Sample records for split drag flaps

  1. A study about the split drag flaps deflections to directional motion of UiTM's blended wing body aircraft based on computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Mohamad, Firdaus; Wisnoe, Wirachman; Nasir, Rizal E. M.; Kuntjoro, Wahyu

    2012-06-01

    This paper discusses on the split drag flaps to the yawing motion of BWB aircraft. This study used split drag flaps instead of vertical tail and rudder with the intention to generate yawing moment. These features are installed near the tips of the wing. Yawing moment is generated by the combination of side and drag forces which are produced upon the split drag flaps deflection. This study is carried out using Computational Fluid Dynamics (CFD) approach and applied to low subsonic speed (0.1 Mach number) with various sideslip angles (β) and total flaps deflections (δT). For this research, the split drag flaps deflections are varied up to ±30°. Data in terms of dimensionless coefficient such as drag coefficient (CD), side coefficient (CS) and yawing moment coefficient (Cn) were used to observe the effect of the split drag flaps. From the simulation results, these split drag flaps are proven to be effective from ±15° deflections or 30° total deflections.

  2. The effect of partial-span split flaps on the aerodynamic characteristics of a Clark Y wing

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J

    1933-01-01

    Aerodynamic force tests were made in the N.A.C.A. 7 by 10 foot wind tunnel on a model Clark Y wing with a 20 percent chord split flap deflected 60 degrees downward. The tests were made to determine the effect of partial-span split flaps, located at various positions along the wing span on the aerodynamic characteristics of the wing-and-flap combination. The different lengths and locations of the flaps were obtained by cutting off portions of a full-span flap, first from the tips and then from the center. The results are given in the form of curves of lift, drag, and center of pressure. They show that with partial-span split flaps both the lift and drag are less than with full-span flaps; that the lift for a given length of flap is somewhat greater when the partial span is located at the center of the wing than when it is located at the tip portion, and that the drag for a given length of flap is the same regardless of the location over the flap with respect to the wing span.

  3. Small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts. Volume 1. Aerodynamic test results

    NASA Technical Reports Server (NTRS)

    Renselaer, D. J.; Nishida, R. S.; Wilkin, C. A.

    1975-01-01

    The results and analyses of aerodynamic and acoustic studies conducted on the small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts are presented. Various types of nozzle flap concepts were tested. These are an upper surface blowing concept with a multiple slot arrangement with seven slots (seven slotted nozzle), an upper surface blowing type with a large nozzle exit at approximately mid-chord location in conjunction with a powered trailing edge flap with multiple slots (split flow or partially slotted nozzle). In addition, aerodynamic tests were continued on a similar multi-slotted nozzle flap, but with 14 slots. All three types of nozzle flap concepts tested appear to be about equal in overall aerodynamic performance but with the split flow nozzle somewhat better than the other two nozzle flaps in the landing approach mode. All nozzle flaps can be deflected to a large angle to increase drag without significant loss in lift. The nozzle flap concepts appear to be viable aerodynamic drag modulation devices for landing.

  4. Investigation of Full-Scale Split Trailing-Edge Wing Flaps with Various Chords and Hinge Locations

    NASA Technical Reports Server (NTRS)

    Wallace, Rudolf

    1936-01-01

    This report gives the results of an investigation conducted in the NACA full-scale wind tunnel on a small parasol monoplane equipped with three different split trailing-edge wing flaps. The object of the investigation was to determine and correlate data on the characteristics of the airplane and flaps as affected by variation in flap chord, flap deflection, and flap location along the wing chord. The results give the lift, the drag, and the pitching moment characteristics of the airplane, and the flap forces and moments, the pressure distribution over the flaps and wing at one section, and the downwash characteristics of the flap and wing combinations.

  5. Wind-Tunnel Investigation of a Rectangular NACA 2212 Airfoil with Semispan Ailerons and with Nonperforated, Balanced Double Split Flaps for Use as Aerodynamic Brakes

    NASA Technical Reports Server (NTRS)

    Ivey, Margaret F

    1945-01-01

    Flat-plate flaps with no wing cutouts and flaps having Clark Y sections with corresponding cutouts made in wing were tested for various flap deflections, chord-wise locations, and gaps between flaps and airfoil contour. The drag was slightly lower for wing with airfoil section flaps. Satisfactory aileron effectiveness was obtained with flap gap of 20% wing chord and flap-nose location of 80 percent wing chord behind leading edge. Airflow was smooth and buffeting negligible.

  6. A Brief Study of the Speed Reduction of Overtaking Airplanes by Means of Air Brakes, Special Report

    NASA Technical Reports Server (NTRS)

    Pearson, H. A.; Amderspm. R. F.

    1942-01-01

    As an aid to airplane designers interested in providing pursuit airplanes with decelerating devices intended to increase the firing time when overtaking another airplane, formulas are given relating the pertinent distances and speeds in horizontal flight to the drag increase required. Charts are given for a representative parasite-drag coefficient from which the drag increase, the time gained, and the closing distance may be found. The charts are made up for three values of the ratio of the final speed of the pursuing airplane to the speed of the pursued airplane and for several values of the ratio of the speed of the pursued airplane to the initial speed of the pursuing airplane. Charts are also given indicating the drag increases obtainable with double split flaps and with conventional propellers. The use of the charts is illustrated by an example in which it is indicated that either double split flaps or, under certain ideal conditions, reversible propellers should provide the speed reductions required.

  7. Experimental Results for a Flapped Natural-laminar-flow Airfoil with High Lift/drag Ratio

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Viken, J. K.; Pfenninger, W.; Beasley, W. D.; Harvey, W. D.

    1984-01-01

    Experimental results have been obtained for a flapped natural-laminar-flow airfoil, NLF(1)-0414F, in the Langley Low-Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.05 to 0.40 and a chord Reynolds number range from about 3.0 x 10(6) to 22.0 x 10(6). The airfoil was designed for 0.70 chord laminar flow on both surfaces at a lift coefficient of 0.40, a Reynolds number of 10.0 x 10(6), and a Mach number of 0.40. A 0.125 chord simple flap was incorporated in the design to increase the low-drag, lift-coefficient range. Results were also obtained for a 0.20 chord split-flap deflected 60 deg.

  8. Wind-tunnel Tests of a Hall High-life Wing

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Sanders, Robert

    1932-01-01

    Wind-tunnel tests have been made to find the lift, drag, and center-of-pressure characteristics of a Hall high-lift wing model. The Hall wing is essentially a split-flap airfoil with an internal air passage. Air enters the passage through an opening in the lower surface somewhat back of and parallel to the leading edge, and flows out through an opening made by deflecting the rear portion of the under surface downward as a flap. For ordinary flight conditions the front opening and the rear flap can be closed, providing in effect a conventional airfoil (the Clark Y in this case). The tests were made with various flap settings and with the entrance to the passage both open and closed. The highest lift coefficient found, C(sub L) = 2.08, was obtained with the passage closed.

  9. Wind Tunnel Investigation of the Effects of Slot Shape and Flap Location on the Characteristics of a Low-Drag Airfoil Equipped with a 0.25-Chord Slotted Flap

    NASA Technical Reports Server (NTRS)

    Weisman, Yale; Holtzclaw, Ralph W.

    1944-01-01

    Tests were conducted at dynamic pressure of 50 lb per square foot with lift drag and pitch moment measurements throughout useful angle of attack range for constant flap deflection and position of a low-drag airfoil. Two slots were investigated and practical flap paths were selected for each Slot shape had a negligible effect on the maximum lift coefficient flap deflected, the rounded-entry slot had lower profile drag.

  10. Advanced natural laminar flow airfoil with high lift to drag ratio

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.; Pfenninger, Werner; Mcghee, Robert J.

    1986-01-01

    An experimental verification of a high performance natural laminar flow (NLF) airfoil for low speed and high Reynolds number applications was completed in the Langley Low Turbulence Pressure Tunnel (LTPT). Theoretical development allowed for the achievement of 0.70 chord laminar flow on both surfaces by the use of accelerated flow as long as tunnel turbulence did not cause upstream movement of transition with increasing chord Reynolds number. With such a rearward pressure recovery, a concave type deceleration was implemented. Two-dimensional theoretical analysis indicated that a minimum profile drag coefficient of 0.0026 was possible with the desired laminar flow at the design condition. With the three-foot chord two-dimensional model constructed for the LTPT experiment, a minimum profile drag coefficient of 0.0027 was measured at c sub l = 0.41 and Re sub c = 10 x 10 to the 6th power. The low drag bucket was shifted over a considerably large c sub l range by the use of the 12.5 percent chord trailing edge flap. A two-dimensional lift to drag ratio (L/D) was 245. Surprisingly high c sub l max values were obtained for an airfoil of this type. A 0.20 chort split flap with 60 deg deflection was also implemented to verify the airfoil's lift capabilities. A maximum lift coefficient of 2.70 was attained at Reynolds numbers of 3 and 6 million.

  11. HSCT Ref-H Transonic Flap Data Base: Wind-Tunnel Test and Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M.

    1999-01-01

    In cooperation with personnel from the Boeing ANP Laboratory and NASA Langley, a performance test was conducted using the Reference-H 1.675% model ("NASA Modular Model") without nacelles at the NASA Langley 16-Ft Transonic Tunnel. The main objective of the test was to determine the drag reduction achievable with leading-edge and trailing-edge flaps deflected along the outboard wing span at transonic Mach numbers (M = 0.9 to 1.2) for purpose of preliminary design and for comparison with computational predictions. The obtained drag data with flap deflections for Mach numbers of 1.07 to 1.20 are unique for the Reference H wing. Four leading-edge and two trailing-edge flap deflection angles were tested at a mean-wing chord-Reynolds number of about 5.7 million. An outboard-wing leading-edge flap deflection of 81 provides a 4.5 percent drag reduction at M = 1.2 A = 0.2), and much larger values at lower Mach numbers with larger flap deflections. The present results for the baseline (no flaps deflected) compare reasonably well with previous Boeing and NASA Ref-H tunnel tests, including high-Reynolds number NTF results. Viscous CFD simulations using the OVERFLOW thin-layer N.S. method properly predict the observed trend in drag reduction at M = 1.2 as function of leading-edge flap deflection. Modified linear theory properly predicts the flap effects on drag at subsonic conditions (Aero2S code), and properly predicts the absolute drag for the 40 and 80 leading-edge deflection at M = 1.2 (A389 code).

  12. New model of flap-gliding flight.

    PubMed

    Sachs, Gottfried

    2015-07-21

    A new modelling approach is presented for describing flap-gliding flight in birds and the associated mechanical energy cost of travelling. The new approach is based on the difference in the drag characteristics between flapping and non-flapping due to the drag increase caused by flapping. Thus, the possibility of a gliding flight phase, as it exists in flap-gliding flight, yields a performance advantage resulting from the decrease in the drag when compared with continuous flapping flight. Introducing an appropriate non-dimensionalization for the mathematical relations describing flap-gliding flight, results and findings of generally valid nature are derived. It is shown that there is an energy saving of flap-gliding flight in the entire speed range compared to continuous flapping flight. The energy saving reaches the highest level in the lower speed region. The travelling speed of flap-gliding flight is composed of the weighted average of the differing speeds in the flapping and gliding phases. Furthermore, the maximum range performance achievable with flap-gliding flight and the associated optimal travelling speed are determined. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Analytical observations on the aerodynamics of a delta wing with leading edge flaps

    NASA Technical Reports Server (NTRS)

    Oh, S.; Tavella, D.

    1986-01-01

    The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.

  14. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  15. Understanding the unsteady aerodynamics of a revolving wing with pitching-flapping perturbations

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Eslam Panah, Azar; Cheng, Bo

    2017-11-01

    Revolving wings become less efficient for lift generation at low Reynolds numbers. Unlike flying insects using reciprocating revolving wings to exploit unsteady mechanisms for lift enhancement, an alternative that introduces unsteadiness through vertical flapping perturbation, is studied via experiments and simulations. Substantial drag reduction, linearly dependent on Strouhal number, is observed for a flapping-perturbed revolving wing at zero angle of attack (AoA), which can be explained by changes in the effective angle of attack and formation of reverse Karman vortex streets. When the AoA increases, flapping perturbations improve the maximum lift coefficient attainable by the revolving wing, with minor increases of drag or even minor drag reductions depending on Strouhal number and normalized flapping amplitude. When the pitching perturbations are further introduced, more substantial drag reduction and lift enhancement can be achieved in zero and positive AoAs, respectively. As the flapping-perturbed wings are less efficient compared with revolving wings in terms of power loading, the pitching-flapping perturbations can achieve a higher power loading at 20°AoA and thus have potential applications in micro air vehicle designs. This research was supported by NSF, DURIP, NSFC and Penn State Multi-Campus SEED Grant.

  16. Investigation of the Vortex Tab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoffler, K. D.

    1985-01-01

    An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory.

  17. GASP- General Aviation Synthesis Program. Volume 3: Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hague, D.

    1978-01-01

    Aerodynamics calculations are treated in routines which concern moments as they vary with flight conditions and attitude. The subroutines discussed: (1) compute component equivalent flat plate and wetted areas and profile drag; (2) print and plot low and high speed drag polars; (3) determine life coefficient or angle of attack; (4) determine drag coefficient; (5) determine maximum lift coefficient and drag increment for various flap types and flap settings; and (6) determine required lift coefficient and drag coefficient in cruise flight.

  18. Efficiency of lift production in flapping and gliding flight of swifts.

    PubMed

    Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J

    2014-01-01

    Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.

  19. Efficiency of Lift Production in Flapping and Gliding Flight of Swifts

    PubMed Central

    Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J.

    2014-01-01

    Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag. PMID:24587260

  20. Determination of Ground Effect from Tests of a Glider in Towed Flight

    NASA Technical Reports Server (NTRS)

    Wetmore, J W; Turner, L I , Jr

    1940-01-01

    Report presents the results of an investigation made to find the effect of ground on the aerodynamic characteristics of a Franklin PS-2 glider. The lift, the drag, and the angle of attack of the glider in towed flight were determined at several heights from 0.14 to 1.19 span lengths and at various speeds for each height. Two wing arrangements were tested: the plain wing, and the wing with a nearly full-span 30-percent-chord split flap deflected 45 degrees. The experimental results for the plain wing were in good agreement with theoretical values calculated by the method of Wieselsberger for both the angle of attack and the drag coefficient at a height of 0.21 span length; Tani's refinements of the theory had a practically negligible effect on the computed values in this case.

  1. Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas

    2012-01-01

    In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.

  2. DFS Dive-control Brakes for Gliders and Airplanes ; And, Analytical Study of the Drag of the DFS Dive-control Brake

    NASA Technical Reports Server (NTRS)

    Jacobs, Hans; Wanner, Adolf

    1940-01-01

    These two reports are surveys on the progress and present state of development of dive-control flaps for gliders and airplanes. The second article describes how on the basis of wind tunnel and free-flight tests, the drag increase on brake flaps of the type DFS, can be predicted. Pressure records confirm a two-dimensional load distribution along the brake-flap surface Aerodynamically, the location of the brake flaps along the span is of importance for reasons of avoidance of vibration and oscillation phenomena on control and tail surfaces; statically, because of the magnitude of the frontal drag in diving with respect to the bending moments, which may become decisive for the dimensions of the wing attachment and for the wing covering.

  3. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  4. Transonic Investigation of Two-Dimensional Nozzles Designed for Supersonic Cruise

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Deere, Karen A.

    2015-01-01

    An experimental and computational investigation has been conducted to determine the off-design uninstalled drag characteristics of a two-dimensional convergent-divergent nozzle designed for a supersonic cruise civil transport. The overall objectives were to: (1) determine the effects of nozzle external flap curvature and sidewall boattail variations on boattail drag; (2) develop an experimental data base for 2D nozzles with long divergent flaps and small boattail angles and (3) provide data for correlating computational fluid dynamic predictions of nozzle boattail drag. The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.80 to 1.20 at nozzle pressure ratios up to 9. Three-dimensional simulations of nozzle performance were obtained with the computational fluid dynamics code PAB3D using turbulence closure and nonlinear Reynolds stress modeling. The results of this investigation indicate that excellent correlation between experimental and predicted results was obtained for the nozzle with a moderate amount of boattail curvature. The nozzle with an external flap having a sharp shoulder (no curvature) had the lowest nozzle pressure drag. At a Mach number of 1.2, sidewall pressure drag doubled as sidewall boattail angle was increased from 4deg to 8deg. Reducing the height of the sidewall caused large decreases in both the sidewall and flap pressure drags. Summary

  5. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with External-airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Reed, Warren D; Clay, William C

    1937-01-01

    Wind-tunnel and flight tests have been made of a Fairchild 22 airplane equipped with a wing having external-airfoil flaps that also perform the function of ailerons. Lift, drag, and pitching-moment coefficients of the airplane with several flap settings, and the rolling- and yawing-moment coefficients with the flaps deflected as ailerons were measured in the full-scale tunnel with the horizontal tail surfaces and propeller removed. The effect of the flaps on the low speed and on the take-off and landing characteristics, the effectiveness of flaps when used as ailerons, and the forces required to operate them as ailerons were determined in flight. The wind-tunnel tests showed that the flaps increased the maximum lift coefficient of the airplane from 1.51 with the flap in the minimum drag position to 2.12 with the flap in the minimum drag position to 2.12 with the flap deflected 30 degrees. In the flight tests the minimum speed decreased from 46.8 miles per hour with the flaps up to 41.3 miles per hour with the flaps deflected. The required take-off run to attain a height of 50 feet was reduced from 820 to 750 feet and the landing run from a height of 50 feet was reduced from 930 to 480 feet. The flaps for this installation gave lateral control that was not entirely satisfactory. Their rolling action was good but the adverse yaw resulting from their use was greater than is considerable, and the stick forces required to operate them increased too rapidly with speed.

  6. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote vorticities which result in drag rises as well as noise sources. The variable camber trailing edge flap concept could provide a substantial drag reduction benefit over a conventional discrete flap system. Aerodynamic simulations show a drag reduction of over 50% could be achieved with the flap concept over a conventional discrete flap system.

  7. A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3

    NASA Technical Reports Server (NTRS)

    Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio

    1999-01-01

    A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).

  8. Neural Network Prediction of New Aircraft Design Coefficients

    NASA Technical Reports Server (NTRS)

    Norgaard, Magnus; Jorgensen, Charles C.; Ross, James C.

    1997-01-01

    This paper discusses a neural network tool for more effective aircraft design evaluations during wind tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha Research Concept aircraft (SHARC). Four different networks were trained to predict coefficients of lift, drag, moment of inertia, and lift drag ratio (C(sub L), C(sub D), C(sub M), and L/D) from angle of attack and flap settings. The latter network was then used to determine an overall optimal flap setting and for finding optimal flap schedules.

  9. Experimental Study on the Propulsion Performance of the M-shape flapping wing’s bending angle

    NASA Astrophysics Data System (ADS)

    Chen, Jingxian; Nie, Xiaofang; Zhou, Ximing

    2017-10-01

    To study the the effect of flapping wing with different bending angles α on the thrust, in this paper, 9 M-shape flapping wing models with different bending angles, ranging for 0° to 22°, were designed. The rotating arm experiment was adopted to conduct the thrust test on the flapping wing models with different bending angels under the wind speed of 15m/s. The result shows that the span-wise flapping wing’s curvature could rectify the airflow, the proper curvature could prevent the span-wise airflow at the surface the flapping wing and leads the airflow towards backward, the amount of air pushed backwards by the flapping wing is larger, therefore the value of thrust is increased; As well as the rectification of M-shape flapping wing increases the thrust value, the flapping wing’s form drag also increased due to the bending angle. According to the results of the experiment, when the bending angle is less than 12°, the increment of the thrust is larger than the decrease of the form drag, so the thrust value increases gradually. However, when the bending angle is larger than 12°, the increment of the thrust is less than the decrease of the form drag, so the thrust value decreases. The thrust value is the largest when the bending angle is 12°.

  10. Aerodynamic analysis of natural flapping flight using a lift model based on spanwise flow

    NASA Astrophysics Data System (ADS)

    Alford, Lionel D., Jr.

