NASA Technical Reports Server (NTRS)
Zhang, Zhimin; Tomlinson, John; Martin, Clyde
1994-01-01
In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.
Theory, computation, and application of exponential splines
NASA Technical Reports Server (NTRS)
Mccartin, B. J.
1981-01-01
A generalization of the semiclassical cubic spline known in the literature as the exponential spline is discussed. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain tension parameters. The theoretical underpinnings of the exponential spline are outlined. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. Next, the numerical computation of the exponential spline is discussed. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A split spline screw type payload fastener assembly, including three identical male and female type split spline sections, is discussed. The male spline sections are formed on the head of a male type spline driver. Each of the split male type spline sections has an outwardly projecting load baring segment including a convex upper surface which is adapted to engage a complementary concave surface of a female spline receptor in the form of a hollow bolt head. Additionally, the male spline section also includes a horizontal spline releasing segment and a spline tightening segment below each load bearing segment. The spline tightening segment consists of a vertical web of constant thickness. The web has at least one flat vertical wall surface which is designed to contact a generally flat vertically extending wall surface tab of the bolt head. Mutual interlocking and unlocking of the male and female splines results upon clockwise and counter clockwise turning of the driver element.
Multivariate Spline Algorithms for CAGD
NASA Technical Reports Server (NTRS)
Boehm, W.
1985-01-01
Two special polyhedra present themselves for the definition of B-splines: a simplex S and a box or parallelepiped B, where the edges of S project into an irregular grid, while the edges of B project into the edges of a regular grid. More general splines may be found by forming linear combinations of these B-splines, where the three-dimensional coefficients are called the spline control points. Univariate splines are simplex splines, where s = 1, whereas splines over a regular triangular grid are box splines, where s = 2. Two simple facts render the development of the construction of B-splines: (1) any face of a simplex or a box is again a simplex or box but of lower dimension; and (2) any simplex or box can be easily subdivided into smaller simplices or boxes. The first fact gives a geometric approach to Mansfield-like recursion formulas that express a B-spline in B-splines of lower order, where the coefficients depend on x. By repeated recursion, the B-spline will be expressed as B-splines of order 1; i.e., piecewise constants. In the case of a simplex spline, the second fact gives a so-called insertion algorithm that constructs the new control points if an additional knot is inserted.
Rational-spline approximation with automatic tension adjustment
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Kerr, P. A.
1984-01-01
An algorithm for weighted least-squares approximation with rational splines is presented. A rational spline is a cubic function containing a distinct tension parameter for each interval defined by two consecutive knots. For zero tension, the rational spline is identical to a cubic spline; for very large tension, the rational spline is a linear function. The approximation algorithm incorporates an algorithm which automatically adjusts the tension on each interval to fulfill a user-specified criterion. Finally, an example is presented comparing results of the rational spline with those of the cubic spline.
Spline approximation, Part 1: Basic methodology
NASA Astrophysics Data System (ADS)
Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar
2018-04-01
In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Wendt, Verena; Linz, Ricarda; Bittner, Michael
2017-09-01
Cubic splines with equidistant spline sampling points are a common method in atmospheric science, used for the approximation of background conditions by means of filtering superimposed fluctuations from a data series. What is defined as background or superimposed fluctuation depends on the specific research question. The latter also determines whether the spline or the residuals - the subtraction of the spline from the original time series - are further analysed.Based on test data sets, we show that the quality of approximation of the background state does not increase continuously with an increasing number of spline sampling points and/or decreasing distance between two spline sampling points. Splines can generate considerable artificial oscillations in the background and the residuals.We introduce a repeating spline approach which is able to significantly reduce this phenomenon. We apply it not only to the test data but also to TIMED-SABER temperature data and choose the distance between two spline sampling points in a way that is sensitive for a large spectrum of gravity waves.
Geometric and computer-aided spline hob modeling
NASA Astrophysics Data System (ADS)
Brailov, I. G.; Myasoedova, T. M.; Panchuk, K. L.; Krysova, I. V.; Rogoza, YU A.
2018-03-01
The paper considers acquiring the spline hob geometric model. The objective of the research is the development of a mathematical model of spline hob for spline shaft machining. The structure of the spline hob is described taking into consideration the motion in parameters of the machine tool system of cutting edge positioning and orientation. Computer-aided study is performed with the use of CAD and on the basis of 3D modeling methods. Vector representation of cutting edge geometry is accepted as the principal method of spline hob mathematical model development. The paper defines the correlations described by parametric vector functions representing helical cutting edges designed for spline shaft machining with consideration for helical movement in two dimensions. An application for acquiring the 3D model of spline hob is developed on the basis of AutoLISP for AutoCAD environment. The application presents the opportunity for the use of the acquired model for milling process imitation. An example of evaluation, analytical representation and computer modeling of the proposed geometrical model is reviewed. In the mentioned example, a calculation of key spline hob parameters assuring the capability of hobbing a spline shaft of standard design is performed. The polygonal and solid spline hob 3D models are acquired by the use of imitational computer modeling.
NASA Technical Reports Server (NTRS)
Schiess, James R.; Kerr, Patricia A.; Smith, Olivia C.
1988-01-01
Smooth curves drawn among plotted data easily. Rational-Spline Approximation with Automatic Tension Adjustment algorithm leads to flexible, smooth representation of experimental data. "Tension" denotes mathematical analog of mechanical tension in spline or other mechanical curve-fitting tool, and "spline" as denotes mathematical generalization of tool. Program differs from usual spline under tension, allows user to specify different values of tension between adjacent pairs of knots rather than constant tension over entire range of data. Subroutines use automatic adjustment scheme that varies tension parameter for each interval until maximum deviation of spline from line joining knots less than or equal to amount specified by user. Procedure frees user from drudgery of adjusting individual tension parameters while still giving control over local behavior of spline.
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
An algorithm for surface smoothing with rational splines
NASA Technical Reports Server (NTRS)
Schiess, James R.
1987-01-01
Discussed is an algorithm for smoothing surfaces with spline functions containing tension parameters. The bivariate spline functions used are tensor products of univariate rational-spline functions. A distinct tension parameter corresponds to each rectangular strip defined by a pair of consecutive spline knots along either axis. Equations are derived for writing the bivariate rational spline in terms of functions and derivatives at the knots. Estimates of these values are obtained via weighted least squares subject to continuity constraints at the knots. The algorithm is illustrated on a set of terrain elevation data.
Numerical Methods Using B-Splines
NASA Technical Reports Server (NTRS)
Shariff, Karim; Merriam, Marshal (Technical Monitor)
1997-01-01
The seminar will discuss (1) The current range of applications for which B-spline schemes may be appropriate (2) The property of high-resolution and the relationship between B-spline and compact schemes (3) Comparison between finite-element, Hermite finite element and B-spline schemes (4) Mesh embedding using B-splines (5) A method for the incompressible Navier-Stokes equations in curvilinear coordinates using divergence-free expansions.
Spline screw payload fastening system
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A system for coupling an orbital replacement unit (ORU) to a space station structure via the actions of a robot and/or astronaut is described. This system provides mechanical and electrical connections both between the ORU and the space station structure and between the ORU and the ORU and the robot/astronaut hand tool. Alignment and timing features ensure safe, sure handling and precision coupling. This includes a first female type spline connector selectively located on the space station structure, a male type spline connector positioned on the orbital replacement unit so as to mate with and connect to the first female type spline connector, and a second female type spline connector located on the orbital replacement unit. A compliant drive rod interconnects the second female type spline connector and the male type spline connector. A robotic special end effector is used for mating with and driving the second female type spline connector. Also included are alignment tabs exteriorally located on the orbital replacement unit for berthing with the space station structure. The first and second female type spline connectors each include a threaded bolt member having a captured nut member located thereon which can translate up and down the bolt but are constrained from rotation thereabout, the nut member having a mounting surface with at least one first type electrical connector located on the mounting surface for translating with the nut member. At least one complementary second type electrical connector on the orbital replacement unit mates with at least one first type electrical connector on the mounting surface of the nut member. When the driver on the robotic end effector mates with the second female type spline connector and rotates, the male type spline connector and the first female type spline connector lock together, the driver and the second female type spline connector lock together, and the nut members translate up the threaded bolt members carrying the first type electrical connector up to the complementary second type connector for interconnection therewith.
2013-08-01
as thin - plate spline (1-3) or elastic-body spline (4, 5), is locally controlled. One of the main motivations behind the use of B- spline ...FL. Principal warps: thin - plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence...Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin - plate splines . IEEE Transactions on Medical Imaging. 2001;20(6):526-34
TWO-LEVEL TIME MARCHING SCHEME USING SPLINES FOR SOLVING THE ADVECTION EQUATION. (R826371C004)
A new numerical algorithm using quintic splines is developed and analyzed: quintic spline Taylor-series expansion (QSTSE). QSTSE is an Eulerian flux-based scheme that uses quintic splines to compute space derivatives and Taylor series expansion to march in time. The new scheme...
Color management with a hammer: the B-spline fitter
NASA Astrophysics Data System (ADS)
Bell, Ian E.; Liu, Bonny H. P.
2003-01-01
To paraphrase Abraham Maslow: If the only tool you have is a hammer, every problem looks like a nail. We have a B-spline fitter customized for 3D color data, and many problems in color management can be solved with this tool. Whereas color devices were once modeled with extensive measurement, look-up tables and trilinear interpolation, recent improvements in hardware have made B-spline models an affordable alternative. Such device characterizations require fewer color measurements than piecewise linear models, and have uses beyond simple interpolation. A B-spline fitter, for example, can act as a filter to remove noise from measurements, leaving a model with guaranteed smoothness. Inversion of the device model can then be carried out consistently and efficiently, as the spline model is well behaved and its derivatives easily computed. Spline-based algorithms also exist for gamut mapping, the composition of maps, and the extrapolation of a gamut. Trilinear interpolation---a degree-one spline---can still be used after nonlinear spline smoothing for high-speed evaluation with robust convergence. Using data from several color devices, this paper examines the use of B-splines as a generic tool for modeling devices and mapping one gamut to another, and concludes with applications to high-dimensional and spectral data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Don S.; Anderson, Kevin K.; White, Amanda M.
Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensitymore » that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting, and reliably estimates believable prediction errors. For the 50% of the real data sets fit well by both methods, spline and logistic predictions are practically indistinguishable, varying in accuracy by less than 15%. The spline method may be useful when automated prediction across simultaneous assays of numerous proteins must be applied routinely with minimal user intervention.« less
NASA Astrophysics Data System (ADS)
Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad
2015-11-01
One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.
Hierarchical Control and Trajectory Planning
NASA Technical Reports Server (NTRS)
Martin, Clyde F.; Horn, P. W.
1994-01-01
Most of the time on this project was spent on the trajectory planning problem. The construction is equivalent to the classical spline construction in the case that the system matrix is nilpotent. If the dimension of the system is n then the spline of degree 2n-1 is constructed. This gives a new approach to the construction of splines that is more efficient than the usual construction and at the same time allows the construction of a much larger class of splines. All known classes of splines are reconstructed using the approach of linear control theory. As a numerical analysis tool control theory gives a very good tool for constructing splines. However, for the purposes of trajectory planning it is quite another story. Enclosed in this document are four reports done under this grant.
Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Keller, J.; Wallen, R.
2015-02-01
Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.
Spline methods for approximating quantile functions and generating random samples
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Matthews, C. G.
1985-01-01
Two cubic spline formulations are presented for representing the quantile function (inverse cumulative distribution function) of a random sample of data. Both B-spline and rational spline approximations are compared with analytic representations of the quantile function. It is also shown how these representations can be used to generate random samples for use in simulation studies. Comparisons are made on samples generated from known distributions and a sample of experimental data. The spline representations are more accurate for multimodal and skewed samples and to require much less time to generate samples than the analytic representation.
B-spline Method in Fluid Dynamics
NASA Technical Reports Server (NTRS)
Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2001-01-01
B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.
Interpolation by new B-splines on a four directional mesh of the plane
NASA Astrophysics Data System (ADS)
Nouisser, O.; Sbibih, D.
2004-01-01
In this paper we construct new simple and composed B-splines on the uniform four directional mesh of the plane, in order to improve the approximation order of B-splines studied in Sablonniere (in: Program on Spline Functions and the Theory of Wavelets, Proceedings and Lecture Notes, Vol. 17, University of Montreal, 1998, pp. 67-78). If φ is such a simple B-spline, we first determine the space of polynomials with maximal total degree included in , and we prove some results concerning the linear independence of the family . Next, we show that the cardinal interpolation with φ is correct and we study in S(φ) a Lagrange interpolation problem. Finally, we define composed B-splines by repeated convolution of φ with the characteristic functions of a square or a lozenge, and we give some of their properties.
On the spline-based wavelet differentiation matrix
NASA Technical Reports Server (NTRS)
Jameson, Leland
1993-01-01
The differentiation matrix for a spline-based wavelet basis is constructed. Given an n-th order spline basis it is proved that the differentiation matrix is accurate of order 2n + 2 when periodic boundary conditions are assumed. This high accuracy, or superconvergence, is lost when the boundary conditions are no longer periodic. Furthermore, it is shown that spline-based bases generate a class of compact finite difference schemes.
2015-12-01
ARL-SR-0347 ● DEC 2015 US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary...US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to...from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Comparison Between Polynomial, Euler Beta-Function and Expo-Rational B-Spline Bases
NASA Astrophysics Data System (ADS)
Kristoffersen, Arnt R.; Dechevsky, Lubomir T.; Laksa˚, Arne; Bang, Børre
2011-12-01
Euler Beta-function B-splines (BFBS) are the practically most important instance of generalized expo-rational B-splines (GERBS) which are not true expo-rational B-splines (ERBS). BFBS do not enjoy the full range of the superproperties of ERBS but, while ERBS are special functions computable by a very rapidly converging yet approximate numerical quadrature algorithms, BFBS are explicitly computable piecewise polynomial (for integer multiplicities), similar to classical Schoenberg B-splines. In the present communication we define, compute and visualize for the first time all possible BFBS of degree up to 3 which provide Hermite interpolation in three consecutive knots of multiplicity up to 3, i.e., the function is being interpolated together with its derivatives of order up to 2. We compare the BFBS obtained for different degrees and multiplicities among themselves and versus the classical Schoenberg polynomial B-splines and the true ERBS for the considered knots. The results of the graphical comparison are discussed from analytical point of view. For the numerical computation and visualization of the new B-splines we have used Maple 12.
GEE-Smoothing Spline in Semiparametric Model with Correlated Nominal Data
NASA Astrophysics Data System (ADS)
Ibrahim, Noor Akma; Suliadi
2010-11-01
In this paper we propose GEE-Smoothing spline in the estimation of semiparametric models with correlated nominal data. The method can be seen as an extension of parametric generalized estimating equation to semiparametric models. The nonparametric component is estimated using smoothing spline specifically the natural cubic spline. We use profile algorithm in the estimation of both parametric and nonparametric components. The properties of the estimators are evaluated using simulation studies.
Matuschek, Hannes; Kliegl, Reinhold; Holschneider, Matthias
2015-01-01
The Smoothing Spline ANOVA (SS-ANOVA) requires a specialized construction of basis and penalty terms in order to incorporate prior knowledge about the data to be fitted. Typically, one resorts to the most general approach using tensor product splines. This implies severe constraints on the correlation structure, i.e. the assumption of isotropy of smoothness can not be incorporated in general. This may increase the variance of the spline fit, especially if only a relatively small set of observations are given. In this article, we propose an alternative method that allows to incorporate prior knowledge without the need to construct specialized bases and penalties, allowing the researcher to choose the spline basis and penalty according to the prior knowledge of the observations rather than choosing them according to the analysis to be done. The two approaches are compared with an artificial example and with analyses of fixation durations during reading. PMID:25816246
Wavelet based free-form deformations for nonrigid registration
NASA Astrophysics Data System (ADS)
Sun, Wei; Niessen, Wiro J.; Klein, Stefan
2014-03-01
In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.
Student Support for Research in Hierarchical Control and Trajectory Planning
NASA Technical Reports Server (NTRS)
Martin, Clyde F.
1999-01-01
Generally, classical polynomial splines tend to exhibit unwanted undulations. In this work, we discuss a technique, based on control principles, for eliminating these undulations and increasing the smoothness properties of the spline interpolants. We give a generalization of the classical polynomial splines and show that this generalization is, in fact, a family of splines that covers the broad spectrum of polynomial, trigonometric and exponential splines. A particular element in this family is determined by the appropriate control data. It is shown that this technique is easy to implement. Several numerical and curve-fitting examples are given to illustrate the advantages of this technique over the classical approach. Finally, we discuss the convergence properties of the interpolant.
2013-08-01
transformation models, such as thin - plate spline (1-3) or elastic-body spline (4, 5), is locally controlled. One of the main motivations behind the...research project. References: 1. Bookstein FL. Principal warps: thin - plate splines and the decomposition of deformations. IEEE Transactions on Pattern...Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin - plate splines . IEEE Transactions
Bayesian B-spline mapping for dynamic quantitative traits.
Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong
2012-04-01
Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruberti, M.; Averbukh, V.; Decleva, P.
2014-10-28
We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also presentmore » the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.« less
Multicategorical Spline Model for Item Response Theory.
ERIC Educational Resources Information Center
Abrahamowicz, Michal; Ramsay, James O.
1992-01-01
A nonparametric multicategorical model for multiple-choice data is proposed as an extension of the binary spline model of J. O. Ramsay and M. Abrahamowicz (1989). Results of two Monte Carlo studies illustrate the model, which approximates probability functions by rational splines. (SLD)
Curve fitting and modeling with splines using statistical variable selection techniques
NASA Technical Reports Server (NTRS)
Smith, P. L.
1982-01-01
The successful application of statistical variable selection techniques to fit splines is demonstrated. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the B-spline basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
Fitting multidimensional splines using statistical variable selection techniques
NASA Technical Reports Server (NTRS)
Smith, P. L.
1982-01-01
This report demonstrates the successful application of statistical variable selection techniques to fit splines. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs using the B-spline basis were developed, and the one for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
Analyzing degradation data with a random effects spline regression model
Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip
2017-03-17
This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.
The algorithms for rational spline interpolation of surfaces
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1986-01-01
Two algorithms for interpolating surfaces with spline functions containing tension parameters are discussed. Both algorithms are based on the tensor products of univariate rational spline functions. The simpler algorithm uses a single tension parameter for the entire surface. This algorithm is generalized to use separate tension parameters for each rectangular subregion. The new algorithm allows for local control of tension on the interpolating surface. Both algorithms are illustrated and the results are compared with the results of bicubic spline and bilinear interpolation of terrain elevation data.
Analyzing degradation data with a random effects spline regression model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip
This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.
Numerical solution of system of boundary value problems using B-spline with free parameter
NASA Astrophysics Data System (ADS)
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
An Examination of New Paradigms for Spline Approximations.
Witzgall, Christoph; Gilsinn, David E; McClain, Marjorie A
2006-01-01
Lavery splines are examined in the univariate and bivariate cases. In both instances relaxation based algorithms for approximate calculation of Lavery splines are proposed. Following previous work Gilsinn, et al. [7] addressing the bivariate case, a rotationally invariant functional is assumed. The version of bivariate splines proposed in this paper also aims at irregularly spaced data and uses Hseih-Clough-Tocher elements based on the triangulated irregular network (TIN) concept. In this paper, the univariate case, however, is investigated in greater detail so as to further the understanding of the bivariate case.
Conformal Solid T-spline Construction from Boundary T-spline Representations
2012-07-01
TITLE AND SUBTITLE Conformal Solid T-spline Construction from Boundary T-spline Representations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Zhang’s ONR-YIP award N00014-10-1-0698 and an ONR Grant N00014-08-1-0653. The work of T. J.R. Hughes was supported by ONR Grant N00014-08-1-0992, NSF...GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF grant UTA10-000374. References 1. M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B
A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.
Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao
2016-01-01
The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).
Spline-based procedures for dose-finding studies with active control
Helms, Hans-Joachim; Benda, Norbert; Zinserling, Jörg; Kneib, Thomas; Friede, Tim
2015-01-01
In a dose-finding study with an active control, several doses of a new drug are compared with an established drug (the so-called active control). One goal of such studies is to characterize the dose–response relationship and to find the smallest target dose concentration d*, which leads to the same efficacy as the active control. For this purpose, the intersection point of the mean dose–response function with the expected efficacy of the active control has to be estimated. The focus of this paper is a cubic spline-based method for deriving an estimator of the target dose without assuming a specific dose–response function. Furthermore, the construction of a spline-based bootstrap CI is described. Estimator and CI are compared with other flexible and parametric methods such as linear spline interpolation as well as maximum likelihood regression in simulation studies motivated by a real clinical trial. Also, design considerations for the cubic spline approach with focus on bias minimization are presented. Although the spline-based point estimator can be biased, designs can be chosen to minimize and reasonably limit the maximum absolute bias. Furthermore, the coverage probability of the cubic spline approach is satisfactory, especially for bias minimal designs. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25319931
Random regression analyses using B-splines to model growth of Australian Angus cattle
Meyer, Karin
2005-01-01
Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error. PMID:16093011
Penalized spline estimation for functional coefficient regression models.
Cao, Yanrong; Lin, Haiqun; Wu, Tracy Z; Yu, Yan
2010-04-01
The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter λ, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter λ: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty λ accordingly. We demonstrate the proposed approach by both simulation examples and a real data application.
Avsec, Žiga; Cheng, Jun; Gagneur, Julien
2018-01-01
Abstract Motivation Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed. Results Here we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox. Availability and implementation Spline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at https://github.com/gagneurlab/Manuscript_Avsec_Bioinformatics_2017. Contact avsec@in.tum.de or gagneur@in.tum.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29155928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Errichello, Robert
2013-08-29
An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.
Design, Test, and Evaluation of a Transonic Axial Compressor Rotor with Splitter Blades
2013-09-01
parameters .......................................................17 Figure 13. Third-order spline fit for blade camber line distribution...18 Figure 14. Third-order spline fit for blade thickness distribution .....................................19 Figure 15. Blade...leading edge: third-order spline fit for thickness distribution ...............20 Figure 16. Blade leading edge and trailing edge slope blending
Modeling of time trends and interactions in vital rates using restricted regression splines.
Heuer, C
1997-03-01
For the analysis of time trends in incidence and mortality rates, the age-period-cohort (apc) model has became a widely accepted method. The considered data are arranged in a two-way table by age group and calendar period, which are mostly subdivided into 5- or 10-year intervals. The disadvantage of this approach is the loss of information by data aggregation and the problems of estimating interactions in the two-way layout without replications. In this article we show how splines can be useful when yearly data, i.e., 1-year age groups and 1-year periods, are given. The estimated spline curves are still smooth and represent yearly changes in the time trends. Further, it is straightforward to include interaction terms by the tensor product of the spline functions. If the data are given in a nonrectangular table, e.g., 5-year age groups and 1-year periods, the period and cohort variables can be parameterized by splines, while the age variable is parameterized as fixed effect levels, which leads to a semiparametric apc model. An important methodological issue in developing the nonparametric and semiparametric models is stability of the estimated spline curve at the boundaries. Here cubic regression splines will be used, which are constrained to be linear in the tails. Another point of importance is the nonidentifiability problem due to the linear dependency of the three time variables. This will be handled by decomposing the basis of each spline by orthogonal projection into constant, linear, and nonlinear terms, as suggested by Holford (1983, Biometrics 39, 311-324) for the traditional apc model. The advantage of using splines for yearly data compared to the traditional approach for aggregated data is the more accurate curve estimation for the nonlinear trend changes and the simple way of modeling interactions between the time variables. The method will be demonstrated with hypothetical data as well as with cancer mortality data.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1985-01-01
Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed.
A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images
Wang, Yangping; Wang, Song
2016-01-01
The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653
ERIC Educational Resources Information Center
Woods, Carol M.; Thissen, David
2006-01-01
The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…
Spline curve matching with sparse knot sets
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2004-01-01
This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of thin-plate-spline mapping between sparse knot points and normalized local...
Dung, Van Than; Tjahjowidodo, Tegoeh
2017-01-01
B-spline functions are widely used in many industrial applications such as computer graphic representations, computer aided design, computer aided manufacturing, computer numerical control, etc. Recently, there exist some demands, e.g. in reverse engineering (RE) area, to employ B-spline curves for non-trivial cases that include curves with discontinuous points, cusps or turning points from the sampled data. The most challenging task in these cases is in the identification of the number of knots and their respective locations in non-uniform space in the most efficient computational cost. This paper presents a new strategy for fitting any forms of curve by B-spline functions via local algorithm. A new two-step method for fast knot calculation is proposed. In the first step, the data is split using a bisecting method with predetermined allowable error to obtain coarse knots. Secondly, the knots are optimized, for both locations and continuity levels, by employing a non-linear least squares technique. The B-spline function is, therefore, obtained by solving the ordinary least squares problem. The performance of the proposed method is validated by using various numerical experimental data, with and without simulated noise, which were generated by a B-spline function and deterministic parametric functions. This paper also discusses the benchmarking of the proposed method to the existing methods in literature. The proposed method is shown to be able to reconstruct B-spline functions from sampled data within acceptable tolerance. It is also shown that, the proposed method can be applied for fitting any types of curves ranging from smooth ones to discontinuous ones. In addition, the method does not require excessive computational cost, which allows it to be used in automatic reverse engineering applications.
NASA Astrophysics Data System (ADS)
Gilliot, Mickaël; Hadjadj, Aomar; Stchakovsky, Michel
2017-11-01
An original method of ellipsometric data inversion is proposed based on the use of constrained splines. The imaginary part of the dielectric function is represented by a series of splines, constructed with particular constraints on slopes at the node boundaries to avoid well-know oscillations of natural splines. The nodes are used as fit parameters. The real part is calculated using Kramers-Kronig relations. The inversion can be performed in successive inversion steps with increasing resolution. This method is used to characterize thin zinc oxide layers obtained by a sol-gel and spin-coating process, with a particular recipe yielding very thin layers presenting nano-porosity. Such layers have particular optical properties correlated with thickness, morphological and structural properties. The use of the constrained spline method is particularly efficient for such materials which may not be easily represented by standard dielectric function models.
ERIC Educational Resources Information Center
Cui, Zhongmin; Kolen, Michael J.
2009-01-01
This article considers two new smoothing methods in equipercentile equating, the cubic B-spline presmoothing method and the direct presmoothing method. Using a simulation study, these two methods are compared with established methods, the beta-4 method, the polynomial loglinear method, and the cubic spline postsmoothing method, under three sample…
Ship Detection and Measurement of Ship Motion by Multi-Aperture Synthetic Aperture Radar
2014-06-01
Reconstructed periodic components of the Doppler histories shown in Fig. 27, (b) splined harmonic component amplitudes as a function of range...78 Figure 42: (a) Reconstructed periodic components of the Doppler histories shown in Figure 30, (b) Splined amplitudes of the...Figure 29 (b) Splined amplitudes of the harmonic components. ............................................ 79 Figure 44: Ship focusing by standard
Interactive Exploration of Big Scientific Data: New Representations and Techniques.
Hjelmervik, Jon M; Barrowclough, Oliver J D
2016-01-01
Although splines have been in popular use in CAD for more than half a century, spline research is still an active field, driven by the challenges we are facing today within isogeometric analysis and big data. Splines are likely to play a vital future role in enabling effective big data exploration techniques in 3D, 4D, and beyond.
NASA Astrophysics Data System (ADS)
Islamiyati, A.; Fatmawati; Chamidah, N.
2018-03-01
The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.
ERIC Educational Resources Information Center
Wu, Wei; Jia, Fan; Kinai, Richard; Little, Todd D.
2017-01-01
Spline growth modelling is a popular tool to model change processes with distinct phases and change points in longitudinal studies. Focusing on linear spline growth models with two phases and a fixed change point (the transition point from one phase to the other), we detail how to find optimal data collection designs that maximize the efficiency…
NASA Astrophysics Data System (ADS)
Huang, Chengcheng; Zheng, Xiaogu; Tait, Andrew; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Li, Tao; Wang, Zhonglei
2014-01-01
Partial thin-plate smoothing spline model is used to construct the trend surface.Correction of the spline estimated trend surface is often necessary in practice.Cressman weight is modified and applied in residual correction.The modified Cressman weight performs better than Cressman weight.A method for estimating the error covariance matrix of gridded field is provided.
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2003-01-01
Splines can be used to approximate noisy data with a few control points. This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of...
Castillo, Edward; Castillo, Richard; Fuentes, David; Guerrero, Thomas
2014-01-01
Purpose: Block matching is a well-known strategy for estimating corresponding voxel locations between a pair of images according to an image similarity metric. Though robust to issues such as image noise and large magnitude voxel displacements, the estimated point matches are not guaranteed to be spatially accurate. However, the underlying optimization problem solved by the block matching procedure is similar in structure to the class of optimization problem associated with B-spline based registration methods. By exploiting this relationship, the authors derive a numerical method for computing a global minimizer to a constrained B-spline registration problem that incorporates the robustness of block matching with the global smoothness properties inherent to B-spline parameterization. Methods: The method reformulates the traditional B-spline registration problem as a basis pursuit problem describing the minimal l1-perturbation to block match pairs required to produce a B-spline fitting error within a given tolerance. The sparsity pattern of the optimal perturbation then defines a voxel point cloud subset on which the B-spline fit is a global minimizer to a constrained variant of the B-spline registration problem. As opposed to traditional B-spline algorithms, the optimization step involving the actual image data is addressed by block matching. Results: The performance of the method is measured in terms of spatial accuracy using ten inhale/exhale thoracic CT image pairs (available for download at www.dir-lab.com) obtained from the COPDgene dataset and corresponding sets of expert-determined landmark point pairs. The results of the validation procedure demonstrate that the method can achieve a high spatial accuracy on a significantly complex image set. Conclusions: The proposed methodology is demonstrated to achieve a high spatial accuracy and is generalizable in that in can employ any displacement field parameterization described as a least squares fit to block match generated estimates. Thus, the framework allows for a wide range of image similarity block match metric and physical modeling combinations. PMID:24694135
4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties
NASA Astrophysics Data System (ADS)
Ralli, George P.; Chappell, Michael A.; McGowan, Daniel R.; Sharma, Ricky A.; Higgins, Geoff S.; Fenwick, John D.
2018-05-01
4D reconstruction of dynamic positron emission tomography (dPET) data can improve the signal-to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel time-activity-curves (TACs) during the reconstruction, though the optimal choice of function remains an open question. We propose a spline-residue model, which describes TACs as weighted sums of convolutions of the arterial input function with cubic B-spline basis functions. Convolution with the input function constrains the spline-residue model at early time-points, potentially enhancing noise suppression in early time-frames, while still allowing a wide range of TAC descriptions over the entire imaged time-course, thus limiting bias. Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) maximum a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-splines, the spectral model and an irreversible two-tissue compartment (‘2C3K’) model. 4D reconstructions were carried out using a nested-MAP algorithm including spatial and temporal roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, generated for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-Fluromisonidazole scan of a non-small cell lung cancer patient. For every algorithm, parametric maps were calculated by fitting each voxel TAC within a sub-region of the reconstructed images with the 2C3K model. Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction achieved >50% improvements for five of the eight combinations of the four kinetics parameters for which parametric maps were created with the bias and noise measures used to analyse them, and produced better results for 5/8 combinations than any of the other reconstruction algorithms studied, while spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K model-based 4D reconstruction generated the most biased parametric maps. Inclusion of a temporal roughness penalty function improved the performance of 4D reconstruction based on the cubic B-spline, spectral and spline-residue models.
A smoothing algorithm using cubic spline functions
NASA Technical Reports Server (NTRS)
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Development of quadrilateral spline thin plate elements using the B-net method
NASA Astrophysics Data System (ADS)
Chen, Juan; Li, Chong-Jun
2013-08-01
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
NASA Astrophysics Data System (ADS)
Zou, Z.; Scott, M. A.; Borden, M. J.; Thomas, D. C.; Dornisch, W.; Brivadis, E.
2018-05-01
In this paper we develop the isogeometric B\\'ezier dual mortar method. It is based on B\\'ezier extraction and projection and is applicable to any spline space which can be represented in B\\'ezier form (i.e., NURBS, T-splines, LR-splines, etc.). The approach weakly enforces the continuity of the solution at patch interfaces and the error can be adaptively controlled by leveraging the refineability of the underlying dual spline basis without introducing any additional degrees of freedom. We also develop weakly continuous geometry as a particular application of isogeometric B\\'ezier dual mortaring. Weakly continuous geometry is a geometry description where the weak continuity constraints are built into properly modified B\\'ezier extraction operators. As a result, multi-patch models can be processed in a solver directly without having to employ a mortaring solution strategy. We demonstrate the utility of the approach on several challenging benchmark problems. Keywords: Mortar methods, Isogeometric analysis, B\\'ezier extraction, B\\'ezier projection
A Novel Model to Simulate Flexural Complements in Compliant Sensor Systems
Tang, Hongyan; Zhang, Dan; Guo, Sheng; Qu, Haibo
2018-01-01
The main challenge in analyzing compliant sensor systems is how to calculate the large deformation of flexural complements. Our study proposes a new model that is called the spline pseudo-rigid-body model (spline PRBM). It combines dynamic spline and the pseudo-rigid-body model (PRBM) to simulate the flexural complements. The axial deformations of flexural complements are modeled by using dynamic spline. This makes it possible to consider the nonlinear compliance of the system using four control points. Three rigid rods connected by two revolute (R) pins with two torsion springs replace the three lines connecting the four control points. The kinematic behavior of the system is described using Lagrange equations. Both the optimization and the numerical fitting methods are used for resolving the characteristic parameters of the new model. An example is given of a compliant mechanism to modify the accuracy of the model. The spline PRBM is important in expanding the applications of the PRBM to the design and simulation of flexural force sensors. PMID:29596377
Spline Trajectory Algorithm Development: Bezier Curve Control Point Generation for UAVs
NASA Technical Reports Server (NTRS)
Howell, Lauren R.; Allen, B. Danette
2016-01-01
A greater need for sophisticated autonomous piloting systems has risen in direct correlation with the ubiquity of Unmanned Aerial Vehicle (UAV) technology. Whether surveying unknown or unexplored areas of the world, collecting scientific data from regions in which humans are typically incapable of entering, locating lost or wanted persons, or delivering emergency supplies, an unmanned vehicle moving in close proximity to people and other vehicles, should fly smoothly and predictably. The mathematical application of spline interpolation can play an important role in autopilots' on-board trajectory planning. Spline interpolation allows for the connection of Three-Dimensional Euclidean Space coordinates through a continuous set of smooth curves. This paper explores the motivation, application, and methodology used to compute the spline control points, which shape the curves in such a way that the autopilot trajectory is able to meet vehicle-dynamics limitations. The spline algorithms developed used to generate these curves supply autopilots with the information necessary to compute vehicle paths through a set of coordinate waypoints.
Imaging Freeform Optical Systems Designed with NURBS Surfaces
2015-12-01
reflective, anastigmat 1 Introduction The imaging freeform optical systems described here are designed using non-uniform rational basis -spline (NURBS...from piecewise splines. Figure 1 shows a third degree NURBS surface which is formed from cubic basis splines. The surface is defined by the set of...with mathematical details covered by Piegl and Tiller7. Compare this with Gaussian basis functions8 where it is challenging to provide smooth
Multivariate spline methods in surface fitting
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator); Schumaker, L. L.
1984-01-01
The use of spline functions in the development of classification algorithms is examined. In particular, a method is formulated for producing spline approximations to bivariate density functions where the density function is decribed by a histogram of measurements. The resulting approximations are then incorporated into a Bayesiaan classification procedure for which the Bayes decision regions and the probability of misclassification is readily computed. Some preliminary numerical results are presented to illustrate the method.
Gearbox Reliability Collaborative Analytic Formulation for the Evaluation of Spline Couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Keller, Jonathan; Errichello, Robert
2013-12-01
Gearboxes in wind turbines have not been achieving their expected design life; however, they commonly meet and exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the down time associated with these failures, has elevated the cost of wind energy. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliabilitymore » using a combined approach of dynamometer testing, field testing, and modeling. As part of the GRC program, this paper investigates the design of the spline coupling often used in modern wind turbine gearboxes to connect the planetary and helical gear stages. Aside from transmitting the driving torque, another common function of the spline coupling is to allow the sun to float between the planets. The amount the sun can float is determined by the spline design and the sun shaft flexibility subject to the operational loads. Current standards address spline coupling design requirements in varying detail. This report provides additional insight beyond these current standards to quickly evaluate spline coupling designs.« less
Polynomials to model the growth of young bulls in performance tests.
Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B
2014-03-01
The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.
Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms
NASA Astrophysics Data System (ADS)
Segars, W. P.; Lalush, D. S.; Tsui, B. M. W.
2001-02-01
Respiratory motion can cause artifacts in myocardial SPECT and computed tomography (CT). The authors incorporate models of respiratory mechanics into the current 4D MCAT and into the next generation spline-based MCAT phantoms. In order to simulate respiratory motion in the current MCAT phantom, the geometric solids for the diaphragm, heart, ribs, and lungs were altered through manipulation of parameters defining them. Affine transformations were applied to the control points defining the same respiratory structures in the spline-based MCAT phantom to simulate respiratory motion. The Non-Uniform Rational B-Spline (NURBS) surfaces for the lungs and body outline were constructed in such a way as to be linked to the surrounding ribs. Expansion and contraction of the thoracic cage then coincided with expansion and contraction of the lungs and body. The changes both phantoms underwent were spline-interpolated over time to create time continuous 4D respiratory models. The authors then used the geometry-based and spline-based MCAT phantoms in an initial simulation study of the effects of respiratory motion on myocardial SPECT. The simulated reconstructed images demonstrated distinct artifacts in the inferior region of the myocardium. It is concluded that both respiratory models can be effective tools for researching effects of respiratory motion.
