show a relatively mild phenotype, but molecular basis investigations have rarely been conducted to clarify the underlying mechanism. In total, 152 patients with X-linked Alport syndrome who were suspected of having Alport syndrome through clinical and pathologic investigations and referred to the hospital for mutational analysis between January of 2006 and January of 2013 were genetically diagnosed. Among those patients, 22 patients had suspected splice site mutations. Transcripts are routinely examined when suspected splice site mutations for abnormal transcripts are detected; 11 of them showed expected exon skipping, but others showed aberrant splicing patterns. The mutation detection strategy had two steps: (1) genomic DNA analysis using PCR and direct sequencing and (2) mRNA analysis using RT-PCR to detect RNA processing abnormalities. Six splicing consensus site mutations resulting in aberrant splicing patterns, one exonic mutation leading to exon skipping, and four deep intronic mutations producing cryptic splice site activation were identified. Interestingly, one case produced a cryptic splice site with a single nucleotide substitution in the deep intron that led to intronic exonization containing a stop codon; however, the patient showed a clearly milder phenotype for X-linked Alport syndrome in men with a truncating mutation. mRNA extracted from the kidney showed both normal and abnormal transcripts, with the normal transcript resulting in the milder phenotype. This novel mechanism leads to mild clinical characteristics. This report highlights the importance of analyzing transcripts to enhance the mutation detection rate and provides insight into genotype-phenotype correlations. This approach can clarify the cause of atypically mild phenotypes in X-linked Alport syndrome. Copyright © 2014 by the American Society of Nephrology.
Retrieval of Missing Spliced Leader in Dinoflagellates
Zhang, Huan; Lin, Senjie
2009-01-01
Spliced leader (SL) trans-splicing has recently been shown to be a common mRNA processing mechanism in dinoflagellates, in which a short (22-nt) sequence, DCCGUAGCCAUUUUGGCUCAAG (D = U, A, or G), is transplanted from the 5′-end of a small non-coding RNA (SL RNA) to the 5′ end of mRNA molecules. The widespread existence of the mechanism in dinoflagellates has been demonstrated by detection of this SL (DinoSL) in a wide phylogenetic range of dinoflagellates. Furthermore, the presence of DinoSL in the transcripts of highly diverse groups of nuclear-encoded genes has led us to postulate that SL trans-splicing is universal in dinoflagellate nuclear genome. However, some observations inconsistent to this postulation have been reported, exemplified by a recent article reporting apparent absence of DinoSL in the transcripts of some nuclear-encoded genes in Amphidinium carterae. Absence of SL in these gene transcripts would have important implication on gene regulation in dinoflagellates and utility of DinoSL as a universal dinoflagellate-specific primer to study dinoflagellate transcriptomics. In this study, we re-examined transcripts of these genes and found that all of them actually contained DinoSL. Therefore, results to date are consistent to our initial postulation that DinoSL occurs in all dinoflagellate nuclear-encoded mRNAs. PMID:19122814
Sadek, Jouliana
2016-01-01
ABSTRACT During lytic herpes simplex virus (HSV) infections, the virion host shutoff (Vhs) (UL41) endoribonuclease degrades many cellular and viral mRNAs. In uninfected cells, spliced mRNAs emerge into the cytoplasm bound by exon junction complexes (EJCs) and are translated several times more efficiently than unspliced mRNAs that have the same sequence but lack EJCs. Notably, most cellular mRNAs are spliced, whereas most HSV mRNAs are not. To examine the effect of splicing on gene expression during HSV infection, cells were transfected with plasmids harboring an unspliced renilla luciferase (RLuc) reporter mRNA or RLuc constructs with introns near the 5′ or 3′ end of the gene. After splicing of intron-containing transcripts, all three RLuc mRNAs had the same primary sequence. Upon infection in the presence of actinomycin D, spliced mRNAs were much less sensitive to degradation by copies of Vhs from infecting virions than were unspliced mRNAs. During productive infections (in the absence of drugs), RLuc was expressed at substantially higher levels from spliced than from unspliced mRNAs. Interestingly, the stimulatory effect of splicing on RLuc expression was significantly greater in infected than in uninfected cells. The translational stimulatory effect of an intron during HSV-1 infections could be replicated by artificially tethering various EJC components to an unspliced RLuc transcript. Thus, the splicing history of an mRNA, and the consequent presence or absence of EJCs, affects its level of translation and sensitivity to Vhs cleavage during lytic HSV infections. IMPORTANCE Most mammalian mRNAs are spliced. In contrast, of the more than 80 mRNAs harbored by herpes simplex virus 1 (HSV-1), only 5 are spliced. In addition, synthesis of the immediate early protein ICP27 causes partial inhibition of pre-mRNA splicing, with the resultant accumulation of both spliced and unspliced versions of some mRNAs in the cytoplasm. A common perception is that HSV-1 infection necessarily inhibits the expression of spliced mRNAs. In contrast, this study demonstrates two instances in which pre-mRNA splicing actually enhances the synthesis of proteins from mRNAs during HSV-1 infections. Specifically, splicing stabilized an mRNA against degradation by copies of the Vhs endoribonuclease from infecting virions and greatly enhanced the amount of protein synthesized from spliced mRNAs at late times after infection. The data suggest that splicing, and the resultant presence of exon junction complexes on an mRNA, may play an important role in gene expression during HSV-1 infections. PMID:27681125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Wen; Mukerjee, Ruma; Gartner, Jared J.
2006-12-20
The latency-associated transcripts (LATs) of herpes simplex virus type-1 (HSV-1) are the only viral RNAs accumulating during latent infections in the sensory ganglia of the peripheral nervous system. The major form of LAT that accumulates in latently infected neurons is a 2 kb intron, spliced from a much less abundant 8.3 primary transcript. The spliced exon mRNA has been hard to detect. However, in this study, we have examined the spliced exon RNA in productively infected cells using ribonuclease protection (RPA), and quantitative RT-PCR (q-PCR) assays. We were able to detect the LAT exon RNA in productively infected SY5Y cellsmore » (a human neuronal cell line). The level of the LAT exon RNA was found to be approximately 5% that of the 2 kb intron RNA and thus is likely to be relatively unstable. Quantitative RT-PCR (q-PCR) assays were used to examine the LAT exon RNA and its properties. They confirmed that the LAT exon mRNA is present at a very low level in productively infected cells, compared to the levels of other viral transcripts. Furthermore, experiments showed that the LAT exon mRNA is expressed as a true late gene, and appears to be polyadenylated. In SY5Y cells, in contrast to most late viral transcripts, the LAT exon RNA was found to be mainly nuclear localized during the late stage of a productive infection. Interestingly, more LAT exon RNA was found in the cytoplasm in differentiated compared to undifferentiated SY5Y cells, suggesting the nucleocytoplasmic distribution of the LAT exon RNA and its related function may be influenced by the differentiation state of cells.« less
Disturbed expression of type 1 iodothyronine deiodinase splice variants in human renal cancer.
Piekielko-Witkowska, Agnieszka; Master, Adam; Wojcicka, Anna; Boguslawska, Joanna; Brozda, Izabela; Tanski, Zbigniew; Nauman, Alicja
2009-10-01
Alternative splicing, one of the sources of protein diversity, is often disturbed in cancer. Type 1 iodothyronine deiodinase (DIO1) catalyzes deiodination of thyroxine generating triiodothyronine, an important regulator of cell proliferation and differentiation. The expression of DIO1 is disturbed in different types of cancer. The aim of the study was to analyze the alternative splicing of DIO1 and its possible disturbance in renal cancer. Using real-time PCR, we analyzed 19 tissue samples (T) of renal cancer and 19 matched control samples (C) of the opposite pole of the kidney, not infiltrated by tumor, and 6 control samples (N) (nonneoplastic kidney abnormalities). Cloning of DIO1 mRNA isoforms revealed 11 different transcripts, among them 7 new splice variants, not previously reported. The expression of all variants of DIO1 was dramatically (>90%) and significantly (p < or = 0.0003) lowered in samples T compared to control samples C. The ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center was lowered in samples T compared with control samples C, suggesting disturbed alternative splicing of DIO1. The expression of mRNA of splicing factors SF2/ASF (splicing factor-2/alternative-splicing factor) and hnRNPA1 (heterogeneous ribonucleoprotein A1), regulating 5'-splice site selection, was significantly but not proportionally lowered in samples T compared to samples C. The mRNA ratio of splicing factors SF2/ASF and hnRNPA1 correlated with the ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center in controls C but not in samples T. Our results show that the expression and alternative splicing of DIO1 mRNA is disturbed in renal cancer, possibly due to changes in expression of splicing factors SF2/ASF and hnRNPA1.
Kjellman, Christian; Honeth, Gabriella; Järnum, Sofia; Lindvall, Magnus; Darabi, Anna; Nilsson, Ingar; Edvardsen, Klaus; Salford, Leif G; Widegren, Bengt
2004-03-03
Smad3 is one of the signal transducers that are activated in response to transforming growth factor-beta (TGF-beta). We have identified and characterized a splicing variant of smad3. The splicing variant (smad3-Delta3) lacks exon 3 resulting in a truncated linker region. We could detect mRNA expression of smad3-Delta3 in all investigated human tissues. Real-time PCR analyses demonstrated that the fraction of smad3-Delta3 mRNA compared to normal smad3 varies between tissues. The amount of spliced mRNA was estimated to represent 0.5-5% of the normal smad3 mRNA. When smad3-Delta3 is overexpressed in a fibrosarcoma cell line, the Smad3-Delta3 is translocated to the nucleus upon TGF-beta stimulation and binds the Smad responsive element. Using a CAGA luciferase reporter system, we demonstrate that Smad3-Delta3 has transcriptional activity and we conclude that Smad3-Delta3 possesses functional transactivating properties.
Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.
Schimmer, Bernard P; Cordova, Martha
2015-06-15
The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sun, Bing; Tao, Lian; Zheng, Yun-Ling
2014-06-01
Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (α-/β+ and α+/β-) as well as the opportunity to manually quantify non-deletion (α+/β+) and double deletion (α-/β-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency.
Regulation of alternative mRNA splicing: old players and new perspectives.
Dvinge, Heidi
2018-06-01
Nearly all human multi-exon genes are subject to alternative splicing in one or more cell types. The splicing machinery, therefore, has to select between multiple splice sites in a context-dependent manner, relying on sequence features in cis and trans-acting splicing regulators that either promote or repress splice site recognition and spliceosome assembly. However, the functional coupling between multiple gene regulatory layers signifies that splicing can also be modulated by transcriptional or epigenetic characteristics. Other, less obvious, aspects of alternative splicing have come to light in recent years, often involving core components of the spliceosome previously thought to perform a basal rather than a regulatory role in splicing. Together this paints a highly dynamic picture of splicing regulation, where the final splice site choice is governed by the entire transcriptional environment of a gene and its cellular context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to
Evolution of a tissue-specific splicing network
Taliaferro, J. Matthew; Alvarez, Nehemiah; Green, Richard E.; Blanchette, Marco; Rio, Donald C.
2011-01-01
Alternative splicing of precursor mRNA (pre-mRNA) is a strategy employed by most eukaryotes to increase transcript and proteomic diversity. Many metazoan splicing factors are members of multigene families, with each member having different functions. How these highly related proteins evolve unique properties has been unclear. Here we characterize the evolution and function of a new Drosophila splicing factor, termed LS2 (Large Subunit 2), that arose from a gene duplication event of dU2AF50, the large subunit of the highly conserved heterodimeric general splicing factor U2AF (U2-associated factor). The quickly evolving LS2 gene has diverged from the splicing-promoting, ubiquitously expressed dU2AF50 such that it binds a markedly different RNA sequence, acts as a splicing repressor, and is preferentially expressed in testes. Target transcripts of LS2 are also enriched for performing testes-related functions. We therefore propose a path for the evolution of a new splicing factor in Drosophila that regulates specific pre-mRNAs and contributes to transcript diversity in a tissue-specific manner. PMID:21406555
RNA Splicing: Regulation and Dysregulation in the Heart.
van den Hoogenhof, Maarten M G; Pinto, Yigal M; Creemers, Esther E
2016-02-05
RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease. © 2016 American Heart Association, Inc.
Snezhkina, Anastasiya Vladimirovna; Krasnov, George Sergeevich; Zaretsky, Andrew Rostislavovich; Zhavoronkov, Alex; Nyushko, Kirill Mikhailovich; Moskalev, Alexey Alexandrovich; Karpova, Irina Yurievna; Afremova, Anastasiya Isaevna; Lipatova, Anastasiya Valerievna; Kochetkov, Dmitriy Vladimitovich; Fedorova, Maria Sergeena; Volchenko, Nadezhda Nikolaevna; Sadritdinova, Asiya Fayazovna; Melnikova, Nataliya Vladimirovna; Sidorov, Dmitry Vladimirovich; Popov, Anatoly Yurievich; Kalinin, Dmitry Valerievich; Kaprin, Andrey Dmitrievich; Alekseev, Boris Yakovlevich; Dmitriev, Alexey Alexandrovich; Kudryavtseva, Anna Viktorovna
2016-12-28
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. CRC molecular pathogenesis is heterogeneous and may be followed by mutations in oncogenes and tumor suppressor genes, chromosomal and microsatellite instability, alternative splicing alterations, hypermethylation of CpG islands, oxidative stress, impairment of different signaling pathways and energy metabolism. In the present work, we have studied the alterations of alternative splicing patterns of genes related to energy metabolism in CRC. Using CrossHub software, we analyzed The Cancer Genome Atlas (TCGA) RNA-Seq datasets derived from colon tumor and matched normal tissues. The expression of 1014 alternative mRNA isoforms involved in cell energy metabolism was examined. We found 7 genes with differentially expressed alternative transcripts whereas overall expression of these genes was not significantly altered in CRC. A set of 8 differentially expressed transcripts of interest has been validated by qPCR. These eight isoforms encoded by OGDH, COL6A3, ICAM1, PHPT1, PPP2R5D, SLC29A1, and TRIB3 genes were up-regulated in colorectal tumors, and this is in concordance with the bioinformatics data. The alternative transcript NM_057167 of COL6A3 was also strongly up-regulated in breast, lung, prostate, and kidney tumors. Alternative transcript of SLC29A1 (NM_001078177) was up-regulated only in CRC samples, but not in the other tested tumor types. We identified tumor-specific expression of alternative spliced transcripts of seven genes involved in energy metabolism in CRC. Our results bring new knowledge on alternative splicing in colorectal cancer and suggest a set of mRNA isoforms that could be used for cancer diagnosis and development of treatment methods.
Splice Site Mutations in the ATP7A Gene
Møller, Lisbeth Birk
2011-01-01
Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12 mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations identified in 12 patients with milder phenotypes were predicted to have no significant effect on splicing, which concurs with the presence of wild-type transcript in 7 out of 9 patients investigated in vivo. Both the in silico predictions and the in vivo results support the hypothesis previously suggested by us and others, that the presence of some wild-type transcript is correlated to a milder phenotype. PMID:21494555
LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes
Singh, Parmit Kumar; Plumb, Matthew R.; Ferris, Andrea L.; Iben, James R.; Wu, Xiaolin; Fadel, Hind J.; Luke, Brian T.; Esnault, Caroline; Poeschla, Eric M.; Hughes, Stephen H.; Kvaratskhelia, Mamuka; Levin, Henry L.
2015-01-01
The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced. PMID:26545813
Genome-wide association between DNA methylation and alternative splicing in an invertebrate
2012-01-01
Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution. PMID:22978521
Connecting the dots: chromatin and alternative splicing in EMT
Warns, Jessica A.; Davie, James R.; Dhasarathy, Archana
2015-01-01
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process. PMID:26291837
Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes
Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia
2013-01-01
DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893
RNA splicing and splicing regulator changes in prostate cancer pathology.
Munkley, Jennifer; Livermore, Karen; Rajan, Prabhakar; Elliott, David J
2017-09-01
Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.
Munding, Elizabeth M.; Igel, A. Haller; Shiue, Lily; Dorighi, Kristel M.; Treviño, Lisa R.; Ares, Manuel
2010-01-01
Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs. PMID:21123654
A case of cervical cancer expressed three mRNA variant of Hyaluronan-mediated motility receptor
Villegas-Ruíz, Vanessa; Salcedo, Mauricio; Zentella-Dehesa, Alejandro; de Oca, Edén V Montes; Román-Basaure, Edgar; Mantilla-Morales, Alejandra; Dávila-Borja, Víctor M; Juárez-Méndez, Sergio
2014-01-01
Cervical cancer is the second malignancy in Mexico, little is known about the prognostic factors associated with this disease. Several cellular components are important in their transformation and progression. Alternative mRNA splice is an important mechanism for generating protein diversity, nevertheless, in cancer unknown mRNA diversity is expressed. Hyaluronan-mediated motility receptor (HMMR, RHAMM, CD168) is a family member of proteins, hyaluronan acid dependent, and has been associated with different malignant processes such as: angiogenesis, cell invasiveness, proliferation, metastasis and poor outcome in some tumors. In the present study we identified expression of HMMR in cervical cancer by means of RT-PCR and sequencing. Our results indicate co-expression of two HMMR variants in all samples, and one case expressed three alternative HMMR splice transcripts. These results showed the heterogeneity of mRNA transcripts of HMMR that could express in cancer and the expression of HMMR could be marker of malignancy in CC. PMID:24966934
Ishikawa, Tokiro; Kashima, Makoto; Nagano, Atsushi J; Ishikawa-Fujiwara, Tomoko; Kamei, Yasuhiro; Todo, Takeshi
2017-01-01
When activated by the accumulation of unfolded proteins in the endoplasmic reticulum, metazoan IRE1, the most evolutionarily conserved unfolded protein response (UPR) transducer, initiates unconventional splicing of XBP1 mRNA. Unspliced and spliced mRNA are translated to produce pXBP1(U) and pXBP1(S), respectively. pXBP1(S) functions as a potent transcription factor, whereas pXBP1(U) targets pXBP1(S) to degradation. In addition, activated IRE1 transmits two signaling outputs independent of XBP1, namely activation of the JNK pathway, which is initiated by binding of the adaptor TRAF2 to phosphorylated IRE1, and regulated IRE1-dependent decay (RIDD) of various mRNAs in a relatively nonspecific manner. Here, we conducted comprehensive and systematic genetic analyses of the IRE1-XBP1 branch of the UPR using medaka fish and found that the defects observed in XBP1-knockout or IRE1-knockout medaka were fully rescued by constitutive expression of pXBP1(S). Thus, the JNK and RIDD pathways are not required for the normal growth and development of medaka. The unfolded protein response sensor/transducer IRE1-mediated splicing of XBP1 mRNA encoding its active downstream transcription factor to maintain the homeostasis of the endoplasmic reticulum is sufficient for growth and development of medaka fish. PMID:28952924
Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster
Yu, Simei; Waldholm, Johan; Böhm, Stefanie; Visa, Neus
2014-01-01
The mod(mdg4) locus of Drosophila melanogaster contains several transcription units encoded on both DNA strands. The mod(mdg4) pre-mRNAs are alternatively spliced, and a very significant fraction of the mature mod(mdg4) mRNAs are formed by trans-splicing. We have studied the transcripts derived from one of the anti-sense regions within the mod(mdg4) locus in order to shed light on the expression of this complex locus. We have characterized the expression of anti-sense mod(mdg4) transcripts in S2 cells, mapped their transcription start sites and cleavage sites, identified and quantified alternatively spliced transcripts, and obtained insight into the regulation of the mod(mdg4) trans-splicing. In a previous study, we had shown that the alternative splicing of some mod(mdg4) transcripts was regulated by Brahma (BRM), the ATPase subunit of the SWI/SNF chromatin-remodeling complex. Here we show, using RNA interference and overexpression of recombinant BRM proteins, that the levels of BRM affect specifically the abundance of a trans-spliced mod(mdg4) mRNA isoform in both S2 cells and larvae. This specific effect on trans-splicing is accompanied by a local increase in the density of RNA polymerase II and by a change in the phosphorylation state of the C-terminal domain of the large subunit of RNA polymerase II. Interestingly, the regulation of the mod(mdg4) splicing by BRM is independent of the ATPase activity of BRM, which suggests that the mechanism by which BRM modulates trans-splicing is independent of its chromatin-remodeling activity. PMID:24526065
Fu, X Y; Colgan, J D; Manley, J L
1988-01-01
We have determined the effects of a number of mutations in the small-t antigen mRNA intron on the alternative splicing pattern of the simian virus 40 early transcript. Expansion of the distance separating the small-t pre-mRNA lariat branch point and the shared large T-small t 3' splice site from 18 to 29 nucleotides (nt) resulted in a relative enhancement of small-t splicing in vivo. This finding, coupled with the observation that large-T pre-RNA splicing in vitro was not affected by this expansion, suggests that small-t splicing is specifically constrained by a short branch point-3' splice site distance. Similarly, the distance separating the 5' splice site and branch point (48 nt) was found to be at or near a minimum for small-t splicing, because deletions in this region as small as 2 nt dramatically reduced the ratio of small-t to large-T mRNA that accumulated in transfected cells. Finally, a specific sequence within the small-t intron, encompassing the upstream branch sites used in large-T splicing, was found to be an important element in the cell-specific pattern of early alternative splicing. Substitutions within this region reduced the ratio of small-t to large-T mRNA produced in HeLa cells but had only minor effects in human 293 cells. Images PMID:2851720
Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts.
Sanford, Jeremy R; Wang, Xin; Mort, Matthew; Vanduyn, Natalia; Cooper, David N; Mooney, Sean D; Edenberg, Howard J; Liu, Yunlong
2009-03-01
Metazoan genes are encrypted with at least two superimposed codes: the genetic code to specify the primary structure of proteins and the splicing code to expand their proteomic output via alternative splicing. Here, we define the specificity of a central regulator of pre-mRNA splicing, the conserved, essential splicing factor SFRS1. Cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) identified 23,632 binding sites for SFRS1 in the transcriptome of cultured human embryonic kidney cells. SFRS1 was found to engage many different classes of functionally distinct transcripts including mRNA, miRNA, snoRNAs, ncRNAs, and conserved intergenic transcripts of unknown function. The majority of these diverse transcripts share a purine-rich consensus motif corresponding to the canonical SFRS1 binding site. The consensus site was not only enriched in exons cross-linked to SFRS1 in vivo, but was also enriched in close proximity to splice sites. mRNAs encoding RNA processing factors were significantly overrepresented, suggesting that SFRS1 may broadly influence the post-transcriptional control of gene expression in vivo. Finally, a search for the SFRS1 consensus motif within the Human Gene Mutation Database identified 181 mutations in 82 different genes that disrupt predicted SFRS1 binding sites. This comprehensive analysis substantially expands the known roles of human SR proteins in the regulation of a diverse array of RNA transcripts.
CAS-viewer: web-based tool for splicing-guided integrative analysis of multi-omics cancer data.
Han, Seonggyun; Kim, Dongwook; Kim, Youngjun; Choi, Kanghoon; Miller, Jason E; Kim, Dokyoon; Lee, Younghee
2018-04-20
The Cancer Genome Atlas (TCGA) project is a public resource that provides transcriptomic, DNA sequence, methylation, and clinical data for 33 cancer types. Transforming the large size and high complexity of TCGA cancer genome data into integrated knowledge can be useful to promote cancer research. Alternative splicing (AS) is a key regulatory mechanism of genes in human cancer development and in the interaction with epigenetic factors. Therefore, AS-guided integration of existing TCGA data sets will make it easier to gain insight into the genetic architecture of cancer risk and related outcomes. There are already existing tools analyzing and visualizing alternative mRNA splicing patterns for large-scale RNA-seq experiments. However, these existing web-based tools are limited to the analysis of individual TCGA data sets at a time, such as only transcriptomic information. We implemented CAS-viewer (integrative analysis of Cancer genome data based on Alternative Splicing), a web-based tool leveraging multi-cancer omics data from TCGA. It illustrates alternative mRNA splicing patterns along with methylation, miRNAs, and SNPs, and then provides an analysis tool to link differential transcript expression ratio to methylation, miRNA, and splicing regulatory elements for 33 cancer types. Moreover, one can analyze AS patterns with clinical data to identify potential transcripts associated with different survival outcome for each cancer. CAS-viewer is a web-based application for transcript isoform-driven integration of multi-omics data in multiple cancer types and will aid in the visualization and possible discovery of biomarkers for cancer by integrating multi-omics data from TCGA.
Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.
Yeakley, J M; Hedjran, F; Morfin, J P; Merillat, N; Rosenfeld, M G; Emeson, R B
1993-01-01
The calcitonin/calcitonin gene-related peptide (CGRP) primary transcript is alternatively spliced in thyroid C cells and neurons, resulting in the tissue-specific production of calcitonin and CGRP mRNAs. Analyses of mutated calcitonin/CGRP transcription units in permanently transfected cell lines have indicated that alternative splicing is regulated by a differential capacity to utilize the calcitonin-specific splice acceptor. The analysis of an extensive series of mutations suggests that tissue-specific regulation of calcitonin mRNA production does not depend on the presence of a single, unique cis-active element but instead appears to be a consequence of suboptimal constitutive splicing signals. While only those mutations that altered constitutive splicing signals affected splice choices, the action of multiple regulatory sequences cannot be formally excluded. Further, we have identified a 13-nucleotide purine-rich element from a constitutive exon that, when placed in exon 4, entirely switches splice site usage in CGRP-producing cells. These data suggest that specific exon recruitment sequences, in combination with other constitutive elements, serve an important function in exon recognition. These results are consistent with the hypothesis that tissue-specific alternative splicing of the calcitonin/CGRP primary transcript is mediated by cell-specific differences in components of the constitutive splicing machinery. Images PMID:8413203
Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches
Chen, Mo; Manley, James L.
2010-01-01
Alternative splicing of mRNA precursors provides an important means of genetic control and is a crucial step in the expression of most genes. Alternative splicing markedly affects human development, and its misregulation underlies many human diseases. Although the mechanisms of alternative splicing have been studied extensively, until the past few years we had not begun to realize fully the diversity and complexity of alternative splicing regulation by an intricate protein–RNA network. Great progress has been made by studying individual transcripts and through genome-wide approaches, which together provide a better picture of the mechanistic regulation of alternative pre-mRNA splicing. PMID:19773805
SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics
2013-01-01
Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from proteomics. Therefore, based on the peptidomic database of human protein isoforms for proteomics experiments, our objective is to design a new alternative splicing database to 1) provide more coverage of genes, transcripts and alternative splicing, 2) exclusively focus on the alternative splicing, and 3) perform context-specific alternative splicing analysis. Results We used a three-step pipeline to create a synthetic alternative splicing database (SASD) to identify novel alternative splicing isoforms and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. First, we extracted information on gene structures of all genes in the Ensembl Genes 71 database and incorporated the Integrated Pathway Analysis Database. Then, we compiled artificial splicing transcripts. Lastly, we translated the artificial transcripts into alternative splicing peptides. The SASD is a comprehensive database containing 56,630 genes (Ensembl gene IDs), 95,260 transcripts (Ensembl transcript IDs), and 11,919,779 Alternative Splicing peptides, and also covering about 1,956 pathways, 6,704 diseases, 5,615 drugs, and 52 organs. The database has a web-based user interface that allows users to search, display and download a single gene/transcript/protein, custom gene set, pathway, disease, drug, organ related alternative splicing. Moreover, the quality of the database was validated with comparison to other known databases and two case studies: 1) in liver cancer and 2) in breast cancer. Conclusions The SASD provides the scientific community with an efficient means to identify, analyze, and characterize novel Exon Skipping and Intron Retention protein isoforms from mass spectrometry and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. PMID:24267658
Munroe, Stephen H.; Morales, Christopher H.; Duyck, Tessa H.; Waters, Paul D.
2015-01-01
The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3’ end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3’splice site of TRα2 mRNA and antisense to the 3’UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing. PMID:26368571
Genome-wide mapping of alternative splicing in Arabidopsis thaliana
Filichkin, Sergei A.; Priest, Henry D.; Givan, Scott A.; Shen, Rongkun; Bryant, Douglas W.; Fox, Samuel E.; Wong, Weng-Keen; Mockler, Todd C.
2010-01-01
Alternative splicing can enhance transcriptome plasticity and proteome diversity. In plants, alternative splicing can be manifested at different developmental stages, and is frequently associated with specific tissue types or environmental conditions such as abiotic stress. We mapped the Arabidopsis transcriptome at single-base resolution using the Illumina platform for ultrahigh-throughput RNA sequencing (RNA-seq). Deep transcriptome sequencing confirmed a majority of annotated introns and identified thousands of novel alternatively spliced mRNA isoforms. Our analysis suggests that at least ∼42% of intron-containing genes in Arabidopsis are alternatively spliced; this is significantly higher than previous estimates based on cDNA/expressed sequence tag sequencing. Random validation confirmed that novel splice isoforms empirically predicted by RNA-seq can be detected in vivo. Novel introns detected by RNA-seq were substantially enriched in nonconsensus terminal dinucleotide splice signals. Alternative isoforms with premature termination codons (PTCs) comprised the majority of alternatively spliced transcripts. Using an example of an essential circadian clock gene, we show that intron retention can generate relatively abundant PTC+ isoforms and that this specific event is highly conserved among diverse plant species. Alternatively spliced PTC+ isoforms can be potentially targeted for degradation by the nonsense mediated mRNA decay (NMD) surveillance machinery or regulate the level of functional transcripts by the mechanism of regulated unproductive splicing and translation (RUST). We demonstrate that the relative ratios of the PTC+ and reference isoforms for several key regulatory genes can be considerably shifted under abiotic stress treatments. Taken together, our results suggest that like in animals, NMD and RUST may be widespread in plants and may play important roles in regulating gene expression. PMID:19858364
mRNA trans-splicing in gene therapy for genetic diseases.
Berger, Adeline; Maire, Séverine; Gaillard, Marie-Claude; Sahel, José-Alain; Hantraye, Philippe; Bemelmans, Alexis-Pierre
2016-07-01
Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.
The bromodomain protein BRD4 regulates splicing during heat shock
Hussong, Michelle; Kaehler, Christian; Kerick, Martin; Grimm, Christina; Franz, Alexandra; Timmermann, Bernd; Welzel, Franziska; Isensee, Jörg; Hucho, Tim; Krobitsch, Sylvia; Schweiger, Michal R.
2017-01-01
The cellular response to heat stress is an ancient and evolutionarily highly conserved defence mechanism characterised by the transcriptional up-regulation of cyto-protective genes and a partial inhibition of splicing. These features closely resemble the proteotoxic stress response during tumor development. The bromodomain protein BRD4 has been identified as an integral member of the oxidative stress as well as of the inflammatory response, mainly due to its role in the transcriptional regulation process. In addition, there are also several lines of evidence implicating BRD4 in the splicing process. Using RNA-sequencing we found a significant increase in splicing inhibition, in particular intron retentions (IR), following heat treatment in BRD4-depleted cells. This leads to a decrease of mRNA abundancy of the affected transcripts, most likely due to premature termination codons. Subsequent experiments revealed that BRD4 interacts with the heat shock factor 1 (HSF1) such that under heat stress BRD4 is recruited to nuclear stress bodies and non-coding SatIII RNA transcripts are up-regulated. These findings implicate BRD4 as an important regulator of splicing during heat stress. Our data which links BRD4 to the stress induced splicing process may provide novel mechanisms of BRD4 inhibitors in regard to anti-cancer therapies. PMID:27536004
Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming
2012-01-01
Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.
mRNA changes in nucleus accumbens related to methamphetamine addiction in mice
NASA Astrophysics Data System (ADS)
Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng
2016-11-01
Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.
Rajkumar, Sankaranarayanan; Vasavada, Abhay R.; Praveen, Mamidipudi R.; Ananthan, Rajendran; Reddy, Geereddy B.; Tripathi, Harsha; Ganatra, Darshini A.; Arora, Anshul I.; Patel, Alpesh R.
2013-01-01
Purpose. To explore different molecular factors impairing the activities of superoxide dismutase (SOD) isoforms in senile cataractous lenses. Methods. Enzyme activity of SOD isoforms, levels of their corresponding cofactors copper (Cu), manganese (Mn), zinc (Zn), and expression of mRNA transcripts and proteins were determined in the lenses of human subjects with and without cataract. DNA from lens epithelium (LE) and peripheral blood was isolated. Polymerase chain reaction–single strand conformation polymorphism (PCR-SSCP) followed by sequencing was carried out to screen somatic mutations. The impact of intronic insertion/deletion (INDEL) variations on the splicing process and on the resultant transcript was evaluated. Genotyping of IVS4+42delG polymorphism of SOD1 gene was done by PCR–restriction fragment length polymorphism (RFLP). Results. A significant decrease in Cu/Zn- and Mn-SOD activity (P < 0.001) and in Cu/Zn-SOD transcript (P < 0.001) and its protein (P < 0.05) were found in cataractous lenses. No significant change in the level of copper (P = 0.36) and an increase in the level of manganese (P = 0.01) and zinc (P = 0.02) were observed in cataractous lenses. A significant positive correlation between the level of Cu/Zn-SOD activity and the levels of Cu (P = 0.003) and Zn (P = 0.005) was found in the cataractous lenses. DNA sequencing revealed three intronic INDEL variations in exon4 of SOD1 gene. Splice-junction analysis showed the potential of IVS4+42delG in creating a new cryptic acceptor site. If it is involved in alternate splicing, it could result in generation of SOD1 mRNA transcripts lacking exon4 region. Transcript analysis revealed the presence of complete SOD1 mRNA transcripts. Genotyping revealed the presence of IVS4+42delG polymorphism in all subjects. Conclusions. The decrease in the activity of SOD1 isoform in cataractous lenses was associated with the decreased level of mRNA transcripts and their protein expression and was not associated with either modulation in the level of enzyme cofactors or with INDEL variations. PMID:23970468
Muñoz-Cobo, Juan Pablo; Sánchez-Hernández, Noemí; Gutiérrez, Sara; El Yousfi, Younes; Montes, Marta; Gallego, Carme; Hernández-Munain, Cristina; Suñé, Carlos
2017-12-01
TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons affected morphogenesis and resulted in reduced dendritic outgrowth, with a major effect on dendrite ramification and branching complexity. These defects could be rescued by ectopic expression of TCERG1. Our results indicate that TCERG1 affects expression of multiple mRNAs involved in neuron projection development, whose misregulation may be involved in TCERG1-linked neurological disorders.
Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing
USDA-ARS?s Scientific Manuscript database
Zea mays is an important crop species and genetic model for elucidating transcriptional networks in plants. Uncertainties about the complete structure of mRNA transcripts, particularly with respect to alternatively spliced isoforms, limit the progress of research in this system. In this study, we us...
van Anken, Eelco; Pincus, David; Coyle, Scott; Aragón, Tomás; Osman, Christof; Lari, Federica; Gómez Puerta, Silvia; Korennykh, Alexei V; Walter, Peter
2014-12-30
Insufficient protein-folding capacity in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR). In the ER lumen, accumulation of unfolded proteins activates the transmembrane ER-stress sensor Ire1 and drives its oligomerization. In the cytosol, Ire1 recruits HAC1 mRNA, mediating its non-conventional splicing. The spliced mRNA is translated into Hac1, the key transcription activator of UPR target genes that mitigate ER-stress. In this study, we report that oligomeric assembly of the ER-lumenal domain is sufficient to drive Ire1 clustering. Clustering facilitates Ire1's cytosolic oligomeric assembly and HAC1 mRNA docking onto a positively charged motif in Ire1's cytosolic linker domain that tethers the kinase/RNase to the transmembrane domain. By the use of a synthetic bypass, we demonstrate that mRNA docking per se is a pre-requisite for initiating Ire1's RNase activity and, hence, splicing. We posit that such step-wise engagement between Ire1 and its mRNA substrate contributes to selectivity and efficiency in UPR signaling.
Widespread Use of Non-productive Alternative Splice Sites in Saccharomyces cerevisiae
Kawashima, Tadashi; Douglass, Stephen; Gabunilas, Jason; Pellegrini, Matteo; Chanfreau, Guillaume F.
2014-01-01
Saccharomyces cerevisiae has been used as a model system to investigate the mechanisms of pre-mRNA splicing but only a few examples of alternative splice site usage have been described in this organism. Using RNA-Seq analysis of nonsense-mediated mRNA decay (NMD) mutant strains, we show that many S. cerevisiae intron-containing genes exhibit usage of alternative splice sites, but many transcripts generated by splicing at these sites are non-functional because they introduce premature termination codons, leading to degradation by NMD. Analysis of splicing mutants combined with NMD inactivation revealed the role of specific splicing factors in governing the use of these alternative splice sites and identified novel functions for Prp17p in enhancing the use of branchpoint-proximal upstream 3′ splice sites and for Prp18p in suppressing the usage of a non-canonical AUG 3′-splice site in GCR1. The use of non-productive alternative splice sites can be increased in stress conditions in a promoter-dependent manner, contributing to the down-regulation of genes during stress. These results show that alternative splicing is frequent in S. cerevisiae but masked by RNA degradation and that the use of alternative splice sites in this organism is mostly aimed at controlling transcript levels rather than increasing proteome diversity. PMID:24722551
Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.
Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K
2011-01-01
Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing.
Yap, Karen; Makeyev, Eugene V
2013-09-01
Eukaryotic gene expression is orchestrated on a genome-wide scale through several post-transcriptional mechanisms. Of these, alternative pre-mRNA splicing expands the proteome diversity and modulates mRNA stability through downstream RNA quality control (QC) pathways including nonsense-mediated decay (NMD) of mRNAs containing premature termination codons and nuclear retention and elimination (NRE) of intron-containing transcripts. Although originally identified as mechanisms for eliminating aberrant transcripts, a growing body of evidence suggests that NMD and NRE coupled with deliberate changes in pre-mRNA splicing patterns are also used in a number of biological contexts for deterministic control of gene expression. Here we review recent studies elucidating molecular mechanisms and biological significance of these gene regulation strategies with a specific focus on their roles in nervous system development and physiology. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'. Copyright © 2013 Elsevier Inc. All rights reserved.
Katz, R A; Kotler, M; Skalka, A M
1988-01-01
The full-length retroviral RNA transcript serves as (i) mRNA for the gag and pol gene products, (ii) genomic RNA that is assembled into progeny virions, and (iii) a pre-mRNA for spliced subgenomic mRNAs. Therefore, a balance of spliced and unspliced RNA is required to generate the appropriate levels of protein and RNA products for virion production. We have introduced an insertion mutation near the avian sarcoma virus env splice acceptor site that results in a significant increase in splicing to form functional env mRNA. The mutant virus is replication defective, but phenotypic revertant viruses that have acquired second-site mutations near the splice acceptor site can be isolated readily. Detailed analysis of one of these viruses revealed that a single nucleotide change at -20 from the splice acceptor site, within the original mutagenic insert, was sufficient to restore viral growth and significantly decrease splicing efficiency compared with the original mutant and wild-type viruses. Thus, minor sequence alterations near the env splice acceptor site can produce major changes in the balance of spliced and unspliced RNAs. Our results suggest a mechanism of control in which splicing is modulated by cis-acting sequences at the env splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing control. Images PMID:2839694
A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toki, Yasumichi; Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp; Tanaka, Hiroki
2016-08-05
Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncatedmore » peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.« less
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.
Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J
2014-03-01
Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.
Fernández-Guerra, Paula; Navarrete, Rosa; Weisiger, Kara; Desviat, Lourdes R; Packman, Seymour; Ugarte, Magdalena; Rodríguez-Pombo, Pilar
2010-12-01
Mutations in any of the three different genes--BCKDHA, BCKDHB, and DBT--encoding for the E1α, E1β, and E2 catalytic components of the branched-chain α-ketoacid dehydrogenase complex can cause maple syrup urine disease (MSUD). Disease severity ranges from the classic to the mildest variant types and precise genotypes, mostly based on missense mutations, have been associated to the less severe presentations of the disease. Herein, we examine the consequences at the messenger RNA (mRNA) level of the novel intronic alteration c.288+9C>T found in heterozygous fashion in a BCKDHA variant MSUD patient who also carries the nucleotide change c.745G>A (p.Gly249Ser), previously described as a severe change. Direct analysis of the processed transcripts from the patient showed--in addition to a low but measurable level of normal mRNA product--an aberrantly spliced mRNA containing a 7-bp fragment of intron 2, which could be rescued when the patient's cells were treated with emetine. This aberrant transcript with a premature stop codon would be unstable, supporting the possible activation of nonsense-mediated mRNA decay pathway. Consistent with this finding, minigene splicing assays demonstrated that the point mutation c.288+9C>T is sufficient to create a cryptic splice site and cause the observed 7-bp insertion. Furthermore, our results strongly suggest that the c.288+9C>T allele in the patient generates both normal and aberrant transcripts that could sustain the variant presentation of the disease, highlighting the importance of correct genotyping to establish genotype-phenotype correlations and as basis for the development of therapeutic interventions.
Tang, F; Yang, S; Zhu, H
2016-05-01
The Rj2 gene is a TIR-NBS-LRR-type resistance gene in soybean (Glycine max) that restricts root nodule symbiosis with a group of Bradyrhizobium japonicum strains including USDA122. Rj2 generates two distinct transcript variants in its expression profile through alternative splicing. Alternative splicing of Rj2 is caused by the retention of the 86-bp intron 4. Inclusion of intron 4 in mature mRNA introduces an in-frame stop codon; as such, the alternative transcript is predicted to encode a truncated protein consisting of the entire portion of the TIR, NBS and LRR domains but missing the C-terminal domain of the full-length Rj2 protein encoded by the regular transcript. Since alternative splicing has been shown to be essential for full activity of several plant R genes, we attempted to test whether the alternative splicing is required for Rj2-mediated nodulation restriction. Here we demonstrated that the Rj2-mediated nodulation restriction does not require the combined presence of the regular and alternative transcripts, and the expression of the regular transcript alone is sufficient to confer nodulation restriction. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.
Li, Junling; Chen, Zhiliang; Gao, Lian-Yong; Colorni, Angelo; Ucko, Michal; Fang, Shengyun; Du, Shao Jun
2015-08-01
Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The bromodomain protein BRD4 regulates splicing during heat shock.
Hussong, Michelle; Kaehler, Christian; Kerick, Martin; Grimm, Christina; Franz, Alexandra; Timmermann, Bernd; Welzel, Franziska; Isensee, Jörg; Hucho, Tim; Krobitsch, Sylvia; Schweiger, Michal R
2017-01-09
The cellular response to heat stress is an ancient and evolutionarily highly conserved defence mechanism characterised by the transcriptional up-regulation of cyto-protective genes and a partial inhibition of splicing. These features closely resemble the proteotoxic stress response during tumor development. The bromodomain protein BRD4 has been identified as an integral member of the oxidative stress as well as of the inflammatory response, mainly due to its role in the transcriptional regulation process. In addition, there are also several lines of evidence implicating BRD4 in the splicing process. Using RNA-sequencing we found a significant increase in splicing inhibition, in particular intron retentions (IR), following heat treatment in BRD4-depleted cells. This leads to a decrease of mRNA abundancy of the affected transcripts, most likely due to premature termination codons. Subsequent experiments revealed that BRD4 interacts with the heat shock factor 1 (HSF1) such that under heat stress BRD4 is recruited to nuclear stress bodies and non-coding SatIII RNA transcripts are up-regulated. These findings implicate BRD4 as an important regulator of splicing during heat stress. Our data which links BRD4 to the stress induced splicing process may provide novel mechanisms of BRD4 inhibitors in regard to anti-cancer therapies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, R.; Thomas, J.; Spieth, J.
In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, Sl1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. The authors demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5[prime] splice site into the 5[prime] untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of amore » vit-5 intron, including the 3[prime] splice site, were inserted into the 5[prime] untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. They termed the region of a trans-spliced mRNA precursor between the 5[prime] end and the first 3[prime] splice site an 'outrun'. The results suggest that if a transcript begins with intronlike sequence followed by a 3[prime] splice site, this alone may constitute an outrun and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.« less
Zhao, Shan; Lu, Xin; Zhang, Yueling; Zhao, Xianliang; Zhong, Mingqi; Li, Shengkang; Lun, Jingsheng
2013-01-01
Recent evidences suggest that invertebrates express families of immune molecules with high levels of sequence diversity. Hemocyanin is an important non-specific immune molecule present in the hemolymph of both mollusks and arthropods. In the present study, we characterized a novel alternative splicing variant of hemocyanin (cHE1) from Litopenaeus vannamei that produced mRNA transcript of 2579 bp in length. The isoform contained two additional sequences of 296 and 267 bp in the 5'- and 3'-terminus respectively, in comparison to that of wild type hemocyanin (cHE). Sequence of cHE1 shows 100% identity to that of hemocyanin genomic DNA (HE, which does not form an open reading frame), suggesting that cHE1 might be an alternative splicing variant due to intron retention. Moreover, cHE1 could be detected by RT-PCR from five tissues (heart, gill, stomach, intestine and brain), and from shrimps at stages from nauplius to mysis larva. Further, cHE1 mRNA transcripts were significantly increased in hearts after 12h of infection with Vibrio parahemolyticus or poly I: C, while no significant difference in the transcript levels of hepatopancreas cHE was detected in the pathogen-treated shrimps during the period. In summary, these studies suggested a novel splicing variant of hemocyanin in shrimp, which might be involved in shrimp resistance to pathogenic infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells.
Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A; Khoder, Mamdouh I; Shamy, Magdy; Muñoz, Manuel J; Kornblihtt, Alberto R
2015-07-01
Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5' untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. Copyright © 2015 Elsevier Inc. All rights reserved.
Seth, Puneet; Yeowell, Heather N
2010-04-01
Scleroderma (systemic sclerosis [SSc]) is a complex connective tissue disorder characterized by hardening and thickening of the skin. One hallmark of scleroderma is excessive accumulation of collagen accompanied by increased levels of pyridinoline collagen crosslinks derived from hydroxylysine residues in the collagen telopeptide domains. Lysyl hydroxylase 2 (LH2), an important alternatively spliced enzyme in collagen biosynthesis, acts as a collagen telopeptide hydroxylase. Changes in the pattern of LH2 alternative splicing, favoring increased inclusion of the alternatively spliced LH2 exon 13A, thereby increasing the levels of the long transcript of LH2 (LH2[long]), are linked to scleroderma disease. This study was undertaken to examine the role played by RNA binding protein Fox-2 in regulating exon 13A inclusion, which leads to the generation of scleroderma-associated LH2(long) messenger RNA (mRNA). Phylogenetic sequence analysis of introns flanking exon 13A was performed. A tetracycline-inducible system in T-Rex 293 cells was used to induce Fox-2 protein, and endogenous LH2(long) mRNA was determined by reverse transcriptase-polymerase chain reaction. An LH2 minigene was designed, validated, and used in Fox-2 overexpression and mutagenesis experiments. Knockdown of Fox-2 was performed in mouse embryonic fibroblasts and in fibroblasts from SSc patients. Overexpression of Fox-2 enhanced the inclusion of exon 13A and increased the generation of LH2(long) mRNA, whereas knockdown of Fox-2 decreased LH2(long) transcripts. Mutational analysis of an LH2 minigene demonstrated that 2 of the 4 Fox binding motifs flanking LH2 exon 13A are required for inclusion of exon 13A. In early passage fibroblasts derived from patients with scleroderma, the knockdown of Fox-2 protein significantly decreased the endogenous levels of LH2(long) mRNA. Our findings indicate that Fox-2 plays an integral role in the regulation of LH2 splicing. Knockdown of Fox-2 and other methods to decrease the levels of fibrosis-associated LH2(long) mRNA in primary scleroderma cells may suggest a novel approach to strategies directed against scleroderma.
Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng
2012-01-01
Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380
Tubsuwan, Alisa; Munkongdee, Thongperm; Jearawiriyapaisarn, Natee; Boonchoy, Chanikarn; Winichagoon, Pranee; Fucharoen, Suthat; Svasti, Saovaros
2011-09-01
Thalassaemia is characterized by the reduced or absent production of globins in the haemoglobin molecule leading to imbalanced α-globin/non α-globin chains. HbE, the result of a G to A mutation in codon 26 of the HBB (β-globin) gene, activates a cryptic 5' splice site in codon 25 leading to a reduction of correctly spliced β(E) -globin (HBB:c.79G>A) mRNA and consequently β(+) -thalassaemia. A wide range of clinical severities in bothα- and β-thalassaemia syndromes, from nearly asymptomatic to transfusion-dependent, has been observed. The correlation between clinical heterogeneity in various genotypes of thalassaemia and the levels of globin gene expression and β(E) -globin pre-mRNA splicing were examined using multiplex quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and allele-specific RT-qPCR. The α-globin/non α-globin mRNA ratio was demonstrated to be a good indicator for disease severity among different thalassaemia disorders. However, the α-globin/non α-globin mRNA ratio ranged widely in β-thalassaemia/HbE patients, with no significant difference between mild and severe phenotypes. Interestingly, the correctly to aberrantly spliced β(E) -globin mRNA ratio in 30% of mild β-thalassaemia/HbE patients was higher than that of the severe patients. The splicing process of β(E) -globin pre-mRNA differs among β-thalassaemia/HbE patients and serves as one of the modifying factors for disease severity. © 2011 Blackwell Publishing Ltd.
Lee, Jinwoo; Foong, Yee Hoon; Musaitif, Ibrahim; Tong, Tiegang; Jefcoate, Colin
2016-07-05
The steroidogenic acute regulatory protein (StAR) has been proposed to serve as the switch that can turn on/off steroidogenesis. We investigated the events that facilitate dynamic StAR transcription in response to cAMP stimulation in MA-10 Leydig cells, focusing on splicing anomalies at StAR gene loci. We used 3' reverse primers in a single reaction to respectively quantify StAR primary (p-RNA), spliced (sp-RNA/mRNA), and extended 3' untranslated region (UTR) transcripts, which were quantitatively imaged by high-resolution fluorescence in situ hybridization (FISH). This approach delivers spatio-temporal resolution of initiation and splicing at single StAR loci, and transfers individual mRNA molecules to cytoplasmic sites. Gene expression was biphasic, initially showing slow splicing, transitioning to concerted splicing. The alternative 3.5-kb mRNAs were distinguished through the use of extended 3'UTR probes, which exhibited distinctive mitochondrial distribution. Combining quantitative PCR and FISH enables imaging of localization of RNA expression and analysis of RNA processing rates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sharma, Neeraj; Sosnay, Patrick R.; Ramalho, Anabela S.; Douville, Christopher; Franca, Arianna; Gottschalk, Laura B.; Park, Jeenah; Lee, Melissa; Vecchio-Pagan, Briana; Raraigh, Karen S.; Amaral, Margarida D.; Karchin, Rachel; Cutting, Garry R.