    This study successfully described the mechanics of flapping hovering flight within the framework of conventional aerodynamics. Additionally, the theory proposed and supported by this research provides an entirely new way of looking at animal flapping flight. The mechanisms of biological flight are not well understood, and researchers have not been able to describe them using conventional aerodynamic forces. This study proposed that natural flapping flight can be broken down into a simplest model, that this model can then be used to develop a mathematical representation of flapping hovering flight, and finally, that the model can be successfully refined and compared to biological flapping data. This paper proposed a unique theory that the lift of a flapping animal is primarily the result of velocity across the cambered span of the wing. A force analysis was developed using centripetal acceleration to define an acceleration profile that would lead to a spanwise velocity profile. The force produced by the spanwise velocity profile was determined using a computational fluid dynamics analysis of flow on the simplified wing model. The overall forces on the model were found to produce more than twice the lift required for hovering flight. In addition, spanwise lift was shown to generate induced drag on the wing. Induced drag increased both the model wing's lift and drag. The model allowed the development of a mathematical representation that could be refined to account for insect hovering characteristics and that could predict expected physical attributes of the fluid flow. This computational representation resulted in a profile of lift and drag production that corresponds to known force profiles for insect flight. The model of flapping flight was shown to produce results similar to biological observation and experiment, and these results can potentially be applied to the study of other flapping animals. This work provides a foundation on which to base further exploration and hypotheses regarding flapping flight.

  11. Wind-Tunnel Investigation of an NACA 23021 Airfoil with a 0.32-Airfoil-Chord Double Slotted Flap

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Riebe, John M

    1944-01-01

    An investigation was made in the LMAL 7- by 10-foot wind tunnel of a NACA 23021 airfoil with a double slotted flap having a chord 32 percent of the airfoil chord (0.32c) to determine the aerodynamic section characteristics with the flaps deflected at various positions. The effects of moving the fore flap and rear flap as a unit and of deflecting or removing the lower lip of the slot were also determined. Three positions were selected for the fore flap and at each position the maximum lift of the airfoil was obtained with the rear flap at the maximum deflection used at that fore-flap position. The section lift of the airfoil increased as the fore flap was extended and maximum lift was obtained with the fore flap deflected 30 deg in the most extended position. This arrangement provided a maximum section lift coefficient of 3.31, which was higher than the value obtained with either a 0.2566c or a 0.40c single-slotted-flap arrangement and 0.25 less than the value obtained with a 0.4c double-slotted-flap arrangement on the same airfoil. The values of the profile-drag coefficient obtained with the 0.32c double slotted flap were larger than those for the 0.2566c or 0.40c single slotted flaps for section lift coefficients between 1.0 and approximately 2.7. At all values of the section lift coefficient above 1.0, the 0.40c double slotted flap had a lower profile drag than the 0.32c double slotted flap. At various values of the maximum section lift coefficient produced by various flap defections, the 0.32c double slotted flap gave negative section pitching-moment coefficients that were higher than those of other slotted flaps on the same airfoil. The 0.32c double slotted flap gave approximately the same maximum section lift coefficient as, but higher profile-drag coefficients over the entire lift range than, a similar arrangement of a 0.30c double slotted flap on an NACA 23012 airfoil.

  12. A Sweeping Jet Application on a High Reynolds Number Semispan Supercritical Wing Configuration

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Melton, Latunia; Goodliff, Scott L.; Cagle, C. Mark

    2017-01-01

    The FAST-MAC circulation control model was modified to test an array of unsteady sweeping-jet actuators at realistic flight Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center. Two types of sweeping jet actuators were fabricated using rapid prototype techniques, and directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 deg and 60 deg, and a transonic cruise configuration having a 0 deg flap deflection. For the 30 deg flap high-lift configuration, the sweeping jets achieved comparable lift performance in the separation control regime, while reducing the mass flow by 54% as compared to steady blowing. The sweeping jets however were not effective for the 60 deg flap. For the transonic cruise configuration, the sweeping jets reduced the drag by 3.3% at an off-design condition. The drag reduction for the design lift coefficient for the sweeping jets offer is only half the drag reduction shown for the steady blowing case (6.5%), but accomplished this with a 74% reduction in mass flow.

  13. Anomalous Hydrodynamic Drafting of Interacting Flapping Flags

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Zhang, Jun

    2008-11-01

    In aggregates of objects moving through a fluid, bodies downstream of a leader generally experience reduced drag force. This conventional drafting holds for objects of fixed shape, but interactions of deformable bodies in a flow are poorly understood, as in schools of fish. In our experiments on “schooling” flapping flags, we find that it is the leader of a group who enjoys a significant drag reduction (of up to 50%), while the downstream flag suffers a drag increase. This counterintuitive inverted drag relationship is rationalized by dissecting the mutual influence of shape and flow in determining drag. Inverted drafting has never been observed with rigid bodies, apparently due to the inability to deform in response to the altered flow field of neighbors.

  14. Surgical correction of cryptotia combined with an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap.

    PubMed

    Yu, Xiaobo; Yang, Qinghua; Jiang, Haiyue; Pan, Bo; Zhao, Yanyong; Lin, Lin

    2017-11-01

    Cryptotia is a common congenital ear deformity in Asian populations. In cryptotia, a portion of the upper ear is hidden and fixed in a pocket of the skin of the mastoid. Here we describe our method for cryptotia correction by using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap. We developed a new method for correcting cryptotia by using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap. Following ear release, the full-thickness skin rotation flap is rotated into the defect, and the donor site is covered with an ultra-delicate split-thickness skin graft raised in continuity with the flap. All patients exhibited satisfactory release of cryptotia. No cases involved partial or total flap necrosis, and post-operative outcomes using this new technique for cryptotia correction have been more than satisfactory. Our method of using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap to correct cryptotia is simple and reliable. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  16. Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    This paper lays out a comprehensive methodology for computing a low-speed, high-lift polar, without requiring additional details about the aircraft design beyond what is typically available at the conceptual design stage. Introducing low-order, physics-based aerodynamic analyses allows the methodology to be more applicable to unconventional aircraft concepts than traditional, fully-empirical methods. The methodology uses empirical relationships for flap lift effectiveness, chord extension, drag-coefficient increment and maximum lift coefficient of various types of flap systems as a function of flap deflection, and combines these increments with the characteristics of the unflapped airfoils. Once the aerodynamic characteristics of the flapped sections are known, a vortex-lattice analysis calculates the three-dimensional lift, drag and moment coefficients of the whole aircraft configuration. This paper details the results of two validation cases: a supercritical airfoil model with several types of flaps; and a 12-foot, full-span aircraft model with slats and double-slotted flaps.

  17. Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Covell, Peter F.; Wood, Richard M.; Miller, David S.

    1987-01-01

    An investigation of the aerodynamic performance of leading-edge flaps on three clipped delta and three clipped double-delta wing planforms with aspect ratios of 1.75, 2.11, and 2.50 was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.90, and 2.16. A primary set of fullspan leading-edge flaps with similar root and tip chords were investigated on each wing, and several alternate flap planforms were investigated on the aspect-ratio-1.75 wings. All leading-edge flap geometries were effective in reducing the drag at lifting conditions over the range of wing aspect ratios and Mach numbers tested. Application of a primary flap resulted in better flap performance with the double-delta planform than with the delta planform. The primary flap geometry generally yielded better performance than the alternate flap geometries tested. Trim drag due to flap-induced pitching moments was found to reduce the leading-edge flap performance more for the delta planform than for the double-delta planform. Flow-visualization techniques showed that leading-edge flap deflection reduces crossflow shock-induced separation effects. Finally, it was found that modified linear theory consistently predicts only the effects of leading-edge flap deflection as related to pitching moment and lift trends.

  18. Advancements in adaptive aerodynamic technologies for airfoils and wings

    NASA Astrophysics Data System (ADS)

    Jepson, Jeffrey Keith

    Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as required for the airfoil-aircraft matching. Examples are presented to illustrate the flapped-airfoil design approach for a general aviation aircraft and the results are validated by comparison with results from post-design aircraft performance computations. Once the airfoil is designed to incorporate a TE flap, it is important to determine the most suitable flap angles along the wing for different flight conditions. The second part of this dissertation presents a method for determining the optimum flap angles to minimize drag based on pressures measured at select locations on the wing. Computational flow simulations using a panel method are used "in the loop" for demonstrating closed-loop control of the flaps. Examples in the paper show that the control algorithm is successful in correctly adapting the wing to achieve the target lift distributions for minimizing induced drag while adjusting the wing angle of attack for operation of the wing in the drag bucket. It is shown that the "sense-and-adapt" approach developed is capable of handling varying and unpredictable inflow conditions. Such a capability could be useful in adapting long-span flexible wings that may experience significant and unknown atmospheric inflow variations along the span. To further develop the "sense-and-adapt" approach, the method was tested experimentally in the third part of the research. The goal of the testing was to see if the same results found computationally can be obtained experimentally. The North Carolina State University subsonic wind tunnel was used for the wind tunnel tests. Results from the testing showed that the "sense-and-adapt" approach has the same performance experimentally as it did computationally. The research presented in this dissertation is a stepping stone towards further development of the concept, which includes modeling the system in the Simulink environment and flight experiments using uninhabited aerial vehicles.

  19. Lift Augmentation on a Delta Wing via Leading Edge Fences and the Gurney Flap

    NASA Technical Reports Server (NTRS)

    Buchholz, Mark D.; Tso, Jin

    1993-01-01

    Wind tunnel tests have been conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve by as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.

  20. Lift augmentation on a delta wing via leading edge fences and the Gurney flap. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Buchholz, Mark D.

    1992-01-01

    Wind tunnel tests were conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.

  1. Aerodynamics Characteristics of Multi-Element Airfoils at -90 Degrees Incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.

  2. Design charts for predicting downwash angles and wake characteristics behind plain and flapped wings

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S

    1939-01-01

    Equations and design charts are given for predicting the downwash angles and the wake characteristics for power-off conditions behind plain and flapped wings of the types used in modern design practice. The downwash charts cover the cases of elliptical wings and wings of taper ratios 1, 2, 3, and 5, with aspect ratios of 6, 9, and 12, having flaps covering 0, 40, 70, and 100 percent of the span. Curves of the span load distributions for all these cases are included. Data on the lift and the drag of flapped airfoil sections and curves for finding the contribution of the flap to the total wing lift for different types of flap and for the entire range of flap spans are also included. The wake width and the distribution of dynamic pressure across the wake are given in terms of the profile-drag coefficient and the distance behind the wing. A method of estimating the wake position is also given. The equations and charts are based on theory that has been shown in a previous report to be in agreement with experiment.

  3. Wind-tunnel tests on model wing with Fowler flap and specially developed leading-edge slot

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Platt, Robert C

    1933-01-01

    An investigation was made in the NACA 7 by 10 foot wind tunnel to find the increase in maximum lift coefficient which could be obtained by providing a model wing with both a Fowler trailing-edge extension flap and a Handley Page type leading-edge slot. A conventional Handley page slot proportioned to operate on the plain wing without a flap gave but a slight increase with the flap; so a special form of slot was developed to work more effectively with the flap. With the best combined arrangement the maximum lift coefficient based on the original area was increased from 3.17, for the Fowler wing, to 3.62. The minimum drag coefficient with both devices retracted was increased in approximately the same proportion. Tests were also made with the special-type slot on the plain wing without the flap. The special slot, used either with or without the Fowler flap, gave definitely higher values of the maximum lift coefficient than the slots of conventional form, with an increase of the same order in the minimum drag coefficient.

  4. Retention of a reconstructed nipple using a C-V flap with different layer thicknesses in the C-flap.

    PubMed

    Sowa, Yoshihiro; Itsukage, Sizu; Sakaguchi, Kouichi; Taguchi, Tetsuya; Numajiri, Toshiaki

    2018-04-01

    The C-V flap for nipple reconstruction is now one of standard surgical techniques. But decreased projection is still a problem. In recent years, it has been suggested that projection can be more easily maintained when raising of the C-flap is performed with a split thickness dermis. In this study, we examined whether decrease of projection can be prevented by raising of a C-flap with a split dermis rather than with full dermis. A total of 49 consecutive patients who underwent reconstruction of a nipple using the C-V flap technique were enrolled. The patients included 22 who underwent surgery using a C-flap with a full thickness dermis (Group F), and 27 who underwent surgery with raising of a flap with a split thickness dermis (Group S). The size of the reconstructed nipple was measured at 2 weeks, 6 months and 1 year postoperatively for comparison between Groups F and S. Partial necrosis of the C-flap end occurred in 4 subjects in only Group S. The decrease in projection after 1 year postoperatively in Group S was significantly lower than that in Group F. In contrast, the teat base size in Group F tended to be greater than that in Group S, suggesting a tendency for an expanded base using a flap with a full dermis. Our results indicated that it is recommended to use a C-flap with a split dermis for cases with high projection of the nipple on the contralateral side.

  5. The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing.

    PubMed

    Schunk, Cosima; Swartz, Sharon M; Breuer, Kenneth S

    2017-02-06

    Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability. However, the half-span ARs of most bat wings fall into a narrow range of about 2.5-4.5. Furthermore, these predictions do not take into account the wide variation in flapping motion observed in bats. To examine the influence of different stroke patterns, we measured lift and drag of highly compliant membrane wings with different bat-relevant ARs. A two degrees of freedom shoulder joint allowed for independent control of flapping amplitude and wing sweep. We tested five models with the same variations of stroke patterns, flapping frequencies and wind speed velocities. Our results suggest that within the relatively small AR range of bat wings, AR has no clear effect on force generation. Instead, the generation of lift by our simple model mostly depends on wingbeat frequency, flapping amplitude and freestream velocity; drag is mostly affected by the flapping amplitude.

  6. The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing

    PubMed Central

    Swartz, Sharon M.; Breuer, Kenneth S.

    2017-01-01

    Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability. However, the half-span ARs of most bat wings fall into a narrow range of about 2.5–4.5. Furthermore, these predictions do not take into account the wide variation in flapping motion observed in bats. To examine the influence of different stroke patterns, we measured lift and drag of highly compliant membrane wings with different bat-relevant ARs. A two degrees of freedom shoulder joint allowed for independent control of flapping amplitude and wing sweep. We tested five models with the same variations of stroke patterns, flapping frequencies and wind speed velocities. Our results suggest that within the relatively small AR range of bat wings, AR has no clear effect on force generation. Instead, the generation of lift by our simple model mostly depends on wingbeat frequency, flapping amplitude and freestream velocity; drag is mostly affected by the flapping amplitude. PMID:28163875

  7. The Effect of Split Trailing-edge Wing Flaps on the Aerodynamic Characteristics of a Parasol Monoplane

    NASA Technical Reports Server (NTRS)

    Wallace, Rudolf, N

    1933-01-01

    This paper presents the results of tests conducted in the N.A.C.A. full-scale wind tunnel on a Fairchild F-22 airplane equipped with a special wing having split trailing-edge flaps. The flaps extended over the outer 90 percent of the wing span, and were of the fixed-hinge type having a width equal to 20 percent of the wing chord. The results show that with a flap setting of 59 degrees the maximum lift of the wing was increased 42 percent, and that the flaps increased the range of available gliding angles from 2.7 degrees to 7.0 degrees. Deflection of the split flaps did not increase the stalling angle or seriously affect the longitudinal balance of the airplane. With flaps down the landing speed of the airplane is decreased, but the calculated climb and level-flight performance is inferior to that with the normal wing. Calculations indicate that the take-off distance required to clear an obstacle 100 feet high is not affected by flap settings from 0 degrees to 20 degrees but is greatly increased by larger flap angles.

  8. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L/D characteristics and minimum drag in cruise. In the present 3-D study, calculations show that for the same C(sub t), the 3-D circular arc camber wing segment produces the largest drag for a given lift, larger than either of the two 2-D configurations, as was also conjectured in the previous study. This study indicates a wing stall around 4.5 deg angle of attack.

  9. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be achieved. Moreover, some parts of the flap system can be made to have a high frequency response for roll control, gust load alleviation, and aeroservoelastic (ASE) modal suppression control. Abstract The aeroelastic model of the ESAC is based on one-dimensional structural dynamic theory that captures the aeroelastic deformation of a wing structure in a combined motion that involves flapwise bending, chordwise bending, and torsion. The model includes the effect of aircraft propulsion due to wing flexibility which causes the propulsive forces and moments to couple with the wing elastic motion. Engine mass is also accounted in the model. A fuel management model is developed to describe the wing mass change due to fuel usage in the main tank and wing tanks during cruise. Abstract The model computes both static and dynamic responses of the wing structures. The static aeroelastic deflections are used to estimate the effect of wing flexibility on induced drag and the potential drag reduction by the VCCTE flap system. A flutter analysis is conducted to estimate the flutter speed boundary. Gust load alleviation via adaptive control has been recently investigated to address flexibility of aircraft structures. A multi-objective flight control approach is presented for drag reduction control. The approach is based on an optimal control framework using a multi-objective cost function. Future studies will demonstrate the potential benefits of the approach.

  10. The Gradual Expansion Muscle Flap

    DTIC Science & Technology

    2014-01-01

    acute shortening and angulation of the tibia and rotational muscle flap coverage and split thickness skin grafting of the soft tissue defect...is also amenable to split-thickness skin grafting after tissue incorporation.11 In addition to donor site morbidity, free tissue transfer is dependent...necessary soft tissue coverage. In the second stage, after the flap has adequately set and overlying skin graft has full adherence, a Taylor Spatial

  11. Delayed grafting for banked skin graft in lymph node flap transfer.

    PubMed

    Ciudad, Pedro; Date, Shivprasad; Orfaniotis, Georgios; Dower, Rory; Nicoli, Fabio; Maruccia, Michele; Lin, Shu-Ping; Chuang, Chu-Yi; Chuang, Tsan-Yu; Wang, Gou-Jen; Chen, Hung-Chi

    2017-02-01

    Over the last decade, lymph node flap (LNF) transfer has turned out to be an effective method in the management of lymphoedema of extremities. Most of the time, the pockets created for LNF cannot be closed primarily and need to be resurfaced with split thickness skin grafts. Partial graft loss was frequently noted in these cases. The need to prevent graft loss on these iatrogenic wounds made us explore the possibility of attempting delayed skin grafting. We have herein reported our experience with delayed grafting with autologous banked split skin grafts in cases of LNF transfer for lymphoedema of the extremities. Ten patients with International Society of Lymphology stage II-III lymphoedema of upper or lower extremity were included in this study over an 8-month period. All patients were thoroughly evaluated and subjected to lymph node flap transfer. The split skin graft was harvested and banked at the donor site, avoiding immediate resurfacing over the flap. The same was carried out in an aseptic manner as a bedside procedure after confirming flap viability and allowing flap swelling to subside. Patients were followed up to evaluate long-term outcomes. Flap survival was 100%. Successful delayed skin grafting was done between the 4th and 6th post-operative day as a bedside procedure under local anaesthesia. The split thickness skin grafts (STSG) takes more than 97%. One patient needed additional medications during the bedside procedure. All patients had minimal post-operative pain and skin graft requirement. The patients were also reported to be satisfied with the final aesthetic results. There were no complications related to either the skin grafts or donor sites during the entire period of follow-up. Delayed split skin grafting is a reliable method of resurfacing lymph node flaps and has been shown to reduce the possibility of flap complications as well as the operative time and costs. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  12. A Computational Study of an Oscillating VR-12 Airfoil with a Gurney Flap

    NASA Technical Reports Server (NTRS)

    Rhee, Myung

    2004-01-01

    Computations of the flow over an oscillating airfoil with a Gurney-flap are performed using a Reynolds Averaged Navier-Stokes code and compared with recent experimental data. The experimental results have been generated for different sizes of the Gurney flaps. The computations are focused mainly on a configuration. The baseline airfoil without a Gurney flap is computed and compared with the experiments in both steady and unsteady cases for the purpose of initial testing of the code performance. The are carried out with different turbulence models. Effects of the grid refinement are also examined and unsteady cases, in addition to the assessment of solver effects. The results of the comparisons of steady lift and drag computations indicate that the code is reasonably accurate in the attached flow of the steady condition but largely overpredicts the lift and underpredicts the drag in the higher angle steady flow.

  13. Assessment of a Conceptual Flap System Intended for Enhanced General Aviation Safety

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Carter, Melissa B.