NASA Astrophysics Data System (ADS)
Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.
2018-06-01
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.
Howe, Laura D; Tilling, Kate; Matijasevich, Alicia; Petherick, Emily S; Santos, Ana Cristina; Fairley, Lesley; Wright, John; Santos, Iná S; Barros, Aluísio Jd; Martin, Richard M; Kramer, Michael S; Bogdanovich, Natalia; Matush, Lidia; Barros, Henrique; Lawlor, Debbie A
2016-10-01
Childhood growth is of interest in medical research concerned with determinants and consequences of variation from healthy growth and development. Linear spline multilevel modelling is a useful approach for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of repeat measures, the requirement for all individuals to be measured at the same ages and bias due to missing data). Here, we outline the application of this methodology to model individual trajectories of length/height and weight, drawing on examples from five cohorts from different generations and different geographical regions with varying levels of economic development. We describe the unique features of the data within each cohort that have implications for the application of linear spline multilevel models, for example, differences in the density and inter-individual variation in measurement occasions, and multiple sources of measurement with varying measurement error. After providing example Stata syntax and a suggested workflow for the implementation of linear spline multilevel models, we conclude with a discussion of the advantages and disadvantages of the linear spline approach compared with other growth modelling methods such as fractional polynomials, more complex spline functions and other non-linear models. © The Author(s) 2013.
Tilling, Kate; Matijasevich, Alicia; Petherick, Emily S; Santos, Ana Cristina; Fairley, Lesley; Wright, John; Santos, Iná S.; Barros, Aluísio JD; Martin, Richard M; Kramer, Michael S; Bogdanovich, Natalia; Matush, Lidia; Barros, Henrique; Lawlor, Debbie A
2013-01-01
Childhood growth is of interest in medical research concerned with determinants and consequences of variation from healthy growth and development. Linear spline multilevel modelling is a useful approach for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of repeat measures, the requirement for all individuals to be measured at the same ages and bias due to missing data). Here, we outline the application of this methodology to model individual trajectories of length/height and weight, drawing on examples from five cohorts from different generations and different geographical regions with varying levels of economic development. We describe the unique features of the data within each cohort that have implications for the application of linear spline multilevel models, for example, differences in the density and inter-individual variation in measurement occasions, and multiple sources of measurement with varying measurement error. After providing example Stata syntax and a suggested workflow for the implementation of linear spline multilevel models, we conclude with a discussion of the advantages and disadvantages of the linear spline approach compared with other growth modelling methods such as fractional polynomials, more complex spline functions and other non-linear models. PMID:24108269
Examination of wrist and hip actigraphy using a novel sleep estimation procedure☆
Ray, Meredith A.; Youngstedt, Shawn D.; Zhang, Hongmei; Robb, Sara Wagner; Harmon, Brook E.; Jean-Louis, Girardin; Cai, Bo; Hurley, Thomas G.; Hébert, James R.; Bogan, Richard K.; Burch, James B.
2014-01-01
Objective Improving and validating sleep scoring algorithms for actigraphs enhances their usefulness in clinical and research applications. The MTI® device (ActiGraph, Pensacola, FL) had not been previously validated for sleep. The aims were to (1) compare the accuracy of sleep metrics obtained via wrist- and hip-mounted MTI® actigraphs with polysomnographic (PSG) recordings in a sample that included both normal sleepers and individuals with presumed sleep disorders; and (2) develop a novel sleep scoring algorithm using spline regression to improve the correspondence between the actigraphs and PSG. Methods Original actigraphy data were amplified and their pattern was estimated using a penalized spline. The magnitude of amplification and the spline were estimated by minimizing the difference in sleep efficiency between wrist- (hip-) actigraphs and PSG recordings. Sleep measures using both the original and spline-modified actigraphy data were compared to PSG using the following: mean sleep summary measures; Spearman rank-order correlations of summary measures; percent of minute-by-minute agreement; sensitivity and specificity; and Bland–Altman plots. Results The original wrist actigraphy data showed modest correspondence with PSG, and much less correspondence was found between hip actigraphy and PSG. The spline-modified wrist actigraphy produced better approximations of interclass correlations, sensitivity, and mean sleep summary measures relative to PSG than the original wrist actigraphy data. The spline-modified hip actigraphy provided improved correspondence, but sleep measures were still not representative of PSG. Discussion The results indicate that with some refinement, the spline regression method has the potential to improve sleep estimates obtained using wrist actigraphy. PMID:25580202
Bicubic uniform B-spline wavefront fitting technology applied in computer-generated holograms
NASA Astrophysics Data System (ADS)
Cao, Hui; Sun, Jun-qiang; Chen, Guo-jie
2006-02-01
This paper presented a bicubic uniform B-spline wavefront fitting technology to figure out the analytical expression for object wavefront used in Computer-Generated Holograms (CGHs). In many cases, to decrease the difficulty of optical processing, off-axis CGHs rather than complex aspherical surface elements are used in modern advanced military optical systems. In order to design and fabricate off-axis CGH, we have to fit out the analytical expression for object wavefront. Zernike Polynomial is competent for fitting wavefront of centrosymmetric optical systems, but not for axisymmetrical optical systems. Although adopting high-degree polynomials fitting method would achieve higher fitting precision in all fitting nodes, the greatest shortcoming of this method is that any departure from the fitting nodes would result in great fitting error, which is so-called pulsation phenomenon. Furthermore, high-degree polynomials fitting method would increase the calculation time in coding computer-generated hologram and solving basic equation. Basing on the basis function of cubic uniform B-spline and the character mesh of bicubic uniform B-spline wavefront, bicubic uniform B-spline wavefront are described as the product of a series of matrices. Employing standard MATLAB routines, four kinds of different analytical expressions for object wavefront are fitted out by bicubic uniform B-spline as well as high-degree polynomials. Calculation results indicate that, compared with high-degree polynomials, bicubic uniform B-spline is a more competitive method to fit out the analytical expression for object wavefront used in off-axis CGH, for its higher fitting precision and C2 continuity.
Lux, C J; Rübel, J; Starke, J; Conradt, C; Stellzig, P A; Komposch, P G
2001-04-01
The aim of the present longitudinal cephalometric study was to evaluate the dentofacial shape changes induced by activator treatment between 9.5 and 11.5 years in male Class II patients. For a rigorous morphometric analysis, a thin-plate spline analysis was performed to assess and visualize dental and skeletal craniofacial changes. Twenty male patients with a skeletal Class II malrelationship and increased overjet who had been treated at the University of Heidelberg with a modified Andresen-Häupl-type activator were compared with a control group of 15 untreated male subjects of the Belfast Growth Study. The shape changes for each group were visualized on thin-plate splines with one spline comprising all 13 landmarks to show all the craniofacial shape changes, including skeletal and dento-alveolar reactions, and a second spline based on 7 landmarks to visualize only the skeletal changes. In the activator group, the grid deformation of the total spline pointed to a strong activator-induced reduction of the overjet that was caused both by a tipping of the incisors and by a moderation of sagittal discrepancies, particularly a slight advancement of the mandible. In contrast with this, in the control group, only slight localized shape changes could be detected. Both in the 7- and 13-landmark configurations, the shape changes between the groups differed significantly at P < .001. In the present study, the morphometric approach of thin-plate spline analysis turned out to be a useful morphometric supplement to conventional cephalometrics because the complex patterns of shape change could be suggestively visualized.
Baldi, F; Alencar, M M; Albuquerque, L G
2010-12-01
The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.
Enhancement of surface definition and gridding in the EAGLE code
NASA Technical Reports Server (NTRS)
Thompson, Joe F.
1991-01-01
Algorithms for smoothing of curves and surfaces for the EAGLE grid generation program are presented. The method uses an existing automated technique which detects undesirable geometric characteristics by using a local fairness criterion. The geometry entity is then smoothed by repeated removal and insertion of spline knots in the vicinity of the geometric irregularity. The smoothing algorithm is formulated for use with curves in Beta spline form and tensor product B-spline surfaces.
2014-10-26
From the parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow...field-based method [7, 12] to generate adaptive and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline ...parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based
Isogeometric Analysis of Boundary Integral Equations
2015-04-21
methods, IgA relies on Non-Uniform Rational B- splines (NURBS) [43, 46], T- splines [55, 53] or subdivision surfaces [21, 48, 51] rather than piece- wise...structural dynamics [25, 26], plates and shells [15, 16, 27, 28, 37, 22, 23], phase-field models [17, 32, 33], and shape optimization [40, 41, 45, 59...polynomials for approximating the geometry and field variables. Thus, by replacing piecewise polynomials with NURBS or T- splines , one can develop
2014-02-01
installation based on a Euclidean distance allocation and assigned that installation’s threshold values. The second approach used a thin - plate spline ...installation critical nLS+ thresholds involved spatial interpolation. A thin - plate spline radial basis functions (RBF) was selected as the...the interpolation of installation results using a thin - plate spline radial basis function technique. 6.5 OBJECTIVE #5: DEVELOP AND
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
2009-08-01
the measurements of Jung et al [3], ’BSR’ to the Breit- Pauli B-Spline ft-matrix method, and ’RDW to the relativistic distorted wave method. low...excitation cross sections using both relativistic distorted wave and semi-relativistic Breit- Pauli B-Spline R-matrix methods is presented. The model...population and line intensity enhancement. 15. SUBJECT TERMS Metastable xenon Electrostatic thruster Relativistic Breit- Pauli b-spline matrix
NASA Astrophysics Data System (ADS)
Harmening, Corinna; Neuner, Hans
2016-09-01
Due to the establishment of terrestrial laser scanner, the analysis strategies in engineering geodesy change from pointwise approaches to areal ones. These areal analysis strategies are commonly built on the modelling of the acquired point clouds. Freeform curves and surfaces like B-spline curves/surfaces are one possible approach to obtain space continuous information. A variety of parameters determines the B-spline's appearance; the B-spline's complexity is mostly determined by the number of control points. Usually, this number of control points is chosen quite arbitrarily by intuitive trial-and-error-procedures. In this paper, the Akaike Information Criterion and the Bayesian Information Criterion are investigated with regard to a justified and reproducible choice of the optimal number of control points of B-spline curves. Additionally, we develop a method which is based on the structural risk minimization of the statistical learning theory. Unlike the Akaike and the Bayesian Information Criteria this method doesn't use the number of parameters as complexity measure of the approximating functions but their Vapnik-Chervonenkis-dimension. Furthermore, it is also valid for non-linear models. Thus, the three methods differ in their target function to be minimized and consequently in their definition of optimality. The present paper will be continued by a second paper dealing with the choice of the optimal number of control points of B-spline surfaces.
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1994-01-01
Scientific data often contains random errors that make plotting and curve-fitting difficult. The Rational-Spline Approximation with Automatic Tension Adjustment algorithm lead to a flexible, smooth representation of experimental data. The user sets the conditions for each consecutive pair of knots:(knots are user-defined divisions in the data set) to apply no tension; to apply fixed tension; or to determine tension with a tension adjustment algorithm. The user also selects the number of knots, the knot abscissas, and the allowed maximum deviations from line segments. The selection of these quantities depends on the actual data and on the requirements of a particular application. This program differs from the usual spline under tension in that it allows the user to specify different tension values between each adjacent pair of knots rather than a constant tension over the entire data range. The subroutines use an automatic adjustment scheme that varies the tension parameter for each interval until the maximum deviation of the spline from the line joining the knots is less than or equal to a user-specified amount. This procedure frees the user from the drudgery of adjusting individual tension parameters while still giving control over the local behavior of the spline The Rational Spline program was written completely in FORTRAN for implementation on a CYBER 850 operating under NOS. It has a central memory requirement of approximately 1500 words. The program was released in 1988.
[An Improved Cubic Spline Interpolation Method for Removing Electrocardiogram Baseline Drift].
Wang, Xiangkui; Tang, Wenpu; Zhang, Lai; Wu, Minghu
2016-04-01
The selection of fiducial points has an important effect on electrocardiogram(ECG)denoise with cubic spline interpolation.An improved cubic spline interpolation algorithm for suppressing ECG baseline drift is presented in this paper.Firstly the first order derivative of original ECG signal is calculated,and the maximum and minimum points of each beat are obtained,which are treated as the position of fiducial points.And then the original ECG is fed into a high pass filter with 1.5Hz cutoff frequency.The difference between the original and the filtered ECG at the fiducial points is taken as the amplitude of the fiducial points.Then cubic spline interpolation curve fitting is used to the fiducial points,and the fitting curve is the baseline drift curve.For the two simulated case test,the correlation coefficients between the fitting curve by the presented algorithm and the simulated curve were increased by 0.242and0.13 compared with that from traditional cubic spline interpolation algorithm.And for the case of clinical baseline drift data,the average correlation coefficient from the presented algorithm achieved 0.972.
Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo
Krogel, Jaron T.; Reboredo, Fernando A.
2018-01-25
Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less
Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krogel, Jaron T.; Reboredo, Fernando A.
Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less
Thin-plate spline quadrature of geodetic integrals
NASA Technical Reports Server (NTRS)
Vangysen, Herman
1989-01-01
Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.
SU-E-J-89: Deformable Registration Method Using B-TPS in Radiotherapy.
Xie, Y
2012-06-01
A novel deformable registration method for four-dimensional computed tomography (4DCT) images is developed in radiation therapy. The proposed method combines the thin plate spline (TPS) and B-spline together to achieve high accuracy and high efficiency. The method consists of two steps. First, TPS is used as a global registration method to deform large unfit regions in the moving image to match counterpart in the reference image. Then B-spline is used for local registration, the previous deformed moving image is further deformed to match the reference image more accurately. Two clinical CT image sets, including one pair of lung and one pair of liver, are simulated using the proposed algorithm, which results in a tremendous improvement in both run-time and registration quality, compared with the conventional methods solely using either TPS or B-spline. The proposed method can combine the efficiency of TPS and the accuracy of B-spline, performing good adaptively and robust in registration of clinical 4DCT image. © 2012 American Association of Physicists in Medicine.
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Krogel, Jaron T.; Reboredo, Fernando A.
2018-01-01
Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.
Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation
NASA Astrophysics Data System (ADS)
Milovanovic, Gradimir V.
2001-01-01
Quadrature formulas with multiple nodes, power orthogonality, and some applications of such quadratures to moment-preserving approximation by defective splines are considered. An account on power orthogonality (s- and [sigma]-orthogonal polynomials) and generalized Gaussian quadratures with multiple nodes, including stable algorithms for numerical construction of the corresponding polynomials and Cotes numbers, are given. In particular, the important case of Chebyshev weight is analyzed. Finally, some applications in moment-preserving approximation of functions by defective splines are discussed.
Sequential and simultaneous SLAR block adjustment. [spline function analysis for mapping
NASA Technical Reports Server (NTRS)
Leberl, F.
1975-01-01
Two sequential methods of planimetric SLAR (Side Looking Airborne Radar) block adjustment, with and without splines, and three simultaneous methods based on the principles of least squares are evaluated. A limited experiment with simulated SLAR images indicates that sequential block formation with splines followed by external interpolative adjustment is superior to the simultaneous methods such as planimetric block adjustment with similarity transformations. The use of the sequential block formation is recommended, since it represents an inexpensive tool for satisfactory point determination from SLAR images.
2013-02-06
high order and smoothness. Consequently, the use of IGA for col- location suggests itself, since spline functions such as NURBS or T-splines can be...for the development of higher-order accurate time integration schemes due to the convergence of the high modes in the eigenspectrum [46] as well as...flows [19, 20, 49–52]. Due to their maximum smoothness, B-splines exhibit a high resolution power, which allows the representation of a broad range
An Adaptive MR-CT Registration Method for MRI-guided Prostate Cancer Radiotherapy
Zhong, Hualiang; Wen, Ning; Gordon, James; Elshaikh, Mohamed A; Movsas, Benjamin; Chetty, Indrin J.
2015-01-01
Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ/cm3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for development of high-quality MRI-guided radiation therapy. PMID:25775937
NASA Astrophysics Data System (ADS)
Bogunović, Igor; Pereira, Paulo; Đurđević, Boris
2017-04-01
Information on spatial distribution of soil nutrients in agroecosystems is critical for improving productivity and reducing environmental pressures in intensive farmed soils. In this context, spatial prediction of soil properties should be accurate. In this study we analyse 704 data of soil available phosphorus (AP) and potassium (AK); the data derive from soil samples collected across three arable fields in Baranja region (Croatia) in correspondence of different soil types: Cambisols (169 samples), Chernozems (131 samples) and Gleysoils (404 samples). The samples are collected in a regular sampling grid (distance 225 x 225 m). Several geostatistical techniques (Inverse Distance to a Weight (IDW) with the power of 1, 2 and 3; Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multiquadratic (MTQ), Completely Regularized Spline (CRS), Spline with Tension (SPT) and Thin Plate Spline (TPS); and Local Polynomial (LP) with the power of 1 and 2; two geostatistical techniques -Ordinary Kriging - OK and Simple Kriging - SK) were tested in order to evaluate the most accurate spatial variability maps using criteria of lowest RMSE during cross validation technique. Soil parameters varied considerably throughout the studied fields and their coefficient of variations ranged from 31.4% to 37.7% and from 19.3% to 27.1% for soil AP and AK, respectively. The experimental variograms indicate a moderate spatial dependence for AP and strong spatial dependence for all three locations. The best spatial predictor for AP at Chernozem field was Simple kriging (RMSE=61.711), and for AK inverse multiquadratic (RMSE=44.689). The least accurate technique was Thin plate spline (AP) and Inverse distance to a weight with a power of 1 (AK). Radial basis function models (Spline with Tension for AP at Gleysoil and Cambisol and Completely Regularized Spline for AK at Gleysol) were the best predictors, while Thin Plate Spline models were the least accurate in all three cases. The best interpolator for AK at Cambisol was the local polynomial with the power of 2 (RMSE=33.943), while the least accurate was Thin Plate Spline (RMSE=39.572).
An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Wen, Ning; Gordon, James J.; Elshaikh, Mohamed A.; Movsas, Benjamin; Chetty, Indrin J.
2015-04-01
Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ cm-3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for the development of high-quality MRI-guided radiation therapy.
NASA Astrophysics Data System (ADS)
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.
Modeling terminal ballistics using blending-type spline surfaces
NASA Astrophysics Data System (ADS)
Pedersen, Aleksander; Bratlie, Jostein; Dalmo, Rune
2014-12-01
We explore using GERBS, a blending-type spline construction, to represent deform able thin-plates and model terminal ballistics. Strategies to construct geometry for different scenarios of terminal ballistics are proposed.
Quadratic trigonometric B-spline for image interpolation using GA
Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation. PMID:28640906
Quadratic trigonometric B-spline for image interpolation using GA.
Hussain, Malik Zawwar; Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation.
Illumination estimation via thin-plate spline interpolation.
Shi, Lilong; Xiong, Weihua; Funt, Brian
2011-05-01
Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.
Binder, Harald; Sauerbrei, Willi; Royston, Patrick
2013-06-15
In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2) = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.
Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines
Tan, Yunhao; Hua, Jing; Qin, Hong
2009-01-01
In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636
Weighted spline based integration for reconstruction of freeform wavefront.
Pant, Kamal K; Burada, Dali R; Bichra, Mohamed; Ghosh, Amitava; Khan, Gufran S; Sinzinger, Stefan; Shakher, Chandra
2018-02-10
In the present work, a spline-based integration technique for the reconstruction of a freeform wavefront from the slope data has been implemented. The slope data of a freeform surface contain noise due to their machining process and that introduces reconstruction error. We have proposed a weighted cubic spline based least square integration method (WCSLI) for the faithful reconstruction of a wavefront from noisy slope data. In the proposed method, the measured slope data are fitted into a piecewise polynomial. The fitted coefficients are determined by using a smoothing cubic spline fitting method. The smoothing parameter locally assigns relative weight to the fitted slope data. The fitted slope data are then integrated using the standard least squares technique to reconstruct the freeform wavefront. Simulation studies show the improved result using the proposed technique as compared to the existing cubic spline-based integration (CSLI) and the Southwell methods. The proposed reconstruction method has been experimentally implemented to a subaperture stitching-based measurement of a freeform wavefront using a scanning Shack-Hartmann sensor. The boundary artifacts are minimal in WCSLI which improves the subaperture stitching accuracy and demonstrates an improved Shack-Hartmann sensor for freeform metrology application.
Comparison of interpolation functions to improve a rebinning-free CT-reconstruction algorithm.
de las Heras, Hugo; Tischenko, Oleg; Xu, Yuan; Hoeschen, Christoph
2008-01-01
The robust algorithm OPED for the reconstruction of images from Radon data has been recently developed. This reconstructs an image from parallel data within a special scanning geometry that does not need rebinning but only a simple re-ordering, so that the acquired fan data can be used directly for the reconstruction. However, if the number of rays per fan view is increased, there appear empty cells in the sinogram. These cells need to be filled by interpolation before the reconstruction can be carried out. The present paper analyzes linear interpolation, cubic splines and parametric (or "damped") splines for the interpolation task. The reconstruction accuracy in the resulting images was measured by the Normalized Mean Square Error (NMSE), the Hilbert Angle, and the Mean Relative Error. The spatial resolution was measured by the Modulation Transfer Function (MTF). Cubic splines were confirmed to be the most recommendable method. The reconstructed images resulting from cubic spline interpolation show a significantly lower NMSE than the ones from linear interpolation and have the largest MTF for all frequencies. Parametric splines proved to be advantageous only for small sinograms (below 50 fan views).
A thin-plate spline analysis of the face and tongue in obstructive sleep apnea patients.
Pae, E K; Lowe, A A; Fleetham, J A
1997-12-01
The shape characteristics of the face and tongue in obstructive sleep apnea (OSA) patients were investigated using thin-plate (TP) splines. A relatively new analytic tool, the TP spline method, provides a means of size normalization and image analysis. When shape is one's main concern, various sizes of a biologic structure may be a source of statistical noise. More seriously, the strong size effect could mask underlying, actual attributes of the disease. A set of size normalized data in the form of coordinates was generated from cephalograms of 80 male subjects. The TP spline method envisioned the differences in the shape of the face and tongue between OSA patients and nonapneic subjects and those between the upright and supine body positions. In accordance with OSA severity, the hyoid bone and the submental region positioned inferiorly and the fourth vertebra relocated posteriorly with respect to the mandible. This caused a fanlike configuration of the lower part of the face and neck in the sagittal plane in both upright and supine body positions. TP splines revealed tongue deformations caused by a body position change. Overall, the new morphometric tool adopted here was found to be viable in the analysis of morphologic changes.
Spline-Screw Multiple-Rotation Mechanism
NASA Technical Reports Server (NTRS)
Vranish, John M.
1994-01-01
Mechanism functions like combined robotic gripper and nut runner. Spline-screw multiple-rotation mechanism related to spline-screw payload-fastening system described in (GSC-13454). Incorporated as subsystem in alternative version of system. Mechanism functions like combination of robotic gripper and nut runner; provides both secure grip and rotary actuation of other parts of system. Used in system in which no need to make or break electrical connections to payload during robotic installation or removal of payload. More complicated version needed to make and break electrical connections. Mechanism mounted in payload.
NASA Technical Reports Server (NTRS)
Wahba, G.
1982-01-01
Vector smoothing splines on the sphere are defined. Theoretical properties are briefly alluded to. The appropriate Hilbert space norms used in a specific meteorological application are described and justified via a duality theorem. Numerical procedures for computing the splines as well as the cross validation estimate of two smoothing parameters are given. A Monte Carlo study is described which suggests the accuracy with which upper air vorticity and divergence can be estimated using measured wind vectors from the North American radiosonde network.
NASA Astrophysics Data System (ADS)
Ovsiannikov, Mikhail; Ovsiannikov, Sergei
2017-01-01
The paper presents the combined approach to noise mapping and visualizing of industrial facilities sound pollution using forward ray tracing method and thin-plate spline interpolation. It is suggested to cauterize industrial area in separate zones with similar sound levels. Equivalent local source is defined for range computation of sanitary zones based on ray tracing algorithm. Computation of sound pressure levels within clustered zones are based on two-dimension spline interpolation of measured data on perimeter and inside the zone.
Volumetric T-spline Construction Using Boolean Operations
2013-07-01
SUBTITLE Volumetric T-spline Construction Using Boolean Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Acknowledgements The work of L. Liu and Y. Zhang was supported by ONR-YIP award N00014- 10-1-0698 and an ONR Grant N00014-08-1-0653. T. J.R. Hughes was sup- 16...T-spline Construction Using Boolean Operations 17 ported by ONR Grant N00014-08-1-0992, NSF GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF
Design and Delivery of HMT Half-Shaft Prototype
2012-11-01
spindle welded to the outer joint output is ease of Design and Delivery of HMT Half‐ Shaft Prototype 24 assembly. Flange 1 contains threaded... spindle , and splined shafts . Also, the spindle of the production design is splined to match the splines of the hub internals. 2.2. Analysis The...inner-joint (Figure 33). Design and Delivery of HMT Half‐ Shaft Prototype 27 Figure 33: FBD of Flange/ Spindle Applying Newton’s Laws to the
Internal Friction And Instabilities Of Rotors
NASA Technical Reports Server (NTRS)
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1992-01-01
Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.
NASA Astrophysics Data System (ADS)
Susanti, D.; Hartini, E.; Permana, A.
2017-01-01
Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.
The estimation of branching curves in the presence of subject-specific random effects.
Elmi, Angelo; Ratcliffe, Sarah J; Guo, Wensheng
2014-12-20
Branching curves are a technique for modeling curves that change trajectory at a change (branching) point. Currently, the estimation framework is limited to independent data, and smoothing splines are used for estimation. This article aims to extend the branching curve framework to the longitudinal data setting where the branching point varies by subject. If the branching point is modeled as a random effect, then the longitudinal branching curve framework is a semiparametric nonlinear mixed effects model. Given existing issues with using random effects within a smoothing spline, we express the model as a B-spline based semiparametric nonlinear mixed effects model. Simple, clever smoothness constraints are enforced on the B-splines at the change point. The method is applied to Women's Health data where we model the shape of the labor curve (cervical dilation measured longitudinally) before and after treatment with oxytocin (a labor stimulant). Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Likhachev, Dmitriy V.
2017-06-01
Johs and Hale developed the Kramers-Kronig consistent B-spline formulation for the dielectric function modeling in spectroscopic ellipsometry data analysis. In this article we use popular Akaike, corrected Akaike and Bayesian Information Criteria (AIC, AICc and BIC, respectively) to determine an optimal number of knots for B-spline model. These criteria allow finding a compromise between under- and overfitting of experimental data since they penalize for increasing number of knots and select representation which achieves the best fit with minimal number of knots. Proposed approach provides objective and practical guidance, as opposite to empirically driven or "gut feeling" decisions, for selecting the right number of knots for B-spline models in spectroscopic ellipsometry. AIC, AICc and BIC selection criteria work remarkably well as we demonstrated in several real-data applications. This approach formalizes selection of the optimal knot number and may be useful in practical perspective of spectroscopic ellipsometry data analysis.
Smoothing two-dimensional Malaysian mortality data using P-splines indexed by age and year
NASA Astrophysics Data System (ADS)
Kamaruddin, Halim Shukri; Ismail, Noriszura
2014-06-01
Nonparametric regression implements data to derive the best coefficient of a model from a large class of flexible functions. Eilers and Marx (1996) introduced P-splines as a method of smoothing in generalized linear models, GLMs, in which the ordinary B-splines with a difference roughness penalty on coefficients is being used in a single dimensional mortality data. Modeling and forecasting mortality rate is a problem of fundamental importance in insurance company calculation in which accuracy of models and forecasts are the main concern of the industry. The original idea of P-splines is extended to two dimensional mortality data. The data indexed by age of death and year of death, in which the large set of data will be supplied by Department of Statistics Malaysia. The extension of this idea constructs the best fitted surface and provides sensible prediction of the underlying mortality rate in Malaysia mortality case.
Mammogram registration using the Cauchy-Navier spline
NASA Astrophysics Data System (ADS)
Wirth, Michael A.; Choi, Christopher
2001-07-01
The process of comparative analysis involves inspecting mammograms for characteristic signs of potential cancer by comparing various analogous mammograms. Factors such as the deformable behavior of the breast, changes in breast positioning, and the amount/geometry of compression may contribute to spatial differences between corresponding structures in corresponding mammograms, thereby significantly complicating comparative analysis. Mammogram registration is a process whereby spatial differences between mammograms can be reduced. Presented in this paper is a nonrigid approach to matching corresponding mammograms based on a physical registration model. Many of the earliest approaches to mammogram registration used spatial transformations which were innately rigid or affine in nature. More recently algorithms have incorporated radial basis functions such as the Thin-Plate Spline to match mammograms. The approach presented here focuses on the use of the Cauchy-Navier Spline, a deformable registration model which offers approximate nonrigid registration. The utility of the Cauchy-Navier Spline is illustrated by matching both temporal and bilateral mammograms.
Bidirectional Elastic Image Registration Using B-Spline Affine Transformation
Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao
2014-01-01
A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210
Meshfree truncated hierarchical refinement for isogeometric analysis
NASA Astrophysics Data System (ADS)
Atri, H. R.; Shojaee, S.
2018-05-01
In this paper truncated hierarchical B-spline (THB-spline) is coupled with reproducing kernel particle method (RKPM) to blend advantages of the isogeometric analysis and meshfree methods. Since under certain conditions, the isogeometric B-spline and NURBS basis functions are exactly represented by reproducing kernel meshfree shape functions, recursive process of producing isogeometric bases can be omitted. More importantly, a seamless link between meshfree methods and isogeometric analysis can be easily defined which provide an authentic meshfree approach to refine the model locally in isogeometric analysis. This procedure can be accomplished using truncated hierarchical B-splines to construct new bases and adaptively refine them. It is also shown that the THB-RKPM method can provide efficient approximation schemes for numerical simulations and represent a promising performance in adaptive refinement of partial differential equations via isogeometric analysis. The proposed approach for adaptive locally refinement is presented in detail and its effectiveness is investigated through well-known benchmark examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassab, A.J.; Pollard, J.E.
An algorithm is presented for the high-resolution detection of irregular-shaped subsurface cavities within irregular-shaped bodies by the IR-CAT method. The theoretical basis of the algorithm is rooted in the solution of an inverse geometric steady-state heat conduction problem. A Cauchy boundary condition is prescribed at the exposed surface, and the inverse geometric heat conduction problem is formulated by specifying the thermal condition at the inner cavities walls, whose unknown geometries are to be detected. The location of the inner cavities is initially estimated, and the domain boundaries are discretized. Linear boundary elements are used in conjunction with cubic splines formore » high resolution of the cavity walls. An anchored grid pattern (AGP) is established to constrain the cubic spline knots that control the inner cavity geometry to evolve along the AGP at each iterative step. A residual is defined measuring the difference between imposed and computed boundary conditions. A Newton-Raphson method with a Broyden update is used to automate the detection of inner cavity walls. During the iterative procedure, the movement of the inner cavity walls is restricted to physically realistic intermediate solutions. Numerical simulation demonstrates the superior resolution of the cubic spline AGP algorithm over the linear spline-based AGP in the detection of an irregular-shaped cavity. Numerical simulation is also used to test the sensitivity of the linear and cubic spline AGP algorithms by simulating bias and random error in measured surface temperature. The proposed AGP algorithm is shown to satisfactorily detect cavities with these simulated data.« less
NASA Astrophysics Data System (ADS)
Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej; Schmidt, Michael; Erdogan, Eren; Goss, Andreas
2017-04-01
Since electromagnetic measurements show dispersive characteristics, accurate modelling of the ionospheric electron content plays an important role for positioning and navigation applications to mitigate the effect of the ionospheric disturbances. Knowledge about the ionosphere contributes to a better understanding of space weather events as well as to forecast these events to enable protective measures in advance for electronic systems and satellite missions. In the last decades, advances in satellite technologies, data analysis techniques and models together with a rapidly growing number of analysis centres allow modelling the ionospheric electron content with an unprecedented accuracy in (near) real-time. In this sense, the representation of electron content variations in time and space with spline basis functions has gained practical importance in global and regional ionosphere modelling. This is due to their compact support and their flexibility to handle unevenly distributed observations and data gaps. In this contribution, the performances of two ionosphere models from UWM and DGFI-TUM, which are developed using spline functions are evaluated. The VTEC model of DGFI-TUM is based on tensor products of trigonometric B-spline functions in longitude and polynomial B-spline functions in latitude for a global representation. The UWM model uses two dimensional planar thin plate spline (TPS) with the Universal Transverse Mercator representation of ellipsoidal coordinates. In order to provide a smooth VTEC model, the TPS minimizes both, the squared norm of the Hessian matrix and deviations between data points and the model. In the evaluations, the differenced STEC analysis method and Jason-2 altimetry comparisons are applied.
A time-efficient algorithm for implementing the Catmull-Clark subdivision method
NASA Astrophysics Data System (ADS)
Ioannou, G.; Savva, A.; Stylianou, V.
2015-10-01
Splines are the most popular methods in Figure Modeling and CAGD (Computer Aided Geometric Design) in generating smooth surfaces from a number of control points. The control points define the shape of a figure and splines calculate the required number of points which when displayed on a computer screen the result is a smooth surface. However, spline methods are based on a rectangular topological structure of points, i.e., a two-dimensional table of vertices, and thus cannot generate complex figures, such as the human and animal bodies that their complex structure does not allow them to be defined by a regular rectangular grid. On the other hand surface subdivision methods, which are derived by splines, generate surfaces which are defined by an arbitrary topology of control points. This is the reason that during the last fifteen years subdivision methods have taken the lead over regular spline methods in all areas of modeling in both industry and research. The cost of executing computer software developed to read control points and calculate the surface is run-time, due to the fact that the surface-structure required for handling arbitrary topological grids is very complicate. There are many software programs that have been developed related to the implementation of subdivision surfaces however, not many algorithms are documented in the literature, to support developers for writing efficient code. This paper aims to assist programmers by presenting a time-efficient algorithm for implementing subdivision splines. The Catmull-Clark which is the most popular of the subdivision methods has been employed to illustrate the algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S; Chinese PLA General Hospital, Beijing, 100853 China; Liu, B
2015-06-15
Purpose: Three deformable image registration (DIR) algorithms are utilized to perform deformable dose accumulation for head and neck tomotherapy treatment, and the differences of the accumulated doses are evaluated. Methods: Daily MVCT data for 10 patients with pathologically proven nasopharyngeal cancers were analyzed. The data were acquired using tomotherapy (TomoTherapy, Accuray) at the PLA General Hospital. The prescription dose to the primary target was 70Gy in 33 fractions.Three DIR methods (B-spline, Diffeomorphic Demons and MIMvista) were used to propagate parotid structures from planning CTs to the daily CTs and accumulate fractionated dose on the planning CTs. The mean accumulated dosesmore » of parotids were quantitatively compared and the uncertainties of the propagated parotid contours were evaluated using Dice similarity index (DSI). Results: The planned mean dose of the ipsilateral parotids (32.42±3.13Gy) was slightly higher than those of the contralateral parotids (31.38±3.19Gy)in 10 patients. The difference between the accumulated mean doses of the ipsilateral parotids in the B-spline, Demons and MIMvista deformation algorithms (36.40±5.78Gy, 34.08±6.72Gy and 33.72±2.63Gy ) were statistically significant (B-spline vs Demons, P<0.0001, B-spline vs MIMvista, p =0.002). And The difference between those of the contralateral parotids in the B-spline, Demons and MIMvista deformation algorithms (34.08±4.82Gy, 32.42±4.80Gy and 33.92±4.65Gy ) were also significant (B-spline vs Demons, p =0.009, B-spline vs MIMvista, p =0.074). For the DSI analysis, the scores of B-spline, Demons and MIMvista DIRs were 0.90, 0.89 and 0.76. Conclusion: Shrinkage of parotid volumes results in the dose increase to the parotid glands in adaptive head and neck radiotherapy. The accumulated doses of parotids show significant difference using the different DIR algorithms between kVCT and MVCT. Therefore, the volume-based criterion (i.e. DSI) as a quantitative evaluation of registration accuracy is essential besides the visual assessment by the treating physician. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11105225)« less
Radial Splines Would Prevent Rotation Of Bearing Race
NASA Technical Reports Server (NTRS)
Kaplan, Ronald M.; Chokshi, Jaisukhlal V.
1993-01-01
Interlocking fine-pitch ribs and grooves formed on otherwise flat mating end faces of housing and outer race of rolling-element bearing to be mounted in housing, according to proposal. Splines bear large torque loads and impose minimal distortion on raceway.
The computation of Laplacian smoothing splines with examples
NASA Technical Reports Server (NTRS)
Wendelberger, J. G.
1982-01-01
Laplacian smoothing splines (LSS) are presented as generalizations of graduation, cubic and thin plate splines. The method of generalized cross validation (GCV) to choose the smoothing parameter is described. The GCV is used in the algorithm for the computation of LSS's. An outline of a computer program which implements this algorithm is presented along with a description of the use of the program. Examples in one, two and three dimensions demonstrate how to obtain estimates of function values with confidence intervals and estimates of first and second derivatives. Probability plots are used as a diagnostic tool to check for model inadequacy.