2015-01-01
Assessment of the functional consequences of variants near splice sites is a major challenge in the diagnostic laboratory. To address this issue, we created expression minigenes (EMGs) to determine the RNA and protein products generated by splice site variants (n = 10) implicated in cystic fibrosis (CF). Experimental results were compared with the splicing predictions of eight in silico tools. EMGs containing the full-length Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) coding sequence and flanking intron sequences generated wild-type transcript and fully processed protein in Human Embryonic Kidney (HEK293) and CF bronchial epithelial (CFBE41o-) cells. Quantification of variant induced aberrant mRNA isoforms was concordant using fragment analysis and pyrosequencing. The splicing patterns of c.1585−1G>A and c.2657+5G>A were comparable to those reported in primary cells from individuals bearing these variants. Bioinformatics predictions were consistent with experimental results for 9/10 variants (MES), 8/10 variants (NNSplice), and 7/10 variants (SSAT and Sroogle). Programs that estimate the consequences of mis-splicing predicted 11/16 (HSF and ASSEDA) and 10/16 (Fsplice and SplicePort) experimentally observed mRNA isoforms. EMGs provide a robust experimental approach for clinical interpretation of splice site variants and refinement of in silico tools. PMID:25066652
Nuclear sequestration of COL1A1 mRNA transcript associated with type I osteogenesis imperfecta (OI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primorac, D.; Stover, M.L.; McKinstry, M.B.
Previously we identified an OI type I patient with a splice donor mutation that resulted in intron 26 retention instead of exon skipping and sequestration of normal levels of the mutant transcript in the nuclear compartment. Intron retention was consistent with the exon definition hypothesis for splice site selection since the size of the exon-intron-exon unit was less than 300 bp. Furthermore, the retained intron contained in-frame stop codons which is thought to cause the mutant RNA to remain within the nucleus rather than appearing in the cytoplasm. To test these hypotheses, genomic fragments containing the normal sequence or themore » donor mutation were cloned into a collagen minigene and expressed in stably tansfected NIH 3T3 cells. None of the modifications to the normal intron altered the level of RNA that accumulated in the cytoplasm, as expected. However none of the modifications to the mutant intron allowed accumulation of normal levels of mRNA in the cytoplasm. Moreover, in contrast to our findings in the patient`s cells only low levels of mutant transcript were found in the nucleus; a fraction of the transcript did appear in the cytoplasm which had spliced the mutant donor site correctly. Nuclear run-on experiments demonstrated equal levels of transcription from each transgene. Expression of another donor mutation known to cause in-frame exon skipping in OI type IV was accurately reproduced in the minigene in transfected 3T3 cells. Our experience suggests that either mechanism can lead to formation of a null allele possibly related to the type of splicing events surrounding the potential stop codons. Understanding the rules governing inactivation of a collagen RNA transcript may be important in designing a strategy to inactivate a dominate negative mutation associated with the more severe forms of OI.« less
Darnell, James E.
2013-01-01
Several strong conclusions emerge concerning pre-mRNA processing from both old and newer experiments. The RNAPII complex is involved with pre-mRNA processing through binding of processing proteins to the CTD (carboxyl terminal domain) of the largest RNAPII subunit. These interactions are necessary for efficient processing, but whether factor binding to the CTD and delivery to splicing sites is obligatory or facilitatory is unsettled. Capping, addition of an m7Gppp residue (cap) to the initial transcribed residue of a pre-mRNA, occurs within seconds. Splicing of pre-mRNA by spliceosomes at particular sites is most likely committed during transcription by the binding of initiating processing factors and ∼50% of the time is completed in mammalian cells before completion of the primary transcript. This fact has led to an outpouring in the literature about “cotranscriptional splicing.” However splicing requires several minutes for completion and can take longer. The RNAPII complex moves through very long introns and also through regions dense with alternating exons and introns at an average rate of ∼3 kb per min and is, therefore, not likely detained at each splice site for more than a few seconds, if at all. Cleavage of the primary transcript at the 3′ end and polyadenylation occurs within 30 sec or less at recognized polyA sites, and the majority of newly polyadenylated pre-mRNA molecules are much larger than the average mRNA. Finally, it seems quite likely that the nascent RNA most often remains associated with the chromosomal locus being transcribed until processing is complete, possibly acquiring factors related to the transport of the new mRNA to the cytoplasm. PMID:23440351
Eberle, Andrea B.; Hessle, Viktoria; Helbig, Roger; Dantoft, Widad; Gimber, Niclas; Visa, Neus
2010-01-01
Background Eukaryotic cells have developed surveillance mechanisms to prevent the expression of aberrant transcripts. An early surveillance checkpoint acts at the transcription site and prevents the release of mRNAs that carry processing defects. The exosome subunit Rrp6 is required for this checkpoint in Saccharomyces cerevisiae, but it is not known whether Rrp6 also plays a role in mRNA surveillance in higher eukaryotes. Methodology/Principal Findings We have developed an in vivo system to study nuclear mRNA surveillance in Drosophila melanogaster. We have produced S2 cells that express a human β-globin gene with mutated splice sites in intron 2 (mut β-globin). The transcripts encoded by the mut β-globin gene are normally spliced at intron 1 but retain intron 2. The levels of the mut β-globin transcripts are much lower than those of wild type (wt) ß-globin mRNAs transcribed from the same promoter. We have compared the expression of the mut and wt β-globin genes to investigate the mechanisms that down-regulate the production of defective mRNAs. Both wt and mut β-globin transcripts are processed at the 3′, but the mut β-globin transcripts are less efficiently cleaved than the wt transcripts. Moreover, the mut β-globin transcripts are less efficiently released from the transcription site, as shown by FISH, and this defect is restored by depletion of Rrp6 by RNAi. Furthermore, transcription of the mut β-globin gene is significantly impaired as revealed by ChIP experiments that measure the association of the RNA polymerase II with the transcribed genes. We have also shown that the mut β-globin gene shows reduced levels of H3K4me3. Conclusions/Significance Our results show that there are at least two surveillance responses that operate cotranscriptionally in insect cells and probably in all metazoans. One response requires Rrp6 and results in the inefficient release of defective mRNAs from the transcription site. The other response acts at the transcription level and reduces the synthesis of the defective transcripts through a mechanism that involves histone modifications. PMID:20634951
Sinha, Amit; Langnick, Claudia; Sommer, Ralf J; Dieterich, Christoph
2014-09-01
Discovery of trans-splicing in multiple metazoan lineages led to the identification of operon-like gene organization in diverse organisms, including trypanosomes, tunicates, and nematodes, but the functional significance of such operons is not completely understood. To see whether the content or organization of operons serves similar roles across species, we experimentally defined operons in the nematode model Pristionchus pacificus. We performed affinity capture experiments on mRNA pools to specifically enrich for transcripts that are trans-spliced to either the SL1- or SL2-spliced leader, using spliced leader-specific probes. We obtained distinct trans-splicing patterns from the analysis of three mRNA pools (total mRNA, SL1 and SL2 fraction) by RNA-seq. This information was combined with a genome-wide analysis of gene orientation and spacing. We could confirm 2219 operons by RNA-seq data out of 6709 candidate operons, which were predicted by sequence information alone. Our gene order comparison of the Caenorhabditis elegans and P. pacificus genomes shows major changes in operon organization in the two species. Notably, only 128 out of 1288 operons in C. elegans are conserved in P. pacificus. However, analysis of gene-expression profiles identified conserved functions such as an enrichment of germline-expressed genes and higher expression levels of operonic genes during recovery from dauer arrest in both species. These results provide support for the model that a necessity for increased transcriptional efficiency in the context of certain developmental processes could be a selective constraint for operon evolution in metazoans. Our method is generally applicable to other metazoans to see if similar functional constraints regulate gene organization into operons. © 2014 Sinha et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Sørensen, Brian B; Ehrnsberger, Hans F; Esposito, Silvia; Pfab, Alexander; Bruckmann, Astrid; Hauptmann, Judith; Meister, Gunter; Merkl, Rainer; Schubert, Thomas; Längst, Gernot; Melzer, Michael; Grasser, Marion; Grasser, Klaus D
2017-02-01
We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr
2016-02-05
Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNAmore » was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.« less
Quantitation of normal CFTR mRNA in CF patients with splice-site mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z.; Olsen, J.C.; Silverman, L.M.
Previously we identified two mutations in introns of the CFTR gene associated with partially active splice sites and unusual clinical phenotypes. One mutation in intron 19 (3849+10 kb C to T) is common in CF patients with normal sweat chloride values; an 84 bp sequence from intron 19, which contains a stop codon, is inserted between exon 19 and exon 20 in most nasal CFTR transcripts. The other mutation in intron 14B (2789+5 G to A) is associated with elevated sweat chloride levels, but mild pulmonary disease; exon 14B (38 bp) is spliced out of most nasal CFTR transcipts. Themore » remaining CFTR cDNA sequences, other than the 84 bp insertion of exon 14B deletion, are identical to the published sequence. To correlate genotype and phenotype, we used quantitative RT-PCR to determine the levels of normally-spliced CFTR mRNA in nasal epithelia from these patients. CFTR cDNA was amplified (25 cycles) by using primers specific for normally-spliced species, {gamma}-actin cDNA was amplified as a standard.« less
Highley, J Robin; Kirby, Janine; Jansweijer, Joeri A; Webb, Philip S; Hewamadduma, Channa A; Heath, Paul R; Higginbottom, Adrian; Raman, Rohini; Ferraiuolo, Laura; Cooper-Knock, Johnathan; McDermott, Christopher J; Wharton, Stephen B; Shaw, Pamela J; Ince, Paul G
2014-10-01
Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor neurone-like cell model; and (2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurones obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. We found altered expression of spliceosome components in motor neurones and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43-depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, which were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurones, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. © 2014 British Neuropathological Society.
Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce
2017-01-01
MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324
Chinmo prevents transformer alternative splicing to maintain male sex identity.
Grmai, Lydia; Hudry, Bruno; Miguel-Aliaga, Irene; Bach, Erika A
2018-02-01
Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to "feminize", resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility.
Chinmo prevents transformer alternative splicing to maintain male sex identity
Hudry, Bruno; Miguel-Aliaga, Irene
2018-01-01
Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to “feminize”, resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility. PMID:29389999
Matsumoto, Jun; Dewar, Ken; Wasserscheid, Jessica; Wiley, Graham B; Macmil, Simone L; Roe, Bruce A; Zeller, Robert W; Satou, Yutaka; Hastings, Kenneth E M
2010-05-01
Pre-mRNA 5' spliced-leader (SL) trans-splicing occurs in some metazoan groups but not in others. Genome-wide characterization of the trans-spliced mRNA subpopulation has not yet been reported for any metazoan. We carried out a high-throughput analysis of the SL trans-spliced mRNA population of the ascidian tunicate Ciona intestinalis by 454 Life Sciences (Roche) pyrosequencing of SL-PCR-amplified random-primed reverse transcripts of tailbud embryo RNA. We obtained approximately 250,000 high-quality reads corresponding to 8790 genes, approximately 58% of the Ciona total gene number. The great depth of this data revealed new aspects of trans-splicing, including the existence of a significant class of "infrequently trans-spliced" genes, accounting for approximately 28% of represented genes, that generate largely non-trans-spliced mRNAs, but also produce trans-spliced mRNAs, in part through alternative promoter use. Thus, the conventional qualitative dichotomy of trans-spliced versus non-trans-spliced genes should be supplanted by a more accurate quantitative view recognizing frequently and infrequently trans-spliced gene categories. Our data include reads representing approximately 80% of Ciona frequently trans-spliced genes. Our analysis also revealed significant use of closely spaced alternative trans-splice acceptor sites which further underscores the mechanistic similarity of cis- and trans-splicing and indicates that the prevalence of +/-3-nt alternative splicing events at tandem acceptor sites, NAGNAG, is driven by spliceosomal mechanisms, and not nonsense-mediated decay, or selection at the protein level. The breadth of gene representation data enabled us to find new correlations between trans-splicing status and gene function, namely the overrepresentation in the frequently trans-spliced gene class of genes associated with plasma/endomembrane system, Ca(2+) homeostasis, and actin cytoskeleton.
Henagan, Tara M; Stewart, Laura K; Forney, Laura A; Sparks, Lauren M; Johannsen, Neil; Church, Timothy S
2014-01-01
PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α). CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α -1 nucleosome (-1N) position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the -1N position revealed that those individuals with a -1N phased further upstream from the transcriptional start site (UP) expressed lower levels of NTPGC1α than those with the -1N more proximal to TSS (DN). UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the -1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and -1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133.
Theory on the Coupled Stochastic Dynamics of Transcription and Splice-Site Recognition
Murugan, Rajamanickam; Kreiman, Gabriel
2012-01-01
Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII) and the spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs). Here we propose a biophysically plausible initial theory of splicing that aims to explain the effects of the stochastic dynamics of snRNPs on the splicing patterns of eukaryotic genes. We consider two different ways to model the dynamics of snRNPs: pure three-dimensional diffusion and a combination of three- and one-dimensional diffusion along the emerging pre-mRNA. Our theoretical analysis shows that there exists an optimum position of the splice sites on the growing pre-mRNA at which the time required for snRNPs to find the 5′ donor site is minimized. The minimization of the overall search time is achieved mainly via the increase in non-specific interactions between the snRNPs and the growing pre-mRNA. The theory further predicts that there exists an optimum transcript length that maximizes the probabilities for exons to interact with the snRNPs. We evaluate these theoretical predictions by considering human and mouse exon microarray data as well as RNAseq data from multiple different tissues. We observe that there is a broad optimum position of splice sites on the growing pre-mRNA and an optimum transcript length, which are roughly consistent with the theoretical predictions. The theoretical and experimental analyses suggest that there is a strong interaction between the dynamics of RNAPII and the stochastic nature of snRNP search for 5′ donor splicing sites. PMID:23133354
Lim, Daniel A; Suárez-Fariñas, Mayte; Naef, Felix; Hacker, Coleen R; Menn, Benedicte; Takebayashi, Hirohide; Magnasco, Marcelo; Patil, Nila; Alvarez-Buylla, Arturo
2006-01-01
Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.
Masvidal, Laia; Igreja, Susana; Ramos, Maria D; Alvarez, Antoni; de Gracia, Javier; Ramalho, Anabela; Amaral, Margarida D; Larriba, Sara; Casals, Teresa
2014-01-01
The major purpose of the present study was to quantify correctly spliced CFTR transcripts in human nasal epithelial cells from cystic fibrosis (CF) patients carrying the splicing mutations c.580-1G>T (712-1G>T) and c.2657+5G>A (2789+5G>A) and to assess the applicability of this model in CFTR therapeutic approaches. We performed the relative quantification of CFTR mRNA by reverse transcription quantitative PCR (RT-qPCR) of these splicing mutations in four groups (wild type, CF-F508del controls, CF patients and CF carriers) of individuals. In addition, in vitro assays using minigene constructs were performed to evaluate the effect of a new CF complex allele c.[2657+5G>A; 2562T>G]. Ex vivo qPCR data show that the primary consequence of both mutations at the RNA level is the skipping of their neighboring exon (6 and 16, respectively). The CFTR minigenes results mimicked the ex vivo data, as exon 16 skipping is the main aberrant transcript, and the correctly spliced transcript level was observed in a similar proportion when the c.2657+5G>A mutation is present. In summary, we provide evidence that ex vivo quantitative transcripts analysis using RT/qPCR is a robust technology that could be useful for measuring the efficacy of therapeutic approaches that attempt to achieve an increase in CFTR gene expression. PMID:24129438
A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila
Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang
2015-01-01
Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5′ intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5′ intron finds the 3′ introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5′ intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing. PMID:25838544
Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G
2004-09-15
To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.
Bitar, Mainá; Boroni, Mariana; Macedo, Andréa M.; Machado, Carlos R.; Franco, Glória R.
2013-01-01
The spliced leader (SL) is a gene that generates a functional ncRNA that is composed of two regions: an intronic region of unknown function (SLi) and an exonic region (SLe), which is transferred to the 5′ end of independent transcripts yielding mature mRNAs, in a process known as spliced leader trans-splicing (SLTS). The best described function for SLTS is to solve polycistronic transcripts into monocistronic units, specifically in Trypanosomatids. In other metazoans, it is speculated that the SLe addition could lead to increased mRNA stability, differential recruitment of the translational machinery, modification of the 5′ region or a combination of these effects. Although important aspects of this mechanism have been revealed, several features remain to be elucidated. We have analyzed 157 SLe sequences from 148 species from seven phyla and found a high degree of conservation among the sequences of species from the same phylum, although no considerable similarity seems to exist between sequences of species from different phyla. When analyzing case studies, we found evidence that a given SLe will always be related to a given set of transcripts in different species from the same phylum, and therefore, different SLe sequences from the same species would regulate different sets of transcripts. In addition, we have observed distinct transcript categories to be preferential targets for the SLe addition in different phyla. This work sheds light into crucial and controversial aspects of the SLTS mechanism. It represents a comprehensive study concerning various species and different characteristics of this important post-transcriptional regulatory mechanism. PMID:24130571
Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing
2013-01-01
Background Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. Methods MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. Results We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ERα-dependent overexpression of FGFR2, whereas resistance to fulvestrant was associated with ERα-dependent isoform switching, which correlated with altered response to KGF. Conclusion E2 may partly alter cellular proteome through alternative splicing uncoupled to its effects on transcription initiation and aberration in E2-induced alternative splicing events may influence response to anti-estrogens. PMID:23758675
Li, Jie; Xu, Peiwen; Huang, Sexin; Gao, Ming; Zou, Yang; Kang, Ranran; Gao, Yuan
2017-04-10
To identify potential mutation of PHEX gene in two patients from a family affected with X-linked hypophosphatemia (XLH). PCR and Sanger sequencing were performed on blood samples from the patients and 100 healthy controls. Reverse transcription-PCR (RT-PCR) was used to determine the mRNA expression in patient samples. A splicing site mutation, IVS21+2T>G, was found in the PHEX gene in both patients but not among the 100 healthy controls. RT-PCR confirmed that exon 21 of the PHEX gene was deleted. The novel splicing mutation IVS21+2T>G of the PHEX gene probably underlies the XLH in this pedigree. At the mRNA level, the mutation has led to removal of exon 21 and shift of the open reading frame (p.Val691fsx), resulting in premature termination of protein translation.
Corepressors: custom tailoring and alterations while you wait
Goodson, Michael; Jonas, Brian A.; Privalsky, Martin A.
2005-01-01
A diverse cadre of metazoan transcription factors mediate repression by recruiting protein complexes containing the SMRT (silencing mediator of retinoid and thyroid hormone receptor) or N-CoR (nuclear receptor corepressor) corepressors. SMRT and N-CoR nucleate the assembly of still larger corepressor complexes that perform the specific molecular incantations necessary to confer transcriptional repression. Although SMRT and N-CoR are paralogs and possess similar molecular architectures and mechanistic strategies, they nonetheless exhibit distinct molecular and biological properties. It is now clear that the functions of both SMRT and N-CoR are further diversified through alternative mRNA splicing, yielding a series of corepressor protein variants that participate in distinctive transcription factor partnerships and display distinguishable repression properties. This review will discuss what is known about the structure and actions of SMRT, N-CoR, and their splicing variants, and how alternative splicing may allow the functions of these corepressors to be adapted and tailored to different cells and to different developmental stages. PMID:16604171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaler, S.G.; Gahl, W.A.
1994-09-01
Menkes disease is an X linked recessive disorder of copper metabolism produced by abnormalities in a gene that encodes a copper transporting ATPase. The clinical spectrum of Menkes disease includes a range of neurological severity from the classical type to the occipital horn syndrome (OHS) in which slightly subnormal intelligence or signs of autonomic dysfunction are the only neurologic abnormalities. We previously documented a distinctive, less severe Menkes phenotype associated with a +3 intronic splice donor mutation at the 3{prime} end of the gene in which exon skipping occurred but some normally spliced message was also detectable. We now reportmore » a similar splicing mutation in a patient with a typical OHS phenotype an A to G transition at the 2 exonic position of a splice donor site in the middle of the Menkes coding sequence. Some normally sized transcripts are evident by RT-PCR of lymphoblast mRNA from this individual, as well as 2 truncated fragments generated by exon skipping and activation of a cryptic splice acceptor site, respectively. The predicted effect of the mutation on the gene product involves a serine to glycine substitution in a noncritical region of the Menkes ATPase from the patient`s normally sized message, and premature termination due to translational frameshift in both truncated transcripts. The mutation eliminates a Dde 1 restriction site in the gene which provided a method to rapidly screen other family members, and revealed that the patient`s mother is a non-carrier. The mutational base change was not present in 25 normal X chromosomes studied. Preliminary analysis of the Menkes locus in 5 other Menkes disease families indicates aberrant mRNA splicing in 2. Our findings confirm allelism at the Menkes locus, indicate that splice mutations are relatively common mutational event in Menkes disease, and suggest that splice mutations in which some normal splicing is preserved may underlie milder Menkes disease variants, including OHS.« less
Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong
2014-01-01
Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531
Lomet, Didier; Piégu, Benoît; Wood, Shona H.
2018-01-01
This study investigated Vegfa expression in the pars tuberalis (PT) of the pituitary and medio-basal hypothalamus (MBH) of sheep, across seasons and reproductive states. It has recently been proposed that season impacts alternative splicing of Vegfa mRNA in the PT, which shifts the balance between angiogenic VEGFAxxx and anti-angiogenic VEGFAxxxb isoforms (with xxx the number of amino acids of the mature VEGFA proteins) to modulate seasonal breeding. Here, we used various RT-PCR methodologies and analysis of RNAseq datasets to investigate seasonal variation in expression and splicing of the ovine Vegfa gene. Collectively, we identify 5 different transcripts for Vegfa within the ewe PT/MBH, which correspond to splicing events previously described in mouse and human. All identified transcripts encode angiogenic VEGFAxxx isoforms, with no evidence for alternative splicing within exon 8. These findings led us to investigate in detail how “Vegfaxxxb-like” PCR products could be generated by RT-PCR and misidentified as endogenous transcripts, in sheep and human HEK293 cells. In conclusion, our findings do not support the existence of anti-angiogenic VEGFAxxxb isoforms in the ovine PT/MBH and shed new light on the interpretation of prior studies, which claimed to identify Vegfaxxxb isoforms by RT-PCR. PMID:29746548
Cenik, Can; Chua, Hon Nian; Zhang, Hui; Tarnawsky, Stefan P.; Akef, Abdalla; Derti, Adnan; Tasan, Murat; Moore, Melissa J.; Palazzo, Alexander F.; Roth, Frederick P.
2011-01-01
In higher eukaryotes, messenger RNAs (mRNAs) are exported from the nucleus to the cytoplasm via factors deposited near the 5′ end of the transcript during splicing. The signal sequence coding region (SSCR) can support an alternative mRNA export (ALREX) pathway that does not require splicing. However, most SSCR–containing genes also have introns, so the interplay between these export mechanisms remains unclear. Here we support a model in which the furthest upstream element in a given transcript, be it an intron or an ALREX–promoting SSCR, dictates the mRNA export pathway used. We also experimentally demonstrate that nuclear-encoded mitochondrial genes can use the ALREX pathway. Thus, ALREX can also be supported by nucleotide signals within mitochondrial-targeting sequence coding regions (MSCRs). Finally, we identified and experimentally verified novel motifs associated with the ALREX pathway that are shared by both SSCRs and MSCRs. Our results show strong correlation between 5′ untranslated region (5′UTR) intron presence/absence and sequence features at the beginning of the coding region. They also suggest that genes encoding secretory and mitochondrial proteins share a common regulatory mechanism at the level of mRNA export. PMID:21533221
Li, Jun; Hakata, Yoshiyuki; Takeda, Eri; Liu, Qingping; Iwatani, Yasumasa; Kozak, Christine A.; Miyazawa, Masaaki
2012-01-01
Mouse apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like editing complex 3 (mA3), an intracellular antiviral factor, has 2 allelic variations that are linked with different susceptibilities to beta- and gammaretrovirus infections among various mouse strains. In virus-resistant C57BL/6 (B6) mice, mA3 transcripts are more abundant than those in susceptible BALB/c mice both in the spleen and bone marrow. These strains of mice also express mA3 transcripts with different splicing patterns: B6 mice preferentially express exon 5-deficient (Δ5) mA3 mRNA, while BALB/c mice produce exon 5-containing full-length mA3 mRNA as the major transcript. Although the protein product of the Δ5 mRNA exerts stronger antiretroviral activities than the full-length protein, how exon 5 affects mA3 antiviral activity, as well as the genetic mechanisms regulating exon 5 inclusion into the mA3 transcripts, remains largely uncharacterized. Here we show that mA3 exon 5 is indeed a functional element that influences protein synthesis at a post-transcriptional level. We further employed in vitro splicing assays using genomic DNA clones to identify two critical polymorphisms affecting the inclusion of exon 5 into mA3 transcripts: the number of TCCT repeats upstream of exon 5 and the single nucleotide polymorphism within exon 5 located 12 bases upstream of the exon 5/intron 5 boundary. Distribution of the above polymorphisms among different Mus species indicates that the inclusion of exon 5 into mA3 mRNA is a relatively recent event in the evolution of mice. The widespread geographic distribution of this exon 5-including genetic variant suggests that in some Mus populations the cost of maintaining an effective but mutagenic enzyme may outweigh its antiviral function. PMID:22275865
Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp
Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli
2016-01-01
In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015
Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.
2012-01-01
In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674
RNA splicing regulates the temporal order of TNF-induced gene expression.
Hao, Shengli; Baltimore, David
2013-07-16
When cells are induced to express inflammatory genes by treatment with TNF, the mRNAs for the induced genes appear in three distinct waves, defining gene groups I, II, and III, or early, intermediate, and late genes. To examine the basis for these different kinetic classes, we have developed a PCR-based procedure to distinguish pre-mRNAs from mRNAs. It shows that the three groups initiate transcription virtually simultaneously but that delays in splicing characterize groups II and III. We also examined the elongation times, concluding that pre-mRNA synthesis is coordinate but splicing differences directly regulate the timing of mRNA production.
Developmental expression of a regulatory gene is programmed at the level of splicing.
Chou, T B; Zachar, Z; Bingham, P M
1987-01-01
We report sequence and transcript structures for a 6191-base chromosomal segment containing the presumptive regulatory gene from Drosophila, suppressor-of-white-apricot [su(wa)]. Our results indicate that su(wa) expression is controlled by regulating occurrence of specific splices. Seven introns are removed from the su(wa) primary transcript during precellular blastoderm development. The sequence of this mature RNA indicates that it is a conventional messenger RNA. In contrast, after cellular blastoderm the first two of these introns cease to be efficiently removed. The mature RNAs resulting from this failure to remove the first two introns have structures quite unexpected of mRNAs. We propose that postcellular blastoderm su(wa) expression is repressed by preventing splices necessary to produce a functional mRNA. Implications and mechanisms are discussed. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2832151
Yu, T; Wang, X; Ding, Q; Fu, Q; Dai, J; Lu, Y; Xi, X; Wang, H
2009-11-01
Factor VII deficiency which transmitted as an autosomal recessive disorder is a rare haemorrhagic condition. The aim of this study was to identify the molecular genetic defect and determine its functional consequences in a Chinese pedigree with FVII deficiency. The proband was diagnosed as inherited coagulation FVII deficiency by reduced plasma levels of FVII activity (4.4%) and antigen (38.5%). All nine exons and their flanking sequence of F7 gene were amplified by polymerase chain reaction (PCR) for the proband and the PCR products were directly sequenced. The compound heterozygous mutations of F7 (NM_000131.3) c.572-1G>A and F7 (NM_000131.3) c.1165T>G; p.Cys389Gly were identified in the proband's F7 gene. To investigate the splicing patterns associated with F7 c.572-1G>A, ectopic transcripts in leucocytes of the proband were analyzed. F7 minigenes, spanning from intron 4 to intron 7 and carrying either an A or a G at position -1 of intron 5, were constructed and transiently transfected into human embryonic kidney (HEK) 293T cells, followed by RT-PCR analysis. The aberrant transcripts from the F7 c.572-1G>A mutant allele were not detected by ectopic transcription study. Sequencing of the RT-PCR products from the mutant transfectant demonstrated the production of an erroneously spliced mRNA with exon 6 skipping, whereas a normal splicing occurred in the wide type transfectant. The aberrant mRNA produced from the F7 c.572-1G>A mutant allele is responsible for the factor VII deficiency in this pedigree.
Melangath, Geetha; Sen, Titash; Kumar, Rakesh; Bawa, Pushpinder; Srinivasan, Subha; Vijayraghavan, Usha
2017-01-01
Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast.
Kumar, Rakesh; Bawa, Pushpinder; Srinivasan, Subha
2017-01-01
Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3’ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5’ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5’ss in dtd1+ intron 1 and of an upstream alternative 3’ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5’ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5’ ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3’ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast. PMID:29236736
Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L
2017-09-01
Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.
Interactive web-based identification and visualization of transcript shared sequences.
Azhir, Alaleh; Merino, Louis-Henri; Nauen, David W
2018-05-12
We have developed TraC (Transcript Consensus), a web-based tool for detecting and visualizing shared sequences among two or more mRNA transcripts such as splice variants. Results including exon-exon boundaries are returned in a highly intuitive, data-rich, interactive plot that permits users to explore the similarities and differences of multiple transcript sequences. The online tool (http://labs.pathology.jhu.edu/nauen/trac/) is free to use. The source code is freely available for download (https://github.com/nauenlab/TraC). Copyright © 2018 Elsevier Inc. All rights reserved.
The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions.
Liu, Yan; Ji, Wei; Yin, You; Fan, Lan; Zhang, Jian; Yun, Huang; Wang, Nianci; Li, Qing; Wei, Zhang; Ouyang, Dongshen; Zhou, Hong-Hao
2009-05-01
PAR-2(SV1), a splicing variant of PXR, has similar activity as PXR wild type. Currently, a 6bp-deletion variant ((-133)GAGAAG(-128)) in promoter region of PAR-2(SV1) was reported, which could diminish the hPAR-2 promote activity in HepG2 cells. The distribution and functions of 6bp-deletion in Chinese were investigated. The PXR genotype was analyzed from 56 liver samples and 177 blood samples. Then the mRNA expression of PAR-2(SV1), total PXR, CYP3A4 and MDR1 were quantitatively analyzed by real-time PCR. The allelic frequencies of 6bp-deletion were 22.4%, 38.4% and 23.7%, in blood of Chinese healthy (n=177), hepatic carcinoma samples (n=33) and calculus of bile duct ones (n=23) respectively. PAR-2(SV1) transcript represented approximately 15.3% of the total PXR transcripts in all liver samples. The 6bp-deletion cut down PAR-2(SV1) mRNA and total PXR mRNA transcriptional expression, and then led to down regulations of MDR1 and CYP3A4. PAR-2(SV1) plays an important role in total PXR mRNA expression. The 6bp-deletion affects the PAR-2(SV1) expression greatly, and then contributes to the adjustment of expression and function of total PXR. Thus it leads to the changed target gene expressions, which may partly explain interindividual variations in CYP3A4 and MDR1. And these phenomena suggest that individuals with 6bp-deletion are prone to carcinoma when exposed to toxicity.
Xie, Jingli; Pabón, Dina; Jayo, Asier; Butta, Nora; González-Manchón, Consuelo
2005-05-01
We report a novel genetic defect in a patient with type I Glanzmann thrombasthenia. Flow cytometry analysis revealed undetectable levels of platelet glycoproteins alphaIIb and beta3, although residual amounts of both proteins were detectable in immunoblotting analysis. Sequence analysis of reversely transcribed platelet beta3 mRNA showed a 100-base pair deletion in the 3'-boundary of exon 11, that results in a frame shift and appearance of a premature STOP codon. Analysis of the corresponding genomic DNA fragment revealed the presence of a homozygous C1815T transition in exon 11. The mutation does not change the amino acid residue but it creates an ectopic consensus splice donor site that is used preferentially, causing splicing out of part of exon 11. The parents of the proband, heterozygous for this mutation, were asymptomatic and had reduced platelet content of alphaIIbbeta3. PCR-based relative quantification of beta3 mRNA failed to detect the mutant transcript in the parents and showed a marked reduction in the patient. The results suggest that the thrombasthenic phenotype is, mainly, the result of the reduced availability of beta3-mRNA, most probably due to activation of the nonsense-mediated mRNA decay mechanism. They also show the convenience of analyzing both genomic DNA and mRNA, in order to ascertain the functional consequences of single nucleotide substitutions.
Intergenic mRNA molecules resulting from trans-splicing.
Finta, Csaba; Zaphiropoulos, Peter G
2002-02-22
Accumulated recent evidence is indicating that alternative splicing represents a generalized process that increases the complexity of human gene expression. Here we show that mRNA production may not necessarily be limited to single genes, as human liver also has the potential to produce a variety of hybrid cytochrome P450 3A mRNA molecules. The four known cytochrome P450 3A genes in humans, CYP3A4, CYP3A5, CYP3A7, and CYP3A43, share a high degree of similarity, consist of 13 exons with conserved exon-intron boundaries, and form a cluster on chromosome 7. The chimeric CYP3A mRNA molecules described herein are characterized by CYP3A43 exon 1 joined at canonical splice sites to distinct sets of CYP3A4 or CYP3A5 exons. Because the CYP3A43 gene is in a head-to-head orientation with the CYP3A4 and CYP3A5 genes, bypassing transcriptional termination can not account for the formation of hybrid CYP3A mRNAs. Thus, the mechanism generating these molecules has to be an RNA processing event that joins exons of independent pre-mRNA molecules, i.e. trans-splicing. Using quantitative real-time polymerase chain reaction, the ratio of one CYP3A43/3A4 intergenic combination was estimated to be approximately 0.15% that of the CYP3A43 mRNAs. Moreover, trans-splicing has been found not to interfere with polyadenylation. Heterologous expression of the chimeric species composed of CYP3A43 exon 1 joined to exons 2-13 of CYP3A4 revealed catalytic activity toward testosterone.
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.; ...
2015-08-20
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.
Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc
2008-06-01
The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.
The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro
Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc
2008-01-01
The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties. PMID:18442994
X-linked hypophosphatemia attributable to pseudoexons of the PHEX gene.
Christie, P T; Harding, B; Nesbit, M A; Whyte, M P; Thakker, R V
2001-08-01
X-linked hypophosphatemia is commonly caused by mutations of the coding region of PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). However, such PHEX mutations are not detected in approximately one third of X-linked hypophosphatemia patients who may harbor defects in the noncoding or intronic regions. We have therefore investigated 11 unrelated X-linked hypophosphatemia patients in whom coding region mutations had been excluded, for intronic mutations that may lead to mRNA splicing abnormalities, by the use of lymphoblastoid RNA and RT-PCRs. One X-linked hypophosphatemia patient was found to have 3 abnormally large transcripts, resulting from 51-bp, 100-bp, and 170-bp insertions, all of which would lead to missense peptides and premature termination codons. The origin of these transcripts was a mutation (g to t) at position +1268 of intron 7, which resulted in the occurrence of a high quality novel donor splice site (ggaagg to gtaagg). Splicing between this novel donor splice site and 3 preexisting, but normally silent, acceptor splice sites within intron 7 resulted in the occurrences of the 3 pseudoexons. This represents the first report of PHEX pseudoexons and reveals further the diversity of genetic abnormalities causing X-linked hypophosphatemia.
Hutchinson, John N; Ensminger, Alexander W; Clemson, Christine M; Lynch, Christopher R; Lawrence, Jeanne B; Chess, Andrew
2007-01-01
Background Noncoding RNA species play a diverse set of roles in the eukaryotic cell. While much recent attention has focused on smaller RNA species, larger noncoding transcripts are also thought to be highly abundant in mammalian cells. To search for large noncoding RNAs that might control gene expression or mRNA metabolism, we used Affymetrix expression arrays to identify polyadenylated RNA transcripts displaying nuclear enrichment. Results This screen identified no more than three transcripts; XIST, and two unique noncoding nuclear enriched abundant transcripts (NEAT) RNAs strikingly located less than 70 kb apart on human chromosome 11: NEAT1, a noncoding RNA from the locus encoding for TncRNA, and NEAT2 (also known as MALAT-1). While the two NEAT transcripts share no significant homology with each other, each is conserved within the mammalian lineage, suggesting significant function for these noncoding RNAs. NEAT2 is extraordinarily well conserved for a noncoding RNA, more so than even XIST. Bioinformatic analyses of publicly available mouse transcriptome data support our findings from human cells as they confirm that the murine homologs of these noncoding RNAs are also nuclear enriched. RNA FISH analyses suggest that these noncoding RNAs function in mRNA metabolism as they demonstrate an intimate association of these RNA species with SC35 nuclear speckles in both human and mouse cells. These studies show that one of these transcripts, NEAT1 localizes to the periphery of such domains, whereas the neighboring transcript, NEAT2, is part of the long-sought polyadenylated component of nuclear speckles. Conclusion Our genome-wide screens in two mammalian species reveal no more than three abundant large non-coding polyadenylated RNAs in the nucleus; the canonical large noncoding RNA XIST and NEAT1 and NEAT2. The function of these noncoding RNAs in mRNA metabolism is suggested by their high levels of conservation and their intimate association with SC35 splicing domains in multiple mammalian species. PMID:17270048
Flytzanis, Nicholas C.; Balsamo, Michele; Condeelis, John S.; Oktay, Maja H.; Burge, Christopher B.; Gertler, Frank B.
2011-01-01
Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression. PMID:21876675
Musante, Luciana; Kunde, Stella-Amrei; Sulistio, Tina O; Fischer, Ute; Grimme, Astrid; Frints, Suzanna G M; Schwartz, Charles E; Martínez, Francisco; Romano, Corrado; Ropers, Hans-Hilger; Kalscheuer, Vera M
2010-01-01
The polyglutamine binding protein 1 (PQBP1) gene plays an important role in X-linked mental retardation (XLMR). Nine of the thirteen PQBP1 mutations known to date affect the AG hexamer in exon 4 and cause frameshifts introducing premature termination codons (PTCs). However, the phenotype in this group of patients is variable. To investigate the pathology of these PQBP1 mutations, we evaluated their consequences on mRNA and protein expression. RT-PCRs revealed mutation-specific reduction of PQBP1 mRNAs carrying the PTCs that can be partially restored by blocking translation, thus indicating a role for the nonsense-mediated mRNA decay pathway. In addition, these mutations resulted in altered levels of PQBP1 transcripts that skipped exon 4, probably as a result of altering important splicing motifs via nonsense-associated altered splicing (NAS). This hypothesis is supported by transfection experiments using wild-type and mutant PQBP1 minigenes. Moreover, we show that a truncated PQBP1 protein is indeed present in the patients. Remarkably, patients with insertion/deletion mutations in the AG hexamer express significantly increased levels of a PQBP1 isoform, which is very likely encoded by the transcripts without exon 4, confirming the findings at the mRNA level. Our study provides significant insight into the early events contributing to the pathogenesis of the PQBP1 related XLMR disease.
Lear, A L; Rowe, M; Kurilla, M G; Lee, S; Henderson, S; Kieff, E; Rickinson, A B
1992-01-01
In Epstein-Barr virus (EBV)-positive Burkitt's lymphoma cell lines exhibiting the latency I form of infection (i.e., EBV nuclear antigen 1 [EBNA1] positive in the absence of other latent proteins), the EBNA1 mRNA has a unique BamHI Q/U/K splice structure and is expressed from a novel promoter, Fp, located near the BamHI FQ boundary. This contrasts with the situation in EBV-transformed lymphoblastoid cell lines (LCLs) exhibiting the latency III form of infection (i.e., positive for all latent proteins), in which transcription from the upstream Cp or Wp promoters is the principal source of EBNA mRNAs. We carried out cDNA amplifications with oligonucleotide primer-probe combinations to determine whether Fp is ever active in an LCL environment. The results clearly showed that some LCLs express a Q/U/K-spliced EBNA1 mRNA in addition to the expected Cp/Wp-initiated transcripts; this seemed inconsistent with the concept of Cp/Wp and Fp as mutually exclusive promoters. Here we show that Fp is indeed silent in latency III cells but is activated at an early stage following the switch from latency III into the virus lytic cycle. Four pieces of evidence support this conclusion: (i) examples of coincident Cp/Wp and Fp usage in LCLs are restricted to those lines in which a small subpopulation of cells have spontaneously entered the lytic cycle; (ii) transcripts initiating from Fp can readily be demonstrated in spontaneously productive lines by S1 nuclease protection; (iii) the presence of Fp-initiated transcripts is not affected by acyclovir blockade of the late lytic cycle; and (iv) infection of latently infected LCLs with a recombinant vaccinia virus encoding the EBV immediate-early protein BZLF1, a transcriptional transactivator which normally initiates the lytic cycle, results in the appearance of the diagnostic Q/U/K-spliced transcripts. Images PMID:1331531
SEQassembly: A Practical Tools Program for Coding Sequences Splicing
NASA Astrophysics Data System (ADS)
Lee, Hongbin; Yang, Hang; Fu, Lei; Qin, Long; Li, Huili; He, Feng; Wang, Bo; Wu, Xiaoming
CDS (Coding Sequences) is a portion of mRNA sequences, which are composed by a number of exon sequence segments. The construction of CDS sequence is important for profound genetic analysis such as genotyping. A program in MATLAB environment is presented, which can process batch of samples sequences into code segments under the guide of reference exon models, and splice these code segments of same sample source into CDS according to the exon order in queue file. This program is useful in transcriptional polymorphism detection and gene function study.
Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta
2012-01-01
Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917
SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.
Xiong, Xiao-Peng; Vogler, Georg; Kurthkoti, Krishna; Samsonova, Anastasia; Zhou, Rui
2015-08-01
microRNAs (miRNAs) are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs) that contain Argonaute (AGO) family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP) implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be evolutionarily widespread.
Global impact of RNA splicing on transcriptome remodeling in the heart.
Gao, Chen; Wang, Yibin
2012-08-01
In the eukaryotic transcriptome, both the numbers of genes and different RNA species produced by each gene contribute to the overall complexity. These RNA species are generated by the utilization of different transcriptional initiation or termination sites, or more commonly, from different messenger RNA (mRNA) splicing events. Among the 30,000+ genes in human genome, it is estimated that more than 95% of them can generate more than one gene product via alternative RNA splicing. The protein products generated from different RNA splicing variants can have different intracellular localization, activity, or tissue-distribution. Therefore, alternative RNA splicing is an important molecular process that contributes to the overall complexity of the genome and the functional specificity and diversity among different cell types. In this review, we will discuss current efforts to unravel the full complexity of the cardiac transcriptome using a deep-sequencing approach, and highlight the potential of this technology to uncover the global impact of RNA splicing on the transcriptome during development and diseases of the heart.
The point of no return: The poly(A)-associated elongation checkpoint.
Tellier, Michael; Ferrer-Vicens, Ivan; Murphy, Shona
2016-01-01
Cyclin-dependent kinases play critical roles in transcription by RNA polymerase II (pol II) and processing of the transcripts. For example, CDK9 regulates transcription of protein-coding genes, splicing, and 3' end formation of the transcripts. Accordingly, CDK9 inhibitors have a drastic effect on the production of mRNA in human cells. Recent analyses indicate that CDK9 regulates transcription at the early-elongation checkpoint of the vast majority of pol II-transcribed genes. Our recent discovery of an additional CDK9-regulated elongation checkpoint close to poly(A) sites adds a new layer to the control of transcription by this critical cellular kinase. This novel poly(A)-associated checkpoint has the potential to powerfully regulate gene expression just before a functional polyadenylated mRNA is produced: the point of no return. However, many questions remain to be answered before the role of this checkpoint becomes clear. Here we speculate on the possible biological significance of this novel mechanism of gene regulation and the players that may be involved.
Zeng, Weihong; Liu, Xinmei; Liu, Zhicui; Zheng, Ying; Yu, Tiantian; Fu, Shaliu; Li, Xiao; Zhang, Jing; Zhang, Siming; Ma, Xiaoling; Liu, Xiao-Rui; Qin, Xiaoli; Khanniche, Asma; Zhang, Yan; Tian, Fuju; Lin, Yi
2018-01-01
Decidual CD8 + (dCD8) T cells have been proposed to play important roles in immune protection against the invading pathogens and in tolerance toward the growing semi-allogeneic fetus during early pregnancy. However, their phenotypic and functional characteristics remain poorly defined. Here, we performed the first analysis of the transcriptional and alternative splicing (AS) signatures for human first-trimester dCD8 T cells using high-throughput mRNA sequencing. Our data revealed that dCD8 T cells have distinct transcriptional and AS landscapes when compared with their autologous peripheral blood CD8 + (pCD8) T counterparts. Furthermore, human dCD8 T cells were observed to contain CD8-Treg and effector-memory T-cell subsets, and display enhanced functionality in terms of degranulation and cytokine production on a per-cell basis. Additionally, we have identified the novel splice junctions that use a high ratio of the non-canonical splicing motif GC-AG and found that AS is not a major contributor to the gene expression-level changes between paired pCD8 and dCD8 T cells. Together, our findings not only provide a comprehensive framework of the transcriptional and AS landscapes but also reveal the functional feature of human dCD8 T cells, which are of great importance in understanding the biology of these cells and the physiology of human healthy pregnancy.
Nakabayashi, Kazumi; Bartsch, Melanie; Ding, Jia; Soppe, Wim J J
2015-12-01
The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1) is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.
RNA Splicing in a New Rhabdovirus from Culex Mosquitoes▿†
Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko
2011-01-01
Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae. PMID:21507977
RNA splicing in a new rhabdovirus from Culex mosquitoes.
Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko
2011-07-01
Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.
Spliced integrated retrotransposed element (SpIRE) formation in the human genome.
Larson, Peter A; Moldovan, John B; Jasti, Naveen; Kidd, Jeffrey M; Beck, Christine R; Moran, John V
2018-03-01
Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5' untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5'UTR or 5'UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5'UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5'UTR and 5'UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5'UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5'UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary "dead-ends" in the L1 retrotransposition process, mutations within the L1 5'UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation.
Spliced integrated retrotransposed element (SpIRE) formation in the human genome
Larson, Peter A.; Moldovan, John B.; Jasti, Naveen; Kidd, Jeffrey M.; Beck, Christine R.; Moran, John V.
2018-01-01
Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5′ untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5′UTR or 5′UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5′UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5′UTR and 5′UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5′UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5′UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary “dead-ends” in the L1 retrotransposition process, mutations within the L1 5′UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation. PMID:29505568
Bacrot, Séverine; Doyard, Mathilde; Huber, Céline; Alibeu, Olivier; Feldhahn, Niklas; Lehalle, Daphné; Lacombe, Didier; Marlin, Sandrine; Nitschke, Patrick; Petit, Florence; Vazquez, Marie-Paule; Munnich, Arnold; Cormier-Daire, Valérie
2015-02-01
Cerebro-costo-mandibular syndrome (CCMS) is a developmental disorder characterized by the association of Pierre Robin sequence and posterior rib defects. Exome sequencing and Sanger sequencing in five unrelated CCMS patients revealed five heterozygous variants in the small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) gene. This gene includes three transcripts, namely transcripts 1 and 2, encoding components of the core spliceosomal machinery (SmB' and SmB) and transcript 3 undergoing nonsense-mediated mRNA decay. All variants were located in the premature termination codon (PTC)-introducing alternative exon of transcript 3. Quantitative RT-PCR analysis revealed a significant increase in transcript 3 levels in leukocytes of CCMS individuals compared to controls. We conclude that CCMS is due to heterozygous mutations in SNRPB, enhancing inclusion of a SNRPB PTC-introducing alternative exon, and show that this developmental disease is caused by defects in the splicing machinery. Our finding confirms the report of SNRPB mutations in CCMS patients by Lynch et al. (2014) and further extends the clinical and molecular observations. © 2014 WILEY PERIODICALS, INC.
Premraj, Avinash; Nautiyal, Binita; Aleyas, Abi G; Rasool, Thaha Jamal
2015-10-01
Interleukin-26 (IL-26) is a member of the IL-10 family of cytokines. Though conserved across vertebrates, the IL-26 gene is functionally inactivated in a few mammals like rat, mouse and horse. We report here the identification, isolation and cloning of the cDNA of IL-26 from the dromedary camel. The camel cDNA contains a 516 bp open reading frame encoding a 171 amino acid precursor protein, including a 21 amino acid signal peptide. Sequence analysis revealed high similarity with other mammalian IL-26 homologs and the conservation of IL-10 cytokine family domain structure including key amino acid residues. We also report the identification and cloning of four novel transcript variants produced by alternative splicing at the Exon 3-Exon 4 regions of the gene. Three of the alternative splice variants had premature termination codons and are predicted to code for truncated proteins. The transcript variant 4 (Tv4) having an insertion of an extra 120 bp nucleotides in the ORF was predicted to encode a full length protein product with 40 extra amino acid residues. The mRNA transcripts of all the variants were identified in lymph node, where as fewer variants were observed in other tissues like blood, liver and kidney. The expression of Tv2 and Tv3 were found to be up regulated in mitogen induced camel peripheral blood mononuclear cells. IL-26-Tv2 expression was also induced in camel fibroblast cells infected with Camel pox virus in-vitro. The identification of the transcript variants of IL-26 from the dromedary camel is the first report of alternative splicing for IL-26 in a species in which the gene has not been inactivated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leatham, M P; Witte, P R; Stinski, M F
1991-01-01
The human cytomegalovirus open reading frames (ORFs) UL119 through UL115 (UL119-115) are located downstream of the immediate-early 1 and 2 transcription units. The promoter upstream of UL119 is active at all times after infection and drives the synthesis of a spliced 3.1-kb mRNA. The viral mRNA initiates in UL119, contains UL119-117 and UL116, and terminates just downstream of UL115. True late transcripts that are detected only after viral DNA synthesis originate from this transcription unit. True late mRNAs of 2.1 kb, containing ORFs UL116 and UL115, and 1.2 kb, containing ORF UL115 only, are synthesized. The true late viral mRNAs are 3' coterminal with the 3.1-kb mRNA. This transcription unit is an example of late promoters nested within an immediate-early-early transcription unit. The gene products of UL119-117, UL116, and UL115 are predicted to be glycoproteins. Efficient expression of the downstream ORFs at late times after infection may be related to alternate promoter usage and downstream cap site selection. Images PMID:1717716
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzybowska, Ewa A., E-mail: ewag@coi.waw.pl
2012-07-20
Highlights: Black-Right-Pointing-Pointer Functional characteristics of intronless genes (IGs). Black-Right-Pointing-Pointer Diseases associated with IGs. Black-Right-Pointing-Pointer Origin and evolution of IGs. Black-Right-Pointing-Pointer mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associatedmore » diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.« less
Johnston, Brittany A; Hooks, Katarzyna B; McKinstry, Mia; Snow, Jonathan W
2016-03-01
Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. While we have some understanding of the physiological stress responses in the honey bee, our molecular understanding of honey bee cellular stress responses is incomplete. Thus, we sought to identify and began functional characterization of the components of the UPR in honey bees. The IRE1-dependent splicing of the mRNA for the transcription factor Xbp1, leading to translation of an isoform with more transactivation potential, represents the most conserved of the UPR pathways. Honey bees and other Apoidea possess unique features in the Xbp1 mRNA splice site, which we reasoned could have functional consequences for the IRE1 pathway. However, we find robust induction of target genes upon UPR stimulation. In addition, the IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA upon UPR, is conserved. By providing foundational knowledge about the UPR in the honey bee and the relative sensitivity of this species to divergent stresses, this work stands to improve our understanding of the mechanistic underpinnings of honey bee health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.
Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi
2015-06-01
The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.
Guerra, D M; Giometti, I C; Price, C A; Andrade, P B; Castilho, A C; Machado, M F; Ripamonte, P; Papa, P C; Buratini, J
2008-01-01
There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of 'B' and 'C' splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the 'B' and 'C' spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.
Hur, Junho K.; Luo, Yicheng; Moon, Sungjin; Ninova, Maria; Marinov, Georgi K.; Chung, Yun D.; Aravin, Alexei A.
2016-01-01
The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis. PMID:27036967
Jurado, Juan; Fuentes-Almagro, Carlos A; Prieto-Alamo, María J; Pueyo, Carmen
2007-09-21
Alternative splicing is a widespread mechanism of gene expression regulation. Previous analyses based on conventional RT-PCR reported the presence of an unspliced c-fos transcript in several mammalian systems. Compared to the well-defined knowledge on the alternative splicing of fosB, the physiological relevance of the unspliced c-fos transcript in regulating c-fos expression remains largely unknown. This work aimed to investigate the functional significance of the alternative splicing c-fos pre-mRNA. A set of primers was designed to demonstrate that, whereas introns 1 and 2 are regularly spliced from primary c-fos transcript, intron 3 remains unspliced in part of total transcript molecules. Here, the two species are referred to as c-fos-2 (+ intron 3) and spliced c-fos (- intron 3) transcripts. Then, we used a quantitatively rigorous approach based on real-time PCR to provide, for the first time, the actual steady-state copy numbers of the two c-fos transcripts. We tested how the mouse-organ context and mouse-gestational age, the synthesis and turnover rates of the investigated transcripts, and the serum stimulation of quiescent cells modulate their absolute-expression profiles. Intron 3 generates an in-frame premature termination codon that predicts the synthesis of a truncated c-Fos protein. This prediction was evaluated by immunoaffinity chromatography purification of c-Fos proteins. We demonstrate that: (i) The c-fos-2 transcript is ubiquitously synthesized either in vivo or in vitro, in amounts that are higher or similar to those of mRNAs coding for other Fos family members, like FosB, DeltaFosB, Fra-1 or Fra-2. (ii) Intron 3 confers to c-fos-2 an outstanding destabilizing effect of about 6-fold. (iii) Major determinant of c-fos-2 steady-state levels in cultured cells is its remarkably high rate of synthesis. (iv) Rapid changes in the synthesis and/or degradation rates of both c-fos transcripts in serum-stimulated cells give rise to rapid and transient changes in their relative proportions. Taken as a whole, these findings suggest a co-ordinated fine-tune of the two c-fos transcript species, supporting the notion that the alternative processing of the precursor mRNA might be physiologically relevant. Moreover, we detected a c-Fos immunoreactive species corresponding in mobility to the predicted truncated variant.
Characterization of variegate porphyria mutations using a minigene approach.
Granata, Barbara Xoana; Baralle, Marco; De Conti, Laura; Parera, Victoria; Rossetti, Maria Victoria
2015-01-01
Porphyrias are a group of metabolic diseases that affect the skin and/or nervous system. In 2008, three unrelated patients were diagnosed with variegate porphyria at the CIPYP (Centro de Investigaciones sobre Porfirinas y Porfirias). Sequencing of the protoporphyrinogen oxidase gene, the gene altered in this type of porphyria, revealed three previously undescribed mutations: c.338+3insT, c.807G>A, and c.808-1G>C. As these mutations do not affect the protein sequence, we hypothesized that they might be splicing mutations. RT-PCRs performed on the patient's mRNAs showed normal mRNA or no amplification at all. This result indicated that the aberrant spliced transcript is possibly being degraded. In order to establish whether they were responsible or not for the patient's disease by causing aberrant splicing, we utilized a minigene approach. We found that the three mutations lead to exon skipping; therefore, the abnormal mRNAs are most likely degraded by a mechanism such as nonsense-mediated decay. In conclusion, these mutations are responsible for the disease because they alter the normal splicing pathway, thus providing a functional explanation for the appearance of disease and highlighting the use of minigene assays to complement transcript analysis.
Salton, Maayan; Voss, Ty C.; Misteli, Tom
2014-01-01
Recent evidence points to a role of chromatin in regulation of alternative pre-mRNA splicing (AS). In order to identify novel chromatin regulators of AS, we screened an RNAi library of chromatin proteins using a cell-based high-throughput in vivo assay. We identified a set of chromatin proteins that regulate AS. Using simultaneous genome-wide expression and AS analysis, we demonstrate distinct and non-overlapping functions of these chromatin modifiers on transcription and AS. Detailed mechanistic characterization of one dual function chromatin modifier, the H3K9 methyltransferase EHMT2 (G9a), identified VEGFA as a major chromatin-mediated AS target. Silencing of EHMT2, or its heterodimer partner EHMT1, affects AS by promoting exclusion of VEGFA exon 6a, but does not alter total VEGFA mRNA levels. The epigenetic regulatory mechanism of AS by EHMT2 involves an adaptor system consisting of the chromatin modulator HP1γ, which binds methylated H3K9 and recruits splicing regulator SRSF1. The epigenetic regulation of VEGFA is physiologically relevant since EHMT2 is transcriptionally induced in response to hypoxia and triggers concomitant changes in AS of VEGFA. These results characterize a novel epigenetic regulatory mechanism of AS and they demonstrate separate roles of epigenetic modifiers in transcription and alternative splicing. PMID:25414343
Chen, Angela; Kelley, Lauren D S; Janušonis, Skirmantas
2012-06-12
The serotonin 5-HT(4) receptor (5-HT(4)R) is coded by a complex gene that produces four mRNA splice variants in mice (5-HT(4(a))R, 5-HT(4(b))R, 5-HT(4(e))R, 5-HT(4(f))R). This receptor has highly dynamic expression in brain development and its splice variants differ in their developmental trajectories. Since 5-HT(4)Rs are important in forebrain function (including forebrain control of serotonergic activity in the brainstem), we investigated the susceptibility of 5-HT(4)R expression in the mouse embryonic telencephalon to prenatal maternal stress and altered serotonin (5-hydroxytryptamine, 5-HT) levels. Because the gene coding the adrenergic β(2) receptor (β(2)AR) is embedded in the 5-HT(4)R gene, we also investigated whether 5-HT(4)R mRNA levels were modulated by selective β(2)AR agents. Timed-pregnant C57BL/6 mice were treated beginning at embryonic day (E) 14 and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to assess the mRNA levels of all 5-HT(4)R splice variants and β(2)AR in the embryonic telencephalon at E17. Maternal prenatal stress and 5-HT depletion with pCPA, a tryptophan hydroxylase inhibitor, reduced the levels of the 5-HT(4(b))R splice variant. Terbutaline (a selective β(2)AR agonist) and ICI 118,551 (a selective β(2)AR antagonist) had no effect on β(2)AR and 5-HT(4)R mRNA levels. These results show that prenatal stress and reduced 5-HT levels can alter 5-HT(4)R expression in the developing forebrain and that some 5-HT(4)R splice variants may be more susceptible than others. Copyright © 2012 Elsevier B.V. All rights reserved.
Expression of Kir7.1 and a Novel Kir7.1 Splice Variant in Native Human Retinal Pigment Epithelium
Yang, Dongli; Swaminathan, Anuradha; Zhang, Xiaoming; Hughes, Bret A.
2009-01-01
Previous studies on bovine retinal pigment epithelium (RPE) established that Kir7.1 channels compose this epithelium’s large apical membrane K+ conductance. The purpose of this study was to determine whether Kir7.1 and potential Kir7.1 splice variants are expressed in native adult human RPE and, if so, to determine their function and how they are generated. RT-PCR analysis indicated that human RPE expresses full-length Kir7.1 and a novel Kir7.1 splice variant, designated Kir7.1S. Analysis of the human Kir7.1 gene (KCNJ13) organization revealed that it contains 3 exons, 2 introns, and a novel alternative 5′ splice site in exon 2. In human RPE, the alternative usage of two competing 5′ splice sites in exon 2 gives rise to transcripts encoding full-length Kir7.1 and Kir7.1S, which is predicted to encode a truncated protein. Real-time PCR indicated that Kir7.1 transcript is nearly as abundant as GAPDH mRNA in human RPE whereas Kir7.1S transcript expression is 4-fold lower. Western blot analysis showed that the splice variant is translated in Xenopus oocytes injected with Kir7.1S cRNA and revealed the expression of full-length Kir7.1 but not Kir7.1S in adult human RPE. Co-expression of Kir7.1 with Kir7.1S in Xenopus oocytes had no effect on either the kinetics or amplitude of Kir7.1 currents. This study confirms the expression of Kir7.1 in human RPE, identifies a Kir7.1 splice variant resulting in predicted changes in protein sequence, and indicates that there no functional interaction between this splice variant and full-length Kir7.1. PMID:18035352
Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations.
Rogan, Peter K; Svojanovsky, Stan; Leeder, J Steven
2003-04-01
Several mutations are known or suspected to affect mRNA splicing of CYP2C19, CYP2D6 and CYP3A5 genes; however, little experimental evidence exists to support these conclusions. The present study applies mathematical models that measure changes in information content of splice sites in these genes to demonstrate the relationship between the predicted phenotypes of these variants to the corresponding genotypes. Based on information analysis, the CYP2C19*2 variant activates a new cryptic site 40 nucleotides downstream of the natural splice site. CYP2C19*7 abolishes splicing at the exon 5 donor site. The CYP2D6*4 allele similarly inactivates splicing at the acceptor site of exon 4 and activates a new cryptic site one nucleotide downstream of the natural acceptor. CYP2D6*11 inactivates the acceptor site of exon 2. The CYP3A5*3 allele activates a new cryptic site 236 nucleotides upstream of the exon 4 natural acceptor site. CYP3A5*5 inactivates the exon 5 donor site and CYP3A5*6 strengthens a site upstream of the natural donor site, resulting in skipping of exon 7. Other previously described missense and nonsense mutations at terminal codons of exons in these genes affected splicing. CYP2D6*8 and CYP2D6*14 both decrease the strength of the exon 3 donor site, producing transcripts lacking this exon. The results of information analysis are consistent with the poor metabolizer phenotypes observed in patients with these mutations, and illustrate the potential value of these mathematical models to quantitatively evaluate the functional consequences of new mutations suspected of altering mRNA splicing.
Qu, Wen; Cingolani, Pablo; Zeeberg, Barry R; Ruden, Douglas M
2017-01-01
Deep sequencing of cDNAs made from spliced mRNAs indicates that most coding genes in many animals and plants have pre-mRNA transcripts that are alternatively spliced. In pre-mRNAs, in addition to invariant exons that are present in almost all mature mRNA products, there are at least 6 additional types of exons, such as exons from alternative promoters or with alternative polyA sites, mutually exclusive exons, skipped exons, or exons with alternative 5' or 3' splice sites. Our bioinformatics-based hypothesis is that, in analogy to the genetic code, there is an "alternative-splicing code" in introns and flanking exon sequences, analogous to the genetic code, that directs alternative splicing of many of the 36 types of introns. In humans, we identified 42 different consensus sequences that are each present in at least 100 human introns. 37 of the 42 top consensus sequences are significantly enriched or depleted in at least one of the 36 types of introns. We further supported our hypothesis by showing that 96 out of 96 analyzed human disease mutations that affect RNA splicing, and change alternative splicing from one class to another, can be partially explained by a mutation altering a consensus sequence from one type of intron to that of another type of intron. Some of the alternative splicing consensus sequences, and presumably their small-RNA or protein targets, are evolutionarily conserved from 50 plant to animal species. We also noticed the set of introns within a gene usually share the same splicing codes, thus arguing that one sub-type of splicesosome might process all (or most) of the introns in a given gene. Our work sheds new light on a possible mechanism for generating the tremendous diversity in protein structure by alternative splicing of pre-mRNAs.
TIPMaP: a web server to establish transcript isoform profiles from reliable microarray probes.
Chitturi, Neelima; Balagannavar, Govindkumar; Chandrashekar, Darshan S; Abinaya, Sadashivam; Srini, Vasan S; Acharya, Kshitish K
2013-12-27
Standard 3' Affymetrix gene expression arrays have contributed a significantly higher volume of existing gene expression data than other microarray platforms. These arrays were designed to identify differentially expressed genes, but not their alternatively spliced transcript forms. No resource can currently identify expression pattern of specific mRNA forms using these microarray data, even though it is possible to do this. We report a web server for expression profiling of alternatively spliced transcripts using microarray data sets from 31 standard 3' Affymetrix arrays for human, mouse and rat species. The tool has been experimentally validated for mRNAs transcribed or not-detected in a human disease condition (non-obstructive azoospermia, a male infertility condition). About 4000 gene expression datasets were downloaded from a public repository. 'Good probes' with complete coverage and identity to latest reference transcript sequences were first identified. Using them, 'Transcript specific probe-clusters' were derived for each platform and used to identify expression status of possible transcripts. The web server can lead the user to datasets corresponding to specific tissues, conditions via identifiers of the microarray studies or hybridizations, keywords, official gene symbols or reference transcript identifiers. It can identify, in the tissues and conditions of interest, about 40% of known transcripts as 'transcribed', 'not-detected' or 'differentially regulated'. Corresponding additional information for probes, genes, transcripts and proteins can be viewed too. We identified the expression of transcripts in a specific clinical condition and validated a few of these transcripts by experiments (using reverse transcription followed by polymerase chain reaction). The experimental observations indicated higher agreements with the web server results, than contradictions. The tool is accessible at http://resource.ibab.ac.in/TIPMaP. The newly developed online tool forms a reliable means for identification of alternatively spliced transcript-isoforms that may be differentially expressed in various tissues, cell types or physiological conditions. Thus, by making better use of existing data, TIPMaP avoids the dependence on precious tissue-samples, in experiments with a goal to establish expression profiles of alternative splice forms--at least in some cases.
López-Díez, Raquel; Rastrojo, Alberto; Villate, Olatz; Aguado, Begoña
2013-01-01
The receptor for advanced glycosylation end products (RAGE) is a multiligand receptor involved in diverse cell signaling pathways. Previous studies show that this gene expresses several splice variants in human, mouse, and dog. Alternative splicing (AS) plays an important role in expanding transcriptomic and proteomic diversity, and it has been related to disease. AS is also one of the main evolutionary mechanisms in mammalian genomes. However, limited information is available regarding the AS of RAGE in a wide context of mammalian tissues. In this study, we examined in detail the different RAGE mRNAs generated by AS from six mammals, including two primates (human and monkey), two artiodactyla (cow and pig), and two rodentia (mouse and rat) in 6–18 different tissues including fetal, adult, and tumor. By nested reverse transcription-polymerase chain reaction (RT-PCR) we identified a high number of splice variants including noncoding transcripts and predicted coding ones with different potential protein modifications affecting mainly the transmembrane and ligand-binding domains that could influence their biological function. However, analysis of RNA-seq data enabled detecting only the most abundant splice variants. More than 80% of the detected RT-PCR variants (87 of 101 transcripts) are novel (different exon/intron structure to the previously described ones), and interestingly, 20–60% of the total transcripts (depending on the species) are noncoding ones that present tissue specificity. Our results suggest that RAGE undergoes extensive AS in mammals, with different expression patterns among adult, fetal, and tumor tissues. Moreover, most splice variants seem to be species specific, especially the noncoding variants, with only two (canonical human Tv1-RAGE, and human N-truncated or Tv10-RAGE) conserved among the six different species. This could indicate a special evolution pattern of this gene at mRNA level. PMID:24273313
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshino, Hirofumi; Enokida, Hideki, E-mail: enokida@m.kufm.kagoshima-u.ac.jp; Chiyomaru, Takeshi
2012-01-06
Highlights: Black-Right-Pointing-Pointer Tumor suppressive miRNA-1 directly inhibits splicing factor serine/arginine-rich 9 (SRSF9). Black-Right-Pointing-Pointer SRSF9 mRNA expression was up-regulated in bladder cancer specimens compared to normal tissues. Black-Right-Pointing-Pointer Cell viability (proliferation, migration, and invasion) was reduced in SRSF9 knockdown cells. Black-Right-Pointing-Pointer SRSF9 knockdown by miR-1 induced cell apoptosis through caspase-3/7 activation in BC cell lines. -- Abstract: We have previously found that restoration of tumor suppressive microRNA-1 (miR-1), induced cell apoptosis in bladder cancer (BC) cell lines. However, the apoptosis mechanism induced by miR-1 was not fully elucidated. Alternative splicing of mRNA precursors provides cancer cells with opportunities to translate manymore » oncogenic protein variants, which promote cell proliferation and survival under unpreferable condition for cancer development. Serine/arginine-rich (SR) protein family, which involved in alternative pre-mRNA splicing, plays a critical role for regulating apoptosis by splicing apoptosis-related genes. However, transcriptional regulation of SR proteins, themselves, has not been elucidated. In this study, we focused on splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) on the basis of our previous genome-wide gene expression analysis using miR-1-transfected BC cell lines because putative target sites of miR-1 are existed in 3 Prime -untranslated region (UTR) of SRSF9 mRNA. The expression levels of mRNA of SRSF9 were extremely reduced in the miR-1 transfectants. A luciferase activity significantly decreased in the transfectants suggesting that actual binding occurred between miR-1 and 3 Prime UTR of SRSF9 mRNA. Loss-of-function assays demonstrated that significant inhibitions of cell proliferation, migration, and invasion were observed in the si-SRSF9 transfectants. Apoptosis assays demonstrated that cell apoptosis fraction increased and that caspase-3/7 was activated in the si-SRSF9 transfectants. Our data indicated that tumor suppressive miR-1 induces apoptosis through direct inhibition of SRSF9 in BC. The identification of molecular mechanisms between miRNAs and SR proteins could provide novel apoptosis pathways and their epigenetic regulations and offer new strategies for BC treatment.« less
A novel AMELX mutation causes hypoplastic amelogenesis imperfecta.
Kim, Young-Jae; Kim, Youn Jung; Kang, Jenny; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Sang-Hoon; Lee, Zang Hee; Kim, Jung-Wook
2017-04-01
Amelogenesis imperfecta (AI) is a hereditary genetic defect affecting tooth enamel. AI is heterogeneous in clinical phenotype as well as in genetic etiology. To date, more than 10 genes have been associated with the etiology of AI. Amelogenin is the most abundant enamel matrix protein, most of which is encoded by the amelogenin gene in the X-chromosome (AMELX). More than 16 alternative splicing transcripts have been identified in the murine Amelx gene. The purpose of this study was to identify the genetic cause of an AI family. We recruited a family with hypoplastic AI and performed mutational analysis on the candidate gene based on the clinical phenotype. Mutational analysis revealed a missense mutation in exon 6 (NM_182680.1; c.242C > T), which changes a sequence in a highly conserved amino acid (NP_872621.1; p.Pro81Leu). Furthermore, a splicing assay using a minigene displayed that the mutation changed the mRNA splicing repertory. In this study, we identified a novel AMELX missense mutation causing hypoplastic AI, and this mutation also resulted in altered mRNA splicing. These results will not only expand the mutation spectrum causing AI but also broaden our understanding of the biological mechanism of enamel formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio
2016-02-01
Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.
Ruggiu, Matteo; McGovern, Vicki L.; Lotti, Francesco; Saieva, Luciano; Li, Darrick K.; Kariya, Shingo; Monani, Umrao R.; Burghes, Arthur H. M.
2012-01-01
Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by homozygous loss of the Survival Motor Neuron 1 (SMN1) gene. In the absence of SMN1, inefficient inclusion of exon 7 in transcripts from the nearly identical SMN2 gene results in ubiquitous SMN decrease but selective motor neuron degeneration. Here we investigated whether cell type-specific differences in the efficiency of exon 7 splicing contribute to the vulnerability of SMA motor neurons. We show that normal motor neurons express markedly lower levels of full-length SMN mRNA from SMN2 than do other cells in the spinal cord. This is due to inefficient exon 7 splicing that is intrinsic to motor neurons under normal conditions. We also find that SMN depletion in mammalian cells decreases exon 7 inclusion through a negative feedback loop affecting the splicing of its own mRNA. This mechanism is active in vivo and further decreases the efficiency of exon 7 inclusion specifically in motor neurons of severe-SMA mice. Consistent with expression of lower levels of full-length SMN, we find that SMN-dependent downstream molecular defects are exacerbated in SMA motor neurons. These findings suggest a mechanism to explain the selective vulnerability of motor neurons to loss of SMN1. PMID:22037760
Risso, Guillermo J.; Pawellek, Andrea; Ule, Jernej; Lamond, Angus I.; Kornblihtt, Alberto R.
2012-01-01
Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3′ splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin structure is essential for efficient co-transcriptional recruitment of general and regulatory splicing factors to pre-mRNA. PMID:23152763
Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency
Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A
2014-01-01
The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism PMID:24480542
Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico
2014-10-03
The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Saitsu, Hirotomo; Osaka, Hitoshi; Sasaki, Masayuki; Takanashi, Jun-ichi; Hamada, Keisuke; Yamashita, Akio; Shibayama, Hidehiro; Shiina, Masaaki; Kondo, Yukiko; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Miyake, Noriko; Doi, Hiroshi; Ogata, Kazuhiro; Inoue, Ken; Matsumoto, Naomichi
2011-01-01
Congenital hypomyelinating disorders are a heterogeneous group of inherited leukoencephalopathies characterized by abnormal myelin formation. We have recently reported a hypomyelinating syndrome characterized by diffuse cerebral hypomyelination with cerebellar atrophy and hypoplasia of the corpus callosum (HCAHC). We performed whole-exome sequencing of three unrelated individuals with HCAHC and identified compound heterozygous mutations in POLR3B in two individuals. The mutations include a nonsense mutation, a splice-site mutation, and two missense mutations at evolutionally conserved amino acids. Using reverse transcription-PCR and sequencing, we demonstrated that the splice-site mutation caused deletion of exon 18 from POLR3B mRNA and that the transcript harboring the nonsense mutation underwent nonsense-mediated mRNA decay. We also identified compound heterozygous missense mutations in POLR3A in the remaining individual. POLR3A and POLR3B encode the largest and second largest subunits of RNA Polymerase III (Pol III), RPC1 and RPC2, respectively. RPC1 and RPC2 together form the active center of the polymerase and contribute to the catalytic activity of the polymerase. Pol III is involved in the transcription of small noncoding RNAs, such as 5S ribosomal RNA and all transfer RNAs (tRNA). We hypothesize that perturbation of Pol III target transcription, especially of tRNAs, could be a common pathological mechanism underlying POLR3A and POLR3B mutations. PMID:22036171
Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R
2015-01-01
Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA splicing interactomes that is important for understanding T cell activation.
Aarreberg, Lauren D.; Gao, Nina J.; Head, Steven R.; Ordoukhanian, Phillip; Williamson, Jamie R.; Salomon, Daniel R.
2015-01-01
Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as “central” interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, “peripheral” interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA splicing interactomes that is important for understanding T cell activation. PMID:26641092
Schmal, Christoph; Reimann, Peter; Staiger, Dorothee
2013-01-01
The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7) and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this, transcriptional repression of AtGRP7 and AtGRP8 by LHY and CCA1 induces oscillations of the toggle switch, leading to the observed high-amplitude oscillations of AtGRP7 mRNA. PMID:23555221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamopoulos, Panagiotis G.; Kontos, Christos K.; Scorilas, Andreas
Tissue kallikrein and kallikrein-related peptidases (KLKs) form the largest group of serine proteases in the human genome, sharing many structural and functional characteristics. Multiple alternative transcripts have been reported for the most human KLK genes, while many of them are aberrantly expressed in various malignancies, thus possessing significant prognostic and/or diagnostic value. Alternative splicing of cancer-related genes is a common cellular mechanism accounting for cancer cell transcriptome complexity, as it affects cell cycle control, proliferation, apoptosis, invasion, and metastasis. In this study, we describe the identification and molecular cloning of eight novel transcripts of the human KLK10 gene using 3′more » rapid amplification of cDNA ends (3′ RACE) and next-generation sequencing (NGS), as well as their expression analysis in a wide panel of cell lines, originating from several distinct cancerous and normal tissues. Bioinformatic analysis revealed that the novel KLK10 transcripts contain new alternative splicing events between already annotated exons as well as novel exons. In addition, investigation of their expression profile in a wide panel of cell lines was performed with nested RT-PCR using variant-specific pairs of primers. Since many KLK mRNA transcripts possess clinical value, these newly discovered alternatively spliced KLK10 transcripts appear as new potential biomarkers for diagnostic and/or prognostic purposes or as targets for therapeutic strategies. - Highlights: • NGS was used to identify novel transcripts of the human KLK10 gene. • 8 novel KLK10 transcripts were identified. • A novel 3′UTR was detected and characterized. • The expression profiles of all 8 novel KLK10 transcripts were identified.« less
Hall, Megan P.; Huang, Sui; Black, Douglas L.
2004-01-01
We have examined the subcellular localization of the KH-type splicing regulatory protein (KSRP). KSRP is a multidomain RNA-binding protein implicated in a variety of cellular processes, including splicing in the nucleus and mRNA localization in the cytoplasm. We find that KSRP is primarily nuclear with a localization pattern that most closely resembles that of polypyrimidine tract binding protein (PTB). Colocalization experiments of KSRP with PTB in a mouse neuroblastoma cell line determined that both proteins are present in the perinucleolar compartment (PNC), as well as in other nuclear enrichments. In contrast, HeLa cells do not show prominent KSRP staining in the PNC, even though PTB labeling identified the PNC in these cells. Because both PTB and KSRP interact with the c-src transcript to affect N1 exon splicing, we examined the localization of the c-src pre-mRNA by fluorescence in situ hybridization. The src transcript is present in specific foci within the nucleus that are presumably sites of src transcription but are not generally perinucleolar. In normally cultured neuroblastoma cells, these src RNA foci contain PTB, but little KSRP. However, upon induced neuronal differentiation of these cells, KSRP occurs in the same foci with src RNA. PTB localization remains unaffected. This differentiation-induced localization of KSRP with src RNA correlates with an increase in src exon N1 inclusion. These results indicate that PTB and KSRP do indeed interact with the c-src transcript in vivo, and that these associations change with the differentiated state of the cell. PMID:14657238
Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease
Lackey, Lela; McArthur, Evonne; Laederach, Alain
2015-01-01
Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently expressed in lung and liver tissues and are regulated in a tissue-specific manner. Additionally, many complex COPD-associated genes are spliced differently between COPD and non-COPD patients. Our analysis therefore suggests that post-transcriptional regulation, particularly alternative splicing, is an important feature specific to COPD disease etiology that warrants further investigation. PMID:26480348
The Status of Exon Skipping as a Therapeutic Approach to Duchenne Muscular Dystrophy
Lu, Qi-Long; Yokota, Toshifumi; Takeda, Shin'ichi; Garcia, Luis; Muntoni, Francesco; Partridge, Terence
2011-01-01
Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level. PMID:20978473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.I.; Wirth, D.F.
1988-06-01
The 5' ends of Leishmania mRNAs contain an identical 35-nucleotide sequence termed the spliced leader (SL) or 5' mini-exon. The SL sequence is at the 5' end of an 85-nucleotide primary transcript that contains a consensus eucaryotic 5' intron-exon splice junction immediately 3' to the SL. The SL is added to protein-coding genes immediately 3' to a consensus eucaryotic 3' intron-exon splice junction. The authors' previous work demonstrated possible intermediates in discontinuous mRNA processing that contain the 50 nucleotides of the SL primary transcript 3' to the SL, the SL intron sequence (SLIS). These RNAs have a 5' terminus atmore » the splice junction of the SL and the SLIS. The authors examined a Leishmania nuclear extract for these RNAs in ribonucleoprotein (RNP) particles. Density centrifugation analysis showed that the SL RNA is predominately in RNP complexes at 60S, while the SLIS-containing RNAs are in complexes at 40S. They also demonstrated that the SLIS can be released from polyadenylated RNA by incubation with a HeLa cell extract containing debranching enzymatic activity. These data suggested that Leishmania enriettii mRNAs are assembled by bimolecular or trans splicing as has been recently demonstrated for Trypanosoma brucei. Furthermore, they determined the partial sequence of the Leishmania U2 equivalent RNA and demonstrated that it cosediments with the SL RNA at 60S in a nuclear extract. These RNP particles may be analogous to so-called spliceosomes that have been demonstrated in other systems.« less
The point of no return: The poly(A)-associated elongation checkpoint
Tellier, Michael; Ferrer-Vicens, Ivan; Murphy, Shona
2016-01-01
abstract Cyclin-dependent kinases play critical roles in transcription by RNA polymerase II (pol II) and processing of the transcripts. For example, CDK9 regulates transcription of protein-coding genes, splicing, and 3′ end formation of the transcripts. Accordingly, CDK9 inhibitors have a drastic effect on the production of mRNA in human cells. Recent analyses indicate that CDK9 regulates transcription at the early-elongation checkpoint of the vast majority of pol II-transcribed genes. Our recent discovery of an additional CDK9-regulated elongation checkpoint close to poly(A) sites adds a new layer to the control of transcription by this critical cellular kinase. This novel poly(A)-associated checkpoint has the potential to powerfully regulate gene expression just before a functional polyadenylated mRNA is produced: the point of no return. However, many questions remain to be answered before the role of this checkpoint becomes clear. Here we speculate on the possible biological significance of this novel mechanism of gene regulation and the players that may be involved. PMID:26853452
Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G.; Fu, Xiang-Dong
2009-01-01
Summary SR proteins have been studied extensively as a family of RNA binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and co-localize with genes that are engaged in specific intra- and inter-chromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings therefore highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell cycle progression in higher eukaryotic cells. PMID:19595711
Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G; Fu, Xiang-Dong
2009-07-10
SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.
Jehan, Zeenath; Vallinayagam, Sambandam; Tiwari, Shrish; Pradhan, Suman; Singh, Lalji; Suresh, Amritha; Reddy, Hemakumar M.; Ahuja, Y.R.; Jesudasan, Rachel A.
2007-01-01
The human Y chromosome, because it is enriched in repetitive DNA, has been very intractable to genetic and molecular analyses. There is no previous evidence for developmental stage- and testis-specific transcription from the male-specific region of the Y (MSY). Here, we present evidence for the first time for a developmental stage- and testis-specific transcription from MSY distal heterochromatic block. We isolated two novel RNAs, which localize to Yq12 in multiple copies, show testis-specific expression, and lack active X-homologs. Experimental evidence shows that one of the above Yq12 noncoding RNAs (ncRNAs) trans-splices with CDC2L2 mRNA from chromosome 1p36.3 locus to generate a testis-specific chimeric β sv13 isoform. This 67-nt 5′UTR provided by the Yq12 transcript contains within it a Y box protein-binding CCAAT motif, indicating translational regulation of the β sv13 isoform in testis. This is also the first report of trans-splicing between a Y chromosomal and an autosomal transcript. PMID:17095710
Nuclear Export of Messenger RNA
Katahira, Jun
2015-01-01
Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925
Jia, Fan; Rock, Christopher D.
2013-01-01
MicroRNAs (miRNAs) are ~21-nucleotide long endogenous small RNAs that regulate gene expression through post-transcriptional or transcriptional gene silencing (PTGS/TGS) and/or translational inhibition. miRNAs can arise from the “exon” of a MIRNA gene, from an intron (e.g. mirtrons in animals), or from the antisense strand of a protein coding gene (natural antisense microRNAs, nat-miRNAs). Here we demonstrate that two functionally related miRNAs, miR842 and miR846, arise from the same transcription unit but from alternate splicing isoforms. miR846 is expressed only from Isoform1 while in Isoforms2 and -3, a part of pre-miR846 containing the miRNA* sequence is included in the intron. The splicing of the intron truncates the pre-MIRNA and disrupts the expression of the mature miR846.. We name this novel phenomenon splicing-regulated miRNA. Abscisic acid (ABA) is shown to mediate the alternative splicing event by reducing the functional Isoform1 and increasing the non-functional Isoform3, thus repressing the expression of miR846 concomitant with accumulation of an ABA-inducible target jacalin At5g28520 mRNA, whose cleavage was shown by modified 5′-RACE. This regulation shows the functional importance of splicing-regulated miRNA and suggests possible mechanisms for altered ABA response phenotypes of miRNA biogenesis mutants. A. lyrata-MIR842 and Aly-MIR846 have conserved genomic arrangements with A. thaliana and candidate target jacalins, similar primary transcript structures and intron processing, and better miRNA-miRNA* pairings, suggesting that the interactions between ABA, MIR842, MIR846 and jacalins are similar in A. lyrata. Together, splicing-regulated miRNAs, nat-miRNAs/inc-miRNAs and mirtrons illustrate the complexity of MIRNA genes, the importance of introns in the biogenesis and regulation of miRNAs, and raise questions about the processes and molecular mechanisms that drive MIRNA evolution. PMID:23341152
Complexity of the Alternative Splicing Landscape in Plants[C][W][OPEN
Reddy, Anireddy S.N.; Marquez, Yamile; Kalyna, Maria; Barta, Andrea
2013-01-01
Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation. PMID:24179125
Hai, Tao; Yeung, Man-Lung; Wood, Thomas G.; Wei, Yuanfen; Yamaoka, Shoji; Gatalica, Zoran; Jeang, Kuan-Teh; Brasier, Allan R.
2006-01-01
NF-κB is an inducible transcription factor mediating innate immune responses whose activity is controlled by the multiprotein IκB kinase (IKK) “signalsome”. The core IKK consists of two catalytic serine kinases, IKKα and IKKβ, and a noncatalytic subunit, IKKγ. IKKγ is required for IKK activity by mediating kinase oligomerization and serving to couple the core catalytic subunits to upstream mitogen-activated protein 3-kinase cascades. We have discovered an alternatively spliced IKKγ mRNA isoform, encoding an in-frame deletion of exon 5, termed IKKγ-Δ. Using a specific reverse transcription-PCR assay, we find that IKKγ-Δ is widely expressed in cultured human cells and normal human tissues. Because IKKγ-Δ protein is lacking a critical coiled-coil domain important in protein-protein interactions, we sought to determine its signaling properties by examining its ability to self associate, couple to activators of the canonical pathway, and mediate human T-cell leukemia virus type 1 (HTLV-1) Tax-induced NF-κB activity. Coimmunoprecipitation and confocal colocalization assays indicate IKKγ-Δ has strong homo- and heterotypic association with wild-type (WT) IKKγ and, like IKKγ WT, associates with the IKKβ kinase. Similarly, IKKγ-Δ mediates IKK kinase activity and downstream NF-κB-dependent transcription in response to tumor necrosis factor (TNF) and the NF-κB-inducing kinase-IKKα signaling pathway. Surprisingly, however, in contrast to IKKγ WT, IKKγ-Δ is not able to mediate HTLV-1 Tax-induced NF-κB-dependent transcription, even though IKKγ-Δ binds and colocalizes with Tax. These observations suggest that IKKγ-Δ is a functionally distinct alternatively spliced mRNA product differentially mediating TNF-induced, but not Tax-induced, signals converging on the IKK signalsome. Differing levels of IKKγ-Δ expression, therefore, may affect signal transduction cascades coupling to IKK. PMID:16611882
Takeuchi, Takumi; Okuno, Yumiko; Hattori-Kato, Mami; Zaitsu, Masayoshi; Mikami, Koji
2016-01-01
A splice variant of androgen receptor (AR), AR-V7, lacks in androgen-binding portion and leads to aggressive cancer characteristics. Reverse transcription-polymerase chain reactions (PCRs) and subsequent nested PCRs for the amplification of AR-V7 and prostate-specific antigen (PSA) transcripts were done for whole blood of patients with prostate cancer and male controls. With primary reverse transcription PCRs, AR-V7 and PSA were detected in 4.5% and 4.7% of prostate cancer, respectively. With nested PCRs, AR-V7 messenger RNA (mRNA) was positive in 43.8% of castration-sensitive prostate cancer and 48.1% of castration-resistant prostate cancer (CRPC), while PSA mRNA was positive in 6.3% of castration-sensitive prostate cancer and 18.5% of CRPC. Whole-blood samples of controls showed AR-V7 mRNA expression by nested PCR. Based on multivariate analysis, expression of AR-V7 mRNA in whole blood was not significantly correlated with clinical parameters and PSA mRNA in blood, while univariate analysis showed a correlation between AR-V7 mRNA and metastasis at initial diagnosis. Detection of AR-V7 mRNA did not predict the reduction of serum PSA in patients with CRPC following abiraterone and enzalutamide administration. In conclusion, AR-V7 mRNA expression in normal hematopoietic cells may have annihilated the manifestation of aggressiveness of prostate cancer and the prediction of the effectiveness of abiraterone and enzalutamide by the assessment of AR-V7 mRNA in blood.
Gamonet, Clémentine; Bole-Richard, Elodie; Delherme, Aurélia; Aubin, François; Toussirot, Eric; Garnache-Ottou, Francine; Godet, Yann; Ysebaert, Loïc; Tournilhac, Olivier; Caroline, Dartigeas; Larosa, Fabrice; Deconinck, Eric; Saas, Philippe; Borg, Christophe; Deschamps, Marina; Ferrand, Christophe
2015-01-01
CD20 is a B cell lineage-specific marker expressed by normal and leukemic B cells and targeted by several antibody immunotherapies. We have previously shown that the protein from a CD20 mRNA splice variant (D393-CD20) is expressed at various levels in leukemic B cells or lymphoma B cells but not in resting, sorted B cells from the peripheral blood of healthy donors. Western blot (WB) analysis of B malignancy primary samples showed additional CD20 signals. Deep molecular PCR analysis revealed four new sequences corresponding to in-frame CD20 splice variants (D657-CD20, D618-CD20, D480-CD20, and D177-CD20) matching the length of WB signals. We demonstrated that the cell spliceosome machinery can process ex vivo D480-, D657-, and D618-CD20 transcript variants by involving canonical sites associated with cryptic splice sites. Results of specific and quantitative RT-PCR assays showed that these CD20 splice variants are differentially expressed in B malignancies. Moreover, Epstein-Barr virus (EBV) transformation modified the CD20 splicing profile and mainly increased the D393-CD20 variant transcripts. Finally, investigation of three cohorts of chronic lymphocytic leukemia (CLL) patients showed that the total CD20 splice variant expression was higher in a stage B and C sample collection compared to routinely collected CLL samples or relapsed refractory stage A, B, or C CLL. The involvement of these newly discovered alternative CD20 transcript variants in EBV transformation makes them interesting molecular indicators, as does their association with oncogenesis rather than non-oncogenic B cell diseases, differential expression in B cell malignancies, and correlation with CLL stage and some predictive CLL markers. This potential should be investigated in further studies.
Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.
Bonnet, Amandine; Grosso, Ana R; Elkaoutari, Abdessamad; Coleno, Emeline; Presle, Adrien; Sridhara, Sreerama C; Janbon, Guilhem; Géli, Vincent; de Almeida, Sérgio F; Palancade, Benoit
2017-08-17
Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage. Copyright © 2017 Elsevier Inc. All rights reserved.
Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae.
Uthe, Henriette; Vanselow, Jens T; Schlosser, Andreas
2017-02-27
Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15 N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis.
The molecular defect of ferrochelatase in a patient with erythropoietic protoporphyria.
Nakahashi, Y; Fujita, H; Taketani, S; Ishida, N; Kappas, A; Sassa, S
1992-01-01
The molecular basis of an inherited defect of ferrochelatase in a patient with erythropoietic protoporphyria (EPP) was investigated. Ferrochelatase is the terminal enzyme in the heme biosynthetic pathway and catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. In Epstein-Barr virus-transformed lymphoblastoid cells from a proband with EPP, enzyme activity, an immunochemically quantifiable protein, and mRNA content of ferrochelatase were about one-half the normal level. In contrast, the rate of transcription of ferrochelatase mRNA in the proband's cells was normal, suggesting that decreased ferrochelatase mRNA is due to an unstable transcript. cDNA clones encoding ferrochelatase in the proband, isolated by amplification using the polymerase chain reaction, were found to be classified either into those encoding the normal protein or into those encoding an abnormal protein that lacked exon 2 of the ferrochelatase gene, indicating that the proband is heterozygous for the ferrochelatase defect. Genomic DNA analysis revealed that the abnormal allele had a point mutation, C----T, near the acceptor site of intron 1. This point mutation appears to be responsible for the post-transcriptional splicing abnormality resulting in an aberrant transcript of ferrochelatase in this patient. Images PMID:1729699
Large exon size does not limit splicing in vivo.
Chen, I T; Chasin, L A
1994-03-01
Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.
DeVry, C G; Tsai, W; Clarke, S
1996-11-15
The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.
Stricker, Stefan H; Steenpass, Laura; Pauler, Florian M; Santoro, Federica; Latos, Paulina A; Huang, Ru; Koerner, Martha V; Sloane, Mathew A; Warczok, Katarzyna E; Barlow, Denise P
2008-01-01
The Airn macro ncRNA is the master regulator of imprinted expression in the Igf2r imprinted gene cluster where it silences three flanking genes in cis. Airn transcription shows unusual features normally viewed as promoter specific, such as impaired post-transcriptional processing and a macro size. The Airn transcript is 108 kb long, predominantly unspliced and nuclear localized, with only a minority being variably spliced and exported. Here, we show by deletion of the Airn ncRNA promoter and replacement with a constitutive strong or weak promoter that splicing suppression and termination, as well as silencing activity, are maintained by strong Airn expression from an exogenous promoter. This indicates that all functional regions are located within the Airn transcript. DNA methylation of the maternal imprint control element (ICE) restricts Airn expression to the paternal allele and we also show that a strong active promoter is required to maintain the unmethylated state of the paternal ICE. Thus, Airn expression not only induces silencing of flanking mRNA genes but also protects the paternal copy of the ICE from de novo methylation. PMID:19008856
Quantitative imaging of single mRNA splice variants in living cells
NASA Astrophysics Data System (ADS)
Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph
2014-06-01
Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.
Mutual interdependence of splicing and transcription elongation.
Brzyżek, Grzegorz; Świeżewski, Szymon
2015-01-01
Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.
G-quadruplex structure at intron 2 of TFE3 and its role in Xp11.2 translocation and splicing.
Verma, Shiv Prakash; Das, Parimal
2018-03-01
Transcription Factor E3 (TFE3) translocation is found in a group of different type of cancers and most of the translocations are located in the 5' region of TFE3 which may be considered as Breakpoint Region (BR). In our In silico study by QGRS mapper and non BdB web servers we found a Potential G-quadruplex forming Sequence (PQS) in the intron 2 of TFE3 gene. In vitro G-quadruplex formation was shown by native PAGE in presence of Pyridostatin(PDS), which with inter molecular secondary structure caused reduced mobility to migrate slower. G-quadruplex formation was mapped at single base resolution by Sanger sequencing and Circular Dichroism showed the formation of parallel G-quadruplex. FRET analysis revealed increased and decreased formation of G-quadruplex in presence of PDS and antisense oligonucleotide respectively. PCR stop assay, transcriptional and translational inhibition by PQS showed stable G-quadruplex formation affecting the biological processes. TFE3 minigene splicing study showed the involvement of this G-quadruplex in TFE3 splicing too. Therefore, G-quadruplex is evident to be the reason behind TFE3 induced oncogenesis executed by translocation and also involved in the mRNA splicing. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor and when activated it splices the bZIP60 mRNA producing a truncated transcription factor that upregulates expression of genes involved in the unfolded protein response (UPR). Bax inhibitor 1 (BI-1) is another ER stre...
Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture.
Nandan, Devki; Thomas, Sneha A; Nguyen, Anne; Moon, Kyung-Mee; Foster, Leonard J; Reiner, Neil E
2017-01-01
Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.
Catena, Raul; Muniz-Medina, Vanessa; Moralejo, Beatriz; Javierre, Biola; Best, Carolyn J M; Emmert-Buck, Michael R; Green, Jeffrey E; Baker, Carl C; Calvo, Alfonso
2007-05-15
Vascular endothelial growth factor (VEGF) is a proangiogenic factor upregulated in many tumors. The alternative splicing of VEGF mRNA renders 3 major isoforms of 121, 165 and 189 amino-acids in humans (1 less amino-acid for each mouse VEGF isoform). We have designed isoform specific real time QRT-PCR assays to quantitate VEGF transcripts in mouse and human normal and malignant prostates. In the human normal prostate, VEGF(165) was the predominant isoform (62.8% +/- 5.2%), followed by VEGF(121) (22.5% +/- 6.3%) and VEGF(189) (p < 0.001) (14.6% +/- 2.1%). Prostate tumors showed a significant increase in the percentage of VEGF(121) and decreases in VEGF(165) (p < 0.01) and VEGF(189) (p < 0.05). However, the amount of total VEGF mRNA was similar between normal and malignant prostates. VEGF(164) was the transcript with the highest expression in the mouse normal prostate. Unlike human prostate cancer, tumors from TRAMP mice demonstrated a significant increase in total VEGF mRNA levels and in each of the VEGF isoforms, without changes in the relative isoform ratios. Morpholino phosphorodiamide antisense oligonucleotide technology was used to increase the relative amount of VEGF(121) while proportionally decreasing VEGF(165) and VEGF(189) levels in human prostate cell lines, through the modification of alternative splicing, without changing transcription levels and total amount of VEGF. The increase in the VEGF(121)/VEGF(165-189) ratio in PC3 cells resulted in a dramatic increase in prostate tumor angiogenesis in vivo. Our results underscore the importance of VEGF(121) in human prostate carcinoma and demonstrate that the relative expression of the different VEGF isoforms has an impact on prostate carcinogenesis. (c) 2007 Wiley-Liss, Inc.
Nuclear speckles: molecular organization, biological function and role in disease
Galganski, Lukasz; Urbanek, Martyna O.
2017-01-01
Abstract The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders. PMID:28977640
Ramirez-Gomez, F.; Greene, W.; Rego, K.; Hansen, J.D.; Costa, G.; Kataria, P.; Bromage, E.S.
2012-01-01
The gene encoding IgH δ has been found in all species of teleosts studied to date. However, catfish (Ictalurus punctatus) is the only species of fish in which a secretory form of IgD has been characterized, and it occurs through the use of a dedicated δ-secretory exon, which is absent from all other species examined. Our studies have revealed that rainbow trout (Oncorhynchus mykiss) use a novel strategy for the generation of secreted IgD. The trout secretory δ transcript is produced via a run-on event in which the splice donor site at the end of the last constant domain exon (D7) is ignored and transcription continues until a stop codon is reached 33 nt downstream of the splice site, resulting in the production of an in-frame, 11-aa secretory tail at the end of the D7 domain. In silico analysis of several published IgD genes suggested that this unique splicing mechanism may also be used in other species of fish, reptiles, and amphibians. Alternative splicing of the secretory δ transcript resulted in two δ-H chains, which incorporated Cμ1 and variable domains. Secreted IgD was found in two heavily glycosylated isoforms, which are assembled as monomeric polypeptides associated with L chains. Secretory δ mRNA and IgD+ plasma cells were detected in all immune tissues at a lower frequency than secretory IgM. Our data demonstrate that secretory IgD is more prevalent and widespread across taxa than previously thought, and thus illustrate the potential that IgD may have a conserved role in immunity.
Bhattarai, Sunil; Aly, Ahmed; Garcia, Kristy; Ruiz, Diandra; Pontarelli, Fabrizio; Dharap, Ashutosh
2018-06-03
Gene expression in cerebral ischemia has been a subject of intense investigations for several years. Studies utilizing probe-based high-throughput methodologies such as microarrays have contributed significantly to our existing knowledge but lacked the capacity to dissect the transcriptome in detail. Genome-wide RNA-sequencing (RNA-seq) enables comprehensive examinations of transcriptomes for attributes such as strandedness, alternative splicing, alternative transcription start/stop sites, and sequence composition, thus providing a very detailed account of gene expression. Leveraging this capability, we conducted an in-depth, genome-wide evaluation of the protein-coding transcriptome of the adult mouse cortex after transient focal ischemia at 6, 12, or 24 h of reperfusion using RNA-seq. We identified a total of 1007 transcripts at 6 h, 1878 transcripts at 12 h, and 1618 transcripts at 24 h of reperfusion that were significantly altered as compared to sham controls. With isoform-level resolution, we identified 23 splice variants arising from 23 genes that were novel mRNA isoforms. For a subset of genes, we detected reperfusion time-point-dependent splice isoform switching, indicating an expression and/or functional switch for these genes. Finally, for 286 genes across all three reperfusion time-points, we discovered multiple, distinct, simultaneously expressed and differentially altered isoforms per gene that were generated via alternative transcription start/stop sites. Of these, 165 isoforms derived from 109 genes were novel mRNAs. Together, our data unravel the protein-coding transcriptome of the cerebral cortex at an unprecedented depth to provide several new insights into the flexibility and complexity of stroke-related gene transcription and transcript organization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de
1994-04-01
The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-pointmore » sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.« less
Collin, Rob WJ; den Hollander, Anneke I; van der Velde-Visser, Saskia D; Bennicelli, Jeannette; Bennett, Jean; Cremers, Frans PM
2012-01-01
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal degeneration, with an onset in the first year of life. The most frequent mutation that causes LCA, present in at least 10% of individuals with LCA from North-American and Northern-European descent, is an intronic mutation in CEP290 that results in the inclusion of an aberrant exon in the CEP290 mRNA. Here, we describe a genetic therapy approach that is based on antisense oligonucleotides (AONs), small RNA molecules that are able to redirect normal splicing of aberrantly processed pre-mRNA. Immortalized lymphoblastoid cells of individuals with LCA homozygously carrying the intronic CEP290 mutation were transfected with several AONs that target the aberrant exon that is incorporated in the mutant CEP290 mRNA. Subsequent RNA isolation and reverse transcription-PCR analysis revealed that a number of AONs were capable of almost fully redirecting normal CEP290 splicing, in a dose-dependent manner. Other AONs however, displayed no effect on CEP290 splicing at all, indicating that the rescue of aberrant CEP290 splicing shows a high degree of sequence specificity. Together, our data show that AON-based therapy is a promising therapeutic approach for CEP290-associated LCA that warrants future research in animal models to develop a cure for this blinding disease. PMID:23343883
Dong, Lijie; Nian, Hong; Shao, Yan; Zhang, Yan; Li, Qiutang; Yi, Yue; Tian, Fang; Li, Wenbo; Zhang, Hong; Zhang, Xiaomin; Wang, Fei; Li, Xiaorong
2015-05-01
Pathological retinal neovascularization, including retinopathy of prematurity and age-related macular degeneration, is the most common cause of blindness worldwide. Insulin-like growth factor-1 (IGF-1) has a direct mitogenic effect on endothelial cells, which is the basis of angiogenesis. Vascular endothelial growth factor (VEGF) activation in response to IGF-1 is well documented; however, the molecular mechanisms responsible for the termination of IGF-1 signaling are still not completely elucidated. Here, we show that the polypyrimidine tract-binding protein-associated splicing factor (PSF) is a potential negative regulator of VEGF expression induced by IGF stimulation. Functional analysis demonstrated that ectopic expression of PSF inhibits IGF-1-stimulated transcriptional activation and mRNA expression of the VEGF gene, whereas knockdown of PSF increased IGF-1-stimulated responses. PSF recruited Hakai to the VEGF transcription complex, resulting in inhibition of IGF-1-mediated transcription. Transfection with Hakai siRNA reversed the PSF-mediated transcriptional repression of VEGF gene transcription. In summary, these results show that PSF can repress the transcriptional activation of VEGF stimulated by IGF-1 via recruitment of the Hakai complex and delineate a novel regulatory mechanism of IGF-1/VEGF signaling that may have implications in the pathogenesis of neovascularization in ocular diseases.