    2017-01-01

    A novel multielement trailing-edge flap system for light general aviation airplanes was conceived for enhanced safety during normal and emergency landings. The system is designed to significantly reduce stall speed, and thus approach speed, with the goal of reducing maneuveringflight accidents and enhancing pilot survivability in the event of an accident. The research objectives were to assess the aerodynamic performance characteristics of the system and to evaluate the extent to which it provided both increased lift and increased drag required for the low-speed landing goal. The flap system was applied to a model of a light general aviation, high-wing trainer and tested in the Langley 12- Foot Low-Speed Wind Tunnel. Data were obtained for several device deflection angles, and component combinations at a dynamic pressure of 4 pounds per square foot. The force and moment data supports the achievement of the desired increase in lift with substantially increased drag, all at relatively shallow angles of attack. The levels of lift and drag can be varied through device deflection angles and inboard/outboard differential deflections. As such, it appears that this flap system may provide an enabling technology to allow steep, controllable glide slopes for safe rapid descent to landing with reduced stall speed. However, a simple flat-plate lower surface spoiler (LSS) provided either similar or superior lift with little impact on pitch or drag as compared to the proposed system. Higher-fidelity studies are suggested prior to use of the proposed system.

  14. On the diverse roles of fluid dynamic drag in animal swimming and flying

    PubMed Central

    2018-01-01

    Questions of energy dissipation or friction appear immediately when addressing the problem of a body moving in a fluid. For the most simple problems, involving a constant steady propulsive force on the body, a straightforward relation can be established balancing this driving force with a skin friction or form drag, depending on the Reynolds number and body geometry. This elementary relation closes the full dynamical problem and sets, for instance, average cruising velocity or energy cost. In the case of finite-sized and time-deformable bodies though, such as flapping flyers or undulatory swimmers, the comprehension of driving/dissipation interactions is not straightforward. The intrinsic unsteadiness of the flapping and deforming animal bodies complicates the usual application of classical fluid dynamic forces balance. One of the complications is because the shape of the body is indeed changing in time, accelerating and decelerating perpetually, but also because the role of drag (more specifically the role of the local drag) has two different facets, contributing at the same time to global dissipation and to driving forces. This causes situations where a strong drag is not necessarily equivalent to inefficient systems. A lot of living systems are precisely using strong sources of drag to optimize their performance. In addition to revisiting classical results under the light of recent research on these questions, we discuss in this review the crucial role of drag from another point of view that concerns the fluid–structure interaction problem of animal locomotion. We consider, in particular, the dynamic subtleties brought by the quadratic drag that resists transverse motions of a flexible body or appendage performing complex kinematics, such as the phase dynamics of a flexible flapping wing, the propagative nature of the bending wave in undulatory swimmers, or the surprising relevance of drag-based resistive thrust in inertial swimmers. PMID:29445037

  15. Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.

    PubMed

    Biswas, Tutul; Ghosh, Tarun Kanti

    2013-10-16

    We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.

  16. NASA Innovation Fund 2010 Project Elastically Shaped Future Air Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2010-01-01

    This report describes a study conducted in 2010 under the NASA Innovation Fund Award to develop innovative future air vehicle concepts. Aerodynamic optimization was performed to produce three different aircraft configuration concepts for low drag, namely drooped wing, inflected wing, and squashed fuselage. A novel wing shaping control concept is introduced. This concept describes a new capability of actively controlling wing shape in-flight to minimize drag. In addition, a novel flight control effector concept is developed to enable wing shaping control. This concept is called a variable camber continuous trailing edge flap that can reduce drag by as much as 50% over a conventional flap. In totality, the potential benefits of fuel savings offered by these concepts can be significant.

  17. Computational Evaluation of the Steady and Pulsed Jet Effects on the Performance of a Circulation Control Wing Section

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert; Ahuja, K.; Gaeta, R.

    2003-01-01

    Circulation Control Wing (CCW) technology is a very effective way of achieving very high lift coefficients needed by aircraft during take-off and landing. This technology can also be used to directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate the required values of lift coefficient C(sub L,max) during take-off/landing with fewer or no moving parts and much less complexity. Earlier designs of CCW configurations used airfoils with a large radius rounded trailing edge to maximize the lift benefit. However, these designs also produced very high drag. These high drag levels associated with the blunt, large radius trailing edge can be prohibitive under cruise conditions when Circulation Control is no longer necessary. To overcome this difficulty, an advanced CCW section, i.e., a circulation hinged flap was developed to replace the original rounded trailing edge CC airfoil. This concept developed by Englar is shown. The upper surface of the CCW flap is a large-radius arc surface, but the lower surface of the flap is flat. The flap could be deflected from 0 degrees to 90 degrees. When an aircraft takes-off or lands, the flap is deflected as in a conventional high lift system. Then this large radius on the upper surface produces a large jet turning angle, leading to high lift. When the aircraft is in cruise, the flap is retracted and a conventional sharp trailing edge shape results, greatly reducing the drag. This kind of flap does have some moving elements that increase the weight and complexity over an earlier CCW design. But overall, the hinged flap design still maintains most of the Circulation Control high lift advantages, while greatly reducing the drag in cruising condition associated with the rounded trailing edge CCW design. In the present work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to this advanced CCW configuration. The solver can be used in both a 2-D and a 3-D mode, and can thus model airfoils as well as finite wings. The jet slot location, slot height, and the flap angle can all be varied easily and individually in the grid generator and the flow solver. Steady jets, pulsed jets, the leading edge and trailing edge blowing can all be studied with this solver.

  18. Investigation in the Langley 19-foot Pressure Tunnel of Two Wings of NACA 65-210 and 64-210 Airfoil Sections with Various Type Flaps

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Spooner, Stanley H

    1949-01-01

    Report presents the results of an investigation conducted in the Langley 19-foot pressure tunnel to determine the maximum lift and stalling characteristics of two thin wings equipped with several types of flaps. Split, single slotted, and double slotted flaps were tested on one wing which had NACA 65-210 airfoil sections and split and double slotted flaps were tested on the other, which had NACA 64-210 airfoil sections. Both wings were zero sweep, an aspect ratio of 9, and a taper ratio of 0.4.

  19. Reconstruction of Knee Defects Using Pedicled Gastrocnemius Muscle Flap with Split-Thickness Skin Grafting: A Single Surgeon's Experience with 21 Patients.

    PubMed

    Kilic, Ali; Denney, Brad; de la Torre, Jorge

    2018-05-31

    Generally, reconstruction of knee defects with exposed bone, joint, tendon, and/or hardware requires a vascularized muscle flap for coverage. Although there are several surgical options for a knee defect reconstruction, the pedicled gastrocnemius muscle still remains the workhorse flap. Although this flap is commonly used for knee defect reconstruction and the technique is described very well, there is an absence of information in the literature detailing the technique of harvesting and insetting of the gastrocnemius flap step by step with illustrations. The purpose of this article is to describe in detail the technique to reconstruct defects of the knee with pedicled gastrocnemius muscle flap as well as to present demographics and surgical results of 21 patients who had knee reconstruction with a pedicled gastrocnemius muscle flap and split-thickness skin grafting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Improvement of maneuver aerodynamics by spanwise blowing

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1977-01-01

    Spanwise blowing was used to test a generalized wind-tunnel model to investigate component concepts in order to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on performance, stability, and control at high angles of attack and subsonic speeds. Test data were obtained in the Langley high speed 7 by 10 foot tunnel at free stream Mach numbers up to 0.50 for a range of model angles of attack, jet momentum coefficients, and leading and trailing edge flap deflection angles. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack.

  1. Wind-tunnel research comparing lateral control devices, particularly at high angles of attack XII : upper-surface ailerons on wings with split flaps

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wenzinger, Carl J

    1935-01-01

    This report covers the twelfth of a series of tests conducted to compare different lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made with two sizes of upper-surface ailerons on rectangular Clark Y wing models equipped with full span split flaps. The tests showed the effect of the upper-surface ailerons and of the split flaps on the general performance characteristics of the wings, and on the lateral controllability and stability characteristics. The results are compared with those for plain wings with ordinary ailerons of similar sizes.

  2. Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Montefort; Liou, William W.; Pantula, Srinivasa R.; Shams, Qamar A.

    2007-01-01

    A static extended trailing edge attached to a NACA0012 airfoil section is studied for achieving lift enhancement at a small drag penalty. It is indicated that the thin extended trailing edge can enhance the lift while the zero-lift drag is not significantly increased. Experiments and calculations are conducted to compare the aerodynamic characteristics of the extended trailing edge with those of Gurney flap and conventional flap. The extended trailing edge, as a simple mechanical device added on a wing without altering the basic configuration, has a good potential to improve the cruise flight efficiency.

  3. A wing-assisted running robot and implications for avian flight evolution.

    PubMed

    Peterson, K; Birkmeyer, P; Dudley, R; Fearing, R S

    2011-12-01

    DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s⁻¹, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.

  4. Propulsion of a flapping and oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Garrick, I E

    1937-01-01

    Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge.

  5. Pressure Distributions for the GA(W)-2 Airfoil with 20% Aileron, 25% Slotted Flap and 30% Fowler Flap

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Fiscko, K. A.

    1978-01-01

    Surface pressure distributions were measured for the 13% thick GA(W)-2 airfoil section fitted with 20% aileron, 25% slotted flap and 30% Fowler flap. All tests were conducted at a Reynolds number of 2.2 x 10 to the 6th power and a Mach number of 0.13. Pressure distribution and force and moment coefficient measurements are compared with theoretical results for a number of cases. Agreement between theory and experiment is generally good for low angles of attack and small flap deflections. For high angles and large flap deflections where regions of separation are present, the theory is inadequate. Theoretical drag predictions are poor for all flap-extended cases.

  6. Pressure investigation of NASA leading edge vortex flaps on a 60 deg Delta wing

    NASA Technical Reports Server (NTRS)

    Marchman, J. F., III; Donatelli, D. A.; Terry, J. E.

    1983-01-01

    Pressure distributions on a 60 deg Delta Wing with NASA designed leading edge vortex flaps (LEVF) were found in order to provide more pressure data for LEVF and to help verify NASA computer codes used in designing these flaps. These flaps were intended to be optimized designs based on these computer codes. However, the pressure distributions show that the flaps wre not optimum for the size and deflection specified. A second drag-producing vortex forming over the wing indicated that the flap was too large for the specified deflection. Also, it became apparent that flap thickness has a possible effect on the reattachment location of the vortex. Research is continuing to determine proper flap size and deflection relationships that provide well-behaved flowfields and acceptable hinge-moment characteristics.

  7. A study of the variable impedance surface concept as a means for reducing noise from jet interaction with deployed lift-augmenting flaps

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Kadman, Y.; Chanaud, R. C.

    1972-01-01

    The feasibility of quieting the externally-blown-flap (EBF) noise sources which are due to interaction of jet exhaust flow with deployed flaps was demonstrated on a 1/15-scale 3-flap EBF model. Sound field characteristics were measured and noise reduction fundamentals were reviewed in terms of source models. Test of the 1/15-scale model showed broadband noise reductions of up to 20 dB resulting from combination of variable impedance flap treatment and mesh grids placed in the jet flow upstream of the flaps. Steady-state lift, drag, and pitching moment were measured with and without noise reduction treatment.

  8. Cosmetic and functional reconstruction achieved using a split myofascial bone flap for pterional craniotomy. Technical note.

    PubMed

    Matsumoto, K; Akagi, K; Abekura, M; Ohkawa, M; Tasaki, O; Tomishima, T

    2001-04-01

    Cosmetic deformities that appear following pterional craniotomy are usually caused by temporal muscle atrophy, injury to the frontotemporal branch of the facial nerve, or bone pits in the craniotomy line. To resolve these problems during pterional craniotomy, an alternative method was developed in which a split myofascial bone flap and a free bone flap are used. The authors have used this method in the treatment of 40 patients over the last 3 years. Excellent cosmetic and functional results have been obtained. This method can provide wide exposure similar to that achieved using Yaşargil's interfascial pterional craniotomy, without limiting the operative field with a bulky temporal muscle flap.

  9. Effect of Boattail and Sidewall Curvature on Nozzle Drag Characteristics

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Deere, Karen A.; Bangert, Linda S.; Pao, Paul S.

    1999-01-01

    The NASA-industry team has sponsored several studies in the last two years to address the installed nozzle boattail drag issues. Some early studies suggested that nozzle boattail drag could be as much as 25 to 40 percent of the subsonic cruise. As part of this study tests have been conducted at NASA-Langley to determine the uninstalled drag characteristics of a proposed nozzle. The overall objective was to determine the effects of nozzle external flap curvature and sidewall boattail variations. This test would also provide data for validating CFD predictions of nozzle boattail drag.

  10. Aerodynamic Characteristics at a Mach Number of 6.8 of Two Hypersonic Missile Configurations, One with Low-Aspect-Ratio Cruciform Fins and Trailing-Edge Flaps and One with a Flared Afterbody and All-Movable Controls

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B; Bernot, Peter T

    1958-01-01

    An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 deg the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 deg flared afterbody. The tests were made through an angle-of-attack range of -2 deg to 20 deg at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge -flap configuration. The flared -after body configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift drag ratio.

  11. Aerodynamic Characteristics at a Mach Number of 6.8 of Two Hypersonic Missile Configurations, One with Low-Aspect-Ratio Cruciform Fins and Trailing-Edge Flaps and One with a Flared Afterbody and All-Movable Controls

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.; Robinson, R. B.

    1958-01-01

    An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 degrees; the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 degrees flared afterbody. The tests were made through an angle-of-attack range of -2 degrees to 20 degrees at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared-afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge-flap configuration. The flared-afterbody configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift-drag ratio.

  12. Energy management - The delayed flap approach

    NASA Technical Reports Server (NTRS)

    Bull, J. S.

    1976-01-01

    Flight test evaluation of a Delayed Flap approach procedure intended to provide reductions in noise and fuel consumption is underway using the NASA CV-990 test aircraft. Approach is initiated at a high airspeed (240 kt) and in a drag configuration that allows for low thrust. The aircraft is flown along the conventional ILS glide slope. A Fast/Slow message display signals the pilot when to extend approach flaps, landing gear, and land flaps. Implementation of the procedure in commercial service may require the addition of a DME navigation aid co-located with the ILS glide slope transmitter. The Delayed Flap approach saves 250 lb of fuel over the Reduced Flap approach, with a 95 EPNdB noise contour only 43% as large.

  13. Wing configuration on Wind Tunnel Testing of an Unmanned Aircraft Vehicle

    NASA Astrophysics Data System (ADS)

    Daryanto, Yanto; Purwono, Joko; Subagyo

    2018-04-01

    Control surface of an Unmanned Aircraft Vehicle (UAV) consists of flap, aileron, spoiler, rudder, and elevator. Every control surface has its own special functionality. Some particular configurations in the flight mission often depend on the wing configuration. Configuration wing within flap deflection for takeoff setting deflection of flap 20° but during landing deflection of flap set on the value 40°. The aim of this research is to get the ultimate CLmax for take-off flap deflection setting. It is shown from Wind Tunnel Testing result that the 20° flap deflection gives optimum CLmax with moderate drag coefficient. The results of Wind Tunnel Testing representing by graphic plots show good performance as well as the stability of UAV.

  14. Release of hand burn contracture: comparing the ALT perforator flap with the gracilis free flap with split skin graft.

    PubMed

    Misani, M; Zirak, C; Hau, Lê Thua Trung; De Mey, A; Boeckx, W

    2013-08-01

    The use of microsurgery in the management of burn sequelae is not a new idea. According to the properties of various types of free flaps different goals can be achieved or various additional procedures have to be combined. We report the comparison of two different free flaps on a single patient for reconstruction of both upper extremities for burn sequelae. A 1-year-old child sustained severe burns on both hands, arms and thorax and was initially only treated conservatively. This resulted in severe contractures. At the age of 4-years a free gracilis flap was selected for reconstruction of his left hand and a free anterolateral thigh flap for the right hand. We noticed a better functional and esthetic result for the gracilis flap associated with a shorter operative time and a minor donor site morbidity. The intraoperative technique and time, postoperative complications, functional and esthetic results and donor site morbidities were studied in the two types of flaps chosen. A review of literature was also performed. Our experience reported a better success of the gracilis muscle flap covered with a split skin graft compared to the anterolateral thigh flap in the reconstruction of hand function after severe burn sequelae. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  15. Wing flapping with minimum energy. [minimize the drag for a bending moment at the wing root

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1980-01-01

    For slow flapping motions it is found that the minimum energy loss occurs when the vortex wake moves as a rigid surface that rotates about the wing root - a condition analogous to that determined for a slow-turning propeller. The optimum circulation distribution determined by this condition differs from the elliptic distribution, showing a greater concentration of lift toward the tips. It appears that very high propulsive efficiencies are obtained by flapping.

  16. Reconstruction of Abdominal Wall of a Chronically Infected Postoperative Wound with a Rectus Abdominis Myofascial Splitting Flap

    PubMed Central

    Bae, Sung Kyu; Kang, Seok Joo; Kim, Jin Woo; Kim, Young Hwan

    2013-01-01

    Background If a chronically infected abdominal wound develops, complications such as peritonitis and an abdominal wall defect could occur. This could prolong the patient's hospital stay and increase the possibility of re-operation or another infection as well. For this reason, a solution for infection control is necessary. In this study, surgery using a rectus abdominis muscle myofascial splitting flap was performed on an abdominal wall defect. Methods From 2009 to 2012, 5 patients who underwent surgery due to ovarian rupture, cesarean section, or uterine myoma were chosen. In each case, during the first week after operation, the wound showed signs of infection. Surgery was chosen because the wounds did not resolve with dressing. Debridement was performed along the previous operation wound and dissection of the skin was performed to separate the skin and subcutaneous tissue from the attenuated rectus muscle and Scarpa's fascial layers. Once the anterior rectus sheath and muscle were adequately mobilized, the fascia and muscle flap were advanced medially so that the skin defect could be covered for reconstruction. Results Upon 3-week follow-up after a rectus abdominis myofascial splitting flap operation, no major complication occurred. In addition, all of the patients showed satisfaction in terms of function and esthetics at 3 to 6 months post-surgery. Conclusions Using a rectus abdominis myofascial splitting flap has many esthetic and functional benefits over previous methods of abdominal defect treatment, and notably, it enabled infection control by reconstruction using muscle. PMID:23362477

  17. An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight.

    PubMed

    Curet, Oscar M; Swartz, Sharon M; Breuer, Kenneth S

    2013-03-06

    The morphology, kinematics and stiffness properties of lifting surfaces play a key role in the aerodynamic performance of vertebrate flight. These surfaces, as a result of their flexible nature, may move both actively, owing to muscle contraction, and passively, in reaction to fluid forces. However, the nature and implications of this fluid-structure interaction are not well understood. Here, we study passive flight (flight with no active wing actuation) and explore a physical mechanism that leads to the emergence of a natural flapping motion. We model a vertebrate wing with a compliant shoulder and the ability to camber with an idealized physical model consisting of a cantilevered flat plate with a hinged trailing flap. We find that at low wind speed the wing is stationary, but at a critical speed the wing spontaneously flaps. The lift coefficient is significantly enhanced once the wing starts to oscillate, although this increase in lift generation is accompanied by an increase in drag. Flow visualization suggests that a strong leading edge vortex attached to the wing during downstroke is the primary mechanism responsible for the enhanced lift. The flapping instability we observe suggests a possible scenario for an evolutionary transition from gliding to powered flapping flight in animals that possess compliant wings capable of passive camber. Although the flapping state is accompanied by a lower lift-to-drag ratio, the increased lifting capability it confers might have enabled increased body mass, improved foraging performance and/or flight at lower speeds, any of which might have been selectively advantageous.

  18. An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight

    PubMed Central

    Curet, Oscar M.; Swartz, Sharon M.; Breuer, Kenneth S.

    2013-01-01

    The morphology, kinematics and stiffness properties of lifting surfaces play a key role in the aerodynamic performance of vertebrate flight. These surfaces, as a result of their flexible nature, may move both actively, owing to muscle contraction, and passively, in reaction to fluid forces. However, the nature and implications of this fluid–structure interaction are not well understood. Here, we study passive flight (flight with no active wing actuation) and explore a physical mechanism that leads to the emergence of a natural flapping motion. We model a vertebrate wing with a compliant shoulder and the ability to camber with an idealized physical model consisting of a cantilevered flat plate with a hinged trailing flap. We find that at low wind speed the wing is stationary, but at a critical speed the wing spontaneously flaps. The lift coefficient is significantly enhanced once the wing starts to oscillate, although this increase in lift generation is accompanied by an increase in drag. Flow visualization suggests that a strong leading edge vortex attached to the wing during downstroke is the primary mechanism responsible for the enhanced lift. The flapping instability we observe suggests a possible scenario for an evolutionary transition from gliding to powered flapping flight in animals that possess compliant wings capable of passive camber. Although the flapping state is accompanied by a lower lift-to-drag ratio, the increased lifting capability it confers might have enabled increased body mass, improved foraging performance and/or flight at lower speeds, any of which might have been selectively advantageous. PMID:23303221

  19. Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Capone, Francis J.