B-spline based image tracking by detection
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Sithiravel, Rajiv; Damini, Anthony; Kirubarajan, Thiagalingam; Rajan, Sreeraman
2016-05-01
Visual image tracking involves the estimation of the motion of any desired targets in a surveillance region using a sequence of images. A standard method of isolating moving targets in image tracking uses background subtraction. The standard background subtraction method is often impacted by irrelevant information in the images, which can lead to poor performance in image-based target tracking. In this paper, a B-Spline based image tracking is implemented. The novel method models the background and foreground using the B-Spline method followed by a tracking-by-detection algorithm. The effectiveness of the proposed algorithm is demonstrated.
Weighted cubic and biharmonic splines
NASA Astrophysics Data System (ADS)
Kvasov, Boris; Kim, Tae-Wan
2017-01-01
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
Quasi interpolation with Voronoi splines.
Mirzargar, Mahsa; Entezari, Alireza
2011-12-01
We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke
Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.
Characterizing vaccine-associated risks using cubic smoothing splines.
Brookhart, M Alan; Walker, Alexander M; Lu, Yun; Polakowski, Laura; Li, Jie; Paeglow, Corrie; Puenpatom, Tosmai; Izurieta, Hector; Daniel, Gregory W
2012-11-15
Estimating risks associated with the use of childhood vaccines is challenging. The authors propose a new approach for studying short-term vaccine-related risks. The method uses a cubic smoothing spline to flexibly estimate the daily risk of an event after vaccination. The predicted incidence rates from the spline regression are then compared with the expected rates under a log-linear trend that excludes the days surrounding vaccination. The 2 models are then used to estimate the excess cumulative incidence attributable to the vaccination during the 42-day period after vaccination. Confidence intervals are obtained using a model-based bootstrap procedure. The method is applied to a study of known effects (positive controls) and expected noneffects (negative controls) of the measles, mumps, and rubella and measles, mumps, rubella, and varicella vaccines among children who are 1 year of age. The splines revealed well-resolved spikes in fever, rash, and adenopathy diagnoses, with the maximum incidence occurring between 9 and 11 days after vaccination. For the negative control outcomes, the spline model yielded a predicted incidence more consistent with the modeled day-specific risks, although there was evidence of increased risk of diagnoses of congenital malformations after vaccination, possibly because of a "provider visit effect." The proposed approach may be useful for vaccine safety surveillance.
Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G
2008-09-01
A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Parsons, Adam H. (Inventor); Mehling, Joshua S. (Inventor); Griffith, Bryan Kristian (Inventor)
2012-01-01
A torsion spring comprises an inner mounting segment. An outer mounting segment is located concentrically around the inner mounting segment. A plurality of splines extends from the inner mounting segment to the outer mounting segment. At least a portion of each spline extends generally annularly around the inner mounting segment.
Quiet Clean Short-haul Experimental Engine (QCSEE). Ball spline pitch change mechanism design report
NASA Technical Reports Server (NTRS)
1978-01-01
Detailed design parameters are presented for a variable-pitch change mechanism. The mechanism is a mechanical system containing a ball screw/spline driving two counteracting master bevel gears meshing pinion gears attached to each of 18 fan blades.
Effect of coulomb spline on rotor dynamic response
NASA Technical Reports Server (NTRS)
Nataraj, C.; Nelson, H. D.; Arakere, N.
1985-01-01
A rigid rotor system coupled by a coulomb spline is modelled and analyzed by approximate analytical and numerical analytical methods. Expressions are derived for the variables of the resulting limit cycle and are shown to be quite accurate for a small departure from isotropy.
Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel
NASA Astrophysics Data System (ADS)
Pai, Akshay; Sommer, Stefan; Sørensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads
2015-03-01
Interpolating kernels are crucial to solving a stationary velocity field (SVF) based image registration problem. This is because, velocity fields need to be computed in non-integer locations during integration. The regularity in the solution to the SVF registration problem is controlled by the regularization term. In a variational formulation, this term is traditionally expressed as a squared norm which is a scalar inner product of the interpolating kernels parameterizing the velocity fields. The minimization of this term using the standard spline interpolation kernels (linear or cubic) is only approximative because of the lack of a compatible norm. In this paper, we propose to replace such interpolants with a norm-minimizing interpolant - the Wendland kernel which has the same computational simplicity like B-Splines. An application on the Alzheimer's disease neuroimaging initiative showed that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (p<0.05 in amygdala) and B-Spline freeform deformation (p<0.05 in amygdala and cortical gray matter).
Time Varying Compensator Design for Reconfigurable Structures Using Non-Collocated Feedback
NASA Technical Reports Server (NTRS)
Scott, Michael A.
1996-01-01
Analysis and synthesis tools are developed to improved the dynamic performance of reconfigurable nonminimum phase, nonstrictly positive real-time variant systems. A novel Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear system. There are several advantages to using the SVO controller, in which the spline function approximates the system model, observer, and controller gain. They are: The spline function approximation is simply connected, thus the SVO controller is more continuous than traditional gain scheduled controllers when implemented on a time varying plant; ft is easier for real-time implementations in storage and computational effort; where system identification is required, the spline function requires fewer experiments, namely four experiments; and initial startup estimator transients are eliminated. The SVO compensator was evaluated on a high fidelity simulation of the Shuttle Remote Manipulator System. The SVO controller demonstrated significant improvement over the present arm performance: (1) Damping level was improved by a factor of 3; and (2) Peak joint torque was reduced by a factor of 2 following Shuttle thruster firings.
Kamensky, David; Hsu, Ming-Chen; Yu, Yue; Evans, John A.; Sacks, Michael S.; Hughes, Thomas J. R.
2016-01-01
This paper uses a divergence-conforming B-spline fluid discretization to address the long-standing issue of poor mass conservation in immersed methods for computational fluid–structure interaction (FSI) that represent the influence of the structure as a forcing term in the fluid subproblem. We focus, in particular, on the immersogeometric method developed in our earlier work, analyze its convergence for linear model problems, then apply it to FSI analysis of heart valves, using divergence-conforming B-splines to discretize the fluid subproblem. Poor mass conservation can manifest as effective leakage of fluid through thin solid barriers. This leakage disrupts the qualitative behavior of FSI systems such as heart valves, which exist specifically to block flow. Divergence-conforming discretizations can enforce mass conservation exactly, avoiding this problem. To demonstrate the practical utility of immersogeometric FSI analysis with divergence-conforming B-splines, we use the methods described in this paper to construct and evaluate a computational model of an in vitro experiment that pumps water through an artificial valve. PMID:28239201
Landmark-based elastic registration using approximating thin-plate splines.
Rohr, K; Stiehl, H S; Sprengel, R; Buzug, T M; Weese, J; Kuhn, M H
2001-06-01
We consider elastic image registration based on a set of corresponding anatomical point landmarks and approximating thin-plate splines. This approach is an extension of the original interpolating thin-plate spline approach and allows to take into account landmark localization errors. The extension is important for clinical applications since landmark extraction is always prone to error. Our approach is based on a minimizing functional and can cope with isotropic as well as anisotropic landmark errors. In particular, in the latter case it is possible to include different types of landmarks, e.g., unique point landmarks as well as arbitrary edge points. Also, the scheme is general with respect to the image dimension and the order of smoothness of the underlying functional. Optimal affine transformations as well as interpolating thin-plate splines are special cases of this scheme. To localize landmarks we use a semi-automatic approach which is based on three-dimensional (3-D) differential operators. Experimental results are presented for two-dimensional as well as 3-D tomographic images of the human brain.
Non-rigid image registration using a statistical spline deformation model.
Loeckx, Dirk; Maes, Frederik; Vandermeulen, Dirk; Suetens, Paul
2003-07-01
We propose a statistical spline deformation model (SSDM) as a method to solve non-rigid image registration. Within this model, the deformation is expressed using a statistically trained B-spline deformation mesh. The model is trained by principal component analysis of a training set. This approach allows to reduce the number of degrees of freedom needed for non-rigid registration by only retaining the most significant modes of variation observed in the training set. User-defined transformation components, like affine modes, are merged with the principal components into a unified framework. Optimization proceeds along the transformation components rather then along the individual spline coefficients. The concept of SSDM's is applied to the temporal registration of thorax CR-images using pattern intensity as the registration measure. Our results show that, using 30 training pairs, a reduction of 33% is possible in the number of degrees of freedom without deterioration of the result. The same accuracy as without SSDM's is still achieved after a reduction up to 66% of the degrees of freedom.
Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines
NASA Astrophysics Data System (ADS)
Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya
2017-11-01
Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1.093 pixels, which were respectively 42.1%, 48.3%, and 54.8% better than those achieved before the nonlinear bias compensation.
Spline-Screw Payload-Fastening System
NASA Technical Reports Server (NTRS)
Vranish, John M.
1994-01-01
Payload handed off securely between robot and vehicle or structure. Spline-screw payload-fastening system includes mating female and male connector mechanisms. Clockwise (or counter-clockwise) rotation of splined male driver on robotic end effector causes connection between robot and payload to tighten (or loosen) and simultaneously causes connection between payload and structure to loosen (or tighten). Includes mechanisms like those described in "Tool-Changing Mechanism for Robot" (GSC-13435) and "Self-Aligning Mechanical and Electrical Coupling" (GSC-13430). Designed for use in outer space, also useful on Earth in applications needed for secure handling and secure mounting of equipment modules during storage, transport, and/or operation. Particularly useful in machine or robotic applications.
Numerical computations on one-dimensional inverse scattering problems
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Hariharan, S. I.
1983-01-01
An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.
How to fly an aircraft with control theory and splines
NASA Technical Reports Server (NTRS)
Karlsson, Anders
1994-01-01
When trying to fly an aircraft as smoothly as possible it is a good idea to use the derivatives of the pilot command instead of using the actual control. This idea was implemented with splines and control theory, in a system that tries to model an aircraft. Computer calculations in Matlab show that it is impossible to receive enough smooth control signals by this way. This is due to the fact that the splines not only try to approximate the test function, but also its derivatives. A perfect traction is received but we have to pay in very peaky control signals and accelerations.
[Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].
Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing
2003-12-01
Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.
NASA Astrophysics Data System (ADS)
Yi, Longtao; Liu, Zhiguo; Wang, Kai; Chen, Man; Peng, Shiqi; Zhao, Weigang; He, Jialin; Zhao, Guangcui
2015-03-01
A new method is presented to subtract the background from the energy dispersive X-ray fluorescence (EDXRF) spectrum using a cubic spline interpolation. To accurately obtain interpolation nodes, a smooth fitting and a set of discriminant formulations were adopted. From these interpolation nodes, the background is estimated by a calculated cubic spline function. The method has been tested on spectra measured from a coin and an oil painting using a confocal MXRF setup. In addition, the method has been tested on an existing sample spectrum. The result confirms that the method can properly subtract the background.
Interpolating Spherical Harmonics for Computing Antenna Patterns
2011-07-01
4∞. If gNF denotes the spline computed from the uniform partition of NF + 1 frequency points, the splines converge as O[N−4F ]: ‖gN − g‖∞ ≤ C0‖g(4...splines. There is the possibility of estimating the error ‖g− gNF ‖∞ even though the function g is unknown. Table 1 compares these unknown errors ‖g − gNF ...to the computable estimates ‖ gNF − g2NF ‖∞. The latter is a strong predictor of the unknown error. The triple bar is the sup-norm error over all the
Radial Basis Function Based Quadrature over Smooth Surfaces
2016-03-24
Radial Basis Functions φ(r) Piecewise Smooth (Conditionally Positive Definite) MN Monomial |r|2m+1 TPS thin plate spline |r|2mln|r| Infinitely Smooth...smooth surfaces using polynomial interpolants, while [27] couples Thin - Plate Spline interpolation (see table 1) with Green’s integral formula [29
Direct numerical simulation of incompressible axisymmetric flows
NASA Technical Reports Server (NTRS)
Loulou, Patrick
1994-01-01
In the present work, we propose to conduct direct numerical simulations (DNS) of incompressible turbulent axisymmetric jets and wakes. The objectives of the study are to understand the fundamental behavior of axisymmetric jets and wakes, which are perhaps the most technologically relevant free shear flows (e.g. combuster injectors, propulsion jet). Among the data to be generated are various statistical quantities of importance in turbulence modeling, like the mean velocity, turbulent stresses, and all the terms in the Reynolds-stress balance equations. In addition, we will be interested in the evolution of large-scale structures that are common in free shear flow. The axisymmetric jet or wake is also a good problem in which to try the newly developed b-spline numerical method. Using b-splines as interpolating functions in the non-periodic direction offers many advantages. B-splines have local support, which leads to sparse matrices that can be efficiently stored and solved. Also, they offer spectral-like accuracy that are C(exp O-1) continuous, where O is the order of the spline used; this means that derivatives of the velocity such as the vorticity are smoothly and accurately represented. For purposes of validation against existing results, the present code will also be able to simulate internal flows (ones that require a no-slip boundary condition). Implementation of no-slip boundary condition is trivial in the context of the b-splines.
Directly manipulated free-form deformation image registration.
Tustison, Nicholas J; Avants, Brian B; Gee, James C
2009-03-01
Previous contributions to both the research and open source software communities detailed a generalization of a fast scalar field fitting technique for cubic B-splines based on the work originally proposed by Lee . One advantage of our proposed generalized B-spline fitting approach is its immediate application to a class of nonrigid registration techniques frequently employed in medical image analysis. Specifically, these registration techniques fall under the rubric of free-form deformation (FFD) approaches in which the object to be registered is embedded within a B-spline object. The deformation of the B-spline object describes the transformation of the image registration solution. Representative of this class of techniques, and often cited within the relevant community, is the formulation of Rueckert who employed cubic splines with normalized mutual information to study breast deformation. Similar techniques from various groups provided incremental novelty in the form of disparate explicit regularization terms, as well as the employment of various image metrics and tailored optimization methods. For several algorithms, the underlying gradient-based optimization retained the essential characteristics of Rueckert's original contribution. The contribution which we provide in this paper is two-fold: 1) the observation that the generic FFD framework is intrinsically susceptible to problematic energy topographies and 2) that the standard gradient used in FFD image registration can be modified to a well-understood preconditioned form which substantially improves performance. This is demonstrated with theoretical discussion and comparative evaluation experimentation.
Square tubing reduces cost of telescoping bridge crane hoist
NASA Technical Reports Server (NTRS)
Bernstein, G.; Graae, J.; Schraidt, J.
1967-01-01
Using standard square tubing in a telescoping arrangement reduces the cost of a bridge crane hoist. Because surface tolerances of square tubing need not be as accurate as the tubing used previously and because no spline is necessary, the square tubing is significantly less expensive than splined telescoping tubes.
The Design and Characterization of Wideband Spline-profiled Feedhorns for Advanced Actpol
NASA Technical Reports Server (NTRS)
Simon, Sara M.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hills, Felicity B.; Ho, Shuay-Pwu Patty;
2016-01-01
Advanced ACTPol (AdvACT) is an upgraded camera for the Atacama Cosmology Telescope (ACT) that will measure the cosmic microwave background in temperature and polarization over a wide range of angular scales and five frequency bands from 28-230 GHz. AdvACT will employ four arrays of feedhorn-coupled, polarization- sensitive multichroic detectors. To accommodate the higher pixel packing densities necessary to achieve Ad- vACTs sensitivity goals, we have developed and optimized wideband spline-profiled feedhorns for the AdvACT multichroic arrays that maximize coupling efficiency while carefully controlling polarization systematics. We present the design, fabrication, and testing of wideband spline-profiled feedhorns for the multichroic arrays of AdvACT.
Greenland, S
1996-03-15
This paper presents an approach to back-projection (back-calculation) of human immunodeficiency virus (HIV) person-year infection rates in regional subgroups based on combining a log-linear model for subgroup differences with a penalized spline model for trends. The penalized spline approach allows flexible trend estimation but requires far fewer parameters than fully non-parametric smoothers, thus saving parameters that can be used in estimating subgroup effects. Use of reasonable prior curve to construct the penalty function minimizes the degree of smoothing needed beyond model specification. The approach is illustrated in application to acquired immunodeficiency syndrome (AIDS) surveillance data from Los Angeles County.
Analytic regularization of uniform cubic B-spline deformation fields.
Shackleford, James A; Yang, Qi; Lourenço, Ana M; Shusharina, Nadya; Kandasamy, Nagarajan; Sharp, Gregory C
2012-01-01
Image registration is inherently ill-posed, and lacks a unique solution. In the context of medical applications, it is desirable to avoid solutions that describe physically unsound deformations within the patient anatomy. Among the accepted methods of regularizing non-rigid image registration to provide solutions applicable to medical practice is the penalty of thin-plate bending energy. In this paper, we develop an exact, analytic method for computing the bending energy of a three-dimensional B-spline deformation field as a quadratic matrix operation on the spline coefficient values. Results presented on ten thoracic case studies indicate the analytic solution is between 61-1371x faster than a numerical central differencing solution.
NASA Astrophysics Data System (ADS)
Sumantari, Y. D.; Slamet, I.; Sugiyanto
2017-06-01
Semiparametric regression is a statistical analysis method that consists of parametric and nonparametric regression. There are various approach techniques in nonparametric regression. One of the approach techniques is spline. Central Java is one of the most densely populated province in Indonesia. Population density in this province can be modeled by semiparametric regression because it consists of parametric and nonparametric component. Therefore, the purpose of this paper is to determine the factors that in uence population density in Central Java using the semiparametric spline regression model. The result shows that the factors which in uence population density in Central Java is Family Planning (FP) active participants and district minimum wage.
NASA Technical Reports Server (NTRS)
Ku, C.-P. Roger; Walton, James F., Jr.; Lund, Jorgen W.
1994-01-01
This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Quality Quandaries: Predicting a Population of Curves
Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip
2017-12-19
We present a random effects spline regression model based on splines that provides an integrated approach for analyzing functional data, i.e., curves, when the shape of the curves is not parametrically specified. An analysis using this model is presented that makes inferences about a population of curves as well as features of the curves.
A Spline Regression Model for Latent Variables
ERIC Educational Resources Information Center
Harring, Jeffrey R.
2014-01-01
Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…
Quality Quandaries: Predicting a Population of Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip
We present a random effects spline regression model based on splines that provides an integrated approach for analyzing functional data, i.e., curves, when the shape of the curves is not parametrically specified. An analysis using this model is presented that makes inferences about a population of curves as well as features of the curves.
78 FR 54377 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
... family THSA P/N 47145-XXX (where XXX stands for any numerical value) ballscrews might be affected by this... requires repetitive detailed inspections of the ballscrew lower splines of THSAs having P/N 47145-XXX to... ballscrew shaft and tie-rod splines on any THSA having P/N 47145-XXX (where XXX stands for any numerical...
Computational methods for estimation of parameters in hyperbolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.; Murphy, K. A.
1983-01-01
Approximation techniques for estimating spatially varying coefficients and unknown boundary parameters in second order hyperbolic systems are discussed. Methods for state approximation (cubic splines, tau-Legendre) and approximation of function space parameters (interpolatory splines) are outlined and numerical findings for use of the resulting schemes in model "one dimensional seismic inversion' problems are summarized.
Nielsen, J D; Dean, C B
2008-09-01
A flexible semiparametric model for analyzing longitudinal panel count data arising from mixtures is presented. Panel count data refers here to count data on recurrent events collected as the number of events that have occurred within specific follow-up periods. The model assumes that the counts for each subject are generated by mixtures of nonhomogeneous Poisson processes with smooth intensity functions modeled with penalized splines. Time-dependent covariate effects are also incorporated into the process intensity using splines. Discrete mixtures of these nonhomogeneous Poisson process spline models extract functional information from underlying clusters representing hidden subpopulations. The motivating application is an experiment to test the effectiveness of pheromones in disrupting the mating pattern of the cherry bark tortrix moth. Mature moths arise from hidden, but distinct, subpopulations and monitoring the subpopulation responses was of interest. Within-cluster random effects are used to account for correlation structures and heterogeneity common to this type of data. An estimating equation approach to inference requiring only low moment assumptions is developed and the finite sample properties of the proposed estimating functions are investigated empirically by simulation.
Algebraic grid generation using tensor product B-splines. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Saunders, B. V.
1985-01-01
Finite difference methods are more successful if the accompanying grid has lines which are smooth and nearly orthogonal. The development of an algorithm which produces such a grid when given the boundary description. Topological considerations in structuring the grid generation mapping are discussed. The concept of the degree of a mapping and how it can be used to determine what requirements are necessary if a mapping is to produce a suitable grid is examined. The grid generation algorithm uses a mapping composed of bicubic B-splines. Boundary coefficients are chosen so that the splines produce Schoenberg's variation diminishing spline approximation to the boundary. Interior coefficients are initially chosen to give a variation diminishing approximation to the transfinite bilinear interpolant of the function mapping the boundary of the unit square onto the boundary grid. The practicality of optimizing the grid by minimizing a functional involving the Jacobian of the grid generation mapping at each interior grid point and the dot product of vectors tangent to the grid lines is investigated. Grids generated by using the algorithm are presented.
Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain
Osechinskiy, Sergey; Kruggel, Frithjof
2011-01-01
Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290
NASA Astrophysics Data System (ADS)
Bureick, Johannes; Alkhatib, Hamza; Neumann, Ingo
2016-03-01
In many geodetic engineering applications it is necessary to solve the problem of describing a measured data point cloud, measured, e. g. by laser scanner, by means of free-form curves or surfaces, e. g., with B-Splines as basis functions. The state of the art approaches to determine B-Splines yields results which are seriously manipulated by the occurrence of data gaps and outliers. Optimal and robust B-Spline fitting depend, however, on optimal selection of the knot vector. Hence we combine in our approach Monte-Carlo methods and the location and curvature of the measured data in order to determine the knot vector of the B-Spline in such a way that no oscillating effects at the edges of data gaps occur. We introduce an optimized approach based on computed weights by means of resampling techniques. In order to minimize the effect of outliers, we apply robust M-estimators for the estimation of control points. The above mentioned approach will be applied to a multi-sensor system based on kinematic terrestrial laserscanning in the field of rail track inspection.
NASA Astrophysics Data System (ADS)
Suparti; Prahutama, Alan; Santoso, Rukun
2018-05-01
Inflation is an increase in the price of goods and services in general where the goods and services are the basic needs of society or the decline of the selling power of a country’s currency. Significant inflationary increases occurred in 2013. This increase was contributed by a significant increase in some inflation sectors / groups i.e transportation, communication and financial services; the foodstuff sector, and the housing, water, electricity, gas and fuel sectors. However, significant contributions occurred in the transportation, communications and financial services sectors. In the model of IFIs in the transportation, communication and financial services sector use the B-Spline time series approach, where the predictor variable is Yt, whereas the predictor is a significant lag (in this case Yt-1). In modeling B-spline time series determined the order and the optimum knot point. Optimum knot determination using Generalized Cross Validation (GCV). In inflation modeling for transportation sector, communication and financial services obtained model of B-spline order 2 with 2 points knots produce MAPE less than 50%.
Perrakis, Konstantinos; Gryparis, Alexandros; Schwartz, Joel; Le Tertre, Alain; Katsouyanni, Klea; Forastiere, Francesco; Stafoggia, Massimo; Samoli, Evangelia
2014-12-10
An important topic when estimating the effect of air pollutants on human health is choosing the best method to control for seasonal patterns and time varying confounders, such as temperature and humidity. Semi-parametric Poisson time-series models include smooth functions of calendar time and weather effects to control for potential confounders. Case-crossover (CC) approaches are considered efficient alternatives that control seasonal confounding by design and allow inclusion of smooth functions of weather confounders through their equivalent Poisson representations. We evaluate both methodological designs with respect to seasonal control and compare spline-based approaches, using natural splines and penalized splines, and two time-stratified CC approaches. For the spline-based methods, we consider fixed degrees of freedom, minimization of the partial autocorrelation function, and general cross-validation as smoothing criteria. Issues of model misspecification with respect to weather confounding are investigated under simulation scenarios, which allow quantifying omitted, misspecified, and irrelevant-variable bias. The simulations are based on fully parametric mechanisms designed to replicate two datasets with different mortality and atmospheric patterns. Overall, minimum partial autocorrelation function approaches provide more stable results for high mortality counts and strong seasonal trends, whereas natural splines with fixed degrees of freedom perform better for low mortality counts and weak seasonal trends followed by the time-season-stratified CC model, which performs equally well in terms of bias but yields higher standard errors. Copyright © 2014 John Wiley & Sons, Ltd.
A B-spline Galerkin method for the Dirac equation
NASA Astrophysics Data System (ADS)
Froese Fischer, Charlotte; Zatsarinny, Oleg
2009-06-01
The B-spline Galerkin method is first investigated for the simple eigenvalue problem, y=-λy, that can also be written as a pair of first-order equations y=λz, z=-λy. Expanding both y(r) and z(r) in the B basis results in many spurious solutions such as those observed for the Dirac equation. However, when y(r) is expanded in the B basis and z(r) in the dB/dr basis, solutions of the well-behaved second-order differential equation are obtained. From this analysis, we propose a stable method ( B,B) basis for the Dirac equation and evaluate its accuracy by comparing the computed and exact R-matrix for a wide range of nuclear charges Z and angular quantum numbers κ. When splines of the same order are used, many spurious solutions are found whereas none are found for splines of different order. Excellent agreement is obtained for the R-matrix and energies for bound states for low values of Z. For high Z, accuracy requires the use of a grid with many points near the nucleus. We demonstrate the accuracy of the bound-state wavefunctions by comparing integrals arising in hyperfine interaction matrix elements with exact analytic expressions. We also show that the Thomas-Reiche-Kuhn sum rule is not a good measure of the quality of the solutions obtained by the B-spline Galerkin method whereas the R-matrix is very sensitive to the appearance of pseudo-states.
Trajectory control of an articulated robot with a parallel drive arm based on splines under tension
NASA Astrophysics Data System (ADS)
Yi, Seung-Jong
Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and motors to produce combined arc and straight-line motion. The simulation and experiment show interesting results by demonstrating smooth motion in both acceleration and jerk and significant improvements of positioning accuracy in trajectory planning.
Practical aspects of estimating energy components in rodents
van Klinken, Jan B.; van den Berg, Sjoerd A. A.; van Dijk, Ko Willems
2013-01-01
Recently there has been an increasing interest in exploiting computational and statistical techniques for the purpose of component analysis of indirect calorimetry data. Using these methods it becomes possible to dissect daily energy expenditure into its components and to assess the dynamic response of the resting metabolic rate (RMR) to nutritional and pharmacological manipulations. To perform robust component analysis, however, is not straightforward and typically requires the tuning of parameters and the preprocessing of data. Moreover the degree of accuracy that can be attained by these methods depends on the configuration of the system, which must be properly taken into account when setting up experimental studies. Here, we review the methods of Kalman filtering, linear, and penalized spline regression, and minimal energy expenditure estimation in the context of component analysis and discuss their results on high resolution datasets from mice and rats. In addition, we investigate the effect of the sample time, the accuracy of the activity sensor, and the washout time of the chamber on the estimation accuracy. We found that on the high resolution data there was a strong correlation between the results of Kalman filtering and penalized spline (P-spline) regression, except for the activity respiratory quotient (RQ). For low resolution data the basal metabolic rate (BMR) and resting RQ could still be estimated accurately with P-spline regression, having a strong correlation with the high resolution estimate (R2 > 0.997; sample time of 9 min). In contrast, the thermic effect of food (TEF) and activity related energy expenditure (AEE) were more sensitive to a reduction in the sample rate (R2 > 0.97). In conclusion, for component analysis on data generated by single channel systems with continuous data acquisition both Kalman filtering and P-spline regression can be used, while for low resolution data from multichannel systems P-spline regression gives more robust results. PMID:23641217
NASA Astrophysics Data System (ADS)
Durmaz, Murat; Karslioglu, Mahmut Onur
2015-04-01
There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.
Prostate multimodality image registration based on B-splines and quadrature local energy.
Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice
2012-05-01
Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.
NASA Astrophysics Data System (ADS)
Shen, Xiang; Liu, Bin; Li, Qing-Quan
2017-03-01
The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates that the new method can be more effective at removing systematic biases in vendor-supplied RPCs.
NASA Astrophysics Data System (ADS)
Köhler, Peter; Nehrbass-Ahles, Christoph; Schmitt, Jochen; Stocker, Thomas F.; Fischer, Hubertus
2017-06-01
Continuous records of the atmospheric greenhouse gases (GHGs) CO2, CH4, and N2O are necessary input data for transient climate simulations, and their associated radiative forcing represents important components in analyses of climate sensitivity and feedbacks. Since the available data from ice cores are discontinuous and partly ambiguous, a well-documented decision process during data compilation followed by some interpolating post-processing is necessary to obtain those desired time series. Here, we document our best possible data compilation of published ice core records and recent measurements on firn air and atmospheric samples spanning the interval from the penultimate glacial maximum ( ˜ 156 kyr BP) to the beginning of the year 2016 CE. We use the most recent age scales for the ice core data and apply a smoothing spline method to translate the discrete and irregularly spaced data points into continuous time series. These splines are then used to compute the radiative forcing for each GHG using well-established, simple formulations. We compile only a Southern Hemisphere record of CH4 and discuss how much larger a Northern Hemisphere or global CH4 record might have been due to its interpolar difference. The uncertainties of the individual data points are considered in the spline procedure. Based on the given data resolution, time-dependent cutoff periods of the spline, defining the degree of smoothing, are prescribed, ranging from 5000 years for the less resolved older parts of the records to 4 years for the densely sampled recent years. The computed splines seamlessly describe the GHG evolution on orbital and millennial timescales for glacial and glacial-interglacial variations and on centennial and decadal timescales for anthropogenic times. Data connected with this paper, including raw data and final splines, are available at doi:10.1594/PANGAEA.871273.
NASA Astrophysics Data System (ADS)
Jin, Renchao; Liu, Yongchuan; Chen, Mi; Zhang, Sheng; Song, Enmin
2018-01-01
A robust contour propagation method is proposed to help physicians delineate lung tumors on all phase images of four-dimensional computed tomography (4D-CT) by only manually delineating the contours on a reference phase. The proposed method models the trajectory surface swept by a contour in a respiratory cycle as a tensor-product surface of two closed cubic B-spline curves: a non-uniform B-spline curve which models the contour and a uniform B-spline curve which models the trajectory of a point on the contour. The surface is treated as a deformable entity, and is optimized from an initial surface by moving its control vertices such that the sum of the intensity similarities between the sampling points on the manually delineated contour and their corresponding ones on different phases is maximized. The initial surface is constructed by fitting the manually delineated contour on the reference phase with a closed B-spline curve. In this way, the proposed method can focus the registration on the contour instead of the entire image to prevent the deformation of the contour from being smoothed by its surrounding tissues, and greatly reduce the time consumption while keeping the accuracy of the contour propagation as well as the temporal consistency of the estimated respiratory motions across all phases in 4D-CT. Eighteen 4D-CT cases with 235 gross tumor volume (GTV) contours on the maximal inhale phase and 209 GTV contours on the maximal exhale phase are manually delineated slice by slice. The maximal inhale phase is used as the reference phase, which provides the initial contours. On the maximal exhale phase, the Jaccard similarity coefficient between the propagated GTV and the manually delineated GTV is 0.881 +/- 0.026, and the Hausdorff distance is 3.07 +/- 1.08 mm. The time for propagating the GTV to all phases is 5.55 +/- 6.21 min. The results are better than those of the fast adaptive stochastic gradient descent B-spline method, the 3D + t B-spline method and the diffeomorphic demons method. The proposed method is useful for helping physicians delineate target volumes efficiently and accurately.
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.
NASA Technical Reports Server (NTRS)
1978-01-01
The component testing of a ball spline variable pitch mechanism is described including a whirligig test. The variable pitch actuator successfully completed all planned whirligig tests including a fifty cycle endurance test at actuation rates up to 125 deg per second at up to 102 percent fan speed (3400 rpm).
A spline-based parameter and state estimation technique for static models of elastic surfaces
NASA Technical Reports Server (NTRS)
Banks, H. T.; Daniel, P. L.; Armstrong, E. S.
1983-01-01
Parameter and state estimation techniques for an elliptic system arising in a developmental model for the antenna surface in the Maypole Hoop/Column antenna are discussed. A computational algorithm based on spline approximations for the state and elastic parameters is given and numerical results obtained using this algorithm are summarized.
78 FR 12988 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... investigations have also concluded that A320 family THSA P/N 47145-XXX (where XXX stands for any numerical [[Page... ballscrew lower splines of THSAs having P/N 47145-XXX to detect corrosion and, depending on findings, the... tie-rod splines on any THSA having P/N 47145-XXX (where XXX stands for any numerical value) to...
Multivariate Epi-splines and Evolving Function Identification Problems
2015-04-15
such extrinsic information as well as observed function and subgradient values often evolve in applications, we establish conditions under which the...previous study [30] dealt with compact intervals of IR. Splines are intimately tied to optimization problems through their variational theory pioneered...approxima- tion. Motivated by applications in curve fitting, regression, probability density estimation, variogram computation, financial curve construction
Monotonicity preserving splines using rational cubic Timmer interpolation
NASA Astrophysics Data System (ADS)
Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md
2017-08-01
In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.
The use of an analytic Hamiltonian matrix for solving the hydrogenic atom
NASA Astrophysics Data System (ADS)
Bhatti, Mohammad
2001-10-01
The non-relativistic Hamiltonian corresponding to the Shrodinger equation is converted into analytic Hamiltonian matrix using the kth order B-splines functions. The Galerkin method is applied to the solution of the Shrodinger equation for bound states of hydrogen-like systems. The program Mathematica is used to create analytic matrix elements and exact integration is performed over the knot-sequence of B-splines and the resulting generalized eigenvalue problem is solved on a specified numerical grid. The complete basis set and the energy spectrum is obtained for the coulomb potential for hydrogenic systems with Z less than 100 with B-splines of order eight. Another application is given to test the Thomas-Reiche-Kuhn sum rule for the hydrogenic systems.
NASA Astrophysics Data System (ADS)
Zhang, X.; Liang, S.; Wang, G.
2015-12-01
Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.
Hay, A D; Singh, G D
2000-01-01
To analyze correction of mandibular deformity using an inverted L osteotomy and autogenous bone graft in patients exhibiting unilateral craniofacial microsomia (CFM), thin-plate spline analysis was undertaken. Preoperative, early postoperative, and approximately 3.5-year postoperative posteroanterior cephalographs of 15 children (age 10+/-3 years) with CFM were scanned, and eight homologous mandibular landmarks digitized. Average mandibular geometries, scaled to an equivalent size, were generated using Procrustes superimposition. Results indicated that the mean pre- and postoperative mandibular configurations differed statistically (P<0.05). Thin-plate spline analysis indicated that the total spline (Cartesian transformation grid) of the pre- to early postoperative configuration showed mandibular body elongation on the treated side and inferior symphyseal displacement. The affine component of the total spline revealed a clockwise rotation of the preoperative configuration, whereas the nonaffine component was responsible for ramus, body, and symphyseal displacements. The transformation grid for the early and late postoperative comparison showed bilateral ramus elongation. A superior symphyseal displacement contrasted with its earlier inferior displacement, the affine component had translocated the symphyseal landmarks towards the midline. The nonaffine component demonstrated bilateral ramus lengthening, and partial warps suggested that these elongations were slightly greater on the nontreated side. The affine component of the pre- and late postoperative comparison also demonstrated a clockwise rotation. The nonaffine component produced the bilateral ramus elongations-the nontreated side ramus lengthening slightly more than the treated side. It is concluded that an inverted L osteotomy improves mandibular morphology significantly in CFM patients and permits continued bilateral ramus growth. Copyright 2000 Wiley-Liss, Inc.
2006-06-01
Lalush, and T. BMW, Modeling Respiratory Mechanics in the MCAT and 30 Spline-Based MCAT Phantoms. IEEE Trans Nucl Sci., 2001. 38. Segars, W.P., D.S...Lalush, and B.M.W. Tsui. Modeling Respiratory Mechanics in the MCAT and Spline-Based MCAT Phantoms. in Conference Record of the 1999 IEEE Nuclear
Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures
NASA Technical Reports Server (NTRS)
1984-01-01
The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.
Spline smoothing of histograms by linear programming
NASA Technical Reports Server (NTRS)
Bennett, J. O.
1972-01-01
An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.
USDA-ARS?s Scientific Manuscript database
Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant cha...
Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K
2007-01-01
3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.
NASA Astrophysics Data System (ADS)
Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan
2016-09-01
In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.
Chang, Jenny Zwei-Chieng; Liu, Pao-Hsin; Chen, Yi-Jane; Yao, Jane Chung-Chen; Chang, Hong-Po; Chang, Chih-Han; Chang, Frank Hsin-Fu
2006-02-01
Face mask therapy is indicated for growing patients who suffer from maxillary retrognathia. Most previous studies used conventional cephalometric analysis to evaluate the effects of face mask treatment. Cephalometric analysis has been shown to be insufficient for complex craniofacial configurations. The purpose of this study was to investigate changes in the craniofacial structure of children with maxillary retrognathism following face mask treatment by means of thin-plate spline analysis. Thirty children with skeletal Class III malocclusions who had been treated with face masks were compared with a group of 30 untreated gender-matched, age-matched, observation period-matched, and craniofacial configuration-matched subjects. Average geometries, scaled to an equivalent size, were generated by means of Procrustes analysis. Thin-plate spline analysis was then performed for localization of the shape changes. Face mask treatment induced a forward displacement of the maxilla, a counterclockwise rotation of the palatal plane, a horizontal compression of the anterior border of the symphysis and the condylar region, and a downward deformation of the menton. The cranial base exhibited a counterclockwise deformation as a whole. We conclude that thin-plate spline analysis is a valuable supplement to conventional cephalometric analysis.