Hypoxia-Induced Expression of VEGF Splice Variants and Protein in Four Retinal Cell Types
Watkins, William M.; McCollum, Gary W.; Savage, Sara R.; Capozzi, Megan E.; Penn, John S.; Morrison, David G.
2014-01-01
The purpose of this study was to investigate the hypoxia-induced Vegf120, Vegf164 and Vegf188 mRNA expression profiles in rat Müller cells (MC), astrocytes, retinal pigmented epithelial cells (RPE) and retinal microvascular endothelial cells (RMEC) and correlate these findings to VEGF secreted protein. Cultured cells were exposed to normoxia or hypoxia. Total RNA was isolated from cell lysates and Vegf splice variant mRNA copy numbers were assayed by a validated qRT-PCR external calibration curve method. mRNA copy numbers were normalized to input total RNA. Conditioned medium was collected from cells and assayed for total VEGF protein by ELISA. Hypoxia increased total Vegf mRNA and secreted protein in all the retinal cell types, with the highest levels observed in MC and astrocytes ranking second. Total Vegf mRNA levels in hypoxic RPE and RMEC were comparable; however, the greatest hypoxic induction of each Vegf splice variant mRNA was observed in RMEC. RPE and RMEC ranked 3rd and 4th respectively, in terms of secreted total VEGF protein in hypoxia. The Vegf120, Vegf164 and Vegf188 mRNA splice variants were all increased in hypoxic cells compared to normoxic controls. In normoxia, the relative Vegf splice variant mRNA levels ranked from highest to lowest for each cell type were Vegf164>Vegf120>Vegf188. Hypoxic induction did not alter this ranking, although it did favor an increased stoichiometry of Vegf164 mRNA over the other two splice variants. MC and astrocytes are likely to be the major sources of total Vegf, and Vegf164 splice variant mRNAs, and VEGF protein in retinal hypoxia. PMID:24076411
Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.
Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A
2013-01-01
Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.
Sex-lethal promotes nuclear retention of msl2 mRNA via interactions with the STAR protein HOW
Graindorge, Antoine; Carré, Clément; Gebauer, Fátima
2013-01-01
Female-specific repression of male-specific-lethal-2 (msl2) mRNA in Drosophila melanogaster provides a paradigm for coordinated control of gene expression by RNA-binding complexes. Repression is orchestrated by Sex-lethal (SXL), which binds to the 5′ and 3′ untranslated regions (UTRs) of the mRNA and inhibits splicing in the nucleus and subsequent translation in the cytoplasm. Here we show that SXL ensures msl2 silencing by yet a third mechanism that involves inhibition of nucleocytoplasmic transport of msl2 mRNA. To identify SXL cofactors in msl2 regulation, we devised a two-step purification method termed GRAB (GST pull-down and RNA affinity binding) and identified Held-Out-Wings (HOW) as a component of the msl2 5′ UTR-associated complex. HOW directly interacts with SXL and binds to two sequence elements in the msl2 5′ UTR. Depletion of HOW reduces the capacity of SXL to repress the expression of msl2 reporters without affecting SXL-mediated regulation of splicing or translation. Instead, HOW is required for SXL to retain msl2 transcripts in the nucleus. Cooperation with SXL confers a sex-specific role to HOW. Our results uncover a novel function of SXL in nuclear mRNA retention and identify HOW as a mediator of this function. PMID:23788626
Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish.
Rumfelt, Lynn L; Diaz, Marilyn; Lohr, Rebecca L; Mochon, Evonne; Flajnik, Martin F
2004-07-15
In most jawed vertebrates including cartilaginous fish, membrane-bound IgM is expressed as a five Ig superfamily (Igsf)-domain H chain attached to a transmembrane (Tm) region. Heretofore, bony fish IgM was the one exception with IgM mRNA spliced to produce a four-domain Tm H chain. We now demonstrate that the Tm and secretory (Sec) mRNAs of the novel cartilaginous fish Ig isotypes, IgW and IgNAR, are present in multiple forms, most likely generated by alternative splicing. In the nurse shark, Ginglymostoma cirratum, and horn shark, Heterodontus francisci, alternative splicing of Tm exons to the second or the fourth constant (C(H)) exons produces two distinct IgW Tm cDNAs. Although the seven-domain IgW Sec cDNA form contains a canonical secretory tail shared with IgM, IgNAR, and IgA, we report a three-domain cDNA form of shark IgW (IgW(short)) having an unusual Sec tail, which is orthologous to skate IgX(short) cDNA. The IgW and IgW(short) Sec transcripts are restricted in their tissue distribution and expression levels vary among individual sharks, with all forms expressed early in ontogeny. IgNAR mRNA is alternatively spliced to produce a truncated four-domain Tm cDNA and a second Tm cDNA is expressed identical in Igsf domains as the Sec form. PBL is enriched in the Tm cDNA of these Igs. These molecular data suggest that cartilaginous fish have augmented their humoral immune repertoire by diversifying the sizes of their Ig isotypes. Furthermore, these Tm cDNAs are prototypical and the truncated variants may translate as more stable protein at the cell surface.
Tiscornia, A C; Cayota, A; Landoni, A I; Brito, C; Oppezzo, P; Vuillier, F; Robello, C; Dighiero, G; Gabús, R; Pritsch, O
2004-01-01
Functional inducible NOS (iNOS) may be involved in the prolonged lifespan of chronic lymphocytic leukemia cells (B-CLL), although the exact mechanisms implicated remain elusive as yet. In this work, we have examined iNOS expression in normal B lymphocytes and B-CLL cells in pro- and antiapoptotic conditions. Our results demonstrate: (1) The existence of a new splice variant characterized by a complete deletion of exon 14 (iNOS 13-16(14del)), which was preferentially detected in normal B lymphocytes and may represent an isoform that could play a role in the regulation of enzyme activity. (2) The existence of another alternatively spliced iNOS mRNA transcript involving a partial deletion of the flavodoxin region (iNOS 13-16(neg)) was correlated to a decreased B-CLL cell viability. The 9-beta-D-arabinofuranosyl-2-fluoradenine or fludarabine (F-ara) treatment induced iNOS 13-16(neg) transcript variants, whereas IL-4 enhanced both the transcription of variants, including these exons (iNOS 13-16(pos)), and the expression of a 122 kDa iNOS protein. These results suggest that in B-CLL, a regulation process involving nitric oxide (.- NO) levels could occur by a post-transcriptional mechanism mediated by soluble factors. Our results also provide an insight into a new complementary proapoptotic action of F-ara in B-CLL by the induction of particular iNOS splice variants, leading to the activation of a caspase-3-dependent apoptotic pathway.
Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huan; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078; Gao, Zhangfeng
The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which includingmore » glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST.« less
Post-transcriptional regulation mediated by specific neurofilament introns in vivo.
Wang, Chen; Szaro, Ben G
2016-04-01
Neurons regulate genes post-transcriptionally to coordinate the supply of cytoskeletal proteins, such as the medium neurofilament (NEFM), with demand for structural materials in response to extracellular cues encountered by developing axons. By using a method for evaluating functionality of cis-regulatory gene elements in vivo through plasmid injection into Xenopus embryos, we discovered that splicing of a specific nefm intron was required for robust transgene expression, regardless of promoter or cell type. Transgenes utilizing the nefm 3'-UTR but substituting other nefm introns expressed little or no protein owing to defects in handling of the messenger (m)RNA as opposed to transcription or splicing. Post-transcriptional events at multiple steps, but mainly during nucleocytoplasmic export, contributed to these varied levels of protein expression. An intron of the β-globin gene was also able to promote expression in a manner identical to that of the nefm intron, implying a more general preference for certain introns in controlling nefm expression. These results expand our knowledge of intron-mediated gene expression to encompass neurofilaments, indicating an additional layer of complexity in the control of a cytoskeletal gene needed for developing and maintaining healthy axons. © 2016. Published by The Company of Biologists Ltd.
Gervois, P; Torra, I P; Chinetti, G; Grötzinger, T; Dubois, G; Fruchart, J C; Fruchart-Najib, J; Leitersdorf, E; Staels, B
1999-09-01
The peroxisome proliferator-activated receptor alpha (PPARalpha) plays a key role in lipid and lipoprotein metabolism. However, important inter- and intraspecies differences exist in the response to PPARalpha activators. This incited us to screen for PPARalpha variants with different signaling functions. In the present study, using a RT-PCR approach a variant human PPARalpha mRNA species was identified, which lacks the entire exon 6 due to alternative splicing. This deletion leads to the introduction of a premature stop codon, resulting in the formation of a truncated PPARalpha protein (PPARalphatr) lacking part of the hinge region and the entire ligand-binding domain. RNase protection analysis demonstrated that PPARalphatr mRNA is expressed in several human tissues and cells, representing between 20-50% of total PPARalpha mRNA. By contrast, PPARalphatr mRNA could not be detected in rodent tissues. Western blot analysis using PPARalpha-specific antibodies demonstrated the presence of an immunoreactive protein migrating at the size of in vitro produced PPARalphatr protein both in human hepatoma HepG2 cells and in human hepatocytes. Both in the presence or absence of 9-cis-retinoic acid receptor, PPARalphatr did not bind to DNA in gel shift assays. Immunocytochemical analysis of transfected CV-1 cells indicated that, whereas transfected PPARalphawt was mainly nuclear localized, the majority of PPARalphatr resided in the cytoplasm, with presence in the nucleus depending on cell culture conditions. Whereas a chimeric PPARalphatr protein containing a nuclear localization signal cloned at its N-terminal localized into the nucleus and exhibited strong negative activity on PPARalphawt transactivation function, PPARalphatr interfered with PPARalphatr transactivation function only under culture conditions inducing its nuclear localization. Cotransfection of the coactivator CREB-binding protein relieved the transcriptional repression of PPARalphawt by PPARalphatr, suggesting that the dominant negative effect of PPARalphatr might occur through competition for essential coactivators. In addition, PPARalphatr interfered with transcriptional activity of other nuclear receptors such as PPARgamma, hepatic nuclear factor-4, and glucocorticoid receptor-alpha, which share CREB-binding protein/p300 as a coactivator. Thus, we have identified a human PPARalpha splice variant that may negatively interfere with PPARalphawt function. Factors regulating either the ratio of PPARalphawt vs. PPARalphatr mRNA or the nuclear entry of PPARalphatr protein should therefore lead to altered signaling via the PPARalpha and, possibly also, other nuclear receptor pathways.
PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2.
Zheng, Sika; Gray, Erin E; Chawla, Geetanjali; Porse, Bo Torben; O'Dell, Thomas J; Black, Douglas L
2012-01-15
Postsynaptic density protein 95 (PSD-95) is essential for synaptic maturation and plasticity. Although its synaptic regulation has been widely studied, the control of PSD-95 cellular expression is not understood. We found that Psd-95 was controlled post-transcriptionally during neural development. Psd-95 was transcribed early in mouse embryonic brain, but most of its product transcripts were degraded. The polypyrimidine tract binding proteins PTBP1 and PTBP2 repressed Psd-95 (also known as Dlg4) exon 18 splicing, leading to premature translation termination and nonsense-mediated mRNA decay. The loss of first PTBP1 and then of PTBP2 during embryonic development allowed splicing of exon 18 and expression of PSD-95 late in neuronal maturation. Re-expression of PTBP1 or PTBP2 in differentiated neurons inhibited PSD-95 expression and impaired the development of glutamatergic synapses. Thus, expression of PSD-95 during early neural development is controlled at the RNA level by two PTB proteins whose sequential downregulation is necessary for synapse maturation.
Circadian processes in the RNA life cycle.
Torres, Manon; Becquet, Denis; Franc, Jean-Louis; François-Bellan, Anne-Marie
2018-05-01
The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import. © 2018 Wiley Periodicals, Inc.
Salton, Maayan; Voss, Ty C; Misteli, Tom
2014-12-16
Recent evidence points to a role of chromatin in regulation of alternative pre-mRNA splicing (AS). In order to identify novel chromatin regulators of AS, we screened an RNAi library of chromatin proteins using a cell-based high-throughput in vivo assay. We identified a set of chromatin proteins that regulate AS. Using simultaneous genome-wide expression and AS analysis, we demonstrate distinct and non-overlapping functions of these chromatin modifiers on transcription and AS. Detailed mechanistic characterization of one dual function chromatin modifier, the H3K9 methyltransferase EHMT2 (G9a), identified VEGFA as a major chromatin-mediated AS target. Silencing of EHMT2, or its heterodimer partner EHMT1, affects AS by promoting exclusion of VEGFA exon 6a, but does not alter total VEGFA mRNA levels. The epigenetic regulatory mechanism of AS by EHMT2 involves an adaptor system consisting of the chromatin modulator HP1γ, which binds methylated H3K9 and recruits splicing regulator SRSF1. The epigenetic regulation of VEGFA is physiologically relevant since EHMT2 is transcriptionally induced in response to hypoxia and triggers concomitant changes in AS of VEGFA. These results characterize a novel epigenetic regulatory mechanism of AS and they demonstrate separate roles of epigenetic modifiers in transcription and alternative splicing. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.
Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients.
Hahnel, Antje; Wichmann, Henri; Greither, Thomas; Kappler, Matthias; Würl, Peter; Kotzsch, Matthias; Taubert, Helge; Vordermark, Dirk; Bache, Matthias
2012-04-02
It is well known that osteopontin (OPN) plays an important role in tumor progression and that a high OPN expression level in several tumor entities correlates with poor prognosis in cancer patients. However, little is known about the prognostic relevance of the OPN mRNA splice variants. We analyzed the mRNA expression levels of different OPN splice variants in tumor tissue of 124 soft tissue sarcoma (STS) patients. Quantitative real-time PCR (qRT-PCR) was used to analyze the mRNA expression level of three OPN splice variants (OPN-a, -b and -c). The multivariate Cox's proportional hazard regression model revealed that high mRNA expression levels of OPN splice variants are significantly associated with poor prognosis in STS patients (n = 124). Women (n = 68) with high mRNA expression levels of OPN-a and OPN-b have an especially elevated risk of tumor-related death (OPN-a: RR = 3.0, P = 0.01, CI = 1.3-6.8; OPN-b: RR = 3.4, P = 0.01, CI = 1.4-8.2). In particular, we found that high mRNA expression levels of OPN-b and OPN-c correlated with a high risk of tumor-related death in STS patients that received radiotherapy (n = 52; OPN-b: RR = 10.3, P < 0.01, CI = 2.0-53.7; OPN-c: RR = 11.4, P < 0.01, CI = 2.2-59.3). Our study shows that elevated mRNA expression levels of OPN splice variants are negative prognostic and predictive markers for STS patients. Further studies are needed to clarify the impact of the OPN splice variants on prognosis.
Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia
Axelrod, Felicia B.; Liebes, Leonard; Gold-von Simson, Gabrielle; Mendoza, Sandra; Mull, James; Leyne, Maire; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Slaugenhaupt, Susan A.
2011-01-01
Familial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex associated protein/ elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase wild-type IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine if oral kinetin treatment could alter mRNA splicing in FD subjects and was tolerable, we administered kinetin to eight FD individuals homozygous for the splice mutation. Subjects received 23.5 mg/Kg/day for 28 days. An increase in wild-type IKBKAP mRNA expression in leukocytes was noted after eight days in six of eight individuals; after 28 days the mean increase as compared to baseline was significant (p=0.002). We have demonstrated that kinetin is tolerable in this medically fragile population. Not only did kinetin produce the desired effect on splicing in FD patients, but also that effect appears to improve with time despite lack of dose change. This is the first report of a drug that produces in vivo mRNA splicing changes in individuals with FD and supports future long-term trials to determine if kinetin will prove therapeutic in FD patients. PMID:21775922
Circular RNA Expression: Its Potential Regulation and Function.
Salzman, Julia
2016-05-01
In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function. Copyright © 2016. Published by Elsevier Ltd.
ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma.
Marchesini, Matteo; Ogoti, Yamini; Fiorini, Elena; Aktas Samur, Anil; Nezi, Luigi; D'Anca, Marianna; Storti, Paola; Samur, Mehmet Kemal; Ganan-Gomez, Irene; Fulciniti, Maria Teresa; Mistry, Nipun; Jiang, Shan; Bao, Naran; Marchica, Valentina; Neri, Antonino; Bueso-Ramos, Carlos; Wu, Chang-Jiun; Zhang, Li; Liang, Han; Peng, Xinxin; Giuliani, Nicola; Draetta, Giulio; Clise-Dwyer, Karen; Kantarjian, Hagop; Munshi, Nikhil; Orlowski, Robert; Garcia-Manero, Guillermo; DePinho, Ronald A; Colla, Simona
2017-07-10
Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM. Copyright © 2017 Elsevier Inc. All rights reserved.
Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient.
Greer, Kane; Mizzi, Kayla; Rice, Emily; Kuster, Lukas; Barrero, Roberto A; Bellgard, Matthew I; Lynch, Bryan J; Foley, Aileen Reghan; O Rathallaigh, Eoin; Wilton, Steve D; Fletcher, Sue
2015-07-01
We report a dystrophinopathy patient with an in-frame deletion of DMD exons 45-47, and therefore a genetic diagnosis of Becker muscular dystrophy, who presented with a more severe than expected phenotype. Analysis of the patient DMD mRNA revealed an 82 bp pseudoexon, derived from intron 44, that disrupts the reading frame and is expected to yield a nonfunctional dystrophin. Since the sequence of the pseudoexon and canonical splice sites does not differ from the reference sequence, we concluded that the genomic rearrangement promoted recognition of the pseudoexon, causing a severe dystrophic phenotype. We characterized the deletion breakpoints and identified motifs that might influence selection of the pseudoexon. We concluded that the donor splice site was strengthened by juxtaposition of intron 47, and loss of intron 44 silencer elements, normally located downstream of the pseudoexon donor splice site, further enhanced pseudoexon selection and inclusion in the DMD transcript in this patient.
Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Van Seuningen, Isabelle; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal
2017-03-06
Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3'UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3 -/- mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.
Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Seuningen, Isabelle Van; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal
2017-01-01
Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3−/− mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally. PMID:28262838
Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae
Uthe, Henriette; Vanselow, Jens T.; Schlosser, Andreas
2017-01-01
Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis. PMID:28240253
Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, W.C.; Stanford, D.R.; Hopper, A.K.
1996-06-01
To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Gal4p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that los1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases (G6PDs). As the similarities are restricted to areas separate from themore » catalytic domain, these G6PDs may have more than one function. The SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing. 64 refs., 6 figs., 6 tabs.« less
Lu, Shun-Wen; Tian, Duanhua; Borchardt-Wier, Harmony B; Wang, Xiaohong
2008-11-01
Chorismate mutase (CM) secreted from the stylet of plant-parasitic nematodes plays an important role in plant parasitism. We isolated and characterized a new nematode CM gene (Gr-cm-1) from the potato cyst nematode, Globodera rostochiensis. The Gr-cm-1 gene was found to exist in the nematode genome as a single-copy gene that has two different alleles, Gr-cm-1A and Gr-cm-1B, both of which could give rise to two different mRNA transcripts of Gr-cm-1 and Gr-cm-1-IRII. In situ mRNA hybridization showed that the Gr-cm-1 gene was exclusively expressed within the subventral oesophageal gland cells of the nematode. Gr-cm-1 was demonstrated to encode a functional CM (GR-CM-1) potentially having a dimeric structure as the secreted bacterial *AroQ CMs. Gr-cm-1-IRII, generated by retention of intron 2 of the Gr-cm-1 pre-mRNA through alternative splicing (AS), would encode a truncated protein (GR-CM-1t) lacking the CM domain with no CM activity. The quantitative real-time reverse transcription-PCR assay revealed that splicing of the Gr-cm-1 gene was developmentally regulated; Gr-cm-1 was up-regulated whereas Gr-cm-1-IRII was down-regulated in early nematode parasitic stages compared to the preparasitic juvenile stage. Low-temperature SDS-PAGE analysis revealed that GR-CM-1 could form homodimers when expressed in Escherichia coli and the dimerization domain was retained in the truncated GR-CM-1t protein. The specific interaction between the two proteins was demonstrated in yeast. Our data suggested that the novel splice variant might function as a dominant negative isoform through heterodimerization with the full-length GR-CM-1 protein and that AS may represent an important mechanism for regulating CM activity during nematode parasitism.
Fitch, J M; Gordon, M K; Gibney, E P; Linsenmayer, T F
1995-01-01
The genes for the alpha 1(IX), alpha 1(II), and alpha 2(I) collagen chains can give rise to different isoforms of mRNA, generated by alternative promotor usage [for alpha 1(IX) and alpha 2(I)] or alternative splicing [for alpha 1(II)]. In this study, we employed competitive reverse transcriptase PCR to quantitate the amounts of transcriptional isoforms for these genes in the embryonic avian cornea from its inception (about 3 1/2 days of development) to 11 days. In order to compare values at different time points, the results were normalized to those obtained for the "housekeeping" enzyme, glycerol-3-phosphate dehydrogenase (G3PDH). These values were compared to those obtained from other tissues (anterior optic cup and cartilage) that synthesize different combinations of the collagen isoforms. We found that, in the cornea, transcripts from the upstream promotor of alpha 1(IX) collagen (termed "long IX") were predominant at stage 18-20 (about 3 1/2 days), but then fell rapidly, and remained at a low level. By 5 days (just before stromal swelling) the major mRNA isoform of alpha 1(IX) was from the downstream promoter (termed "short IX"). The relative amount of transcript for the short form of type IX collagen rose to a peak at about 6 days of development, and then declined. Throughout this period, the predominant transcriptional isoform of the collagen type II gene was IIA (i.e., containing the alternatively spliced exon 2). This indicates that the molecules of type II collagen that are assembled into heterotypic fibrils with type I collagen possess, at least transiently, an amino-terminal globular domain similar to that found in collagen types I, III, and V. For type I, the "bone/tendon" mRNA isoform of the alpha 2(I) collagen gene was predominant; transcripts from the downstream promotor were at basal levels. In other tissues expressing collagen types IX and II, long IX was expressed predominantly with the IIA form in the anterior optic cup at stage 22/23; in 14 1/2 day cartilage, long IX was expressed predominantly along with the IIB form of alpha 1(II). The downstream transcript of the alpha 2(I) gene (Icart) was found at high levels only in cartilage.
Vallée, Maud; Guay, Frédéric; Beaudry, Danièle; Matte, Jacques; Blouin, Richard; Laforest, Jean-Paul; Lessard, Martin; Palin, Marie-France
2002-10-01
Folic acid and glycine are factors of great importance in early gestation. In sows, folic acid supplement can increase litter size through a decrease in embryonic mortality, while glycine, the most abundant amino acid in the sow oviduct, uterine, and allantoic fluids, is reported to act as an organic osmoregulator. In this study, we report the characterization of cytoplasmic serine hydroxymethyltransferase (cSHMT), T-protein, and vT-protein (variant T-protein) mRNA expression levels in endometrial and embryonic tissues in gestating sows on Day 25 of gestation according to the breed, parity, and folic acid + glycine supplementation. Expression levels of cSHMT, T-protein, and vT-protein mRNA in endometrial and embryonic tissues were performed using semiquantitative reverse transcription-polymerase chain reaction. We also report, for the first time, an alternative splicing event in the porcine T-protein gene. Results showed that a T-protein splice variant, vT-protein, is present in all the tested sow populations. Further characterizations revealed that this T-protein splice variant contains a coding intron that can adopt a secondary structure. Results demonstrated that cSHMT mRNA expression levels were significantly higher in sows receiving the folic acid + glycine supplementation, independently of the breed or parity and in both endometrial and embryonic tissues. Upon receiving the same treatment, the vT-protein and T-protein mRNA expression levels were significantly reduced in the endometrial tissue of Yorkshire-Landrace sows only. These results indicate that modulation of specific gene expression levels in endometrial and embryonic tissues of sows in early gestation could be one of the mechanism involved with the role of folic acid on improving swine reproduction traits.
JAK2 Exon 14 Deletion in Patients with Chronic Myeloproliferative Neoplasms
Ma, Wanlong; Kantarjian, Hagop; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; O'Brien, Susan; Giles, Francis; Bruey, Jean Marie; Albitar, Maher
2010-01-01
Background The JAK2 V617F mutation in exon 14 is the most common mutation in chronic myeloproliferative neoplasms (MPNs); deletion of the entire exon 14 is rarely detected. In our previous study of >10,000 samples from patients with suspected MPNs tested for JAK2 mutations by reverse transcription-PCR (RT-PCR) with direct sequencing, complete deletion of exon 14 (Δexon14) constituted <1% of JAK2 mutations. This appears to be an alternative splicing mutation, not detectable with DNA-based testing. Methodology/Principal Findings We investigated the possibility that MPN patients may express the JAK2 Δexon14 at low levels (<15% of total transcript) not routinely detectable by RT-PCR with direct sequencing. Using a sensitive RT-PCR–based fluorescent fragment analysis method to quantify JAK2 Δexon14 mRNA expression relative to wild-type, we tested 61 patients with confirmed MPNs, 183 with suspected MPNs (93 V617F-positive, 90 V617F-negative), and 46 healthy control subjects. The Δexon14 variant was detected in 9 of the 61 (15%) confirmed MPN patients, accounting for 3.96% to 33.85% (mean = 12.04%) of total JAK2 transcript. This variant was also detected in 51 of the 183 patients with suspected MPNs (27%), including 20 of the 93 (22%) with V617F (mean [range] expression = 5.41% [2.13%–26.22%]) and 31 of the 90 (34%) without V617F (mean [range] expression = 3.88% [2.08%–12.22%]). Immunoprecipitation studies demonstrated that patients expressing Δexon14 mRNA expressed a corresponding truncated JAK2 protein. The Δexon14 variant was not detected in the 46 control subjects. Conclusions/Significance These data suggest that expression of the JAK2 Δexon14 splice variant, leading to a truncated JAK2 protein, is common in patients with MPNs. This alternatively spliced transcript appears to be more frequent in MPN patients without V617F mutation, in whom it might contribute to leukemogenesis. This mutation is missed if DNA rather than RNA is used for testing. PMID:20730051
The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease.
da Costa, Paulo J; Menezes, Juliane; Romão, Luísa
2017-10-01
Alternative pre-mRNA splicing (AS) affects gene expression as it generates proteome diversity. Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature translation-termination codons (PTCs), preventing the production of truncated proteins that could result in disease. Several studies have also implicated NMD in the regulation of steady-state levels of physiological mRNAs. In addition, it is known that several regulated AS events do not lead to generation of protein products, as they lead to transcripts that carry PTCs and thus, they are committed to NMD. Indeed, an estimated one-third of naturally occurring, alternatively spliced mRNAs is targeted for NMD, being AS coupled to NMD (AS-NMD) an efficient strategy to regulate gene expression. In this review, we will focus on how AS mechanism operates and how can be coupled to NMD to fine-tune gene expression levels. Furthermore, we will demonstrate the physiological significance of the interplay among AS and NMD in human disease, such as cancer and neurological disorders. The understanding of how AS-NMD orchestrates expression of vital genes is of utmost importance for the advance in diagnosis, prognosis and treatment of many human disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ono, Hiroyuki; Saitsu, Hirotomo; Horikawa, Reiko; Nakashima, Shinichi; Ohkubo, Yumiko; Yanagi, Kumiko; Nakabayashi, Kazuhiko; Fukami, Maki; Fujisawa, Yasuko; Ogata, Tsutomu
2018-02-02
Although partial androgen insensitivity syndrome (PAIS) is caused by attenuated responsiveness to androgens, androgen receptor gene (AR) mutations on the coding regions and their splice sites have been identified only in <25% of patients with a diagnosis of PAIS. We performed extensive molecular studies including whole exome sequencing in a Japanese family with PAIS, identifying a deep intronic variant beyond the branch site at intron 6 of AR (NM_000044.4:c.2450-42 G > A). This variant created the splice acceptor motif that was accompanied by pyrimidine-rich sequence and two candidate branch sites. Consistent with this, reverse transcriptase (RT)-PCR experiments for cycloheximide-treated lymphoblastoid cell lines revealed a relatively large amount of aberrant mRNA produced by the newly created splice acceptor site and a relatively small amount of wildtype mRNA produced by the normal splice acceptor site. Furthermore, most of the aberrant mRNA was shown to undergo nonsense mediated decay (NMD) and, if a small amount of aberrant mRNA may have escaped NMD, such mRNA was predicted to generate a truncated AR protein missing some functional domains. These findings imply that the deep intronic mutation creating an alternative splice acceptor site resulted in the production of a relatively small amount of wildtype AR mRNA, leading to PAIS.
NASA Astrophysics Data System (ADS)
Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi
2014-01-01
Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.
Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi
2014-01-01
Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.
Factors influencing alternative splice site utilization in vivo.
Fu, X Y; Manley, J L
1987-01-01
To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA. Images PMID:3029566
Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity.
Henis-Korenblit, Sivan; Zhang, Peichuan; Hansen, Malene; McCormick, Mark; Lee, Seung-Jae; Cary, Michael; Kenyon, Cynthia
2010-05-25
When unfolded proteins accumulate in the endoplasmic reticulum (ER), the unfolded protein response is activated. This ER stress response restores ER homeostasis by coordinating processes that decrease translation, degrade misfolded proteins, and increase the levels of ER-resident chaperones. Ribonuclease inositol-requiring protein-1 (IRE-1), an endoribonuclease that mediates unconventional splicing, and its target, the XBP-1 transcription factor, are key mediators of the unfolded protein response. In this study, we show that in Caenorhabditis elegans insulin/IGF-1 pathway mutants, IRE-1 and XBP-1 promote lifespan extension and enhance resistance to ER stress. We show that these effects are not achieved simply by increasing the level of spliced xbp-1 mRNA and expression of XBP-1's normal target genes. Instead, in insulin/IGF-1 pathway mutants, XBP-1 collaborates with DAF-16, a FOXO-transcription factor that is activated in these mutants, to enhance ER stress resistance and to activate new genes that promote longevity.
Cardamone, Giulia; Paraboschi, Elvezia Maria; Rimoldi, Valeria; Duga, Stefano; Soldà, Giulia; Asselta, Rosanna
2017-03-07
Abnormalities in alternative splicing (AS) are emerging as recurrent features in autoimmune diseases (AIDs). In particular, a growing body of evidence suggests the existence of a pathogenic association between a generalized defect in splicing regulatory genes and multiple sclerosis (MS). Moreover, several studies have documented an unbalance in alternatively-spliced isoforms in MS patients possibly contributing to the disease etiology. In this work, using a combination of PCR-based techniques (reverse-transcription (RT)-PCR, fluorescent-competitive, real-time, and digital RT-PCR assays), we investigated the alternatively-spliced gene encoding Gasdermin B, GSDMB , which was repeatedly associated with susceptibility to asthma and AIDs. The in-depth characterization of GSDMB AS and backsplicing profiles led us to the identification of an exonic circular RNA (ecircRNA) as well as of novel GSDMB in-frame and out-of-frame isoforms. The non-productive splicing variants were shown to be downregulated by the nonsense-mediated mRNA decay (NMD) in human cell lines, suggesting that GSDMB levels are significantly modulated by NMD. Importantly, both AS isoforms and the identified ecircRNA were significantly dysregulated in peripheral blood mononuclear cells of relapsing-remitting MS patients compared to controls, further supporting the notion that aberrant RNA metabolism is a characteristic feature of the disease.
RNA editing in nascent RNA affects pre-mRNA splicing
Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni
2018-01-01
In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3′ acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. PMID:29724793
RNA editing in nascent RNA affects pre-mRNA splicing.
Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni; Xiao, Xinshu
2018-06-01
In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. © 2018 Hsiao et al.; Published by Cold Spring Harbor Laboratory Press.
Purifying Selection on Exonic Splice Enhancers in Intronless Genes
Savisaar, Rosina; Hurst, Laurence D.
2016-01-01
Exonic splice enhancers (ESEs) are short nucleotide motifs, enriched near exon ends, that enhance the recognition of the splice site and thus promote splicing. Are intronless genes under selection to avoid these motifs so as not to attract the splicing machinery to an mRNA that should not be spliced, thereby preventing the production of an aberrant transcript? Consistent with this possibility, we find that ESEs in putative recent retrocopies are at a higher density and evolving faster than those in other intronless genes, suggesting that they are being lost. Moreover, intronless genes are less dense in putative ESEs than intron-containing ones. However, this latter difference is likely due to the skewed base composition of intronless sequences, a skew that is in line with the general GC richness of few exon genes. Indeed, after controlling for such biases, we find that both intronless and intron-containing genes are denser in ESEs than expected by chance. Importantly, nucleotide-controlled analysis of evolutionary rates at synonymous sites in ESEs indicates that the ESEs in intronless genes are under purifying selection in both human and mouse. We conclude that on the loss of introns, some but not all, ESE motifs are lost, the remainder having functions beyond a role in splice promotion. These results have implications for the design of intronless transgenes and for understanding the causes of selection on synonymous sites. PMID:26802218
Li, Wencheng; You, Bei; Hoque, Mainul; Zheng, Dinghai; Luo, Wenting; Ji, Zhe; Park, Ji Yeon; Gunderson, Samuel I.; Kalsotra, Auinash; Manley, James L.; Tian, Bin
2015-01-01
Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. PMID:25906188
Lemahieu, V; Gastier, J M; Francke, U
1999-01-01
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immunodeficiency characterized by thrombocytopenia, eczema, and recurrent infections, and caused by mutations in the WAS protein (WASP) gene. WASP contains several functional domains through which it interacts with proteins involved in intracellular signaling and regulation of the actin cytoskeleton. In this report, 17 WASP gene mutations were identified, 12 of which are novel. DNA of affected males and obligate carriers was PCR amplified and analyzed by SSCA, heteroduplex analysis, and direct sequencing. The effects of the mutations at the mRNA and protein level were ascertained by RT-PCR and Western blot analyses. All missense mutations were located in exons 1-4. Most of the nonsense, frameshift and splice site mutations were found in exons 6-11. Mutations that alter splice sites led to the synthesis of several types of mRNAs, a fraction of which represented the normally spliced product. The presence of normally spliced transcripts was correlated with a milder phenotype. When one such case was studied by Western blotting, reduced amounts of normal-size WASP were present. In other cases as well, a correlation was found between the amount of normal or mutant WASP present and the phenotypes of the affected individuals. No protein was detected in two individuals with severe WAS. Reduced levels of a normal-size WASP with a missense mutation were seen in two individuals with XLT. It is concluded that mutation analysis at the DNA level is not sufficient for predicting clinical course. Studies at the transcript and protein level are needed for a better assessment.
The fitness cost of mis-splicing is the main determinant of alternative splicing patterns.
Saudemont, Baptiste; Popa, Alexandra; Parmley, Joanna L; Rocher, Vincent; Blugeon, Corinne; Necsulea, Anamaria; Meyer, Eric; Duret, Laurent
2017-10-30
Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92-98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift.
Hamid, Fursham M; Makeyev, Eugene V
2014-11-01
Alternative splicing (AS) provides a potent mechanism for increasing protein diversity and modulating gene expression levels. How alternate splice sites are selected by the splicing machinery and how AS is integrated into gene regulation networks remain important questions of eukaryotic biology. Here we report that polypyrimidine tract-binding protein 1 (Ptbp1/PTB/hnRNP-I) controls alternate 5' and 3' splice site (5'ss and 3'ss) usage in a large set of mammalian transcripts. A top scoring event identified by our analysis was the choice between competing upstream and downstream 5'ss (u5'ss and d5'ss) in the exon 18 of the Hps1 gene. Hps1 is essential for proper biogenesis of lysosome-related organelles and loss of its function leads to a disease called type 1 Hermansky-Pudlak Syndrome (HPS). We show that Ptbp1 promotes preferential utilization of the u5'ss giving rise to stable mRNAs encoding a full-length Hps1 protein, whereas bias towards d5'ss triggered by Ptbp1 down-regulation generates transcripts susceptible to nonsense-mediated decay (NMD). We further demonstrate that Ptbp1 binds to pyrimidine-rich sequences between the u5'ss and d5'ss and activates the former site rather than repressing the latter. Consistent with this mechanism, u5'ss is intrinsically weaker than d5'ss, with a similar tendency observed for other genes with Ptbp1-induced u5'ss bias. Interestingly, the brain-enriched Ptbp1 paralog Ptbp2/nPTB/brPTB stimulated the u5'ss utilization but with a considerably lower efficiency than Ptbp1. This may account for the tight correlation between Hps1 with Ptbp1 expression levels observed across mammalian tissues. More generally, these data expand our understanding of AS regulation and uncover a post-transcriptional strategy ensuring co-expression of a subordinate gene with its master regulator through an AS-NMD tracking mechanism.
Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D
2009-01-01
The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1–MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity. PMID:19644446
Ruvolo, Vivian; Wang, Eryu; Boyle, Sarah; Swaminathan, Sankar
1998-01-01
The Epstein–Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3′-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport. PMID:9671768
Ruvolo, V; Wang, E; Boyle, S; Swaminathan, S
1998-07-21
The Epstein-Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3'-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport.
Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA
Fu, Yan; Bannach, Oliver; Chen, Hao; Teune, Jan-Hendrik; Schmitz, Axel; Steger, Gerhard; Xiong, Liming; Barbazuk, W. Brad
2009-01-01
Identifying conserved alternative splicing (AS) events among evolutionarily distant species can prioritize AS events for functional characterization and help uncover relevant cis- and trans-regulatory factors. A genome-wide search for conserved cassette exon AS events in higher plants revealed the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA (transcription factor for polymerase III A). The 5S rRNA-derived exon in TFIIIA gene exists in all representative land plant species but not in green algae and nonplant species, suggesting it is specific to land plants. TFIIIA is essential for RNA polymerase III-based transcription of 5S rRNA in eukaryotes. Integrating comparative genomics and molecular biology revealed that the conserved cassette exon derived from 5S rRNA is coupled with nonsense-mediated mRNA decay. Utilizing multiple independent Arabidopsis overexpressing TFIIIA transgenic lines under osmotic and salt stress, strong accordance between phenotypic and molecular evidence reveals the biological relevance of AS of the exonized 5S rRNA in quantitative autoregulation of TFIIIA homeostasis. Most significantly, this study provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized noncoding element. PMID:19211543
Pauws, E; Peskett, E; Boissin, C; Hoshino, A; Mengrelis, K; Carta, E; Abruzzo, M A; Lees, M; Moore, G E; Erickson, R P; Stanier, P
2013-04-01
X-linked cleft palate (CPX) is caused by mutations in the gene encoding the TBX22 transcription factor and is known to exhibit phenotypic variability, usually involving either a complete, partial or submucous cleft palate, with or without ankyloglossia. This study hypothesized a possible involvement of TBX22 in a family with X-linked, CHARGE-like Abruzzo-Erickson syndrome, of unknown etiology. The phenotype extends to additional features including sensorineural deafness and coloboma, which are suggested by the Tbx22 developmental expression pattern but not previously associated in CPX patients. A novel TBX22 splice acceptor mutation (c.593-5T>A) was identified that tracked with the phenotype in this family. A novel splice donor variant (c.767+5G>A) and a known canonical splice donor mutation (c.767+1G>A) affecting the same exon were identified in patients with classic CPX phenotypes and were comparatively analyzed using both in silico and in vitro splicing studies. All three variants were predicted to abolish normal mRNA splicing and an in vitro assay indicated that use of alternative splice sites was a likely outcome. Collectively, the data showed the functional effect of several novel intronic splice site variants but most importantly confirms that TBX22 is the gene underlying Abruzzo-Erickson syndrome, expanding the phenotypic spectrum of TBX22 mutations. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Mechanisms and consequences of alternative polyadenylation
Di Giammartino, Dafne Campigli; Nishida, Kensei; Manley, James L.
2011-01-01
Summary Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3’UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechansims governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenlyation. PMID:21925375
Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.
Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul
2017-08-01
Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as previously identified roles in antagonizing the innate immune defenses of the cell and directly upregulating translation of viral mRNAs, it also promotes the nuclear export of the viral late gene mRNAs by acting as an adaptor between the viral mRNAs and the cellular mRNA nuclear export machinery. Copyright © 2017 Pereira et al.
Evolutionary Insights into RNA trans-Splicing in Vertebrates
Lei, Quan; Li, Cong; Zuo, Zhixiang; Huang, Chunhua; Cheng, Hanhua; Zhou, Rongjia
2016-01-01
Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint. PMID:26966239
Lee, Jinwoo; Tong, Tiegang; Takemori, Hiroshi; Jefcoate, Colin
2015-06-15
In mouse steroidogenic cells the activation of cholesterol metabolism is mediated by steroidogenic acute regulatory protein (StAR). Here, we visualized a coordinated regulation of StAR transcription, splicing and post-transcriptional processing, which are synchronized by salt inducible kinase (SIK1) and CREB-regulated transcription coactivator (CRTC2). To detect primary RNA (pRNA), spliced primary RNA (Sp-RNA) and mRNA in single cells, we generated probe sets by using fluorescence in situ hybridization (FISH). These methods allowed us to address the nature of StAR gene expression and to visualize protein-nucleic acid interactions through direct detection. We show that SIK1 represses StAR expression in Y1 adrenal and MA10 testis cells through inhibition of processing mediated by CRTC2. Digital image analysis matches qPCR analyses of the total cell culture. Evidence is presented for spatially separate accumulation of StAR pRNA and Sp-RNA at the gene loci in the nucleus. These findings establish that cAMP, SIK and CRTC mediate StAR expression through activation of individual StAR gene loci. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Expression of SMARCB1 (INI1) mutations in familial schwannomatosis.
Smith, Miriam J; Walker, James A; Shen, Yiping; Stemmer-Rachamimov, Anat; Gusella, James F; Plotkin, Scott R
2012-12-15
Genetic changes in the SMARCB1 tumor suppressor gene have recently been reported in tumors and blood from families with schwannomatosis. Exon scanning of all nine SMARCB1 exons in genomic DNA from our cohort of families meeting the criteria for 'definite' or 'presumptive' schwannomatosis previously revealed constitutional alterations in 13 of 19 families (68%). Screening of four new familial schwannomatosis probands identified one additional constitutional alteration. We confirmed the presence of mRNA transcripts for two missense alterations, four mutations of conserved splice motifs and two additional mutations, in less conserved sequences, which also affect splicing. Furthermore, we found that transcripts for a rare 3'-untranslated region (c.*82C > T) alteration shared by four unrelated families did not produce splice variants but did show unequal allelic expression, suggesting that the alteration is either causative itself or linked to an unidentified causative mutation. Overexpression studies in cells lacking SMARCB1 suggest that mutant SMARCB1 proteins, like wild-type SMARCB1 protein, retain the ability to suppress cyclin D1 activity. These data, together with the expression of SMARCB1 protein in a proportion of cells from schwannomatosis-related schwannomas, suggest that these tumors develop through a mechanism that is distinct from that of rhabdoid tumors in which SMARCB1 protein is completely absent in tumor cells.
Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family.
Shen, W C; Stanford, D R; Hopper, A K
1996-06-01
To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Ga14p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that las1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases. As the similarities are restricted to areas separate from the catalytic domain, these G6PDs may have more than one function. The SOL family appears to be unessential since cells with a triple disruption of all three SOL genes are viable. SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/ function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing.
Ishida, Ken; Kuboshima, Megumi; Morita, Hiroto; Maeda, Hiroshi; Okamoto, Ayako; Takeuchi, Michio; Yamagata, Youhei
2014-01-01
Alternative splicing is thought to be a means for diversification of products by mRNA modification. Although some intron retentions are predicted by transcriptome analysis in Aspergillus oryzae, its physiological significance remains unknown. We found that intron retention occurred occasionally in the serine-type carboxypeptidase gene, ocpG. Analysis under various culture conditions revealed that extracellular nitrogen conditions influence splicing patterns; this suggested that there might be a correlation between splicing efficiency and the necessity of OcpG activity for obtaining a nitrogen source. Since further analysis showed that splicing occurred independently in each intron, we constructed ocpG intron-exchanging strain by interchanging the positions of intron-1 and intron-2. The splicing pattern indicated the probability that ocpG intron retention was affected by the secondary structures of intronic mRNA.
Mis-Spliced Lr34 Transcript Events in Winter Wheat.
Fang, Tilin; Carver, Brett F; Hunger, Robert M; Yan, Liuling
2017-01-01
Lr34 in wheat is a non-race-specific gene that confers resistance against multiple fungal pathogens. The resistant allele Lr34 and the susceptible allele Lr34s can be distinguished by three polymorphisms that cause alternation of deduced amino acid sequences of Lr34 at the protein level. In seedlings of a cultivar carrying the resistant Lr34r allele, only a portion (35%) of its transcripts was correctly spliced and the majority (65%) of its transcripts were incorrectly spliced due to multiple mis-splicing events. Lr34 mis-splicing events were also observed at adult plant age when this gene exerts its function. All of the mis-spliced Lr34r cDNA transcripts observed in this study resulted in a premature stop codon due to a shift of the open reading frame; hence, the mis-spliced Lr34r cDNAs were deduced to encode incomplete proteins. Even if a cultivar has a functional Lr34 gene, its transcripts might not completely splice in a correct pattern. These findings suggested that the partial resistance conferred by a quantitative gene might be due to mis-splicing events in its transcripts; hence, the resistance of the gene could be increased by eliminating or mutating regulators that cause mis-splicing events in wheat.
Effects of ubiquilin 1 on the unfolded protein response.
Lu, Alice; Hiltunen, Mikko; Romano, Donna M; Soininen, Hilkka; Hyman, Bradley T; Bertram, Lars; Tanzi, Rudolph E
2009-05-01
Previous studies have implicated the unfolded protein response (UPR) in the pathogenesis of Alzheimer's disease (AD). We previously reported that DNA variants in the ubiquilin 1 (UBQLN1) gene increase the risk for AD. Since UBQLN1 has been shown to play a role in the UPR, we assessed the effects of overexpression and downregulation of UBQLN1 splice variants during tunicamycin-induced ER stress. In addition to previously described transcript variants, TV1 and TV2, we identified two novel transcript variants of UBQLN1 in brain: TV3 (lacking exons 2-4) and TV4 (lacking exon 4). Overexpression of TV1-3, but not TV4 significantly decreased the mRNA induction of UPR-inducible genes, C/EBP homologous protein (CHOP), BiP/GRP78, and protein disulfide isomerase (PDI) during the UPR. Stable overexpression of TV1-3, but not TV4, also significantly decreased the induction of CHOP protein and increased cell viability during the UPR. In contrast, downregulation of UBQLN1 did not affect CHOP mRNA induction, but instead increased PDI mRNA levels. These findings suggest that overexpression UBQLN1 transcript variants TV1-3, but not TV4, exert a protective effect during the UPR by attenuating CHOP induction and potentially increasing cell viability.
Qu, Wen; Gurdziel, Katherine; Pique-Regi, Roger; Ruden, Douglas M
2017-01-01
Lead (Pb) poisoning has been a major public health issue globally and the recent Flint water crisis has drawn nation-wide attention to its effects. To better understand how lead plays a role as a neurotoxin, we utilized the Drosophila melanogaster model to study the genetic effects of lead exposure during development and identified lead-responsive genes. In our previous studies, we have successfully identified hundreds of lead-responsive expression QTLs (eQTLs) by using RNA-seq analysis on heads collected from the Drosophila Synthetic Population Resource. Cis -eQTLs, also known as allele-specific expression (ASE) polymorphisms, are generally single-nucleotide polymorphisms in the promoter regions of genes that affect expression of the gene, such as by inhibiting the binding of transcription factors. Trans -eQTLs are genes that regulate mRNA levels for many genes, and are generally thought to be SNPs in trans -acting transcription or translation factors. In this study, we focused our attention on alternative splicing events that are affected by lead exposure. Splicing QTLs (sQTLs), which can be caused by SNPs that alter splicing or alternative splicing (AS), such as by changing the sequence-specific binding affinity of splicing factors to the pre-mRNA. We applied two methods in search for sQTLs by using RNA-seq data from control and lead-exposed w 1118 Drosophila heads. First, we used the fraction of reads in a gene that falls in each exon as the phenotype. Second, we directly compared the transcript counts among the various splicing isoforms as the phenotype. Among the 1,236 potential Pb-responsive sQTLs ( p < 0.0001, FDR < 0.39), mostly cis -sQTLs, one of the most distinct genes is Dscam1 (Down Syndrome Cell Adhesion Molecule), which has over 30,000 potential alternative splicing isoforms. We have also identified a candidate Pb-responsive trans -sQTL hotspot that appears to regulate 129 genes that are enriched in the "cation channel" gene ontology category, suggesting a model in which alternative splicing of these channels might lead to an increase in the elimination of Pb 2+ from the neurons encoding these channels. To our knowledge, this is the first paper that uses sQTL analyses to understand the neurotoxicology of an environmental toxin in any organism, and the first reported discovery of a candidate trans -sQTL hotspot.
Qu, Wen; Gurdziel, Katherine; Pique-Regi, Roger; Ruden, Douglas M.