    1993-01-01

    The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.

  20. Works on theory of flapping wing. [considering boundary layer

    NASA Technical Reports Server (NTRS)

    Golubev, V. V.

    1980-01-01

    It is shown mathematically that taking account of the boundary layer is the only way to develop a theory of flapping wings without violating the basic observations and mathematics of hydromechanics. A theory of thrust generation by flapping wings can be developed if the conventional downstream velocity discontinuity surface is replaced with the observed Karman type vortex streets behind a flapping wing. Experiments show that the direction of such vortices is the reverse of that of conventional Karman streets. The streets form by breakdown of the boundary layer. Detailed analysis of the movements of certain birds and insects during flight 'in place' is fully consistent with this theory of the lift, thrust and drag of flapping wings. Further directions for research into flight with flapping wings are indicated.

  1. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.

    PubMed

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty.

  2. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics

    PubMed Central

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty. PMID:27347517

  3. The Calculated Effect of Various Hydrodynamic and Aerodynamic Factors on the Take-Off of a Large Flying Boat

    NASA Technical Reports Server (NTRS)

    Olson, R.E.; Allison, J.M.

    1939-01-01

    Present designs for large flying boats are characterized by high wing loading, high aspect ratio, and low parasite drag. The high wing loading results in the universal use of flaps for reducing the takeoff and landing speeds. These factors have an effect on takeoff performance and influence to a certain extent the design of the hull. An investigation was made of the influence of various factors and design parameters on the takeoff performance of a hypothetical large flying boat by means of takeoff calculations. The parameters varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The takeoff times and distances were calculated to the stalling speeds and the performance above these speeds was studied separately to determine piloting technique for optimum takeoff. The advantage of quick deflection of the flap at high water speeds is shown.

  4. Augmentation of maneuver performance by spanwise blowing

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1977-01-01

    A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.

  5. Airframe noise of the DC-9

    NASA Technical Reports Server (NTRS)

    Bauer, A. B.; Munson, A. G.

    1977-01-01

    Airframe noise measurements are reported for the DC-9-31 aircraft flown at several speeds and with a number of flap, landing gear, and slat extension configurations. The data are corrected for atmospheric attenuation and spherical divergence, and are presented for an overhead position normalized to a 1-meter height. The sound pressure levels are found to vary approximately as the fifth power of flight velocity. Both lift and drag dipoles exist as a significant part of the airframe noise. The data are compared with airframe noise predictions using the drag element and the data analysis methods. Although some of the predictions are very good, further work is needed to refine these methods, particularly for the gear-down and flaps-down configurations.

  6. High-Speed Wind-Tunnel Tests of a Model of the Lockheed YP-80A Airplane Including Correlation with Flight Tests and Tests of Dive-Recovery Flaps

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.; Gray, Lyle J.

    1947-01-01

    This report contains the results of tests of a 1/3-scale model of the Lockheed YP-90A "Shooting Star" airplane and a comparison of drag, maximum lift coefficient, and elevator angle required for level flight as measured in the wind tunnel and in flight. Included in the report are the general aerodynamic characteristics of the model and of two types of dive-recovery flaps, one at several positions along the chord on the lower surface of the wing and the other on the lower surface of the fuselage. The results show good agreement between the flight and wind-tunnel measurements at all Mach numbers. The results indicate that the YP-80A is controllable in pitch by the elevators to a Mach number of at least 0.85. The fuselage dive-recovery flaps are effective for producing a climbing moment and increasing the drag at Mach numbers up to at least 0.8. The wing dive-recovery flaps are most effective for producing a climbing moment at 0.75 Mach number. At 0.85 Mach number, their effectiveness is approximately 50 percent of the maximum. The optimum position for the wing dive-recovery flaps to produce a climbing moment is at approximately 35 percent of the chord.

  7. High Lift Common Research Model for Wind Tunnel Testing: An Active Flow Control Perspective

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Melton, Latunia P.; Viken, Sally A.; Andino, Marlyn Y.; Koklu, Mehti; Hannon, Judith A.; Vatsa, Veer N.

    2017-01-01

    This paper provides an overview of a research and development effort sponsored by the NASA Advanced Air Transport Technology Project to achieve the required high-lift performance using active flow control (AFC) on simple hinged flaps while reducing the cruise drag associated with the external mechanisms on slotted flaps of a generic modern transport aircraft. The removal of the external fairings for the Fowler flap mechanism could help to reduce drag by 3.3 counts. The main challenge is to develop an AFC system that can provide the necessary lift recovery on a simple hinged flap high-lift system while using the limited pneumatic power available on the aircraft. Innovative low-power AFC concepts will be investigated in the flap shoulder region. The AFC concepts being explored include steady blowing and unsteady blowing operating in the spatial and/or temporal domain. Both conventional and AFC-enabled high-lift configurations were designed for the current effort. The high-lift configurations share the cruise geometry that is based on the NASA Common Research Model, and therefore, are also open geometries. A 10%-scale High Lift Common Research Model (HL-CRM) is being designed for testing at the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel during fiscal year 2018. The overall project plan, status, HL-CRM configurations, and AFC objectives for the wind tunnel test are described.

  8. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander; Gilyard, Glenn B.

    1999-01-01

    Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.

  9. Full Scale Span Load Distribution on a Tapered Wing with Split Flaps of Various Spans

    NASA Technical Reports Server (NTRS)

    Parsons, John F; Silverstein, Abe

    1937-01-01

    Pressure-distribution tests were conducted in the full-scale wind tunnel on a 2:1 tapered U.S.A. 45 airfoil equipped with 20 percent chord split trailing-edge flaps of various spans. A special installation was employed in the tests utilizing a half-span airfoil mounted vertically above a reflection plane. The airfoil has a constant chord center section and rounded tips and is tapered in thickness from 18 percent c at the root to 9 percent c at the tip. The aerodynamic characteristics, given by the usual dimension less coefficients, are presented graphically as functions of flap span and angle of attack as well as by semispan load diagrams. The results indicate, in general, that only a relatively small increase in the normal-force coefficient is to be expected by extending the flap span of an airfoil-flap combination, similar to the one tested, beyond 70 percent of the wing span.

  10. A wind tunnel investigation of the effects of micro-vortex generators and Gurney flaps on the high-lift characteristics of a business jet wing. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Martuccio, Michelle Therese

    1994-01-01

    A study of a full-scale, semi-span business jet wing has been conducted to investigate the potential of two types of high-lift devices for improving aircraft high-lift performance. The research effort involved low-speed wind-tunnel tests of micro-vortex generators and Gurney flaps applied to the flap system of the business jet wing and included force and moment measurements, surface pressure surveys and flow visualization on the wing and flap. Results showed that the micro-vortex generators tested had no beneficial effects on the longitudinal force characteristics in this particular application, while the Gurney flaps were an effective means of increasing lift. However, the Gurney flaps also caused an increase in drag in most circumstances.

  11. Wing flapping with minimum energy

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1980-01-01

    A technique employed by Prandtl and Munk is adapted for the case of a wing in flapping motion to determine its lift distribution. The problem may be reduced to one of minimizing induced drag for a specified and periodically varying bending moment at the wing root. It is concluded that two wings in close tandem arrangement, moving in opposite phase, would eliminate the induced aerodynamic losses calculated

  12. Wind-tunnel investigation of an N.A.C.A. 23012 airfoil with two arrangements of a wide-chord slotted flap

    NASA Technical Reports Server (NTRS)

    Harris, Thomas A

    1939-01-01

    An investigation has been made in the N.A.C.A. 7- by 10-foot wind tunnel of a large-chord N.A.C.A. 23012 airfoil with several arrangements of a 40-percent-chord slotted flap to determine the section aerodynamic characteristics of the airfoil as affected by slot shape, flap location, and flap deflection. The flap positions for maximum lift, the polar for arrangements considered favorable for take-off and climb, and the complete section aerodynamic characteristics for selected optimum arrangements were determined. A discussion is given of the relative merits of the various arrangements. A comparison is made of slotted flaps of different chords on the N.A.C.A. 23012 airfoil. The best 40-percent-chord slotted flap is only slightly superior to the 25-percent-chord slotted flap from considerations of maximum lift coefficient and low drag for take-off and initial climb.

  13. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  14. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.

    PubMed

    Truong, Q T; Nguyen, Q V; Truong, V T; Park, H C; Byun, D Y; Goo, N S

    2011-09-01

    We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.

  15. Flexible wings in flapping flight

    NASA Astrophysics Data System (ADS)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  16. Airfoil/Wing Flow Control Using Flexible Extended Trailing Edge

    DTIC Science & Technology

    2009-02-27

    and (b) Power spectrums of drag coefficient Figure 4. Mean velocity profiles O Baseline NACA0012. AoA 18 deg c Baseline NACA0012. AoA 20...dynamics, (a) fin amplitude and (b) power spectrum of fin amplitude Development of Computational Tools Simulations of the time-dependent deformation of...combination of experimental, computational and theoretical methods. Compared with Gurney flap and conventional flap, this device enhanced lift at a smaller

  17. Computational simulations of the interaction of water waves with pitching flap-type ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.

  18. Flight testing of live Monarch butterflies to determine the aerodynamic benefit of butterfly scales

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Cranford, Jacob; Conway, Jasmine; Slegers, Nathan; Dechello, Nicole; Wilroy, Jacob

    2014-11-01

    Evolutionary adaptations in the morphological structure of butterfly scales (0.1 mm in size) to develop a unique micro-patterning resulting in a surface drag alteration, stem from a probable aerodynamic benefit of minimizing the energy requirement to fly a very lightweight body with comparably large surface area in a low Re flow regime. Live Monarch butterflies were tested at UAHuntsville's Autonomous Tracking and Optical Measurement (ATOM) Laboratory, which uses 22 Vicon T40 cameras that allow for millimeter level tracking of reflective markers at 515 fps over a 4 m × 6 m × 7 m volume. Data recorded included the flight path as well as the wing flapping angle and wing-beat frequency. Insects were first tested with their scales intact, and then again with the scales carefully removed. Differences in flapping frequency and/or energy obtained during flight due to the removal of the scales will be discussed. Initial data analysis indicates that scale removal in some specimens leads to increased flapping frequencies for similar energetic flight or reduced flight speed for similar flapping frequencies. Both results point to the scales providing an aerodynamic benefit, which is hypothesized to be linked to leading-edge vortex formation and induced drag. Funding from the National Science Foundation (CBET and REU) is gratefully acknowledged.

  19. Analysis of high aspect ratio jet flap wings of arbitrary geometry.

    NASA Technical Reports Server (NTRS)

    Lissaman, P. B. S.

    1973-01-01

    Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.

  20. Estimation of Unsteady Aerodynamics in the Wake of a Freely Flying European Starling (Sturnus vulgaris)

    PubMed Central

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J.; Bezner-Kerr, Wayne; Guglielmo, Christopher G.; Kopp, Gregory A.; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243

  1. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).

    PubMed

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.

  2. The effects of variations in Reynolds number between 3.0 x 10sub6 and 25.0 x 10sub6 upon the aerodynamic characteristics of a number of NACA 6-series airfoil sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K, Jr; Bursnall, William J

    1950-01-01

    Results are presented of an investigation made to determine the two-dimensional lift and drag characteristics of nine NACA 6-series airfoil section at Reynolds numbers of 15.0 x 10sub6, 20.0 x 10sub6, and 25.0 x 10sub6. Also presented are data from NACA Technical Report 824 for the same airfoils at Reynolds numbers of 3.0 x 10sub6, 6.0 x 10sub6, and 9.0 x 10sub6. The airfoils selected represent sections having variations in the airfoil thickness, thickness form, and camber. The characteristics of an airfoil with a split flap were determined in one instance, as was the effect of surface roughness. Qualitative explanations in terms of flow behavior are advanced for the observed types of scale effect.

  3. [BIPADDLED SPLIT PECTORALIS MAJOR MYOCUTANEOUS FLAPS FOR IMMEDIATE RECONSTRUCTION OF ORAL MUCOSAL DEFECTS AND NECK DEFECTS AFTER RESECTION OF RECURRENT ORAL CANCER].

    PubMed

    Chen, Jie; Jiang, Canhua; Li, Ning; Gao, Zhengyang; Chen, Lichun; Wu, Xiaoshan; Chen, Xinqun; Jian, Xinchun

    2015-07-01

    To investigate the feasibility of the bipaddled split pectoralis major myocutaneous flap for immediate reconstruction of oral mucosal defects and neck defects after resection of recurrent oral cancer. Six patients with oral mucosal defects combined with neck defects after recurrent oral cancer resection were treated with bipaddled split pectoralis major myocutaneous flap between September 2013 and September 2014. There were 5 males and 1 female with an average age of 54.7 years (range, 45-62 years), including 4 cases of recurrent tongue cancer, 1 case of recurrent mandibular gingival cancer, and 1 case of mouth floor carcinoma. All patients underwent local recurrence at 8 to 14 months after first operation, with no distant metastasis. The defects of the intraoral mucosa was 4.0 cm x 2.5 cm to 6.5 cm x 3.5 cm and the defect of the neck skin was 5.5 cm x 3.5 cm to 7.5 cm x 5.0 cm. The pectoralis major myocutaneous flaps (14.0 cm x 3.5 cm to 17.0 cm x 5.5 cm) were incised at the level of the 3rd to the 4th rib, and then split down along the muscle fiber till about 2 cm away from the thoracoacromial vessels, forming 2 independent skin paddles with 1-2 branch vessels to the pedicles of the distal ones. The distal skin paddles were used for oral reconstruction while the proximal paddles for repair of neck defects. The chest donor sites were sutured directly. Cervical haematoma and infection happened in 1 patient respectively after operation, and were cured after symptomatic treatment. All 6 split pectoralis major myocutaneous flaps with 12 skin paddles completely survived. All patients were followed up 6 to 18 months (mean, 11 months). One patient died of pulmonary metastasis at 8 months after operation and the other 5 survived without relapse or metastasis during follow-up. The intraoral paddles showed good shape with satisfactory speech function and swallowing recovery. The paddles also healed perfectly on the neck with flat outlooks, and all patients obtained full appearance and free movement of the neck. No fistula formed on the submandibular region and neck. The bipaddled split pectoralis major myocutaneous flap can complete simultaneous immediate reconstruction of oral mucosal defect and neck defect. It is very useful in the treatment of recurrent oral cancer.

  4. Parachuting with bristled wings

    NASA Astrophysics Data System (ADS)

    Kasoju, Vishwa; Santhanakrishnan, Arvind; Senter, Michael; Armel, Kristen; Miller, Laura

    2017-11-01

    Free takeoff flight recordings of thrips (body length <1 mm) show that they can intermittently cease flapping and instead float passively downwards by spreading their bristled wings. Such drag-based parachuting can lower the speed of falling and aid in long distance dispersal by minimizing energetic demands needed for active flapping flight. However, the role of bristled wings in parachuting remains unclear. In this study, we examine if using bristled wings lowers drag forces in parachuting as compared to solid (non-bristled) wings. Wing angles and settling velocities were obtained from free takeoff flight videos. A solid wing model and bristled wing model with bristle spacing to diameter ratio of 5 performing translational motion were comparatively examined using a dynamically scaled robotic model. We measured force generated under varying wing angle from 45-75 degrees across a Reynolds number (Re) range of 1 to 15. Drag experienced by the wings decreased in both wing models when varying Re from 1 to 15. Leakiness of flow through bristles, visualized using spanwise PIV, and implications for force generation will be presented. Numerical simulations will be used to investigate the stability of free fall using bristled wings.

  5. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  6. Flight Investigation at High Speeds of Profile Drag of Wing of a P-47D Airplane Having Production Surfaces Covered with Camouflage Paint

    NASA Technical Reports Server (NTRS)

    Daum, Fred L.; Zalovcik, John A.

    1946-01-01

    Wing section outboard of flap was tested by wake surveys in Mach range of 0.25 - 0.78 and lift coefficient range 0.06 - 0.69. Results indicated that minimum profile-drag coefficient of 0.0097 was attained for lift coefficients from 0.16 to 0.25 at Mach less than 0.67. Below Mach number at which compressibility shock occurred, variations in Mach of 0.2 had negligible effect on profile drag coefficient. Shock was not evident until critical Mach was exceeded by 0.025.

  7. Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale

    1996-01-01

    An experimental and computational investigation of the effect of lift enhancing tabs on a two-element airfoil was conducted. The objective of the study was to develop an understanding of the flow physics associated with lift enhancing tabs on a multi-element airfoil. A NACA 63(sub 2)-215 ModB airfoil with a 30 percent chord Fowler flap was tested in the NASA Ames 7 by 10 foot wind tunnel. Lift enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computer results predict all of the trends in the experimental data quite well. When the flow over the flap upper surface is attached, tabs mounted at the main element trailing edge (cove tabs) produce very little change in lift. At high flap deflections. however, the flow over the flap is separated and cove tabs produce large increases in lift and corresponding reductions in drag by eliminating the separated flow. Cove tabs permit high flap deflection angles to be achieved and reduce the sensitivity of the airfoil lift to the size of the flap gap. Tabs attached to the flap training edge (flap tabs) are effective at increasing lift without significantly increasing drag. A combination of a cove tab and a flap tab increased the airfoil lift coefficient by 11 percent relative to the highest lift tab coefficient achieved by any baseline configuration at an angle of attack of zero percent and the maximum lift coefficient was increased by more than 3 percent. A simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift enhancing tabs work. The tabs were modeled by a point vortex at the training edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

  8. The Effects of a Highly Cambered Low-Drag Wing and of Auxiliary Flaps on the High-Speed Aerodynamic Characteristics of a Twin-Engine Pursuit Airplane Model

    NASA Technical Reports Server (NTRS)

    Ganzer, Victor M

    1944-01-01

    Results are presented for tests of two wings, an NACA 230-series wing and a highly-cambered NACA 66-series wing on a twin-engine pursuit airplane. Auxiliary control flaps were tested in combinations with each wing. Data showing comparison of high-speed aerodynamic characteristics of the model when equipped with each wing, the effect of the auxiliary control flaps on aerodynamic characteristics, and elevator effectiveness for the model with the 66-series wing are presented. High-speed aerodynamic characteristics of the model were improved with the 66-series wing.

  9. Artificial Bird Feathers: An Adaptive Wing with High Lift Capability.

    NASA Astrophysics Data System (ADS)

    Hage, W.; Meyer, R.; Bechert, D. W.

    1997-11-01

    In Wind tunnel experiments, the operation of the covering feathers of bird wings has been investigated. At incipient flow separation, local flow reversal lifts the feathers and inhibits the spreading of the separation regime towards the leading edge. This mechanism can be utilized by movable flaps on airfoils. The operation of quasi-steady and of vibrating movable flaps is outlined. These devices are self-actuated, require no energy and do not produce parasitic drag. They are compatible with laminar and turbulent airfoils as well as with various conventional flaps on aircraft wings. Laboratory and flight experiments are shown. Ref: AIAA-Paper 97-1960.

  10. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  11. Measurements of noise produced by flow past lifting surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1978-01-01

    Wind tunnel studies have been conducted to determine the specific locations of aerodynamic noise production within the flow field about various lifting-surface configurations. The models tested included low aspect ratio shapes intended to represent aircraft flaps, a finite aspect ratio NACA 0012 wing, and a multi-element wing section consisting of a main section, a leading edge flap, and dual trailing edge flaps. Turbulence was induced on the models by surface roughness. Lift and drag were measured for the flap models. Hot-wire anemometry was used for study of the flap-model vortex roll-up. Apparent noise source distributions were measured by use of a directional microphone system, located outside the tunnel, which was scanned about the flow region to be analyzed under computer control. These distributions exhibited a diversity of pattern, suggesting that several flow processes are important to lifting-surface noise production. Speculation concerning these processes is offered.