Noise correction on LANDSAT images using a spline-like algorithm
NASA Technical Reports Server (NTRS)
Vijaykumar, N. L. (Principal Investigator); Dias, L. A. V.
1985-01-01
Many applications using LANDSAT images face a dilemma: the user needs a certain scene (for example, a flooded region), but that particular image may present interference or noise in form of horizontal stripes. During automatic analysis, this interference or noise may cause false readings of the region of interest. In order to minimize this interference or noise, many solutions are used, for instane, that of using the average (simple or weighted) values of the neighboring vertical points. In the case of high interference (more than one adjacent line lost) the method of averages may not suit the desired purpose. The solution proposed is to use a spline-like algorithm (weighted splines). This type of interpolation is simple to be computer implemented, fast, uses only four points in each interval, and eliminates the necessity of solving a linear equation system. In the normal mode of operation, the first and second derivatives of the solution function are continuous and determined by data points, as in cubic splines. It is possible, however, to impose the values of the first derivatives, in order to account for shapr boundaries, without increasing the computational effort. Some examples using the proposed method are also shown.
Explicit B-spline regularization in diffeomorphic image registration
Tustison, Nicholas J.; Avants, Brian B.
2013-01-01
Diffeomorphic mappings are central to image registration due largely to their topological properties and success in providing biologically plausible solutions to deformation and morphological estimation problems. Popular diffeomorphic image registration algorithms include those characterized by time-varying and constant velocity fields, and symmetrical considerations. Prior information in the form of regularization is used to enforce transform plausibility taking the form of physics-based constraints or through some approximation thereof, e.g., Gaussian smoothing of the vector fields [a la Thirion's Demons (Thirion, 1998)]. In the context of the original Demons' framework, the so-called directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009) can be viewed as a smoothing alternative in which explicit regularization is achieved through fast B-spline approximation. This characterization can be used to provide B-spline “flavored” diffeomorphic image registration solutions with several advantages. Implementation is open source and available through the Insight Toolkit and our Advanced Normalization Tools (ANTs) repository. A thorough comparative evaluation with the well-known SyN algorithm (Avants et al., 2008), implemented within the same framework, and its B-spline analog is performed using open labeled brain data and open source evaluation tools. PMID:24409140
Method for Manufacturing Bulk Metallic Glass-Based Strain Wave Gear Components
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Wilcox, Brian H. (Inventor)
2017-01-01
Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a strain wave gear includes: shaping a BMG-based material using a mold in conjunction with one of a thermoplastic forming technique and a casting technique; where the BMG-based material is shaped into one of: a wave generator plug, an inner race, an outer race, a rolling element, a flexspline, a flexspline without a set of gear teeth, a circular spline, a circular spline without a set of gear teeth, a set of gear teeth to be incorporated within a flexspline, and a set of gear teeth to be incorporated within a circular spline.
Data approximation using a blending type spline construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalmo, Rune; Bratlie, Jostein
2014-11-18
Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which aremore » necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.« less
Inversion of the strain-life and strain-stress relationships for use in metal fatigue analysis
NASA Technical Reports Server (NTRS)
Manson, S. S.
1979-01-01
The paper presents closed-form solutions (collocation method and spline-function method) for the constants of the cyclic fatigue life equation so that they can be easily incorporated into cumulative damage analysis. The collocation method involves conformity with the experimental curve at specific life values. The spline-function method is such that the basic life relation is expressed as a two-part function, one applicable at strains above the transition strain (strain at intersection of elastic and plastic lines), the other below. An illustrative example is treated by both methods. It is shown that while the collocation representation has the advantage of simplicity of form, the spline-function representation can be made more accurate over a wider life range, and is simpler to use.
Analysis of harmonic spline gravity models for Venus and Mars
NASA Technical Reports Server (NTRS)
Bowin, Carl
1986-01-01
Methodology utilizing harmonic splines for determining the true gravity field from Line-Of-Sight (LOS) acceleration data from planetary spacecraft missions was tested. As is well known, the LOS data incorporate errors in the zero reference level that appear to be inherent in the processing procedure used to obtain the LOS vectors. The proposed method offers a solution to this problem. The harmonic spline program was converted from the VAX 11/780 to the Ridge 32C computer. The problem with the matrix inversion routine that improved inversion of the data matrices used in the Optimum Estimate program for global Earth studies was solved. The problem of obtaining a successful matrix inversion for a single rev supplemented by data for the two adjacent revs still remains.
High-frequency health data and spline functions.
Martín-Rodríguez, Gloria; Murillo-Fort, Carlos
2005-03-30
Seasonal variations are highly relevant for health service organization. In general, short run movements of medical magnitudes are important features for managers in this field to make adequate decisions. Thus, the analysis of the seasonal pattern in high-frequency health data is an appealing task. The aim of this paper is to propose procedures that allow the analysis of the seasonal component in this kind of data by means of spline functions embedded into a structural model. In the proposed method, useful adaptions of the traditional spline formulation are developed, and the resulting procedures are capable of capturing periodic variations, whether deterministic or stochastic, in a parsimonious way. Finally, these methodological tools are applied to a series of daily emergency service demand in order to capture simultaneous seasonal variations in which periods are different.
NASA Astrophysics Data System (ADS)
Hu, Jinyan; Li, Li; Yang, Yunfeng
2017-06-01
The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.
Evaluation of adaptive treatment planning for patients with non-small cell lung cancer
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Siddiqui, Salim M.; Movsas, Benjamin; Chetty, Indrin J.
2017-06-01
The purpose of this study was to develop metrics to evaluate uncertainties in deformable dose accumulation for patients with non-small cell lung cancer (NSCLC). Initial treatment plans (primary) and cone-beam CT (CBCT) images were retrospectively processed for seven NSCLC patients, who showed significant tumor regression during the course of treatment. Each plan was developed with IMRT for 2 Gy × 33 fractions. A B-spline-based DIR algorithm was used to register weekly CBCT images to a reference image acquired at fraction 21 and the resultant displacement vector fields (DVFs) were then modified using a finite element method (FEM). The doses were calculated on each of these CBCT images and mapped to the reference image using a tri-linear dose interpolation method, based on the B-spline and FEM-generated DVFs. Contours propagated from the planning image were adjusted to the residual tumor and OARs on the reference image to develop a secondary plan. For iso-prescription adaptive plans (relative to initial plans), mean lung dose (MLD) was reduced, on average from 17.3 Gy (initial plan) to 15.2, 14.5 and 14.8 Gy for the plans adapted using the rigid, B-Spline and FEM-based registrations. Similarly, for iso-toxic adaptive plans (considering MLD relative to initial plans) using the rigid, B-Spline and FEM-based registrations, the average doses were 69.9 ± 6.8, 65.7 ± 5.1 and 67.2 ± 5.6 Gy in the initial volume (PTV1), and 81.5 ± 25.8, 77.7 ± 21.6, and 78.9 ± 22.5 Gy in the residual volume (PTV21), respectively. Tumor volume reduction was correlated with dose escalation (for isotoxic plans, correlation coefficient = 0.92), and with MLD reduction (for iso-fractional plans, correlation coefficient = 0.85). For the case of the iso-toxic dose escalation, plans adapted with the B-Spline and FEM DVFs differed from the primary plan adapted with rigid registration by 2.8 ± 1.0 Gy and 1.8 ± 0.9 Gy in PTV1, and the mean difference between doses accumulated using the B-spline and FEM DVF’s was 1.1 ± 0.6 Gy. As a dose mapping-induced energy change, energy defect in the tumor volume was 20.8 ± 13.4% and 4.5 ± 2.4% for the B-spline and FEM-based dose accumulations, respectively. The energy defect of the B-Spline-based dose accumulation is significant in the tumor volume and highly correlated to the difference between the B-Spline and FEM-accumulated doses with their correlation coefficient equal to 0.79. Adaptive planning helps escalate target dose and spare normal tissue for patients with NSCLC, but deformable dose accumulation may have a significant loss of energy in regressed tumor volumes when using image intensity-based DIR algorithms. The metric of energy defect is a useful tool for evaluation of adaptive planning accuracy for lung cancer patients.
Development Program for Field-Repairable/Expendable Main Rotor Blades
1976-09-01
honeycomb aft 2, and it represents the most cost- core, and extruded aluminum alloy effective approach to a repairable trailing-edge spline (Reference...materials lend themselves to relatively inexpensive fabrication techniques, the questionable torsional stiffness of composite spars eliminated them...values of the fatigue strength of aluminum , the spline and aft doublers are predicted to have a negative margin of safety for infinite life. The
Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo
2009-01-01
We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...
Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G; Shekher, Raj; Hata, Nobuhiko
2015-06-01
Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P < .000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (P = .71). The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Greskovich, J; Xia, P
Purpose: To generate virtual phantoms with clinically relevant deformation and use them to objectively evaluate geometric and dosimetric uncertainties of deformable image registration (DIR) algorithms. Methods: Ten lung cancer patients undergoing adaptive 3DCRT planning were selected. For each patient, a pair of planning CT (pCT) and replanning CT (rCT) were used as the basis for virtual phantom generation. Manually adjusted meshes were created for selected ROIs (e.g. PTV, lungs, spinal cord, esophagus, and heart) on pCT and rCT. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF wasmore » used to deform pCT to generate a simulated replanning CT (srCT) that was closely matched to rCT. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten virtual phantoms. The images, ROIs, and doses were mapped from pCT to srCT using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.85 to 0.96 for Demons, from 0.86 to 0.97 for intensity-based, and from 0.76 to 0.95 for B-Spline. The average Hausdorff distances for selected ROIs were from 2.2 to 5.4 mm for Demons, from 2.3 to 6.8 mm for intensity-based, and from 2.4 to 11.4 mm for B-Spline. The average absolute dose errors for selected ROIs were from 0.2 to 0.6 Gy for Demons, from 0.1 to 0.5 Gy for intensity-based, and from 0.5 to 1.5 Gy for B-Spline. Conclusion: Virtual phantoms were modeled after patients with lung cancer and were clinically relevant for adaptive radiotherapy treatment replanning. Virtual phantoms with known DVFs serve as references and can provide a fair comparison when evaluating different DIRs. Demons and intensity-based DIRs were shown to have smaller geometric and dosimetric uncertainties than B-Spline. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; J Greskovich: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less
Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.
Oliveira, Francisco P M; Tavares, João Manuel R S
2013-03-01
This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p < 0.001) than the one obtained using the best solution proposed in our previous work. When applied to align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p < 0.001). The consequences of the temporal alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.
Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M
2018-04-01
The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.
Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method
NASA Technical Reports Server (NTRS)
Loulou, Patrick; Moser, Robert D.; Mansour, Nagi N.; Cantwell, Brian J.
1997-01-01
A numerical method based on b-spline polynomials was developed to study incompressible flows in cylindrical geometries. A b-spline method has the advantages of possessing spectral accuracy and the flexibility of standard finite element methods. Using this method it was possible to ensure regularity of the solution near the origin, i.e. smoothness and boundedness. Because b-splines have compact support, it is also possible to remove b-splines near the center to alleviate the constraint placed on the time step by an overly fine grid. Using the natural periodicity in the azimuthal direction and approximating the streamwise direction as periodic, so-called time evolving flow, greatly reduced the cost and complexity of the computations. A direct numerical simulation of pipe flow was carried out using the method described above at a Reynolds number of 5600 based on diameter and bulk velocity. General knowledge of pipe flow and the availability of experimental measurements make pipe flow the ideal test case with which to validate the numerical method. Results indicated that high flatness levels of the radial component of velocity in the near wall region are physical; regions of high radial velocity were detected and appear to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress transport equations showed close similarity with those of channel flow. However contrary to channel flow, the log layer of pipe flow is not homogeneous for the present Reynolds number. A topological method based on a classification of the invariants of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of the invariants proved to be a good method for identifying vortical eddies in the flow field.
Data reduction using cubic rational B-splines
NASA Technical Reports Server (NTRS)
Chou, Jin J.; Piegl, Les A.
1992-01-01
A geometric method is proposed for fitting rational cubic B-spline curves to data that represent smooth curves including intersection or silhouette lines. The algorithm is based on the convex hull and the variation diminishing properties of Bezier/B-spline curves. The algorithm has the following structure: it tries to fit one Bezier segment to the entire data set and if it is impossible it subdivides the data set and reconsiders the subset. After accepting the subset the algorithm tries to find the longest run of points within a tolerance and then approximates this set with a Bezier cubic segment. The algorithm uses this procedure repeatedly to the rest of the data points until all points are fitted. It is concluded that the algorithm delivers fitting curves which approximate the data with high accuracy even in cases with large tolerances.
Tensorial Basis Spline Collocation Method for Poisson's Equation
NASA Astrophysics Data System (ADS)
Plagne, Laurent; Berthou, Jean-Yves
2000-01-01
This paper aims to describe the tensorial basis spline collocation method applied to Poisson's equation. In the case of a localized 3D charge distribution in vacuum, this direct method based on a tensorial decomposition of the differential operator is shown to be competitive with both iterative BSCM and FFT-based methods. We emphasize the O(h4) and O(h6) convergence of TBSCM for cubic and quintic splines, respectively. We describe the implementation of this method on a distributed memory parallel machine. Performance measurements on a Cray T3E are reported. Our code exhibits high performance and good scalability: As an example, a 27 Gflops performance is obtained when solving Poisson's equation on a 2563 non-uniform 3D Cartesian mesh by using 128 T3E-750 processors. This represents 215 Mflops per processors.
Two-dimensional mesh embedding for Galerkin B-spline methods
NASA Technical Reports Server (NTRS)
Shariff, Karim; Moser, Robert D.
1995-01-01
A number of advantages result from using B-splines as basis functions in a Galerkin method for solving partial differential equations. Among them are arbitrary order of accuracy and high resolution similar to that of compact schemes but without the aliasing error. This work develops another property, namely, the ability to treat semi-structured embedded or zonal meshes for two-dimensional geometries. This can drastically reduce the number of grid points in many applications. Both integer and non-integer refinement ratios are allowed. The report begins by developing an algorithm for choosing basis functions that yield the desired mesh resolution. These functions are suitable products of one-dimensional B-splines. Finally, test cases for linear scalar equations such as the Poisson and advection equation are presented. The scheme is conservative and has uniformly high order of accuracy throughout the domain.
A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
NASA Astrophysics Data System (ADS)
Sulaimanov, Z. M.; Shumilov, B. M.
2017-10-01
For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.
Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential
NASA Astrophysics Data System (ADS)
Coroiu, I.
2007-04-01
Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.
Cuauhtemoc Saenz-Romero; Gerald E. Rehfeldt; Nicholas L. Crookston; Pierre Duval; Remi St-Amant; Jean Beaulieu; Bryce A. Richardson
2010-01-01
Spatial climate models were developed for Mexico and its periphery (southern USA, Cuba, Belize and Guatemala) for monthly normals (1961-1990) of average, maximum and minimum temperature and precipitation using thin plate smoothing splines of ANUSPLIN software on ca. 3,800 observations. The fit of the model was generally good: the signal was considerably less than one-...
Control theory and splines, applied to signature storage
NASA Technical Reports Server (NTRS)
Enqvist, Per
1994-01-01
In this report the problem we are going to study is the interpolation of a set of points in the plane with the use of control theory. We will discover how different systems generate different kinds of splines, cubic and exponential, and investigate the effect that the different systems have on the tracking problems. Actually we will see that the important parameters will be the two eigenvalues of the control matrix.
From Data to Assessments and Decisions: Epi-Spline Technology
2014-05-08
From Data to Assessments and Decisions: Epi-Spline Technology∗ Johannes O. Royset Roger J-B Wets Department of Operations Research Department of...2014 ∗This material is based upon work supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under grant numbers...ADDRESS(ES) Naval Postgraduate School,Department of Operations Research ,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING
Telescoping low vibration pulling mechanism for Czochralski crystal growth
NASA Astrophysics Data System (ADS)
Iseler, G. W.
1985-02-01
A telescoping low vibration pulling mechanism is described for use in Czochralski crystal growth apparatus, comprising a broached brushing which defines an internal circumference of teeth on the circumference of a splined shaft. The brushing is coupled to the means for rotation via a hollow tube and the splined shaft, couplable to a seed shaft, and an elevation means telescopes through said brushing within said hollow tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C; Adcock, A; Azevedo, S
2010-12-28
Some diagnostics at the National Ignition Facility (NIF), including the Gamma Reaction History (GRH) diagnostic, require multiple channels of data to achieve the required dynamic range. These channels need to be stitched together into a single time series, and they may have non-uniform and redundant time samples. We chose to apply the popular cubic smoothing spline technique to our stitching problem because we needed a general non-parametric method. We adapted one of the algorithms in the literature, by Hutchinson and deHoog, to our needs. The modified algorithm and the resulting code perform a cubic smoothing spline fit to multiple datamore » channels with redundant time samples and missing data points. The data channels can have different, time-varying, zero-mean white noise characteristics. The method we employ automatically determines an optimal smoothing level by minimizing the Generalized Cross Validation (GCV) score. In order to automatically validate the smoothing level selection, the Weighted Sum-Squared Residual (WSSR) and zero-mean tests are performed on the residuals. Further, confidence intervals, both analytical and Monte Carlo, are also calculated. In this paper, we describe the derivation of our cubic smoothing spline algorithm. We outline the algorithm and test it with simulated and experimental data.« less
Arnould, V M-R; Hammami, H; Soyeurt, H; Gengler, N
2010-09-01
Random regression test-day models using Legendre polynomials are commonly used for the estimation of genetic parameters and genetic evaluation for test-day milk production traits. However, some researchers have reported that these models present some undesirable properties such as the overestimation of variances at the edges of lactation. Describing genetic variation of saturated fatty acids expressed in milk fat might require the testing of different models. Therefore, 3 different functions were used and compared to take into account the lactation curve: (1) Legendre polynomials with the same order as currently applied for genetic model for production traits; 2) linear splines with 10 knots; and 3) linear splines with the same 10 knots reduced to 3 parameters. The criteria used were Akaike's information and Bayesian information criteria, percentage square biases, and log-likelihood function. These criteria indentified Legendre polynomials and linear splines with 10 knots reduced to 3 parameters models as the most useful. Reducing more complex models using eigenvalues seemed appealing because the resulting models are less time demanding and can reduce convergence difficulties, because convergence properties also seemed to be improved. Finally, the results showed that the reduced spline model was very similar to the Legendre polynomials model. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa
2013-01-01
Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796
NASA Astrophysics Data System (ADS)
Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.
2009-02-01
Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.
Babiloni, F; Babiloni, C; Carducci, F; Fattorini, L; Onorati, P; Urbano, A
1996-04-01
This paper presents a realistic Laplacian (RL) estimator based on a tensorial formulation of the surface Laplacian (SL) that uses the 2-D thin plate spline function to obtain a mathematical description of a realistic scalp surface. Because of this tensorial formulation, the RL does not need an orthogonal reference frame placed on the realistic scalp surface. In simulation experiments the RL was estimated with an increasing number of "electrodes" (up to 256) on a mathematical scalp model, the analytic Laplacian being used as a reference. Second and third order spherical spline Laplacian estimates were examined for comparison. Noise of increasing magnitude and spatial frequency was added to the simulated potential distributions. Movement-related potentials and somatosensory evoked potentials sampled with 128 electrodes were used to estimate the RL on a realistically shaped, MR-constructed model of the subject's scalp surface. The RL was also estimated on a mathematical spherical scalp model computed from the real scalp surface. Simulation experiments showed that the performances of the RL estimator were similar to those of the second and third order spherical spline Laplacians. Furthermore, the information content of scalp-recorded potentials was clearly better when the RL estimator computed the SL of the potential on an MR-constructed scalp surface model.
Conrad, Douglas J; Bailey, Barbara A; Hardie, Jon A; Bakke, Per S; Eagan, Tomas M L; Aarli, Bernt B
2017-01-01
Clinical phenotyping, therapeutic investigations as well as genomic, airway secretion metabolomic and metagenomic investigations can benefit from robust, nonlinear modeling of FEV1 in individual subjects. We demonstrate the utility of measuring FEV1 dynamics in representative cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) populations. Individual FEV1 data from CF and COPD subjects were modeled by estimating median regression splines and their predicted first and second derivatives. Classes were created from variables that capture the dynamics of these curves in both cohorts. Nine FEV1 dynamic variables were identified from the splines and their predicted derivatives in individuals with CF (n = 177) and COPD (n = 374). Three FEV1 dynamic classes (i.e. stable, intermediate and hypervariable) were generated and described using these variables from both cohorts. In the CF cohort, the FEV1 hypervariable class (HV) was associated with a clinically unstable, female-dominated phenotypes while stable FEV1 class (S) individuals were highly associated with the male-dominated milder clinical phenotype. In the COPD cohort, associations were found between the FEV1 dynamic classes, the COPD GOLD grades, with exacerbation frequency and symptoms. Nonlinear modeling of FEV1 with splines provides new insights and is useful in characterizing CF and COPD clinical phenotypes.
Presentation of growth velocities of rural Haitian children using smoothing spline techniques.
Waternaux, C; Hebert, J R; Dawson, R; Berggren, G G
1987-01-01
The examination of monthly (or quarterly) increments in weight or length is important for assessing the nutritional and health status of children. Growth velocities are widely thought to be more important than actual weight or length measurements per se. However, there are no standards by which clinicians, researchers, or parents can gauge a child's growth. This paper describes a method for computing growth velocities (monthly increments) for physical growth measurements with substantial measurement error and irregular spacing over time. These features are characteristic of data collected in the field where conditions are less than ideal. The technique of smoothing by splines provides a powerful tool to deal with the variability and irregularity of the measurements. The technique consists of approximating the observed data by a smooth curve as a clinician might have drawn on the child's growth chart. Spline functions are particularly appropriate to describe bio-physical processes such as growth, for which no model can be postulated a priori. This paper describes how the technique was used for the analysis of a large data base collected on pre-school aged children in rural Haiti. The sex-specific length and weight velocities derived from the spline-smoothed data are presented as reference data for researchers and others interested in longitudinal growth of children in the Third World.
Recursive Gradient Estimation Using Splines for Navigation of Autonomous Vehicles.
1985-07-01
AUTONOMOUS VEHICLES C. N. SHEN DTIC " JULY 1985 SEP 1 219 85 V US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER LARGE CALIBER WEAPON SYSTEMS LABORATORY I...GRADIENT ESTIMATION USING SPLINES FOR NAVIGATION OF AUTONOMOUS VEHICLES Final S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(q) 8. CONTRACT OR GRANT NUMBER...which require autonomous vehicles . Essential to these robotic vehicles is an adequate and efficient computer vision system. A potentially more
2015-01-07
and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline surface modeling. Archival publications (published...anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based method is developed to improve the T-mesh quality...shade-off. Halos are bright or dark thin regions around the boundary of the sample. These false edges around the object make many segmentation
2007-08-01
In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than linear trajectories. The...coupling the radiative transport solution into heat transfer and damage models. 15. SUBJECT TERMS: B-Splines, Ray-Tracing, Eikonal Equation...multi-layer biological tissue model. In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods
Nonlinear spline wavefront reconstruction through moment-based Shack-Hartmann sensor measurements.
Viegers, M; Brunner, E; Soloviev, O; de Visser, C C; Verhaegen, M
2017-05-15
We propose a spline-based aberration reconstruction method through moment measurements (SABRE-M). The method uses first and second moment information from the focal spots of the SH sensor to reconstruct the wavefront with bivariate simplex B-spline basis functions. The proposed method, since it provides higher order local wavefront estimates with quadratic and cubic basis functions can provide the same accuracy for SH arrays with a reduced number of subapertures and, correspondingly, larger lenses which can be beneficial for application in low light conditions. In numerical experiments the performance of SABRE-M is compared to that of the first moment method SABRE for aberrations of different spatial orders and for different sizes of the SH array. The results show that SABRE-M is superior to SABRE, in particular for the higher order aberrations and that SABRE-M can give equal performance as SABRE on a SH grid of halved sampling.
A method to correct coordinate distortion in EBSD maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.
2014-10-15
Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less
Spline based least squares integration for two-dimensional shape or wavefront reconstruction
Huang, Lei; Xue, Junpeng; Gao, Bo; ...
2016-12-21
In this paper, we present a novel method to handle two-dimensional shape or wavefront reconstruction from its slopes. The proposed integration method employs splines to fit the measured slope data with piecewise polynomials and uses the analytical polynomial functions to represent the height changes in a lateral spacing with the pre-determined spline coefficients. The linear least squares method is applied to estimate the height or wavefront as a final result. Numerical simulations verify that the proposed method has less algorithm errors than two other existing methods used for comparison. Especially at the boundaries, the proposed method has better performance. Themore » noise influence is studied by adding white Gaussian noise to the slope data. Finally, experimental data from phase measuring deflectometry are tested to demonstrate the feasibility of the new method in a practical measurement.« less
Spline based least squares integration for two-dimensional shape or wavefront reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Xue, Junpeng; Gao, Bo
In this paper, we present a novel method to handle two-dimensional shape or wavefront reconstruction from its slopes. The proposed integration method employs splines to fit the measured slope data with piecewise polynomials and uses the analytical polynomial functions to represent the height changes in a lateral spacing with the pre-determined spline coefficients. The linear least squares method is applied to estimate the height or wavefront as a final result. Numerical simulations verify that the proposed method has less algorithm errors than two other existing methods used for comparison. Especially at the boundaries, the proposed method has better performance. Themore » noise influence is studied by adding white Gaussian noise to the slope data. Finally, experimental data from phase measuring deflectometry are tested to demonstrate the feasibility of the new method in a practical measurement.« less
NASA Technical Reports Server (NTRS)
Jarosch, H. S.
1982-01-01
A method based on the use of constrained spline fits is used to overcome the difficulties arising when body-wave data in the form of T-delta are reduced to the tau-p form in the presence of cusps. In comparison with unconstrained spline fits, the method proposed here tends to produce much smoother models which lie approximately in the middle of the bounds produced by the extremal method. The method is noniterative and, therefore, computationally efficient. The method is applied to the lunar seismic data, where at least one triplication is presumed to occur in the P-wave travel-time curve. It is shown, however, that because of an insufficient number of data points for events close to the antipode of the center of the lunar network, the present analysis is not accurate enough to resolve the problem of a possible lunar core.
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad
1995-01-01
The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.
[Non-rigid medical image registration based on mutual information and thin-plate spline].
Cao, Guo-gang; Luo, Li-min
2009-01-01
To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Koyfman, S; Xia, P
2015-06-15
Purpose: To evaluate geometric and dosimetric uncertainties of CT-CBCT deformable image registration (DIR) algorithms using digital phantoms generated from real patients. Methods: We selected ten H&N cancer patients with adaptive IMRT. For each patient, a planning CT (CT1), a replanning CT (CT2), and a pretreatment CBCT (CBCT1) were used as the basis for digital phantom creation. Manually adjusted meshes were created for selected ROIs (e.g. PTVs, brainstem, spinal cord, mandible, and parotids) on CT1 and CT2. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was applied tomore » CBCT1 to create a simulated mid-treatment CBCT (CBCT2). The CT-CBCT digital phantom consisted of CT1 and CBCT2, which were linked by the reference DVF. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten digital phantoms. The images, ROIs, and volumetric doses were mapped from CT1 to CBCT2 using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.83 to 0.94 for Demons, from 0.82 to 0.95 for B-Spline, and from 0.67 to 0.89 for intensity-based DIR. The average Hausdorff distances for selected ROIs were from 2.4 to 6.2 mm for Demons, from 1.8 to 5.9 mm for B-Spline, and from 2.8 to 11.2 mm for intensity-based DIR. The average absolute dose errors for selected ROIs were from 0.7 to 2.1 Gy for Demons, from 0.7 to 2.9 Gy for B- Spline, and from 1.3 to 4.5 Gy for intensity-based DIR. Conclusion: Using clinically realistic CT-CBCT digital phantoms, Demons and B-Spline were shown to have similar geometric and dosimetric uncertainties while intensity-based DIR had the worst uncertainties. CT-CBCT DIR has the potential to provide accurate CBCT-based dose verification for H&N adaptive radiotherapy. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; S Koyfman: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less
Interactive and Continuous Collision Detection for Avatars in Virtual Environments
2007-01-01
Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS collision detection Young Kim, Stephane Redon, Ming Lin, Dinesh Manocha, Jim...Redon1 Young J. Kim2 Ming C. Lin1 Dinesh Manocha1 Jim Templeman3 1 University of North Carolina at Chapel Hill 2 Ewha University, Korea 3 Naval...An offset spline approximation for plane cubic splines. Computer-Aided Design, 15(5):297– 299, 1983. [20] S. Kumar and D. Manocha. Efficient
A spline-based parameter estimation technique for static models of elastic structures
NASA Technical Reports Server (NTRS)
Dutt, P.; Taasan, S.
1986-01-01
The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.
Isogeometric Divergence-conforming B-splines for the Darcy-Stokes-Brinkman Equations
2012-01-01
dimensionality ofQ0,h using T-splines [5]. However, a proof of mesh-independent discrete stability remains absent with this choice of pressure space ... the boundary ∂K +/− of element K+/−. With the above notation established, let us define the following bilinear form: a ∗h(w,v) = np∑ i=1 ( (2ν∇sw,∇sv...8.3 Two- Dimensional Problem with a Singular Solution To examine how our discretization performs in
An Unconditionally Monotone C 2 Quartic Spline Method with Nonoscillation Derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jin; Nelson, Karl E.
Here, a one-dimensional monotone interpolation method based on interface reconstruction with partial volumes in the slope-space utilizing the Hermite cubic-spline, is proposed. The new method is only quartic, however is C 2 and unconditionally monotone. A set of control points is employed to constrain the curvature of the interpolation function and to eliminate possible nonphysical oscillations in the slope space. An extension of this method in two-dimensions is also discussed.
Utilizing Serial Measures of Breast Cancer Risk Factors
1998-02-01
30 Dec 97) 6. FUNDING NUMBERS 6. AUTHOR(S) Mimi Y. Kim, Sc.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) New York University...Medical Center New York, New York 10010-2598 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS( ES ) Commander U.S. Army Medical Research and...cubic splines in the model yields a smoother curve than the one fit by Rosenberg et al, which was based on a three-piece spline: two parabolas and a
Improved Polyurethane Storage Tank Performance
2014-06-30
condition occurred if water overflowed from the tank vent prior to reaching 45 gallons. A spline curve was drawn around the perimeter of each image so...estimated footprint and height envelope was added for spatial reference. A spline color code key was developed, so that the progression of the tanks...Table 4.5.3). A standard flat plate platen was used for the double butt seams and some closing seams by one fabricator. The other utilized a “Slinky
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)
2016-01-01
Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.
Liu, Xiang; Makeyev, Oleksandr; Besio, Walter
2011-01-01
We have simulated a four-layer concentric spherical head model. We calculated the spline and tripolar Laplacian estimates and compared them to the analytical Laplacian on the spherical surface. In the simulations we used five different dipole groups and two electrode configurations. The comparison shows that the tripolar Laplacian has higher correlation coefficient to the analytical Laplacian in the electrode configurations tested (19, standard 10/20 locations and 64 electrodes).
An Unconditionally Monotone C 2 Quartic Spline Method with Nonoscillation Derivatives
Yao, Jin; Nelson, Karl E.
2018-01-24
Here, a one-dimensional monotone interpolation method based on interface reconstruction with partial volumes in the slope-space utilizing the Hermite cubic-spline, is proposed. The new method is only quartic, however is C 2 and unconditionally monotone. A set of control points is employed to constrain the curvature of the interpolation function and to eliminate possible nonphysical oscillations in the slope space. An extension of this method in two-dimensions is also discussed.
Curvelet-domain multiple matching method combined with cubic B-spline function
NASA Astrophysics Data System (ADS)
Wang, Tong; Wang, Deli; Tian, Mi; Hu, Bin; Liu, Chengming
2018-05-01
Since the large amount of surface-related multiple existed in the marine data would influence the results of data processing and interpretation seriously, many researchers had attempted to develop effective methods to remove them. The most successful surface-related multiple elimination method was proposed based on data-driven theory. However, the elimination effect was unsatisfactory due to the existence of amplitude and phase errors. Although the subsequent curvelet-domain multiple-primary separation method achieved better results, poor computational efficiency prevented its application. In this paper, we adopt the cubic B-spline function to improve the traditional curvelet multiple matching method. First, select a little number of unknowns as the basis points of the matching coefficient; second, apply the cubic B-spline function on these basis points to reconstruct the matching array; third, build constraint solving equation based on the relationships of predicted multiple, matching coefficients, and actual data; finally, use the BFGS algorithm to iterate and realize the fast-solving sparse constraint of multiple matching algorithm. Moreover, the soft-threshold method is used to make the method perform better. With the cubic B-spline function, the differences between predicted multiple and original data diminish, which results in less processing time to obtain optimal solutions and fewer iterative loops in the solving procedure based on the L1 norm constraint. The applications to synthetic and field-derived data both validate the practicability and validity of the method.
Thin-plate spline (TPS) graphical analysis of the mandible on cephalometric radiographs.
Chang, H P; Liu, P H; Chang, H F; Chang, C H
2002-03-01
We describe two cases of Class III malocclusion with and without orthodontic treatment. A thin-plate spline (TPS) analysis of lateral cephalometric radiographs was used to visualize transformations of the mandible. The actual sites of mandibular skeletal change are not detectable with conventional cephalometric analysis. These case analyses indicate that specific patterns of mandibular transformation are associated with Class III malocclusion with or without orthopaedic therapy, and visualization of these deformations is feasible using TPS graphical analysis.
Bio-Inspired Flexible Cellular Actuating Systems
2013-11-21
spline . 4) Finally, the control law does not require that a, b, or M be known for the purpose of regulation. We only need to know bounds on a and M to...would have to be modeled as plates rather than beams. Although several MAV wings do have aspect ratios smaller than 3 (such as the one built by the... spline fitting. Such an array of sensors is light and cheap enough to implement in a practical setting, and more so compared with a distributed actuation
Possibility of using NURBS for surface plotting by survey data
NASA Astrophysics Data System (ADS)
Pravdina, E. A.; Lepikhina, O. J.
2018-05-01
Different methods of surface plotting were discussed in this article. Constructing the surface with the help of the Delaunay triangulation algorithm is described. The TIN-surfaces (triangles irregular net) method is used in the entire CAD software. This type of surfaces is plotting by results of laser scanning and stadia surveying. Possibility of using spline surfaces (NURBS) for surface plotting is studied. For a defined number of points by Mathcad software, the curvilinear function that described two-dimensional spline surfaces was calculated and plotted.
Cubic spline numerical solution of an ablation problem with convective backface cooling
NASA Astrophysics Data System (ADS)
Lin, S.; Wang, P.; Kahawita, R.
1984-08-01
An implicit numerical technique using cubic splines is presented for solving an ablation problem on a thin wall with convective cooling. A non-uniform computational mesh with 6 grid points has been used for the numerical integration. The method has been found to be computationally efficient, providing for the care under consideration of an overall error of about 1 percent. The results obtained indicate that the convective cooling is an important factor in reducing the ablation thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Renliang, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu; Dogandžić, Aleksandar, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu
2015-03-31
We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of themore » density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.« less
B-spline tight frame based force matching method
NASA Astrophysics Data System (ADS)
Yang, Jianbin; Zhu, Guanhua; Tong, Dudu; Lu, Lanyuan; Shen, Zuowei
2018-06-01
In molecular dynamics simulations, compared with popular all-atom force field approaches, coarse-grained (CG) methods are frequently used for the rapid investigations of long time- and length-scale processes in many important biological and soft matter studies. The typical task in coarse-graining is to derive interaction force functions between different CG site types in terms of their distance, bond angle or dihedral angle. In this paper, an ℓ1-regularized least squares model is applied to form the force functions, which makes additional use of the B-spline wavelet frame transform in order to preserve the important features of force functions. The B-spline tight frames system has a simple explicit expression which is useful for representing our force functions. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data. Numerical results for molecular systems involving pairwise non-bonded, three and four-body bonded interactions are obtained to demonstrate the effectiveness of our approach.
NASA Astrophysics Data System (ADS)
Shah, Mazlina Muzafar; Wahab, Abdul Fatah
2017-08-01
Epilepsy disease occurs because of there is a temporary electrical disturbance in a group of brain cells (nurons). The recording of electrical signals come from the human brain which can be collected from the scalp of the head is called Electroencephalography (EEG). EEG then considered in digital format and in fuzzy form makes it a fuzzy digital space data form. The purpose of research is to identify the area (curve and surface) in fuzzy digital space affected by inside epilepsy seizure in epileptic patient's brain. The main focus for this research is to generalize fuzzy topological digital space, definition and basic operation also the properties by using digital fuzzy set and the operations. By using fuzzy digital space, the theory of digital fuzzy spline can be introduced to replace grid data that has been use previously to get better result. As a result, the flat of EEG can be fuzzy topological digital space and this type of data can be use to interpolate the digital fuzzy spline.
Craniofacial morphometric analysis of mandibular prognathism.