2017-01-01
Lead (Pb) poisoning has been a major public health issue globally and the recent Flint water crisis has drawn nation-wide attention to its effects. To better understand how lead plays a role as a neurotoxin, we utilized the Drosophila melanogaster model to study the genetic effects of lead exposure during development and identified lead-responsive genes. In our previous studies, we have successfully identified hundreds of lead-responsive expression QTLs (eQTLs) by using RNA-seq analysis on heads collected from the Drosophila Synthetic Population Resource. Cis-eQTLs, also known as allele-specific expression (ASE) polymorphisms, are generally single-nucleotide polymorphisms in the promoter regions of genes that affect expression of the gene, such as by inhibiting the binding of transcription factors. Trans-eQTLs are genes that regulate mRNA levels for many genes, and are generally thought to be SNPs in trans-acting transcription or translation factors. In this study, we focused our attention on alternative splicing events that are affected by lead exposure. Splicing QTLs (sQTLs), which can be caused by SNPs that alter splicing or alternative splicing (AS), such as by changing the sequence-specific binding affinity of splicing factors to the pre-mRNA. We applied two methods in search for sQTLs by using RNA-seq data from control and lead-exposed w1118 Drosophila heads. First, we used the fraction of reads in a gene that falls in each exon as the phenotype. Second, we directly compared the transcript counts among the various splicing isoforms as the phenotype. Among the 1,236 potential Pb-responsive sQTLs (p < 0.0001, FDR < 0.39), mostly cis-sQTLs, one of the most distinct genes is Dscam1 (Down Syndrome Cell Adhesion Molecule), which has over 30,000 potential alternative splicing isoforms. We have also identified a candidate Pb-responsive trans-sQTL hotspot that appears to regulate 129 genes that are enriched in the “cation channel” gene ontology category, suggesting a model in which alternative splicing of these channels might lead to an increase in the elimination of Pb2+ from the neurons encoding these channels. To our knowledge, this is the first paper that uses sQTL analyses to understand the neurotoxicology of an environmental toxin in any organism, and the first reported discovery of a candidate trans-sQTL hotspot. PMID:29114259
Saraco, Nora; Nesi-Franca, Suzana; Sainz, Romina; Marino, Roxana; Marques-Pereira, Rosana; La Pastina, Julia; Perez Garrido, Natalia; Sandrini, Romolo; Rivarola, Marco Aurelio; de Lacerda, Luiz; Belgorosky, Alicia
2015-01-01
Splicing CYP19 gene variants causing aromatase deficiency in 46,XX disorder of sexual development (DSD) patients have been reported in a few cases. A misbalance between normal and aberrant splicing variants was proposed to explain spontaneous pubertal breast development but an incomplete sex maturation progress. The aim of this study was to functionally characterize a novel CYP19A1 intronic homozygote mutation (IVS9+5G>A) in a 46,XX DSD girl presenting spontaneous breast development and primary amenorrhea, and to evaluate similar splicing variant expression in normal steroidogenic tissues. Genomic DNA analysis, splicing prediction programs, splicing assays, and in vitro protein expression and enzyme activity analyses were carried out. CYP19A1 mRNA expression in human steroidogenic tissues was also studied. A novel IVS9+5G>A homozygote mutation was found. In silico analysis predicts the disappearance of the splicing donor site in intron 9, confirmed by patient peripheral leukocyte cP450arom and in vitro studies. Protein analysis showed a shorter and inactive protein. The intron 9 transcript variant was also found in human steroidogenic tissues. The mutation IVS9+5G>A generates a splicing variant that includes intron 9 which is also present in normal human steroidogenic tissues, suggesting that a misbalance between normal and aberrant splicing variants might occur in target tissues, explaining the clinical phenotype in the affected patient. © 2015 S. Karger AG, Basel.
Perispeckles are major assembly sites for the exon junction core complex
Daguenet, Elisabeth; Baguet, Aurélie; Degot, Sébastien; Schmidt, Ute; Alpy, Fabien; Wendling, Corinne; Spiegelhalter, Coralie; Kessler, Pascal; Rio, Marie-Christine; Le Hir, Hervé; Bertrand, Edouard; Tomasetto, Catherine
2012-01-01
The exon junction complex (EJC) is loaded onto mRNAs as a consequence of splicing and regulates multiple posttranscriptional events. MLN51, Magoh, Y14, and eIF4A3 form a highly stable EJC core, but where this tetrameric complex is assembled in the cell remains unclear. Here we show that EJC factors are enriched in domains that we term perispeckles and are visible as doughnuts around nuclear speckles. Fluorescence resonance energy transfer analyses and EJC assembly mutants show that perispeckles do not store free subunits, but instead are enriched for assembled cores. At the ultrastructural level, perispeckles are distinct from interchromatin granule clusters that may function as storage sites for splicing factors and intermingle with perichromatin fibrils, where nascent RNAs and active RNA Pol II are present. These results support a model in which perispeckles are major assembly sites for the tetrameric EJC core. This subnuclear territory thus represents an intermediate region important for mRNA maturation, between transcription sites and splicing factor reservoirs and assembly sites. PMID:22419818
Mutations of RNA splicing factors in hematological malignancies.
Shukla, Girish C; Singh, Jagjit
2017-11-28
Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin
2016-01-01
The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb StAR mRNA molecules via dual hybridization at the 3′- and 5′-ends and reveals an unexpectedly high frequency of 1:1 pairing with mitochondria marked by the matrix StAR protein. This pairing may be central to translation-coupled cholesterol transfer. Altogether, our results show that adrenal cells exhibit high-efficiency StAR activity that needs to integrate rapid cholesterol transfer with homeostasis and pulsatile hormonal stimulation. StAR NBD, the extended 3.5-kb mRNA, SIK1, and Tis11b play important roles. PMID:27531991
Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin
2016-01-01
The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb StAR mRNA molecules via dual hybridization at the 3'- and 5'-ends and reveals an unexpectedly high frequency of 1:1 pairing with mitochondria marked by the matrix StAR protein. This pairing may be central to translation-coupled cholesterol transfer. Altogether, our results show that adrenal cells exhibit high-efficiency StAR activity that needs to integrate rapid cholesterol transfer with homeostasis and pulsatile hormonal stimulation. StAR NBD, the extended 3.5-kb mRNA, SIK1, and Tis11b play important roles.
Rodríguez-Suárez, Cristina; Atienza, Sergio G.; Pistón, Fernando
2011-01-01
Background The wild barley Hordeum chilense Roem. et Schult. is a valuable source of genes for increasing carotenoid content in wheat. Tritordeums, the amphiploids derived from durum or common wheat and H. chilense, systematically show higher values of yellow pigment colour and carotenoid content than durum wheat. Phytoene synthase 1 gene (Psy1) is considered a key step limiting the carotenoid biosynthesis, and the correlation of Psy1 transcripts accumulation and endosperm carotenoid content has been demonstrated in the main grass species. Methodology/Principal findings We analyze the variability of Psy1 alleles in three lines of H. chilense (H1, H7 and H16) representing the three ecotypes described in this species. Moreover, we analyze Psy1 expression in leaves and in two seed developing stages of H1 and H7, showing mRNA accumulation patterns similar to those of wheat. Finally, we identify thirty-six different transcripts forms originated by alternative splicing of the 5′ UTR and/or exons 1 to 5 of Psy1 gene. Transcripts function is tested in a heterologous complementation assay, revealing that from the sixteen different predicted proteins only four types (those of 432, 370, 364 and 271 amino acids), are functional in the bacterial system. Conclusions/Significance The large number of transcripts originated by alternative splicing of Psy1, and the coexistence of functional and non functional forms, suggest a fine regulation of PSY activity in H. chilense. This work is the first analysis of H. chilense Psy1 gene and the results reported here are the bases for its potential use in carotenoid enhancement in durum wheat. PMID:21603624
Bergkessel, Megan; Whitworth, Gregg B.; Guthrie, Christine
2011-01-01
Gene expression in eukaryotic cells is profoundly influenced by the post-transcriptional processing of mRNAs, including the splicing of introns in the nucleus and both nuclear and cytoplasmic degradation pathways. These processes have the potential to affect both the steady-state levels and the kinetics of changes to levels of intron-containing transcripts. Here we report the use of a splicing isoform-specific microarray platform to investigate the effects of diverse stress conditions on pre-mRNA processing. Interestingly, we find that diverse stresses cause distinct patterns of changes at this level. The responses we observed are most dramatic for the RPGs and can be categorized into three major classes. The first is characterized by accumulation of RPG pre-mRNA and is seen in multiple types of amino acid starvation regimes; the magnitude of splicing inhibition correlates with the severity of the stress. The second class is characterized by a rapid decrease in both pre- and mature RPG mRNA and is seen in many stresses that inactivate the TORC1 kinase complex. These decreases depend on nuclear turnover of the intron-containing pre-RNAs. The third class is characterized by a decrease in RPG pre-mRNA, with only a modest reduction in the mature species; this response is observed in hyperosmotic and cation-toxic stresses. We show that casein kinase 2 (CK2) makes important contributions to the changes in pre-mRNA processing, particularly for the first two classes of stress responses. In total, our data suggest that complex post-transcriptional programs cooperate to fine-tune expression of intron-containing transcripts in budding yeast. PMID:21697354
Bergkessel, Megan; Whitworth, Gregg B; Guthrie, Christine
2011-08-01
Gene expression in eukaryotic cells is profoundly influenced by the post-transcriptional processing of mRNAs, including the splicing of introns in the nucleus and both nuclear and cytoplasmic degradation pathways. These processes have the potential to affect both the steady-state levels and the kinetics of changes to levels of intron-containing transcripts. Here we report the use of a splicing isoform-specific microarray platform to investigate the effects of diverse stress conditions on pre-mRNA processing. Interestingly, we find that diverse stresses cause distinct patterns of changes at this level. The responses we observed are most dramatic for the RPGs and can be categorized into three major classes. The first is characterized by accumulation of RPG pre-mRNA and is seen in multiple types of amino acid starvation regimes; the magnitude of splicing inhibition correlates with the severity of the stress. The second class is characterized by a rapid decrease in both pre- and mature RPG mRNA and is seen in many stresses that inactivate the TORC1 kinase complex. These decreases depend on nuclear turnover of the intron-containing pre-RNAs. The third class is characterized by a decrease in RPG pre-mRNA, with only a modest reduction in the mature species; this response is observed in hyperosmotic and cation-toxic stresses. We show that casein kinase 2 (CK2) makes important contributions to the changes in pre-mRNA processing, particularly for the first two classes of stress responses. In total, our data suggest that complex post-transcriptional programs cooperate to fine-tune expression of intron-containing transcripts in budding yeast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oestberg, Sara, E-mail: sara.ostberg@imbim.uu.se; Toermaenen Persson, Heidi, E-mail: heidi.tormanen.persson@imbim.uu.se; Akusjaervi, Goeran, E-mail: goran.akusjarvi@imbim.uu.se
2012-11-25
The adenovirus L4-33K protein is a key regulator involved in the temporal shift from early to late pattern of mRNA expression from the adenovirus major late transcription unit. L4-33K is a virus-encoded alternative splicing factor, which enhances processing of 3 Prime splice sites with a weak sequence context. Here we show that L4-33K expressed from a plasmid is localized at the nuclear margin of uninfected cells. During an infection L4-33K is relocalized to the periphery of E2A-72K containing viral replication centers. We also show that serine 192 in the tiny RS repeat of the conserved carboxy-terminus of L4-33K, which ismore » critical for the splicing enhancer function of L4-33K, is necessary for the nuclear localization and redistribution of the protein to viral replication sites. Collectively, our results show a good correlation between the activity of L4-33K as a splicing enhancer protein and its localization to the periphery of viral replication centers.« less
Short intronic repeat sequences facilitate circular RNA production
Liang, Dongming
2014-01-01
Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery “backsplices” and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3′ end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. PMID:25281217
Transcriptome-wide targets of alternative splicing by RBM4 and possible role in cancer.
Markus, M Andrea; Yang, Yee Hwa J; Morris, Brian J
2016-04-01
This study determined transcriptome-wide targets of the splicing factor RBM4 using Affymetrix GeneChip(®) Human Exon 1.0 ST Arrays and HeLa cells treated with RBM4-specific siRNA. This revealed 238 transcripts that were targeted for alternative splicing. Cross-linking and immunoprecipitation experiments identified 945 RBM4 targets in mouse HEK293 cells, 39% of which were ascribed to "alternative splicing" by in silico pathway analysis. Mouse embryonic stem cells transfected with Rbm4 siRNA hairpins exhibited reduced colony numbers and size consistent with involvement of RBM4 in cell proliferation. RBM4 cDNA probing of a cancer cDNA array involving 18 different tumor types from 13 different tissues and matching normal tissue found overexpression of RBM4 mRNA (p<0.01) in cervical, breast, lung, colon, ovarian and rectal cancers. Many RBM4 targets we identified have been implicated in these cancers. In conclusion, our findings reveal transcriptome-wide targets of RBM4 and point to potential cancer-related targets and mechanisms that may involve RBM4. Copyright © 2016 Elsevier Inc. All rights reserved.
Spliced synthetic genes as internal controls in RNA sequencing experiments.
Hardwick, Simon A; Chen, Wendy Y; Wong, Ted; Deveson, Ira W; Blackburn, James; Andersen, Stacey B; Nielsen, Lars K; Mattick, John S; Mercer, Tim R
2016-09-01
RNA sequencing (RNA-seq) can be used to assemble spliced isoforms, quantify expressed genes and provide a global profile of the transcriptome. However, the size and diversity of the transcriptome, the wide dynamic range in gene expression and inherent technical biases confound RNA-seq analysis. We have developed a set of spike-in RNA standards, termed 'sequins' (sequencing spike-ins), that represent full-length spliced mRNA isoforms. Sequins have an entirely artificial sequence with no homology to natural reference genomes, but they align to gene loci encoded on an artificial in silico chromosome. The combination of multiple sequins across a range of concentrations emulates alternative splicing and differential gene expression, and it provides scaling factors for normalization between samples. We demonstrate the use of sequins in RNA-seq experiments to measure sample-specific biases and determine the limits of reliable transcript assembly and quantification in accompanying human RNA samples. In addition, we have designed a complementary set of sequins that represent fusion genes arising from rearrangements of the in silico chromosome to aid in cancer diagnosis. RNA sequins provide a qualitative and quantitative reference with which to navigate the complexity of the human transcriptome.
Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9.
Huang, Hua; Kapeli, Katannya; Jin, Wenhao; Wong, Yuk Peng; Arumugam, Thiruma Valavan; Koh, Joanne Huifen; Srimasorn, Sumitra; Mallilankaraman, Karthik; Chua, John Jia En; Yeo, Gene W; Soong, Tuck Wah
2018-05-04
Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.
The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation.
Buratti, Emanuele; Baralle, Francisco Ernesto
2010-01-01
Heterogeneous ribonucleoproteins (hnRNPs) are multifunctional RNA-binding proteins (RBPs) involved in many cellular processes. They participate in most gene expression pathways, from DNA replication and repair to mRNA translation. Among this class of proteins, TDP-43 (and more recently FUS/TLS) have received considerable attention due to their involvement in several neurodegenerative diseases. This finding has prompted many research groups to focus on the gene expression pathways that are regulated by these proteins. The results have uncovered a considerable complexity of TDP-43 and FUS/TLS functions due to the many independent mechanisms by which they may act to influence various cellular processes (such as DNA transcription, pre-mRNA splicing, mRNA export/import). The aim of this chapter will be to review especially some of the novel functions that have been uncovered, such as role in miRNA synthesis, regulation of transcript levels, and potential autoregulatory mechanisms in order to provide the basis for further investigations.
Leong, Ivone U.S.; Dryland, Philippa A.; Prosser, Debra O.; Lai, Stella W.-S.; Graham, Mandy; Stiles, Martin; Crawford, Jackie; Skinner, Jonathan R.; Love, Donald R.
2017-01-01
Background Approximately 75% of clinically definite long QT syndrome (LQTS) cases are caused by mutations in the KCNQ1, KCNH2 and SCN5A genes. Of these mutations, a small proportion (3.2-9.2%) are predicted to affect splicing. These mutations present a particular challenge in ascribing pathogenicity. Methods Here we report an analysis of the transcriptional consequences of two mutations, one in the KCNQ1 gene (c.781_782delinsTC) and one in the SCN5A gene (c.2437-5C>A), which are predicted to affect splicing. We isolated RNA from lymphocytes and used a directed PCR amplification strategy of cDNA to show mis-spliced transcripts in mutation-positive patients. Results The loss of an exon in each mis-spliced transcript had no deduced effect on the translational reading frame. The clinical phenotype corresponded closely with genotypic status in family members carrying the KCNQ1 splice variant, but not in family members with the SCN5A splice variant. These results are put in the context of a literature review, where only 20% of all splice variants reported in the KCNQ1, KCNH2 and SCN5A gene entries in the HGMDPro 2015.4 database have been evaluated using transcriptional assays. Conclusions Prediction programmes play a strong role in most diagnostic laboratories in classifying variants located at splice sites; however, transcriptional analysis should be considered critical to confirm mis-splicing. Critically, this study shows that genuine mis- splicing may not always imply clinical significance, and genotype/phenotype cosegregation remains important even when mis-splicing is confirmed. PMID:28725320
Integrative Analysis of Many RNA-Seq Datasets to Study Alternative Splicing
Li, Wenyuan; Dai, Chao; Kang, Shuli; Zhou, Xianghong Jasmine
2014-01-01
Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale. PMID:24583115
Huntley, Jim; Wesley, Cedric S.; Singh, Ravinder
2014-01-01
The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during embryogenesis. A loss of function mutation, heph03429, results in varied defects in embryonic developmental processes, leading to embryonic lethality. However, the suite of molecular functions that are disrupted in the mutant remains unknown. We have used an unbiased high throughput sequencing approach to identify transcripts that are misregulated in this mutant. Misregulated transcripts show evidence of significantly altered patterns of splicing (exon skipping, 5′ and 3′ splice site switching), alternative 5′ ends, and mRNA level changes (up and down regulation). These findings are independently supported by reverse-transcription-polymerase chain reaction (RT-PCR) analysis and in situ hybridization. We show that a group of genes, such as Zerknüllt, z600 and screw are among the most upregulated in the mutant and have been functionally linked to dorso-ventral patterning and/or dorsal closure processes. Thus, loss of dmPTB function results in specific misregulated transcripts, including those that provide the missing link between the loss of dmPTB function and observed developmental defects in embryogenesis. This study provides the first comprehensive repertoire of genes affected in vivo in the heph mutant in Drosophila and offers insight into the role of dmPTB during embryonic development. PMID:25014769
Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations
Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul
2014-01-01
Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191
A mRNA and cognate microRNAs localize in the nucleolus.
Reyes-Gutierrez, Pablo; Ritland Politz, Joan C; Pederson, Thoru
2014-01-01
We previously discovered that a set of 5 microRNAs are concentrated in the nucleolus of rat myoblasts. We now report that several mRNAs are also localized in the nucleoli of these cells as determined by microarray analysis of RNA from purified nucleoli. Among the most abundant of these nucleolus-localized mRNAs is that encoding insulin-like growth factor 2 (IGF2), a regulator of myoblast proliferation and differentiation. The presence of IGF2 mRNA in nucleoli was confirmed by fluorescence in situ hybridization, and RT-PCR experiments demonstrated that these nucleolar transcripts are spliced, thus arriving from the nucleoplasm. Bioinformatics analysis predicted canonically structured, highly thermodynamically stable interactions between IGF2 mRNA and all 5 of the nucleolus-localized microRNAs. These results raise the possibility that the nucleolus is a staging site for setting up particular mRNA-microRNA interactions prior to export to the cytoplasm.
Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan
2018-01-01
Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.
Two Novel Variants Affecting CDKL5 Transcript Associated with Epileptic Encephalopathy.
Neupauerová, Jana; Štěrbová, Katalin; Vlčková, Markéta; Sebroňová, Věra; Maříková, Tat'ána; Krůtová, Marcela; David, Staněk; Kršek, Pavel; Žaliová, Markéta; Seeman, Pavel; Laššuthová, Petra
2017-10-01
Variants in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been reported as being etiologically associated with early infantile epileptic encephalopathy type 2 (EIEE2). We report on two patients, a boy and a girl, with EIEE2 that present with early onset epilepsy, hypotonia, severe intellectual disability, and poor eye contact. Massively parallel sequencing (MPS) of a custom-designed gene panel for epilepsy and epileptic encephalopathy containing 112 epilepsy-related genes was performed. Sanger sequencing was used to confirm the novel variants. For confirmation of the functional consequence of an intronic CDKL5 variant in patient 2, an RNA study was done. DNA sequencing revealed de novo variants in CDKL5, a c.2578C>T (p. Gln860*) present in a hemizygous state in a 3-year-old boy, and a potential splice site variant c.463+5G>A in heterozygous state in a 5-year-old girl. Multiple in silico splicing algorithms predicted a highly reduced splice site score for c.463+5G>A. A subsequent mRNA study confirmed an aberrant shorter transcript lacking exon 7. Our data confirmed that variants in the CDKL5 are associated with EIEE2. There is credible evidence that the novel identified variants are pathogenic and, therefore, are likely the cause of the disease in the presented patients. In one of the patients a stop codon variant is predicted to produce a truncated protein, and in the other patient an intronic variant results in aberrant splicing.
Kanehiro, Yuichi; Todo, Kagefumi; Negishi, Misaki; Fukuoka, Junji; Gan, Wenjian; Hikasa, Takuya; Kaga, Yoshiaki; Takemoto, Masayuki; Magari, Masaki; Li, Xialu; Manley, James L.; Ohmori, Hitoshi; Kanayama, Naoki
2012-01-01
Somatic hypermutation (SHM) of Ig variable region (IgV) genes requires both IgV transcription and the enzyme activation-induced cytidine deaminase (AID). Identification of a cofactor responsible for the fact that IgV genes are much more sensitive to AID-induced mutagenesis than other genes is a key question in immunology. Here, we describe an essential role for a splice isoform of the prototypical serine/arginine-rich (SR) protein SRSF1, termed SRSF1-3, in AID-induced SHM in a DT40 chicken B-cell line. Unexpectedly, we found that SHM does not occur in a DT40 line lacking SRSF1-3 (DT40-ASF), although it is readily detectable in parental DT40 cells. Strikingly, overexpression of AID in DT40-ASF cells led to a large increase in nonspecific (off-target) mutations. In contrast, introduction of SRSF1-3, but not SRSF1, into these cells specifically restored SHM without increasing off-target mutations. Furthermore, we found that SRSF1-3 binds preferentially to the IgV gene and inhibits processing of the Ig transcript, providing a mechanism by which SRSF1-3 makes the IgV gene available for AID-dependent SHM. SRSF1 not only acts as an essential splicing factor but also regulates diverse aspects of mRNA metabolism and maintains genome stability. Our findings, thus, define an unexpected and important role for SRSF1, particularly for its splice variant, in enabling AID to function specifically on its natural substrate during SHM. PMID:22232677
Kanehiro, Yuichi; Todo, Kagefumi; Negishi, Misaki; Fukuoka, Junji; Gan, Wenjian; Hikasa, Takuya; Kaga, Yoshiaki; Takemoto, Masayuki; Magari, Masaki; Li, Xialu; Manley, James L; Ohmori, Hitoshi; Kanayama, Naoki
2012-01-24
Somatic hypermutation (SHM) of Ig variable region (IgV) genes requires both IgV transcription and the enzyme activation-induced cytidine deaminase (AID). Identification of a cofactor responsible for the fact that IgV genes are much more sensitive to AID-induced mutagenesis than other genes is a key question in immunology. Here, we describe an essential role for a splice isoform of the prototypical serine/arginine-rich (SR) protein SRSF1, termed SRSF1-3, in AID-induced SHM in a DT40 chicken B-cell line. Unexpectedly, we found that SHM does not occur in a DT40 line lacking SRSF1-3 (DT40-ASF), although it is readily detectable in parental DT40 cells. Strikingly, overexpression of AID in DT40-ASF cells led to a large increase in nonspecific (off-target) mutations. In contrast, introduction of SRSF1-3, but not SRSF1, into these cells specifically restored SHM without increasing off-target mutations. Furthermore, we found that SRSF1-3 binds preferentially to the IgV gene and inhibits processing of the Ig transcript, providing a mechanism by which SRSF1-3 makes the IgV gene available for AID-dependent SHM. SRSF1 not only acts as an essential splicing factor but also regulates diverse aspects of mRNA metabolism and maintains genome stability. Our findings, thus, define an unexpected and important role for SRSF1, particularly for its splice variant, in enabling AID to function specifically on its natural substrate during SHM.
Wang, Jiajing; Hmadcha, Abdelkrim; Zakarian, Vaagn; Song, Fei; Loeb, Jeffrey A
2015-09-01
The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maquat, Lynne
2002-12-01
The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryoticmore » nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?« less
Gene organization and alternative splicing of human prohormone convertase PC8.
Goodge, K A; Thomas, R J; Martin, T J; Gillespie, M T
1998-01-01
The mammalian Ca2+-dependent serine protease prohormone convertase PC8 is expressed ubiquitously, being transcribed as 3.5, 4.3 and 6.0 kb mRNA isoforms in various tissues. To determine the origin of these various mRNA isoforms we report the characterization of the human PC8 gene, which has been previously localized to chromosome 11q23-24. Consisting of 16 exons, the human PC8 gene spans approx. 27 kb. A comparison of the position of intron-exon junctions of the human PC8 gene with the gene structures of previously reported prohormone convertase genes demonstrated a divergence of the human PC8 from the highly conserved nature of the gene organization of this enzyme family. The nucleotide sequence of the 5'-flanking region of the human PC8 is reported and possesses putative promoter elements characteristic of a GC-rich promoter. Further supporting the potential role of a GC-rich promoter element, multiple transcriptional initiation sites within a 200 bp region were demonstrated. We propose that the various mRNA isoforms of PC8 result from the inclusion of intronic sequences within transcripts. PMID:9820811
Alternative-splicing-mediated gene expression
NASA Astrophysics Data System (ADS)
Wang, Qianliang; Zhou, Tianshou
2014-01-01
Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.
Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome
Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.
2014-01-01
Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197
Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.
Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P
2014-07-22
Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.
Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1
Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.
2014-01-01
Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783
Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming
2018-04-15
Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral receptors and coreceptors on the cell surface but also on the intracellular host factors that support B19V replication. Our present study shows that B19V uses a host factor, RNA binding motif protein 38 (RBM38), for the processing of its pre-mRNA during virus replication. Specifically, RBM38 interacts with the intronic splicing enhancer 2 (ISE2) element of B19V pre-mRNA and promotes 11-kDa protein expression, thereby regulating the 11-kDa protein-mediated augmentation of B19V replication. The identification of this novel host-pathogen interaction will provide mechanistic insights into B19V replication and aid in finding new targets for anti-B19V therapeutics. Copyright © 2018 American Society for Microbiology.
Expression of SMARCB1 (INI1) mutations in familial schwannomatosis
Smith, Miriam J.; Walker, James A.; Shen, Yiping; Stemmer-Rachamimov, Anat; Gusella, James F.; Plotkin, Scott R.
2012-01-01
Genetic changes in the SMARCB1 tumor suppressor gene have recently been reported in tumors and blood from families with schwannomatosis. Exon scanning of all nine SMARCB1 exons in genomic DNA from our cohort of families meeting the criteria for ‘definite’ or ‘presumptive’ schwannomatosis previously revealed constitutional alterations in 13 of 19 families (68%). Screening of four new familial schwannomatosis probands identified one additional constitutional alteration. We confirmed the presence of mRNA transcripts for two missense alterations, four mutations of conserved splice motifs and two additional mutations, in less conserved sequences, which also affect splicing. Furthermore, we found that transcripts for a rare 3′-untranslated region (c.*82C > T) alteration shared by four unrelated families did not produce splice variants but did show unequal allelic expression, suggesting that the alteration is either causative itself or linked to an unidentified causative mutation. Overexpression studies in cells lacking SMARCB1 suggest that mutant SMARCB1 proteins, like wild-type SMARCB1 protein, retain the ability to suppress cyclin D1 activity. These data, together with the expression of SMARCB1 protein in a proportion of cells from schwannomatosis-related schwannomas, suggest that these tumors develop through a mechanism that is distinct from that of rhabdoid tumors in which SMARCB1 protein is completely absent in tumor cells. PMID:22949514
Ahn, Jeong H.; Rechsteiner, Andreas; Strome, Susan; Kelly, William G.
2016-01-01
The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3’ end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139
Nakata, Daisuke; Nakao, Shoichi; Nakayama, Kazuhide; Araki, Shinsuke; Nakayama, Yusuke; Aparicio, Samuel; Hara, Takahito; Nakanishi, Atsushi
2017-01-29
Mounting evidence suggests that constitutively active androgen receptor (AR) splice variants, typified by AR-V7, are associated with poor prognosis and resistance to androgen deprivation therapy in prostate cancer patients. However, mechanisms governing the generation of AR splice variants are not fully understood. In this study, we aimed to investigate the dynamics of AR splice variant generation using the JDCaP prostate cancer model that expresses AR splice variants under androgen depletion. Microarray analysis of JDCaP xenografts before and after expression of AR splice variants suggested that dysregulation of RNA processing pathways is likely involved in AR splice variant generation. To explore factors contributing to generation of AR-V7 mRNA, we conducted a focused RNA interference screen in AR-V7-positive JDCaP-hr cells using an shRNA library targeting spliceosome-related genes. This screen identified DDX39B as a regulator of AR-V7 mRNA expression. Simultaneous knockdown of DDX39B and its paralog DDX39A drastically and selectively downregulated AR-V7 mRNA expression in multiple AR-V7-positive prostate cancer cell lines. DDX39B was upregulated in relapsed JDCaP xenografts expressing AR splice variants, suggesting its role in expression of AR splice variants. Taken together, our findings offer insight into the mechanisms of AR splice variant generation and identify DDX39 as a potential drug target for the treatment of AR splice variant-positive prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Antisense Oligonucleotides for the Treatment of Spinal Muscular Atrophy
Porensky, Paul N.
2013-01-01
Abstract Spinal muscular atrophy (SMA) is an autosomal recessive disease affecting ∼1 in 10,000 live births. The most striking component is the loss of α-motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment paradigm other than supportive care, though the past 15 years has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease-modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials, including the application of antisense oligonucleotide (ASO) therapy for the correction of aberrant RNA splicing characteristic of SMA. Survival motor neuron (SMN) is a ubiquitously expressed 38-kD protein. Humans have two genes that produce SMN, SMN1 and SMN2, the former of which is deleted or nonfunctional in the majority of patients with SMA. These two genes are nearly identical with one exception, a C to T transition (C6T) within exon 7 of SMN2. C6T disrupts a modulator of splicing, leading to the exclusion of exon 7 from ∼90% of the mRNA transcript. The resultant truncated Δ7SMN protein does not oligomerize efficiently and is rapidly degraded. SMA can therefore be considered a disease of too little SMN protein. A number of cis-acting splice modifiers have been identified in the region of exon 7, the steric block of which enhances the retention of the exon and a resultant full-length mRNA sequence. ASOs targeted to these splice motifs have shown impressive phenotype rescue in multiple SMA mouse models. PMID:23544870
Detection of novel NF1 mutations and rapid mutation prescreening with Pyrosequencing.
Brinckmann, Anja; Mischung, Claudia; Bässmann, Ingelore; Kühnisch, Jirko; Schuelke, Markus; Tinschert, Sigrid; Nürnberg, Peter
2007-12-01
Neurofibromatosis type 1 (NF1) is caused by mutations in the neurofibromin (NF1) gene. Mutation analysis of NF1 is complicated by its large size, the lack of mutation hotspots, pseudogenes and frequent de novo mutations. Additionally, the search for NF1 mutations on the mRNA level is often hampered by nonsense-mediated mRNA decay (NMD) of the mutant allele. In this study we searched for mutations in a cohort of 38 patients and investigated the relationship between mutation type and allele-specific transcription from the wild-type versus mutant alleles. Quantification of relative mRNA transcript numbers was done by Pyrosequencing, a novel real-time sequencing method whose signals can be quantified very accurately. We identified 21 novel mutations comprising various mutation types. Pyrosequencing detected a definite relationship between allelic NF1 transcript imbalance due to NMD and mutation type in 24 of 29 patients who all carried frame-shift or nonsense mutations. NMD was absent in 5 patients with missense and silent mutations, as well as in 4 patients with splice-site mutations that did not disrupt the reading frame. Pyrosequencing was capable of detecting NMD even when the effects were only moderate. Diagnostic laboratories could thus exploit this effect for rapid prescreening for NF1 mutations as more than 60% of the mutations in this gene disrupt the reading frame and are prone to NMD.
The influence of Argonaute proteins on alternative RNA splicing.
Batsché, Eric; Ameyar-Zazoua, Maya
2015-01-01
Alternative splicing of precursor RNAs is an important process in multicellular species because it impacts several aspects of gene expression: from the increase of protein repertoire to the level of expression. A large body of evidences demonstrates that factors regulating chromatin and transcription impact the outcomes of alternative splicing. Argonaute (AGO) proteins were known to play key roles in the regulation of gene expression at the post-transcriptional level. More recently, their role in the nucleus of human somatic cells has emerged. Here, we will discuss some of the nuclear functions of AGO, with special emphasis on alternative splicing. The AGO-mediated modulation of alternative splicing is based on several properties of these proteins: their binding to transcripts on chromatin and their interactions with many proteins, especially histone tail-modifying enzymes, HP1γ and splicing factors. AGO proteins may favor a decrease in the RNA-polymerase II kinetics at actively transcribed genes leading to the modulation of alternative splicing decisions. They could also influence alternative splicing through their interaction with core components of the splicing machinery and several splicing factors. We will discuss the modes of AGO recruitment on chromatin at active genes. We suggest that long intragenic antisense transcripts (lincRNA) might be an important feature of genes containing splicing events regulated by AGO. © 2014 John Wiley & Sons, Ltd.
Splicing and transcription touch base: co-transcriptional spliceosome assembly and function
Herzel, Lydia; Ottoz, Diana S. M.; Alpert, Tara; Neugebauer, Karla M.
2018-01-01
Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing. PMID:28792005
Hamid, Fursham M.; Makeyev, Eugene V.
2014-01-01
Alternative splicing (AS) provides a potent mechanism for increasing protein diversity and modulating gene expression levels. How alternate splice sites are selected by the splicing machinery and how AS is integrated into gene regulation networks remain important questions of eukaryotic biology. Here we report that polypyrimidine tract-binding protein 1 (Ptbp1/PTB/hnRNP-I) controls alternate 5′ and 3′ splice site (5′ss and 3′ss) usage in a large set of mammalian transcripts. A top scoring event identified by our analysis was the choice between competing upstream and downstream 5′ss (u5′ss and d5′ss) in the exon 18 of the Hps1 gene. Hps1 is essential for proper biogenesis of lysosome-related organelles and loss of its function leads to a disease called type 1 Hermansky-Pudlak Syndrome (HPS). We show that Ptbp1 promotes preferential utilization of the u5′ss giving rise to stable mRNAs encoding a full-length Hps1 protein, whereas bias towards d5′ss triggered by Ptbp1 down-regulation generates transcripts susceptible to nonsense-mediated decay (NMD). We further demonstrate that Ptbp1 binds to pyrimidine-rich sequences between the u5′ss and d5′ss and activates the former site rather than repressing the latter. Consistent with this mechanism, u5′ss is intrinsically weaker than d5′ss, with a similar tendency observed for other genes with Ptbp1-induced u5′ss bias. Interestingly, the brain-enriched Ptbp1 paralog Ptbp2/nPTB/brPTB stimulated the u5′ss utilization but with a considerably lower efficiency than Ptbp1. This may account for the tight correlation between Hps1 with Ptbp1 expression levels observed across mammalian tissues. More generally, these data expand our understanding of AS regulation and uncover a post-transcriptional strategy ensuring co-expression of a subordinate gene with its master regulator through an AS-NMD tracking mechanism. PMID:25375251
Hypoxia regulates alternative splicing of HIF and non-HIF target genes.
Sena, Johnny A; Wang, Liyi; Heasley, Lynn E; Hu, Cheng-Jun
2014-09-01
Hypoxia is a common characteristic of many solid tumors. The hypoxic microenvironment stabilizes hypoxia-inducible transcription factor 1α (HIF1α) and 2α (HIF2α/EPAS1) to activate gene transcription, which promotes tumor cell survival. The majority of human genes are alternatively spliced, producing RNA isoforms that code for functionally distinct proteins. Thus, an effective hypoxia response requires increased HIF target gene expression as well as proper RNA splicing of these HIF-dependent transcripts. However, it is unclear if and how hypoxia regulates RNA splicing of HIF targets. This study determined the effects of hypoxia on alternative splicing (AS) of HIF and non-HIF target genes in hepatocellular carcinoma cells and characterized the role of HIF in regulating AS of HIF-induced genes. The results indicate that hypoxia generally promotes exon inclusion for hypoxia-induced, but reduces exon inclusion for hypoxia-reduced genes. Mechanistically, HIF activity, but not hypoxia per se is found to be necessary and sufficient to increase exon inclusion of several HIF targets, including pyruvate dehydrogenase kinase 1 (PDK1). PDK1 splicing reporters confirm that transcriptional activation by HIF is sufficient to increase exon inclusion of PDK1 splicing reporter. In contrast, transcriptional activation of a PDK1 minigene by other transcription factors in the absence of endogenous HIF target gene activation fails to alter PDK1 RNA splicing. This study demonstrates a novel function of HIF in regulating RNA splicing of HIF target genes. ©2014 American Association for Cancer Research.
Bisphenol A downregulates CYP19 transcription in JEG-3 cells.
Huang, Hui; Leung, Lai K
2009-09-28
Bisphenol A is an industrial contaminant and is considered to be an endocrine disruptor; its estrogenic property has been reported in many studies. Because of its ubiquitous existence in our environment, bisphenol A has drawn much discussion on its safety issues. Estrogen is important in the maintenance of human pregnancy, and the placenta is the major site of synthesis during this period of time. Aromatase or CYP19 catalyses the conversion of estrogen from its precursor, and is highly expressed in placental cells. In the present study, we examined the ability of the toxicant in suppressing the transcription of CYP19 in JEG-3 cells. Cells treated with bisphenol A displayed a reduced aromatase activity. Real-time PCR analysis indicated that 5muM of the compound significantly reduced the mRNA expression in these cells. As the transcriptional activity of CYP19 gene is controlled by the proximal promoter region of exon I.1 in placental cells, the promoter activity of this gene fragment and exon-I.1-spliced mRNA abundance were also evaluated. Both results indicated that bisphenol A repressed the transcriptional control of promoter I.1. The present study showed that bisphenol A potentially reduced estrogen synthesis by downregulating CYP of placental cells. This information could be useful for evaluating the exposure limit of bisphenol A.
Alternative splicing regulated by butyrate in bovine epithelial cells.
Wu, Sitao; Li, Congjun; Huang, Wen; Li, Weizhong; Li, Robert W
2012-01-01
As a signaling molecule and an inhibitor of histone deacetylases (HDACs), butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT) and control (CT) groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG) while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001) at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor) and Exon#11 (Acceptor) in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC inhibitors.
Khoo, Bernard; Roca, Xavier; Chew, Shern L; Krainer, Adrian R
2007-01-17
Apolipoprotein B (APOB) is an integral part of the LDL, VLDL, IDL, Lp(a) and chylomicron lipoprotein particles. The APOB pre-mRNA consists of 29 constitutively-spliced exons. APOB exists as two natural isoforms: the full-length APOB100 isoform, assembled into LDL, VLDL, IDL and Lp(a) and secreted by the liver in humans; and the C-terminally truncated APOB48, assembled into chylomicrons and secreted by the intestine in humans. Down-regulation of APOB100 is a potential therapy to lower circulating LDL and cholesterol levels. We investigated the ability of 2'O-methyl RNA antisense oligonucleotides (ASOs) to induce the skipping of exon 27 in endogenous APOB mRNA in HepG2 cells. These ASOs are directed towards the 5' and 3' splice-sites of exon 27, the branch-point sequence (BPS) of intron 26-27 and several predicted exonic splicing enhancers within exon 27. ASOs targeting either the 5' or 3' splice-site, in combination with the BPS, are the most effective. The splicing of other alternatively spliced genes are not influenced by these ASOs, suggesting that the effects seen are not due to non-specific changes in alternative splicing. The skip 27 mRNA is translated into a truncated isoform, APOB87SKIP27. The induction of APOB87SKIP27 expression in vivo should lead to decreased LDL and cholesterol levels, by analogy to patients with hypobetalipoproteinemia. As intestinal APOB mRNA editing and APOB48 expression rely on sequences within exon 26, exon 27 skipping should not affect APOB48 expression unlike other methods of down-regulating APOB100 expression which also down-regulate APOB48.
SMITten by the Speed of Splicing.
Johnson, Tracy L; Ares, Manuel
2016-04-07
Splicing occurs co-transcriptionally, but relative rates of splicing and transcription that might reveal mechanisms of their coordinated control have remained mysterious. Now, Carrillo Oesterreich et al. show that the fastest introns are gone nearly as soon as the 3' splice site is transcribed and that introns have distinct splicing kinetics with respect to polymerase progression along the gene. Copyright © 2016 Elsevier Inc. All rights reserved.
Arginine Methylation: The Coming of Age.
Blanc, Roméo S; Richard, Stéphane
2017-01-05
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.
C3G dynamically associates with nuclear speckles and regulates mRNA splicing.
Shakyawar, Dhruv Kumar; Muralikrishna, Bhattiprolu; Radha, Vegesna
2018-05-01
C3G (Crk SH3 domain binding guanine nucleotide releasing factor) (Rap guanine nucleotide exchange factor 1), essential for mammalian embryonic development, is ubiquitously expressed and undergoes regulated nucleocytoplasmic exchange. Here we show that C3G localizes to SC35-positive nuclear speckles and regulates splicing activity. Reversible association of C3G with speckles was seen on inhibition of transcription and splicing. C3G shows partial colocalization with SC35 and is recruited to a chromatin and RNase-sensitive fraction of speckles. Its presence in speckles is dependent on intact cellular actin cytoskeleton and is lost on expression of the kinase Clk1. Rap1, a substrate of C3G, is also present in nuclear speckles, and inactivation of Rap signaling by expression of GFP-Rap1GAP alters speckle morphology and number. Enhanced association of C3G with speckles is seen on glycogen synthase kinase 3 beta inhibition or differentiation of C2C12 cells to myotubes. CRISPR/Cas9-mediated knockdown of C3G resulted in altered splicing activity of an artificial gene as well as endogenous CD44. C3G knockout clones of C2C12 as well as MDA-MB-231 cells showed reduced protein levels of several splicing factors compared with control cells. Our results identify C3G and Rap1 as novel components of nuclear speckles and a role for C3G in regulating cellular RNA splicing activity.
Zhenzhen, Zhou; De'an, Tian; Limin, Xia; Wei, Yan; Min, Luo
2012-01-01
This study aimed to detect the expression of newly discovered zinc finger transcriptional factor KLF6 and its splice variant KLF6 SV2 in primary hepatocarcinoma (PHC) tissues and hepatoma cell strains, and to evaluate their clinicopathologic relationship with PHC. Wild-type KLF6 and KLF6 SV2 mRNA expression was determined by RTPCR in 27 cases of PHC tissues and cell strains of HepG2, SMMC7721 and LO2. Western blotting and immunohistochemical staining were adopted to detect KLF6 protein expression. Positive area ratio of wild-type KLF6 protein expression and its relationship with clinicopathological parameters of PHC was analyzed. Wild-type KLF6 expression in PHC tissues was lower than that in paracancerous tissues. In contrast, KLF6 SV2 mRNA expression was higher in PHC tissues and hepatoma cell strains (p<0.05). Positive area ratio of wild-type KLF6 protein expression was positively correlated with cellular differentiation degree of PHC (p<0.01), but negatively correlated not only with liver cirrhosis, tumor size and extrahepatic metastases (p<0.01), but also with portal vein thrombus and the number of lymph nodes with metastasis (p<0.05). Wild-type KLF6 deletion and inactivation was involved in the growth, cell differentiation and other physiological processes of PHC. The upregulation of KLF6 splice variant might counterbalance the wildtype KLF6 and contribute to the occurrence and development of PHC.
Zachar, Z.; Chou, T. B.; Kramer, J.; Mims, I. P.; Bingham, P. M.
1994-01-01
The Drosophila suppressor-of-white-apricot [su(w(a))] protein regulates/modulates at least two somatic RNA processing events. It is a potent regulator of its own expression. We report here new studies of this autoregulatory circuit. Among other things, our studies show the following. First, new evidence that su(w(a)) expression is autoregulated at the level of pre-mRNA splicing is reported. su(w(a)) protein represses accumulation of the fully spliced su(w(a)) mRNA encoding it and promotes accumulation of high levels of incompletely spliced su(w(a)) pre-mRNA. Second, the fully spliced su(w(a)) mRNA is sufficient for all known su(w(a)) genetic functions indicating that it encodes the sole su(w(a)) protein. Third, the incompletely spliced su(w(a)) pre-mRNAs resulting from autoregulation are not translated (probably as a result of nuclear retention) and apparently represent nonfunctional by-products. Fourth, the special circumstances of su(w(a)) expression during oogenesis allows maternal deposition exclusively of fully spliced su(w(a)) mRNA. Fifth, su(w(a)) protein immunolocalizes to nuclei consistent with its being a direct regulator of pre-mRNA processing. We discuss the implications of our results for mechanisms of splicing regulation and for developmental control of su(w(a)) expression. PMID:8056305
de la Hoya, Miguel; Soukarieh, Omar; López-Perolio, Irene; Vega, Ana; Walker, Logan C.; van Ierland, Yvette; Baralle, Diana; Santamariña, Marta; Lattimore, Vanessa; Wijnen, Juul; Whiley, Philip; Blanco, Ana; Raponi, Michela; Hauke, Jan; Wappenschmidt, Barbara; Becker, Alexandra; Hansen, Thomas V. O.; Behar, Raquel; Investigators, KConFaB; Niederacher, Diether; Arnold, Norbert; Dworniczak, Bernd; Steinemann, Doris; Faust, Ulrike; Rubinstein, Wendy; Hulick, Peter J.; Houdayer, Claude; Caputo, Sandrine M.; Castera, Laurent; Pesaran, Tina; Chao, Elizabeth; Brewer, Carole; Southey, Melissa C.; van Asperen, Christi J.; Singer, Christian F.; Sullivan, Jan; Poplawski, Nicola; Mai, Phuong; Peto, Julian; Johnson, Nichola; Burwinkel, Barbara; Surowy, Harald; Bojesen, Stig E.; Flyger, Henrik; Lindblom, Annika; Margolin, Sara; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Galastri, Laura; Olson, Janet E.; Hallberg, Emily; Giles, Graham G.; Milne, Roger L.; Andrulis, Irene L.; Glendon, Gord; Hall, Per; Czene, Kamila; Blows, Fiona; Shah, Mitul; Wang, Qin; Dennis, Joe; Michailidou, Kyriaki; McGuffog, Lesley; Bolla, Manjeet K.; Antoniou, Antonis C.; Easton, Douglas F.; Couch, Fergus J.; Tavtigian, Sean; Vreeswijk, Maaike P.; Parsons, Michael; Meeks, Huong D.; Martins, Alexandra; Goldgar, David E.; Spurdle, Amanda B.
2016-01-01
A recent analysis using family history weighting and co-observation classification modeling indicated that BRCA1 c.594-2A > C (IVS9-2A > C), previously described to cause exon 10 skipping (a truncating alteration), displays characteristics inconsistent with those of a high risk pathogenic BRCA1 variant. We used large-scale genetic and clinical resources from the ENIGMA, CIMBA and BCAC consortia to assess pathogenicity of c.594-2A > C. The combined odds for causality considering case-control, segregation and breast tumor pathology information was 3.23 × 10−8. Our data indicate that c.594-2A > C is always in cis with c.641A > G. The spliceogenic effect of c.[594-2A > C;641A > G] was characterized using RNA analysis of human samples and splicing minigenes. As expected, c.[594-2A > C; 641A > G] caused exon 10 skipping, albeit not due to c.594-2A > C impairing the acceptor site but rather by c.641A > G modifying exon 10 splicing regulatory element(s). Multiple blood-based RNA assays indicated that the variant allele did not produce detectable levels of full-length transcripts, with a per allele BRCA1 expression profile composed of ≈70–80% truncating transcripts, and ≈20–30% of in-frame Δ9,10 transcripts predicted to encode a BRCA1 protein with tumor suppression function. We confirm that BRCA1c.[594-2A > C;641A > G] should not be considered a high-risk pathogenic variant. Importantly, results from our detailed mRNA analysis suggest that BRCA-associated cancer risk is likely not markedly increased for individuals who carry a truncating variant in BRCA1 exons 9 or 10, or any other BRCA1 allele that permits 20–30% of tumor suppressor function. More generally, our findings highlight the importance of assessing naturally occurring alternative splicing for clinical evaluation of variants in disease-causing genes. PMID:27008870
Rodrigues, Raquel; Grosso, Ana Rita; Moita, Luís
2013-01-01
The immune system relies on the plasticity of its components to produce appropriate responses to frequent environmental challenges. Dendritic cells (DCs) are critical initiators of innate immunity and orchestrate the later and more specific adaptive immunity. The generation of diversity in transcriptional programs is central for effective immune responses. Alternative splicing is widely considered a key generator of transcriptional and proteomic complexity, but its role has been rarely addressed systematically in immune cells. Here we used splicing-sensitive arrays to assess genome-wide gene- and exon-level expression profiles in human DCs in response to a bacterial challenge. We find widespread alternative splicing events and splicing factor transcriptional signatures induced by an E. coli challenge to human DCs. Alternative splicing acts in concert with transcriptional modulation, but these two mechanisms of gene regulation affect primarily distinct functional gene groups. Alternative splicing is likely to have an important role in DC immunobiology because it affects genes known to be involved in DC development, endocytosis, antigen presentation and cell cycle arrest.
Rühl, Christina; Stauffer, Eva; Kahles, André; Wagner, Gabriele; Drechsel, Gabriele; Rätsch, Gunnar; Wachter, Andreas
2012-01-01
Alternative splicing (AS) generates transcript variants by variable exon/intron definition and massively expands transcriptome diversity. Changes in AS patterns have been found to be linked to manifold biological processes, yet fundamental aspects, such as the regulation of AS and its functional implications, largely remain to be addressed. In this work, widespread AS regulation by Arabidopsis thaliana Polypyrimidine tract binding protein homologs (PTBs) was revealed. In total, 452 AS events derived from 307 distinct genes were found to be responsive to the levels of the splicing factors PTB1 and PTB2, which predominantly triggered splicing of regulated introns, inclusion of cassette exons, and usage of upstream 5′ splice sites. By contrast, no major AS regulatory function of the distantly related PTB3 was found. Dependent on their position within the mRNA, PTB-regulated events can both modify the untranslated regions and give rise to alternative protein products. We find that PTB-mediated AS events are connected to diverse biological processes, and the functional implications of selected instances were further elucidated. Specifically, PTB misexpression changes AS of PHYTOCHROME INTERACTING FACTOR6, coinciding with altered rates of abscisic acid–dependent seed germination. Furthermore, AS patterns as well as the expression of key flowering regulators were massively changed in a PTB1/2 level-dependent manner. PMID:23192226
[Analysis of USH2A gene mutation in a Chinese family affected with Usher syndrome].