  12. Aerodynamic characteristics of a small-scale straight and swept-back wing with knee-blown jet flaps

    NASA Technical Reports Server (NTRS)

    Morehouse, G. G.; Eckert, W. T.; Boles, R. A.

    1977-01-01

    Two sting-mounted, 50.8 cm (20 in.) span, knee-blown, jet-flap models were tested in a large (2.1- by 2.5-m (7- by 10-ft) subsonic wind tunnel. A straight- and swept-wing model were tested with fixed flap deflection with various combinations of full-span leading-edge slats. The swept-wing model was also tested with wing tip extensions. Data were taken at angles-of-attack between 0 deg and 40 deg, at dynamic pressures between 143.6 N/sq m (3 lb/sq ft) and 239.4 N/sq m (5 lb/sq ft), and at Reynolds numbers (based on wing chord) ranging from 100,000 to 132,000. Jet flap momentum blowing coefficients up to 10 were used. Lift, drag, and pitching-moment coefficients, and exit flow profiles for the flap blowing are presented in graphical form without analysis.

  13. Performance of Swashplateless Ultralight Helicopter Rotor with Trailing-edge Flaps for Primary Flight Control

    NASA Technical Reports Server (NTRS)

    Shen, Jin-Wei; Chopra, Inderjit

    2003-01-01

    The objective of present study is to evaluate the rotor performance, trailing-edge deflections and actuation requirement of a helicopter rotor with trailing-edge flap system for primary flight control. The swashplateless design is implemented by modifying a two-bladed teetering rotor of an production ultralight helicopter through the use of plain flaps on the blades, and by replacing the pitch link to fixed system control system assembly with a root spring. A comprehensive rotorcraft analysis based on UMARC is carried out to obtain the results for both the swashplateless and a conventional baseline rotor configuration. The predictions show swashplateless configuration achieve superior performance than the conventional rotor attributed from reduction of parasite drag by eliminating swashplate mechanic system. It is indicated that optimal selection of blade pitch index angle, flap location, length, and chord ratio reduces flap deflections and actuation requirements, however, has virtually no effect on rotor performance.

  14. Initial Assessment of a Variable-Camber Continuous Trailing-Edge Flap System on a Rigid Wing for Drag Reduction in Subsonic Cruise

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Totah, Joe; Trinh, Khanh; Ting, Eric

    2013-01-01

    In this paper, we describe an initial optimization study of a Variable-Camber Continuous Trailing-Edge Flap (VCCTEF) system. The VCCTEF provides a light-weight control system for aircraft with long flexible wings, providing efficient high-lift capability for takeoff and landing, and greater efficiency with reduced drag at cruising flight by considering the effects of aeroelastic wing deformations in the control law. The VCCTEF system is comprised of a large number of distributed and individually-actuatable control surfaces that are constrained in movement relative to neighboring surfaces, and are non-trivially coupled through structural aeroelastic dynamics. Minimzation of drag results in a constrained, coupled, non-linear optimization over a high-dimension search space. In this paper, we describe the modeling, analysis, and optimization of the VCCTEF system control inputs for minimum drag in cruise. The purpose of this initial study is to quantify the expected benefits of the system concept. The scope of this analysis is limited to consideration of a rigid wing without structural flexibility in a steady-state cruise condition at various fuel weights. For analysis, we developed an optimization engine that couples geometric synthesis with vortex-lattice analysis to automate the optimization procedure. In this paper, we present and describe the VCCTEF system concept, optimization approach and tools, run-time performance, and results of the optimization at 20%, 50%, and 80% fuel load. This initial limited-scope study finds the VCCTEF system can potentially gain nearly 10% reduction in cruise drag, provides greater drag savings at lower operating weight, and efficiency is negatively impacted by the severity of relative constraints between control surfaces.

  15. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation

    PubMed Central

    Krishnan, Krishnamoorthy; Ben-Gida, Hadar; Kirchhefer, Adam J.; Kopp, Gregory A.; Guglielmo, Christopher G.

    2017-01-01

    Analysis of the aerodynamics of flapping wings has yielded a general understanding of how birds generate lift and thrust during flight. However, the role of unsteady aerodynamics in avian flight due to the flapping motion still holds open questions in respect to performance and efficiency. We studied the flight of three distinctive bird species: western sandpiper (Calidris mauri), European starling (Sturnus vulgaris) and American robin (Turdus migratorius) using long-duration, time-resolved particle image velocimetry, to better characterize and advance our understanding of how birds use unsteady flow features to enhance their aerodynamic performances during flapping flight. We show that during transitions between downstroke and upstroke phases of the wing cycle, the near wake-flow structures vary and generate unique sets of vortices. These structures appear as quadruple layers of concentrated vorticity aligned at an angle with respect to the horizon (named ‘double branch’). They occur where the circulation gradient changes sign, which implies that the forces exerted by the flapping wings of birds are modified during the transition phases. The flow patterns are similar in (non-dimensional) size and magnitude for the different birds suggesting that there are common mechanisms operating during flapping flight across species. These flow patterns occur at the same phase where drag reduction of about 5% per cycle and lift enhancement were observed in our prior studies. We propose that these flow structures should be considered in wake flow models that seek to account for the contribution of unsteady flow to lift and drag. PMID:28163881

  16. PAN AIR application to the F-106B

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.

    1986-01-01

    The PAN AIR computer code was employed in the present study to investigate the aerodynamic effects of the various geometrical changes and flow conditions on a configuration similar to the F-106B half-airplane tested in the Langley 30x60-foot wind tunnel. The various geometries studied included two forebodies (original and shortened), two inlet flow conditions (open and closed) two vortex flap situations (off and on). The attached flow theoretical solutions were obtained for Mach number of 0.08 and angle of attack of 8 deg., 10 deg., 12 deg., and 14 deg. In general this investigation revealed that the shortening of the forebody or closing of the inlet produced only a small change in the overall aerodynamic coefficients of the basic F-106B configuration throughout the examined angles of attack. However, closing the inlet of the configuration resulted in a slightly higher drag level at low angles of attack. Furthermore, at and above 10 deg. angle of attack, it was shown that the presence of the vortex flap causes an increase in the total lift and drag. Also, these theoretical results showed the expected reduction in longitudinal stability level with addition of the vortex flap to the basic F-106B configuration.

  17. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  18. Combined use of the latissimus dorsi musculocutaneous free flap and split-rib grafts for cranial vault reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stueber, K.; Salcman, M.; Spence, R.J.

    1985-08-01

    The patient described in this article had a large skull defect under the scalp which had been irradiated during treatment of a malignant brain tumor. The patient desired reconstruction of her defect. To provide good soft-tissue coverage for the bony reconstruction, a free latissimus dorsi musculocutaneous flap was used. The bony defect was partially reconstructed with split-rib grafts. The two parts of the reconstruction were combined into one operation, since it was felt that the well-vascularized muscle would ensure viability of the bone grafts.

  19. Subsonic balance and pressure investigation of a 60-deg delta wing with leading-edge devices (data report)

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Tingas, S. A.

    1981-01-01

    The drag reduction potential of leading edge devices on a 60 degree delta wing at high lift was examined. Geometric variations of fences, chordwise slots, pylon type vortex generators, leading edge vortex flaps, and sharp leading edge extensions were tested individually and in specific combinations to improve high-alpha drag performance with a minimum of low-alpha drag penalty. The force, moment, and surface static pressure data for angles of attack up to 23 degrees, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter are documented.

  20. Avoiding secondary skin graft donor site morbidity in the fibula free flap harvest.

    PubMed

    Kim, Paul D; Fleck, Terry; Heffelfinger, Ryan; Blackwell, Keith E

    2008-12-01

    To compare donor site morbidity in patients who have undergone fibula free flap reconstruction in which the skin graft was taken from the expected cutaneous paddle of the fibula with the known complications of the popular technique of obtaining a split-thickness skin graft (STSG) from a secondary donor site. Cohort study. The tertiary care centers at Loma Linda University Medical Center and University of California, Los Angeles, Medical Center. From September 1, 2006, to March 30, 2007, 30 patients underwent fibula free flap harvest by 2 surgeons at separate tertiary care centers. Twenty-one of those procedures took place at the University of California, Los Angeles, and 9 at Loma Linda University. Patients included 15 men (50%) and 15 women (50%), with a mean age of 58 (range, 19-88) years. All 30 patients underwent fibula free flap harvest with a split-thickness skin graft (graft thickness, 0.04 cm), obtained from osteocutaneous paddle using a 5.1-cm-wide dermatome, as well as oral cavity and oropharyngeal reconstruction with the de-epithelialized skin paddle. Measures of donor site morbidity, including graft failure and wound breakdown, and measures of recipient site morbidity, including flap failure, hardware complications, intraoral complications, and the need for additional surgery. Of the 30 patients who underwent this procedure, 4 had partial skin graft failures, for a complete skin graft survival of 87%. There were no complete skin graft losses. Regarding the fibula osteocutaneous free flap, there were no complete flap losses, 1 skin paddle necrosis that required debridement, 2 postoperative orocutaneous fistulas, 1 case of infected/extruded hardware, and 1 adhesion formation that required additional surgery for lysis of adhesion and placement of the split-thickness skin graft. The outlined novel technique has similar rates of free flap survival and skin graft take compared with previously described methods. Harvesting the skin graft over the expected osteocutaneous paddle results in decreased lower extremity morbidity by providing equivalent graft tissue for donor site closure and eliminating the morbidity of a secondary donor site. As long as there will not be 2 large opposing grafted surfaces, this technique should be considered when harvesting fibula free flaps for reconstruction of oromandibular resection defects, especially in cancers of the alveolar ridge and floor of the mouth.

  1. An Investigation of the Wing and the Wing-Fuselage Combination of a Full-Scale Model of the Republic XP-91 Airplane in the Ames 40-by 80-Foot Wing Tunnel

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; Dew, Joseph K.

    1948-01-01

    Wind-tunnel tests of a full-scale model of the Republic XP-91 airplane were conducted to determine the longitudinal and lateral characteristics of the wing alone and the wing-fuselage combination, the characteristics of the aileron, and the damping in roll af the wing alone. Various high-lift devices were investigated including trailing-edge split flaps and partial- and full-span leading-edge slats and Krueger-type nose flaps. Results of this investigation showed that a very significant gain in maximum lift could be achieved through use of the proper leading-edge device, The maximum lift coefficient of the model with split flaps and the original partial-span straight slats was only 1.2; whereas a value of approximately 1.8 was obtained by drooping the slat and extending it full span, Improvement in maximum lift of approximately the same amount resulted when a full-span nose flap was substituted for the original partial-span slat.

  2. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  3. Full-scale-wind-tunnel Tests of a 35 Degree Sweptback Wing Airplane with High-velocity Blowing over the Training-edge Flaps

    NASA Technical Reports Server (NTRS)

    Kelley, Mark W; Tolhurst, William H JR

    1955-01-01

    A wind-tunnel investigation was made to determine the effects of ejecting high-velocity air near the leading edge of plain trailing-edge flaps on a 35 degree sweptback wing. The tests were made with flap deflections from 45 degrees to 85 degrees and with pressure ratios across the flap nozzles from sub-critical up to 2.9. A limited study of the effects of nozzle location and configuration on the efficiency of the flap was made. Measurements of the lift, drag, and pitching moment were made for Reynolds numbers from 5.8 to 10.1x10(6). Measurements were also made of the weight rate of flow, pressure, and temperature of the air supplied to the flap nozzles.The results show that blowing on the deflected flap produced large flap lift increments. The amount of air required to prevent flow separation on the flap was significantly less than that estimated from published two-dimensional data. When the amount of air ejected over the flap was just sufficient to prevent flow separation, the lift increment obtained agreed well with linear inviscid fluid theory up to flap deflections of 60 degrees. The flap lift increment at 85 degrees flap deflection was about 80 percent of that predicted theoretically.With larger amounts of air blown over the flap, these lift increments could be significantly increased. It was found that the performance of the flap was relatively insensitive to the location of the flap nozzle, to spacers in the nozzle, and to flow disturbances such as those caused by leading-edge slats or discontinuities on the wing or flap surfaces. Analysis of the results indicated that installation of this system on an F-86 airplane is feasible.

  4. Wind-tunnel Investigation of High-lift and Stall-control Devices on a 37 Degree Sweptback Wing of Aspect Ratio 6 at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Koven, William; Graham, Robert R

    1948-01-01

    Results are presented of an investigation in the Langley 19-foot pressure tunnel of the longitudinal characteristics of a semispan model wing having 37 degrees sweepback of the leading edge, an aspect ratio of 6, and NACA 641-212 airfoil section perpendicular to the 27-percent-chord line. Several types of stall-control devices including extensible round-nose leading-edge flaps, a leading-edge slat, and a drooped leading edge were investigated; partial- and full-span trailing-edge split and double slotted flaps were also tested. In addition, various combinations of the aforementioned leading- and trailing-edge flaps were investigated. The tests covered a range of Reynolds numbers between 2.00 x 10(6) and 9.35 x 10(6). The wing with or without trailing-edge splity of double slotted flap was longitudinally unstable near maximum lift due to tip stalling. The addition of an outboard half-span leading-edge flap or a leading-edge slat to the plain wing or wing with inboard half-span split flaps eliminated tip stalling and resulted in stable moment variations at the stall. The drooped leading edge, on the other hand, was only effective when used in conjunction with an upper-surface fence. The combination of an outboard leading-edge device and inboard half-span double slotted flap resulted in an undesirable loop in the pitching-moment curve near maximum lift in spite of an inboard stall. The loop is attributed to the section characteristics of the double slotted flap. Air-flow surveys behind the wing indicated that a suitably placed horizontal tail would eliminate the loop in the moment curve.

  5. A Wind-Tunnel Investigation of a Transonic-Transport Configuration Utilizing Drag-Reducing Devices at Mach Numbers from 0.20 to 1.03

    NASA Technical Reports Server (NTRS)

    Loving, Donald L.

    1961-01-01

    The static longitudinal stability and control and lateral characteristics of a transonic-transport model, incorporating recent drag-reducing devices, has been investigated in the Langley 8-foot transonic pressure tunnel. The wing was cambered, had a thickened root and a taper ratio of 0.3. Wing sweepback angles of 45 degrees and 40 degrees were investigated with corresponding aspect ratios of 7 and 8, respectively. Modifications to the model for reducing the drag were: a forward fuselage addition and special bodies (four big enough to house jet engines) added to the upper surface of the wing. Other components and changes investigated included an empennage, a wing-tip body, wing fences, wing trailing-edge flaps, horizontal-tail settings, and wing dihedral angle. The investigation covered the Mach number range from 0.20 to 1.03 for the angle-of-attack range from -5 degrees to 15.4 degrees, and a sideslip angle of -5 degrees, in the Reynolds number range from 0.52 times 10(exp 6) to 1.94 times 10(exp 6) based on the wing mean aerodynamic chord. The various fuselage and wing additions delayed the drag-rise Mach number and greatly reduced the drag beyond the drag rise. The wing bodies markedly alleviated unstable pitch tendencies throughout the test Mach number range. At low landing speeds, the wing bodies exhibited little interference with the ability of trailing-edge flaps to increase the lift near maximum lift coefficient; and the use of fences greatly reduced the severe longitudinal instability trend at landing attitudes. The model with a 6 degree dihedral angle exhibited positive lateral and directional stability characteristics in the presence of the fuselage and wing additions. An increase in drag-rise Mach number associated with the fuselage and wing additions on the 40 degree sweptback wing combination was similar to that for the comparable 45 degree combination. These additions did, however, reduce the drag of the 40 degree sweptback configurations more than the 45 degree configurations in the transonic speed range.

  6. An Aerodynamic Assessment of Micro-Drag Generators (MDGs)

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S.

    1998-01-01

    Commercial transports as well as fighter aircraft of the future are being designed with very low drag (friction and pressure). Concurrently, commuter airports are being built or envisioned to be built in the centers of metropolitan areas where shorter runways and/or reduced noise footprints on takeoff and landing are required. These requirements and the fact that drag is lower on new vehicles than on older aircraft have resulted in vehicles that require a large amount of braking force (from landing-gear brakes, spoilers, high-lift flaps, thrust reversers, etc.). Micro-drag generators (MDGs) were envisioned to create a uniformly distributed drag force along a vehicle by forcing the flow to separate on the aft-facing surface of a series of deployable devices, thus, generating drag. The devices are intended to work at any speed and for any type of vehicle (aircraft, ground vehicles, sea-faring vehicles). MDGs were applied to a general aviation wing and a representative fuselage shape and tested in two subsonic wind tunnels. The results showed increases in drag of 2 to 6 times that of a "clean" configuration.

  7. Effect of outer wing separation on lift and thrust generation in a flapping wing system.

    PubMed

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-09-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  8. Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.

    1978-01-01

    The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.

  9. Experimental Investigation of a Point Design Optimized Arrow Wing HSCT Configuration

    NASA Technical Reports Server (NTRS)

    Narducci, Robert P.; Sundaram, P.; Agrawal, Shreekant; Cheung, S.; Arslan, A. E.; Martin, G. L.

    1999-01-01

    The M2.4-7A Arrow Wing HSCT configuration was optimized for straight and level cruise at a Mach number of 2.4 and a lift coefficient of 0.10. A quasi-Newton optimization scheme maximized the lift-to-drag ratio (by minimizing drag-to-lift) using Euler solutions from FL067 to estimate the lift and drag forces. A 1.675% wind-tunnel model of the Opt5 HSCT configuration was built to validate the design methodology. Experimental data gathered at the NASA Langley Unitary Plan Wind Tunnel (UPWT) section #2 facility verified CFL3D Euler and Navier-Stokes predictions of the Opt5 performance at the design point. In turn, CFL3D confirmed the improvement in the lift-to-drag ratio obtained during the optimization, thus validating the design procedure. A data base at off-design conditions was obtained during three wind-tunnel tests. The entry into NASA Langley UPWT section #2 obtained data at a free stream Mach number, M(sub infinity), of 2.55 as well as the design Mach number, M(sub infinity)=2.4. Data from a Mach number range of 1.8 to 2.4 was taken at UPWT section #1. Transonic and low supersonic Mach numbers, M(sub infinity)=0.6 to 1.2, was gathered at the NASA Langley 16 ft. Transonic Wind Tunnel (TWT). In addition to good agreement between CFD and experimental data, highlights from the wind-tunnel tests include a trip dot study suggesting a linear relationship between trip dot drag and Mach number, an aeroelastic study that measured the outboard wing deflection and twist, and a flap scheduling study that identifies the possibility of only one leading-edge and trailing-edge flap setting for transonic cruise and another for low supersonic acceleration.

  10. Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, A; Chatelain, P; Heineck, J

    2004-04-13

    Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive needmore » to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.« less

  11. Wind-Tunnel Investigation of the Horizontal Motion of a Wing Near the Ground

    NASA Technical Reports Server (NTRS)

    Serebrisky, Y. M.; Biachuev, S. A.

    1946-01-01

    By the method of images the horizontal steady motion of a wing at small heights above the ground was investigated in the wind tunnel, A rectangular wing with Clark Y-H profile was tested with and without flaps. The distance from the trailing edge of the wing to the ground was varied within the limits 0.75 less than or = s/c less than or = 0.25. Measurements were made of the lift, the drag, the pitching moment, and the pressure distribution at one section. For a wing without flaps and one with flaps a considereble decrease in the lift force and a,drop in the drag was obtained at angles of attack below stalling. The flow separation near the ground occurs at smaller angles of attack than is the case for a great height above the ground. At horizontal steady flight for practical values of the height above the ground the maximum lift coefficient for the wing without flaps changes little, but markedly decreases for the wing with flaps. Analysis of these phenomena involves the investigation of the pressure distribution. The pressure distribution curves showed that the changes occurring near the ground are not equivalent to a change in the angle of attack. At the lower surface of the section a very strong increase in the pressures is observed. The pressure changes on the upper surface at angles of attack below stalling are insignificant and lead mainly to an increase in the unfavorable pressure gradient, resulting in the earlier occurrence of separation. For a wing with flaps at large angles of attack for distances from the trailing edge of the flap to the ground less than 0.5 chord, the flow between the wing end the ground is retarded so greatly that the pressure coefficient at the lower surface of the section is very near its limiting value (P = 1), and any further possibility of increase in the pressure is very small. In the application an approximate computation procedure is given of the change of certain aerodynamic characteristics for horizontal steady flight near the ground.