Chang, H P; Liu, P H; Yang, Y H; Lin, H C; Chang, C H
2006-03-01
The purpose of this study was to provide more information about the morphological characteristics of the craniofacial complex in mandibular prognathism. Forty young adult males having mandibular prognathism were compared with 40 having normal occlusion. This was conducted to carry out geometric morphometric assessments to localize alterations, using Procrustes analysis and thin-plate spline analysis, in addition to conventional cephalometric techniques. Procrustes analysis indicated that the mean craniofacial, midfacial and mandibular morphology was significantly different in prognathic subjects compared with normal controls. This finding was corroborated by the multivariate Hotelling T(2)-test of cephalometric variables. Mandibular prognathism demonstrated a shorter and slightly retropositioned maxilla, a greater total length and anterior positioning of the mandible. Thin-plate spline analysis revealed a developmental diminution of the palatomaxillary region anteroposteriorly and a developmental elongation of the mandible anteroposteriorly, leading to the appearance of a prognathic mandibular profile. In conclusion, thin-plate spline analysis seems to provide a valuable supplement for conventional cephalometric analysis because the complex patterns of craniofacial shape change are visualized suggestive by means of grid deformations.
Aerodynamic influence coefficient method using singularity splines
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Weber, J. A.; Lesferd, E. P.
1974-01-01
A numerical lifting surface formulation, including computed results for planar wing cases is presented. This formulation, referred to as the vortex spline scheme, combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of loading function methods. The formulation employes a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfied all the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise. Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral. The current formulation uses the elementary horseshoe vortex as the basic singularity and is therefore restricted to linearized potential flow. As part of the study, a non planar development was considered, but the numerical evaluation of the lifting surface concept was restricted to planar configurations. Also, a second order sideslip analysis based on an asymptotic expansion was investigated using the singularity spline formulation.
NASA Astrophysics Data System (ADS)
Reuter, Bryan; Oliver, Todd; Lee, M. K.; Moser, Robert
2017-11-01
We present an algorithm for a Direct Numerical Simulation of the variable-density Navier-Stokes equations based on the velocity-vorticity approach introduced by Kim, Moin, and Moser (1987). In the current work, a Helmholtz decomposition of the momentum is performed. Evolution equations for the curl and the Laplacian of the divergence-free portion are formulated by manipulation of the momentum equations and the curl-free portion is reconstructed by enforcing continuity. The solution is expanded in Fourier bases in the homogeneous directions and B-Spline bases in the inhomogeneous directions. Discrete equations are obtained through a mixed Fourier-Galerkin and collocation weighted residual method. The scheme is designed such that the numerical solution conserves mass locally and globally by ensuring the discrete divergence projection is exact through the use of higher order splines in the inhomogeneous directions. The formulation is tested on multiple variable-density flow problems.
Jahani, Sahar; Setarehdan, Seyed K; Boas, David A; Yücel, Meryem A
2018-01-01
Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response function. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes, the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We propose a hybrid method that takes advantage of different correction algorithms. This method first identifies the baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis. The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky-Golay (SG) filtering or robust locally weighted regression and smoothing. We have compared our new approach with the existing correction algorithms in terms of hemodynamic response function estimation using the following metrics: mean-squared error, peak-to-peak error ([Formula: see text]), Pearson's correlation ([Formula: see text]), and the area under the receiver operator characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these metrics with a relatively short computational time. The dataset and the code used in this study are made available online for the use of all interested researchers.
Lee, Paul H
2017-06-01
Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the estimation of a causal relationship between the exposure and outcome in 3 ways: using a linear term, binning into 5 equal-size categories, or using a restricted cubic spline of the confounder. Continuous, binary, and survival outcomes were simulated. We examined the confounder across varying measurement error. In addition, we performed a real data analysis examining the 3 strategies to handle the nonlinear effects of accelerometer-measured physical activity in the National Health and Nutrition Examination Survey 2003-2006 data. The mis-specification of a nonlinear confounder had little impact on causal effect estimation for continuous outcomes. For binary and survival outcomes, this mis-specification introduced bias, which could be eliminated using spline adjustment only when there is small measurement error of the confounder. Real data analysis showed that the associations between high blood pressure, high cholesterol, and diabetes and mortality adjusted for physical activity with restricted cubic spline were about 3% to 11% larger than their counterparts adjusted with a linear term. For continuous outcomes, confounders with nonlinear effects can be adjusting with a linear term. Spline adjustment should be used for binary and survival outcomes on confounders with small measurement error.
SINGH, G. D.; McNAMARA JR, J. A.; LOZANOFF, S.
1997-01-01
This study determines deformations of the midface that contribute to a class III appearance, employing thin-plate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P<0.05) between the averaged class I and class III morphologies. Thin-plate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. Large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile. PMID:9449078
Singh, G D; McNamara, J A; Lozanoff, S
1997-11-01
This study determines deformations of the midface that contribute to a class III appearance, employing thinplate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P < 0.05) between the averaged class I and class III morphologies. Thinplate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile.
Spline screw multiple rotations mechanism
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.
NASA Astrophysics Data System (ADS)
Erdogan, Eren; Dettmering, Denise; Limberger, Marco; Schmidt, Michael; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bothmer, Volker; Hinrichs, Johannes; Venzmer, Malte
2015-04-01
In May 2014 DGFI-TUM (the former DGFI) and the German Space Situational Awareness Centre (GSSAC) started to develop an OPerational Tool for Ionospheric Mapping And Prediction (OPTIMAP); since November 2014 the Institute of Astrophysics at the University of Göttingen (IAG) joined the group as the third partner. This project aims on the computation and prediction of maps of the vertical total electron content (VTEC) and the electron density distribution of the ionosphere on a global scale from both various space-geodetic observation techniques such as GNSS and satellite altimetry as well as Sun observations. In this contribution we present first results, i.e. a near-real time processing framework for generating VTEC maps by assimilating GNSS (GPS, GLONASS) based ionospheric data into a two-dimensional global B-spline approach. To be more specific, the spatial variations of VTEC are modelled by trigonometric B-spline functions in longitude and by endpoint-interpolating polynomial B-spline functions in latitude, respectively. Since B-spline functions are compactly supported and highly localizing our approach can handle large data gaps appropriately and, thus, provides a better approximation of data with heterogeneous density and quality compared to the commonly used spherical harmonics. The presented method models temporal variations of VTEC inside a Kalman filter. The unknown parameters of the filter state vector are composed of the B-spline coefficients as well as the satellite and receiver DCBs. To approximate the temporal variation of these state vector components as part of the filter the dynamical model has to be set up. The current implementation of the filter allows to select between a random walk process, a Gauss-Markov process and a dynamic process driven by an empirical ionosphere model, e.g. the International Reference Ionosphere (IRI). For running the model ionospheric input data is acquired from terrestrial GNSS networks through online archive systems (such as IGS) with approximately one hour latency. Before feeding the filter with new hourly data, the raw GNSS observations are downloaded and pre-processed via geometry free linear combinations to provide signal delay information including the ionospheric effects and the differential code biases. Next steps will implement further space geodetic techniques and will introduce the Sun observations into the procedure. The final destination is to develop a time dependent model of the electron density based on different geodetic and solar observations.
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Chetty, Indrin J.
2017-06-01
Tumor regression during the course of fractionated radiotherapy confounds the ability to accurately estimate the total dose delivered to tumor targets. Here we present a new criterion to improve the accuracy of image intensity-based dose mapping operations for adaptive radiotherapy for patients with non-small cell lung cancer (NSCLC). Six NSCLC patients were retrospectively investigated in this study. An image intensity-based B-spline registration algorithm was used for deformable image registration (DIR) of weekly CBCT images to a reference image. The resultant displacement vector fields were employed to map the doses calculated on weekly images to the reference image. The concept of energy conservation was introduced as a criterion to evaluate the accuracy of the dose mapping operations. A finite element method (FEM)-based mechanical model was implemented to improve the performance of the B-Spline-based registration algorithm in regions involving tumor regression. For the six patients, deformed tumor volumes changed by 21.2 ± 15.0% and 4.1 ± 3.7% on average for the B-Spline and the FEM-based registrations performed from fraction 1 to fraction 21, respectively. The energy deposited in the gross tumor volume (GTV) was 0.66 Joules (J) per fraction on average. The energy derived from the fractional dose reconstructed by the B-spline and FEM-based DIR algorithms in the deformed GTV’s was 0.51 J and 0.64 J, respectively. Based on landmark comparisons for the 6 patients, mean error for the FEM-based DIR algorithm was 2.5 ± 1.9 mm. The cross-correlation coefficient between the landmark-measured displacement error and the loss of radiation energy was -0.16 for the FEM-based algorithm. To avoid uncertainties in measuring distorted landmarks, the B-Spline-based registrations were compared to the FEM registrations, and their displacement differences equal 4.2 ± 4.7 mm on average. The displacement differences were correlated to their relative loss of radiation energy with a cross-correlation coefficient equal to 0.68. Based on the principle of energy conservation, the FEM-based mechanical model has a better performance than the B-Spline-based DIR algorithm. It is recommended that the principle of energy conservation be incorporated into a comprehensive QA protocol for adaptive radiotherapy.
About the Modeling of Radio Source Time Series as Linear Splines
NASA Astrophysics Data System (ADS)
Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald
2016-12-01
Many of the time series of radio sources observed in geodetic VLBI show variations, caused mainly by changes in source structure. However, until now it has been common practice to consider source positions as invariant, or to exclude known misbehaving sources from the datum conditions. This may lead to a degradation of the estimated parameters, as unmodeled apparent source position variations can propagate to the other parameters through the least squares adjustment. In this paper we will introduce an automated algorithm capable of parameterizing the radio source coordinates as linear splines.
Convergence Rates for Multivariate Smoothing Spline Functions.
1982-10-01
GAI (,T) g (T)dT - g In order to show convergence of the series and obtain bounds on the terms, we need to estimate £ Now (1 + Ay v) AyV ( g ,#V...Cox* Technical Summary Report #2437 October 1982 ABSTRACT Given data z i - g (ti ) + ci, 1 4 i 4 n, where g is the unknown function, the ti are unknown...d-dimensional variables in a domain fl, and the ei are i.i.d. random errors, the smoothing spline estimate g n is defined to be the
PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces
Sarmiento, Adel; Cortes, Adriano; Garcia, Daniel; ...
2016-10-07
We describe the development of a high-performance solution framework for isogeometric discrete differential forms based on B-splines: PetIGA-MF. Built on top of PetIGA, PetIGA-MF is a general multi-field discretization tool. To test the capabilities of our implementation, we solve different viscous flow problems such as Darcy, Stokes, Brinkman, and Navier-Stokes equations. Several convergence benchmarks based on manufactured solutions are presented assuring optimal convergence rates of the approximations, showing the accuracy and robustness of our solver.
1988-08-01
the spline coefficients are calculated. 2.2.3.3 GETSEG GETSEG divides the flight into segments where the points are above the critical Mach number. The...first two and the last two points of a segment can be below critical , which is done in order to improve the spline interpolation. There can also be...subcritical points in the track; however, there can be at most only 5.5 seconds between critical points. If there is a 4.5 4 second gap between data
Random regression analyses using B-spline functions to model growth of Nellore cattle.
Boligon, A A; Mercadante, M E Z; Lôbo, R B; Baldi, F; Albuquerque, L G
2012-02-01
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
NASA Astrophysics Data System (ADS)
Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.
2017-02-01
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
Thin-plate spline analysis of the cranial base in subjects with Class III malocclusion.
Singh, G D; McNamara, J A; Lozanoff, S
1997-08-01
The role of the cranial base in the emergence of Class III malocclusion is not fully understood. This study determines deformations that contribute to a Class III cranial base morphology, employing thin-plate spline analysis on lateral cephalographs. A total of 73 children of European-American descent aged between 5 and 11 years of age with Class III malocclusion were compared with an equivalent group of subjects with a normal, untreated, Class I molar occlusion. The cephalographs were traced, checked and subdivided into seven age- and sex-matched groups. Thirteen points on the cranial base were identified and digitized. The datasets were scaled to an equivalent size, and statistical analysis indicated significant differences between average Class I and Class III cranial base morphologies for each group. Thin-plate spline analysis indicated that both affine (uniform) and non-affine transformations contribute toward the total spline for each average cranial base morphology at each age group analysed. For non-affine transformations, Partial warps 10, 8 and 7 had high magnitudes, indicating large-scale deformations affecting Bolton point, basion, pterygo-maxillare, Ricketts' point and articulare. In contrast, high eigenvalues associated with Partial warps 1-3, indicating localized shape changes, were found at tuberculum sellae, sella, and the frontonasomaxillary suture. It is concluded that large spatial-scale deformations affect the occipital complex of the cranial base and sphenoidal region, in combination with localized distortions at the frontonasal suture. These deformations may contribute to reduced orthocephalization or deficient flattening of the cranial base antero-posteriorly that, in turn, leads to the formation of a Class III malocclusion.
Statistical evaluation of the influence of the uncertainty budget on B-spline curve approximation
NASA Astrophysics Data System (ADS)
Zhao, Xin; Alkhatib, Hamza; Kargoll, Boris; Neumann, Ingo
2017-12-01
In the field of engineering geodesy, terrestrial laser scanning (TLS) has become a popular method for detecting deformations. This paper analyzes the influence of the uncertainty budget on free-form curves modeled by B-splines. Usually, free-form estimation is based on scanning points assumed to have equal accuracies, which is not realistic. Previous findings demonstrate that the residuals still contain random and systematic uncertainties caused by instrumental, object-related and atmospheric influences. In order to guarantee the quality of derived estimates, it is essential to be aware of all uncertainties and their impact on the estimation. In this paper, a more detailed uncertainty budget is considered, in the context of the "Guide to the Expression of Uncertainty in Measurement" (GUM), which leads to a refined, heteroskedastic variance covariance matrix (VCM) of TLS measurements. Furthermore, the control points of B-spline curves approximating a measured bridge are estimated. Comparisons are made between the estimated B-spline curves using on the one hand a homoskedastic VCM and on the other hand the refined VCM. To assess the statistical significance of the differences displayed by the estimates for the two stochastic models, a nested model misspecification test and a non-nested model selection test are described and applied. The test decisions indicate that the homoskedastic VCM should be replaced by a heteroskedastic VCM in the direction of the suggested VCM. However, the tests also indicate that the considered VCM is still inadequate in light of the given data set and should therefore be improved.
Comparison of the compressive strength of 3 different implant design systems.
Pedroza, Jose E; Torrealba, Ysidora; Elias, Augusto; Psoter, Walter
2007-01-01
The aims of this study were twofold: to compare the static compressive strength at the implant-abutment interface of 3 design systems and to describe the implant abutment connection failure mode. A stainless steel holding device was designed to align the implants at 30 degrees with respect to the y-axis. Sixty-nine specimens were used, 23 for each system. A computer-controlled universal testing machine (MTS 810) applied static compression loading by a unidirectional vertical piston until failure. Specimens were evaluated macroscopically for longitudinal displacement, abutment looseness, and screw and implant fracture. Data were analyzed by analysis of variance (ANOVA). The mean compressive strength for the Unipost system was 392.5 psi (SD +/-40.9), for the Spline system 342.8 psi (SD+/-25.8), and for the Screw-Vent system 269.1 psi (SD+/-30.7). The Unipost implant-abutment connection demonstrated a statistically significant superior mechanical stability (P < or = .009) compared with the Spline implant system. The Spline implant system showed a statistically significant higher compressive strength than the Screw-Vent implant system (P < or =.009). Regarding failure mode, the Unipost system consistently broke at the same site, while the other systems failed at different points of the connection. The Unipost system demonstrated excellent fracture resistance to compressive forces; this resistance may be attributed primarily to the diameter of the abutment screw and the 2.5 mm counter bore, representing the same and a unique piece of the implant. The Unipost implant system demonstrated a statistically significant superior compressive strength value compared with the Spline and Screw-Vent systems, at a 30 degrees angulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less
Defining window-boundaries for genomic analyses using smoothing spline techniques
Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; ...
2015-04-17
High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the datamore » and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.« less
Duan, Fenghai; Xu, Ye
2017-01-01
To analyze a microarray experiment to identify the genes with expressions varying after the diagnosis of breast cancer. A total of 44 928 probe sets in an Affymetrix microarray data publicly available on Gene Expression Omnibus from 249 patients with breast cancer were analyzed by the nonparametric multivariate adaptive splines. Then, the identified genes with turning points were grouped by K-means clustering, and their network relationship was subsequently analyzed by the Ingenuity Pathway Analysis. In total, 1640 probe sets (genes) were reliably identified to have turning points along with the age at diagnosis in their expression profiling, of which 927 expressed lower after turning points and 713 expressed higher after the turning points. K-means clustered them into 3 groups with turning points centering at 54, 62.5, and 72, respectively. The pathway analysis showed that the identified genes were actively involved in various cancer-related functions or networks. In this article, we applied the nonparametric multivariate adaptive splines method to a publicly available gene expression data and successfully identified genes with expressions varying before and after breast cancer diagnosis.
Fletcher, E; Carmichael, O; Decarli, C
2012-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.
Fletcher, E.; Carmichael, O.; DeCarli, C.
2013-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843
View of "iron horse" a machine capable of simulating ...
View of "iron horse" - a machine capable of simulating the shape of a hull at any given area in a 1/10 scale. Specific points are identified from 1/10 scale drawings of the ship's body plan. Plastic splines are configured to the body plat at several stations. Points are positioned to specific locations from the body plan over the splines with sufficient gap to insert a piece of electrically conductive paper. The paper is inserted between the points and the splines and forms a section of hull plating at 1/10 scale. An electric current is applied to each point and burns a mark on the paper. The paper is then removed, flattened and now represents a section of hull plating. Using precise photography, the section is projected (as a glass slide) on to a piece of hull plating which may be up to 300 feet long and 8 feet wide. Marks are traced on the plate, which serve as a guide to the cutters who trim the plate to final dimensions. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structural Assembly Shop, League Island, Philadelphia, Philadelphia County, PA
Non-lambertian reflectance modeling and shape recovery of faces using tensor splines.
Kumar, Ritwik; Barmpoutis, Angelos; Banerjee, Arunava; Vemuri, Baba C
2011-03-01
Modeling illumination effects and pose variations of a face is of fundamental importance in the field of facial image analysis. Most of the conventional techniques that simultaneously address both of these problems work with the Lambertian assumption and thus fall short of accurately capturing the complex intensity variation that the facial images exhibit or recovering their 3D shape in the presence of specularities and cast shadows. In this paper, we present a novel Tensor-Spline-based framework for facial image analysis. We show that, using this framework, the facial apparent BRDF field can be accurately estimated while seamlessly accounting for cast shadows and specularities. Further, using local neighborhood information, the same framework can be exploited to recover the 3D shape of the face (to handle pose variation). We quantitatively validate the accuracy of the Tensor Spline model using a more general model based on the mixture of single-lobed spherical functions. We demonstrate the effectiveness of our technique by presenting extensive experimental results for face relighting, 3D shape recovery, and face recognition using the Extended Yale B and CMU PIE benchmark data sets.
Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.; ...
2016-10-19
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less
Accurate B-spline-based 3-D interpolation scheme for digital volume correlation
NASA Astrophysics Data System (ADS)
Ren, Maodong; Liang, Jin; Wei, Bin
2016-12-01
An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.
Surface mapping of spike potential fields: experienced EEGers vs. computerized analysis.
Koszer, S; Moshé, S L; Legatt, A D; Shinnar, S; Goldensohn, E S
1996-03-01
An EEG epileptiform spike focus recorded with scalp electrodes is clinically localized by visual estimation of the point of maximal voltage and the distribution of its surrounding voltages. We compared such estimated voltage maps, drawn by experienced electroencephalographers (EEGers), with a computerized spline interpolation technique employed in the commercially available software package FOCUS. Twenty-two spikes were recorded from 15 patients during long-term continuous EEG monitoring. Maps of voltage distribution from the 28 electrodes surrounding the points of maximum change in slope (the spike maximum) were constructed by the EEGer. The same points of maximum spike and voltage distributions at the 29 electrodes were mapped by computerized spline interpolation and a comparison between the two methods was made. The findings indicate that the computerized spline mapping techniques employed in FOCUS construct voltage maps with similar maxima and distributions as the maps created by experienced EEGers. The dynamics of spike activity, including correlations, are better visualized using the computerized technique than by manual interpretation alone. Its use as a technique for spike localization is accurate and adds information of potential clinical value.
Electrically insulating and sealing frame
Guthrie, Robin J.
1983-11-08
A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.
Aerodynamic influence coefficient method using singularity splines.
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Weber, J. A.; Lesferd, E. P.
1973-01-01
A new numerical formulation with computed results, is presented. This formulation combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of the loading function methods. The formulation employs a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfies all of the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise (termed 'spline'). Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral.
Sim, K S; Kiani, M A; Nia, M E; Tso, C P
2014-01-01
A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillion-Gourdeau, F., E-mail: filliong@CRM.UMontreal.ca; Centre de Recherches Mathématiques, Université de Montréal, Montréal, H3T 1J4; Lorin, E., E-mail: elorin@math.carleton.ca
2016-02-15
A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.
NASA Astrophysics Data System (ADS)
Kryanev, A. V.; Ivanov, V. V.; Romanova, A. O.; Sevastyanov, L. A.; Udumyan, D. K.
2018-03-01
This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the "trend component." At the second stage, the method of least squares is used to find the unknown variance σ2 of the noise component.
Chen, T; Besio, W; Dai, W
2009-01-01
A comparison of the performance of the tripolar and bipolar concentric as well as spline Laplacian electrocardiograms (LECGs) and body surface Laplacian mappings (BSLMs) for localizing and imaging the cardiac electrical activation has been investigated based on computer simulation. In the simulation a simplified eccentric heart-torso sphere-cylinder homogeneous volume conductor model were developed. Multiple dipoles with different orientations were used to simulate the underlying cardiac electrical activities. Results show that the tripolar concentric ring electrodes produce the most accurate LECG and BSLM estimation among the three estimators with the best performance in spatial resolution.
Registration of segmented histological images using thin plate splines and belief propagation
NASA Astrophysics Data System (ADS)
Kybic, Jan
2014-03-01
We register images based on their multiclass segmentations, for cases when correspondence of local features cannot be established. A discrete mutual information is used as a similarity criterion. It is evaluated at a sparse set of location on the interfaces between classes. A thin-plate spline regularization is approximated by pairwise interactions. The problem is cast into a discrete setting and solved efficiently by belief propagation. Further speedup and robustness is provided by a multiresolution framework. Preliminary experiments suggest that our method can provide similar registration quality to standard methods at a fraction of the computational cost.
First Instances of Generalized Expo-Rational Finite Elements on Triangulations
NASA Astrophysics Data System (ADS)
Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre
2011-12-01
In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.
Neural networks for function approximation in nonlinear control
NASA Technical Reports Server (NTRS)
Linse, Dennis J.; Stengel, Robert F.
1990-01-01
Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.
B-Spline Filtering for Automatic Detection of Calcification Lesions in Mammograms
NASA Astrophysics Data System (ADS)
Bueno, G.; Sánchez, S.; Ruiz, M.
2006-10-01
Breast cancer continues to be an important health problem between women population. Early detection is the only way to improve breast cancer prognosis and significantly reduce women mortality. It is by using CAD systems that radiologist can improve their ability to detect, and classify lesions in mammograms. In this study the usefulness of using B-spline based on a gradient scheme and compared to wavelet and adaptative filtering has been investigated for calcification lesion detection and as part of CAD systems. The technique has been applied to different density tissues. A qualitative validation shows the success of the method.
Delgado Reyes, Lourdes M; Bohache, Kevin; Wijeakumar, Sobanawartiny; Spencer, John P
2018-04-01
Motion artifacts are often a significant component of the measured signal in functional near-infrared spectroscopy (fNIRS) experiments. A variety of methods have been proposed to address this issue, including principal components analysis (PCA), correlation-based signal improvement (CBSI), wavelet filtering, and spline interpolation. The efficacy of these techniques has been compared using simulated data; however, our understanding of how these techniques fare when dealing with task-based cognitive data is limited. Brigadoi et al. compared motion correction techniques in a sample of adult data measured during a simple cognitive task. Wavelet filtering showed the most promise as an optimal technique for motion correction. Given that fNIRS is often used with infants and young children, it is critical to evaluate the effectiveness of motion correction techniques directly with data from these age groups. This study addresses that problem by evaluating motion correction algorithms implemented in HomER2. The efficacy of each technique was compared quantitatively using objective metrics related to the physiological properties of the hemodynamic response. Results showed that targeted PCA (tPCA), spline, and CBSI retained a higher number of trials. These techniques also performed well in direct head-to-head comparisons with the other approaches using quantitative metrics. The CBSI method corrected many of the artifacts present in our data; however, this approach produced sometimes unstable HRFs. The targeted PCA and spline methods proved to be the most robust, performing well across all comparison metrics. When compared head to head, tPCA consistently outperformed spline. We conclude, therefore, that tPCA is an effective technique for correcting motion artifacts in fNIRS data from young children.
NASA Astrophysics Data System (ADS)
Peters, Andre; Nehls, Thomas; Wessolek, Gerd
2016-06-01
Weighing lysimeters with appropriate data filtering yield the most precise and unbiased information for precipitation (P) and evapotranspiration (ET). A recently introduced filter scheme for such data is the AWAT (Adaptive Window and Adaptive Threshold) filter (Peters et al., 2014). The filter applies an adaptive threshold to separate significant from insignificant mass changes, guaranteeing that P and ET are not overestimated, and uses a step interpolation between the significant mass changes. In this contribution we show that the step interpolation scheme, which reflects the resolution of the measuring system, can lead to unrealistic prediction of P and ET, especially if they are required in high temporal resolution. We introduce linear and spline interpolation schemes to overcome these problems. To guarantee that medium to strong precipitation events abruptly following low or zero fluxes are not smoothed in an unfavourable way, a simple heuristic selection criterion is used, which attributes such precipitations to the step interpolation. The three interpolation schemes (step, linear and spline) are tested and compared using a data set from a grass-reference lysimeter with 1 min resolution, ranging from 1 January to 5 August 2014. The selected output resolutions for P and ET prediction are 1 day, 1 h and 10 min. As expected, the step scheme yielded reasonable flux rates only for a resolution of 1 day, whereas the other two schemes are well able to yield reasonable results for any resolution. The spline scheme returned slightly better results than the linear scheme concerning the differences between filtered values and raw data. Moreover, this scheme allows continuous differentiability of filtered data so that any output resolution for the fluxes is sound. Since computational burden is not problematic for any of the interpolation schemes, we suggest always using the spline scheme.
Thin-plate spline analysis of mandibular growth.
Franchi, L; Baccetti, T; McNamara, J A
2001-04-01
The analysis of mandibular growth changes around the pubertal spurt in humans has several important implications for the diagnosis and orthopedic correction of skeletal disharmonies. The purpose of this study was to evaluate mandibular shape and size growth changes around the pubertal spurt in a longitudinal sample of subjects with normal occlusion by means of an appropriate morphometric technique (thin-plate spline analysis). Ten mandibular landmarks were identified on lateral cephalograms of 29 subjects at 6 different developmental phases. The 6 phases corresponded to 6 different maturational stages in cervical vertebrae during accelerative and decelerative phases of the pubertal growth curve of the mandible. Differences in shape between average mandibular configurations at the 6 developmental stages were visualized by means of thin-plate spline analysis and subjected to permutation test. Centroid size was used as the measure of the geometric size of each mandibular specimen. Differences in size at the 6 developmental phases were tested statistically. The results of graphical analysis indicated a statistically significant change in mandibular shape only for the growth interval from stage 3 to stage 4 in cervical vertebral maturation. Significant increases in centroid size were found at all developmental phases, with evidence of a prepubertal minimum and of a pubertal maximum. The existence of a pubertal peak in human mandibular growth, therefore, is confirmed by thin-plate spline analysis. Significant morphological changes in the mandible during the growth interval from stage 3 to stage 4 in cervical vertebral maturation may be described as an upward-forward direction of condylar growth determining an overall "shrinkage" of the mandibular configuration along the measurement of total mandibular length. This biological mechanism is particularly efficient in compensating for major increments in mandibular size at the adolescent spurt.
Using manual prostate contours to enhance deformable registration of endorectal MRI.
Cheung, M R; Krishnan, K
2012-10-01
Endorectal MRI provides detailed images of the prostate anatomy and is useful for radiation treatment planning. Here we describe a Demons field-initialized B-spline deformable registration of prostate MRI. T2-weighted endorectal MRIs of five patients were used. The prostate and the tumor of each patient were manually contoured. The planning MRIs and their segmentations were simulated by warping the corresponding endorectal MRIs using thin plate spline (TPS). Deformable registration was initialized using the deformation field generated using Demons algorithm to map the deformed prostate MRI to the non-deformed one. The solution was refined with B-Spline registration. Volume overlap similarity was used to assess the accuracy of registration and to suggest a minimum margin to account for the registration errors. Initialization using Demons algorithm took about 15 min on a computer with 2.8 GHz Intel, 1.3 GB RAM. Refinement B-spline registration (200 iterations) took less than 5 min. Using the synthetic images as the ground truth, at zero margin, the average (S.D.) 98 (±0.4)% for prostate coverage was 97 (±1)% for tumor. The average (±S.D.) treatment margin required to cover the entire prostate was 1.5 (±0.2)mm. The average (± S.D.) treatment margin required to cover the tumor was 0.7 (±0.1)mm. We also demonstrated the challenges in registering an in vivo deformed MRI to an in vivo non-deformed MRI. We here present a deformable registration scheme that can overcome large deformation. This platform is expected to be useful for prostate cancer radiation treatment planning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Alkhamrah, B; Terada, K; Yamaki, M; Ali, I M; Hanada, K
2001-01-01
A longitudinal retrospective study using thin-plate spline analysis was used to investigate skeletal Class III etiology in Japanese female adolescents. Headfilms of 40 subjects were chosen from the archives of the Orthodontic department at Niigata University Dental Hospital, and were traced at IIIB and IVA Hellman dental ages. Twenty-eight homologous landmarks, representing hard and soft tissue, were digitized. These were used to reproduce a consensus for the profilogram, craniomaxillary complex, mandible, and soft tissue for each age and skeletal group. Generalized least-square analysis revealed a significant shape difference between age-matched groups (P < .001), except for the craniomaxillary complex at stage IVA. T test for size analysis showed unequivocally increased mandibular size in skeletal Class III, which directly increased the craniofacial size collectively (P < .05). A deviant profilogram showed anisotropy displaying as maxillary deficiency, acute cranial base, and obtuse gonial angle in addition to increased facial height at stage IIIB. Maxillary retrusion decreased while the mandible showed excessive incremental growth and a forward position caused by deficient orthocephalization at stage IVA. Craniomaxillary complex total spline and partial warps (PW)3 and 2 showed a maxillary retrusion at stage IIIB opposite an acute cranial base at stage IVA. Mandibular total spline and PW4, 5 showed changes affecting most landmarks and their spatial interrelationship, especially a stretch along the articulare-pogonion axis. In soft tissue analysis, PW8 showed large and local changes which paralleled the underlying hard tissue components. Allometry of the mandible and anisotropy of the cranial base, the maxilla, and the mandible asserted the complexity of craniofacial growth and the difficulty of predicting its outcome.
Anderson, Emma L; Tilling, Kate; Fraser, Abigail; Macdonald-Wallis, Corrie; Emmett, Pauline; Cribb, Victoria; Northstone, Kate; Lawlor, Debbie A; Howe, Laura D
2013-07-01
Methods for the assessment of changes in dietary intake across the life course are underdeveloped. We demonstrate the use of linear-spline multilevel models to summarize energy-intake trajectories through childhood and adolescence and their application as exposures, outcomes, or mediators. The Avon Longitudinal Study of Parents and Children assessed children's dietary intake several times between ages 3 and 13 years, using both food frequency questionnaires (FFQs) and 3-day food diaries. We estimated energy-intake trajectories for 12,032 children using linear-spline multilevel models. We then assessed the associations of these trajectories with maternal body mass index (BMI), and later offspring BMI, and also their role in mediating the relation between maternal and offspring BMIs. Models estimated average and individual energy intake at 3 years, and linear changes in energy intake from age 3 to 7 years and from age 7 to 13 years. By including the exposure (in this example, maternal BMI) in the multilevel model, we were able to estimate the average energy-intake trajectories across levels of the exposure. When energy-intake trajectories are the exposure for a later outcome (in this case offspring BMI) or a mediator (between maternal and offspring BMI), results were similar, whether using a two-step process (exporting individual-level intercepts and slopes from multilevel models and using these in linear regression/path analysis), or a single-step process (multivariate multilevel models). Trajectories were similar when FFQs and food diaries were assessed either separately, or when combined into one model. Linear-spline multilevel models provide useful summaries of trajectories of dietary intake that can be used as an exposure, outcome, or mediator.
Simultaneous Inference For The Mean Function Based on Dense Functional Data
Cao, Guanqun; Yang, Lijian; Todem, David
2012-01-01
A polynomial spline estimator is proposed for the mean function of dense functional data together with a simultaneous confidence band which is asymptotically correct. In addition, the spline estimator and its accompanying confidence band enjoy oracle efficiency in the sense that they are asymptotically the same as if all random trajectories are observed entirely and without errors. The confidence band is also extended to the difference of mean functions of two populations of functional data. Simulation experiments provide strong evidence that corroborates the asymptotic theory while computing is efficient. The confidence band procedure is illustrated by analyzing the near infrared spectroscopy data. PMID:22665964
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
Control of rotordynamic instability in a typical gas turbine's power system
NASA Technical Reports Server (NTRS)
Veikos, N. M.; Page, R. H.; Tornillo, E. J.
1984-01-01
The effect of rotor internal friction on the system's stability was studied when operated above the first critical speed. This internal friction is commonly caused by sliding press fits or sliding splines. Under conditions of high speed and low bearing damping, these systems will occassionally whirl at a frequency less than the shaft's rotational speed. This subsynchronous precession is a self excited phenomenon and stress reversals are created. This phenomenon was observed during engine testing. The reduction of spline friction and/or the inclusion of squeeze film damping have controlled the instability. Case history and the detail design of the squeeze film dampers is discussed.
NASA Technical Reports Server (NTRS)
Mier Muth, A. M.; Willsky, A. S.
1978-01-01
In this paper we describe a method for approximating a waveform by a spline. The method is quite efficient, as the data are processed sequentially. The basis of the approach is to view the approximation problem as a question of estimation of a polynomial in noise, with the possibility of abrupt changes in the highest derivative. This allows us to bring several powerful statistical signal processing tools into play. We also present some initial results on the application of our technique to the processing of electrocardiograms, where the knot locations themselves may be some of the most important pieces of diagnostic information.
Gutierrez, Juan B; Lai, Ming-Jun; Slavov, George
2015-12-01
We study a time dependent partial differential equation (PDE) which arises from classic models in ecology involving logistic growth with Allee effect by introducing a discrete weak solution. Existence, uniqueness and stability of the discrete weak solutions are discussed. We use bivariate splines to approximate the discrete weak solution of the nonlinear PDE. A computational algorithm is designed to solve this PDE. A convergence analysis of the algorithm is presented. We present some simulations of population development over some irregular domains. Finally, we discuss applications in epidemiology and other ecological problems. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gutowski, Marek W.
1992-12-01
Presented is a novel, heuristic algorithm, based on fuzzy set theory, allowing for significant off-line data reduction. Given the equidistant data, the algorithm discards some points while retaining others with their original values. The fraction of original data points retained is typically {1}/{6} of the initial value. The reduced data set preserves all the essential features of the input curve. It is possible to reconstruct the original information to high degree of precision by means of natural cubic splines, rational cubic splines or even linear interpolation. Main fields of application should be non-linear data fitting (substantial savings in CPU time) and graphics (storage space savings).
Variable Selection for Nonparametric Quantile Regression via Smoothing Spline AN OVA
Lin, Chen-Yen; Bondell, Howard; Zhang, Hao Helen; Zou, Hui
2014-01-01
Quantile regression provides a more thorough view of the effect of covariates on a response. Nonparametric quantile regression has become a viable alternative to avoid restrictive parametric assumption. The problem of variable selection for quantile regression is challenging, since important variables can influence various quantiles in different ways. We tackle the problem via regularization in the context of smoothing spline ANOVA models. The proposed sparse nonparametric quantile regression (SNQR) can identify important variables and provide flexible estimates for quantiles. Our numerical study suggests the promising performance of the new procedure in variable selection and function estimation. Supplementary materials for this article are available online. PMID:24554792
NASA Technical Reports Server (NTRS)
Anuta, P. E.
1975-01-01
Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.
Intensity Conserving Spectral Fitting
NASA Technical Reports Server (NTRS)
Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.
2015-01-01
The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.
Wilke, Marko
2018-02-01
This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1-75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.