Li, Pengcheng; Liu, Fei; Zhang, Mingchang; Wang, Qiufen; Liu, Mugen
2015-08-01
To investigate the disease-causing mutation in a Chinese family affected with Usher syndrome type II. All of the 11 members from the family underwent comprehensive ophthalmologic examination and hearing test, and their genomic DNA were isolated from venous leukocytes. PCR and direct sequencing of USH2A gene were performed for the proband. Wild type and mutant type minigene vectors containing exon 42, intron 42 and exon 43 of the USH2A gene were constructed and transfected into Hela cells by lipofectamine reagent. Reverse transcription (RT)-PCR was carried out to verify the splicing of the minigenes. Pedigree analysis and clinical diagnosis indicated that the patients have suffered from autosomal recessive Usher syndrome type II. DNA sequencing has detected a homozygous c.8559-2A>G mutation of the USH2A gene in the proband, which has co-segregated with the disease in the family. The mutation has affected a conserved splice site in intron 42, which has led to inactivation of the splice site. Minigene experiment has confirmed the retaining of intron 42 in mature mRNA. The c.8559-2A>G mutation in the USH2A gene probably underlies the Usher syndrome type II in this family. The splice site mutation has resulted in abnormal splicing of USH2A pre-mRNA.
Spliceosome Profiling Visualizes Operations of a Dynamic RNP at Nucleotide Resolution.
Burke, Jordan E; Longhurst, Adam D; Merkurjev, Daria; Sales-Lee, Jade; Rao, Beiduo; Moresco, James J; Yates, John R; Li, Jingyi Jessica; Madhani, Hiten D
2018-05-03
Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Alternative splicing of SMPD1 coding for acid sphingomyelinase in major depression.
Rhein, Cosima; Reichel, Martin; Kramer, Marcel; Rotter, Andrea; Lenz, Bernd; Mühle, Christiane; Gulbins, Erich; Kornhuber, Johannes
2017-02-01
Major depressive disorder (MDD) is a psychiatric disorder characterized by key symptoms that include depressed mood and a loss of interest and pleasure. A recently developed pathogenic model of MDD involves disturbed neurogenesis in the hippocampus, where the acid sphingomyelinase (ASM)/ceramide system plays an important role and is proposed as a molecular target for antidepressant action. Because alternative splicing of SMPD1 mRNA, coding for ASM, is relevant for the regulation of ASM enzymatic activity, we investigated the frequency of alternatively spliced ASM isoforms in peripheral blood cells of MDD patients versus healthy controls. Because the full-length transcript variant 1 of SMPD1 (termed ASM-1) is the only known form within the splicing pattern that encodes an enzymatically fully active ASM, we determined a fraction of splice isoforms deviating from ASM-1 using PCR amplification and capillary electrophoresis with laser-induced fluorescence analysis. ASM alternative splicing events occurred significantly less frequently in MDD patients compared to healthy subjects. After 5 days of antidepressant treatment, the frequency of alternatively spliced ASM isoforms decreased in those patients who were treated with a functional inhibitor of ASM activity (FIASMA) but remained constant in MDD patients treated with other antidepressant drugs. This effect was more pronounced when healthy male volunteers were treated with the FIASMAs fluoxetine or paroxetine, in contrast to a placebo group. Patients were treated with different antidepressant drugs, depending on individual parameters and disease courses. This study shows that the ASM alternative splicing pattern could be a biological target with diagnostic relevance and could serve as a novel biomarker for MDD. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing
NASA Astrophysics Data System (ADS)
Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun
2016-02-01
RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.
Makeyev, Eugene V; Zhang, Jiangwen; Carrasco, Monica A; Maniatis, Tom
2007-08-03
Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.
Vitamin D and alternative splicing of RNA
Zhou, Rui; Chun, Rene F.; Lisse, Thomas S.; Garcia, Alejandro J.; Xu, Jianzhong; Adams, John S.; Hewison, Martin
2014-01-01
The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. PMID:25447737
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willing, M.; Deschenes, S.
We have identified a G to A substitution in the 5{prime} donor splice site of intron 18 of one COL1A1 allele in two unrelated families with osteogenesis imperfecta (OI) type I. A third OI type I family has a G to A substitution at the identical position in intron 48 of one COL1A1 allele. Both mutations abolish normal splicing and lead to reduced steady-state levels of mRNA from the mutant COL1A1 allele. The intron 18 mutation leads to both exon 18 skipping in the mRNA and to utilization of a single alternative splice site near the 3{prime} end of exonmore » 18. The latter results in deletion of the last 8 nucleotides of exon 18 from the mRNA, a shift in the translational reading-frame, and the creation of a premature termination codon in exon 19. Of the potential alternative 5{prime} splice sites in exon 18 and intron 18, the one utilized has a surrounding nucleotide sequence which most closely resembles that of the natural splice site. Although a G to A mutation was detected at the identical position in intron 48 of one COL1A1 allele in another OI type I family, nine complex alternative splicing patterns were identified by sequence analysis of cDNA clones derived from fibroblast mRNA from this cell strain. All result in partial or complete skipping of exon 48, with in-frame deletions of portions of exons 47 and/or 49. The different patterns of RNA splicing were not explained by their sequence homology with naturally occuring 5{prime} splice sites, but rather by recombination between highly homologous exon sequences, suggesting that we may not have identified the major splicing alternative(s) in this cell strain. Both G to A mutations result in decreased production of type I collagen, the common biochemical correlate of OI type I.« less
Human hnRNP protein A1 gene expression. Structural and functional characterization of the promoter.
Biamonti, G; Bassi, M T; Cartegni, L; Mechta, F; Buvoli, M; Cobianchi, F; Riva, S
1993-03-05
hnRNP protein A1 (34 kDa, pl 9.5) is a prominent member of the family of proteins (hnRNP proteins) that associate with the nascent transcripts of RNA polymerase II and that accompany the hnRNA through the maturation process and the export to the cytoplasm. New evidence suggests an active and specific role for some of these proteins, including protein A1, in splicing and transport. Contrary to the other hnRNP proteins, the intracellular level of protein A1 was reported to change as a function of proliferation state and cell type. In this work we analyse the A1 gene expression in different cells under different growth and differentiation conditions. Proliferation dependent expression was observed in lymphocytes and fibroblasts while purified neurons express high A1 mRNA levels both in the proliferative (before birth) and in the quiescent (after birth) state. Transformed cell lines exhibit very high (proliferation independent) A1 mRNA levels compared to differentiated tissues. A structural and functional characterization of the A1 gene promoter was carried out by means of DNase I footprinting and CAT assays. The observed promoter features can account for both elevated and regulated mRNA transcription. At least 12 control elements are contained in the 734 nucleotides upstream of the transcription start site. Assays with the deleted and/or mutated promoter indicate a co-operation of multiple transcriptional elements, distributed over the entire promoter, in determining the overall activity and the response to proliferative stimuli (serum).
Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J.; Lee, William M.
2013-01-01
Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of these, only three linked single nucleotide polymorphisms (SNPs) located in the shared UGT1A-3′UTR region (rs10929303, rs1042640, rs8330) were associated with acetaminophen glucuronidation activity, with rs8330 consistently showing higher acetaminophen glucuronidation at all the tested concentrations of acetaminophen. Mechanistic studies using luciferase-UGT1A-3′UTR reporters indicated that these SNPs do not alter mRNA stability or translation efficiency. However, there was evidence for allelic imbalance and a gene-dose proportional increase in the amount of exon 5a versus exon 5b containing UGT1A mRNA spliced transcripts in livers with the rs8330 variant allele. Cotransfection studies demonstrated an inhibitory effect of exon 5b containing cDNAs on acetaminophen glucuronidation by UGT1A1 and UGT1A6 cDNAs containing exon 5a. In silico analysis predicted that rs8330 creates an exon splice enhancer site that could favor exon 5a (over exon 5b) utilization during splicing. Finally, the prevalence of rs8330 was significantly lower (P = 0.027, χ2 test) in patients who had acute liver failure from unintentional acetaminophen overdose compared with patients with acute liver failure from other causes or a race- or ethnicity-matched population. Together, these findings suggest that rs8330 is an important determinant of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-induced liver injury. PMID:23408116
Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene
Gastaldo, Elena; Harries, Lorna W.; Rubio-Cabezas, Oscar; Castaño, Luis
2012-01-01
Background The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. Methodology/Principal Findings Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. Conclusions/Significance This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants. PMID:22235272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.
Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regionsmore » (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Finally, taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.« less
Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides
NASA Astrophysics Data System (ADS)
Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard
1996-11-01
In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.
[Alternative splicing regulation: implications in cancer diagnosis and treatment].
Martínez-Montiel, Nancy; Rosas-Murrieta, Nora; Martínez-Contreras, Rebeca
2015-04-08
The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Short intronic repeat sequences facilitate circular RNA production.
Liang, Dongming; Wilusz, Jeremy E
2014-10-15
Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery "backsplices" and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼ 30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3' end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. © 2014 Liang and Wilusz; Published by Cold Spring Harbor Laboratory Press.
Liu, Naiyou; Fair, Jeffrey Haskell; Shiue, Lily; Katzman, Sol; Donohue, John Paul
2017-01-01
Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer. PMID:29021242
Guerriero, Gea; Spadiut, Oliver; Kerschbamer, Christine; Giorno, Filomena; Baric, Sanja; Ezcurra, Inés
2016-01-01
Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus×domestica, was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53–CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.×domestica are discussed. PMID:23048131
Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A
1997-11-01
Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.
Tarallo, Roberta; Giurato, Giorgio; Bruno, Giuseppina; Ravo, Maria; Rizzo, Francesca; Salvati, Annamaria; Ricciardi, Luca; Marchese, Giovanna; Cordella, Angela; Rocco, Teresa; Gigantino, Valerio; Pierri, Biancamaria; Cimmino, Giovanni; Milanesi, Luciano; Ambrosino, Concetta; Nyman, Tuula A; Nassa, Giovanni; Weisz, Alessandro
2017-10-06
The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Is an observed non-co-linear RNA product spliced in trans, in cis or just in vitro?
Yu, Chun-Ying; Liu, Hsiao-Jung; Hung, Li-Yuan; Kuo, Hung-Chih; Chuang, Trees-Juen
2014-01-01
Global transcriptome investigations often result in the detection of an enormous number of transcripts composed of non-co-linear sequence fragments. Such ‘aberrant’ transcript products may arise from post-transcriptional events or genetic rearrangements, or may otherwise be false positives (sequencing/alignment errors or in vitro artifacts). Moreover, post-transcriptionally non-co-linear (‘PtNcl’) transcripts can arise from trans-splicing or back-splicing in cis (to generate so-called ‘circular RNA’). Here, we collected previously-predicted human non-co-linear RNA candidates, and designed a validation procedure integrating in silico filters with multiple experimental validation steps to examine their authenticity. We showed that >50% of the tested candidates were in vitro artifacts, even though some had been previously validated by RT-PCR. After excluding the possibility of genetic rearrangements, we distinguished between trans-spliced and circular RNAs, and confirmed that these two splicing forms can share the same non-co-linear junction. Importantly, the experimentally-confirmed PtNcl RNA events and their corresponding PtNcl splicing types (i.e. trans-splicing, circular RNA, or both sharing the same junction) were all expressed in rhesus macaque, and some were even expressed in mouse. Our study thus describes an essential procedure for confirming PtNcl transcripts, and provides further insight into the evolutionary role of PtNcl RNA events, opening up this important, but understudied, class of post-transcriptional events for comprehensive characterization. PMID:25053845
Emerick, Mark C; Stein, Rebecca; Kunze, Robin; McNulty, Megan M; Regan, Melissa R; Hanck, Dorothy A; Agnew, William S
2006-08-01
We describe the regulated transcriptome of CACNA1G, a human gene for T-type Ca(v)3.1 calcium channels that is subject to extensive alternative RNA splicing. Fifteen sites of transcript variation include 2 alternative 5'-UTR promoter sites, 2 alternative 3'-UTR polyadenylation sites, and 11 sites of alternative splicing within the open reading frame. A survey of 1580 fetal and adult human brain full-length complementary DNAs reveals a family of 30 distinct transcripts, including multiple functional forms that vary in expression with development. Statistical analyses of fetal and adult transcript populations reveal patterns of linkages among intramolecular splice site configurations that change dramatically with development. A shift from nearly independent, biased splicing in fetal transcripts to strongly concerted splicing in adult transcripts suggests progressive activation of multiple "programs" of splicing regulation that reorganize molecular structures in differentiating cells. Patch-clamp studies of nine selected variants help relate splicing regulation to permutations of the gating parameters most likely to modify T-channel physiology in expressing neurons. Gating behavior reflects combinatorial interactions between variable domains so that molecular phenotype depends on ensembles of coselected domains, consistent with the observed emergence of concerted splicing during development. We conclude that the structural gene and networks of splicing regulatory factors define an integrated system for the phenotypic variation of Ca(v)3.1 biophysics during nervous system development. Copyright 2006 Wiley-Liss, Inc.
Tokuhiro, Keizo; Miyagawa, Yasushi; Yamada, Shuichi; Hirose, Mika; Ohta, Hiroshi; Nishimune, Yoshitake; Tanaka, Hiromitsu
2007-03-01
Haspin is a unique protein kinase expressed predominantly in haploid male germ cells. The genomic structure of haspin (Gsg2) has revealed it to be intronless, and the entire transcription unit is in an intron of the integrin alphaE (Itgae) gene. Transcription occurs from a bidirectional promoter that also generates an alternatively spliced integrin alphaE-derived mRNA (Aed). In mice, the testis-specific alternative splicing of Aed is expressed bidirectionally downstream from the Gsg2 transcription initiation site, and a segment consisting of 26 bp transcribes both genomic DNA strands between Gsg2 and the Aed transcription initiation sites. To investigate the mechanisms for this unique gene regulation, we cloned and characterized the Gsg2 promoter region. The 193-bp genomic fragment from the 5' end of the Gsg2 and Aed genes, fused with EGFP and DsRed genes, drove the expression of both proteins in haploid germ cells of transgenic mice. This promoter element contained only a GC-rich sequence, and not the previously reported DNA sequences known to bind various transcription factors--with the exception of E2F1, TCFAP2A1 (AP2), and SP1. Here, we show that the 193-bp DNA sequence is sufficient for the specific, bidirectional, and synchronous expression in germ cells in the testis. We also demonstrate the existence of germ cell nuclear factors specifically bound to the promoter sequence. This activity may be regulated by binding to the promoter sequence with germ cell-specific nuclear complex(es) without regulation via DNA methylation.
CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.
Busi, Florent; Cresteil, Thierry
2005-09-01
The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.
2013-01-01
Background Vasa is a member of the DEAD-box protein family that plays an indispensable role in mammalian spermatogenesis, particularly during meiosis. Bovine vasa homology (Bvh) of Bos taurus has been reported, however, its function in bovine testicular tissue remains obscure. This study aimed to reveal the functions of Bvh and to determine whether Bvh is a candidate gene in the regulation of spermatogenesis in bovine, and to illustrate whether its transcription is regulated by alternative splicing and DNA methylation. Results Here we report the molecular characterization, alternative splicing pattern, expression and promoter methylation status of Bvh. The full-length coding region of Bvh was 2190 bp, which encodes a 729 amino acid (aa) protein containing nine consensus regions of the DEAD box protein family. Bvh is expressed only in the ovary and testis of adult cattle. Two splice variants were identified and termed Bvh-V4 (2112 bp and 703 aa) and Bvh-V45 (2040 bp and 679 aa). In male cattle, full-length Bvh (Bvh-FL), Bvh-V4 and Bvh-V45 are exclusively expressed in the testes in the ratio of 2.2:1.6:1, respectively. Real-time PCR revealed significantly reduced mRNA expression of Bvh-FL, Bvh-V4 and Bvh-V45 in testes of cattle-yak hybrids, with meiotic arrest compared with cattle and yaks with normal spermatogenesis (P < 0.01). The promoter methylation level of Bvh in the testes of cattle-yak hybrids was significantly greater than in cattle and yaks (P < 0.01). Conclusion In the present study, Bvh was isolated and characterized. These data suggest that Bvh functions in bovine spermatogenesis, and that transcription of the gene in testes were regulated by alternative splice and promoter methylation. PMID:23815438
Schizophyllum commune has an extensive and functional alternative splicing repertoire
Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; Wösten, Han A. B.; Abeel, Thomas; Reinders, Marcel J. T.
2016-01-01
Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically. PMID:27659065
Schizophyllum commune has an extensive and functional alternative splicing repertoire
Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; ...
2016-09-23
Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regionsmore » (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Finally, taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.« less
Bonizzoni, Paola; Rizzi, Raffaella; Pesole, Graziano
2005-10-05
Currently available methods to predict splice sites are mainly based on the independent and progressive alignment of transcript data (mostly ESTs) to the genomic sequence. Apart from often being computationally expensive, this approach is vulnerable to several problems--hence the need to develop novel strategies. We propose a method, based on a novel multiple genome-EST alignment algorithm, for the detection of splice sites. To avoid limitations of splice sites prediction (mainly, over-predictions) due to independent single EST alignments to the genomic sequence our approach performs a multiple alignment of transcript data to the genomic sequence based on the combined analysis of all available data. We recast the problem of predicting constitutive and alternative splicing as an optimization problem, where the optimal multiple transcript alignment minimizes the number of exons and hence of splice site observations. We have implemented a splice site predictor based on this algorithm in the software tool ASPIC (Alternative Splicing PredICtion). It is distinguished from other methods based on BLAST-like tools by the incorporation of entirely new ad hoc procedures for accurate and computationally efficient transcript alignment and adopts dynamic programming for the refinement of intron boundaries. ASPIC also provides the minimal set of non-mergeable transcript isoforms compatible with the detected splicing events. The ASPIC web resource is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility. Extensive bench marking shows that ASPIC outperforms other existing methods in the detection of novel splicing isoforms and in the minimization of over-predictions. ASPIC also requires a lower computation time for processing a single gene and an EST cluster. The ASPIC web resource is available at http://aspic.algo.disco.unimib.it/aspic-devel/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.
The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing ofmore » an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.« less
Ryan, Michael C; Zeeberg, Barry R; Caplen, Natasha J; Cleland, James A; Kahn, Ari B; Liu, Hongfang; Weinstein, John N
2008-01-01
Background Over 60% of protein-coding genes in vertebrates express mRNAs that undergo alternative splicing. The resulting collection of transcript isoforms poses significant challenges for contemporary biological assays. For example, RT-PCR validation of gene expression microarray results may be unsuccessful if the two technologies target different splice variants. Effective use of sequence-based technologies requires knowledge of the specific splice variant(s) that are targeted. In addition, the critical roles of alternative splice forms in biological function and in disease suggest that assay results may be more informative if analyzed in the context of the targeted splice variant. Results A number of contemporary technologies are used for analyzing transcripts or proteins. To enable investigation of the impact of splice variation on the interpretation of data derived from those technologies, we have developed SpliceCenter. SpliceCenter is a suite of user-friendly, web-based applications that includes programs for analysis of RT-PCR primer/probe sets, effectors of RNAi, microarrays, and protein-targeting technologies. Both interactive and high-throughput implementations of the tools are provided. The interactive versions of SpliceCenter tools provide visualizations of a gene's alternative transcripts and probe target positions, enabling the user to identify which splice variants are or are not targeted. The high-throughput batch versions accept user query files and provide results in tabular form. When, for example, we used SpliceCenter's batch siRNA-Check to process the Cancer Genome Anatomy Project's large-scale shRNA library, we found that only 59% of the 50,766 shRNAs in the library target all known splice variants of the target gene, 32% target some but not all, and 9% do not target any currently annotated transcript. Conclusion SpliceCenter provides unique, user-friendly applications for assessing the impact of transcript variation on the design and interpretation of RT-PCR, RNAi, gene expression microarrays, antibody-based detection, and mass spectrometry proteomics. The tools are intended for use by bench biologists as well as bioinformaticists. PMID:18638396
Gros-Louis, Francois; Kriz, Jasna; Kabashi, Edor; McDearmid, Jonathan; Millecamps, Stéphanie; Urushitani, Makoto; Lin, Li; Dion, Patrick; Zhu, Qinzhang; Drapeau, Pierre; Julien, Jean-Pierre; Rouleau, Guy A
2008-09-01
Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs of neurodegeneration compatible with axonal transport deficiency. In contrast, zAls2 knock-down zebrafish had severe developmental abnormalities, swimming deficits and motor neuron perturbation. We identified, by RT-PCR, northern and western blotting novel Als2 transcripts in mouse central nervous system. These Als2 transcripts were present in Als2 null mice as well as in wild-type littermates and some rescued the zebrafish phenotype. Thus, we speculate that the newly identified Als2 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients.
2013-01-01
Background The production of multiple transcript isoforms from one gene is a major source of transcriptome complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and errors resulting in incorrect splicing calls occur in every experiment. Results We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki. Conclusions Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alternative splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference from this new technology. The splice-junction centric approach that this software enables will provide more accurate estimates of differentially regulated splicing than current tools. PMID:24209455
Sturgill, David; Malone, John H; Sun, Xia; Smith, Harold E; Rabinow, Leonard; Samson, Marie-Laure; Oliver, Brian
2013-11-09
The production of multiple transcript isoforms from one gene is a major source of transcriptome complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and errors resulting in incorrect splicing calls occur in every experiment. We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki. Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alternative splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference from this new technology. The splice-junction centric approach that this software enables will provide more accurate estimates of differentially regulated splicing than current tools.
Makeyev, Eugene V.; Zhang, Jiangwen; Carrasco, Monica A.; Maniatis, Tom
2011-01-01
SUMMARY Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing. PMID:17679093
Huertas, César S; Carrascosa, L G; Bonnal, S; Valcárcel, J; Lechuga, L M
2016-04-15
Alternative splicing of mRNA precursors enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression. Current methodologies for monitoring alternative splicing demand elaborate procedures and often present difficulties in discerning between closely related isoforms, e.g. due to cross-hybridization during their detection. Herein, we report a general methodology using a Surface Plasmon Resonance (SPR) biosensor for label-free monitoring of alternative splicing events in real-time, without any cDNA synthesis or PCR amplification requirements. We applied this methodology to RNA isolated from HeLa cells for the quantification of alternatively spliced isoforms of the Fas gene, involved in cancer progression through regulation of programmed cell death. We demonstrate that our methodology is isoform-specific, with virtually no cross-hybridization, achieving limits of detection (LODs) in the picoMolar (pM) range. Similar results were obtained for the detection of the BCL-X gene mRNA isoforms. The results were independently validated by RT-qPCR, with excellent concordance in the determination of isoform ratios. The simplicity and robustness of this biosensor technology can greatly facilitate the exploration of alternative splicing biomarkers in disease diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Cosme, Ruth S Cruz; Yamamura, Yasuhiro; Tang, Qiyi
2009-04-01
Human cytomegalovirus (HCMV), a member of the beta subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns.
Cosme, Ruth S. Cruz; Yamamura, Yasuhiro; Tang, Qiyi
2009-01-01
Human cytomegalovirus (HCMV), a member of the β subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns. PMID:19144709
Liu, Kaiyu; Li, Yi; Jousset, Françoise-Xavière; Zadori, Zoltan; Szelei, Jozsef; Yu, Qian; Pham, Hanh Thi; Lépine, François; Bergoin, Max; Tijssen, Peter
2011-01-01
The Acheta domesticus densovirus (AdDNV), isolated from crickets, has been endemic in Europe for at least 35 years. Severe epizootics have also been observed in American commercial rearings since 2009 and 2010. The AdDNV genome was cloned and sequenced for this study. The transcription map showed that splicing occurred in both the nonstructural (NS) and capsid protein (VP) multicistronic RNAs. The splicing pattern of NS mRNA predicted 3 nonstructural proteins (NS1 [576 codons], NS2 [286 codons], and NS3 [213 codons]). The VP gene cassette contained two VP open reading frames (ORFs), of 597 (ORF-A) and 268 (ORF-B) codons. The VP2 sequence was shown by N-terminal Edman degradation and mass spectrometry to correspond with ORF-A. Mass spectrometry, sequencing, and Western blotting of baculovirus-expressed VPs versus native structural proteins demonstrated that the VP1 structural protein was generated by joining ORF-A and -B via splicing (splice II), eliminating the N terminus of VP2. This splice resulted in a nested set of VP1 (816 codons), VP3 (467 codons), and VP4 (429 codons) structural proteins. In contrast, the two splices within ORF-B (Ia and Ib) removed the donor site of intron II and resulted in VP2, VP3, and VP4 expression. ORF-B may also code for several nonstructural proteins, of 268, 233, and 158 codons. The small ORF-B contains the coding sequence for a phospholipase A2 motif found in VP1, which was shown previously to be critical for cellular uptake of the virus. These splicing features are unique among parvoviruses and define a new genus of ambisense densoviruses. PMID:21775445
Arnaud, Lionel; Salachas, François; Lucien, Nicole; Maisonobe, Thierry; Le Pennec, Pierre-Yves; Babinet, Jérôme; Cartron, Jean-Pierre
2009-03-01
McLeod syndrome is a rare X-linked neuroacanthocytosis syndrome with hematologic, muscular, and neurologic manifestations. McLeod syndrome is caused by mutations in the XK gene whose product is expressed at the red blood cell (RBC) surface but whose function is currently unknown. A variety of XK mutations has been reported but no clear phenotype-genotype correlation has been found, especially for the point mutations affecting splicing sites. A man suspected of neuroacanthocytosis was evaluated by neurologic examination, electromyography, muscle biopsy, muscle computed tomography, and cerebral magnetic resonance imaging. The McLeod RBC phenotype was disclosed by blood smear and immunohematology analyses and then confirmed at the biochemical level by Western blot analysis. The responsible XK mutation was characterized at the mRNA level by reverse transcription-polymerase chain reaction (PCR), identified by genomic DNA sequencing, and verified by allele-specific PCR. A novel XK splice site mutation (IVS1-1G>A) has been identified in a McLeod patient who has developed hematologic, neuromuscular, and neurologic symptoms. This is the first reported example of a XK point mutation affecting the 3' acceptor splice site of Intron 1, and it was demonstrated that this mutation indeed induces aberrant splicing of XK RNA and lack of XK protein at the RBC membrane. The detailed characterization at the molecular biology level of this novel XK splice site mutation associated with the clinical description of the patient contributes to a better understanding of the phenotype-genotype correlation in the McLeod syndrome.
Kück, Ulrich; Choquet, Yves; Schneider, Michel; Dron, Michel; Bennoun, Pierre
1987-01-01
The two homologous genes for the P700 chlorophyll a-apoproteins (ps1A1 and ps1A2) are encoded by the plastom in the green alga Chlamydomonas reinhardii. The structure and organization of the two genes were determined by comparison with the homologous genes from maize using data from heterologous hybridizations as well as from DNA and RNA sequencing. While the ps1A2 (736 codons) gene shows a continuous gene organization, the ps1A1 (754 codons) gene possesses some unusual features. The discontinuous gene is split into three separate exons which are scattered around the circular chloroplast genome. Exon 1 (86 bp) is separated by ∼50 kb from exon 2 (198 bp), which is located ∼ 90 kb apart from exon 3 (1984 bp). All exons are flanked by intronic sequences of group II. Transcription analysis reveals that the ps1A2 gene hybridizes with a 2.8-kb transcript, while all exon regions of the ps1A1 gene are homologous to a mature mRNA of 2.7 kb. From our data we conclude that the three distantly separated exonic sequences of the ps1A1 gene constitute a functional gene which probably operates by a trans-splicing mechanism. ImagesFig. 3.Fig. 5.Fig. 6. PMID:16453785
Trapnell, Cole; Roberts, Adam; Goff, Loyal; Pertea, Geo; Kim, Daehwan; Kelley, David R; Pimentel, Harold; Salzberg, Steven L; Rinn, John L; Pachter, Lior
2012-01-01
Recent advances in high-throughput cDNA sequencing (RNA-seq) can reveal new genes and splice variants and quantify expression genome-wide in a single assay. The volume and complexity of data from RNA-seq experiments necessitate scalable, fast and mathematically principled analysis software. TopHat and Cufflinks are free, open-source software tools for gene discovery and comprehensive expression analysis of high-throughput mRNA sequencing (RNA-seq) data. Together, they allow biologists to identify new genes and new splice variants of known ones, as well as compare gene and transcript expression under two or more conditions. This protocol describes in detail how to use TopHat and Cufflinks to perform such analyses. It also covers several accessory tools and utilities that aid in managing data, including CummeRbund, a tool for visualizing RNA-seq analysis results. Although the procedure assumes basic informatics skills, these tools assume little to no background with RNA-seq analysis and are meant for novices and experts alike. The protocol begins with raw sequencing reads and produces a transcriptome assembly, lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results. The protocol's execution time depends on the volume of transcriptome sequencing data and available computing resources but takes less than 1 d of computer time for typical experiments and ~1 h of hands-on time. PMID:22383036
Perez, Yonatan; Menascu, Shay; Cohen, Idan; Kadir, Rotem; Basha, Omer; Shorer, Zamir; Romi, Hila; Meiri, Gal; Rabinski, Tatiana; Ofir, Rivka; Yeger-Lotem, Esti; Birk, Ohad S
2018-04-01
RSRC1, whose polymorphism is associated with altered brain function in schizophrenia, is a member of the serine and arginine rich-related protein family. Through homozygosity mapping and whole exome sequencing we show that RSRC1 mutation causes an autosomal recessive syndrome of intellectual disability, aberrant behaviour, hypotonia and mild facial dysmorphism with normal brain MRI. Further, we show that RSRC1 is ubiquitously expressed, and that the RSRC1 mutation triggers nonsense-mediated mRNA decay of the RSRC1 transcript in patients' fibroblasts. Short hairpin RNA (shRNA)-mediated lentiviral silencing and overexpression of RSRC1 in SH-SY5Y cells demonstrated that RSRC1 has a role in alternative splicing and transcription regulation. Transcriptome profiling of RSRC1-silenced cells unravelled specific differentially expressed genes previously associated with intellectual disability, hypotonia and schizophrenia, relevant to the disease phenotype. Protein-protein interaction network modelling suggested possible intermediate interactions by which RSRC1 affects gene-specific differential expression. Patient-derived induced pluripotent stem cells, differentiated into neural progenitor cells, showed expression dynamics similar to the RSRC1-silenced SH-SY5Y model. Notably, patient neural progenitor cells had 9.6-fold downregulated expression of IGFBP3, whose brain expression is affected by MECP2, aberrant in Rett syndrome. Interestingly, Igfbp3-null mice have behavioural impairment, abnormal synaptic function and monoaminergic neurotransmission, likely correlating with the disease phenotype.
Barboric, Matjaz; Lenasi, Tina; Chen, Hui; Johansen, Eric B.; Guo, Su; Peterlin, B. Matija
2009-01-01
Eukaryotic gene expression is commonly controlled at the level of RNA polymerase II (RNAPII) pausing subsequent to transcription initiation. Transcription elongation is stimulated by the positive transcription elongation factor b (P-TEFb) kinase, which is suppressed within the 7SK small nuclear ribonucleoprotein (7SK snRNP). However, the biogenesis and functional significance of 7SK snRNP remain poorly understood. Here, we report that LARP7, BCDIN3, and the noncoding 7SK small nuclear RNA (7SK) are vital for the formation and stability of a cell stress-resistant core 7SK snRNP. Our functional studies demonstrate that 7SK snRNP is not only critical for controlling transcription elongation, but also for regulating alternative splicing of pre-mRNAs. Using a transient expression splicing assay, we find that 7SK snRNP disintegration promotes inclusion of an alternative exon via the increased occupancy of P-TEFb, Ser2-phosphorylated (Ser2-P) RNAPII, and the splicing factor SF2/ASF at the minigene. Importantly, knockdown of larp7 or bcdin3 orthologues in zebrafish embryos destabilizes 7SK and causes severe developmental defects and aberrant splicing of analyzed transcripts. These findings reveal a key role for P-TEFb in coupling transcription elongation with alternative splicing, and suggest that maintaining core 7SK snRNP is essential for vertebrate development. PMID:19416841
Sarmiento, José M; Añazco, Carolina C; Campos, Danae M; Prado, Gregory N; Navarro, Javier; González, Carlos B
2004-11-05
In rat kidney, two alternatively spliced transcripts are generated from the V2 vasopressin receptor gene. The large transcript (1.2 kb) encodes the canonical V2 receptor, whereas the small transcript encodes a splice variant displaying a distinct sequence corresponding to the putative seventh transmembrane domain and the intracellular C terminus of the V2 receptor. This work showed that the small spliced transcript is translated in the rat kidney collecting tubules. However, the protein encoded by the small transcript (here called the V2b splice variant) is retained inside the cell, in contrast to the preferential surface distribution of the V2 receptor (here called the V2a receptor). Cells expressing the V2b splice variant do not exhibit binding to 3H-labeled vasopressin. Interestingly, we found that expression of the splice variant V2b down-regulates the surface expression of the V2a receptor, most likely via the formation of V2a.V2b heterodimers as demonstrated by co-immunoprecipitation and fluorescence resonance energy transfer experiments between the V2a receptor and the V2b splice variant. The V2b splice variant would then be acting as a dominant negative. The effect of the V2b splice variant is specific, as it does not affect the surface expression of the G protein-coupled interleukin-8 receptor (CXCR1). Furthermore, the sequence encompassing residues 242-339, corresponding to the C-terminal domain of the V2b splice variant, also down-regulates the surface expression of the V2a receptor. We suggest that some forms of nephrogenic diabetes insipidus are due to overexpression of the splice variant V2b, which could retain the wild-type V2a receptor inside the cell via the formation of V2a.V2b heterodimers.
Tissue-specific alternative splicing of TCF7L2
Prokunina-Olsson, Ludmila; Welch, Cullan; Hansson, Ola; Adhikari, Neeta; Scott, Laura J.; Usher, Nicolle; Tong, Maurine; Sprau, Andrew; Swift, Amy; Bonnycastle, Lori L.; Erdos, Michael R.; He, Zhi; Saxena, Richa; Harmon, Brennan; Kotova, Olga; Hoffman, Eric P.; Altshuler, David; Groop, Leif; Boehnke, Michael; Collins, Francis S.; Hall, Jennifer L.
2009-01-01
Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r2 = 0.84–0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164–FJ010174. PMID:19602480
Dong, Qiongye; Wei, Lei; Zhang, Michael Q; Wang, Xiaowo
2018-06-24
Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the common splicing alterations on the whole transcriptome shared by various types of senescence are poorly understood. In order to systematically identify senescence-associated transcriptomic changes in genome-wide scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-inducing methods from public databases and performed meta-analysis. First, we discovered that a group of RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment analysis of their RNA binding information, including motif scanning and enhanced cross-linking immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These findings would help to better understand the coordinating splicing alterations in cellular senescence.
He, Xian-hui; Xu, Li-hui; Liu, Yi
2005-04-01
To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon? encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intracellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.
Regulation of alternative splicing by the circadian clock and food related cues
2012-01-01
Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation. PMID:22721557
Operon Conservation and the Evolution of trans-Splicing in the Phylum Nematoda
Guiliano, David B; Blaxter, Mark L
2006-01-01
The nematode Caenorhabditis elegans is unique among model animals in that many of its genes are cotranscribed as polycistronic pre-mRNAs from operons. The mechanism by which these operonic transcripts are resolved into mature mRNAs includes trans-splicing to a family of SL2-like spliced leader exons. SL2-like spliced leaders are distinct from SL1, the major spliced leader in C. elegans and other nematode species. We surveyed five additional nematode species, representing three of the five major clades of the phylum Nematoda, for the presence of operons and the use of trans-spliced leaders in resolution of polycistronic pre-mRNAs. Conserved operons were found in Pristionchus pacificus, Nippostrongylus brasiliensis, Strongyloides ratti, Brugia malayi, and Ascaris suum. In nematodes closely related to the rhabditine C. elegans, a related family of SL2-like spliced leaders is used for operonic transcript resolution. However, in the tylenchine S. ratti operonic transcripts are resolved using a family of spliced leaders related to SL1. Non-operonic genes in S. ratti may also receive these SL1 variants. In the spirurine nematodes B. malayi and A. suum operonic transcripts are resolved using SL1. Mapping these phenotypes onto the robust molecular phylogeny for the Nematoda suggests that operons evolved before SL2-like spliced leaders, which are an evolutionary invention of the rhabditine lineage. PMID:17121468
Human organotypic retinal flat-mount culture (HORFC) as a model for retinitis pigmentosa11.
Azizzadeh Pormehr, Leila; Daftarian, Narsis; Ahmadian, Shahin; Rezaei Kanavi, Mozhgan; Ahmadieh, Hamid; Shafiezadeh, Mahshid
2018-05-10
The splicing factor PRPF31 is the most commonly mutated general splicing factor in the retinitis pigmentosa. We used a rapid, convenient and cost effective transfection method with an efficient PRPF31 knockdown in HORFC in order to study the effect of PRPF31 downregulation on retinal gene expressions in an ex vivo model. Modified calcium phosphate method was used to transfect HORFC by PRPF31 siRNA. Different times and doses of siRNA for transfection were assayed and optimum condition was obtained. PRPF31 mRNA and protein downregulation were assessed by qRTPCR and Western blot. The tissue viability of HORFC was measured using the MTT. ImageJ analysis on stained retinal sections by immunohistochemistry was used for thickness measurement of outer nuclear photoreceptor layer. The PRPF31 gene downregulation effects on retinal specific gene expression were analyzed by qRTPCR. A total of 50 nM of PRPF31 siRNA transfection after 63 h in HORFC, showed the optimum reduction in the level of PRPF31 mRNA and protein as shown by qRTPCR and Western blot (over 90% and 50% respectively). The PRPF31 mRNA silencing with calcium phosphate had no effect on cell viability in the period of the experiment. Thickness measurement of outer nuclear photoreceptor layer with IHC showed the significant reduction after 63 h of study (P value = 0.02). siRNA induced PRPF31 knockdown, led to reduction of retinal specific mRNA gene expression involved in phototransduction (RHO, GNAT1, RP1), photoreceptor structure (ROM1, FSCN2, CA4, SEMA4) and transcription factor (CRX) (fold change >5), after 63 h. © 2018 Wiley Periodicals, Inc.
Yin, Z Q; Deng, Z M; Crewther, S G; Crewther, D P
2001-11-20
Although much has been written about the role of the NMDA receptor's role in experience dependent visual plasticity, the function of the NMDAR1 receptor subunit in the post-plasticity stage of development is still not well understood. However, in the well studied model of strabismic amblyopia where binocularity is reduced, but where most primary visual cortex neurons can be driven by one or other eye, the density of expression of NMDAR1 receptor protein is significantly reduced, compared to normals. This study aims to identify which of eight isoforms of the spliced heterogeneous variants of the NMDAR1 mRNA receptor gene are associated with this decrease in expression as a means of elucidating possible function. A series of digoxygenin-labelled oligonucleotide probes based on the human gene sequence have been used for in situ hybridization (ISH) of sections from the striate cortex of four adult cats. The probes were used to uniquely detect the expression of alternatively spliced mRNA variants in 66,487 cells from sections from the area centralis projection of two normal cats and two cats made esotropic as kittens by tenotomy at two weeks of age. As expected, total NMDAR1 mRNA isoform expression was significantly lower in the striate cortex of strabismic compared to normal cats. The proportion of cortical cells expressing the R1-a, R1-b, and R1-1 isoforms in strabismic animals was decreased while the proportion expressing R1-3 was increased, especially in layers V and VI. No significant difference in expression of the R1-2 and R1-4 isoforms was seen comparing strabismic and normal cats. These results confirm our previous findings and suggest that transcriptional inhibition of specific isoforms of NMDAR1 mRNA may underlie the change in receptor expression. This preferential reduction in the proportion of neurons bearing particular NMDAR1 isoforms, i.e. isoforms R1-a and b, and R1-1 with partial compensation through the expression of the R1-3 isoform, is more likely related to lowered proportion of binocularly activated neurons in the strabismic cat than to changes in eye dominance or the presence of amblyopia in one eye.
Protein-protein interactions and cancer: targeting the central dogma.
Garner, Amanda L; Janda, Kim D
2011-01-01
Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.
A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.
Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R
2001-01-01
Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.
Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing
Liu, Jing; Hu, Jiaxin; Corey, David R.
2012-01-01
Double-stranded RNAs are powerful agents for silencing gene expression in the cytoplasm of mammalian cells. The potential for duplex RNAs to control expression in the nucleus has received less attention. Here, we investigate the ability of small RNAs to redirect splicing. We identify RNAs targeting an aberrant splice site that restore splicing and production of functional protein. RNAs can target sequences within exons or introns and affect the inclusion of exons within SMN2 and dystrophin, genes responsible for spinal muscular atrophy and Duchenne muscular dystrophy, respectively. Duplex RNAs recruit argonaute 2 (AGO2) to pre-mRNA transcripts and altered splicing requires AGO2 expression. AGO2 promotes transcript cleavage in the cytoplasm, but recruitment of AGO2 to pre-mRNAs does not reduce transcript levels, exposing a difference between cytoplasmic and nuclear pathways. Involvement of AGO2 in splicing, a classical nuclear process, reinforces the conclusion from studies of RNA-mediated transcriptional silencing that RNAi pathways can be adapted to function in the mammalian nucleus. These data provide a new strategy for controlling splicing and expand the reach of small RNAs within the nucleus of mammalian cells. PMID:21948593
Alternative splicing and the evolution of phenotypic novelty.
Bush, Stephen J; Chen, Lu; Tovar-Corona, Jaime M; Urrutia, Araxi O
2017-02-05
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).
Alternative splicing and the evolution of phenotypic novelty
Bush, Stephen J.; Chen, Lu; Tovar-Corona, Jaime M.
2017-01-01
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994117
Nogami, H; Hoshino, R; Ogasawara, K; Miyamoto, S; Hisano, S
2007-08-01
Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.
1995-09-20
Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknownmore » alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.« less
Mojardín, Laura; Botet, Javier; Quintales, Luis; Moreno, Sergio; Salas, Margarita
2013-01-01
5-Fluorouracil (5FU) is a chemotherapeutic drug widely used in treating a range of advanced, solid tumours and, in particular, colorectal cancer. Here, we used high-density tiling DNA microarray technology to obtain the specific transcriptome-wide response induced by 5FU in the eukaryotic model Schizosaccharomyces pombe. This approach combined with real-time quantitative PCR analysis allowed us to detect splicing defects of a significant number of intron-containing mRNA, in addition to identify some rRNA and tRNA processing defects after 5FU treatment. Interestingly, our studies also revealed that 5FU specifically induced the expression of certain genes implicated in the processing of mRNA, tRNA and rRNA precursors, and in the post-transcriptional modification of uracil residues in RNA. The transcription of several tRNA genes was also significantly induced after drug exposure. These transcriptional changes might represent a cellular response mechanism to counteract 5FU damage since deletion strains for some of these up-regulated genes were hypersensitive to 5FU. Moreover, most of these RNA processing genes have human orthologs that participate in conserved pathways, suggesting that they could be novel targets to improve the efficacy of 5FU-based treatments. PMID:24223771
Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Long; Pintel, David J., E-mail: pinteld@missouri.edu
2012-04-25
Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained inmore » unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.« less
Functional repair of p53 mutation in colorectal cancer cells using trans-splicing.
He, Xingxing; Liao, Jiazhi; Liu, Fang; Yan, Junwei; Yan, Jingjun; Shang, Haitao; Dou, Qian; Chang, Ying; Lin, Jusheng; Song, Yuhu
2015-02-10
Mutation in the p53 gene is arguably the most frequent type of gene-specific alterations in human cancers. Current p53-based gene therapy contains the administration of wt-p53 or the suppression of mutant p53 expression in p53-defective cancer cells. . We hypothesized that trans-splicing could be exploited as a tool for the correction of mutant p53 transcripts in p53-mutated human colorectal cancer (CRC) cells. In this study, the plasmids encoding p53 pre-trans-splicing molecules (PTM) were transfected into human CRC cells carrying p53 mutation. The plasmids carrying p53-PTM repaired mutant p53 transcripts in p53-mutated CRC cells, which resulted in a reduction in mutant p53 transcripts and an induction of wt-p53 simultaneously. Intratumoral administration of adenovirus vectors carrying p53 trans-splicing cassettes suppressed the growth of tumor xenografts. Repair of mutant p53 transcripts by trans-splicing induced cell-cycle arrest and apoptosis in p53-defective colorectal cancer cells in vitro and in vivo. In conclusion, the present study demonstrated for the first time that trans-splicing was exploited as a strategy for the repair of mutant p53 transcripts, which revealed that trans-splicing would be developed as a new therapeutic approach for human colorectal cancers carrying p53 mutation.
hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Hyoung; Lim, Mi-Hyun; Youn, Dong-Ye
We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). Amore » super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.« less
Ellington, W Ross; Yamashita, Daisuke; Suzuki, Tomohiko
2004-06-09
Glycocyamine kinase (GK) catalyzes the reversible phosphorylation of glycocyamine (guanidinoacetate), a reaction central to cellular energy homeostasis in certain animals. GK is a member of the phosphagen kinase enzyme family and appears to have evolved from creatine kinase (CK) early in the evolution of multi-cellular animals. Prior work has shown that GK from the polychaete Neanthes (Nereis) diversicolor exits as a hetero-dimer in vivo and that the two polypeptide chains (termed alpha and beta) are coded for by unique transcripts. In the present study, we demonstrate that the GK from a congener Nereis virens is also hetero-dimeric and is coded for by alpha and beta transcripts, which are virtually identical to the corresponding forms in N. diversicolor. The GK gene from N. diversicolor was amplified by PCR. Sequencing of the PCR products showed that the alpha and beta chains are the result of alternative splicing of the GK primary mRNA transcript. These results also strongly suggest that this gene underwent an early tandem exon duplication event. Full-length cDNAs for N. virens GKalpha and GKbeta were individually ligated into expression vectors and the resulting constructs used to transform Escherichia coli expression hosts. Regardless of expression conditions, minimal GK activity was observed in both GKalpha and GKbeta constructs. Inclusion bodies for both were harvested, unfolded in urea and alpha chains, beta chains and mixtures of alpha and beta chains were refolded by sequential dialysis. Only modest amounts of GK activity were observed when alpha and beta were refolded individually. In contrast, when refolded the alpha and beta mixture yielded highly active hetero-dimers, as validated by size exclusion chromatography, electrophoresis and mass spectrometry, with a specific activity comparable to that of natural GK. The above evidence suggests that there is a preference for hetero-dimer formation in the GKs from these two polychaetes. The evolution of the alternate splicing and an additional exon in these GKs, producing alpha and beta transcripts, can be viewed as a possible compensation for a mutation(s) in the original gene, which most likely coded for a homo-dimeric protein.
Oas, Sandy T.
2014-01-01
Drosophila melanogaster flight muscles are distinct from other skeletal muscles, such as jump muscles, and express several uniquely spliced muscle-associated transcripts. We sought to identify factors mediating splicing differences between the flight and jump muscle fiber types. We found that the ribonucleic acid–binding protein Arrest (Aret) is expressed in flight muscles: in founder cells, Aret accumulates in a novel intranuclear compartment that we termed the Bruno body, and after the onset of muscle differentiation, Aret disperses in the nucleus. Down-regulation of the aret gene led to ultrastructural changes and functional impairment of flight muscles, and transcripts of structural genes expressed in the flight muscles became spliced in a manner characteristic of jump muscles. Aret also potently promoted flight muscle splicing patterns when ectopically expressed in jump muscles or tissue culture cells. Genetically, aret is located downstream of exd (extradenticle), hth (homothorax), and salm (spalt major), transcription factors that control fiber identity. Our observations provide insight into a transcriptional and splicing regulatory network for muscle fiber specification. PMID:25246617
Yap, Karen; Lim, Zhao Qin; Khandelia, Piyush; Friedman, Brad; Makeyev, Eugene V.
2012-01-01
Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3′-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context. PMID:22661231
Yap, Karen; Lim, Zhao Qin; Khandelia, Piyush; Friedman, Brad; Makeyev, Eugene V
2012-06-01
Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3'-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context.
A single cell level measurement of StAR expression and activity in adrenal cells.
Lee, Jinwoo; Yamazaki, Takeshi; Dong, Hui; Jefcoate, Colin
2017-02-05
The Steroidogenic acute regulatory protein (StAR) directs mitochondrial cholesterol uptake through a C-terminal cholesterol binding domain (CBD) and a 62 amino acid N-terminal regulatory domain (NTD) that contains an import sequence and conserved sites for inner membrane metalloproteases. Deletion of the NTD prevents mitochondrial import while maintaining steroidogenesis but with compromised cholesterol homeostasis. The rapid StAR-mediated cholesterol transfer in adrenal cells depends on concerted mRNA translation, p37 StAR phosphorylation and controlled NTD cleavage. The NTD controls this process with two cAMP-inducible modulators of, respectively, transcription and translation SIK1 and TIS11b/Znf36l1. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA resolves slow RNA splicing at the gene loci in cAMP-induced Y-1 cells and transfer of individual 3.5 kB mRNA molecules to mitochondria. StAR transcription depends on the CREB coactivator CRTC2 and PKA inhibition of the highly inducible suppressor kinase SIK1 and a basal counterpart SIK2. PKA-inducible TIS11b/Znf36l1 binds specifically to highly conserved elements in exon 7 thereby suppressing formation of mRNA and subsequent translation. Co-expression of SIK1, Znf36l1 with 3.5 kB StAR mRNA may limit responses to pulsatile signaling by ACTH while regulating the transition to more prolonged stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A single cell level measurement of StAR expression and activity in adrenal cells
Lee, Jinwoo; Yamazaki, Takeshi; Dong, Hui; Jefcoate, Colin
2018-01-01
The Steroidogenic acute regulatory protein (StAR) directs mitochondrial cholesterol uptake through a C-terminal cholesterol binding domain (CBD) and a 62 amino acid N-terminal regulatory domain (NTD) that contains an import sequence and conserved sites for inner membrane metalloproteases. Deletion of the NTD prevents mitochondrial import while maintaining steroidogenesis but with compromised cholesterol homeostasis. The rapid StAR-mediated cholesterol transfer in adrenal cells depends on concerted mRNA translation, p37 StAR phosphorylation and controlled NTD cleavage. The NTD controls this process with two cAMP-inducible modulators of, respectively, transcription and translation SIK1 and TIS11b/Znf36l1. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA resolves slow RNA splicing at the gene loci in cAMP-induced Y-1 cells and transfer of individual 3.5 kb mRNA molecules to mitochondria. StAR transcription depends on the CREB coactivator CRTC2 and PKA inhibition of the highly inducible suppressor kinase SIK1 and a basal counterpart SIK2. PKA-inducible TIS11b/Znf36l1 binds specifically to highly conserved elements in exon 7 thereby suppressing formation of mRNA and subsequent translation. Co-expression of SIK1, Znf36l1 with 3.5 kb StAR mRNA may limit responses to pulsatile signaling by ACTH while regulating the transition to more prolonged stress PMID:27521960
Zhang, Qisen; Zhang, Xiaoqi; Pettolino, Filomena; Zhou, Gaofeng; Li, Chengdao
2016-02-01
Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels. Copyright © 2015 Elsevier GmbH. All rights reserved.