  12. Low-speed investigation of effects of wing leading- and trailing-edge flap deflections and canard incidence on a fighter configuration equipped with a forward-swept wing

    NASA Technical Reports Server (NTRS)

    Gainer, T. G.; Mann, M. J.; Huffman, J. K.

    1984-01-01

    An advanced fighter configuration with a forward-swept wing of aspect ratio 3.28 is tested in the Langley 7 by 10 Foot High Speed Tunnel at a Mach number of 0.3. The wing has 29.5 degrees of forward sweep of the quarter chord line and is equipped with 15 percent chord leading edge and 30 percent chord trailing edge flaps. The canard is sweptback 45 degrees. Tests were made through a range of angle of attack from about -2 degrees to 22 degrees. Deflecting the flaps significantly improves the lift drag characteristics at the higher angles of attack. The canard is able to trim the configurations with different flap deflections over most of the range of angle of attack. The penalty in maximum lift coefficient due to trimming is about 0.10.

  13. Effect of Reynolds number and turbulence on airfoil aerodynamics at -90-degree incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1994-01-01

    A method has been developed for calculating the viscous flow about airfoils with and without deflected flaps at -90 deg incidence. This method provides for the solution of the unsteady incompressible Navier-Stokes equations by means of an implicit technique. The solution is calculated on a body-fitted computational mesh using a staggered-grid method. The vorticity is defined at the node points, and the velocity components are defined at the mesh-cell sides. The staggered-grid orientation provides for accurate representation of vorticity at the node points and the continuity equation at the mesh-cell centers. The method provides for the noniterative solution of the flowfield and satisfies the continuity equation to machine zero at each time step. The method is evaluated in terms of its stability to predict two-dimensional flow about an airfoil at -90-deg incidence for varying Reynolds number and laminar/turbulent models. The variations of the average loading and surface pressure distribution due to flap deflection, Reynolds number, and laminar or turbulent flow are presented and compared with experimental results. The comparisom indicate that the calculated drag and drag reduction caused by flap deflection and the calculated average surface pressure are in excellent agreement with the measured results at a similar Reynolds number.

  14. Function-sparing tibialis anterior pivoted muscle flap for reconstruction of post-burn and post-traumatic middle-third leg defects with exposed tibia

    PubMed Central

    Megahed, M.A.

    2011-01-01

    Summary Reconstruction of the middle third of the leg is a challenging procedure. The tibialis anterior muscle flap can be useful in reconstruction of the middle third of the leg with exposed tibia. The aim of this work was to evaluate the efficacy of tibialis anterior pivoted muscle flap for reconstruction of the middle third of the leg with functional preservation. This study, performed in the Plastic, Reconstructive and Burn Unit, Menoufiya University Hospital, Egypt, included 16 patients (13 males and 3 females) during the period February 2007/May 2010: seven post-burn and nine post-traumatic patients with post-burn middle-third leg defects with exposed tibia. Their ages ranged from 14 to 67 years. A function-sparing lateral split tibialis anterior pivoted muscle flap was used in all the patients. Follow-up ranged from six months to two years. Partial flap loss occurred in one patient (6.25%), there was no post-operative haematoma or infection, and only one case of wound dehiscence (6.25%), managed by secondary suture. No donor site morbidity or any significant functional impairment was observed, and the subjective aesthetic results were satisfactory. Lateral split tibialis anterior pivoted muscle flap is a useful, simple technique, allowing rapid, durable and reliable coverage of middle-third leg defects without significant impairment of function and without sacrificing major nerves or vessels in the foot, and without any donor site morbidity. PMID:22262962

  15. Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps

    NASA Astrophysics Data System (ADS)

    Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.

    2017-04-01

    Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.

  16. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  17. Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack

    2012-01-01

    A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.

  18. Approach and Landing Investigation at Lift-Drag Ratios of 2 to 4 Utilizing a Straight-Wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Matranga, Gene J.; Armstrong, Neil A.

    1959-01-01

    A series of landings was performed with a straight-wing airplane to evaluate the effect of low lift-drag ratios on approach and landing characteristics. Landings with a peak lift-drag ratio as low as 3 were performed by altering the airplane configuration (extending speed brakes, flaps, and gear and reducing throttle setting). As lift-drag ratio was reduced, it was necessary either to make the landing pattern tighter or to increase initial altitude, or both. At the lowest lift-drag ratio the pilots believed a 270 deg overhead pattern was advisable because of the greater ease afforded in visually positioning the airplane. The values of the pertinent flare parameters increased with the reduction of lift-drag ratio. These parameters included time required for final flare; speed change during final flare; and altitude, glide slope, indicated airspeed, and vertical velocity at initiation of final flare. The pilots believed that the tolerable limit was reached with this airplane in the present configuration, and that if, because of a further reduction in lift-drag ratio, more severe approaches than those experienced in this program were attempted, additional aids would be required to determine the flare-initiation point.

  19. An Investigation of the Low-speed Stability and Control Characteristics of Swept-forward and Swept-back Wing in the Ames 40- by 80-foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Mccormack, Gerald M; Stevens, Victor I , Jr

    1947-01-01

    An investigation has been made at large scale of the characteristics of highly swept wings. Data were obtained at several angles of sideslip on wings having angles of sweep of plus or minus 45 degrees, plus or minus 30 degrees, and 0 degrees. The airfoil sections of the wings varied from approximately NACA 0015 at the root to NACA 23009 at the tip. Each wing was investigated with flaps under flection, partial-span split flaps deflected 60 degrees, full-span split flaps defected 60 degrees and split-flap-type ailerons deflected plus or minus 15 degrees. Values of maximum lift were obtained at Reynolds numbers raging from 5.7 to 9.2 times 10 to the 6th power. In this report the summarized results are compared with the predictions made by use of the simplified theory for the effect of sweep and with existing small-scale data. The basic wind-tunnel results from which these summary data were taken are included in an appendix. The primary problems accompanying the use of weep as revealed by this investigation are the loss in maximum lift, the high effective dihedral, and the sharp reduction in lateral-control effectiveness. In general, simple theory enables good predictions to be made of the gross effects of sweep but further refinements are necessary to obtain the accuracy required for design purposes. In cases where comparisons can be made, the indications are that, as sweep increases, scale effects diminish and large-scale results approach small-scale results.

  20. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance.

    PubMed

    Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin

    2011-04-12

    Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior--in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics.

  1. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance

    PubMed Central

    Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin

    2011-01-01

    Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior—in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics. PMID:21444774

  2. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds

    PubMed

    Tobalske; Peacock; Dial

    1999-07-01

    It has been proposed elsewhere that flap-bounding, an intermittent flight style consisting of flapping phases interspersed with flexed-wing bounds, should offer no savings in average mechanical power relative to continuous flapping unless a bird flies 1.2 times faster than its maximum range speed (Vmr). Why do some species use intermittent bounds at speeds slower than 1.2Vmr? The 'fixed-gear hypothesis' suggests that flap-bounding is used to vary mean power output in small birds that are otherwise constrained by muscle physiology and wing anatomy to use a fixed muscle shortening velocity and pattern of wing motion at all flight speeds; the 'body-lift hypothesis' suggests that some weight support during bounds could make flap-bounding flight aerodynamically advantageous in comparison with continuous flapping over most forward flight speeds. To test these predictions, we studied high-speed film recordings (300 Hz) of wing and body motion in zebra finches (Taenopygia guttata, mean mass 13.2 g, N=4) taken as the birds flew in a variable-speed wind tunnel (0-14 m s-1). The zebra finches used flap-bounding flight at all speeds, so their flight style was unique compared with that of birds that facultatively shift from continuous flapping or flap-gliding at slow speeds to flap-bounding at fast speeds. There was a significant effect of flight speed on all measured aspects of wing motion except percentage of the wingbeat spent in downstroke. Changes in angular velocity of the wing indicated that contractile velocity in the pectoralis muscle changed with flight speed, which is not consistent with the fixed-gear hypothesis. Although variation in stroke-plane angle relative to the body, pronation angle of the wing and wing span at mid-upstroke showed that the zebra finch changed within-wingbeat geometries according to speed, a vortex-ring gait with a feathered upstroke appeared to be the only gait used during flapping. In contrast, two small species that use continuous flapping during slow flight (0-4 m s-1) either change wingbeat gait according to flight speed or exhibit more variation in stroke-plane and pronation angles relative to the body. Differences in kinematics among species appear to be related to wing design (aspect ratio, skeletal proportions) rather than to pectoralis muscle fiber composition, indicating that the fixed-gear hypothesis should perhaps be modified to exclude muscle physiology and to emphasize constraints due to wing anatomy. Body lift was produced during bounds at speeds from 4 to 14 m s-1. Maximum body lift was 0.0206 N (15.9 % of body weight) at 10 m s-1; body lift:drag ratio declined with increasing air speed. The aerodynamic function of bounds differed with increasing speed from an emphasis on lift production (4-10 m s-1) to an emphasis on drag reduction with a slight loss in lift (12 and 14 m s-1). From a mathematical model of aerodynamic costs, it appeared that flap-bounding offered the zebra finch an aerodynamic advantage relative to continuous flapping at moderate and fast flight speeds (6-14 m s-1), with body lift augmenting any savings offered solely by flap-bounding at speeds faster than 7.1 m s-1. The percentage of time spent flapping during an intermittent flight cycle decreased with increasing speed, so the mechanical cost of transport was likely to be lowest at faster flight speeds (10-14 m s-1).

  3. Vortical flow management for improved configuration aerodynamics: Recent experiences

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1983-01-01

    Recent progress in vortex-control applications for alleviating the adverse consequences of three dimensional separation and vortical interactions on slender body/swept wing configurations is reported. Examples include helical separation trip to alleviate the side force due to forebody vortex asymmetry; hinged strakes to avoid vortex breakdown effects; compartmentation of swept leading edge separation to delay the pitch-up instability; under wing vortex trip and vortex trip and vortex flaps for drag reduction at high lift; and an apex-flap trimmer to fully utilize the lift capability of trailing-edge flaps for take off and landing of delta wings. Experimental results on generic wind-tunnel models are presented to illustrate the vortex-management concepts involved and to indicate their potential for enhancing the subsonic aerodynamics of supersonic-cruise type vehicles.

  4. A Computational and Experimental Study of Nonlinear Aspects of Induced Drag

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.

    1996-01-01

    Despite the 80-year history of classical wing theory, considerable research has recently been directed toward planform and wake effects on induced drag. Nonlinear interactions between the trailing wake and the wing offer the possibility of reducing drag. The nonlinear effect of compressibility on induced drag characteristics may also influence wing design. This thesis deals with the prediction of these nonlinear aspects of induced drag and ways to exploit them. A potential benefit of only a few percent of the drag represents a large fuel savings for the world's commercial transport fleet. Computational methods must be applied carefully to obtain accurate induced drag predictions. Trefftz-plane drag integration is far more reliable than surface pressure integration, but is very sensitive to the accuracy of the force-free wake model. The practical use of Trefftz plane drag integration was extended to transonic flow with the Tranair full-potential code. The induced drag characteristics of a typical transport wing were studied with Tranair, a full-potential method, and A502, a high-order linear panel method to investigate changes in lift distribution and span efficiency due to compressibility. Modeling the force-free wake is a nonlinear problem, even when the flow governing equation is linear. A novel method was developed for computing the force-free wake shape. This hybrid wake-relaxation scheme couples the well-behaved nature of the discrete vortex wake with viscous-core modeling and the high-accuracy velocity prediction of the high-order panel method. The hybrid scheme produced converged wake shapes that allowed accurate Trefftz-plane integration. An unusual split-tip wing concept was studied for exploiting nonlinear wake interaction to reduced induced drag. This design exhibits significant nonlinear interactions between the wing and wake that produced a 12% reduction in induced drag compared to an equivalent elliptical wing at a lift coefficient of 0.7. The performance of the split-tip wing was also investigated by wing tunnel experiments. Induced drag was determined from force measurements by subtracting the estimated viscous drag, and from an analytical drag-decomposition method using a wake survey. The experimental results confirm the computational prediction.

  5. Fluid-Dynamics of Underwater Flight in Sea Butterflies: Analysis using Tomographic PIV

    NASA Astrophysics Data System (ADS)

    Adhikari, D.; Murphy, D. W.; Webster, D. R.; Yen, J.

    2014-11-01

    Sea butterflies, Limacina helicina, swim in sea water with a pair of gelatinous ``wings'' (or parapodia). Their unique propulsion mechanism has been hypothesized to consist of a combination of drag-based propulsion (rowing) and lift-based propulsion (flapping). Drag-based propulsion utilizes maximum drag on the wings during power stroke, followed by minimum drag during recovery stroke. Lift-based propulsion, in contrast, utilizes a pressure difference between the top and bottom of the wings. We present the 3D kinematics of a free-swimming sea butterfly and its induced volumetric velocity field using tomographic PIV. Both upstroke and downstroke motions propel the animal (1 - 3 mm) upward in a sawtooth-like trajectory with average speed of 5 - 15 mm/s (Re = 5 - 45) and roll the calcareous shell forwards-and-backwards at 4 - 5 Hz. The rolling motion effectively positions the wings such that they stroke downward during both the power and recovery strokes, hence inducing upward motion during both phases. A clap-and-fling mechanism is observed at the beginning of the flapping cycle. As the wings come into contact, the velocity of the organism is 2 mm/s. During fling motion, high (unsteady) lift causes the organism velocity to reach 35 mm/s. Separation vortices are observed during the fling motion, and vortices with an opposite sense of rotation form closer to the base of the wing due to the upward translation of the organism. The separation vortices shed into the wake, as the organism translates upward, in the form of separate vortex pairs.

  6. Isolated Performance at Mach Numbers From 0.60 to 2.86 of Several Expendable Nozzle Concepts for Supersonic Applications

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Berrier, Bobby L.; Abeyounis, William K.

    2001-01-01

    Investigations have been conducted in the Langley 16-Foot Transonic Tunnel (at Mach numbers from 0.60 to 1.25) and in the Langley Unitary Plan Wind Tunnel (at Mach numbers from 2.16 to 2.86) at an angle of attack of 0 deg to determine the isolated performance of several expendable nozzle concepts for supersonic nonaugmented turbojet applications. The effects of centerbody base shape, shroud length, shroud ventilation, cruciform shroud expansion ratio, and cruciform shroud flap vectoring were investigated. The nozzle pressure ratio range, which was a function of Mach number, was between 1.9 and 11.8 in the 16-Foot Transonic Tunnel and between 7.9 and 54.9 in the Unitary Plan Wind Tunnel. Discharge coefficient, thrust-minus-drag, and the forces and moments generated by vectoring the divergent shroud flaps (for Mach numbers of 0.60 to 1.25 only) of a cruciform nozzle configuration were measured. The shortest nozzle had the best thrust-minus-drag performance at Mach numbers up to 0.95 but was approached in performance by other configurations at Mach numbers of 1.15 and 1.25. At Mach numbers above 1.25, the cruciform nozzle configuration having the same expansion ratio (2.64) as the fixed geometry nozzles had the best thrust-minus-drag performance. Ventilation of the fixed geometry divergent shrouds to the nozzle external boattail flow generally improved thrust-minus-drag performance at Mach numbers from 0.60 to 1.25, but decreased performance above a Mach number of 1.25.

  7. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    PubMed Central

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver. PMID:27781155

  8. Island osteoperiosteal flap vitality when isolated from basal bone by silicone interposition: an experimental study in rabbit tibia.

    PubMed

    Laviv, Amir; Ringeman, Jason; Debecco, Meir; Jensen, Ole T; Casap, Nardy

    2014-01-01

    This study sought to confirm, through histologic evaluation, the vitality and viability of the island osteoperiosteal flap (i-flap) in a rabbit tibia model. In four rabbits, an osteotomy was performed on the tibial aspect of the right leg. A bone flap was raised, but the periosteal attachment was kept intact. The free-floating i-flap was separated from the rest of the bone by a silicone sheet. The rabbits were to be sacrificed after 1, 2, 4, and 8 weeks and histologic samples examined. All surgeries were accomplished successfully; however, three animals showed fractured tibiae within a few days after surgery and were sacrificed immediately after the fractures were discovered. The fourth rabbit was sacrificed at 4 weeks. Histologic specimens showed vital new bone in the i-flap area and signs of remodeling in the transition zone and the original basal bone. The i-flap remained vital. This suggests potential for use in bone augmentation strategies, particularly for the alveolar split procedure.

  9. Thrust augmentation in tandem flapping foils by foil-wake interaction

    NASA Astrophysics Data System (ADS)

    Anderson, Erik; Lauder, George

    2006-11-01

    Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.

  10. Numerical design of an adaptive aileron

    NASA Astrophysics Data System (ADS)

    Amendola, Gianluca; Dimino, Ignazio; Concilio, Antonio; Magnifico, Marco; Pecora, Rosario

    2016-04-01

    The study herein described is aimed at investigating the feasibility of an innovative full-scale camber morphing aileron device. In the framework of the "Adaptive Aileron" project, an international cooperation between Italy and Canada, this goal was carried out with the integration of different morphing concepts in a wing-tip prototype. As widely demonstrated in recent European projects such as Clean Sky JTI and SARISTU, wing trailing edge morphing may lead to significant drag reduction (up to 6%) in off-design flight points by adapting chord-wise camber variations in cruise to compensate A/C weight reduction following fuel consumption. Those researches focused on the flap region as the most immediate solution to implement structural adaptations. However, there is also a growing interest in extending morphing functionalities to the aileron region preserving its main functionality in controlling aircraft directional stability. In fact, the external region of the wing seems to be the most effective in producing "lift over drag" improvements by morphing. Thus, the objective of the presented research is to achieve a certain drag reduction in off-design flight points by adapting wing shape and lift distribution following static deflections. In perspective, the developed device could also be used as a load alleviation system to reduce gust effects, augmenting its frequency bandwidth. In this paper, the preliminary design of the adaptive aileron is first presented, assessed on the base of the external aerodynamic loads. The primary structure is made of 5 segmented ribs, distributed along 4 bays, each splitted into three consecutive parts, connected with spanwise stringers. The aileron shape modification is then implemented by means of an actuation system, based on a classical quick-return mechanism, opportunely suited for the presented application. Finite element analyses were assessed for properly sizing the load-bearing structure and actuation systems and for characterizing their dynamic behavior. Obtained results are reported and widely discussed.

  11. The Propeller and Cooling-Air-Flow Characteristics of a Twin-Engine Airplane Model Equipped with NACA D sub s -Type Cowlings and with Propellers of NACA 16-Series Airfoil Sections

    DTIC Science & Technology

    1944-09-01

    with the cowling flaps neutral, did not in any case exceed T] = ±0.03. Drag and Cowling-Air Plow with Propeller Removed The effects, on the lift...cowling flaps. Effect of internal flow on drar.- For convenience in studying the drf.g oharaoterlstio a of the two cowling arrangement•, values of the...operation and take-off. Influence of Cooling Hequireir;ent3 on Airplane Performance In the case of many conventional radial elr-ccoled engine

  12. Design and experimental results for a flapped natural-laminar-flow airfoil for general aviation applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.

  13. 14 CFR 25.373 - Speed control devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en route...

  14. 14 CFR 25.373 - Speed control devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en route...

  15. Additional flow field studies of the GA(W)-1 airfoil with 30-percent chord Fowler flap including slot-gap variations and cove shape modifications

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Ostowari, C.

    1983-01-01

    Experimental measurements were made to determine the effects of slot gap opening and flap cove shape on flap and airfoil flow fields. Test model was the GA(W)-1 airfoil with 0.30c Fowler flap deflected 35 degrees. Tests were conducted with optimum, wide and narrow gaps, and with three cove shapes. Three test angles were selected, corresponding to pre-stall and post-stall conditions. Reynolds number was 2,200,000 and Mach number was 0.13. Force, surface pressure, total pressure, and split-film turbulence measurements were made. Results were compared with theory for those parameters for which theoretical values were available.

  16. Thrust Removal Scheme for the FAST-MAC Circulation Control Model Tested in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.

    2014-01-01

    A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.

  17. Pneumatic Flap Performance for a 2D Circulation Control Airfoil, Steady and Pulsed

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.

    2005-01-01

    Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike, yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements cor Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.