Interactive modeling and simulation of peripheral nerve cords in virtual environments
NASA Astrophysics Data System (ADS)
Ullrich, Sebastian; Frommen, Thorsten; Eckert, Jan; Schütz, Astrid; Liao, Wei; Deserno, Thomas M.; Ntouba, Alexandre; Rossaint, Rolf; Prescher, Andreas; Kuhlen, Torsten
2008-03-01
This paper contributes to modeling, simulation and visualization of peripheral nerve cords. Until now, only sparse datasets of nerve cords can be found. In addition, this data has not yet been used in simulators, because it is only static. To build up a more flexible anatomical structure of peripheral nerve cords, we propose a hierarchical tree data structure where each node represents a nerve branch. The shape of the nerve segments itself is approximated by spline curves. Interactive modeling allows for the creation and editing of control points which are used for branching nerve sections, calculating spline curves and editing spline representations via cross sections. Furthermore, the control points can be attached to different anatomic structures. Through this approach, nerve cords deform in accordance to the movement of the connected structures, e.g., muscles or bones. As a result, we have developed an intuitive modeling system that runs on desktop computers and in immersive environments. It allows anatomical experts to create movable peripheral nerve cords for articulated virtual humanoids. Direct feedback of changes induced by movement or deformation is achieved by visualization in real-time. The techniques and the resulting data are already used for medical simulators.
Comparing 3-dimensional virtual methods for reconstruction in craniomaxillofacial surgery.
Benazzi, Stefano; Senck, Sascha
2011-04-01
In the present project, the virtual reconstruction of digital osteomized zygomatic bones was simulated using different methods. A total of 15 skulls were scanned using computed tomography, and a virtual osteotomy of the left zygomatic bone was performed. Next, virtual reconstructions of the missing part using mirror imaging (with and without best fit registration) and thin plate spline interpolation functions were compared with the original left zygomatic bone. In general, reconstructions using thin plate spline warping showed better results than the mirroring approaches. Nevertheless, when dealing with skulls characterized by a low degree of asymmetry, mirror imaging and subsequent registration can be considered a valid and easy solution for zygomatic bone reconstruction. The mirroring tool is one of the possible alternatives in reconstruction, but it might not always be the optimal solution (ie, when the hemifaces are asymmetrical). In the present pilot study, we have verified that best fit registration of the mirrored unaffected hemiface and thin plate spline warping achieved better results in terms of fitting accuracy, overcoming the evident limits of the mirroring approach. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J
1998-06-01
Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.
Pauchard, Y; Smith, M; Mintchev, M
2004-01-01
Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.
Joint image and motion reconstruction for PET using a B-spline motion model.
Blume, Moritz; Navab, Nassir; Rafecas, Magdalena
2012-12-21
We present a novel joint image and motion reconstruction method for PET. The method is based on gated data and reconstructs an image together with a motion function. The motion function can be used to transform the reconstructed image to any of the input gates. All available events (from all gates) are used in the reconstruction. The presented method uses a B-spline motion model, together with a novel motion regularization procedure that does not need a regularization parameter (which is usually extremely difficult to adjust). Several image and motion grid levels are used in order to reduce the reconstruction time. In a simulation study, the presented method is compared to a recently proposed joint reconstruction method. While the presented method provides comparable reconstruction quality, it is much easier to use since no regularization parameter has to be chosen. Furthermore, since the B-spline discretization of the motion function depends on fewer parameters than a displacement field, the presented method is considerably faster and consumes less memory than its counterpart. The method is also applied to clinical data, for which a novel purely data-driven gating approach is presented.
Xiao, Xun; Geyer, Veikko F.; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F.
2016-01-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. PMID:27104582
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharifi, Hoda; Department of Physics, Oakland University, Rochester, MI; Zhang, Hong
Purpose: In PET-guided adaptive radiotherapy (RT), changes in the metabolic activity at individual voxels cannot be derived until the duringtreatment CT images are appropriately registered to pre-treatment CT images. However, deformable image registration (DIR) usually does not preserve tumor volume. This may induce errors when comparing to the target. The aim of this study was to develop a DIR-integrated mechanical modeling technique to track radiation-induced metabolic changes on PET images. Methods: Three patients with non-small cell lung cancer (NSCLC) were treated with adaptive radiotherapy under RTOG 1106. Two PET/CT image sets were acquired 2 weeks before RT and 18 fractionsmore » after the start of treatment. DIR was performed to register the during-RT CT to the pre-RT CT using a B-spline algorithm and the resultant displacements in the region of tumor were remodeled using a hybrid finite element method (FEM). Gross tumor volume (GTV) was delineated on the during-RT PET/CT image sets and deformed using the 3D deformation vector fields generated by the CT-based registrations. Metabolic tumor volume (MTV) was calculated using the pre- and during–RT image set. The quality of the PET mapping was evaluated based on the constancy of the mapped MTV and landmark comparison. Results: The B-spline-based registrations changed MTVs by 7.3%, 4.6% and −5.9% for the 3 patients and the correspondent changes for the hybrid FEM method −2.9%, 1% and 6.3%, respectively. Landmark comparisons were used to evaluate the Rigid, B-Spline, and hybrid FEM registrations with the mean errors of 10.1 ± 1.6 mm, 4.4 ± 0.4 mm, and 3.6 ± 0.4 mm for three patients. The hybrid FEM method outperforms the B-Spline-only registration for patients with tumor regression Conclusion: The hybrid FEM modeling technique improves the B-Spline registrations in tumor regions. This technique may help compare metabolic activities between two PET/CT images with regressing tumors. The author gratefully acknowledges the financial support from the National Institutes of Health Grant.« less
NASA Astrophysics Data System (ADS)
Dechevsky, Lubomir T.; Bang, Børre; Laksa˚, Arne; Zanaty, Peter
2011-12-01
At the Seventh International Conference on Mathematical Methods for Curves and Surfaces, To/nsberg, Norway, in 2008, several new constructions for Hermite interpolation on scattered point sets in domains in Rn,n∈N, combined with smooth convex partition of unity for several general types of partitions of these domains were proposed in [1]. All of these constructions were based on a new type of B-splines, proposed by some of the authors several years earlier: expo-rational B-splines (ERBS) [3]. In the present communication we shall provide more details about one of these constructions: the one for the most general class of domain partitions considered. This construction is based on the use of two separate families of basis functions: one which has all the necessary Hermite interpolation properties, and another which has the necessary properties of a smooth convex partition of unity. The constructions of both of these two bases are well-known; the new part of the construction is the combined use of these bases for the derivation of a new basis which enjoys having all above-said interpolation and unity partition properties simultaneously. In [1] the emphasis was put on the use of radial basis functions in the definitions of the two initial bases in the construction; now we shall put the main emphasis on the case when these bases consist of tensor-product B-splines. This selection provides two useful advantages: (A) it is easier to compute higher-order derivatives while working in Cartesian coordinates; (B) it becomes clear that this construction becomes a far-going extension of tensor-product constructions. We shall provide 3-dimensional visualization of the resulting bivariate bases, using tensor-product ERBS. In the main tensor-product variant, we shall consider also replacement of ERBS with simpler generalized ERBS (GERBS) [2], namely, their simplified polynomial modifications: the Euler Beta-function B-splines (BFBS). One advantage of using BFBS instead of ERBS is the simplified computation, since BFBS are piecewise polynomial, which ERBS are not. One disadvantage of using BFBS in the place of ERBS in this construction is that the necessary selection of the degree of BFBS imposes constraints on the maximal possible multiplicity of the Hermite interpolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, T; Koo, T
Purpose: To quantitatively investigate the planar dose difference and the γ value between the reference fluence map with the 1 mm detector-to-detector distance and the other fluence maps with less spatial resolution for head and neck intensity modulated radiation (IMRT) therapy. Methods: For ten head and neck cancer patients, the IMRT quality assurance (QA) beams were generated using by the commercial radiation treatment planning system, Pinnacle3 (ver. 8.0.d Philips Medical System, Madison, WI). For each beam, ten fluence maps (detector-to-detector distance: 1 mm to 10 mm by 1 mm) were generated. The fluence maps with larger than 1 mm detector-todetectormore » distance were interpolated using MATLAB (R2014a, the Math Works,Natick, MA) by four different interpolation Methods: for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. These interpolated fluence maps were compared with the reference one using the γ value (criteria: 3%, 3 mm) and the relative dose difference. Results: As the detector-to-detector distance increases, the dose difference between the two maps increases. For the fluence map with the same resolution, the cubic spline interpolation and the bicubic interpolation are almost equally best interpolation methods while the nearest neighbor interpolation is the worst.For example, for 5 mm distance fluence maps, γ≤1 are 98.12±2.28%, 99.48±0.66%, 99.45±0.65% and 82.23±0.48% for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. For 7 mm distance fluence maps, γ≤1 are 90.87±5.91%, 90.22±6.95%, 91.79±5.97% and 71.93±4.92 for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. Conclusion: We recommend that the 2-dimensional detector array with high spatial resolution should be used as an IMRT QA tool and that the measured fluence maps should be interpolated using by the cubic spline interpolation or the bicubic interpolation for head and neck IMRT delivery. This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)
2002-01-01
We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.
Chen, Jinsong; Liu, Lei; Shih, Ya-Chen T; Zhang, Daowen; Severini, Thomas A
2016-03-15
We propose a flexible model for correlated medical cost data with several appealing features. First, the mean function is partially linear. Second, the distributional form for the response is not specified. Third, the covariance structure of correlated medical costs has a semiparametric form. We use extended generalized estimating equations to simultaneously estimate all parameters of interest. B-splines are used to estimate unknown functions, and a modification to Akaike information criterion is proposed for selecting knots in spline bases. We apply the model to correlated medical costs in the Medical Expenditure Panel Survey dataset. Simulation studies are conducted to assess the performance of our method. Copyright © 2015 John Wiley & Sons, Ltd.
Examination of influential observations in penalized spline regression
NASA Astrophysics Data System (ADS)
Türkan, Semra
2013-10-01
In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.
Shape optimization using a NURBS-based interface-enriched generalized FEM
Najafi, Ahmad R.; Safdari, Masoud; Tortorelli, Daniel A.; ...
2016-11-26
This study presents a gradient-based shape optimization over a fixed mesh using a non-uniform rational B-splines-based interface-enriched generalized finite element method, applicable to multi-material structures. In the proposed method, non-uniform rational B-splines are used to parameterize the design geometry precisely and compactly by a small number of design variables. An analytical shape sensitivity analysis is developed to compute derivatives of the objective and constraint functions with respect to the design variables. Subtle but important new terms involve the sensitivity of shape functions and their spatial derivatives. As a result, verification and illustrative problems are solved to demonstrate the precision andmore » capability of the method.« less
Quadratic spline subroutine package
Rasmussen, Lowell A.
1982-01-01
A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)
Numerical solution of the Black-Scholes equation using cubic spline wavelets
NASA Astrophysics Data System (ADS)
Černá, Dana
2016-12-01
The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.
Efficient numerical simulation of an electrothermal de-icer pad
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Keith, T. G., Jr.; De Witt, K. J.; Wright, W. B.
1987-01-01
In this paper, a new approach to calculate the transient thermal behavior of an iced electrothermal de-icer pad was developed. The method of splines was used to obtain the temperature distribution within the layered pad. Splines were used in order to create a tridiagonal system of equations that could be directly solved by Gauss elimination. The Stefan problem was solved using the enthalpy method along with a recent implicit technique. Only one to three iterations were needed to locate the melt front during any time step. Computational times were shown to be greatly reduced over those of an existing one dimensional procedure without any reduction in accuracy; the curent technique was more than 10 times faster.
Teichert, Gregory H.; Gunda, N. S. Harsha; Rudraraju, Shiva; ...
2016-12-18
Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energymore » data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.« less
Estimating seasonal evapotranspiration from temporal satellite images
Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.
2012-01-01
Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.
Friedline, Terri; Masa, Rainier D; Chowa, Gina A N
2015-01-01
The natural log and categorical transformations commonly applied to wealth for meeting the statistical assumptions of research may not always be appropriate for adjusting for skewness given wealth's unique properties. Finding and applying appropriate transformations is becoming increasingly important as researchers consider wealth as a predictor of well-being. We present an alternative transformation-the inverse hyperbolic sine (IHS)-for simultaneously dealing with skewness and accounting for wealth's unique properties. Using the relationship between household wealth and youth's math achievement as an example, we apply the IHS transformation to wealth data from US and Ghanaian households. We also explore non-linearity and accumulation thresholds by combining IHS transformed wealth with splines. IHS transformed wealth relates to youth's math achievement similarly when compared to categorical and natural log transformations, indicating that it is a viable alternative to other transformations commonly used in research. Non-linear relationships and accumulation thresholds emerge that predict youth's math achievement when splines are incorporated. In US households, accumulating debt relates to decreases in math achievement whereas accumulating assets relates to increases in math achievement. In Ghanaian households, accumulating assets between the 25th and 50th percentiles relates to increases in youth's math achievement. Copyright © 2014 Elsevier Inc. All rights reserved.
Mostafavi, Kamal; Tutunea-Fatan, O Remus; Bordatchev, Evgueni V; Johnson, James A
2014-12-01
The strong advent of computer-assisted technologies experienced by the modern orthopedic surgery prompts for the expansion of computationally efficient techniques to be built on the broad base of computer-aided engineering tools that are readily available. However, one of the common challenges faced during the current developmental phase continues to remain the lack of reliable frameworks to allow a fast and precise conversion of the anatomical information acquired through computer tomography to a format that is acceptable to computer-aided engineering software. To address this, this study proposes an integrated and automatic framework capable to extract and then postprocess the original imaging data to a common planar and closed B-Spline representation. The core of the developed platform relies on the approximation of the discrete computer tomography data by means of an original two-step B-Spline fitting technique based on successive deformations of the control polygon. In addition to its rapidity and robustness, the developed fitting technique was validated to produce accurate representations that do not deviate by more than 0.2 mm with respect to alternate representations of the bone geometry that were obtained through different-contact-based-data acquisition or data processing methods. © IMechE 2014.
RGB color calibration for quantitative image analysis: the "3D thin-plate spline" warping approach.
Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado
2012-01-01
In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data.
Park, Hyunjin; Park, Jun-Sung; Seong, Joon-Kyung; Na, Duk L; Lee, Jong-Min
2012-04-30
Analysis of cortical patterns requires accurate cortical surface registration. Many researchers map the cortical surface onto a unit sphere and perform registration of two images defined on the unit sphere. Here we have developed a novel registration framework for the cortical surface based on spherical thin-plate splines. Small-scale composition of spherical thin-plate splines was used as the geometric interpolant to avoid folding in the geometric transform. Using an automatic algorithm based on anisotropic skeletons, we extracted seven sulcal lines, which we then incorporated as landmark information. Mean curvature was chosen as an additional feature for matching between spherical maps. We employed a two-term cost function to encourage matching of both sulcal lines and the mean curvature between the spherical maps. Application of our registration framework to fifty pairwise registrations of T1-weighted MRI scans resulted in improved registration accuracy, which was computed from sulcal lines. Our registration approach was tested as an additional procedure to improve an existing surface registration algorithm. Our registration framework maintained an accurate registration over the sulcal lines while significantly increasing the cross-correlation of mean curvature between the spherical maps being registered. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Xiaolei; Zhao, Yan; Guo, Kai; Li, Gaoliang; Deng, Nianmao
2017-04-28
The mobile satcom antenna (MSA) enables a moving vehicle to communicate with a geostationary Earth orbit satellite. To realize continuous communication, the MSA should be aligned with the satellite in both sight and polarization all the time. Because of coupling effects, unknown disturbances, sensor noises and unmodeled dynamics existing in the system, the control system should have a strong adaptability. The significant features of terminal sliding mode control method are robustness and finite time convergence, but the robustness is related to the large switching control gain which is determined by uncertain issues and can lead to chattering phenomena. Neural networks can reduce the chattering and approximate nonlinear issues. In this work, a novel B-spline curve-based B-spline neural network (BSNN) is developed. The improved BSNN has the capability of shape changing and self-adaption. In addition, the output of the proposed BSNN is applied to approximate the nonlinear function in the system. The results of simulations and experiments are also compared with those of PID method, non-singularity fast terminal sliding mode (NFTSM) control and radial basis function (RBF) neural network-based NFTSM. It is shown that the proposed method has the best performance, with reliable control precision.
Xiao, Xun; Geyer, Veikko F; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F
2016-08-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Nonlinear identification using a B-spline neural network and chaotic immune approaches
NASA Astrophysics Data System (ADS)
dos Santos Coelho, Leandro; Pessôa, Marcelo Wicthoff
2009-11-01
One of the important applications of B-spline neural network (BSNN) is to approximate nonlinear functions defined on a compact subset of a Euclidean space in a highly parallel manner. Recently, BSNN, a type of basis function neural network, has received increasing attention and has been applied in the field of nonlinear identification. BSNNs have the potential to "learn" the process model from input-output data or "learn" fault knowledge from past experience. BSNN can be used as function approximators to construct the analytical model for residual generation too. However, BSNN is trained by gradient-based methods that may fall into local minima during the learning procedure. When using feed-forward BSNNs, the quality of approximation depends on the control points (knots) placement of spline functions. This paper describes the application of a modified artificial immune network inspired optimization method - the opt-aiNet - combined with sequences generate by Hénon map to provide a stochastic search to adjust the control points of a BSNN. The numerical results presented here indicate that artificial immune network optimization methods are useful for building good BSNN model for the nonlinear identification of two case studies: (i) the benchmark of Box and Jenkins gas furnace, and (ii) an experimental ball-and-tube system.
Estimation of Subpixel Snow-Covered Area by Nonparametric Regression Splines
NASA Astrophysics Data System (ADS)
Kuter, S.; Akyürek, Z.; Weber, G.-W.
2016-10-01
Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks (ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results indicated that the developed MARS model performed better than th
Menon, Ramkumar; Bhat, Geeta; Saade, George R; Spratt, Heidi
2014-04-01
To develop classification models of demographic/clinical factors and biomarker data from spontaneous preterm birth in African Americans and Caucasians. Secondary analysis of biomarker data using multivariate adaptive regression splines (MARS), a supervised machine learning algorithm method. Analysis of data on 36 biomarkers from 191 women was reduced by MARS to develop predictive models for preterm birth in African Americans and Caucasians. Maternal plasma, cord plasma collected at admission for preterm or term labor and amniotic fluid at delivery. Data were partitioned into training and testing sets. Variable importance, a relative indicator (0-100%) and area under the receiver operating characteristic curve (AUC) characterized results. Multivariate adaptive regression splines generated models for combined and racially stratified biomarker data. Clinical and demographic data did not contribute to the model. Racial stratification of data produced distinct models in all three compartments. In African Americans maternal plasma samples IL-1RA, TNF-α, angiopoietin 2, TNFRI, IL-5, MIP1α, IL-1β and TGF-α modeled preterm birth (AUC train: 0.98, AUC test: 0.86). In Caucasians TNFR1, ICAM-1 and IL-1RA contributed to the model (AUC train: 0.84, AUC test: 0.68). African Americans cord plasma samples produced IL-12P70, IL-8 (AUC train: 0.82, AUC test: 0.66). Cord plasma in Caucasians modeled IGFII, PDGFBB, TGF-β1 , IL-12P70, and TIMP1 (AUC train: 0.99, AUC test: 0.82). Amniotic fluid in African Americans modeled FasL, TNFRII, RANTES, KGF, IGFI (AUC train: 0.95, AUC test: 0.89) and in Caucasians, TNF-α, MCP3, TGF-β3 , TNFR1 and angiopoietin 2 (AUC train: 0.94 AUC test: 0.79). Multivariate adaptive regression splines models multiple biomarkers associated with preterm birth and demonstrated racial disparity. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.
NASA Astrophysics Data System (ADS)
Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz
2018-02-01
Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem, even though the visual alignment seems to be better than for the Demons algorithm. However, no algorithm could recover the deformation field with sufficient accuracy in terms of vector length and rotation angle differences.
Gradient design for liquid chromatography using multi-scale optimization.
López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C
2018-01-26
In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.
Computer modeling of in terferograms of flowing plasma and determination of the phase shift
NASA Astrophysics Data System (ADS)
Blažek, J.; Kříž, P.; Stach, V.
2000-03-01
Interferograms of the flowing gas contain information about the phase shift between the object and the reference beams. The determination of the phase shift is the first step in getting information about the inner distribution of the density in cylindrically symmetric discharges. Slightly modified Takeda method based on the Fourier transformation is applied to determine the phase information from the interferogram. The least squares spline approximation is used for approximation and smoothing intensity profiles. At the same time, cubic splines with their end-knots conditions naturally realize “hanning windows” eliminating unwanted edge effects. For the purpose of numerical testing of the method, we developed a code that for a density given in advance reconstructs the corresponding interferogram.
On distributed wavefront reconstruction for large-scale adaptive optics systems.
de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel
2016-05-01
The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.
NASA Technical Reports Server (NTRS)
Shiau, Jyh-Jen; Wahba, Grace; Johnson, Donald R.
1986-01-01
A new method, based on partial spline models, is developed for including specified discontinuities in otherwise smooth two- and three-dimensional objective analyses. The method is appropriate for including tropopause height information in two- and three-dimensinal temperature analyses, using the O'Sullivan-Wahba physical variational method for analysis of satellite radiance data, and may in principle be used in a combined variational analysis of observed, forecast, and climate information. A numerical method for its implementation is described and a prototype two-dimensional analysis based on simulated radiosonde and tropopause height data is shown. The method may also be appropriate for other geophysical problems, such as modeling the ocean thermocline, fronts, discontinuities, etc.
NASA Astrophysics Data System (ADS)
Wen, D. S.; Wen, H.; Shi, Y. G.; Su, B.; Li, Z. C.; Fan, G. Z.
2018-01-01
The B-spline interpolation fitting baseline in electrochemical analysis by differential pulse voltammetry was established for determining the lower concentration 2,6-di-tert-butyl p-cresol(BHT) in Jet Fuel that was less than 5.0 mg/L in the condition of the presence of the 6-tert-butyl-2,4-xylenol.The experimental results has shown that the relative errors are less than 2.22%, the sum of standard deviations less than 0.134mg/L, the correlation coefficient more than 0.9851. If the 2,6-ditert-butyl p-cresol concentration is higher than 5.0mg/L, linear fitting baseline method would be more applicable and simpler.
Fixture for aligning motor assembly
Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.
2009-12-08
An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.
Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong; Park, Ja-Rin
2017-06-01
A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.
NASA Astrophysics Data System (ADS)
Orwat, J.
2018-01-01
In paper were presented results of average values calculations of terrain curvatures measured after the termination of subsequent exploitation stages in the 338/2 coal bed located at medium depth. The curvatures were measured on the neighbouring segments of measuring line No. 1 established perpendicularly to the runways of four longwalls No. 001, 002, 005 and 007. The average courses of measured curvatures were designated based on average courses of measured inclinations. In turn, the average values of observed inclinations were calculated on the basis of measured subsidence average values. In turn, they were designated on the way of average-square approximation, which was done by the use of smoothed splines, in reference to the theoretical courses determined by the S. Knothe’s and J. Bialek’s formulas. Here were used standard parameters values of a roof rocks subsidence a, an exploitation rim Aobr and an angle of the main influences range β. The values of standard deviations between the average and measured curvatures σC and the variability coefficients of random scattering of curvatures MC were calculated. They were compared with values appearing in the literature and based on this, a possibility appraisal of the use of smooth splines to designation of average course of observed curvatures of mining area was conducted.
The estimation of time-varying risks in asset pricing modelling using B-Spline method
NASA Astrophysics Data System (ADS)
Nurjannah; Solimun; Rinaldo, Adji
2017-12-01
Asset pricing modelling has been extensively studied in the past few decades to explore the risk-return relationship. The asset pricing literature typically assumed a static risk-return relationship. However, several studies found few anomalies in the asset pricing modelling which captured the presence of the risk instability. The dynamic model is proposed to offer a better model. The main problem highlighted in the dynamic model literature is that the set of conditioning information is unobservable and therefore some assumptions have to be made. Hence, the estimation requires additional assumptions about the dynamics of risk. To overcome this problem, the nonparametric estimators can also be used as an alternative for estimating risk. The flexibility of the nonparametric setting avoids the problem of misspecification derived from selecting a functional form. This paper investigates the estimation of time-varying asset pricing model using B-Spline, as one of nonparametric approach. The advantages of spline method is its computational speed and simplicity, as well as the clarity of controlling curvature directly. The three popular asset pricing models will be investigated namely CAPM (Capital Asset Pricing Model), Fama-French 3-factors model and Carhart 4-factors model. The results suggest that the estimated risks are time-varying and not stable overtime which confirms the risk instability anomaly. The results is more pronounced in Carhart’s 4-factors model.
Non-stationary hydrologic frequency analysis using B-spline quantile regression
NASA Astrophysics Data System (ADS)
Nasri, B.; Bouezmarni, T.; St-Hilaire, A.; Ouarda, T. B. M. J.
2017-11-01
Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic and water resources systems under the assumption of stationarity. However, with increasing evidence of climate change, it is possible that the assumption of stationarity, which is prerequisite for traditional frequency analysis and hence, the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extremes based on B-Spline quantile regression which allows to model data in the presence of non-stationarity and/or dependence on covariates with linear and non-linear dependence. A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior distributions. A coefficient of determination and Bayesian information criterion (BIC) for quantile regression are used in order to select the best model, i.e. for each quantile, we choose the degree and number of knots of the adequate B-spline quantile regression model. The method is applied to annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in the variable of interest and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for an annual maximum and minimum discharge with high annual non-exceedance probabilities.
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
Antony, Bhavna; Abràmoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.
2011-01-01
The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively. PMID:21833377
Spline analysis of the mandible in human subjects with class III malocclusion.
Singh, G D; McNamara, J A; Lozanoff, S
1997-05-01
This study determines deformations that contribute to a Class III mandibular morphology, employing thin-plate spline (TPS) analysis. A total of 133 lateral cephalographs of prepubertal children of European-American descent with either a Class I molar occlusion or a Class III malocclusion were compared. The cephalographs were traced and checked, and eight homologous landmarks on the mandible were identified and digitized. The datasets were scaled to an equivalent size and subjected to statistical analyses. These tests indicated significant differences between average Class I and Class III mandibular morphologies. When the sample was subdivided into seven age and sex-matched groups statistical differences were maintained for each group. TPS analysis indicated that both affine (uniform) and non-affine transformations contribute towards the total spline, and towards the average mandibular morphology at each age group. For non-affine transformations, partial warp 5 had the highest magnitude, indicating large-scale deformations of the mandibular configuration between articulare and pogonion. In contrast, partial warp 1 indicated localized shape changes in the mandibular symphyseal region. It is concluded that large spatial-scale deformations affect the body of the mandible, in combination with localized distortions further anteriorly. These deformations may represent a developmental elongation of the mandibular corpus antero-posteriorly that, allied with symphyseal changes, leads to the appearance of a Class III prognathic mandibular profile.
3D craniofacial registration using thin-plate spline transform and cylindrical surface projection
Chen, Yucong; Deng, Qingqiong; Duan, Fuqing
2017-01-01
Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate. PMID:28982117
3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.
Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing
2017-01-01
Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.
NASA Astrophysics Data System (ADS)
Marghany, Maged
2014-06-01
A critical challenges in urban aeras is slums. In fact, they are considered a source of crime and disease due to poor-quality housing, unsanitary conditions, poor infrastructures and occupancy security. The poor in the dense urban slums are the most vulnerable to infection due to (i) inadequate and restricted access to safety, drinking water and sufficient quantities of water for personal hygiene; (ii) the lack of removal and treatment of excreta; and (iii) the lack of removal of solid waste. This study aims to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed countries such as Egypt. The main objective of this work is to utilize some 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that the fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate between them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slum. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that the fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data.
Assessing the Association Between Asthma and Air Quality in the Presence of Wildfires
NASA Astrophysics Data System (ADS)
Young, L. J.; Al-Hamdan, M. Z.; Lopiano, K. K.; Crosson, W. L.; Gotway, C. A.; DuClos, C.; Jordan, M.; Estes, M. G.; Luvall, J. C.; Estes, S. M.; Xu, X.; Holt, N. M.; Leary, E.
2012-12-01
Asthma hospital/emergency room (patient) data are used as the foundation for creating a health outcome indicator of human response to environmental air quality. Daily U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) fine particulates (PM2.5) ground data and the U.S. National Aeronautical Space Administration (NASA) MODIS aerosol optical depth (AOD) data were acquired and processed for years of 2007 and 2008. Figure 1 shows the PM2.5 annual mean composite of all the 2007 B-spline daily surfaces. Initial models for predicting the number of weekly asthma cases within a Florida county has focused on environmental variables. Weekly maximums of PM2.5, relative humidity, and the proportions of the county with smoke and fire were the environmental variables included in the model. Cosine and sine functions of time were used to account for seasonality in asthma cases. Counties were considered to be random effects, thereby adjusting for differences in socio-demographics and other factors. The 2007 predictions for Miami-Dade county when using B-splines PM2.5 are displayed in Figures 2.; PM2.5 annual mean composite of all the 2007 daily surfaces developed using Al-Hamdan et al (2009) B-spline fitting algorithm ; Predicted and observed weekly asthma cases presenting to hospitals or emergency rooms in Miami-Dade county in Florida during 2007
Polar Views of Titan Global Topography
2013-05-15
These polar maps show the first global, topographic mapping of Saturn moon Titan, using data from NASA Cassini mission. To create these maps, scientists employed a mathematical process called splining.
Chang, Nai-Fu; Chiang, Cheng-Yi; Chen, Tung-Chien; Chen, Liang-Gee
2011-01-01
On-chip implementation of Hilbert-Huang transform (HHT) has great impact to analyze the non-linear and non-stationary biomedical signals on wearable or implantable sensors for the real-time applications. Cubic spline interpolation (CSI) consumes the most computation in HHT, and is the key component for the HHT processor. In tradition, CSI in HHT is usually performed after the collection of a large window of signals, and the long latency violates the realtime requirement of the applications. In this work, we propose to keep processing the incoming signals on-line with small and overlapped data windows without sacrificing the interpolation accuracy. 58% multiplication and 73% division of CSI are saved after the data reuse between the data windows.
History matching by spline approximation and regularization in single-phase areal reservoirs
NASA Technical Reports Server (NTRS)
Lee, T. Y.; Kravaris, C.; Seinfeld, J.
1986-01-01
An automatic history matching algorithm is developed based on bi-cubic spline approximations of permeability and porosity distributions and on the theory of regularization to estimate permeability or porosity in a single-phase, two-dimensional real reservoir from well pressure data. The regularization feature of the algorithm is used to convert the ill-posed history matching problem into a well-posed problem. The algorithm employs the conjugate gradient method as its core minimization method. A number of numerical experiments are carried out to evaluate the performance of the algorithm. Comparisons with conventional (non-regularized) automatic history matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the statistical properties of the observations.
Geomagnetic temporal change: 1903-1982 - A spline representation
NASA Technical Reports Server (NTRS)
Langel, R. A.; Kerridge, D. J.; Barraclough, D. R.; Malin, S. R. C.
1986-01-01
The secular variation of the earth's magnetic field is itself subject to temporal variations. These are investigated with the aid of the coefficients of a series of spherical harmonic models of secular variation deduced from data for the interval 1903-1982 from the worldwide network of magnetic observatories. For some studies it is convenient to approximate the time variation of the spherical harmonic coefficients with a smooth, continuous, function; for this a spline fitting is used. The phenomena that are investigated include periodicities, discontinuities, and correlation with the length of day. The numerical data presented will be of use for further investigations and for the synthesis of secular variation at any place and at any time within the interval of the data - they are not appropriate for temporal extrapolations.
Yu, Ignatius Ts; Tse, Lap Ah; Chi, Chiu-leung; Tze, Wai-wong; Cheuk, Ming-Tam; Alan, Ck-chan
2008-01-01
To investigate the relationship between silica or silicosis and lung cancer in a large cohort of silicotic workers in Hong Kong. All workers with silicosis in Hong Kong diagnosed between 1981 and 1998 were followed up till the end of 1999 to ascertain their vital status and causes of death, using the corresponding mortality rates of Hong Kong males of the same period as external comparison. Standardized mortality ratios (SMR) for lung cancer and other major causes of death were calculated. Person-year method was used. Axelson's indirect method was performed to adjust for the confounding effect of smoking. Penalized smoothing spline (p-spline) models were used to evaluate the exposure-response relationship between silica dust exposure and lung cancer mortality. A total of 2789 newly diagnosed cases of silicosis were included in the cohort, with an overall 24 992.6 person-years of observations. The loss-to-follow-up rate was only 2.9%. Surface construction workers (51%) and underground caisson workers (37%) constituted the major part of the cohort. There were 853 silicotics observed with an average age at death of 63.8 years. The SMR for all causes and all cancers increased significantly. The leading cause of death was non-malignant respiratory diseases. About 86 deaths were from lung cancer, giving a SMR of 1.69 (95% CI: 1.35 approximately 2.09). The risk of lung cancer death among workers in surface construction, underground caisson, and entire cohort was reduced to 1.12 (95% CI: 0.89 approximately 1.38), 1.09 (95% CI: 0.82 approximately 1.42) and 1.56 (95% CI: 0.98 approximately 2.36) respectively, after indirectly adjusting for smoking. from P-spline model did not show a clear exposure-response relationship between silica dust (CDE and MDC) and lung cancer mortality. This cohort study did not show an increased risk of lung cancer mortality among silicotic workers. P-spline model does not support an exposure-response relationship between silica dust exposure and lung cancer mortality.
Nagel-Alne, G E; Krontveit, R; Bohlin, J; Valle, P S; Skjerve, E; Sølverød, L S
2014-07-01
In 2001, the Norwegian Goat Health Service initiated the Healthier Goats program (HG), with the aim of eradicating caprine arthritis encephalitis, caseous lymphadenitis, and Johne's disease (caprine paratuberculosis) in Norwegian goat herds. The aim of the present study was to explore how control and eradication of the above-mentioned diseases by enrolling in HG affected milk yield by comparison with herds not enrolled in HG. Lactation curves were modeled using a multilevel cubic spline regression model where farm, goat, and lactation were included as random effect parameters. The data material contained 135,446 registrations of daily milk yield from 28,829 lactations in 43 herds. The multilevel cubic spline regression model was applied to 4 categories of data: enrolled early, control early, enrolled late, and control late. For enrolled herds, the early and late notations refer to the situation before and after enrolling in HG; for nonenrolled herds (controls), they refer to development over time, independent of HG. Total milk yield increased in the enrolled herds after eradication: the total milk yields in the fourth lactation were 634.2 and 873.3 kg in enrolled early and enrolled late herds, respectively, and 613.2 and 701.4 kg in the control early and control late herds, respectively. Day of peak yield differed between enrolled and control herds. The day of peak yield came on d 6 of lactation for the control early category for parities 2, 3, and 4, indicating an inability of the goats to further increase their milk yield from the initial level. For enrolled herds, on the other hand, peak yield came between d 49 and 56, indicating a gradual increase in milk yield after kidding. Our results indicate that enrollment in the HG disease eradication program improved the milk yield of dairy goats considerably, and that the multilevel cubic spline regression was a suitable model for exploring effects of disease control and eradication on milk yield. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharifi, Hoda; Zhang, Hong; Bagher-Ebadian, Hassan; Lu, Wei; Ajlouni, Munther I.; Jin, Jian-Yue; (Spring Kong, Feng-Ming; Chetty, Indrin J.; Zhong, Hualiang
2018-03-01
Tumor response to radiation treatment (RT) can be evaluated from changes in metabolic activity between two positron emission tomography (PET) images. Activity changes at individual voxels in pre-treatment PET images (PET1), however, cannot be derived until their associated PET-CT (CT1) images are appropriately registered to during-treatment PET-CT (CT2) images. This study aimed to investigate the feasibility of using deformable image registration (DIR) techniques to quantify radiation-induced metabolic changes on PET images. Five patients with non-small-cell lung cancer (NSCLC) treated with adaptive radiotherapy were considered. PET-CTs were acquired two weeks before RT and 18 fractions after the start of RT. DIR was performed from CT1 to CT2 using B-Spline and diffeomorphic Demons algorithms. The resultant displacements in the tumor region were then corrected using a hybrid finite element method (FEM). Bitmap masks generated from gross tumor volumes (GTVs) in PET1 were deformed using the four different displacement vector fields (DVFs). The conservation of total lesion glycolysis (TLG) in GTVs was used as a criterion to evaluate the quality of these registrations. The deformed masks were united to form a large mask which was then partitioned into multiple layers from center to border. The averages of SUV changes over all the layers were 1.0 ± 1.3, 1.0 ± 1.2, 0.8 ± 1.3, 1.1 ± 1.5 for the B-Spline, B-Spline + FEM, Demons and Demons + FEM algorithms, respectively. TLG changes before and after mapping using B-Spline, Demons, hybrid-B-Spline, and hybrid-Demons registrations were 20.2%, 28.3%, 8.7%, and 2.2% on average, respectively. Compared to image intensity-based DIR algorithms, the hybrid FEM modeling technique is better in preserving TLG and could be useful for evaluation of tumor response for patients with regressing tumors.