Hidalgo, Paloma; Anzures, Lourdes; Hernández-Mendoza, Armando; Guerrero, Adán; Wood, Christopher D.; Valdés, Margarita; Dobner, Thomas
2016-01-01
ABSTRACT Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle. PMID:26764008
Ren, Wei; Zhu, Liang-Hua; Xu, Hua-Guo; Jin, Rui; Zhou, Guo-Ping
2012-06-01
Interferon regulatory factor 3 (IRF-3), an essential transcriptional regulator of the interferon genes, plays an important role in host defense against viral and microbial infection as well as in cell growth regulation. Promoter plays a crucial role in gene transcription. We have reported the characterization of the wide type of human IRF-3 promoter, but the characterization of the spliced variant of human IRF-3 Int2V1 promoter has not been systematically analyzed. To observe the spliced variant of human IRF-3 promoter, we have cloned the human IRF-3 gene promoter region containing 300 nucleotides upstream the transcription start site (TSS). Transient transfection of 5' deleted promoter-reporter constructs and luciferase assay illustrated the region -159/-100 relative to the TSS is sufficient for full promoter activity. This region contains GATA1 and specific protein-1 (Sp1) transcription factor binding sites. Interestingly, mutation of this Sp1 site reduced the promoter activity by 50%. However, overexpression of Sp1 increased the transcription activity by 2.4-fold. These results indicated that the spliced variant of human IRF-3 gene core promoter was located within the region -159/-100 relative to the TSS. Sp1 transcription factor upregulates the spliced variant of human IRF-3 gene promoter.
Li, Wenyuan; Dai, Chao; Liu, Chun-Chi
2012-01-01
Abstract Current network analysis methods all focus on one or multiple networks of the same type. However, cells are organized by multi-layer networks (e.g., transcriptional regulatory networks, splicing regulatory networks, protein-protein interaction networks), which interact and influence each other. Elucidating the coupling mechanisms among those different types of networks is essential in understanding the functions and mechanisms of cellular activities. In this article, we developed the first computational method for pattern mining across many two-layered graphs, with the two layers representing different types yet coupled biological networks. We formulated the problem of identifying frequent coupled clusters between the two layers of networks into a tensor-based computation problem, and proposed an efficient solution to solve the problem. We applied the method to 38 two-layered co-transcription and co-splicing networks, derived from 38 RNA-seq datasets. With the identified atlas of coupled transcription-splicing modules, we explored to what extent, for which cellular functions, and by what mechanisms transcription-splicing coupling takes place. PMID:22697243
Yang, Jun; Zhao, Yingxin; Kalita, Mridul; Li, Xueling; Jamaluddin, Mohammad; Tian, Bing; Edeh, Chukwudi B; Wiktorowicz, John E; Kudlicki, Andrzej; Brasier, Allan R
2015-10-01
Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1 chromatin target was further demonstrated using chromatin immunoprecipitation (ChIP). These data indicate that CDK9 is a dynamic multifunctional enzyme complex mediating not only transcriptional elongation, but also alternative RNA splicing and potentially translational control. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Haïli, Nawel; Planchard, Noelya; Arnal, Nadège; Quadrado, Martine; Vrielynck, Nathalie; Dahan, Jennifer; des Francs-Small, Catherine Colas; Mireau, Hakim
2016-01-01
Mitochondrial translation involves a complex interplay of ancient bacteria-like features and host-derived functionalities. Although the basic components of the mitochondrial translation apparatus have been recognized, very few protein factors aiding in recruiting ribosomes on mitochondria-encoded messenger RNA (mRNAs) have been identified in higher plants. In this study, we describe the identification of the Arabidopsis (Arabidopsis thaliana) MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1) protein, a new member of the Pentatricopeptide Repeat family, and show that it is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. We demonstrate that mtl1 mutant plants fail to accumulate the Nad7 protein, even though the nad7 mature mRNA is produced and bears the same 5' and 3' extremities as in wild-type plants. We next observed that polysome association of nad7 mature mRNA is specifically disrupted in mtl1 mutants, indicating that the absence of Nad7 results from a lack of translation of nad7 mRNA. These findings illustrate that mitochondrial translation requires the intervention of gene-specific nucleus-encoded PPR trans-factors and that their action does not necessarily involve the 5' processing of their target mRNA, as observed previously. Interestingly, a partial decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that MTL1 is also involved in group II intron splicing. However, this second function appears to be less essential for nad7 expression than its role in translation. MTL1 will be instrumental to understand the multifunctionality of PPR proteins and the mechanisms governing mRNA translation and intron splicing in plant mitochondria. © 2016 American Society of Plant Biologists. All Rights Reserved.
Zhang, Yanghai; Cui, Yang; Zhang, Xuelian; Wang, Yimin; Gao, Jiayang; Yu, Ting; Lv, Xiaoyan; Pan, Chuanying
2018-05-31
Steroidogenic acute regulatory protein (StAR), primarily expressed in Leydig cells (LCs) in the mammalian testes, is essential for testosterone biosynthesis and male fertility. However, no previous reports have explored the expression profiles, alternative splicing and genetic variations of StAR gene in pig. The aim of current study was to explore the expression profiles in different tissues and different types of testicular cells (LCs; spermatogonial stem cells, SSCs; Sertoli cells, SCs), to identify different splice variants and their expression levels, as well as to detect the indel polymorphism in pig StAR gene. Expression analysis results revealed that StAR was widely expressed in all tested tissues and the expression level in testis was significantly higher than that in other tissues (P < 0.01); among different types of testicular cells, the StAR mRNA expression level was significantly higher in LCs than others (P < 0.05). Furthermore, three splice variants, StAR-a, StAR-b and StAR-c, were first found in pig. Further study showed StAR-a was highly expressed in both testis and LCs when compared with other variants (P < 0.01), suggesting StAR-a was the primary variant at StAR gene post-transcription and may facilitate the combination and transportation of cholesterol with StAR. In addition, a 5-bp duplicated deletion (NC_010457.5:g.5524-5528 delACTTG) was verified in the porcine StAR gene, which was closely related to male testicular morphology traits (P < 0.05), and we speculated that the allele "D" of StAR gene might be a positive allele. Briefly, the current findings suggest that StAR and StAR-a play imperative roles in male fertility and the 5-bp indel can be a potential DNA marker for the marker-assisted selection in boar. Copyright © 2018 Elsevier Inc. All rights reserved.
Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae
Sorenson, Matthew R.; Jha, Deepak K.; Ucles, Stefanie A.; Flood, Danielle M.; Strahl, Brian D.; Stevens, Scott W.; Kress, Tracy L.
2016-01-01
ABSTRACT Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) – a residue methylated by Set2 during transcription elongation – exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast. PMID:26821844
Fagg, W Samuel; Liu, Naiyou; Fair, Jeffrey Haskell; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel
2017-09-15
Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer. © 2017 Fagg et al.; Published by Cold Spring Harbor Laboratory Press.
Visconte, V; Makishima, H; Maciejewski, J P; Tiu, R V
2012-12-01
In humans, the majority of all protein-coding transcripts contain introns that are removed by mRNA splicing carried out by spliceosomes. Mutations in the spliceosome machinery have recently been identified using whole-exome/genome technologies in myelodysplastic syndromes (MDS) and in other hematological disorders. Alterations in splicing factor 3 subunit b1 (SF3b1) were the first spliceosomal mutations described, immediately followed by identification of other splicing factor mutations, including U2 small nuclear RNA auxillary factor 1 (U2AF1) and serine arginine-rich splicing factor 2 (SRSF2). SF3b1/U2AF1/SRSF2 mutations occur at varying frequencies in different disease subtypes, each contributing to differences in survival outcomes. However, the exact functional consequences of these spliceosomal mutations in the pathogenesis of MDS and other hematological malignancies remain largely unknown and subject to intense investigation. For SF3b1, a gain of function mutation may offer the promise of new targeted therapies for diseases that carry this molecular abnormality that can potentially lead to cure. This review aims to provide a comprehensive overview of the emerging role of the spliceosome machinery in the biology of MDS/hematological disorders with an emphasis on the functional consequences of mutations, their clinical significance, and perspectives on how they may influence our understanding and management of diseases affected by these mutations.
Visconte, V; Makishima, H; Maciejewski, JP; Tiu, RV
2013-01-01
In humans, the majority of all protein-coding transcripts contain introns that are removed by mRNA splicing carried out by spliceosomes. Mutations in the spliceosome machinery have recently been identified using whole exome/genome technologies in myelodysplastic syndromes (MDS) and in other hematologic disorders. Alterations in Splicing Factor 3 Subunit b1 (SF3b1) were the first spliceosomal mutations described, immediately followed by identification of other splicing factor mutations, including U2 Small Nuclear RNA Auxillary Factor 1 (U2AF1) and Serine Arginine Rich Splicing Factor 2 (SRSF2). SF3b1/U2AF1/SRSF2 mutations occur at varying frequencies in different disease subtypes, each contributing to differences in survival outcomes. However, the exact functional consequences of these spliceosomal mutations in the pathogenesis of MDS and other hematologic malignancies remain largely unknown and subject to intense investigation. For SF3b1, a gain of function mutation may offer the promise of new targeted therapies for diseases that carry this molecular abnormality that can potentially lead to cure. This review aims to provide a comprehensive overview of the emerging role of the spliceosome machinery in the biology of MDS/hematologic disorders with an emphasis on the functional consequences of mutations, their clinical significance, and perspectives on how they may influence our understanding and management of diseases affected by these mutations. PMID:22678168
Toussirot, Éric; Saas, Philippe; Deschamps, Marina; Pouthier, Fabienne; Perrot, Lucille; Perruche, Sylvain; Chabod, Jacqueline; Tiberghien, Pierre; Wendling, Daniel
2009-01-01
Introduction Spondylarthropathies (SpA) are characterized by abnormal immune responses including T cell activation. Cytotoxic T lymphocyte associated molecule-4 (CTLA-4) is involved in down-regulating immune responses. A soluble form of CTLA-4 (sCTLA-4), resulting from an alternative splicing, has been identified and was found increased in several autoimmune diseases. Here, we evaluated circulating levels of sCTLA-4 as a marker of immune dysregulation in SpA. Intracellular CTLA-4 and levels of CTLA-4 transcript expression in peripheral blood lymphocytes (PBL) were also studied. Methods Sera from 165 patients with SpA were evaluated for sCTLA-4 measurements. Results were compared with those from 71 patients with rheumatoid arthritis (RA) and 88 healthy subjects. In 32 patients with SpA, 22 patients with RA and 15 healthy controls, we analyzed the intracellular CTLA-4 expression in CD4+ T cells, CD8+ T cells, activated (HLA-DR+Foxp3-) CD4+ T cells, CD4+ regulatory (CD25+Foxp3+) T cells and in CD3 negative cells by flow cytometry. Expression of the full length (coding for membrane CTLA-4) and spliced form (coding for sCTLA-4) of CTLA-4 transcripts in PBL were analyzed by quantitative real-time polymerase chain reaction (QRT-PCR). Results High levels of sCTLA-4 were found in the SpA group compared to the RA group and healthy controls (P < 0.0001). Soluble CTLA-4 serum levels strongly correlated with clinical index of disease activity BASDAI (r = 0.42, P < 0.0001) and C-reactive protein (CRP) levels (r = 0.17, P = 0.037). In contrast to RA patients, SpA patients did not exhibit changes in intracellular CTLA-4 expression in the different PBL subsets tested. Finally, the SpA group showed a preferential expression of the spliced CTLA-4 mRNA (P = 0.0014) in PBL. Conclusions SpA patients exhibit high levels of circulating sCTLA-4 that may result from an alternative splicing of CTLA-4 transcripts. This may influence immune activation and regulation in SpA. PMID:19570209
NASA Technical Reports Server (NTRS)
Breault, D. T.; Lichtler, A. C.; Rowe, D. W.
1997-01-01
Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.
Carling, Phillippa J.; Buist, Thomas; Zhang, Chaolin; Grellscheid, Sushma N.; Armstrong, Kelly; Stockley, Jacqueline; Simillion, Cedric; Gaughan, Luke; Kalna, Gabriela; Zhang, Michael Q.; Robson, Craig N.; Leung, Hing Y.; Elliott, David J.
2011-01-01
Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa. PMID:22194994
Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene
NASA Astrophysics Data System (ADS)
Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.
1986-08-01
The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.
Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A.; Shinkai, Hiroshi; Hoyme, H. Eugene; Pyeritz, Reed E.; Byers, Peter H.
2004-01-01
Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of proα2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement. PMID:15077201
Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A; Shinkai, Hiroshi; Hoyme, H Eugene; Pyeritz, Reed E; Byers, Peter H
2004-05-01
Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of pro alpha 2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement.
Gardina, Paul J; Clark, Tyson A; Shimada, Brian; Staples, Michelle K; Yang, Qing; Veitch, James; Schweitzer, Anthony; Awad, Tarif; Sugnet, Charles; Dee, Suzanne; Davies, Christopher; Williams, Alan; Turpaz, Yaron
2006-01-01
Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported) transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic predictions of alternative splicing in cancer. Conclusion Differential expression of high confidence transcripts correlated extremely well with known cancer genes and pathways, suggesting that the more speculative transcripts, largely based solely on computational prediction and mostly with no previous annotation, might be novel targets in colon cancer. Five of the identified splicing events affect mediators of cytoskeletal organization (ACTN1, VCL, CALD1, CTTN, TPM1), two affect extracellular matrix proteins (FN1, COL6A3) and another participates in integrin signaling (SLC3A2). Altogether they form a pattern of colon-cancer specific alterations that may particularly impact cell motility. PMID:17192196
Splice isoform-specific suppression of the CaV2.1 variant underlying Spinocerebellar ataxia type 6
Tsou, Wei-Ling; Soong, Bing-Wen; Paulson, Henry L.; Rodríguez-Lebrón, Edgardo
2011-01-01
Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the CaV2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a CaV2.1 mini-gene reporter system, we found that pathogenic CAG expansions in CaV2.1 enhance splicing activity at the 3′end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding CaV2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding CaV2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding CaV2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases. PMID:21550405
Splice isoform-specific suppression of the Cav2.1 variant underlying spinocerebellar ataxia type 6.
Tsou, Wei-Ling; Soong, Bing-Wen; Paulson, Henry L; Rodríguez-Lebrón, Edgardo
2011-09-01
Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Ca(V)2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a Ca(V)2.1 mini-gene reporter system, we found that pathogenic CAG expansions in Ca(V)2.1 enhance splicing activity at the 3'end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding Ca(V)2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding Ca(V)2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding Ca(V)2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases. Copyright © 2011 Elsevier Inc. All rights reserved.
SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export
Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M.; Brandl, Holger; Schwich, Oliver D.; Steiner, Michaela C.; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M.
2016-01-01
Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends. PMID:26944680
mRNA export: threading the needle
Gaouar, Ouassila; Germain, Hugo
2013-01-01
After mRNA biogenesis, several proteins interact with the messenger to ensure its proper export to the cytoplasm. Some of these proteins will bind RNA early on, at the onset of transcription by RNA polymerase II holoenzyme, while others will join later for downstream processing steps, such as poly-adenylation or splicing, or may direct mRNA ribonucleoprotein particle migration to the nucleopore. We recently discovered that Arabidopsis plant knockout for the protein MOS11 (MODIFIER OF SNC1, 11) partially suppresses autoimmune responses observed in the TNL-type [TIR/NBS/LRR (Toll-interleukin-like receptor/nucleotide-binding site/C-terminal leucine-rich repeat)] R gene gain-of-function variant snc1 (suppressor of npr1-1, constitutive 1). This suppression of resistance to pathogens appears to be caused by a decrease in nuclear mRNA export in mos11-1 snc1 plants. In humans, the putative ortholog of MOS11, CIP29 (29-kDa cytokine-induced protein), interacts with three proteins that are also involved in mRNA export: DDX39 (DEAD-box RNA helicase), TAF15 of the FUS family (FUSED IN SARCOMA), and ALY (ALWAYS EARLY), a protein implicated in mRNA export in mammalian systems. These proteins have received very little attention in plants. Here, we will discuss their particularities and role in mRNA export and biotic stress. PMID:23526740
Differential HFE Gene Expression Is Regulated by Alternative Splicing in Human Tissues
Proença, Daniela; Faustino, Paula
2011-01-01
Background The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. Methodology/Principal Findings Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE) that is mostly secreted by cells to the medium in association with β2M. Conclusions/Significance HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum. PMID:21407826
Differential HFE gene expression is regulated by alternative splicing in human tissues.
Martins, Rute; Silva, Bruno; Proença, Daniela; Faustino, Paula
2011-03-03
The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE) that is mostly secreted by cells to the medium in association with β2M. HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum.
Sansó, Miriam; Fisher, Robert P
2013-01-01
Cyclin-dependent kinases (CDKs) play a central role in governing eukaryotic cell division. It is becoming clear that the transcription cycle of RNA polymerase II (RNAP II) is also regulated by CDKs; in metazoans, the cell cycle and transcriptional CDK networks even share an upstream activating kinase, which is itself a CDK. From recent chemical-genetic analyses we know that CDKs and their substrates control events both early in transcription (the transition from initiation to elongation) and late (3′ end formation and transcription termination). Moreover, mutual dependence on CDK activity might couple the “beginning” and “end” of the cycle, to ensure the fidelity of mRNA maturation and the efficient recycling of RNAP II from sites of termination to the transcription start site (TSS). As is the case for CDKs involved in cell cycle regulation, different transcriptional CDKs act in defined sequence on multiple substrates. These phosphorylations are likely to influence gene expression by several mechanisms, including direct, allosteric effects on the transcription machinery, co-transcriptional recruitment of proteins needed for mRNA-capping, splicing and 3′ end maturation, dependent on multisite phosphorylation of the RNAP II C-terminal domain (CTD) and, perhaps, direct regulation of RNA-processing or histone-modifying machinery. Here we review these recent advances, and preview the emerging challenges for transcription-cycle research. PMID:23756342
Uzbekova, Svetlana; Roy-Sabau, Monica; Dalbiès-Tran, Rozenn; Perreau, Christine; Papillier, Pascal; Mompart, Florence; Thelie, Aurore; Pennetier, Sophie; Cognie, Juliette; Cadoret, Veronique; Royere, Dominique; Monget, Philippe; Mermillod, Pascal
2006-01-01
Background Zygote arrest 1 (ZAR1) is one of the few known oocyte-specific maternal-effect genes essential for the beginning of embryo development discovered in mice. This gene is evolutionary conserved in vertebrates and ZAR1 protein is characterized by the presence of atypical plant homeobox zing finger domain, suggesting its role in transcription regulation. This work was aimed at the study of this gene, which could be one of the key regulators of successful preimplantation development of domestic animals, in pig and cattle, as compared with human. Methods Screenings of somatic cell hybrid panels and in silico research were performed to characterize ZAR1 chromosome localization and sequences. Rapid amplification of cDNA ends was used to obtain full-length cDNAs. Spatio-temporal mRNA expression patterns were studied using Northern blot, reverse transcription coupled to polymerase chain reaction and in situ hybridization. Results We demonstrated that ZAR1 is a single copy gene, positioned on chromosome 8 in pig and 6 in cattle, and several variants of correspondent cDNA were cloned from oocytes. Sequence analysis of ZAR1 cDNAs evidenced numerous short inverted repeats within the coding sequences and putative Pumilio-binding and embryo-deadenylation elements within the 3'-untranslated regions, indicating the potential regulation ways. We showed that ZAR1 expressed exclusively in oocytes in pig ovary, persisted during first cleavages in embryos developed in vivo and declined sharply in morulae and blastocysts. ZAR1 mRNA was also detected in testis, and, at lower level, in hypothalamus and pituitary in both species. For the first time, ZAR1 was localized in testicular germ cells, notably in round spermatids. In addition, in pig, cattle and human only shorter ZAR1 transcript variants resulting from alternative splicing were found in testis as compared to oocyte. Conclusion Our data suggest that in addition to its role in early embryo development highlighted by expression pattern of full-length transcript in oocytes and early embryos, ZAR1 could also be implicated in the regulation of meiosis and post meiotic differentiation of male and female germ cells through expression of shorter splicing variants. Species conservation of ZAR1 expression and regulation underlines the central role of this gene in early reproductive processes. PMID:16551357
Insights into the nuclear export of murine leukemia virus intron-containing RNA.
Pessel-Vivares, Lucie; Houzet, Laurent; Lainé, Sébastien; Mougel, Marylène
2015-01-01
The retroviral genome consists of an intron-containing transcript that has essential cytoplasmic functions in the infected cell. This viral transcript can escape splicing, circumvent the nuclear checkpoint mechanisms and be transported to the cytoplasm by hijacking the host machinery. Once in the cytoplasm, viral unspliced RNA acts as mRNA to be translated and as genomic RNA to be packaged into nascent viruses. The murine leukemia virus (MLV) is among the first retroviruses discovered and is classified as simple Retroviridae due to its minimal encoding capacity. The oncogenic and transduction abilities of MLV are extensively studied, whereas surprisingly the crucial step of its nuclear export has remained unsolved until 2014. Recent work has revealed the recruitment by MLV of the cellular NXF1/Tap-dependent pathway for export. Unconventionally, MLV uses of Tap to export both spliced and unspliced viral RNAs. Unlike other retroviruses, MLV does not harbor a unique RNA signal for export. Indeed, multiple sequences throughout the MLV genome appear to promote export of the unspliced MLV RNA. We review here the current understanding of the export mechanism and highlight the determinants that influence MLV export. As the molecular mechanism of MLV export is elucidated, we will gain insight into the contribution of the export pathway to the cytoplasmic fate of the viral RNA.
Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A
2015-01-01
Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons. PMID:25492562
Hong, Yoonki; Kim, Woo Jin; Bang, Chi Young; Lee, Jae Cheol; Oh, Yeon-Mok
2016-04-01
Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.
Dong, Wei-Xia; Ding, Jin-Li; Gao, Yang; Peng, Yue-Jin; Feng, Ming-Guang; Ying, Sheng-Hua
2017-10-01
Alternative splicing (AS) regulates various biological processes in fungi by extending the cellular proteome. However, comprehensive studies investigating AS in entomopathogenic fungi are lacking. Based on transcriptome data obtained via dual RNA-seq, the first overview of AS events was developed for Beauveria bassiana growing in an insect haemocoel. The AS was demonstrated for 556 of 8840 expressed genes, accounting for 5.4% of the total genes in B. bassiana. Intron retention was the most abundant type of AS, accounting for 87.1% of all splicing events and exon skipping events were rare, only accounting for 2.0% of all events. Functional distribution analysis indicated an association between alternatively spliced genes and several physiological processes. Notably, B. bassiana autophagy-related gene 8 (BbATG8), an indispensable gene for autophagy, was spliced at an alternative 5' splice site to generate two transcripts (BbATG8-α and BbATG8-β). The BbATG8-α transcript was necessary for fungal autophagy and oxidation tolerance, while the BbATG8-β transcript was not. These two transcripts differentially contributed to the formation of conidia or blastospores as well as fungal virulence. Thus, AS acts as a powerful post-transcriptional regulatory strategy in insect mycopathogens and significantly mediates fungal transcriptional adaption to host niches. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
L-Dopa decarboxylase expression profile in human cancer cells.
Chalatsa, Ioanna; Nikolouzou, Eleftheria; Fragoulis, Emmanuel G; Vassilacopoulou, Dido
2011-02-01
L-Dopa decarboxylase (DDC) catalyses the decarboxylation of L-Dopa. It has been shown that the DDC gene undergoes alternative splicing within its 5'-untranslated region (UTR), in a tissue-specific manner, generating identical protein products. The employment of two alternative 5'UTRs is thought to be responsible for tissue-specific expression of the human DDC mRNA. In this study, we focused on the investigation of the nature of the mRNA expression in human cell lines of neural and non-neural origin. Our results show the expression of a neural-type DDC mRNA splice variant, lacking exon 3 in all cell lines studied. Co-expression of the full length non-neural DDC mRNA and the neural-type DDC splice variant lacking exon 3 was detected in all cell lines. The alternative DDC protein isoform, Alt-DDC, was detected in SH-SY5Y and HeLa cells. Our findings suggest that the human DDC gene undergoes complex processing, leading to the formation of multiple mRNA isoforms. The study of the significance of this phenomenon of multiple DDC mRNA isoforms could provide us with new information leading to the elucidation of the complex biological pathways that the human enzyme is involved in.
Douglass, Stephen; Galivanche, Anoop R.
2017-01-01
Abstract Despite its relatively streamlined genome, there are important examples of regulated RNA splicing in Saccharomyces cerevisiae, such as splicing of meiotic transcripts. Like other eukaryotes, S. cerevisiae undergoes a dramatic reprogramming of gene expression during meiosis, including regulated splicing of a number of crucial meiosis-specific RNAs. Splicing of a subset of these is dependent upon the splicing activator Mer1. Here we show a crucial role for the chromatin remodeler Swi/Snf in regulation of splicing of meiotic genes and find that the complex affects meiotic splicing in two ways. First, we show that Swi/Snf regulates nutrient-dependent downregulation of ribosomal protein encoding RNAs, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs (the ribosomal protein genes) to Mer1-regulated transcripts. We also demonstrate that Mer1 expression is dependent on Snf2, its acetylation state and histone H3 lysine 9 acetylation at the MER1 locus. Hence, Snf2 exerts systems level control of meiotic gene expression through two temporally distinct mechanisms, demonstrating that it is a key regulator of meiotic splicing in S. cerevisiae. We also reveal an evolutionarily conserved mechanism whereby the cell redirects its energy from maintaining its translational capacity to the process of meiosis. PMID:28637241
FOX-2 Dependent Splicing of Ataxin-2 Transcript Is Affected by Ataxin-1 Overexpression
Welzel, Franziska; Kaehler, Christian; Isau, Melanie; Hallen, Linda; Lehrach, Hans; Krobitsch, Sylvia
2012-01-01
Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1. PMID:22666429
Sato, Akira; Takano, Takeshi; Hiramoto, Akiko; Naito, Tomoharu; Matsuda, Akira; Fukushima, Masakazu; Wataya, Yusuke; Kim, Hye-Sook
2017-08-01
A nucleosidic medicine, 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine [3'-ethynylcytidine (ECyd)], is a potent inhibitor of RNA polymerase I and shows anticancer activity to various human solid tumors in vitro and in vivo. ECyd is phosphorylated to 3'-ethyntlcytidine 5'-monophosphate by uridine/cytidine kinase 2 (UCK2) and subsequently further to diphosphate and triphosphate (3'-ethyntlcytidine 5'-diphosphate, 3'-ethyntlcytidine 5'-triphosphate). 3'-Ethyntlcytidine 5'-triphosphate is an active metabolite that can inhibit RNA polymerase I competitively, causing cancer cell death. Here, to identify the UCK2 mutation for detecting responder or nonresponder to ECyd, we investigated the relationship between point mutation of the UCK2 gene and response to ECyd in various human solid tumors. We identified several functional point mutations including the splice-site mutation of the UCK2 gene IVS5+5 G>A. In addition, we found that the IVS5+5 G>A variant generates an aberrant mRNA transcript, namely, truncated mRNA was produced and normal mRNA levels were markedly decreased in the ECyd-resistant cancer cell line HT1080. We concluded that these findings strongly suggest that the IVS5+5 G>A variant would affect the expression level of the UCK2 transcript, resulting in decreased sensitivity to ECyd.
Detection and Analysis of Circular RNAs by RT-PCR.
Panda, Amaresh C; Gorospe, Myriam
2018-03-20
Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al ., 2017b; Panda et al ., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al ., 2015 and 2017; Panda et al ., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.
Leveraging transcript quantification for fast computation of alternative splicing profiles.
Alamancos, Gael P; Pagès, Amadís; Trincado, Juan L; Bellora, Nicolás; Eyras, Eduardo
2015-09-01
Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. © 2015 Alamancos et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Hamdollah Zadeh, Maryam A; Amin, Elianna M; Hoareau-Aveilla, Coralie; Domingo, Enric; Symonds, Kirsty E; Ye, Xi; Heesom, Katherine J; Salmon, Andrew; D'Silva, Olivia; Betteridge, Kai B; Williams, Ann C; Kerr, David J; Salmon, Andrew H J; Oltean, Sebastian; Midgley, Rachel S; Ladomery, Michael R; Harper, Steven J; Varey, Alexander H R; Bates, David O
2015-01-01
The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A165b. Whereas flTIA-1 selectively bound VEGF-A165 mRNA and increased translation of VEGF-A165b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Species-Specific Exon Loss in Human Transcriptomes
Wang, Jinkai; Lu, Zhi-xiang; Tokheim, Collin J.; Miller, Sara E.; Xing, Yi
2015-01-01
Changes in exon–intron structures and splicing patterns represent an important mechanism for the evolution of gene functions and species-specific regulatory networks. Although exon creation is widespread during primate and human evolution and has been studied extensively, much less is known about the scope and potential impact of human-specific exon loss events. Historically, transcriptome data and exon annotations are significantly biased toward humans over nonhuman primates. This ascertainment bias makes it challenging to discover human-specific exon loss events. We carried out a transcriptome-wide search of human-specific exon loss events, by taking advantage of RNA sequencing (RNA-seq) as a powerful and unbiased tool for exon discovery and annotation. Using RNA-seq data of humans, chimpanzees, and other primates, we reconstructed and compared transcript structures across the primate phylogeny. We discovered 33 candidate human-specific exon loss events, among which six exons passed stringent experimental filters for the complete loss of splicing activities in diverse human tissues. These events may result from human-specific deletion of genomic DNA, or small-scale sequence changes that inactivated splicing signals. The impact of human-specific exon loss events is predominantly regulatory. Three of the six events occurred in the 5′ untranslated region (5′-UTR) and affected cis-regulatory elements of mRNA translation. In SLC7A6, a gene encoding an amino acid transporter, luciferase reporter assays suggested that both a human-specific exon loss event and an independent human-specific single nucleotide substitution in the 5′-UTR increased mRNA translational efficiency. Our study provides novel insights into the molecular mechanisms and evolutionary consequences of exon loss during human evolution. PMID:25398629
2012-01-01
Background VDR may be considered as a candidate gene potentially related to Idiopathic Scoliosis susceptibility and natural history. Transcriptional profile of VDR mRNA isoforms might be changed in the structural tissues of the scoliotic spine and potentially influence the expression of VDR responsive genes. The purpose of the study was to determine differences in mRNA abundance of VDR isoforms in bone, cartilage and paravertebral muscles between tissues from curve concavity and convexity, between JIS and AIS and to identify VDR responsive genes differentiating Juvenile and Adolescent Idiopathic Scoliosis in paravertebral muscles. Methods In a group of 29 patients with JIS and AIS, specimens of bone, cartilage, paravertebral muscles were harvested at the both sides of the curve apex together with peripheral blood samples. Extracted total RNA served as a matrix for VDRs and VDRl mRNA quantification by QRT PCR. Subsequent microarray analysis of paravertebral muscular tissue samples was performed with HG U133A chips (Affymetrix). Quantitative data were compared by a nonparametric Mann Whitney U test. Microarray results were analyzed with GeneSpring 11GX application. Matrix plot of normalized log-intensities visualized the degree of differentiation between muscular tissue transcriptomes of JIS and AIS group. Fold Change Analysis with cutoff of Fold Change ≥2 identified differentially expressed VDR responsive genes in paravertebral muscles of JIS and AIS. Results No significant differences in transcript abundance of VDR isoforms between tissues of the curve concavity and convexity were found. Statistically significant difference between JIS and AIS group in mRNA abundance of VDRl isoform was found in paravertebral muscles of curve concavity. Higher degree of muscular transcriptome differentiation between curve concavity and convexity was visualized in JIS group. In paravertebral muscles Tob2 and MED13 were selected as genes differentially expressed in JIS and AIS group. Conclusions In Idiopathic Scolioses transcriptional activity and alternative splicing of VDR mRNA in osseous, cartilaginous, and paravertebral muscular tissues are tissue specific and equal on both sides of the curve. The number of mRNA copies of VDRl izoform in concave paravertebral muscles might be one of the factors differentiating JIS and AIS. In paravertebral muscles Tob2 and Med13 genes differentiate Adolescent and Juvenile type of Idiopathic Scoliosis. PMID:23259508
Protein Arginine Methylation in Mammals: Who, What, and Why
Bedford, Mark T.; Clarke, Steven G.
2012-01-01
The covalent marking of proteins by methyl group addition to arginine residues can promote their recognition by binding partners or can modulate their biological activity. A small family of gene products that catalyze such methylation reactions in eukaryotes (PRMTs) work in conjunction with a changing cast of associated subunits to recognize distinct cellular substrates. These reactions display many of the attributes of reversible covalent modifications such as protein phosphorylation or protein lysine methylation; however, it is unclear to what extent protein arginine demethylation occurs. Physiological roles for protein arginine methylation have been established in signal transduction, mRNA splicing, transcriptional control, DNA repair, and protein translocation. PMID:19150423
The forkhead transcription factor FoxY regulates Nanos
Song, Jia L.; Wessel, Gary M.
2012-01-01
FoxY is a member of the forkhead transcription factor family that appeared enriched in the presumptive germ line of sea urchins (Ransick et al., 2002, Dev Biol 246:132). Here we test the hypothesis that FoxY is involved in germ line determination in this animal. We found two splice forms of FoxY that share the same DNA-binding domain but vary in the carboxy-terminal trans-activation/repression domain. Both forms of the FoxY protein are present in the ovary and in the early embryo, and their mRNAs accumulate to their highest levels in the small micromeres and adjacent non-skeletogenic mesoderm. Knockdown of FoxY resulted in a dramatic decrease in the Nanos mRNA and protein levels as well as a loss of coelomic pouches in the 2-week-old larvae. Our results indicate that FoxY positively regulates Nanos at the transcriptional level and is essential for reproductive potential in this organism. PMID:22777754
The forkhead transcription factor FoxY regulates Nanos.
Song, Jia L; Wessel, Gary M
2012-10-01
FoxY is a member of the forkhead transcription factor family that appeared enriched in the presumptive germ line of sea urchins (Ransick et al. Dev Biol 2002;246:132). Here, we test the hypothesis that FoxY is involved in germ line determination in this animal. We found two splice forms of FoxY that share the same DNA-binding domain, but vary in the carboxy-terminal trans-activation/repression domain. Both forms of the FoxY protein are present in the egg and in the early embryo, and their mRNAs accumulate to their highest levels in the small micromeres and adjacent non-skeletogenic mesoderm. Knockdown of FoxY resulted in a dramatic decrease in Nanos mRNA and protein levels as well as a loss of coelomic pouches in 2-week-old larvae. Our results indicate that FoxY positively regulates Nanos at the transcriptional level and is essential for reproductive potential in this organism. Copyright © 2012 Wiley Periodicals, Inc.
Hannibal, Mark C.; Kimelman, David
2010-01-01
Background Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the in vivo role of SEPT9 is unknown. Methodology/Principal Findings Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. Conclusions/Significance Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9. PMID:20502708
Biomolecular engineering of intracellular switches in eukaryotes
Pastuszka, M.K.; Mackay, J.A.
2010-01-01
Tools to selectively and reversibly control gene expression are useful to study and model cellular functions. When optimized, these cellular switches can turn a protein's function “on” and “off” based on cues designated by the researcher. These cues include small molecules, drugs, hormones, and even temperature variations. Here we review three distinct areas in gene expression that are commonly targeted when designing cellular switches. Transcriptional switches target gene expression at the level of mRNA polymerization, with examples including the tetracycline gene induction system as well as nuclear receptors. Translational switches target the process of turning the mRNA signal into protein, with examples including riboswitches and RNA interference. Post-translational switches control how proteins interact with one another to attenuate or relay signals. Examples of post-translational modification include dimerization and intein splicing. In general, the delay times between switch and effect decreases from transcription to translation to post-translation; furthermore, the fastest switches may offer the most elegant opportunities to influence and study cell behavior. We discuss the pros and cons of these strategies, which directly influence their usefulness to study and implement drug targeting at the tissue and cellular level. PMID:21209849
The RNA Splicing Response to DNA Damage.
Shkreta, Lulzim; Chabot, Benoit
2015-10-29
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
The RNA Splicing Response to DNA Damage
Shkreta, Lulzim; Chabot, Benoit
2015-01-01
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031
Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20.
Rexiati, Maimaiti; Sun, Mingming; Guo, Wei
2018-01-05
Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease.
Kim, Jung-Hyun; Baddoo, Melody C.; Park, Eun Young; Stone, Joshua K.; Park, Hyeonsoo; Butler, Thomas W.; Huang, Gang; Yan, Xiaomei; Pauli-Behn, Florencia; Myers, Richard M.; Tan, Ming; Flemington, Erik K.; Lim, Ssang-Taek; Erin Ahn, Eun-Young
2016-01-01
SUMMARY Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy, but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia. PMID:26990989
A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis
Huang, Chao-Feng; Miki, Daisuke; Tang, Kai; Zhou, Hao-Ran; Zheng, Zhimin; Chen, Wei; Ma, Ze-Yang; Yang, Lan; Zhang, Heng; Liu, Renyi; He, Xin-Jian; Zhu, Jian-Kang
2013-01-01
Cytosine DNA methylation is a stable epigenetic mark that is frequently associated with the silencing of genes and transposable elements (TEs). In Arabidopsis, the establishment of DNA methylation is through the RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification and characterization of RDM16, a new factor in the RdDM pathway. Mutation of RDM16 reduced the DNA methylation levels and partially released the silencing of a reporter gene as well as some endogenous genomic loci in the DNA demethylase ros1-1 mutant background. The rdm16 mutant had morphological defects and was hypersensitive to salt stress and abscisic acid (ABA). Map-based cloning and complementation test led to the identification of RDM16, which encodes a pre-mRNA-splicing factor 3, a component of the U4/U6 snRNP. RNA-seq analysis showed that 308 intron retention events occurred in rdm16, confirming that RDM16 is involved in pre-mRNA splicing in planta. RNA-seq and mRNA expression analysis also revealed that the RDM16 mutation did not affect the pre-mRNA splicing of known RdDM genes, suggesting that RDM16 might be directly involved in RdDM. Small RNA expression analysis on loci showing RDM16-dependent DNA methylation suggested that unlike the previously reported putative splicing factor mutants, rdm16 did not affect small RNA levels; instead, the rdm16 mutation caused a decrease in the levels of Pol V transcripts. ChIP assays revealed that RDM16 was enriched at some Pol V target loci. Our results suggest that RDM16 regulates DNA methylation through influencing Pol V transcript levels. Finally, our genome-wide DNA methylation analysis indicated that RDM16 regulates the overall methylation of TEs and gene-surrounding regions, and preferentially targets Pol IV-dependent DNA methylation loci and the ROS1 target loci. Our work thus contributes to the understanding of RdDM and its interactions with active DNA demethylation. PMID:24068953
DiffSplice: the genome-wide detection of differential splicing events with RNA-seq
Hu, Yin; Huang, Yan; Du, Ying; Orellana, Christian F.; Singh, Darshan; Johnson, Amy R.; Monroy, Anaïs; Kuan, Pei-Fen; Hammond, Scott M.; Makowski, Liza; Randell, Scott H.; Chiang, Derek Y.; Hayes, D. Neil; Jones, Corbin; Liu, Yufeng; Prins, Jan F.; Liu, Jinze
2013-01-01
The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on experimental biological data sets. The software of DiffSplice is available at http://www.netlab.uky.edu/p/bioinfo/DiffSplice. PMID:23155066
Jin, Lirong; Li, Guanglin; Yu, Dazhao; Huang, Wei; Cheng, Chao; Liao, Shengjie; Wu, Qijia; Zhang, Yi
2017-02-06
Alternative splicing (AS) regulation is extensive and shapes the functional complexity of higher organisms. However, the contribution of alternative splicing to fungal biology is not well studied. This study provides sequences of the transcriptomes of the plant wilt pathogen Verticillium dahliae, using two different strains and multiple methods for cDNA library preparations. We identified alternatively spliced mRNA isoforms in over a half of the multi-exonic fungal genes. Over one-thousand isoforms involve TopHat novel splice junction; multiple types of combinatory alternative splicing patterns were identified. We showed that one Verticillium gene could use four different 5' splice sites and two different 3' donor sites to produce up to five mature mRNAs, representing one of the most sophisticated alternative splicing model in eukaryotes other than animals. Hundreds of novel intron types involving a pair of new splice sites were identified in the V. dahliae genome. All the types of AS events were validated by using RT-PCR. Functional enrichment analysis showed that AS genes are involved in most known biological functions and enriched in ATP biosynthesis, sexual/asexual reproduction, morphogenesis, signal transduction etc., predicting that the AS regulation modulates mRNA isoform output and shapes the V. dahliae proteome plasticity of the pathogen in response to the environmental and developmental changes. These findings demonstrate the comprehensive alternative splicing mechanisms in a fungal plant pathogen, which argues the importance of this fungus in developing complicate genome regulation strategies in eukaryotes.
Wang, Ziqiang; Liu, Qing; Lu, Jinhua; Fan, Ping; Xie, Weidong; Qiu, Wei; Wang, Fan; Hu, Guangnan; Zhang, Yaou
2016-12-16
Once it enters the host cell, herpes simplex virus type 1 (HSV-1) recruits a series of host cell factors to facilitate its life cycle. Here, we demonstrate that serine/arginine-rich splicing factor 2 (SRSF2), which is an important component of the splicing speckle, mediates HSV-1 replication by regulating viral gene expression at the transcriptional and posttranscriptional levels. Our results indicate that SRSF2 functions as a transcriptional activator by directly binding to infected cell polypeptide 0 (ICP0), infected cell polypeptide 27 (ICP27), and thymidine kinase promoters. Moreover, SRSF2 participates in ICP0 pre-mRNA splicing by recognizing binding sites in ICP0 exon 3. These findings provide insight into the functions of SRSF2 in HSV-1 replication and gene expression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
López-Urrutia, Eduardo; Valdés, Jesús; Bonilla-Moreno, Raúl; Martínez-Salazar, Martha; Martínez-Garcia, Martha; Berumen, Jaime; Villegas-Sepúlveda, Nicolás
2012-06-01
The HPV-16 E6/E7 genes, which contain intron 1, are processed by alternative splicing and its transcripts are detected with a heterogeneous profile in tumours cells. Frequently, the HPV-16 positive carcinoma cells bear viral variants that contain single nucleotide polymorphisms into its DNA sequence. We were interested in analysing the contribution of this polymorphism to the heterogeneity in the pattern of the E6/E7 spliced transcripts. Using the E6/E7 sequences from three closely related HPV-16 variants, we have shown that a few nucleotide changes are sufficient to produce heterogeneity in the splicing profile. Furthermore, using mutants that contained a single SNP, we also showed that one nucleotide change was sufficient to reproduce the heterogeneous splicing profile. Additionally, a difference of two or three SNPs among these viral sequences was sufficient to recruit differentially several splicing factors to the polymorphic E6/E7 transcripts. Moreover, only one SNP was sufficient to alter the binding site of at least one splicing factor, changing the ability of splicing factors to bind the transcript. Finally, the factors that were differentially bound to the short form of intron 1 of one of these E6/E7 variants were identified as TIA1 and/or TIAR and U1-70k, while U2AF65, U5-52k and PTB were preferentially bound to the transcript of the other variants. Copyright © 2012 Elsevier B.V. All rights reserved.
Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs
LeGault, Laura H.; Dewey, Colin N.
2013-01-01
Motivation: Alternative splicing and other processes that allow for different transcripts to be derived from the same gene are significant forces in the eukaryotic cell. RNA-Seq is a promising technology for analyzing alternative transcripts, as it does not require prior knowledge of transcript structures or genome sequences. However, analysis of RNA-Seq data in the presence of genes with large numbers of alternative transcripts is currently challenging due to efficiency, identifiability and representation issues. Results: We present RNA-Seq models and associated inference algorithms based on the concept of probabilistic splice graphs, which alleviate these issues. We prove that our models are often identifiable and demonstrate that our inference methods for quantification and differential processing detection are efficient and accurate. Availability: Software implementing our methods is available at http://deweylab.biostat.wisc.edu/psginfer. Contact: cdewey@biostat.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23846746
Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing
Munding, Elizabeth M.; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel
2013-01-01
Summary During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells RPG repression by rapamycin treatment also increases splicing efficiency. Down-regulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and pre-mRNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s) but also on those of competing pre-mRNAs. Competition between RNAs for limiting RNA processing factors appears to be a general condition in eukaryotic cells important for function of a variety of post-transcriptional control mechanisms including miRNA repression, polyadenylation and splicing. PMID:23891561
Tsotakos, Nikolaos; Silveyra, Patricia; Lin, Zhenwu; Thomas, Neal; Vaid, Mudit
2014-01-01
Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5′-untranslated regions (5′-UTR) due to differential splicing. The 5′-UTR variant ACD′ is exclusively found in transcripts of SP-A1, but not in those of SP-A2. Its unique exon C contains two upstream AUG codons (uAUGs) that may affect SP-A1 translation efficiency. The first uAUG (u1) is in frame with the primary start codon (p), but the second one (u2) is not. The purpose of this study was to assess the impact of uAUGs on SP-A1 expression. We employed RT-qPCR to determine the presence of exon C-containing SP-A1 transcripts in human RNA samples. We also used in vitro techniques including mutagenesis, reporter assays, and toeprinting analysis, as well as in silico analyses to determine the role of uAUGs. Exon C-containing mRNA is present in most human lung tissue samples and its expression can, under certain conditions, be regulated by factors such as dexamethasone or endotoxin. Mutating uAUGs resulted in increased luciferase activity. The mature protein size was not affected by the uAUGs, as shown by a combination of toeprint and in silico analysis for Kozak sequence, secondary structure, and signal peptide and in vitro translation in the presence of microsomes. In conclusion, alternative splicing may introduce uAUGs in SP-A1 transcripts, which in turn negatively affect SP-A1 translation, possibly affecting SP-A1/SP-A2 ratio, with potential for clinical implication. PMID:25326576
Nielsen, O F; Carin, M; Westergaard, O
1984-01-01
In isolated nucleoli from Tetrahymena thermophila, low concentrations of the intercalating agent proflavine inhibit both transcription termination and splicing of the rRNA precursor. Proflavine also exerts an in vivo effect on the process of transcription termination under conditions, where the growth rate is only slightly reduced. Thus, approximately 40% of the rRNA precursor molecules, accumulated in nucleoli during 60 min of treatment with the drug, are longer than the normal 35S rRNA precursor. R-Loop mapping of these longer precursor molecules isolated after 30 and 60 min of incubation demonstrates that the RNA polymerases have a 50 fold lower elongation rate in the spacer region than in the coding region. Proflavine in the given concentration is found to have no significant effect on the splicing of properly terminated precursor molecules. In contrast, none of the longer non-terminated molecules are found to be spliced. These results indicate that proflavine primarily affects the process of transcription termination and that the splicing event is inhibited due to the improper termination of the precursor molecule. Images PMID:6694912
A deep intronic mutation in the SLC12A3 gene leads to Gitelman syndrome.
Nozu, Kandai; Iijima, Kazumoto; Nozu, Yoshimi; Ikegami, Ei; Imai, Takehide; Fu, Xue Jun; Kaito, Hiroshi; Nakanishi, Koichi; Yoshikawa, Norishige; Matsuo, Masafumi
2009-11-01
Many mutations have been detected in the SLC12A3 gene of Gitelman syndrome (GS, OMIM 263800) patients. In previous studies, only one mutant allele was detected in approximately 20 to 41% of patients with GS; however, the exact reason for the nonidentification has not been established. In this study, we used RT-PCR using mRNA to investigate for the first time transcript abnormalities caused by deep intronic mutation. Direct sequencing analysis of leukocyte DNA identified one base insertion in exon 6 (c.818_819insG), but no mutation was detected in another allele. We analyzed RNA extracted from leukocytes and urine sediments and detected unknown sequence containing 238bp between exons 13 and 14. The genomic DNA analysis of intron 13 revealed a single-base substitution (c.1670-191C>T) that creates a new donor splice site within the intron resulting in the inclusion of a novel cryptic exon in mRNA. This is the first report of creation of a splice site by a deep intronic single-nucleotide change in GS and the first report to detect the onset mechanism in a patient with GS and missing mutation in one allele. This molecular onset mechanism may partly explain the poor success rate of mutation detection in both alleles of patients with GS.
The Structure and Function of the Rous Sarcoma virus RNA Stability Element
Withers, Johanna B.; Beemon, Karen L.
2013-01-01
For simple retroviruses, such as the Rous sarcoma virus (RSV), post-transcriptional control elements regulate viral RNA splicing, export, stability, and packaging into virions. These RNA sequences interact with cellular host proteins to regulate and facilitate productive viral infections. One such element, known as the RSV stability element (RSE), is required for maintaining stability of the full-length unspliced RNA. This viral RNA serves as the mRNA for the Gag and Pol proteins and also as the genome packaged in progeny virions. When the RSE is deleted from the viral RNA, the unspliced RNA becomes unstable and is degraded in a Upf1-dependent manner. Current evidence suggests that the RSE inhibits recognition of the viral gag termination codon by the nonsense-mediated mRNA decay (NMD) pathway. We believe that the RSE acts as an insulator to NMD, thereby preventing at least one of the required functional steps that target an mRNA for degradation. Here, we discuss the history of the RSE and the current model of how the RSE is interacting with cellular NMD factors. PMID:21769913
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funkenstein, B.; Leary, S.L.; Stein, J.C.