  18. Helicopter theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.

  19. Lift estimation of Half-Rotating Wing in hovering flight

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.

    2016-11-01

    Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.

  20. Overview: Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Hashemi, Kelley

    2017-01-01

    An overview of recent aeroelasitc wing-shaping work at the NASA Ames Research Center is presented. The highlight focuses on activity related to the Performance Adaptive Aeroelastic Wing concept and related Variable Camber Continuous Trailing Edge Flap actuation system. Topics covered include drag-reducing configurations and online algorithms, gust and maneuver load techniques, and wind tunnel demonstrations.

  1. Enhancement of Oscillatory Flap Propulsors for Low Speed Flows in Water

    DTIC Science & Technology

    2010-07-13

    in efficiency results from a reduction in the induced drag created by the lifting surface. Many of these modifications such as winglets , tip bulbs...one of the many terms that account for the total power loss. Thus, winglet -type tip modifications for the OFD are expected to lead to an

  2. 14 CFR 23.373 - Speed control devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Speed control devices. 23.373 Section 23....373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are incorporated....441 and 23.443, with the device extended at speeds up to the placard device extended speed; and (b) If...

  3. 14 CFR 23.373 - Speed control devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Speed control devices. 23.373 Section 23....373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are incorporated....441 and 23.443, with the device extended at speeds up to the placard device extended speed; and (b) If...

  4. Sea Butterfly Swimming: Time-resolved Tomographic PIV measurements

    NASA Astrophysics Data System (ADS)

    Murphy, David; Zheng, Lingxiao; Mittal, Rajat; Webster, Donald; Yen, Jeannette

    2011-11-01

    The planktonic sea butterfly Limacina helicina swims by flapping its flexible, wing-like parapodia. The appendage stroke kinematics of this shell-bearing pteropod are three-dimensional and likely contain elements of both drag-based (rowing) and lift-based (flapping) propulsion. Unsteady lift-generating mechanisms such as clap-and-fling may also be present. Upstroke and downstroke motions both propel the animal upward and roll it forwards and backwards, resulting in a sawtooth trajectory. We present time-resolved, tomographic PIV measurements of flow generated by free-swimming pteropods (Limacina helicina) moving upwards with average swimming speeds of 5 - 17 mm/s. The pteropods beat their appendages with a stroke frequency of 4 - 5 Hz. With a size range of 1 - 2 mm, the animals filmed in this study operate in a viscous environment with a Reynolds number of 5 to 20. The volumetric flow measurements provide insight into the three dimensional nature of the flow and into the relative importance of drag- and lift-based propulsion at this low Reynolds number. Preliminary results from Navier-Stokes simulations of the flow associated with the swimming of this organism will also be presented.

  5. Reconstruction of two separate defects in the upper extremity using anterolateral thigh chimeric flap.

    PubMed

    Peng, Feng; Chen, Lin; Han, Dong; Xiao, Chenwei; Bao, Qiyuan; Wang, Tao

    2013-11-01

    We presented our experience on the use of anterolateral thigh (ALT) chimeric flap to reconstruct two separate defects in upper extremity. From December 2009 to August 2012, we used this ALT chimeric flap to reconstruct two separate defects in upper extremity on five patients (mean age: 36.6 years; range: 15 ∼ 47 years). The locations of defect were palm and fingers in four patients and forearm in the other patient. The sizes of defect ranged from 4.5 × 1.5 cm to 20 × 10 cm. A minimum of two separate perforator vessels in the flap were identified. The skin paddle was then split between the two perforators to shape two separate paddles with a common vascular supply. There were no cases of flap failure or re-exploration. Four donor sites were directly closed and one was covered by a skin graft. Donor-site morbidity was negligible. The ALT chimeric flap provides customized cover for two separate defects in upper extremity. Copyright © 2013 Wiley Periodicals, Inc.

  6. Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    NASA Technical Reports Server (NTRS)

    Tingas, S. A.; Rao, D. M.

    1982-01-01

    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.

  7. Flapping modes of three filaments placed side by side in a free stream

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Lu, Xi-Yun

    2010-11-01

    Flexible filaments flapping in a surrounding flow are useful models for understanding the flow-induced vibration and mimicking the schooling behavior of fish. In the present work, the coupled modes of three identical filaments in a side-by- side arrangement are studied using the linear stability analysis and also an immersed boundary--lattice Boltzmann method for low Reynolds numbers (Re on order of 100). The numerical simulations show that the system dynamics exhibits several patterns that depend on the spacing between the filaments. Among these patterns, three can be predicted by the linear analysis and have been reported before. These modes are: (1) the three filaments all flap in phase; (2) the two outer filaments are out of phase while the middle one is stable; (3) the two outer filaments are in phase while the middle one is out of phase. The simulations also identified two additional modes: (1) the outer two filaments are out of phase while the middle one flaps at a frequency reduced by half; (2) the outer two filaments are out of phase while the middle one flaps at a slightly different frequency. In addition to the vibratory modes, the drag force and the flapping amplitude are also computed, and the implication of the result will be discussed.

  8. Design and construction of an airfoil with controlled flap

    NASA Astrophysics Data System (ADS)

    Amin, Md. Ruhul; Rahman, S. M. Mahbobur; Mashud, Mohammad; Rabbi, Md. Fazle

    2017-06-01

    For modern aircrafts maneuvering control and reduction of power loss is a matter of great concern in Aerodynamics. Separation of airflow over the wings of aircraft at high angle of attack or at other situations is a hindrance to proper maneuvering control. As flow separation increases drag force on the aircraft, it consumes excess power. For these reasons much effort and research has gone into the design of aerodynamic surfaces which delay flow separation and keep the local flow attached for as long as possible. One of the simple and cost-effective way is to use a hinged flap on the wing of the aircraft, which lifts and self-adjusts to a position dependent on the aerodynamic forces and flap weight due to reversed flow at increasing angle of attack. There is a limitation of this kind of process. At very high angles of attack, the reversed flow would cause the flap to tip forwards entirely and the effect of the flap would vanish. For recovering this limitation an idea of controlling the movement or rotation of the flap has been proposed in this paper. A light surface was selected as a flap and was coupled to the shaft of a servo motor, which was placed on a model airfoil. For controlling the angle of rotation of the motor as well as the flap arbitrarily, an electronic circuit comprising necessary components was designed and applied to the servo motor successfully.

  9. Leading-edge vortex research: Some nonplanar concepts and current challenges

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Osborn, R. F.

    1986-01-01

    Some background information is provided for the Vortex Flow Aerodynamics Conference and that current slender wing airplanes do not use variable leading edge geometry to improve transonic drag polar is shown. Highlights of some of the initial studies combining wing camber, or flaps, with vortex flow are presented. Current vortex flap studies were reviewed to show that there is a large subsonic data base and that transonic and supersonic generic studies have begun. There is a need for validated flow field solvers to calculate vortex/shock interactions at transonic and supersonic speeds. Many important research opportunities exist for fundamental vortex flow investigations and for designing advanced fighter concepts.

  10. Atmospheric Probe Model: Construction and Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Vogel, Jerald M.

    1998-01-01

    The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.

  11. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  12. Numerical investigation of multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.

    1993-01-01

    The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.

  13. Dynamic interference of two anti-phase flapping foils in side-by-side arrangement in an incompressible flow

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Zhou, D.; Tao, J. J.; Peng, Z.; Zhu, H. B.; Sun, Z. L.; Tong, H. L.

    2017-03-01

    A two-dimensional computational hydrodynamic model is developed to investigate the propulsive performance of a flapping foil system in viscous incompressible flows, which consists of two anti-phase flapping foils in side-by-side arrangement. In the simulations, the gap between the two foils is varied from 1.0 to 4.0 times of the diameter of the semi-circular leading edge; the amplitude-based Strouhal number is changed from 0.06 to 0.55. The simulations therefore cover the flow regimes from negligible to strong interference in the wake flow. The generations of drag and thrust are investigated as well. The numerical results reveal that the counter-phase flapping motion significantly changes the hydrodynamic force generation and associated propulsive wake. Furthermore, the wake interference becomes important for the case with a smaller foil-foil gap and induces the inverted Bénard von Kármán vortex streets. The results show that the hydrodynamic performance of two anti-phase flapping foils can be significantly different from an isolated pitching foil. Findings of this study are expected to provide new insight for developing hydrodynamic propulsive systems by improving the performance based on the foil-foil interaction.

  14. Elbow reconstruction with a pedicled thoracodorsal artery perforator flap after excision of an upper-extremity giant hairy nevus.

    PubMed

    Oksüz, Sinan; Ulkür, Ersin; Tuncer, Serhan; Sever, Celalettin; Karagöz, Hüseyin

    2013-04-01

    The complexity of managing large soft-tissue defects at the elbow region by conventional techniques arises from the difficulty of providing sufficient tissue with adequate elasticity and durability. Reconstruction options that allow early mobilisation and avoid the risk of functional loss should be considered to achieve defect closure at the elbow region. A 21-year-old man presented with a congenital giant hairy nevus on his left upper extremity. The nevus was excised and the resulting raw surface after the excision was covered with a split-thickness skin graft except for the elbow region. The elbow was covered in one stage with an ipsilateral 24 cm long pedicled thoracodorsal artery perforator (TDAP) flap. The follow-up examination 3 years after total reconstruction demonstrated durable elbow support provided by the TDAP flap. The patient revealed no complaint considering pain or sensitivity even when exposed to mechanical stress. Split-thickness skin grafting of the large superficial defects is almost always possible; however, impairment of the function on joint areas due to gradual contraction and skin graft propensity to ulcers under mechanical stresses can be devastating. The elbow is a weight-bearing area of the body. Elbow defects require durable and thin soft-tissue coverage and the tissue cover must possess excellent elastic properties to re-establish elbow mobility. The TDAP flap is an ideal choice for elbow soft-tissue defects. The longest pedicle length reported for the TDAP flap is 23 cm. In our case, the pedicle length was 24 cm and it was possible to transfer this flap to the elbow on its pedicle. A pedicled TDAP skin flap so as to provide elbow coverage in one stage is a useful choice to retain in one's armamentarium. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope, the lift prediction for the rigid wing is in good agreement with the estimated lift coefficients derived from the wind tunnel test data. Due to the movement of the VCCTEF during the wind tunnel test, uncertainty in the lift prediction due to the indicated variations of the VCCTEF deflection is studied. The results show a significant spread in the lift prediction which contradicts the consistency in the aerodynamic measurements, thus suggesting that the indicated variations as measured by the VICON system may not be reliable. The lift prediction of the flexible wing agrees very well with the measured lift curve for the baseline configuration. The computed bending deflection and wash-out twist of the flexible wing also match reasonably well with the aeroelastic deflection measurements. The results demonstrate the validity of the aerodynamic-structural tool for use to analyze aerodynamic performance of flexible wings.

  16. Energy harvesting for self-powered aerostructure actuation

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  17. The effect of Reynolds number and turbulence on airfoil aerodynamics at -90 degrees incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1993-01-01

    A method has been developed for calculating the viscous flow about airfoils in with and without deflected flaps at -90 deg incidence. This method provides for the solution of the unsteady incompressible Navier-Stokes equations by means of an implicit technique. The solution is calculated on a body-fitted computational mesh using a staggered grid method. The vorticity is defined at the node points, and the velocity components are defined at the mesh-cell sides. The staggered-grid orientation provides for accurate representation of vorticity at the node points and the continuity equation at the mesh-cell centers. The method provides for the direct solution of the flow field and satisfies the continuity equation to machine zero at each time-step. The method is evaluated in terms of its ability to predict two-dimensional flow about an airfoil at -90 degrees incidence for varying Reynolds number and different boundary layer models. A laminar and a turbulent boundary layer models. A laminar and a turbulent boundary layer model are considered in the evaluation of the method. The variation of the average loading and surface pressure distribution due to flap deflection, Reynolds number, and laminar or turbulent flow are presented and compared with experimental results. The comparisons indicate that the calculated drag and drag reduction caused by flap deflection and the calculated average surface pressure are in excellent agreement with the measured results at a similar Reynolds number.

  18. Parametric Study of Afterbody/nozzle Drag on Twin Two-dimensional Convergent-divergent Nozzles at Mach Numbers from 0.60 to 1.20

    NASA Technical Reports Server (NTRS)

    Pendergraft, Odis C., Jr.; Burley, James R., II; Bare, E. Ann

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle drag of nonaxisymmetric two-dimensional convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine, fighter-aircraft model. Tests were conducted over a Mach number range from 0.60 to 1.20 and over an angle-of-attack range from -5 to 9 deg. Nozzle pressure ratio was varied from jet off (1.0) to approximately 10.0, depending on Mach number.

  19. STS-53 Discovery, Orbiter Vehicle (OV) 103, lands on runway 22 at EAFB, Calif

    NASA Image and Video Library

    1992-12-09

    STS-53 Discovery, Orbiter Vehicle (OV) 103, is slowed by a red, white, and blue drag chute during its landing on concrete runway 22 at Edwards Air Force Base (EAFB), California. Main landing gear (MLG) touchdown occurred at 12:43:17 pm (Pacific Standard Time (PST)). This aft view of OV-103 shows the drag chute deployed from its compartment at the base of the vertical tail, the speedbrake/rudder flaps open, and the space shuttle main engines (SSMEs). Both MLG and nose landing gear (NLG) ride along the runway surface. Desert scrub brush appears in the foreground and mountains are seen in the background.

  20. Drag Reduction Devices for Aircraft (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the modeling, application, testing, and development of drag reduction devices for aircraft. Slots, flaps, fences, large-eddy breakup (LEBU) devices, vortex generators and turbines, Helmholtz resonators, and winglets are among the devices discussed. Contour shaping to ensure laminar flow, control boundary layer transition, or minimize turbulence is also covered. Applications include the wings, nacelles, fuselage, empennage, and externals of aircraft designed for high-lift, subsonic, or supersonic operation. The design, testing, and development of directional grooves, commonly called riblets, are covered in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.)

  1. A Simple Strategy in Avulsion Flap Injury: Prediction of Flap Viability Using Wood's Lamp Illumination and Resurfacing with a Full-thickness Skin Graft.

    PubMed

    Lim, Hyoseob; Han, Dae Hee; Lee, Il Jae; Park, Myong Chul

    2014-03-01

    Extensive degloving injuries of the extremities usually result in necrosis of the flap, necessitating comprehensive skin grafting. Provided there is a sufficient tool to evaluate flap viability, full-thickness skin can be used from a nonviable avulsed flap. We used a Wood's lamp to determine the viability of avulsed flaps in the operation field after intravenous injection of fluorescein dye. We experienced 13 cases during 16 months. Fifteen minutes after the intravenous injection of fluorescein dye, the avulsed skin flaps were examined and non-fluorescent areas were marked under Wood's lamp illumination. The marked area was defatted for full-thickness skin grafting. The fluorescent areas were sutured directly without tension. The non-fluorescent areas were covered by defatted skin. Several days later, there was soft tissue necrosis within the flap area. We measured necrotic area and revised the flap. Among all the cases, necrotic area was 21.3% of the total avulsed area. However, if we exclude three cases, one of a carelessly managed patient and two cases of the flaps were inappropriately applied, good results were obtained, with a necrotic area of only 8.4%. Eight patients needed split-thickness skin grafts, and heel pad reconstruction was performed with free flap. A full-thickness skin graft from an avulsed flap is a good method for addressing aesthetic concerns without producing donor site morbidity. Fluorescein dye is a useful, simple, and cost-effective tool for evaluating flap viability. Avulsed flap injuries can be managed well with Wood's lamp illumination and a full-thickness skin graft.

  2. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.

    PubMed

    Fu, Junjiang; Liu, Xiaohui; Shyy, Wei; Qiu, Huihe

    2018-03-14

    In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α  =  45°. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re  =  5.3  ×  10 3 . Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5-10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings.

  3. Supraclavicular Artery Flap for Head and Neck Oncologic Reconstruction: An Emerging Alternative

    PubMed Central

    Shenoy, Ashok; Patil, Vijayraj S.; Prithvi, B. S.; Chavan, P.; Halkud, Rajshekar

    2013-01-01

    Aim. Head and Neck oncologic resections often leave complex defects which are challenging to reconstruct. The need of the hour is a versatile flap which has the advantages of both a regional flap (viz. reliable and easy to harvest) and a free flap (thin, pliable with good colour match). In this a study we assessed the usefulness of the supraclavicular artery flap in head and neck oncologic defects. Materials and Method. The flap was used as a pedicled fasciocutanous and was based on the transverse supraclavicular artery. We assessed this reconstructive option for complications as well as its and functional out comes. Results. Eleven cases underwent supraclavicular artery flap between 20011-2012 of which 5 were males and 6 females. Mean defect size was 5 cm × 6 cm. Nine donor sites were closed primarily and 1 required split skin grafting. We encountered one complete flap loss which was attributed to a band of constricting skin bridge over the vascular pedicle in a defect involving lateral third of midface. Two patient developed pharyngeocutaneous fistula (without flap loss) out of 3 patients who underwent augmentation pharyngoplasty post Near total laryngectomy. Conclusion. Supra clavicular artery flap is a thin versatile, reliable, easy to harvest, with good cosmetic and functional outcome at both ends (recipient and donor) for reconstructing head and neck oncologic defects. PMID:24490064

  4. Comparison of heaving buoy and oscillating flap wave energy converters

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.

    2013-04-01

    Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.

  5. Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo

    2009-01-01

    Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured

  6. The Effectiveness at High Speeds of a 20-Percent-Chord Plain Trailing-Edge Flap on the NACA 65-210 Airfoil

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S., Jr.

    1947-01-01

    An analysis has been made of the lift control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flap on the NACA 65-210 airfoil section. The analysis indicates that the plain trailing-edge flap employed on the 10-percent-thick airfoil at Mach numbers as high as 0.875 retains at least 50-percent of its low-speed lift-control effectiveness, and is sufficiently effective in lateral control application, assuming a rigid wing, to provide adequate airplane rolling characteristics. The plain trailing-edge flap, as compared to the spoiler and the dive-recovery flap, appears to afford the most favorable characteristics as a device for controlling lift continuously throughout the range of Mach numbers from 0.3 to 0.875. At Mach numbers above those for lift divergence of the wing, either a plain flap or a dive-recovery flap may be used on a thin airplane wing to provide auxiliary wing lift when the airplane is to be controlled in flight, other than in dives, at these Mach numbers. The choice of a lift-control device for this use, however, should include the consideration of other factors such as the increments of drag and pitching moment accompanying the use of the device, and the structural and high-speed aerodynamic characteristics of the airplane which is to employ the device.

  7. Hydrodynamics of a freely movable flexible fin near the ground

    NASA Astrophysics Data System (ADS)

    Jeong, Young Dal; Lee, Jae Hwa

    2017-11-01

    In the present study, a freely movable flexible fin is numerically modelled to investigate the flapping dynamics of the fin near the ground in a Poiseuille flow. A leading edge of the fin is fixed in the streamwise direction, whereas the lateral motion is spontaneously determined by hydrodynamic interaction between the fin and surrounding fluid. When the fin is initially positioned at yo, the fin passively migrates toward another wall-normal position for an equilibrium state by the interaction between passively flapping flexible body and ground. At the equilibrium position, the drag coefficient of the fin (CD) significantly decreases due to decaying of the flapping and low flow velocity and the fin can swim consistently without the time-averaged lateral force. Two distinctive behavior at the transient state (flapping and non-flapping migration modes) and three distinctive behaviors at the equilibrium state (deflected-straight, large- and small-amplitude flapping modes) are observed depending on the bending rigidity (γ) and mass ratio (μ) of the fin. The equilibrium position of the fin is investigated as a function of initial position (yo) , bending rigidity (γ) , mass ratio (μ) and the Reynolds number (Re). This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  8. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.

    PubMed

    Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-12-01

    This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force.

  9. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle

    PubMed Central

    Phan, Hoang Vu; Au, Thi Kim Loan

    2016-01-01

    This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force. PMID:28083112

  10. [The usage of inferior turbinate mucosal flap for repairing cleft lip].