NASA Astrophysics Data System (ADS)
Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza
2014-10-01
The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the multivariate adaptive regression splines (MARS) technique, conclusions of this research work are exposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dise, J; Liang, X; Lin, L
Purpose: To evaluate an automatic interstitial catheter digitization algorithm that reduces treatment planning time and provide means for adaptive re-planning in HDR Brachytherapy of Gynecologic Cancers. Methods: The semi-automatic catheter digitization tool utilizes a region growing algorithm in conjunction with a spline model of the catheters. The CT images were first pre-processed to enhance the contrast between the catheters and soft tissue. Several seed locations were selected in each catheter for the region growing algorithm. The spline model of the catheters assisted in the region growing by preventing inter-catheter cross-over caused by air or metal artifacts. Source dwell positions frommore » day one CT scans were applied to subsequent CTs and forward calculated using the automatically digitized catheter positions. This method was applied to 10 patients who had received HDR interstitial brachytherapy on an IRB approved image-guided radiation therapy protocol. The prescribed dose was 18.75 or 20 Gy delivered in 5 fractions, twice daily, over 3 consecutive days. Dosimetric comparisons were made between automatic and manual digitization on day two CTs. Results: The region growing algorithm, assisted by the spline model of the catheters, was able to digitize all catheters. The difference between automatic and manually digitized positions was 0.8±0.3 mm. The digitization time ranged from 34 minutes to 43 minutes with a mean digitization time of 37 minutes. The bulk of the time was spent on manual selection of initial seed positions and spline parameter adjustments. There was no significance difference in dosimetric parameters between the automatic and manually digitized plans. D90% to the CTV was 91.5±4.4% for the manual digitization versus 91.4±4.4% for the automatic digitization (p=0.56). Conclusion: A region growing algorithm was developed to semi-automatically digitize interstitial catheters in HDR brachytherapy using the Syed-Neblett template. This automatic digitization tool was shown to be accurate compared to manual digitization.« less
Federico, Alejandro; Kaufmann, Guillermo H
2005-05-10
We evaluate the use of smoothing splines with a weighted roughness measure for local denoising of the correlation fringes produced in digital speckle pattern interferometry. In particular, we also evaluate the performance of the multiplicative correlation operation between two speckle patterns that is proposed as an alternative procedure to generate the correlation fringes. It is shown that the application of a normalization algorithm to the smoothed correlation fringes reduces the excessive bias generated in the previous filtering stage. The evaluation is carried out by use of computer-simulated fringes that are generated for different average speckle sizes and intensities of the reference beam, including decorrelation effects. A comparison with filtering methods based on the continuous wavelet transform is also presented. Finally, the performance of the smoothing method in processing experimental data is illustrated.
Approximation methods for inverse problems involving the vibration of beams with tip bodies
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
Two cubic spline based approximation schemes for the estimation of structural parameters associated with the transverse vibration of flexible beams with tip appendages are outlined. The identification problem is formulated as a least squares fit to data subject to the system dynamics which are given by a hybrid system of coupled ordinary and partial differential equations. The first approximation scheme is based upon an abstract semigroup formulation of the state equation while a weak/variational form is the basis for the second. Cubic spline based subspaces together with a Rayleigh-Ritz-Galerkin approach were used to construct sequences of easily solved finite dimensional approximating identification problems. Convergence results are briefly discussed and a numerical example demonstrating the feasibility of the schemes and exhibiting their relative performance for purposes of comparison is provided.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
A cubic spline based Galerkin-like method is developed for the identification of a class of hybrid systems which describe the transverse vibration to flexible beams with attached tip bodies. The identification problem is formulated as a least squares fit to data subject to the system dynamics given by a coupled system of ordnary and partial differential equations recast as an abstract evolution equation (AEE) in an appropriate infinite dimensional Hilbert space. Projecting the AEE into spline-based subspaces leads naturally to a sequence of approximating finite dimensional identification problems. The solutions to these problems are shown to exist, are relatively easily computed, and are shown to, in some sense, converge to solutions to the original identification problem. Numerical results for a variety of examples are discussed.
Free Vibration Study of Anti-Symmetric Angle-Ply Laminated Plates under Clamped Boundary Conditions
NASA Astrophysics Data System (ADS)
Viswanathan, K. K.; Karthik, K.; Sanyasiraju, Y. V. S. S.; Aziz, Z. A.
2016-11-01
Two type of numerical approach namely, Radial Basis Function and Spline approximation, used to analyse the free vibration of anti-symmetric angle-ply laminated plates under clamped boundary conditions. The equations of motion are derived using YNS theory under first order shear deformation. By assuming the solution in separable form, coupled differential equations obtained in term of mid-plane displacement and rotational functions. The coupled differential is then approximated using Spline function and radial basis function to obtain the generalize eigenvalue problem and parametric studies are made to investigate the effect of aspect ratio, length-to-thickness ratio, number of layers, fibre orientation and material properties with respect to the frequency parameter. Some results are compared with the existing literature and other new results are given in tables and graphs.
Spline-Locking Screw Fastening Strategy (SLSFS)
NASA Technical Reports Server (NTRS)
Vranish, John M.
1991-01-01
A fastener was developed by NASA Goddard for efficiently performing assembly, maintenance, and equipment replacement functions in space using either robotic or astronaut means. This fastener, the 'Spline Locking Screw' (SLS) would also have significant commercial value in advanced manufacturing. Commercial (or DoD) products could be manufactured in such a way that their prime subassemblies would be assembled using SLS fasteners. This would permit machines and robots to disconnect and replace these modules/parts with ease, greatly reducing life cycle costs of the products and greatly enhancing the quality, timeliness, and consistency of repairs, upgrades, and remanufacturing. The operation of the basic SLS fastener is detailed, including hardware and test results. Its extension into a comprehensive fastening strategy for NASA use in space is also outlined. Following this, the discussion turns toward potential commercial and government applications and the potential market significance of same.
Spline-locking screw fastening strategy
NASA Technical Reports Server (NTRS)
Vranish, John M.
1992-01-01
A fastener was developed by NASA Goddard for efficiently performing assembly, maintenance, and equipment replacement functions in space using either robotics or astronaut means. This fastener, the 'Spline Locking Screw' (SLS) would also have significant commercial value in advanced space manufacturing. Commercial (or DoD) products could be manufactured in such a way that their prime subassemblies would be assembled using SLS fasteners. This would permit machines and robots to disconnect and replace these modules/parts with ease, greatly reducing life cycle costs of the products and greatly enhancing the quality, timeliness, and consistency of repairs, upgrades, and remanufacturing. The operation of the basic SLS fastener is detailed, including hardware and test results. Its extension into a comprehensive fastening strategy for NASA use in space is also outlined. Following this, the discussion turns toward potential commercial and government applications and the potential market significance of same.
Aerodynamic shape optimization of a HSCT type configuration with improved surface definition
NASA Technical Reports Server (NTRS)
Thomas, Almuttil M.; Tiwari, Surendra N.
1994-01-01
Two distinct parametrization procedures of generating free-form surfaces to represent aerospace vehicles are presented. The first procedure is the representation using spline functions such as nonuniform rational b-splines (NURBS) and the second is a novel (geometrical) parametrization using solutions to a suitably chosen partial differential equation. The main idea is to develop a surface which is more versatile and can be used in an optimization process. Unstructured volume grid is generated by an advancing front algorithm and solutions obtained using an Euler solver. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an automatic differentiator precompiler software tool. Aerodynamic shape optimization of a complete aircraft with twenty four design variables is performed. High speed civil transport aircraft (HSCT) configurations are targeted to demonstrate the process.
Adaptive image coding based on cubic-spline interpolation
NASA Astrophysics Data System (ADS)
Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien
2014-09-01
It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.
Effect of Swirl on Turbulent Structures in Supersonic Jets
NASA Technical Reports Server (NTRS)
Rao, Ram Mohan; Lundgren, Thomas S.
1998-01-01
Direct Numerical Simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moserl are observed. The jet core breakdown stage exhibits increased acoustic radiations.
Meshless Solution of the Problem on the Static Behavior of Thin and Thick Laminated Composite Beams
NASA Astrophysics Data System (ADS)
Xiang, S.; Kang, G. W.
2018-03-01
For the first time, the static behavior of laminated composite beams is analyzed using the meshless collocation method based on a thin-plate-spline radial basis function. In the approximation of a partial differential equation by using a radial basis function, the shape parameter has an important role in ensuring the numerical accuracy. The choice of a shape parameter in the thin plate spline radial basis function is easier than in other radial basis functions. The governing differential equations are derived based on Reddy's third-order shear deformation theory. Numerical results are obtained for symmetric cross-ply laminated composite beams with simple-simple and cantilever boundary conditions under a uniform load. The results found are compared with available published ones and demonstrate the accuracy of the present method.
Baccetti, T; Franchi, L; McNamara, J A
1999-06-01
An effective morphometric method (thin-plate spline analysis) was applied to evaluate shape changes in the craniofacial configuration of a sample of 23 children with Class III malocclusions in the early mixed dentition treated with rapid maxillary expansion and face mask therapy, and compared with a sample of 17 children with untreated Class III malocclusions. Significant treatment-induced changes involved both the maxilla and the mandible. Major deformations consisted of forward displacement of the maxillary complex from the pterygoid region and of anterior morphogenetic rotation of the mandible, due to a significant upward and forward direction of growth of the mandibular condyle. Significant differences in size changes due to reduced increments in mandibular dimensions were associated with significant shape changes in the treated group.
Spline Approximation of Thin Shell Dynamics
NASA Technical Reports Server (NTRS)
delRosario, R. C. H.; Smith, R. C.
1996-01-01
A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.
NASA Astrophysics Data System (ADS)
Hasyim, M.; Prastyo, D. D.
2018-03-01
Survival analysis performs relationship between independent variables and survival time as dependent variable. In fact, not all survival data can be recorded completely by any reasons. In such situation, the data is called censored data. Moreover, several model for survival analysis requires assumptions. One of the approaches in survival analysis is nonparametric that gives more relax assumption. In this research, the nonparametric approach that is employed is Multivariate Regression Adaptive Spline (MARS). This study is aimed to measure the performance of private university’s lecturer. The survival time in this study is duration needed by lecturer to obtain their professional certificate. The results show that research activities is a significant factor along with developing courses material, good publication in international or national journal, and activities in research collaboration.
NASA Technical Reports Server (NTRS)
Ruo, S. Y.
1978-01-01
A computer program was developed to account approximately for the effects of finite wing thickness in transonic potential flow over an oscillation wing of finite span. The program is based on the original sonic box computer program for planar wing which was extended to account for the effect of wing thickness. Computational efficiency and accuracy were improved and swept trailing edges were accounted for. Account for the nonuniform flow caused by finite thickness was made by application of the local linearization concept with appropriate coordinate transformation. A brief description of each computer routine and the applications of cubic spline and spline surface data fitting techniques used in the program are given, and the method of input was shown in detail. Sample calculations as well as a complete listing of the computer program listing are presented.
Landmark-Based 3D Elastic Registration of Pre- and Postoperative Liver CT Data
NASA Astrophysics Data System (ADS)
Lange, Thomas; Wörz, Stefan; Rohr, Karl; Schlag, Peter M.
The qualitative and quantitative comparison of pre- and postoperative image data is an important possibility to validate computer assisted surgical procedures. Due to deformations after surgery a non-rigid registration scheme is a prerequisite for a precise comparison. Interactive landmark-based schemes are a suitable approach. Incorporation of a priori knowledge about the anatomical structures to be registered may help to reduce interaction time and improve accuracy. Concerning pre- and postoperative CT data of oncological liver resections the intrahepatic vessels are suitable anatomical structures. In addition to using landmarks at vessel branchings, we here introduce quasi landmarks at vessel segments with anisotropic localization precision. An experimental comparison of interpolating thin-plate splines (TPS) and Gaussian elastic body splines (GEBS) as well as approximating GEBS on both types of landmarks is performed.
NASA Astrophysics Data System (ADS)
Delogu, A.; Furini, F.
1991-09-01
Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.
Pereira, R J; Bignardi, A B; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G
2013-01-01
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, S.; Guo, Y.
2015-03-01
Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lowermore » than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.« less
Projecting 2D gene expression data into 3D and 4D space.
Gerth, Victor E; Katsuyama, Kaori; Snyder, Kevin A; Bowes, Jeff B; Kitayama, Atsushi; Ueno, Naoto; Vize, Peter D
2007-04-01
Video games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame. The feeling of movement is then achieved by mathematically simulating camera movement relative to the polygonal frame. We have built customized scripts that adapt video game authoring software to texture mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV mapping, associates two-dimensional (U and V) coordinates within images to the three dimensions (X, Y, and Z) of a b-spline model. B-spline model frameworks were built either from confocal data or de novo extracted from 2D images, once again using video game authoring approaches. This system was then used to build 3D models of 182 genes expressed in developing Xenopus embryos and to implement these in a web-accessible database. Models can be viewed via simple Internet browsers and utilize openGL hardware acceleration via a Shockwave plugin. Not only does this database display static data in a dynamic and scalable manner, the UV mapping system also serves as a method to align different images to a common framework, an approach that may make high-throughput automated comparisons of gene expression patterns possible. Finally, video game systems also have elegant methods for handling movement, allowing biomechanical algorithms to drive the animation of models. With further development, these biomechanical techniques offer practical methods for generating virtual embryos that recapitulate morphogenesis.
NASA Astrophysics Data System (ADS)
Yang, Qingsong; Cong, Wenxiang; Wang, Ge
2016-10-01
X-ray phase contrast imaging is an important mode due to its sensitivity to subtle features of soft biological tissues. Grating-based differential phase contrast (DPC) imaging is one of the most promising phase imaging techniques because it works with a normal x-ray tube of a large focal spot at a high flux rate. However, a main obstacle before this paradigm shift is the fabrication of large-area gratings of a small period and a high aspect ratio. Imaging large objects with a size-limited grating results in data truncation which is a new type of the interior problem. While the interior problem was solved for conventional x-ray CT through analytic extension, compressed sensing and iterative reconstruction, the difficulty for interior reconstruction from DPC data lies in that the implementation of the system matrix requires the differential operation on the detector array, which is often inaccurate and unstable in the case of noisy data. Here, we propose an iterative method based on spline functions. The differential data are first back-projected to the image space. Then, a system matrix is calculated whose components are the Hilbert transforms of the spline bases. The system matrix takes the whole image as an input and outputs the back-projected interior data. Prior information normally assumed for compressed sensing is enforced to iteratively solve this inverse problem. Our results demonstrate that the proposed algorithm can successfully reconstruct an interior region of interest (ROI) from the differential phase data through the ROI.
Internal rotor friction instability
NASA Technical Reports Server (NTRS)
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1990-01-01
The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.
Splines and polynomial tools for flatness-based constrained motion planning
NASA Astrophysics Data System (ADS)
Suryawan, Fajar; De Doná, José; Seron, María
2012-08-01
This article addresses the problem of trajectory planning for flat systems with constraints. Flat systems have the useful property that the input and the state can be completely characterised by the so-called flat output. We propose a spline parametrisation for the flat output, the performance output, the states and the inputs. Using this parametrisation the problem of constrained trajectory planning can be cast into a simple quadratic programming problem. An important result is that the B-spline parametrisation used gives exact results for constrained linear continuous-time system. The result is exact in the sense that the constrained signal can be made arbitrarily close to the boundary without having intersampling issues (as one would have in sampled-data systems). Simulation examples are presented, involving the generation of rest-to-rest trajectories. In addition, an experimental result of the method is also presented, where two methods to generate trajectories for a magnetic-levitation (maglev) system in the presence of constraints are compared and each method's performance is discussed. The first method uses the nonlinear model of the plant, which turns out to belong to the class of flat systems. The second method uses a linearised version of the plant model around an operating point. In every case, a continuous-time description is used. The experimental results on a real maglev system reported here show that, in most scenarios, the nonlinear and linearised models produce almost similar, indistinguishable trajectories.
Singh, G D; McNamara, J A; Lozanoff, S
1999-01-01
The purpose of this study was to assess soft tissue facial matrices in subjects of diverse ethnic origins with underlying dentoskeletal malocclusions. Pre-treatment lateral cephalographs of 71 Korean and 70 European-American children aged between 5 and 11 years with Angle's Class III malocclusions were traced, and 12 homologous, soft tissue landmarks digitized. Comparing mean Korean and European-American Class III soft tissue profiles, Procrustes analysis established statistical difference (P < 0.001) between the configurations, and this difference was also true at all seven age groups tested (P < 0.001). Comparing the overall European-American and Korean transformation, thin-plate spline analysis indicated that both affine and non-affine transformations contribute towards the total spline (deformation) of the averaged Class III soft tissue configurations. For non-affine transformations, partial warp (PW) 8 had the highest magnitude, indicating large-scale deformations visualized as labio-mental protrusion, predominantly. In addition, PW9, PW4, and PW5 also had high magnitudes, demonstrating labio-mental vertical compression and antero-posterior compression of the lower labio-mental soft tissues. Thus, Korean children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the labio-mental soft tissue complex with respect to their European-American counterparts. Morphological heterogeneity of the soft tissue integument in subjects of diverse ethnic origin may obscure the underlying skeletal morphology, but the soft tissue integument appears to have minimal ontogenetic association with Class III malocclusions.
Singh, G D; McNamara, J A; Lozanoff, S
1998-01-01
While the dynamics of maxillo-mandibular allometry associated with treatment modalities available for the management of Class III malocclusions currently are under investigation, developmental aberration of the soft tissues in untreated Class III malocclusions requires specification. In this study, lateral cephalographs of 124 prepubertal European-American children (71 with untreated Class III malocclusion; 53 with Class I occlusion) were traced, and 12 soft-tissue landmarks digitized. Resultant geometries were scaled to an equivalent size and mean Class III and Class I configurations compared. Procrustes analysis established statistical difference (P < 0.001) between the mean configurations. Comparing the overall untreated Class III and Class I configurations, thin-plate spline (TPS) analysis indicated that both affine and non-affine transformations contribute towards the deformation (total spline) of the averaged Class III soft tissue configuration. For non-affine transformations, partial warp 8 had the highest magnitude, indicating large-scale deformations visualized as a combination of columellar retrusion and lower labial protrusion. In addition, partial warp 5 also had a high magnitude, demonstrating upper labial vertical compression with antero-inferior elongation of the lower labio-mental soft tissue complex. Thus, children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the maxillary soft tissue complex in combination with antero-inferior mandibular soft tissue elongation. This pattern of deformations may represent gene-environment interactions, resulting in Class III malocclusions with characteristic phenotypes, that are amenable to orthodontic and dentofacial orthopedic manipulations.
A spline-based non-linear diffeomorphism for multimodal prostate registration.
Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice
2012-08-01
This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Neeser, Rudolph; Ackermann, Rebecca Rogers; Gain, James
2009-09-01
Various methodological approaches have been used for reconstructing fossil hominin remains in order to increase sample sizes and to better understand morphological variation. Among these, morphometric quantitative techniques for reconstruction are increasingly common. Here we compare the accuracy of three approaches--mean substitution, thin plate splines, and multiple linear regression--for estimating missing landmarks of damaged fossil specimens. Comparisons are made varying the number of missing landmarks, sample sizes, and the reference species of the population used to perform the estimation. The testing is performed on landmark data from individuals of Homo sapiens, Pan troglodytes and Gorilla gorilla, and nine hominin fossil specimens. Results suggest that when a small, same-species fossil reference sample is available to guide reconstructions, thin plate spline approaches perform best. However, if no such sample is available (or if the species of the damaged individual is uncertain), estimates of missing morphology based on a single individual (or even a small sample) of close taxonomic affinity are less accurate than those based on a large sample of individuals drawn from more distantly related extant populations using a technique (such as a regression method) able to leverage the information (e.g., variation/covariation patterning) contained in this large sample. Thin plate splines also show an unexpectedly large amount of error in estimating landmarks, especially over large areas. Recommendations are made for estimating missing landmarks under various scenarios. Copyright 2009 Wiley-Liss, Inc.
Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.
Kiriyama, Yoshimori; Watanabe, Kota; Matsumoto, Morio; Toyama, Yoshiaki; Nagura, Takeo
2014-01-03
The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis. © 2013 Elsevier Ltd. All rights reserved.
Backfitting in Smoothing Spline Anova, with Application to Historical Global Temperature Data
NASA Astrophysics Data System (ADS)
Luo, Zhen
In the attempt to estimate the temperature history of the earth using the surface observations, various biases can exist. An important source of bias is the incompleteness of sampling over both time and space. There have been a few methods proposed to deal with this problem. Although they can correct some biases resulting from incomplete sampling, they have ignored some other significant biases. In this dissertation, a smoothing spline ANOVA approach which is a multivariate function estimation method is proposed to deal simultaneously with various biases resulting from incomplete sampling. Besides that, an advantage of this method is that we can get various components of the estimated temperature history with a limited amount of information stored. This method can also be used for detecting erroneous observations in the data base. The method is illustrated through an example of modeling winter surface air temperature as a function of year and location. Extension to more complicated models are discussed. The linear system associated with the smoothing spline ANOVA estimates is too large to be solved by full matrix decomposition methods. A computational procedure combining the backfitting (Gauss-Seidel) algorithm and the iterative imputation algorithm is proposed. This procedure takes advantage of the tensor product structure in the data to make the computation feasible in an environment of limited memory. Various related issues are discussed, e.g., the computation of confidence intervals and the techniques to speed up the convergence of the backfitting algorithm such as collapsing and successive over-relaxation.
Factors relating to windblown dust in associations between ...
Introduction: In effect estimates of city-specific PM2.5-mortality associations across United States (US), there exists a substantial amount of spatial heterogeneity. Some of this heterogeneity may be due to mass distribution of PM; areas where PM2.5 is likely to be dominated by large size fractions (above 1 micron; e.g., the contribution of windblown dust), may have a weaker association with mortality. Methods: Log rate ratios (betas) for the PM2.5-mortality association—derived from a model adjusting for time, an interaction with age-group, day of week, and natural splines of current temperature, current dew point, and unconstrained temperature at lags 1, 2, and 3, for 313 core-based statistical areas (CBSA) and their metropolitan divisions (MD) over 1999-2005—were used as the outcome. Using inverse variance weighted linear regression, we examined change in log rate ratios in association with PM10-PM2.5 correlation as a marker of windblown dust/higher PM size fraction; linearity of associations was assessed in models using splines with knots at quintile values. Results: Weighted mean PM2.5 association (0.96 percent increase in total non-accidental mortality for a 10 ug/m3 increment in PM2.5) increased by 0.34 (95% confidence interval: 0.20, 0.48) per interquartile change (0.25) in the PM10-PM2.5 correlation, and explained approximately 8% of the observed heterogeneity; the association was linear based on spline analysis. Conclusions: Preliminary results pro
NASA Astrophysics Data System (ADS)
Miao, Di; Borden, Michael J.; Scott, Michael A.; Thomas, Derek C.
2018-06-01
In this paper we demonstrate the use of B\\'{e}zier projection to alleviate locking phenomena in structural mechanics applications of isogeometric analysis. Interpreting the well-known $\\bar{B}$ projection in two different ways we develop two formulations for locking problems in beams and nearly incompressible elastic solids. One formulation leads to a sparse symmetric symmetric system and the other leads to a sparse non-symmetric system. To demonstrate the utility of B\\'{e}zier projection for both geometry and material locking phenomena we focus on transverse shear locking in Timoshenko beams and volumetric locking in nearly compressible linear elasticity although the approach can be applied generally to other types of locking phenemona as well. B\\'{e}zier projection is a local projection technique with optimal approximation properties, which in many cases produces solutions that are comparable to global $L^2$ projection. In the context of $\\bar{B}$ methods, the use of B\\'ezier projection produces sparse stiffness matrices with only a slight increase in bandwidth when compared to standard displacement-based methods. Of particular importance is that the approach is applicable to any spline representation that can be written in B\\'ezier form like NURBS, T-splines, LR-splines, etc. We discuss in detail how to integrate this approach into an existing finite element framework with minimal disruption through the use of B\\'ezier extraction operators and a newly introduced dual basis for the B\\'{e}zierprojection operator. We then demonstrate the behavior of the two proposed formulations through several challenging benchmark problems.
The parametrization of radio source coordinates in VLBI and its impact on the CRF
NASA Astrophysics Data System (ADS)
Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald
2016-04-01
Usually celestial radio sources in the celestial reference frame (CRF) catalog are divided in three categories: defining, special handling, and others. The defining sources are those used for the datum realization of the celestial reference frame, i.e. they are included in the No-Net-Rotation (NNR) constraints to maintain the axis orientation of the CRF, and are modeled with one set of totally constant coordinates. At the current level of precision, the choice of the defining sources has a significant effect on the coordinates. For the ICRF2 295 sources were chosen as defining sources, based on their geometrical distribution, statistical properties, and stability. The number of defining sources is a compromise between the reliability of the datum, which increases with the number of sources, and the noise which is introduced by each source. Thus, the optimal number of defining sources is a trade-off between reliability, geometry, and precision. In the ICRF2 only 39 of sources were sorted into the special handling group as they show large fluctuations in their position, therefore they are excluded from the NNR conditions and their positions are normally estimated for each VLBI session instead of as global parameters. All the remaining sources are classified as others. However, a large fraction of these unstable sources show other favorable characteristics, e.g. large flux density (brightness) and a long history of observations. Thus, it would prove advantageous including these sources into the NNR condition. However, the instability of these objects inhibit this. If the coordinate model of these sources would be extended, it would be possible to use these sources for the NNR condition as well. All other sources are placed in the "others" group. This is the largest group of sources, containing those which have not shown any very problematic behavior, but still do not fulfill the requirements for defining sources. Studies show that the behavior of each source can vary dramatically in time. Hence, each source would have to be modeled individually. Considering this, the shear amount of sources, in our study more than 600 are included, sets practical limitations. We decided to use the multivariate adaptive regression splines (MARS) procedure to parametrize the source coordinates, as they allow a great deal of automation as it combines recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and thus the best number of polynomial pieces to fit the data. We investigate linear and cubic splines determined by MARS to "human" determined linear splines and their impact on the CRF. Within this work we try to answer the following questions: How can we find optimal criteria for the definition of the defining and unstable sources? What are the best polynomials for the individual categories? How much can we improve the CRF by extending the parametrization of the sources?
Regional Densification of a Global VTEC Model Based on B-Spline Representations
NASA Astrophysics Data System (ADS)
Erdogan, Eren; Schmidt, Michael; Dettmering, Denise; Goss, Andreas; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bothmer, Volker; Hinrichs, Johannes; Mrotzek, Niclas
2017-04-01
The project OPTIMAP is a joint initiative of the Bundeswehr GeoInformation Centre (BGIC), the German Space Situational Awareness Centre (GSSAC), the German Geodetic Research Institute of the Technical University Munich (DGFI-TUM) and the Institute for Astrophysics at the University of Göttingen (IAG). The main goal of the project is the development of an operational tool for ionospheric mapping and prediction (OPTIMAP). Two key features of the project are the combination of different satellite observation techniques (GNSS, satellite altimetry, radio occultations and DORIS) and the regional densification as a remedy against problems encountered with the inhomogeneous data distribution. Since the data from space-geoscientific mission which can be used for modeling ionospheric parameters, such as the Vertical Total Electron Content (VTEC) or the electron density, are distributed rather unevenly over the globe at different altitudes, appropriate modeling approaches have to be developed to handle this inhomogeneity. Our approach is based on a two-level strategy. To be more specific, in the first level we compute a global VTEC model with a moderate regional and spectral resolution which will be complemented in the second level by a regional model in a densification area. The latter is a region characterized by a dense data distribution to obtain a high spatial and spectral resolution VTEC product. Additionally, the global representation means a background model for the regional one to avoid edge effects at the boundaries of the densification area. The presented approach based on a global and a regional model part, i.e. the consideration of a regional densification is called the Two-Level VTEC Model (TLVM). The global VTEC model part is based on a series expansion in terms of polynomial B-Splines in latitude direction and trigonometric B-Splines in longitude direction. The additional regional model part is set up by a series expansion in terms of polynomial B-splines for both directions. The spectral resolution of both model parts is defined by the number of B-spline basis functions introduced for longitude and latitude directions related to appropriate coordinate systems. Furthermore, the TLVM has to be developed under the postulation that the global model part will be computed continuously in near real-time (NRT) and routinely predicted into the future by an algorithm based on deterministic and statistical forecast models. Thus, the additional regional densification model part, which will be computed also in NRT, but possibly only for a specified time duration, must be estimated independently from the global one. For that purpose a data separation procedure has to be developed in order to estimate the unknown series coefficients of both model parts independently. This procedure must also consider additional technique-dependent unknowns such as the Differential Code Biases (DCBs) within GNSS and intersystem biases. In this contribution we will present the concept to set up the TLVM including the data combination and the Kalman filtering procedure; first numerical results will be presented.
Online Spectral Fit Tool for Analyzing Reflectance Spectra
NASA Astrophysics Data System (ADS)
Penttilä, A.; Kohout, T.
2015-11-01
The Online Spectral Fit Tool is developed for analyzing Vis-NIR spectral behavior of asteroids and meteorites. Implementation is done using JavaScript/HTML. Fitted spectra consist of spline continuum and gamma distributions for absorption bands.
Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating
NASA Astrophysics Data System (ADS)
Chen, Liangji; Guo, Guangsong; Li, Huiying
2017-07-01
NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.
Wörz, Stefan; Rohr, Karl
2006-01-01
We introduce an elastic registration approach which is based on a physical deformation model and uses Gaussian elastic body splines (GEBS). We formulate an extended energy functional related to the Navier equation under Gaussian forces which also includes landmark localization uncertainties. These uncertainties are characterized by weight matrices representing anisotropic errors. Since the approach is based on a physical deformation model, cross-effects in elastic deformations can be taken into account. Moreover, we have a free parameter to control the locality of the transformation for improved registration of local geometric image differences. We demonstrate the applicability of our scheme based on 3D CT images from the Truth Cube experiment, 2D MR images of the brain, as well as 2D gel electrophoresis images. It turns out that the new scheme achieves more accurate results compared to previous approaches.
Fast digital zooming system using directionally adaptive image interpolation and restoration.
Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki
2014-01-01
This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.
Is a matrix exponential specification suitable for the modeling of spatial correlation structures?
Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha
2018-01-01
This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375
Spatiotemporal reconstruction of list-mode PET data.
Nichols, Thomas E; Qi, Jinyi; Asma, Evren; Leahy, Richard M
2002-04-01
We describe a method for computing a continuous time estimate of tracer density using list-mode positron emission tomography data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be represented using a cubic B-spline basis. The rate functions are estimated by maximizing the likelihood of the arrival times of detected photon pairs over the control vertices of the spline, modified by quadratic spatial and temporal smoothness penalties and a penalty term to enforce nonnegativity. Randoms rate functions are estimated by assuming independence between the spatial and temporal randoms distributions. Similarly, scatter rate functions are estimated by assuming spatiotemporal independence and that the temporal distribution of the scatter is proportional to the temporal distribution of the trues. A quantitative evaluation was performed using simulated data and the method is also demonstrated in a human study using 11C-raclopride.
NASA Astrophysics Data System (ADS)
Dobronets, Boris S.; Popova, Olga A.
2018-05-01
The paper considers a new approach of regression modeling that uses aggregated data presented in the form of density functions. Approaches to Improving the reliability of aggregation of empirical data are considered: improving accuracy and estimating errors. We discuss the procedures of data aggregation as a preprocessing stage for subsequent to regression modeling. An important feature of study is demonstration of the way how represent the aggregated data. It is proposed to use piecewise polynomial models, including spline aggregate functions. We show that the proposed approach to data aggregation can be interpreted as the frequency distribution. To study its properties density function concept is used. Various types of mathematical models of data aggregation are discussed. For the construction of regression models, it is proposed to use data representation procedures based on piecewise polynomial models. New approaches to modeling functional dependencies based on spline aggregations are proposed.
NASA Technical Reports Server (NTRS)
Murphy, K. A.
1988-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
NASA Astrophysics Data System (ADS)
Nagata, Fusaomi; Okada, Yudai; Sakamoto, Tatsuhiko; Kusano, Takamasa; Habib, Maki K.; Watanabe, Keigo
2017-06-01
The authors have developed earlier an industrial machining robotic system for foamed polystyrene materials. The developed robotic CAM system provided a simple and effective interface without the need to use any robot language between operators and the machining robot. In this paper, a preprocessor for generating Cutter Location Source data (CLS data) from Stereolithography (STL data) is first proposed for robotic machining. The preprocessor enables to control the machining robot directly using STL data without using any commercially provided CAM system. The STL deals with a triangular representation for a curved surface geometry. The preprocessor allows machining robots to be controlled through a zigzag or spiral path directly calculated from STL data. Then, a smart spline interpolation method is proposed and implemented for smoothing coarse CLS data. The effectiveness and potential of the developed approaches are demonstrated through experiments on actual machining and interpolation.
Support arrangement for core modules of nuclear reactors
Bollinger, Lawrence R.
1987-01-01
A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.
Support arrangements for core modules of nuclear reactors. [PWR
Bollinger, L.R.
1983-11-03
A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.
Investigations into the shape-preserving interpolants using symbolic computation
NASA Technical Reports Server (NTRS)
Lam, Maria
1988-01-01
Shape representation is a central issue in computer graphics and computer-aided geometric design. Many physical phenomena involve curves and surfaces that are monotone (in some directions) or are convex. The corresponding representation problem is given some monotone or convex data, and a monotone or convex interpolant is found. Standard interpolants need not be monotone or convex even though they may match monotone or convex data. Most of the methods of investigation of this problem involve the utilization of quadratic splines or Hermite polynomials. In this investigation, a similar approach is adopted. These methods require derivative information at the given data points. The key to the problem is the selection of the derivative values to be assigned to the given data points. Schemes for choosing derivatives were examined. Along the way, fitting given data points by a conic section has also been investigated as part of the effort to study shape-preserving quadratic splines.
High energy helion scattering: A ``model-independent'' analysis
NASA Astrophysics Data System (ADS)
Djaloeis, A.; Gopal, S.
1981-03-01
Angular distributions of helions elastically scattered from 24Mg, 58Ni, 90Zr and 120Sn at Eτ = 130 MeV have been subjected to a "model-independent" analysis in the framework of the optical model. The real part of the optical potential was represented by a spline-function; volume and surface absorptions were considered. Both the shallow and the deep families of the helion optical potential were investigated. The spline potentials are found to deviate from the Woods-Saxon shape. The experimental data are well described by optical potentials with either a volume or a surface absorption. However, the volume absorption consistently gives better fits. For 24Mg, 90Zr and 120Sn both shallow and deep potential families result in comparable fit qualities. For 58Ni the discrete ambiguity is resolved in favour of the shallow family. From the analysis the values of the rms radius of matter distribution have been extracted.
A geometric modeler based on a dual-geometry representation polyhedra and rational b-splines
NASA Technical Reports Server (NTRS)
Klosterman, A. L.
1984-01-01
For speed and data base reasons, solid geometric modeling of large complex practical systems is usually approximated by a polyhedra representation. Precise parametric surface and implicit algebraic modelers are available but it is not yet practical to model the same level of system complexity with these precise modelers. In response to this contrast the GEOMOD geometric modeling system was built so that a polyhedra abstraction of the geometry would be available for interactive modeling without losing the precise definition of the geometry. Part of the reason that polyhedra modelers are effective is that all bounded surfaces can be represented in a single canonical format (i.e., sets of planar polygons). This permits a very simple and compact data structure. Nonuniform rational B-splines are currently the best representation to describe a very large class of geometry precisely with one canonical format. The specific capabilities of the modeler are described.
NASA Astrophysics Data System (ADS)
Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.
2012-02-01
Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.
Irwin, John A.
1979-01-01
A gas turbine engine has an internal drive shaft including one end connected to a driven load and an opposite end connected to a turbine wheel and wherein the shaft has an in situ adjustable balance system near the critical center of a bearing span for the shaft including two 360.degree. rings piloted on the outer diameter of the shaft at a point accessible through an internal engine panel; each of the rings has a small amount of material removed from its periphery whereby both of the rings are precisely unbalanced an equivalent amount; the rings are locked circumferentially together by radial serrations thereon; numbered tangs on the outside diameter of each ring identify the circumferential location of unbalance once the rings are locked together; an aft ring of the pair of rings has a spline on its inside diameter that mates with a like spline on the shaft to lock the entire assembly together.
TPSLVM: a dimensionality reduction algorithm based on thin plate splines.
Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming
2014-10-01
Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.
Point Set Denoising Using Bootstrap-Based Radial Basis Function.
Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad
2016-01-01
This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.
An improved local radial point interpolation method for transient heat conduction analysis
NASA Astrophysics Data System (ADS)
Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang
2013-06-01
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
Three-dimensional slum urban reconstruction in Envisat and Google Earth Egypt
NASA Astrophysics Data System (ADS)
Marghany, M.; Genderen, J. v.
2014-02-01
This study aims to aim to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed country such as Egypt. The main objective of this work is to utilize 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slam. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data.
Flow Energy Piezoelectric Bimorph Nozzle Harvester
NASA Technical Reports Server (NTRS)
Walkemeyer, Phillip E. (Inventor); Tosi, Phillipe (Inventor); Corbett, Thomas Gary (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Arrazola, Alvaro Jose (Inventor); Sherrit, Stewart (Inventor); Colonius, Tim (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor)
2016-01-01
A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.
Element free Galerkin formulation of composite beam with longitudinal slip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad; Badli, Mohd Iqbal
2015-05-15
Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after beenmore » verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.« less
NASA Technical Reports Server (NTRS)
Murphy, K. A.
1990-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
[Multivariate Adaptive Regression Splines (MARS), an alternative for the analysis of time series].