1988-03-01
The Gus-s/sup ..cap alpha../ allele of the mouse ..beta..-glucuronidase gene exhibits a high degree of inducibility by androgens due to its linkage with the Gus-r/sup ..cap alpha../ regulatory locus. The authors isolated Gus-s/sup ..cap alpha../ on a 28-kilobase pair fragment of mouse chromosome 5 and found that it contains 12 exons and 11 intervening sequences spanning 14 kilobase pairs of this genomic segment. The mRNA cap site was identified by ribonuclease protection and primer extension analyses which revealed an unusually short 5' noncoding sequence of 12 nucleotides. Proximal regulatory sequences in the 5'-flanking DNA and the complete sequence of themore » Gus-s/sup ..cap alpha../ mRNA transcript were also determined. Comparison of the amino acid sequence determined from the Gus-s/sup ..cap alpha../ nucleotide sequence with that of human ..beta..-glucuronidase indicated that the two human mRNA species differ due to alternate splicing of an exon homologous to exon 6 of the mouse gene.« less
The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens
Lang, Daniel; Zimmer, Andreas D; Causier, Barry
2018-01-01
Abstract Nonsense-mediated mRNA decay (NMD) is important for RNA quality control and gene regulation in eukaryotes. NMD targets aberrant transcripts for decay and also directly influences the abundance of non-aberrant transcripts. In animals, the SMG1 kinase plays an essential role in NMD by phosphorylating the core NMD factor UPF1. Despite SMG1 being ubiquitous throughout the plant kingdom, little is known about its function, probably because SMG1 is atypically absent from the genome of the model plant, Arabidopsis thaliana. By combining our previously established SMG1 knockout in moss with transcriptome-wide analysis, we reveal the range of processes involving SMG1 in plants. Machine learning assisted analysis suggests that 32% of multi-isoform genes produce NMD-targeted transcripts and that splice junctions downstream of a stop codon act as the major determinant of NMD targeting. Furthermore, we suggest that SMG1 is involved in other quality control pathways, affecting DNA repair and the unfolded protein response, in addition to its role in mRNA quality control. Consistent with this, smg1 plants have increased susceptibility to DNA damage, but increased tolerance to unfolded protein inducing agents. The potential involvement of SMG1 in RNA, DNA and protein quality control has major implications for the study of these processes in plants. PMID:29596649
Nuzzo, F; Bulato, C; Nielsen, B I; Lee, K; Wielders, S J; Simioni, P; Key, N S; Castoldi, E
2015-03-01
Coagulation factor V (FV) deficiency is a rare autosomal recessive bleeding disorder. We investigated a patient with severe FV deficiency (FV:C < 3%) and moderate bleeding symptoms. Thrombin generation experiments showed residual FV expression in the patient's plasma, which was quantified as 0.7 ± 0.3% by a sensitive prothrombinase-based assay. F5 gene sequencing identified a novel missense mutation in exon 4 (c.578G>C, p.Cys193Ser), predicting the abolition of a conserved disulphide bridge, and an apparently synonymous variant in exon 8 (c.1281C>G). The observation that half of the patient's F5 mRNA lacked the last 18 nucleotides of exon 8 prompted us to re-evaluate the c.1281C>G variant for its possible effects on splicing. Bioinformatics sequence analysis predicted that this transversion would activate a cryptic donor splice site and abolish an exonic splicing enhancer. Characterization in a F5 minigene model confirmed that the c.1281C>G variant was responsible for the patient's splicing defect, which could be partially corrected by a mutation-specific morpholino antisense oligonucleotide. The aberrantly spliced F5 mRNA, whose stability was similar to that of the normal mRNA, encoded a putative FV mutant lacking amino acids 427-432. Expression in COS-1 cells indicated that the mutant protein is poorly secreted and not functional. In conclusion, the c.1281C>G mutation, which was predicted to be translationally silent and hence neutral, causes FV deficiency by impairing pre-mRNA splicing. This finding underscores the importance of cDNA analysis for the correct assessment of exonic mutations. © 2014 John Wiley & Sons Ltd.
Geuverink, E; Verhulst, E C; van Leussen, M; van de Zande, L; Beukeboom, L W
2018-02-01
In many insect species maternal provision of sex-specifically spliced messenger RNA (mRNA) of sex determination genes is an essential component of the sex determination mechanism. In haplodiploid Hymenoptera, maternal provision in combination with genomic imprinting has been shown for the parasitoid Nasonia vitripennis, known as maternal effect genomic imprinting sex determination (MEGISD). Here, we characterize the sex determination cascade of Asobara tabida, another hymenopteran parasitoid. We show the presence of the conserved sex determination genes doublesex (dsx), transformer (tra) and transformer-2 (tra2) orthologues in As. tabida. Of these, At-dsx and At-tra are sex-specifically spliced, indicating a conserved function in sex determination. At-tra and At-tra2 mRNA is maternally provided to embryos but, in contrast to most studied insects, As. tabida females transmit a non-sex-specific splice form of At-tra mRNA to the eggs. In this respect, As. tabida sex determination differs from the MEGISD mechanism. How the paternal genome can induce female development in the absence of maternal provision of sex-specifically spliced mRNA remains an open question. Our study reports a hitherto unknown variant of maternal effect sex determination and accentuates the diversity of insect sex determination mechanisms. © 2017 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.
Bitel, Claudine L; Nathan, Rachel; Wong, Patrick; Kuppasani, Sunil; Matsushita, Masafumi; Kanazawa, Hrioshi; Frederikse, Peter H
2011-04-01
Alternative RNA splicing is essential in development and more rapid physiological processes that include disease mechanisms. Studies over the last 20 years demonstrated that RNA binding protein families, which mediate the alternative splicing of a large percentage of genes in mammals, contain isoforms with mutually exclusive expression in non-neural and neural progenitor cells vs. post-mitotic neurons, and regulate the comprehensive reprogramming of alternative splicing during neurogenesis. Polypyrimidine tract binding (PTB) proteins and Fox-1 proteins also undergo mutually exclusive alternative splicing in neural and non-neural cells that regulates their tissue-specific expression and splicing activities. Over the past 50 years, striking morphological similarities noted between lens fiber cells and neurons suggested that cell biology processes and gene expression profiles may be shared as well. Here, we examined mouse and rat lenses to determine if alternative splicing of neuronal nPTB and Fox-1/Fox-2 isoforms also occurs in lenses. Immunoblot, immunofluorescence, and RT-PCR were used to examine expression and alternative splicing of transcripts in lens and brain. We demonstrated that exon 10 is predominantly included in nPTB transcripts consistent with nPTB protein in lenses, and that alternatively spliced Fox-1/-2 lens transcripts contain exons that have been considered neuron-specific. We identified a 3' alternative Fox-1 exon in lenses that encodes a nuclear localization signal consistent with its protein distribution detected in fiber cells. Neuronal alternative splicing of kinesin KIF1Bβ2 has been associated with PTB/nPTB and Fox-2, and we found that two 'neuron-specific' exons are also included in lenses. The present study provides evidence that alternative neuronal nPTB and Fox-1/Fox-2 isoforms are also produced in lenses. These findings raise questions regarding the extent these factors contribute to a similar reprogramming of alternative splicing during lens differentiation, and the degree that alternative gene transcripts produced during neurogenesis are also expressed in the lens.
Awad, Agape M; Venkataramanan, Srivats; Nag, Anish; Galivanche, Anoop Raj; Bradley, Michelle C; Neves, Lauren T; Douglass, Stephen; Clarke, Catherine F; Johnson, Tracy L
2017-09-08
Despite its relatively streamlined genome, there are many important examples of regulated RNA splicing in Saccharomyces cerevisiae Here, we report a role for the chromatin remodeler SWI/SNF in respiration, partially via the regulation of splicing. We find that a nutrient-dependent decrease in Snf2 leads to an increase in splicing of the PTC7 transcript. The spliced PTC7 transcript encodes a mitochondrial phosphatase regulator of biosynthesis of coenzyme Q 6 (ubiquinone or CoQ 6 ) and a mitochondrial redox-active lipid essential for electron and proton transport in respiration. Increased splicing of PTC7 increases CoQ 6 levels. The increase in PTC7 splicing occurs at least in part due to down-regulation of ribosomal protein gene expression, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs to otherwise poorly spliced transcripts. In contrast, a protein encoded by the nonspliced isoform of PTC7 represses CoQ 6 biosynthesis. Taken together, these findings uncover a link between Snf2 expression and the splicing of PTC7 and establish a previously unknown role for the SWI/SNF complex in the transition of yeast cells from fermentative to respiratory modes of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Diamant, Gil; Eisenbaum, Tal; Leshkowitz, Dena; Dikstein, Rivka
2016-05-01
The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) modulates the expression of many genes, primarily through activation of NF-κB. Here, we examined the global effects of the elongation factor Spt5 on nascent and mature mRNAs of TNF-α-induced cells using chromatin and cytosolic subcellular fractions. We identified several classes of TNF-α-induced genes controlled at the level of transcription, splicing, and chromatin retention. Spt5 was found to facilitate splicing and chromatin release in genes displaying high induction rates. Further analysis revealed striking effects of TNF-α on the splicing of 25% of expressed genes; the vast majority were not transcriptionally induced. Splicing enhancement of noninduced genes by TNF-α was transient and independent of NF-κB. Investigating the underlying basis, we found that Spt5 is required for the splicing facilitation of the noninduced genes. In line with this, Spt5 interacts with Sm core protein splicing factors. Furthermore, following TNF-α treatment, levels of RNA polymerase II (Pol II) but not Spt5 are reduced from the splicing-induced genes, suggesting that these genes become enriched with a Pol II-Spt5 form. Our findings revealed the Pol II-Spt5 complex as a highly competent coordinator of cotranscriptional splicing. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Single-molecule RNA observation in vivo reveals dynamics of co-transcriptional splicing
NASA Astrophysics Data System (ADS)
Ferguson, M. L.; Coulon, A.; de Turris, V.; Palangat, M.; Chow, C. C.; Singer, R. H.; Larson, D. R.
2013-03-01
The synthesis of pre-mRNA and the splicing of that pre-mRNA to form completed transcripts requires coordination between two large multi-subunit complexes (the transcription elongation complex and the spliceosome). How this coordination occurs in vivo is unknown. Here we report the first experimental observation of transcription and splicing occurring at the same gene in living cells. By utilizing the PP7/MS2 fluorescent RNA reporter system, we can directly observe two distinct regions of the nascent RNA, allowing us to measure the rise and fall time of the intron and exon of a reporter gene stably integrated into a human cell line. The reporter gene consists of a beta globin gene where we have inserted a 24 RNA hairpin cassette into the intron/exon. Upon synthesis, the RNA hairpins are tightly bound by fluorescently-labeled PP7/MS2 bacteriophage coat proteins. After gene induction, a single locus of active transcription in the nucleus shows fluorescence intensity changes characteristic of the synthesis and excision of the intron/exon. Using fluctuation analysis, we determine the elongation rate to be 1.5 kb/min. From the temporal cross correlation function, we determine that splicing of this gene must be co-transcriptional with a splicing time of ~100 seconds before termination and a ~200 second pause at termination. We propose that dual-color RNA imaging may be extended to investigate other mechanisms of transcription, gene regulation, and RNA processing.
Huang, J M; Wang, Z Y; Ju, Z H; Wang, C F; Li, Q L; Sun, T; Hou, Q L; Hang, S Q; Hou, M H; Zhong, J F
2011-12-21
Bovine lactoferrin (bLF) is a member of the transferrin family; it plays an important role in the innate immune response. We identified novel splice variants of the bLF gene in mastitis-infected and healthy cows. Reverse transcription-polymerase chain reaction (RT-PCR) and clone sequencing analysis were used to screen the splice variants of the bLF gene in the mammary gland, spleen and liver tissues. One main transcript corresponding to the bLF reference sequence was found in three tissues in both healthy and mastitis-infected cows. Quantitative real-time PCR analysis showed that the expression levels of the LF gene's main transcript were not significantly different in tissues from healthy versus mastitis-infected cows. However, the new splice variant, LF-AS2, which has the exon-skipping alternative splicing pattern, was only identified in mammary glands infected with Staphylococcus aureus. Sequencing analysis showed that the new splice variant was 251 bp in length, including exon 1, part of exon 2, part of exon 16, and exon 17. We conclude that bLF may play a role in resistance to mastitis through alternative splicing mechanisms.
Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng
2014-02-01
Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.
Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng
2014-01-01
Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation. PMID:24394777
Decoding of exon splicing patterns in the human RUNX1-RUNX1T1 fusion gene.
Grinev, Vasily V; Migas, Alexandr A; Kirsanava, Aksana D; Mishkova, Olga A; Siomava, Natalia; Ramanouskaya, Tatiana V; Vaitsiankova, Alina V; Ilyushonak, Ilia M; Nazarov, Petr V; Vallar, Laurent; Aleinikova, Olga V
2015-11-01
The t(8;21) translocation is the most widespread genetic defect found in human acute myeloid leukemia. This translocation results in the RUNX1-RUNX1T1 fusion gene that produces a wide variety of alternative transcripts and influences the course of the disease. The rules of combinatorics and splicing of exons in the RUNX1-RUNX1T1 transcripts are not known. To address this issue, we developed an exon graph model of the fusion gene organization and evaluated its local exon combinatorics by the exon combinatorial index (ECI). Here we show that the local exon combinatorics of the RUNX1-RUNX1T1 gene follows a power-law behavior and (i) the vast majority of exons has a low ECI, (ii) only a small part is represented by "exons-hubs" of splicing with very high ECI values, and (iii) it is scale-free and very sensitive to targeted skipping of "exons-hubs". Stochasticity of the splicing machinery and preferred usage of exons in alternative splicing can explain such behavior of the system. Stochasticity may explain up to 12% of the ECI variance and results in a number of non-coding and unproductive transcripts that can be considered as a noise. Half-life of these transcripts is increased due to the deregulation of some key genes of the nonsense-mediated decay system in leukemia cells. On the other hand, preferred usage of exons may explain up to 75% of the ECI variability. Our analysis revealed a set of splicing-related cis-regulatory motifs that can explain "attractiveness" of exons in alternative splicing but only when they are considered together. Cis-regulatory motifs are guides for splicing trans-factors and we observed a leukemia-specific profile of expression of the splicing genes in t(8;21)-positive blasts. Altogether, our results show that alternative splicing of the RUNX1-RUNX1T1 transcripts follows strict rules and that the power-law component of the fusion gene organization confers a high flexibility to this process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L
2002-07-24
mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.
Regulated capture by exosomes of mRNAs for cytoplasmic tRNA synthetases.
Wang, Feng; Xu, Zhiwen; Zhou, Jie; Lo, Wing-Sze; Lau, Ching-Fun; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul
2013-10-11
Although tRNA synthetases are enzymes that catalyze the first step of translation in the cytoplasm, surprising functions unrelated to translation have been reported. These studies, and the demonstration of novel activities of splice variants, suggest a far broader reach of tRNA synthetases into cell biology than previously recognized. Here we show that mRNAs for most tRNA synthetases can be detected in exosomes. Also detected in exosomes was an mRNA encoding a unique splice variant that others had associated with prostate cancer. The exosomal mRNAs encoding the native synthetase and its cancer-associated splice variant could be translated in vitro and in mammalian cells into stable proteins. Other results showed that selection by exosomes of the splice variant mRNA could be regulated by an external stimulus. Thus, a broad and diverse regulated pool of tRNA synthetase-derived mRNAs is packaged for genetic exchange.
Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel
2007-01-01
Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403
Zhang, Zijun; Xing, Yi
2017-09-19
Crosslinking or RNA immunoprecipitation followed by sequencing (CLIP-seq or RIP-seq) allows transcriptome-wide discovery of RNA regulatory sites. As CLIP-seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped reads, while reads mapped to multiple loci are discarded. We present CLAM (CLIP-seq Analysis of Multi-mapped reads). CLAM uses an expectation-maximization algorithm to assign multi-mapped reads and calls peaks combining uniquely and multi-mapped reads. To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-seq/RIP-seq datasets involving numerous splicing factors, microRNAs and m6A RNA methylation. CLAM recovered a large number of novel RNA regulatory sites inaccessible by uniquely mapped reads. The functional significance of these sites was demonstrated by consensus motif patterns and association with alternative splicing (splicing factors), transcript abundance (AGO2) and mRNA half-life (m6A). CLAM provides a useful tool to discover novel protein-RNA interactions and RNA modification sites from CLIP-seq and RIP-seq data, and reveals the significant contribution of repetitive elements to the RNA regulatory landscape of the human transcriptome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mazaki-Tovi, Shali; Tarca, Adi L; Vaisbuch, Edi; Kusanovic, Juan Pedro; Than, Nandor Gabor; Chaiworapongsa, Tinnakorn; Dong, Zhong; Hassan, Sonia S; Romero, Roberto
2016-10-01
The aim of this study was to determine gene expression and splicing changes associated with parturition and regions (visceral vs. subcutaneous) of the adipose tissue of pregnant women. The transcriptome of visceral and abdominal subcutaneous adipose tissue from pregnant women at term with (n=15) and without (n=25) spontaneous labor was profiled with the Affymetrix GeneChip Human Exon 1.0 ST array. Overall gene expression changes and the differential exon usage rate were compared between patient groups (unpaired analyses) and adipose tissue regions (paired analyses). Selected genes were tested by quantitative reverse transcription-polymerase chain reaction. Four hundred and eighty-two genes were differentially expressed between visceral and subcutaneous fat of pregnant women with spontaneous labor at term (q-value <0.1; fold change >1.5). Biological processes enriched in this comparison included tissue and vasculature development as well as inflammatory and metabolic pathways. Differential splicing was found for 42 genes [q-value <0.1; differences in Finding Isoforms using Robust Multichip Analysis scores >2] between adipose tissue regions of women not in labor. Differential exon usage associated with parturition was found for three genes (LIMS1, HSPA5, and GSTK1) in subcutaneous tissues. We show for the first time evidence of implication of mRNA splicing and processing machinery in the subcutaneous adipose tissue of women in labor compared to those without labor.
Takahashi, Y; Endo, Y; Kusaka-Kikushima, A; Nakamaura, S; Nakazawa, Y; Ogi, T; Uryu, M; Tsuji, G; Furue, M; Moriwaki, S
2017-07-01
A certain relationship between XPA gene mutations and the severity of symptoms has been observed in patients with xeroderma pigmentosum group A (XP-A). Patients with mutations within the DNA-binding domain usually exhibit severe symptoms, whereas splicing mutations in the same domain sometimes cause very mild symptoms. This inconsistency can be explained by a small amount of functional XPA protein produced from normally spliced transcripts. We herein report the case of an adult Japanese patient with XP-A with unusually mild symptoms. We identified a homozygous c.529G>A mutation in exon 4 of the XPA gene, which resulted in aberrant splicing with a 29-bp deletion in exon 4 causing a frameshift. Intact mRNA was observable, but a Western blot analysis failed to detect any normal XPA protein. We therefore evaluated the DNA repair capacity in normal cells in which the XPA expression was artificially diminished. The repair capacity was still present in cells with trace levels of the XPA protein. The repair capacity of the cells derived from our patient with mild symptoms was poor by comparison, but still significant compared with that of the cells derived from a patient with XP-A with severe symptoms. These results provide strong evidence that a trace level of XPA protein can still exert a relatively strong repair capacity, resulting in only a mild phenotype. © 2016 British Association of Dermatologists.
The conservation and function of RNA secondary structure in plants
Vandivier, Lee E.; Anderson, Stephen J.; Foley, Shawn W.; Gregory, Brian D.
2016-01-01
RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance imaging (NMR) to chemical and nuclease probing methods. Marriage with high-throughput sequencing has enabled these latter methods to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure. PMID:26865341
RNA editing in Drosophila melanogaster: new targets and functionalconsequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.
2006-09-05
Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR includingmore » components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.« less
Lessons from non-canonical splicing
Ule, Jernej
2016-01-01
Recent improvements in experimental and computational techniques used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons, and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimises their potential to disrupt gene expression. While non-canonical splicing can lead to aberrant transcripts that cause many diseases, we also explain how it can be exploited for new therapeutic strategies. PMID:27240813
Identification of human short introns
Abebrese, Emmanuel L.; Arnold, Zachary R.; Armstrong, Katharine; Burns, Lindsay; Day, R. Thomas; Hsu, Daniel G.; Jarrell, Katherine; Luo, Yi; Mugayo, Daphine
2017-01-01
Canonical pre-mRNA splicing requires snRNPs and associated splicing factors to excise conserved intronic sequences, with a minimum intron length required for efficient splicing. Non-canonical splicing–intron excision without the spliceosome–has been documented; most notably, some tRNAs and the XBP1 mRNA contain short introns that are not removed by the spliceosome. There have been some efforts to identify additional short introns, but little is known about how many short introns are processed from mRNAs. Here, we report an approach to identify RNA short introns from RNA-Seq data, discriminating against small genomic deletions. We identify hundreds of short introns conserved among multiple human cell lines. These short introns are often alternatively spliced and are found in a variety of RNAs–both mRNAs and lncRNAs. Short intron splicing efficiency is increased by secondary structure, and we detect both canonical and non-canonical short introns. In many cases, splicing of these short introns from mRNAs is predicted to alter the reading frame and change protein output. Our findings imply that standard gene prediction models which often assume a lower limit for intron size fail to predict short introns effectively. We conclude that short introns are abundant in the human transcriptome, and short intron splicing represents an added layer to mRNA regulation. PMID:28520720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko
1994-01-01
The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophinmore » lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.« less
Pillman, Katherine A; Phillips, Caroline A; Roslan, Suraya; Toubia, John; Dredge, B Kate; Bert, Andrew G; Lumb, Rachael; Neumann, Daniel P; Li, Xiaochun; Conn, Simon J; Liu, Dawei; Bracken, Cameron P; Lawrence, David M; Stylianou, Nataly; Schreiber, Andreas W; Tilley, Wayne D; Hollier, Brett G; Khew-Goodall, Yeesim; Selth, Luke A; Goodall, Gregory J; Gregory, Philip A
2018-06-05
Members of the miR-200 family are critical gatekeepers of the epithelial state, restraining expression of pro-mesenchymal genes that drive epithelial-mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR-200c and another epithelial-enriched miRNA, miR-375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA-binding protein Quaking (QKI). During EMT, QKI-5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI-5 is both necessary and sufficient to direct EMT-associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial-derived cancer types. Importantly, several actin cytoskeleton-associated genes are directly targeted by both QKI and miR-200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT These findings demonstrate the existence of a miR-200/miR-375/QKI axis that impacts cancer-associated epithelial cell plasticity through widespread control of alternative splicing. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions
Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin
2016-01-01
Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.
Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin
2016-01-01
Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection.
Cusick, M E
1992-12-29
A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.
Global regulation of alternative RNA splicing by the SR-rich protein RBM39.
Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Cao, Cheng; Liu, Xuan
2016-08-01
RBM39 is a serine/arginine-rich RNA-binding protein that is highly homologous to the splicing factor U2AF65. However, the role of RBM39 in alternative splicing is poorly understood. In this study, RBM39-mediated global alternative splicing was investigated using RNA-Seq and genome-wide RBM39-RNA interactions were mapped via cross-linking and immunoprecipitation coupled with deep sequencing (CLIP-Seq) in wild-type and RBM39-knockdown MCF-7 cells. RBM39 was involved in the up- or down-regulation of the transcript levels of various genes. Hundreds of alternative splicing events regulated by endogenous RBM39 were identified. The majority of these events were cassette exons. Genes containing RBM39-regulated alternative exons were found to be linked to G2/M transition, cellular response to DNA damage, adherens junctions and endocytosis. CLIP-Seq analysis showed that the binding site of RBM39 was mainly in proximity to 5' and 3' splicing sites. Considerable RBM39 binding to mRNAs encoding proteins involved in translation was observed. Of particular importance, ~20% of the alternative splicing events that were significantly regulated by RBM39 were similarly regulated by U2AF65. RBM39 is extensively involved in alternative splicing of RNA and helps regulate transcript levels. RBM39 may modulate alternative splicing similarly to U2AF65 by either directly binding to RNA or recruiting other splicing factors, such as U2AF65. The current study offers a genome-wide view of RBM39's regulatory function in alternative splicing. RBM39 may play important roles in multiple cellular processes by regulating both alternative splicing of RNA molecules and transcript levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Boric acid reversibly inhibits the second step of pre-mRNA splicing.
Shomron, Noam; Ast, Gil
2003-09-25
Several approaches have been used to identify the factors involved in mRNA splicing. None of them, however, comprises a straightforward reversible method for inhibiting the second step of splicing using an external reagent other than a chelator. This investigation demonstrates that the addition of boric acid to an in vitro pre-mRNA splicing reaction causes a dose-dependent reversible inhibition effect on the second step of splicing. The mechanism of action does not involve chelation of several metal ions; hindrance of 3' splice-site; or binding to hSlu7. This study presents a novel method for specific reversible inhibition of the second step of pre-mRNA splicing.
Piekielko-Witkowska, Agnieszka; Kedzierska, Hanna; Poplawski, Piotr; Wojcicka, Anna; Rybicka, Beata; Maksymowicz, Maria; Grajkowska, Wieslawa; Matyja, Ewa; Mandat, Tomasz; Bonicki, Wieslaw; Nauman, Pawel
2013-06-01
Pituitary tumors belong to the group of most common neoplasms of the sellar region. Iodothyronine deiodinase types 1 (DIO1) and 2 (DIO2) are enzymes contributing to the levels of locally synthesized T3, a hormone regulating key physiological processes in the pituitary, including its development, cellular proliferation, and hormone secretion. Previous studies revealed that the expression of deiodinases in pituitary tumors is variable and, moreover, there is no correlation between mRNA and protein products of the particular gene, suggesting the potential role of posttranscriptional regulatory mechanisms. In this work we hypothesized that one of such mechanisms could be the alternative splicing. Therefore, we analyzed expression and sequences of DIO1 and DIO2 splicing variants in 30 pituitary adenomas and 9 non-tumorous pituitary samples. DIO2 mRNA was expressed as only two mRNA isoforms. In contrast, nine splice variants of DIO1 were identified. Among them, five were devoid of exon 3. In silico sequence analysis of DIO1 revealed multiple putative binding sites for splicing factor SF2/ASF, of which the top-ranked sites were located in exon 3. Silencing of SF2/ASF in pituitary tumor GH3 cells resulted in change of ratio between DIO1 isoforms with or without exon 3, favoring the expression of variants without exon 3. The expression of SF2/ASF mRNA in pituitary tumors was increased when compared with non-neoplastic control samples. In conclusion, we provide a new mechanism of posttranscriptional regulation of DIO1 and show deregulation of DIO1 expression in pituitary adenoma, possibly resulting from disturbed expression of SF2/ASF. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Xiaoze; Johansson, Cecilia; Glahder, Jacob; Mossberg, Ann-Kristin; Schwartz, Stefan
2013-01-01
Human papillomavirus type 16 (HPV-16) 5′-splice site SD3632 is used exclusively to produce late L1 mRNAs. We identified a 34-nt splicing inhibitory element located immediately upstream of HPV-16 late 5′-splice site SD3632. Two AUAGUA motifs located in these 34 nt inhibited SD3632. Two nucleotide substitutions in each of the HPV-16 specific AUAGUA motifs alleviated splicing inhibition and induced late L1 mRNA production from episomal forms of the HPV-16 genome in primary human keratinocytes. The AUAGUA motifs bind specifically not only to the heterogeneous nuclear RNP (hnRNP) D family of RNA-binding proteins including hnRNP D/AUF, hnRNP DL and hnRNP AB but also to hnRNP A2/B1. Knock-down of these proteins induced HPV-16 late L1 mRNA expression, and overexpression of hnRNP A2/B1, hnRNP AB, hnRNP DL and the two hnRNP D isoforms hnRNP D37 and hnRNP D40 further suppressed L1 mRNA expression. This inhibition may allow HPV-16 to hide from the immune system and establish long-term persistent infections with enhanced risk at progressing to cancer. There is an inverse correlation between expression of hnRNP D proteins and hnRNP A2/B1 and HPV-16 L1 production in the cervical epithelium, as well as in cervical cancer, supporting the conclusion that hnRNP D proteins and A2/B1 inhibit HPV-16 L1 mRNA production. PMID:24013563
Terenzi, Fulvia; Ladd, Andrea N
2010-01-01
Muscleblind-like (MBNL) proteins have been shown to regulate pre-mRNA alternative splicing, and MBNL1 has been implicated in regulating fetal-to-adult transitions in alternative splicing in the heart. MBNL1 is highly conserved, exhibiting more than 95% identity at the amino acid level between birds and mammals. To investigate MBNL1 expression during embryonic heart development, we examined MBNL1 transcript and protein expression in the embryonic chicken heart from the formation of the primitive heart tube through cardiac morphogenesis (embryonic days 1.5 through 8). MBNL1 transcript levels remained steady throughout these stages, whereas MBNL1 protein levels increased and exhibited a shift in isoforms. MBNL1 has several alternatively spliced exons. Using RT-PCR, we determined that the inclusion of one of these, exon 5, decreases dramatically during cardiac morphogenesis. This developmental transition is conserved in mice. Functional analyses of MBNL1 isoforms containing or lacking exon 5-encoded sequences revealed that exon 5 is important for the regulation of the subcellular localization, RNA binding affinity, and alternative splicing activity of MBNL1 proteins. A second MBNL protein, MBNL2, is also expressed in the embryonic heart. We found that MBNL2 exon 5, which is paralogous to MBNL1 exon 5, is similarly regulated during embryonic heart development. Analysis of MBNL1 and MBNL2 transcripts in several embryonic tissues in chicken and mouse indicate that exon 5 alternative splicing is highly conserved and tissue-specific. Thus, we propose that conserved developmental stage- and tissue-specific alternative splicing of MBNL transcripts is an important mechanism by which MBNL activity is regulated during embryonic development.
Targeting GH-1 splicing as a novel pharmacological strategy for growth hormone deficiency type II.
Miletta, Maria Consolata; Flück, Christa E; Mullis, Primus-E
2017-01-15
Isolated growth hormone deficiency type II (IGHD II) is a rare genetic splicing disorder characterized by reduced growth hormone (GH) secretion and short stature. It is mainly caused by autosomal dominant-negative mutations within the growth hormone gene (GH-1) which results in missplicing at the mRNA level and the subsequent loss of exon 3, producing the 17.5-kDa GH isoform: a mutant and inactive GH protein that reduces the stability and the secretion of the 22-kDa GH isoform, the main biologically active GH form. At present, patients suffering from IGHD II are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent the toxic effects of the 17.5-kDa mutant on the pituitary gland, which may eventually lead to other hormonal deficiencies. As the severity of the disease inversely correlates with the 17.5-kDa/22-kDa ratio, increasing the inclusion of exon 3 is expected to ameliorate disease symptoms. This review focuses on the recent advances in experimental and therapeutic strategies applicable to treat IGHD II in clinical and preclinical contexts. Several avenues for alternative IGHD II therapy will be discussed including the use of small interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs that specifically target the exon 3-deleted transcripts as well as the application of histone deacetylase inhibitors (HDACi) and antisense oligonucleotides (AONs) to enhance full-length GH-1 transcription, correct GH-1 exon 3 splicing and manipulate GH pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.
Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M
2016-03-01
Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.
Tena-Sempere, M; Barreiro, M L; González, L C; Pinilla, L; Aguilar, E
2001-11-01
Two distinct nuclear estrogen receptors (ERs) have been identified, the classical one, renamed ERalpha, and the more recently cloned ERbeta. In a variety of tissues, gene expression of both receptor subtypes results in the generation of multiple transcripts encoding the full-length as well as several alternately spliced isoforms. In the rat pituitary, a truncated, tissue-specific variant of ERalpha, called TERP-1, has been identified and found able to modulate ERalpha and ERbeta activity. So far, its pattern of expression and hormonal regulation have been mostly studied in females. The present study was designed to analyze the pattern of expression of TERP-1 mRNA in the male rat pituitary at different stages of postnatal development, and to evaluate the impact of neonatal imprinting and estrogen treatment upon TERP-1 expression in the male pituitary. Assessment of TERP-1 mRNA levels by semi-quantitative RT-PCR, using a variant-specific primer pair, revealed that TERP-1 is also expressed in the male rat pituitary. Relative mRNA expression levels changed markedly during postnatal development, with moderate expression of the TERP-1 transcript at birth, barely detectable levels during the infantile-prepubertal period, and maximal values in adulthood. Expression of TERP-1 was sensitive to neonatal estrogen exposure, which resulted in a significant, persistent increase in mRNA levels from the infantile period until puberty. This phenomenon was not mimicked by neonatal blockade of endogenous GnRH. In addition, estrogen was able to acutely up-regulate pituitary TERP-1 mRNA expression levels in prepubertal (30-day-old) and adult (75-day-old) males. Interestingly, neonatal imprinting as well as acute estrogen treatment resulted in opposite effects on TERP-1 and full-length ERalpha and ERbeta transcripts, the latter being decreased under both conditions. In conclusion, our data indicate that TERP-1 mRNA is expressed in a developmentally regulated manner in the male rat pituitary, and is affected by neonatal estrogen imprinting and acute estrogen treatment. Regulation of TERP-1 expression by neonatal or acute estrogen treatment may thus represent an additional tuning mechanism for estrogen actions in the male rat pituitary. Copyright 2001 S. Karger AG, Basel
A saga of cancer epigenetics: linking epigenetics to alternative splicing.
Narayanan, Sathiya Pandi; Singh, Smriti; Shukla, Sanjeev
2017-03-07
The discovery of an increasing number of alternative splicing events in the human genome highlighted that ∼94% of genes generate alternatively spliced transcripts that may produce different protein isoforms with diverse functions. It is now well known that several diseases are a direct and indirect consequence of aberrant splicing events in humans. In addition to the conventional mode of alternative splicing regulation by ' cis ' RNA-binding sites and ' trans' RNA-binding proteins, recent literature provides enormous evidence for epigenetic regulation of alternative splicing. The epigenetic modifications may regulate alternative splicing by either influencing the transcription elongation rate of RNA polymerase II or by recruiting a specific splicing regulator via different chromatin adaptors. The epigenetic alterations and aberrant alternative splicing are known to be associated with various diseases individually, but this review discusses/highlights the latest literature on the role of epigenetic alterations in the regulation of alternative splicing and thereby cancer progression. This review also points out the need for further studies to understand the interplay between epigenetic modifications and aberrant alternative splicing in cancer progression. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Walker, Linda C; Overstreet, Mayra A; Yeowell, Heather N
2005-01-01
Lysyl hydroxylases 1, 2, and 3 catalyse the hydroxylation of specific lysines in collagen. A small percentage of these hydroxylysine residues are precursors for the cross-link formation essential for the tensile strength of collagen. Lysyl hydroxylase 2 (LH2) exists as two alternatively-spliced forms; the long transcript (the major ubiquitously-expressed form) includes a 63 bp exon (13A) that is spliced out in the short form (expressed, together with the long form, in human kidney, spleen, liver, and placenta). This study shows that this alternative splicing event can be regulated by both cell density and cycloheximide (CHX). Although only the long form of LH2 is detected in untreated confluent human skin fibroblasts, after 24 h treatment with CHX the short LH2 transcript is also expressed. In kidney cells, in which both LH2 transcripts are equally expressed, the long LH2 transcript is significantly decreased after 24 h CHX treatment, whereas expression of the short transcript is slightly increased. This suggests that, in kidney cells, the splicing mechanism for the inclusion of exon 13A in LH2 requires a newly-synthesized protein factor that is suppressed by CHX, whereas, in skin fibroblasts in which levels of LH2 (long) are unaffected, CHX appears to suppress a factor that inhibits exclusion of exon 13A, thereby promoting expression of LH2 (short). As these alternate transcripts of LH2 may have specificity for hydroxylation of lysines in either telopeptide or helical collagen domains, their relative expression determines the type of cross-links formed, thereby affecting collagen strength. Therefore, any perturbation of the regulation of LH2 splicing could influence the stability of the extracellular matrix and contribute to specific connective tissue disorders.
Mechanisms and Regulation of Alternative Pre-mRNA Splicing
Lee, Yeon
2015-01-01
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052
Chuang, Trees-Juen; Wu, Chan-Shuo; Chen, Chia-Ying; Hung, Li-Yuan; Chiang, Tai-Wei; Yang, Min-Yu
2016-02-18
Analysis of RNA-seq data often detects numerous 'non-co-linear' (NCL) transcripts, which comprised sequence segments that are topologically inconsistent with their corresponding DNA sequences in the reference genome. However, detection of NCL transcripts involves two major challenges: removal of false positives arising from alignment artifacts and discrimination between different types of NCL transcripts (trans-spliced, circular or fusion transcripts). Here, we developed a new NCL-transcript-detecting method ('NCLscan'), which utilized a stepwise alignment strategy to almost completely eliminate false calls (>98% precision) without sacrificing true positives, enabling NCLscan outperform 18 other publicly-available tools (including fusion- and circular-RNA-detecting tools) in terms of sensitivity and precision, regardless of the generation strategy of simulated dataset, type of intragenic or intergenic NCL event, read depth of coverage, read length or expression level of NCL transcript. With the high accuracy, NCLscan was applied to distinguishing between trans-spliced, circular and fusion transcripts on the basis of poly(A)- and nonpoly(A)-selected RNA-seq data. We showed that circular RNAs were expressed more ubiquitously, more abundantly and less cell type-specifically than trans-spliced and fusion transcripts. Our study thus describes a robust pipeline for the discovery of NCL transcripts, and sheds light on the fundamental biology of these non-canonical RNA events in human transcriptome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Subgroup Specific Alternative Splicing in Medulloblastoma
Kloosterhof, Nanne K; Northcott, Paul A; Yu, Emily PY; Shih, David; Peacock, John; Grajkowska, Wieslawa; van Meter, Timothy; Eberhart, Charles G; Pfister, Stefan; Marra, Marco A; Weiss, William A; Scherer, Stephen W; Rutka, James T; French, Pim J; Taylor, Michael D
2014-01-01
Medulloblastoma is comprised of four distinct molecular variants: WNT, SHH, Group 3, and Group 4. We analyzed alternative splicing usage in 14 normal cerebellar samples and 103 medulloblastomas of known subgroup. Medulloblastoma samples have a statistically significant increase in alternative splicing as compared to normal fetal cerebella (2.3-times; P<6.47E-8). Splicing patterns are distinct and specific between molecular subgroups. Unsupervised hierarchical clustering of alternative splicing events accurately assigns medulloblastomas to their correct subgroup. Subgroup-specific splicing and alternative promoter usage was most prevalent in Group 3 (19.4%) and SHH (16.2%) medulloblastomas, while observed less frequently in WNT (3.2%), and Group 4 (9.3%) tumors. Functional annotation of alternatively spliced genes reveals over-representation of genes important for neuronal development. Alternative splicing events in medulloblastoma may be regulated in part by the correlative expression of antisense transcripts, suggesting a possible mechanism affecting subgroup specific alternative splicing. Our results identify additional candidate markers for medulloblastoma subgroup affiliation, further support the existence of distinct subgroups of the disease, and demonstrate an additional level of transcriptional heterogeneity between medulloblastoma subgroups. PMID:22358458
Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways.
Wang, Q; Shi, C-J; Lv, S-H
2017-03-30
Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Ze; Shuldiner, A.R.; Zenilman, M.E.
There are two insulin receptor (IR) isoforms (designated type A and type B), derived from alternative splicing of exon 11 of the IR gene. Recently, we reported that an increase in the exon 11- (i.e. lacking exon 11) (type A) IR messenger RNA (mRNA) variant in muscle is associated with hyperinsulinemia, an early risk factor for noninsulin-dependent diabetes mellitus (NIDDM), in the spontaneously obese, diabetic rhesus monkey. To explore further the role of IR mRNA splicing in insulin resistance of NIDDM, we studied liver, another target organ that is resistant to insulin action in NIDDM. The relative amounts of themore » two IR mRNA-splicing variants in liver were quantitated by RT-PCR in normal, prediabetic, and diabetic (NIDDM) monkeys. The percentage of the exon 11- mRNA variant in liver (n = 24) was significantly correlated with fasting plasma glucose (r = 0.55, P < 0.01) and intravenous glucose disappearance rate (r = -0.45, P < 0.05). The exon 11- mRNA variant was increased significantly from 29.8 {+-} 1.6% in monkeys with normal fasting glucose to 39.2 {+-} 2.9% in monkeys with elevated fasting glucose (P < 0.01). These studies provide the first direct evidence in vivo that the relative expression of the two IR mRNA-splicing variants is altered in liver and suggest that increased expression of the exon 11- IR isoform may contribute to hepatic insulin resistance and NIDDM or may compensate for some yet unidentified defect. 33 refs., 3 figs., 1 tab.« less
New discoveries of old SON: a link between RNA splicing and cancer.
Hickey, Christopher J; Kim, Jung-Hyun; Ahn, Eun-Young Erin
2014-02-01
The SON protein is a ubiquitously expressed DNA- and RNA-binding protein primarily localized to nuclear speckles. Although several early studies implicated SON in DNA-binding, tumorigenesis and apoptosis, functional significance of this protein had not been recognized until recent studies discovered SON as a novel RNA splicing co-factor. During constitutive RNA splicing, SON ensures efficient intron removal from the transcripts containing suboptimal splice sites. Importantly, SON-mediated splicing is required for proper processing of selective transcripts related to cell cycle, microtubules, centrosome maintenance, and genome stability. Moreover, SON regulates alternative splicing of RNAs from the genes involved in apoptosis and epigenetic modification. In addition to the role in RNA splicing, SON has an ability to suppress transcriptional activation at certain promoter/enhancer DNA sequences. Considering the multiple SON target genes which are directly involved in cell proliferation, genome stability and chromatin modifications, SON is an emerging player in gene regulation during cancer development and progression. Here, we summarize available information from several early studies on SON, and highlight recent discoveries describing molecular mechanisms of SON-mediated gene regulation. We propose that our future effort on better understanding of diverse SON functions would reveal novel targets for cancer therapy. © 2013 Wiley Periodicals, Inc.
Nuclear Organization and Myt1 Interaction in Transcriptional Control of Neural Cell Differentiation
2002-01-01
secreted from the notochord and floor plate [4]. Oligodendrocytes also respond to cell contact- dependent interactions from the notch-signaling pathway...appendix A 1 mature oligodendrocytes sending out multiple processes to begin myelinating axons primarily during the postnatal period of...snRNA transcription [32]. 7 Gene regulation also occurs post-transcriptionally in processes such as RNA splicing. Many splicing factors are
Tollefson, Ann E.; Ying, Baoling; Doronin, Konstantin; Sidor, Peter D.; Wold, William S. M.
2007-01-01
A short open reading frame named the “U exon,” located on the adenovirus (Ad) l-strand (for leftward transcription) between the early E3 region and the fiber gene, is conserved in mastadenoviruses. We have observed that Ad5 mutants with large deletions in E3 that infringe on the U exon display a mild growth defect, as well as an aberrant Ad E2 DNA-binding protein (DBP) intranuclear localization pattern and an apparent failure to organize replication centers during late infection. Mutants in which the U exon DNA is reconstructed have a reversed phenotype. Chow et al. (L. T. Chow et al., J. Mol. Biol. 134:265-303, 1979) described mRNAs initiating in the region of the U exon and spliced to downstream sequences in the late DBP mRNA leader and the DBP-coding region. We have cloned this mRNA (as cDNA) from Ad5 late mRNA; the predicted protein is 217 amino acids, initiating in the U exon and continuing in frame in the DBP leader and in the DBP-coding region but in a different reading frame from DBP. Polyclonal and monoclonal antibodies generated against the predicted U exon protein (UXP) showed that UXP is ∼24K in size by immunoblot and is a late protein. At 18 to 24 h postinfection, UXP is strongly associated with nucleoli and is found throughout the nucleus; later, UXP is associated with the periphery of replication centers, suggesting a function relevant to Ad DNA replication or RNA transcription. UXP is expressed by all four species C Ads. When expressed in transient transfections, UXP complements the aberrant DBP localization pattern of UXP-negative Ad5 mutants. Our data indicate that UXP is a previously unrecognized protein derived from a novel late l-strand transcription unit. PMID:17881437
Tremblay, Marie-Pier; Armero, Victoria E S; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin
2016-08-26
Dysregulations in alternative splicing (AS) patterns have been associated with many human diseases including cancer. In the present study, alterations to the global RNA splicing landscape of cellular genes were investigated in a large-scale screen from 377 liver tissue samples using high-throughput RNA sequencing data. Our study identifies modifications in the AS patterns of transcripts encoded by more than 2500 genes such as tumor suppressor genes, transcription factors, and kinases. These findings provide insights into the molecular differences between various types of hepatocellular carcinoma (HCC). Our analysis allowed the identification of 761 unique transcripts for which AS is misregulated in HBV-associated HCC, while 68 are unique to HCV-associated HCC, 54 to HBV&HCV-associated HCC, and 299 to virus-free HCC. Moreover, we demonstrate that the expression pattern of the RNA splicing factor hnRNPC in HCC tissues significantly correlates with patient survival. We also show that the expression of the HBx protein from HBV leads to modifications in the AS profiles of cellular genes. Finally, using RNA interference and a reverse transcription-PCR screening platform, we examined the implications of cellular proteins involved in the splicing of transcripts involved in apoptosis and demonstrate the potential contribution of these proteins in AS control. This study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in hepatocellular carcinoma. Moreover, these data allowed us to identify unique signatures of genes for which AS is misregulated in the different types of HCC.
Switch Transcripts in Immunoglobulin Class Switching
NASA Astrophysics Data System (ADS)
Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas
1995-03-01
B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.
Nuzzo, Francesca; Radu, Claudia; Baralle, Marco; Spiezia, Luca; Hackeng, Tilman M; Simioni, Paolo; Castoldi, Elisabetta
2013-11-28
Antisense molecules are emerging as a powerful tool to correct splicing defects. Recently, we identified a homozygous deep-intronic mutation (F5 c.1296+268A>G) activating a cryptic donor splice site in a patient with severe coagulation factor V (FV) deficiency and life-threatening bleeding episodes. Here, we assessed the ability of 2 mutation-specific antisense molecules (a morpholino oligonucleotide [MO] and an engineered U7 small nuclear RNA [snRNA]) to correct this splicing defect. COS-1 and HepG2 cells transfected with a F5 minigene construct containing the patient's mutation expressed aberrant messenger RNA (mRNA) in excess of normal mRNA. Treatment with mutation-specific antisense MO (1-5 µM) or a construct expressing antisense U7snRNA (0.25-2 µg) dose-dependently increased the relative amount of correctly spliced mRNA by 1 to 2 orders of magnitude, whereas control MO and U7snRNA were ineffective. Patient-derived megakaryocytes obtained by differentiation of circulating progenitor cells did not express FV, but became positive for FV at immunofluorescence staining after administration of antisense MO or U7snRNA. However, treatment adversely affected cell viability, mainly because of the transfection reagents used to deliver the antisense molecules. Our data provide in vitro and ex vivo proof of principle for the efficacy of RNA therapy in severe FV deficiency, but additional cytotoxicity studies are warranted.
Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.
2015-01-01
Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177
Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Ping-Ge; Jiang, Zhi-Xin; Li, Jian-Hua
Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that themore » sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival.« less
Scholthof, Karen-Beth G.
2015-01-01
In eukaryotes, alternative splicing (AS) promotes transcriptome and proteome diversity. The extent of genome-wide AS changes occurring during a plant-microbe interaction is largely unknown. Here, using high-throughput, paired-end RNA sequencing, we generated an isoform-level spliceome map of Brachypodium distachyon infected with Panicum mosaic virus and its satellite virus. Overall, we detected ∼44,443 transcripts in B. distachyon, ∼30% more than those annotated in the reference genome. Expression of ∼28,900 transcripts was ≥2 fragments per kilobase of transcript per million mapped fragments, and ∼42% of multi-exonic genes were alternatively spliced. Comparative analysis of AS patterns in B. distachyon, rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), Arabidopsis thaliana, potato (Solanum tuberosum), Medicago truncatula, and poplar (Populus trichocarpa) revealed conserved ratios of the AS types between monocots and dicots. Virus infection quantitatively altered AS events in Brachypodium with little effect on the AS ratios. We discovered AS events for >100 immune-related genes encoding receptor-like kinases, NB-LRR resistance proteins, transcription factors, RNA silencing, and splicing-associated proteins. Cloning and molecular characterization of SCL33, a serine/arginine-rich splicing factor, identified multiple novel intron-retaining splice variants that are developmentally regulated and modulated during virus infection. B. distachyon SCL33 splicing patterns are also strikingly conserved compared with a distant Arabidopsis SCL33 ortholog. This analysis provides new insights into AS landscapes conserved among monocots and dicots and uncovered AS events in plant defense-related genes. PMID:25634987
Rösel-Hillgärtner, Tanja Dorothe; Hung, Lee-Hsueh; Khrameeva, Ekaterina; Le Querrec, Patrick; Gelfand, Mikhail S.; Bindereif, Albrecht
2013-01-01
The U1 small nuclear ribonucleoprotein (snRNP)-specific U1C protein participates in 5′ splice site recognition and regulation of pre-mRNA splicing. Based on an RNA-Seq analysis in HeLa cells after U1C knockdown, we found a conserved, intra-U1 snRNP cross-regulation that links U1C and U1-70K expression through alternative splicing and U1 snRNP assembly. To investigate the underlying regulatory mechanism, we combined mutational minigene analysis, in vivo splice-site blocking by antisense morpholinos, and in vitro binding experiments. Alternative splicing of U1-70K pre-mRNA creates the normal (exons 7–8) and a non-productive mRNA isoform, whose balance is determined by U1C protein levels. The non-productive isoform is generated through a U1C-dependent alternative 3′ splice site, which requires an adjacent cluster of regulatory 5′ splice sites and binding of intact U1 snRNPs. As a result of nonsense-mediated decay (NMD) of the non-productive isoform, U1-70K mRNA and protein levels are down-regulated, and U1C incorporation into the U1 snRNP is impaired. U1-70K/U1C-deficient particles are assembled, shifting the alternative splicing balance back towards productive U1-70K splicing, and restoring assembly of intact U1 snRNPs. Taken together, we established a novel feedback regulation that controls U1-70K/U1C homeostasis and ensures correct U1 snRNP assembly and function. PMID:24146627
Splicing regulatory factors, ageing and age-related disease.
Latorre, Eva; Harries, Lorna W
2017-07-01
Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Giudice, Jimena; Loehr, James A; Rodney, George G; Cooper, Thomas A
2016-11-15
During development, transcriptional and post-transcriptional networks are coordinately regulated to drive organ maturation. Alternative splicing contributes by producing temporal-specific protein isoforms. We previously found that genes undergoing splicing transitions during mouse postnatal heart development are enriched for vesicular trafficking and membrane dynamics functions. Here, we show that adult trafficking isoforms are also expressed in adult skeletal muscle and hypothesize that striated muscle utilizes alternative splicing to generate specific isoforms required for function of adult tissue. We deliver morpholinos into flexor digitorum brevis muscles in adult mice to redirect splicing of four trafficking genes to the fetal isoforms. The splicing switch results in multiple structural and functional defects, including transverse tubule (T-tubule) disruption and dihydropyridine receptor alpha (DHPR) and Ryr1 mislocalization, impairing excitation-contraction coupling, calcium handling, and force generation. The results demonstrate a previously unrecognized role for trafficking functions in adult muscle tissue homeostasis and a specific requirement for the adult splice variants. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre
2016-01-01
Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3′ UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type–specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3′ UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. PMID:26546131