Vanegas, Jairo; Vásquez, Fabián
Multivariate Adaptive Regression Splines (MARS) is a non-parametric modelling method that extends the linear model, incorporating nonlinearities and interactions between variables. It is a flexible tool that automates the construction of predictive models: selecting relevant variables, transforming the predictor variables, processing missing values and preventing overshooting using a self-test. It is also able to predict, taking into account structural factors that might influence the outcome variable, thereby generating hypothetical models. The end result could identify relevant cut-off points in data series. It is rarely used in health, so it is proposed as a tool for the evaluation of relevant public health indicators. For demonstrative purposes, data series regarding the mortality of children under 5 years of age in Costa Rica were used, comprising the period 1978-2008. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Tomography for two-dimensional gas temperature distribution based on TDLAS
NASA Astrophysics Data System (ADS)
Luo, Can; Wang, Yunchu; Xing, Fei
2018-03-01
Based on tunable diode laser absorption spectroscopy (TDLAS), the tomography is used to reconstruct the combustion gas temperature distribution. The effects of number of rays, number of grids, and spacing of rays on the temperature reconstruction results for parallel ray are researched. The reconstruction quality is proportional to the ray number. The quality tends to be smoother when the ray number exceeds a certain value. The best quality is achieved when η is between 0.5 and 1. A virtual ray method combined with the reconstruction algorithms is tested. It is found that virtual ray method is effective to improve the accuracy of reconstruction results, compared with the original method. The linear interpolation method and cubic spline interpolation method, are used to improve the calculation accuracy of virtual ray absorption value. According to the calculation results, cubic spline interpolation is better. Moreover, the temperature distribution of a TBCC combustion chamber is used to validate those conclusions.
Hierarchical Volume Representation with 3{radical}2 Subdivision and Trivariate B-Spline Wavelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linsen, L; Gray, JT; Pascucci, V
2002-01-11
Multiresolution methods provide a means for representing data at multiple levels of detail. They are typically based on a hierarchical data organization scheme and update rules needed for data value computation. We use a data organization that is based on what we call n{radical}2 subdivision. The main advantage of subdivision, compared to quadtree (n = 2) or octree (n = 3) organizations, is that the number of vertices is only doubled in each subdivision step instead of multiplied by a factor of four or eight, respectively. To update data values we use n-variate B-spline wavelets, which yields better approximations formore » each level of detail. We develop a lifting scheme for n = 2 and n = 3 based on the n{radical}2-subdivision scheme. We obtain narrow masks that could also provide a basis for view-dependent visualization and adaptive refinement.« less
Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio
2017-01-01
The minimum mortality temperature from J- or U-shaped curves varies across cities with different climates. This variation conveys information on adaptation, but ability to characterize is limited by the absence of a method to describe uncertainty in estimated minimum mortality temperatures. We propose an approximate parametric bootstrap estimator of confidence interval (CI) and standard error (SE) for the minimum mortality temperature from a temperature-mortality shape estimated by splines. The coverage of the estimated CIs was close to nominal value (95%) in the datasets simulated, although SEs were slightly high. Applying the method to 52 Spanish provincial capital cities showed larger minimum mortality temperatures in hotter cities, rising almost exactly at the same rate as annual mean temperature. The method proposed for computing CIs and SEs for minimums from spline curves allows comparing minimum mortality temperatures in different cities and investigating their associations with climate properly, allowing for estimation uncertainty.
NASA Astrophysics Data System (ADS)
Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2015-03-01
The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial
Visualization of Sliding and Deformation of Orbital Fat During Eye Rotation
Hötte, Gijsbert J.; Schaafsma, Peter J.; Botha, Charl P.; Wielopolski, Piotr A.; Simonsz, Huibert J.
2016-01-01
Purpose Little is known about the way orbital fat slides and/or deforms during eye movements. We compared two deformation algorithms from a sequence of MRI volumes to visualize this complex behavior. Methods Time-dependent deformation data were derived from motion-MRI volumes using Lucas and Kanade Optical Flow (LK3D) and nonrigid registration (B-splines) deformation algorithms. We compared how these two algorithms performed regarding sliding and deformation in three critical areas: the sclera-fat interface, how the optic nerve moves through the fat, and how the fat is squeezed out under the tendon of a relaxing rectus muscle. The efficacy was validated using identified tissue markers such as the lens and blood vessels in the fat. Results Fat immediately behind the eye followed eye rotation by approximately one-half. This was best visualized using the B-splines technique as it showed less ripping of tissue and less distortion. Orbital fat flowed around the optic nerve during eye rotation. In this case, LK3D provided better visualization as it allowed orbital fat tissue to split. The resolution was insufficient to visualize fat being squeezed out between tendon and sclera. Conclusion B-splines performs better in tracking structures such as the lens, while LK3D allows fat tissue to split as should happen as the optic nerve slides through the fat. Orbital fat follows eye rotation by one-half and flows around the optic nerve during eye rotation. Translational Relevance Visualizing orbital fat deformation and sliding offers the opportunity to accurately locate a region of cicatrization and permit an individualized surgical plan. PMID:27540495
Kiani, M A; Sim, K S; Nia, M E; Tso, C P
2015-05-01
A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu, E-mail: yuzhang@smu.edu.cn, E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei
2014-11-01
Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images.more » The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.« less
NASA Astrophysics Data System (ADS)
Tan, Maxine; Li, Zheng; Moore, Kathleen; Thai, Theresa; Ding, Kai; Liu, Hong; Zheng, Bin
2016-03-01
Ovarian cancer is the second most common cancer amongst gynecologic malignancies, and has the highest death rate. Since the majority of ovarian cancer patients (>75%) are diagnosed in the advanced stage with tumor metastasis, chemotherapy is often required after surgery to remove the primary ovarian tumors. In order to quickly assess patient response to the chemotherapy in the clinical trials, two sets of CT examinations are taken pre- and post-therapy (e.g., after 6 weeks). Treatment efficacy is then evaluated based on Response Evaluation Criteria in Solid Tumors (RECIST) guideline, whereby tumor size is measured by the longest diameter on one CT image slice and only a subset of selected tumors are tracked. However, this criterion cannot fully represent the volumetric changes of the tumors and might miss potentially problematic unmarked tumors. Thus, we developed a new CAD approach to measure and analyze volumetric tumor growth/shrinkage using a cubic B-spline deformable image registration method. In this initial study, on 14 sets of pre- and post-treatment CT scans, we registered the two consecutive scans using cubic B-spline registration in a multiresolution (from coarse to fine) framework. We used Mattes mutual information metric as the similarity criterion and the L-BFGS-B optimizer. The results show that our method can quantify volumetric changes in the tumors more accurately than RECIST, and also detect (highlight) potentially problematic regions that were not originally targeted by radiologists. Despite the encouraging results of this preliminary study, further validation of scheme performance is required using large and diverse datasets in future.
Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O
2018-05-01
Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald
2017-07-01
The radio sources within the most recent celestial reference frame (CRF) catalog ICRF2 are represented by a single, time-invariant coordinate pair. The datum sources were chosen mainly according to certain statistical properties of their position time series. Yet, such statistics are not applicable unconditionally, and also ambiguous. However, ignoring systematics in the source positions of the datum sources inevitably leads to a degradation of the quality of the frame and, therefore, also of the derived quantities such as the Earth orientation parameters. One possible approach to overcome these deficiencies is to extend the parametrization of the source positions, similarly to what is done for the station positions. We decided to use the multivariate adaptive regression splines algorithm to parametrize the source coordinates. It allows a great deal of automation, by combining recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and, thus, the best number of polynomial pieces to fit the data autonomously. With that we can correct the ICRF2 a priori coordinates for our analysis and eliminate the systematics in the position estimates. This allows us to introduce also special handling sources into the datum definition, leading to on average 30 % more sources in the datum. We find that not only the CPO can be improved by more than 10 % due to the improved geometry, but also the station positions, especially in the early years of VLBI, can benefit greatly.
Abdoun, Oussama; Joucla, Sébastien; Mazzocco, Claire; Yvert, Blaise
2010-01-01
A major characteristic of neural networks is the complexity of their organization at various spatial scales, from microscopic local circuits to macroscopic brain-scale areas. Understanding how neural information is processed thus entails the ability to study them at multiple scales simultaneously. This is made possible using microelectrodes array (MEA) technology. Indeed, high-density MEAs provide large-scale coverage (several square millimeters) of whole neural structures combined with microscopic resolution (about 50 μm) of unit activity. Yet, current options for spatiotemporal representation of MEA-collected data remain limited. Here we present NeuroMap, a new interactive Matlab-based software for spatiotemporal mapping of MEA data. NeuroMap uses thin plate spline interpolation, which provides several assets with respect to conventional mapping methods used currently. First, any MEA design can be considered, including 2D or 3D, regular or irregular, arrangements of electrodes. Second, spline interpolation allows the estimation of activity across the tissue with local extrema not necessarily at recording sites. Finally, this interpolation approach provides a straightforward analytical estimation of the spatial Laplacian for better current sources localization. In this software, coregistration of 2D MEA data on the anatomy of the neural tissue is made possible by fine matching of anatomical data with electrode positions using rigid-deformation-based correction of anatomical pictures. Overall, NeuroMap provides substantial material for detailed spatiotemporal analysis of MEA data. The package is distributed under GNU General Public License and available at http://sites.google.com/site/neuromapsoftware. PMID:21344013
Abdoun, Oussama; Joucla, Sébastien; Mazzocco, Claire; Yvert, Blaise
2011-01-01
A major characteristic of neural networks is the complexity of their organization at various spatial scales, from microscopic local circuits to macroscopic brain-scale areas. Understanding how neural information is processed thus entails the ability to study them at multiple scales simultaneously. This is made possible using microelectrodes array (MEA) technology. Indeed, high-density MEAs provide large-scale coverage (several square millimeters) of whole neural structures combined with microscopic resolution (about 50 μm) of unit activity. Yet, current options for spatiotemporal representation of MEA-collected data remain limited. Here we present NeuroMap, a new interactive Matlab-based software for spatiotemporal mapping of MEA data. NeuroMap uses thin plate spline interpolation, which provides several assets with respect to conventional mapping methods used currently. First, any MEA design can be considered, including 2D or 3D, regular or irregular, arrangements of electrodes. Second, spline interpolation allows the estimation of activity across the tissue with local extrema not necessarily at recording sites. Finally, this interpolation approach provides a straightforward analytical estimation of the spatial Laplacian for better current sources localization. In this software, coregistration of 2D MEA data on the anatomy of the neural tissue is made possible by fine matching of anatomical data with electrode positions using rigid-deformation-based correction of anatomical pictures. Overall, NeuroMap provides substantial material for detailed spatiotemporal analysis of MEA data. The package is distributed under GNU General Public License and available at http://sites.google.com/site/neuromapsoftware.
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Smooth extrapolation of unknown anatomy via statistical shape models
NASA Astrophysics Data System (ADS)
Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.
2015-03-01
Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.
Joint surface modeling with thin-plate splines.
Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D
1999-10-01
Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.
Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J
2005-02-07
The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Yuanjia; Chen, Huaihou
2012-01-01
Summary We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic approximation may be unreliable and conservative. PMID:23020801
Wang, Yuanjia; Chen, Huaihou
2012-12-01
We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.
Giansanti, Daniele
2008-07-01
A wearable device for skin-contact thermography [Giansanti D, Maccioni G. Development and testing of a wearable integrated thermometer sensor for skin contact thermography. Med Eng Phys 2006 [ahead of print
Indexing device ensures proper mating of electrical connectors
NASA Technical Reports Server (NTRS)
Jenkins, L. M.; Simmons, W. H.
1965-01-01
Indexing splines with modified standard male and female connectors eliminates the possibility of incorrect mating. Large stock quantities of differently indexed connectors are unnecessary since connectors from a single stock can be indexed as desired at installation time.
MORPHOMETRIC EVIDENCE FOR NUTRITIONAL STRESS IN ENGLISH SOLE
We present an application of the powerful thin plate spline method of morphometric analysis to demonstrate its utility for detecting environmental stress in an estuarine flatfish. Juvenile English sole (Pleuronectes vetulus) were captured from Yaquina Bay, Oregon, photographed w...
Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G
2011-06-28
We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.
Analysis of deformable image registration accuracy using computational modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.
2010-03-15
Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results showmore » that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter selection for optimal accuracy is closely related to the intensity gradients of the underlying images. Also, the result that the DIR algorithms produce much lower errors in heterogeneous lung regions relative to homogeneous (low intensity gradient) regions, suggests that feature-based evaluation of deformable image registration accuracy must be viewed cautiously.« less
NASA Astrophysics Data System (ADS)
Bogunović, Igor; Pereira, Paulo; Šeput, Miranda
2016-04-01
Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the soil profile. Future research should focus on spatial patterns on soil pH, electrical conductivity and sodium adsorption ratio. Keywords: geostatistics, semivariogram, interpolation models, soil chemical properties
VizieR Online Data Catalog: Inelastic e+Mg collision data (Barklem+, 2017)
NASA Astrophysics Data System (ADS)
Barklem, P. S.; Osorio, Y.; Fursa, D. V.; Bray, I.; Zatsarinny, O.; Bartschat, K.; Jerkstrand, A.
2017-06-01
The file states.dat lists the considered states. The remaining files then provide the effective collision strength matrices for various temperatures from the convergent close coupling (CCC) and B-spline R-matrix (BSR) calculations. (27 data files).
Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1
Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.
2012-01-01
Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combined use of accurate deformable registration using demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due to disease progression or treatment response. PMID:22894392
Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A
2014-02-01
Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in regions of interest close to the coil. Various registration methods were tested, and the volume spline was deemed to be the most accurate, as measured by the Dice similarity metric. The results of our phantom experiments showed that the bias in the 18F-FDG quantification introduced by the presence of the coil could be reduced by using our registration method. An overestimation of only 1.9% of the overall activity for the phantom scan with the coil attenuation map was measured when compared with the baseline phantom scan without coil. A local overestimation of less than 3% was observed in the ROI analysis when using the proposed method to correct for the attenuation of the flexible cardiac coil. Quantitative results from the patient study agreed well with the phantom findings. We presented and validated an accurate method to localize and register a CT-based attenuation map to correct for the attenuation and scatter of flexible MR coils. This method may be translated to clinical use to produce quantitatively accurate measurements with the use of flexible MR coils during MR/PET imaging.
Analyses of Great Smoky Mountain Red Spruce Tree Ring Data
Paul C. van Deusen; [Editor
1988-01-01
Four different analyses of red spruce tree ring data from the Great Smoky Mountains are presented along with a description of the spruce/fir ecosystem.The analyses use several techniques including spatial analysis, fractals, spline detrending, and the Kalman filter.
Prediction of energy expenditure and physical activity in preschoolers
USDA-ARS?s Scientific Manuscript database
Accurate, nonintrusive, and feasible methods are needed to predict energy expenditure (EE) and physical activity (PA) levels in preschoolers. Herein, we validated cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on accelerometry and heart rate (HR) ...
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation
Wilke, Marko; Altaye, Mekibib; Holland, Scott K.
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating “unusual” populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php. PMID:28275348
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation.
Wilke, Marko; Altaye, Mekibib; Holland, Scott K
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.
Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.
Sidek, Khairul Azami; Khalil, Ibrahim
2013-01-01
Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hub, Martina; Thieke, Christian; Kessler, Marc L.
2012-04-15
Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts formore » the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.« less
A theoretical formulation of the electrophysiological inverse problem on the sphere
NASA Astrophysics Data System (ADS)
Riera, Jorge J.; Valdés, Pedro A.; Tanabe, Kunio; Kawashima, Ryuta
2006-04-01
The construction of three-dimensional images of the primary current density (PCD) produced by neuronal activity is a problem of great current interest in the neuroimaging community, though being initially formulated in the 1970s. There exist even now enthusiastic debates about the authenticity of most of the inverse solutions proposed in the literature, in which low resolution electrical tomography (LORETA) is a focus of attention. However, in our opinion, the capabilities and limitations of the electro and magneto encephalographic techniques to determine PCD configurations have not been extensively explored from a theoretical framework, even for simple volume conductor models of the head. In this paper, the electrophysiological inverse problem for the spherical head model is cast in terms of reproducing kernel Hilbert spaces (RKHS) formalism, which allows us to identify the null spaces of the implicated linear integral operators and also to define their representers. The PCD are described in terms of a continuous basis for the RKHS, which explicitly separates the harmonic and non-harmonic components. The RKHS concept permits us to bring LORETA into the scope of the general smoothing splines theory. A particular way of calculating the general smoothing splines is illustrated, avoiding a brute force discretization prematurely. The Bayes information criterion is used to handle dissimilarities in the signal/noise ratios and physical dimensions of the measurement modalities, which could affect the estimation of the amount of smoothness required for that class of inverse solution to be well specified. In order to validate the proposed method, we have estimated the 3D spherical smoothing splines from two data sets: electric potentials obtained from a skull phantom and magnetic fields recorded from subjects performing an experiment of human faces recognition.
NASA Astrophysics Data System (ADS)
Park, Seyoun; Robinson, Adam; Quon, Harry; Kiess, Ana P.; Shen, Colette; Wong, John; Plishker, William; Shekhar, Raj; Lee, Junghoon
2016-03-01
In this paper, we propose a CT-CBCT registration method to accurately predict the tumor volume change based on daily cone-beam CTs (CBCTs) during radiotherapy. CBCT is commonly used to reduce patient setup error during radiotherapy, but its poor image quality impedes accurate monitoring of anatomical changes. Although physician's contours drawn on the planning CT can be automatically propagated to daily CBCTs by deformable image registration (DIR), artifacts in CBCT often cause undesirable errors. To improve the accuracy of the registration-based segmentation, we developed a DIR method that iteratively corrects CBCT intensities by local histogram matching. Three popular DIR algorithms (B-spline, demons, and optical flow) with the intensity correction were implemented on a graphics processing unit for efficient computation. We evaluated their performances on six head and neck (HN) cancer cases. For each case, four trained scientists manually contoured the nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial image registration software based on conventional mutual information (MI), VelocityAI (Varian Medical Systems Inc.). The volume differences (mean±std in cc) between the average of the manual segmentations and automatic segmentations are 3.70+/-2.30 (B-spline), 1.25+/-1.78 (demons), 0.93+/-1.14 (optical flow), and 4.39+/-3.86 (VelocityAI). The proposed method significantly reduced the estimation error by 9% (B-spline), 38% (demons), and 51% (optical flow) over the results using VelocityAI. Although demonstrated only on HN nodal GTVs, the results imply that the proposed method can produce improved segmentation of other critical structures over conventional methods.
Flexible Meta-Regression to Assess the Shape of the Benzene–Leukemia Exposure–Response Curve
Vlaanderen, Jelle; Portengen, Lützen; Rothman, Nathaniel; Lan, Qing; Kromhout, Hans; Vermeulen, Roel
2010-01-01
Background Previous evaluations of the shape of the benzene–leukemia exposure–response curve (ERC) were based on a single set or on small sets of human occupational studies. Integrating evidence from all available studies that are of sufficient quality combined with flexible meta-regression models is likely to provide better insight into the functional relation between benzene exposure and risk of leukemia. Objectives We used natural splines in a flexible meta-regression method to assess the shape of the benzene–leukemia ERC. Methods We fitted meta-regression models to 30 aggregated risk estimates extracted from nine human observational studies and performed sensitivity analyses to assess the impact of a priori assessed study characteristics on the predicted ERC. Results The natural spline showed a supralinear shape at cumulative exposures less than 100 ppm-years, although this model fitted the data only marginally better than a linear model (p = 0.06). Stratification based on study design and jackknifing indicated that the cohort studies had a considerable impact on the shape of the ERC at high exposure levels (> 100 ppm-years) but that predicted risks for the low exposure range (< 50 ppm-years) were robust. Conclusions Although limited by the small number of studies and the large heterogeneity between studies, the inclusion of all studies of sufficient quality combined with a flexible meta-regression method provides the most comprehensive evaluation of the benzene–leukemia ERC to date. The natural spline based on all data indicates a significantly increased risk of leukemia [relative risk (RR) = 1.14; 95% confidence interval (CI), 1.04–1.26] at an exposure level as low as 10 ppm-years. PMID:20064779
NASA Astrophysics Data System (ADS)
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-06-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
Garza-Gisholt, Eduardo; Hemmi, Jan M; Hart, Nathan S; Collin, Shaun P
2014-01-01
Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.
Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P.
2012-01-01
Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well. PMID:22482640
Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L
1997-04-01
This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my
2014-06-19
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea ofmore » this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.« less
An advanced approach for computer modeling and prototyping of the human tooth.
Chang, Kuang-Hua; Magdum, Sheetalkumar; Khera, Satish C; Goel, Vijay K
2003-05-01
This paper presents a systematic and practical method for constructing accurate computer and physical models that can be employed for the study of human tooth mechanics. The proposed method starts with a histological section preparation of a human tooth. Through tracing outlines of the tooth on the sections, discrete points are obtained and are employed to construct B-spline curves that represent the exterior contours and dentino-enamel junction (DEJ) of the tooth using a least square curve fitting technique. The surface skinning technique is then employed to quilt the B-spline curves to create a smooth boundary and DEJ of the tooth using B-spline surfaces. These surfaces are respectively imported into SolidWorks via its application protocol interface to create solid models. The solid models are then imported into Pro/MECHANICA Structure for finite element analysis (FEA). The major advantage of the proposed method is that it first generates smooth solid models, instead of finite element models in discretized form. As a result, a more advanced p-FEA can be employed for structural analysis, which usually provides superior results to traditional h-FEA. In addition, the solid model constructed is smooth and can be fabricated with various scales using the solid freeform fabrication technology. This method is especially useful in supporting bioengineering applications, where the shape of the object is usually complicated. A human maxillary second molar is presented to illustrate and demonstrate the proposed method. Note that both the solid and p-FEA models of the molar are presented. However, comparison between p- and h-FEA models is out of the scope of the paper.
Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw
2006-01-01
We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.
A RUTCOR Project on Discrete Applied Mathematics
1989-01-30
the more important results of this work is the possibility that Groebner basis methods of computational commutative algebra might lead to effective...Billera, L.J., " Groebner Basis Methods for Multivariate Splines," prepared for the Proceedings of the Oslo Conference on Computer-aided Geometric Design
Application of Lagrangian blending functions for grid generation around airplane geometries
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Sadrehaghighi, Ideen; Tiwari, Surendra N.
1990-01-01
A simple procedure was developed and applied for the grid generation around an airplane geometry. This approach is based on a transfinite interpolation with Lagrangian interpolation for the blending functions. A monotonic rational quadratic spline interpolation was employed for the grid distributions.
Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines
NASA Astrophysics Data System (ADS)
Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.
2016-12-01
Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.
Income elasticity of health expenditures in Iran.
Zare, Hossein; Trujillo, Antonio J; Leidman, Eva; Buttorff, Christine
2013-09-01
Because of its policy implications, the income elasticity of health care expenditures is a subject of much debate. Governments may have an interest in subsidizing the care of those with low income. Using more than two decades of data from the Iran Household Expenditure and Income Survey, this article investigates the relationship between income and health care expenditure in urban and rural areas in Iran, a resource rich, upper-middle-income country. We implemented spline and quantile regression techniques to obtain a more robust description of the relationship of interest. This study finds non-uniform effects of income on health expenditures. Although the results show that health care is a necessity for all income brackets, spline regression estimates indicate that the income elasticity is lowest for the poorest Iranians in urban and rural areas. This suggests that they will show low flexibility in medical expenses as income fluctuates. Further, a quantile regression model assessing the effect of income at different level of medical expenditure suggests that households with lower medical expenses are less elastic.
Enhancement of panoramic image resolution based on swift interpolation of Bezier surface
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Yang, Guo-guang; Bai, Jian
2007-01-01
Panoramic annular lens project the view of the entire 360 degrees around the optical axis onto an annular plane based on the way of flat cylinder perspective. Due to the infinite depth of field and the linear mapping relationship between an object and an image, the panoramic imaging system plays important roles in the applications of robot vision, surveillance and virtual reality. An annular image needs to be unwrapped to conventional rectangular image without distortion, in which interpolation algorithm is necessary. Although cubic splines interpolation can enhance the resolution of unwrapped image, it occupies too much time to be applied in practices. This paper adopts interpolation method based on Bezier surface and proposes a swift interpolation algorithm for panoramic image, considering the characteristic of panoramic image. The result indicates that the resolution of the image is well enhanced compared with the image by cubic splines and bilinear interpolation. Meanwhile the time consumed is shortened up by 78% than the time consumed cubic interpolation.
Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin
2012-01-01
Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online. PMID:23155351
Three-dimensional analysis of anisotropic spatially reinforced structures
NASA Technical Reports Server (NTRS)
Bogdanovich, Alexander E.
1993-01-01
The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Tony S.
Loss-of-control following aerodynamic stall remains the largest contributor to fatal civil aviation accidents. Aerodynamic models past stall are required to train pilots on stall recovery techniques using ground-based simulators, which are safe, inexpensive, and accessible. A methodology for creating representative stall models, which capture essential stall characteristics, is being developed for classes of twin-turboprop commuter and twin-engine regional jet aircraft. Despite having lower fidelity than type specific stall models generated from wind tunnel, flight test, and/or CFD studies data, these models are configuration adjustable and significantly cheaper to construct for high angle-of-attack regimes. Baseline specific stall models are modified to capture changes in aerodynamic coefficients due to configuration variations from a baseline to a target aircraft. A Shape Prescriptive Modeling approach combining existing theory and data using least-squares splines is used to make coefficient change predictions. Initial results are satisfactory and suggest that representative models are suitable for stall training.
Stable Local Volatility Calibration Using Kernel Splines
NASA Astrophysics Data System (ADS)
Coleman, Thomas F.; Li, Yuying; Wang, Cheng
2010-09-01
We propose an optimization formulation using L1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances the calibration accuracy with the model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a kernel function generating splines and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of the support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.
[A correction method of baseline drift of discrete spectrum of NIR].
Hu, Ai-Qin; Yuan, Hong-Fu; Song, Chun-Feng; Li, Xiao-Yu
2014-10-01
In the present paper, a new correction method of baseline drift of discrete spectrum is proposed by combination of cubic spline interpolation and first order derivative. A fitting spectrum is constructed by cubic spline interpolation, using the datum in discrete spectrum as interpolation nodes. The fitting spectrum is differentiable. First order derivative is applied to the fitting spectrum to calculate derivative spectrum. The spectral wavelengths which are the same as the original discrete spectrum were taken out from the derivative spectrum to constitute the first derivative spectra of the discrete spectra, thereby to correct the baseline drift of the discrete spectra. The effects of the new method were demonstrated by comparison of the performances of multivariate models built using original spectra, direct differential spectra and the spectra pretreated by the new method. The results show that negative effects on the performance of multivariate model caused by baseline drift of discrete spectra can be effectively eliminated by the new method.
Distributed wavefront reconstruction with SABRE for real-time large scale adaptive optics control
NASA Astrophysics Data System (ADS)
Brunner, Elisabeth; de Visser, Cornelis C.; Verhaegen, Michel
2014-08-01
We present advances on Spline based ABerration REconstruction (SABRE) from (Shack-)Hartmann (SH) wavefront measurements for large-scale adaptive optics systems. SABRE locally models the wavefront with simplex B-spline basis functions on triangular partitions which are defined on the SH subaperture array. This approach allows high accuracy through the possible use of nonlinear basis functions and great adaptability to any wavefront sensor and pupil geometry. The main contribution of this paper is a distributed wavefront reconstruction method, D-SABRE, which is a 2 stage procedure based on decomposing the sensor domain into sub-domains each supporting a local SABRE model. D-SABRE greatly decreases the computational complexity of the method and removes the need for centralized reconstruction while obtaining a reconstruction accuracy for simulated E-ELT turbulences within 1% of the global method's accuracy. Further, a generalization of the methodology is proposed making direct use of SH intensity measurements which leads to an improved accuracy of the reconstruction compared to centroid algorithms using spatial gradients.
NASA Astrophysics Data System (ADS)
He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei
2015-02-01
A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.
Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R
2010-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.
Applying Emax model and bivariate thin plate splines to assess drug interactions
Kong, Maiying; Lee, J. Jack
2014-01-01
We review the semiparametric approach previously proposed by Kong and Lee and extend it to a case in which the dose-effect curves follow the Emax model instead of the median effect equation. When the maximum effects for the investigated drugs are different, we provide a procedure to obtain the additive effect based on the Loewe additivity model. Then, we apply a bivariate thin plate spline approach to estimate the effect beyond additivity along with its 95% point-wise confidence interval as well as its 95% simultaneous confidence interval for any combination dose. Thus, synergy, additivity, and antagonism can be identified. The advantages of the method are that it provides an overall assessment of the combination effect on the entire two-dimensional dose space spanned by the experimental doses, and it enables us to identify complex patterns of drug interaction in combination studies. In addition, this approach is robust to outliers. To illustrate this procedure, we analyzed data from two case studies. PMID:20036878
Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.
2011-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396
Applying Emax model and bivariate thin plate splines to assess drug interactions.
Kong, Maiying; Lee, J Jack
2010-01-01
We review the semiparametric approach previously proposed by Kong and Lee and extend it to a case in which the dose-effect curves follow the Emax model instead of the median effect equation. When the maximum effects for the investigated drugs are different, we provide a procedure to obtain the additive effect based on the Loewe additivity model. Then, we apply a bivariate thin plate spline approach to estimate the effect beyond additivity along with its 95 per cent point-wise confidence interval as well as its 95 per cent simultaneous confidence interval for any combination dose. Thus, synergy, additivity, and antagonism can be identified. The advantages of the method are that it provides an overall assessment of the combination effect on the entire two-dimensional dose space spanned by the experimental doses, and it enables us to identify complex patterns of drug interaction in combination studies. In addition, this approach is robust to outliers. To illustrate this procedure, we analyzed data from two case studies.
Corron, Louise; Marchal, François; Condemi, Silvana; Chaumoître, Kathia; Adalian, Pascal
2017-01-01
Juvenile age estimation methods used in forensic anthropology generally lack methodological consistency and/or statistical validity. Considering this, a standard approach using nonparametric Multivariate Adaptive Regression Splines (MARS) models were tested to predict age from iliac biometric variables of male and female juveniles from Marseilles, France, aged 0-12 years. Models using unidimensional (length and width) and bidimensional iliac data (module and surface) were constructed on a training sample of 176 individuals and validated on an independent test sample of 68 individuals. Results show that MARS prediction models using iliac width, module and area give overall better and statistically valid age estimates. These models integrate punctual nonlinearities of the relationship between age and osteometric variables. By constructing valid prediction intervals whose size increases with age, MARS models take into account the normal increase of individual variability. MARS models can qualify as a practical and standardized approach for juvenile age estimation. © 2016 American Academy of Forensic Sciences.
On the design of innovative heterogeneous tests using a shape optimization approach
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
The development of full-field measurement methods enabled a new trend of mechanical tests. By providing the inhomogeneous strain field from the tests, these techniques are being widely used in sheet metal identification strategies, through heterogeneous mechanical tests. In this work, a heterogeneous mechanical test with an innovative tool/specimen shape, capable of producing rich heterogeneous strain paths providing extensive information on material behavior, is aimed. The specimen is found using a shape optimization process where a dedicated indicator that evaluates the richness of strain information is used. The methodology and results here presented are extended to non-specimen geometry dependence and to the non-dependence of the geometry parametrization through the use of the Ritz method for boundary value problems. Different curve models, such as Splines, B-Splines and NURBS, are used and C1 continuity throughout the specimen is guaranteed. Moreover, various optimization methods are used, deterministic and stochastic, in order to find the method or a combination of methods able to effectively minimize the cost function.
Quirós, Elia; Felicísimo, Angel M; Cuartero, Aurora
2009-01-01
This work proposes a new method to classify multi-spectral satellite images based on multivariate adaptive regression splines (MARS) and compares this classification system with the more common parallelepiped and maximum likelihood (ML) methods. We apply the classification methods to the land cover classification of a test zone located in southwestern Spain. The basis of the MARS method and its associated procedures are explained in detail, and the area under the ROC curve (AUC) is compared for the three methods. The results show that the MARS method provides better results than the parallelepiped method in all cases, and it provides better results than the maximum likelihood method in 13 cases out of 17. These results demonstrate that the MARS method can be used in isolation or in combination with other methods to improve the accuracy of soil cover classification. The improvement is statistically significant according to the Wilcoxon signed rank test.
Smoothing spline ANOVA frailty model for recurrent event data.
Du, Pang; Jiang, Yihua; Wang, Yuedong
2011-12-01
Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data. © 2011, The International Biometric Society.
Corron, Louise; Marchal, François; Condemi, Silvana; Telmon, Norbert; Chaumoitre, Kathia; Adalian, Pascal
2018-05-31
Subadult age estimation should rely on sampling and statistical protocols capturing development variability for more accurate age estimates. In this perspective, measurements were taken on the fifth lumbar vertebrae and/or clavicles of 534 French males and females aged 0-19 years and the ilia of 244 males and females aged 0-12 years. These variables were fitted in nonparametric multivariate adaptive regression splines (MARS) models with 95% prediction intervals (PIs) of age. The models were tested on two independent samples from Marseille and the Luis Lopes reference collection from Lisbon. Models using ilium width and module, maximum clavicle length, and lateral vertebral body heights were more than 92% accurate. Precision was lower for postpubertal individuals. Integrating punctual nonlinearities of the relationship between age and the variables and dynamic prediction intervals incorporated the normal increase in interindividual growth variability (heteroscedasticity of variance) with age for more biologically accurate predictions. © 2018 American Academy of Forensic Sciences.
Automatic lung lobe segmentation of COPD patients using iterative B-spline fitting
NASA Astrophysics Data System (ADS)
Shamonin, D. P.; Staring, M.; Bakker, M. E.; Xiao, C.; Stolk, J.; Reiber, J. H. C.; Stoel, B. C.
2012-02-01
We present an automatic lung lobe segmentation algorithm for COPD patients. The method enhances fissures, removes unlikely fissure candidates, after which a B-spline is fitted iteratively through the remaining candidate objects. The iterative fitting approach circumvents the need to classify each object as being part of the fissure or being noise, and allows the fissure to be detected in multiple disconnected parts. This property is beneficial for good performance in patient data, containing incomplete and disease-affected fissures. The proposed algorithm is tested on 22 COPD patients, resulting in accurate lobe-based densitometry, and a median overlap of the fissure (defined 3 voxels wide) with an expert ground truth of 0.65, 0.54 and 0.44 for the three main fissures. This compares to complete lobe overlaps of 0.99, 0.98, 0.98, 0.97 and 0.87 for the five main lobes, showing promise for lobe segmentation on data of patients with moderate to severe COPD.
Computer programs for smoothing and scaling airfoil coordinates
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.
1983-01-01
Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.
NASA Astrophysics Data System (ADS)
Heddam, Salim; Kisi, Ozgur
2018-04-01
In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.
Solid T-spline Construction from Boundary Representations for Genus-Zero Geometry
2011-11-14
Engineering, accepted, 2011. [6] M. S. Floater . Parametrization and smooth approximation of surface triangulations. Com- puter Aided Geometric Design...14(3):231 – 250, 1997. [7] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Advances in Multiresolution for Geometric
Solution of Thermoelectricity Problems Energy Method
NASA Astrophysics Data System (ADS)
Niyazbek, Muheyat; Nogaybaeva, M. O.; Talp, Kuenssaule; Kudaikulov, A. A.
2018-06-01
On the basis of the fundamental laws of conservation of energy in conjunction with local quadratic spline functions was developed a universal computing algorithm, a method and associated software, which allows to investigate the Thermophysical insulated rod, with limited length, influenced by local heat flow, heat transfer and temperature
Applications of Lagrangian blending functions for grid generation around airplane geometries
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Sadrehaghighi, Ideen; Tiwari, Surendra N.; Smith, Robert E.
1990-01-01
A simple procedure has been developed and applied for the grid generation around an airplane geometry. This approach is based on a transfinite interpolation with Lagrangian interpolation for the blending functions. A monotonic rational quadratic spline interpolation has been employed for the grid distributions.
New Graph Models and Algorithms for Detecting Salient Structures from Cluttered Images
2010-02-24
Development of graph models and algorithms to detect boundaries that show certain levels of symmetry, an important geometric property of many...Bookstein. Morphometric tools for landmark data. Cambridge University Press, 1991. [8] F. L. Bookstein. Principal warps: Thin-plate splines and the
NASA Astrophysics Data System (ADS)
Cheng, Ju; Lu, Jian; Zhang, Hong-Chao; Lei, Feng; Sardar, Maryam; Bian, Xin-Tian; Zuo, Fen; Shen, Zhong-Hua; Ni, Xiao-Wu; Shi, Jin
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11604115, the Educational Commissionof Jiangsu Province of China under Grant No 17KJA460004, and the Huaian Science and Technology Funds under Grant NoHAC201701.
Modeling growth from weaning to maturity in beef cattle breeds
USDA-ARS?s Scientific Manuscript database
To better understand growth trajectory and maturity differences between beef breeds, three models – Brody, spline, and quadratic – were fit to cow growth data, and resulting parameter estimates were evaluated for 3 breed categories – British, continental, and Brahman-influenced. The data were weight...
Projections of suitable habitat for rare species under global warming scenarios
F. Thomas Ledig; Gerald E. Rehfeldt; Cuauhtemoc Saenz-Romero; Flores-Lopez Celestino
2010-01-01
Premise of the study: Modeling the contemporary and future climate niche for rare plants is a major hurdle in conservation, yet such projections are necessary to prevent extinctions that may result from climate change. Methods: We used recently developed spline climatic models and modifi ed Random Forests...
A RUTCOR Project in Discrete Applied Mathematics
1990-02-20
representations of smooth piecewise polynomial functions over triangulated regions have led in particular to the conclusion that Groebner basis methods of...Reversing Number of a Digraph," in preparation. 4. Billera, L.J., and Rose, L.L., " Groebner Basis Methods for Multivariate Splines," RRR 1-89, January