    PubMed

    Gao, Pu; Zhao, Min; Qi, Ke-ming; Zhao, Zhen-min; Xiong, Bin

    2004-05-01

    To evaluate a technique for decreasing the tension of the nasal floor during the procedures of repairing complete clef lip. With the designation of an inferior turbinate mucosal flap combined with an oral mucosal flap in the splitting side, the tension was effectively decreased and the nasal floor was closed easily. Eighteen patients was selected for the treatment with this technique since 2000. The follow-ups were 10 to 24 months. All of the patients showed wound healing well with the significant improvement in the donor site. The above mentioned technique may effectively decrease the tension and be used to close the nasal floor safely. It could also reduce the incidence of the complications.

  11. External tissue expansion for difficult wounds using a simple cost effective technique.

    PubMed

    Nandhagopal, Vijayaraghavan; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad; Thiruvoth, Friji Meethale; Sivakumar, Dinesh Kumar; Ashokan, Arjun

    2015-01-01

    To study and discuss role of external tissue expansion and wound closure (ETEWC) technique using hooks and rubber bands. The present study is a retrospective analysis of nine cases of wounds of different aetiology where ETEWC technique was applied using hooks and rubber bands. All the wounds in the study healed completely without split thickness skin graft (SSG) or flap. ETEWC technique using hooks and rubber bands is a cost-effective technique which can be used for wound closure without SSG or flap.

  12. Effect of afterbody geometry on aerodynamic characteristics of isolated nonaxisymmetric afterbodies at transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Bangert, Linda S.; Carson, George T., Jr.

    1992-01-01

    A parametric study was conducted in the Langley 16-Foot Transonic Tunnel on an isolated nonaxisymmetic fuselage model that simulates a twin-engine fighter. The effects of aft-end closure distribution (top/bottom) nozzle-flap boattail angle versus nozzle-sidewall boattail angle) and afterbody and nozzle corner treatment (sharp or radius) were investigated. Four different closure distributions with three different corner radii were tested. Tests were conducted over a range of Mach numbers from 0.40 to 1.25 and over a range of angles of attack from -3 to 9 degrees. Solid plume simulators were used to simulate the jet exhaust. For a given closure distribution in the range of Mach numbers tested, the sharp-corner nozzles generally had the highest drag, and the 2-in. corner-radius nozzles generally had the lowest drag. The effect of closure distribution on afterbody drag was highly dependent on configuration and flight condition.

  13. Effects of Geometry and Kinematics on Animals Leaping Out of Water

    NASA Astrophysics Data System (ADS)

    Chang, Brian; Myeong, Jihye; Virot, Emmanuel; Kim, Ho-Young; Jung, Sunghwan

    2017-11-01

    Leaping out of water is a phenomenon exhibited by a variety of aquatic and semi-aquatic animals, such as frogs and whales. In this study, we aim to elucidate the effects of geometric and kinematic conditions on the propulsive and drag force required for an animal to jump through the water interface. A simple mechanism was designed to measure the propulsive thrust produced by a flapping appendage. In a separate experiment to measure the opposing drag, simplified models of animals are 3D printed and fitted with pressure sensors. The model is accelerated from rest and covers a range of Re from 103 to 105. Using a high-speed camera and pressure sensors, we observed a deformation of the free surface prior to water exit, and correlated this to the drag force. Finally, we discuss a scaling law to describe the general physics which allow animals to leap out of water. NSF EAPSI.

  14. Functional and esthetic outcome enhancement of periodontal surgery by application of plastic surgery principles.

    PubMed

    Hürzeler, M B; Weng, D

    1999-02-01

    The closure of surgical wounds in a layer-by-layer fashion, a common principle of plastic surgery, is applied in this article to the field of periodontal surgery with the introduction of a new flap design. The suggested technique is indicated with all periodontal procedures that aim for hard and soft tissue augmentation (guided bone regeneration, mucogingival surgery, or plastic periodontal surgery) where passive, tension-free wound closure is fundamental for wound healing and a successful functional and esthetic outcome. By means of a series of incisions, buccal and lingual flaps are split several times; this results in a double-partial thickness flap and a coronally positioned palatal sliding flap, respectively. Thus, several tissue layers are obtained and the passive advancement of flaps becomes possible for the coverage of augmented areas. Wound closure with microsurgical suture material is accomplished in a multilayer approach, which ensures adaptation and closure of the outer tissue layers without any tension. Two case reports demonstrate the new plastic periodontal approach.

  15. Computer-assisted orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction to correct facial asymmetry and maxillary defects secondary to maxillectomy in childhood.

    PubMed

    Zhang, Lei; Sun, Hao; Yu, Hong-bo; Yuan, Hao; Shen, Guo-fang; Wang, Xu-dong

    2013-05-01

    Maxillectomy in childhood not only causes composite primary defects but also secondary malformation of the middle and lower face. In the case presented, we introduced computer-assisted planning and simulation of orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction to correct complex craniofacial deformities. Virtual orthognathic surgery and maxillary reconstruction surgery were undertaken preoperatively. LeFort I osteotomy, with bilateral sagittal split ramus osteotomy and lower border ostectomy, was performed to correct malocclusion and facial asymmetry. Maxillary reconstruction was accomplished using a fibular osteomyocutaneous flap. The patient recovered uneventfully with an adequate aesthetic appearance on 3D computed tomography. Our experience indicates that orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction can used to correct complex facial asymmetry and maxillary defects secondary to maxillectomy. Computer-assisted simulation enables precise execution of the reconstruction. It shortens the free flap ischemia time and reduces the risks associated with microsurgery.

  16. Effects of deflected thrust on the longitudinal aerodynamic characteristics of a close-coupled wing-canard configuration. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Paulson, J. W., Jr.

    1977-01-01

    The effects of power on the longitudinal aerodynamic characteristics of a close-coupled wing-canard fighter configuration with partial-span rectangular nozzles at the trailing edge of the wing were investigated. Data were obtained on a basic wing-strake configuration for nozzle and flap deflections from 0 deg to 30 deg and for nominal thrust coefficients from 0 to 0.30. The model was tested over an angle-of-attack range from -2 deg to 40 deg at Mach numbers of 0.15 and 0.18. Results show substantial improvements in lift-curve slope, in maximum lift, and in drag-due-to-lift efficiency when the canard and strakes have been added to the basic wing-fuselage (wing-alone) configuration. Addition of power increased both lift-curve slope and maximum lift, improved longitudinal stability, and reduced drag due to lift on both the wing-canard and wing-canard-strake configurations. These beneficial effects are primarily derived from boundary-layer control due to moderate thrust coefficients which delay flow separation on the nozzle and inboard portion of the wing flaps.

  17. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  18. Airfoil modification effects on subsonic and transonic pressure distributions and performance for the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Sewall, William G.

    1995-01-01

    Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.

  19. Nasofacial defect following fibrosarcoma excision and radiotherapy.

    PubMed

    Burget, G L; Panje, W R; Krause, C J

    1988-01-01

    For initial reconstruction, Dr. Burget suggests that he would have advanced the cheek flap medially toward the nasal septum and, subsequently, reconstructed the missing right half of the nose with a forehead flap and cartilage grafts. Dr. Panje suggested early prosthetic rehabilitation, while Dr. Krause's concepts were similar to Dr. Burget's, with forehead flap nasal reconstruction, after cheek reconstruction to the nasofacial and nasolabial lines with a medially advanced cheek flap. Dr. Panje recommended an immediate maxillary denture prosthesis, as did Dr. Krause (who supplemented this with foam rubber). Dr. Burget placed the prosthesis 3 weeks after tumor ablation. For skin grafts, Drs. Panje and Burget suggested split thickness grafts to all new surfaces to decrease wound contracture, while Dr. Krause used dermis grafts for the same purpose. Other reconstructive methods mentioned were the (1) cervical tubed flap, (2) free scapular flap, (3) Washio flap, (4) tissue expansion, and (5) nasolabial flap. Suggestions for isolated defects included: Lower eyelid--increase internal support by building up the prosthesis; release lower lid from deltopectoral flap and V-Y advancement; support graft or irradiated cartilage (1-2 mm sheet) under orbicularis oculi. Nasal ala--bring present ala down and insert cartilage graft; turn internal skin down and fill the resulting defect with a composite graft. Upper lip--multiple Z-plasty. Retrodisplacement of cheek due to maxillectomy--release buccal scar; skin graft the raw internal surface and build up prosthesis.

  20. Improving the colour match of free tissue transfers to the face with non-cultured autologous cellular spray--a case report on a chin reconstruction.

    PubMed

    Hivelin, M; MacIver, Colin; Heusse, J L; Atlan, M; Lantieri, L

    2012-08-01

    Animal bites can result in extensive avulsion injuries of the face justifying microsurgical replantation attempts. Reconstruction using local tissue harvesting increases the local morbidity while distant tissues can result in colour and skin texture mismatching. Skin grafting of the skin paddle by a split-thickness skin graft is a conventional approach to help overcome this problem. An 18-year-old patient was treated for a chin avulsion after a dog bite injury. The avulsed segment included the whole chin aesthetic unit and one-fifth of the lower lip. The segment was replanted on the inferior labial artery. The replantation failed and a reconstruction with a parascapular free flap was performed. Despite a debulking at 1 month, the aesthetic result had a poor colour match. The technique used to improve this was to de-epithelialise the skin and apply non-cultured autologous epidermal cells (NCAECs) 100 days after the reconstruction. The reconstruction was uneventful. At 3 months follow-up, the patient was able to purse her lips and had regained sensation. After 5 months, the free flap paddle was consistent in colour, pigmentation and texture with the surrounding skin. At 10 months, the patient's only complaint was residual firmness in her scar and flap. The long-term follow-up, over 23 months, confirmed the stability of the results. The use of an NCAEC spray to treat the dyschromia on a parascapular flap used for facial reconstruction is less invasive than split-thickness overgrafting and could extend the use of distant flaps that have been avoided due to poor colour match. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Full-scale wind tunnel-investigation of the Advanced Technology Light Twin-Engine airplane (ATLIT). [Langley full scale tunnel

    NASA Technical Reports Server (NTRS)

    Hassell, J. L., Jr.; Newsom, W. A., Jr.; Yip, L. P.

    1980-01-01

    An investigation was conducted to evaluate the aerodynamic performance, stability, and control characteristics of the Advanced Technology Light Twin Engine airplane (ATLIT). Data were measured over an angle of attack range from -4 deg to 20 deg for various angles of sideslip between -5 deg and 15 deg at Reynolds numbers of 0.0000023 and 0.0000035 for various settings of power and flap deflection. Measurements were also made by means of special thrust torque balances to determine the installed propeller characteristics. Part of the investigation was devoted to drag cleanup of the basic airplane and to the evaluation of the effect of winglets on drag and stability.

  2. Reverse pedicle-based greater saphenous neuro-veno-fasciocutaneous flap for reconstruction of lower leg and foot.

    PubMed

    Kansal, Sandeep; Goil, Pradeep; Agarwal, Vijay; Agarwal, Swarnima; Mishra, Shashank; Agarwal, Deepak; Singh, Pranay

    2014-01-01

    Paucity of soft tissue available locally for reconstruction of defects in leg and foot presents a challenge for reconstructive surgeon. The use of reverse pedicle-based greater saphenous neuro-veno-fasciocutaneous flap in reconstruction of lower leg and foot presents a viable alternative to free flap and cross-leg flap reconstruction. The vascular axis of the flap is formed by the vessels accompanying the saphenous nerve and the greater saphenous vein. We present here our experience with reverse saphenous neurocutaneous flap which provides a stable cover without the need to sacrifice any important vessel of leg. The study is conducted from March 2003 through Dec 2009 and included a total of 96 patients with defects in lower two-thirds of leg and foot. There are 74 males and 22 females. Distal pivot point was kept approximately 5-6 cm from tip of medial malleolus, thus preserving the distal most perforator, and the flap is turned and inserted into the defect. Donor site is covered with a split thickness skin graft. Postoperative follow-up period was 6 weeks to 6 months. The procedure is uneventful in 77 cases. Infection is observed in 14 cases. Partial flap necrosis occurs in 2 cases. Total flap necrosis is noted in 3 cases. Reverse pedicle saphenous flap can be used to reconstruct defects of lower one-third leg and foot with a reliable blood supply with a large arc of rotation while having minimal donor site morbidity.

  3. A mechanism of thrust enhancement on a heaving plate due to flexibility at moderately low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Sheng; Tzeng, Yau-Ting; Chang, Chien-Cheng; Chu, Chin-Chou

    2017-11-01

    A numerical study is conducted to investigate the force mechanisms for a 3D heaving flexible plate from the perspective of a diagnostic force element analysis (Chang 1992). The problem is relevant to a simplified flapping fish-tail with the front edge held fixed in space. The flow is assumed to be laminar with the Reynolds numbers fixed at Re =200 or 500, and the Strouhal number St ranging from 0.1 to 0.6, and the flexure amplitude of the plate a0 for 0.1 to 0.25 (dimensionless). It is shown that heaving, whilst increasing thrust generation, also reduces the frictional drag, yet the flexibility promotes thrust generation at the expense of accruing more frictional drag. In the literature, the thrust exerted on the tail-mimicking plate is largely credited to the vortices in the wake. However, this study performs a regional force analysis to show that the vorticity in the wake region supplies approximately 20-30% of the total thrust, especially in the cases of strong thrust generation. Comparable contributions come also from the regions direct above and below the heaving plate (mainly including the attached vortices) as well as from the two side regions (mainly including the tip vortices) next to the flapping plate. In addition, the potential motion associated with the unsteady flapping and the contribution from the surface vorticity are non-negligible constituent force components. MOST, TAIWAN under Contacts NO. 105-2221-E-002-097-MY3 and NO. 105-2221-E-002 -105 -MY3.

  4. Reconstruction of the anus, rectovaginal septum, and distal part of the vagina after postirradiation necrosis. Report of a unique case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowacki, M.P.; Towpik, E.

    1988-08-01

    Successful repair of postirradiation total loss of the anal sphincters, rectovaginal septum, and distal part of the vagina is reported. Gracilis muscle flap was used as a substitute sphincter. Part of the muscle was wrapped-up in a split skin graft. To the authors' knowledge, this is the first report on new application of gracilis muscle and split skin graft in perineal reconstruction.

  5. Reconstruction of a traumatic plantar foot defect with a novel free flap: The medial triceps brachii free flap.

    PubMed

    Leclère, Franck Marie; Casoli, Vincent

    2015-01-01

    Lower extremity defects may account for 14.6% of the approximately 117 million visits to emergency departments in the U. S. in 2007. In this article, we present a reconstruction of a traumatic plantar foot defect with a medial triceps brachii (MTB) free flap. A 53-year-old man sustained an accidental gunshot wound to the right foot. The patient was admitted after the failure of a sural flap procedure performed in another hospital. He presented with a soft-tissue defect with calcaneal exposition and osteomyelitis. The defect was reconstructed with a MTB free flap anastomosed to his dorsalis pedis vessels. Flap raising time was 52 min. There were no intraoperative complications. The total flap surface was 38.5 cm². The pedicle length was 3 cm. The diameters of the artery and vein of the flap pedicle were 1.1 mm and 1.4 mm, respectively. Ischemia time was 28 min. His donor site healed uneventfully without any morbidity, and the scar was well concealed. The flaps survived and there was no partial flap necrosis. A split-thickness skin graft was performed 12 days postoperatively. Two months later, he had a completely healed wound with no contour abnormality. The total follow-up was 24 months. The patient was able to walk normally. MTB free flap appears to be an excellent option for plantar foot defects in patients with preserved vascularization of the foot. Due to the anatomical shape of the flap, the position of its pedicle, and the moldability of the muscle, we predict that the use of the MTB free flap will grow and develop rapidly for reconstruction of ankle and foot defects.

  6. Classification and Microvascular Flap Selection for Anterior Cranial Fossa Reconstruction.

    PubMed

    Vargo, James D; Przylecki, Wojciech; Camarata, Paul J; Andrews, Brian T

    2018-05-18

     Microvascular reconstruction of the anterior cranial fossa (ACF) creates difficult challenges. Reconstructive goals and flap selection vary based on the defect location within the ACF. This study evaluates the feasibility and reliability of free tissue transfer for salvage reconstruction of low, middle, and high ACF defects.  A retrospective review was performed. Reconstructions were anatomically classified as low (anterior skull base), middle (frontal bar/sinus), and high (frontal bone/soft tissue). Subjects were evaluated based on pathologic indication and goal, type of flap used, and complications observed.  Eleven flaps in 10 subjects were identified and anatomic sites included: low ( n  = 5), middle ( n  = 3), and high ( n  = 3). Eight of 11 reconstructions utilized osteocutaneous flaps including the osteocutaneous radial forearm free flap (OCRFFF) ( n  = 7) and fibula ( n  = 1). Other reconstructions included a split calvarial graft wrapped within a temporoparietal fascia free flap ( n  = 1), latissimus myocutaneous flap ( n  = 1), and rectus abdominis myofascial flap ( n  = 1). All 11 flaps were successful without microvascular compromise. No complications were observed in the high and middle ACF defect groups. Two of five flaps in the low defect group using OCRFFF flaps failed to achieve surgical goals despite demonstrating healthy flaps upon re-exploration. Complications included persistent cerebrospinal fluid leak ( n  = 1) and pneumocephalus ( n  = 1), requiring flap repositioning in one subject and a second microvascular flap in the second subject to achieve surgical goals.  In our experience, osteocutaneous flaps (especially the OCRFFF) are preferred for complete autologous reconstruction of high and middle ACF defects. Low skull base defects are more difficult to reconstruct, and consideration of free muscle flaps (no bone) should be weighed as an option in this anatomic area. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Primary control of a Mach scale swashplateless rotor using brushless DC motor actuated trailing edge flaps

    NASA Astrophysics Data System (ADS)

    Saxena, Anand

    The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor driven trailing edge flap concept. In conclusion, the concept of using brushless DC motors as on-blade actuators, actuating trailing edge flaps has the potential to replace the current mechanically complex swashplate with a hydraulic-free swashplateless system and thereby reduce overall weight and hub drag.

  8. Experimental Investigation of Convoluted Contouring for Aircraft Afterbody Drag Reduction

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Hunter, Craig A.

    1999-01-01

    An experimental investigation was performed in the NASA Langley 16-Foot Transonic Tunnel to determine the aerodynamic effects of external convolutions, placed on the boattail of a nonaxisymmetric nozzle for drag reduction. Boattail angles of 15 and 22 were tested with convolutions placed at a forward location upstream of the boattail curvature, at a mid location along the curvature and at a full location that spanned the entire boattail flap. Each of the baseline nozzle afterbodies (no convolutions) had a parabolic, converging contour with a parabolically decreasing corner radius. Data were obtained at several Mach numbers from static conditions to 1.2 for a range of nozzle pressure ratios and angles of attack. An oil paint flow visualization technique was used to qualitatively assess the effect of the convolutions. Results indicate that afterbody drag reduction by convoluted contouring is convolution location, Mach number, boattail angle, and NPR dependent. The forward convolution location was the most effective contouring geometry for drag reduction on the 22 afterbody, but was only effective for M < 0.95. At M = 0.8, drag was reduced 20 and 36 percent at NPRs of 5.4 and 7, respectively, but drag was increased 10 percent for M = 0.95 at NPR = 7. Convoluted contouring along the 15 boattail angle afterbody was not effective at reducing drag because the flow was minimally separated from the baseline afterbody, unlike the massive separation along the 22 boattail angle baseline afterbody.

  9. Sensor Fault Diagnosis in Quadrotors Using Nonlinear Adaptive Estimators

    DTIC Science & Technology

    2014-10-02

    Mahony, & Gre- sham, 2004; Bangura & Mahony, 2012) have aimed for higher modeling accuracy by including drag force, Coriolis effects , blade flapping... effectiveness of the pro- posed method. 1. INTRODUCTION Unmanned Aerial Vehicles (UAVs) have attracted significant attentions in recent years due to... effects etc. Accurate modeling plays an impor- tant role in quadrotor control, especially in the case of aggres- sive maneuvers, tight group formations

  10. Benchmarking aerodynamic prediction of unsteady rotor aerodynamics of active flaps on wind turbine blades using ranging fidelity tools

    NASA Astrophysics Data System (ADS)

    Barlas, Thanasis; Jost, Eva; Pirrung, Georg; Tsiantas, Theofanis; Riziotis, Vasilis; Navalkar, Sachin T.; Lutz, Thorsten; van Wingerden, Jan-Willem

    2016-09-01

    Simulations of a stiff rotor configuration of the DTU 10MW Reference Wind Turbine are performed in order to assess the impact of prescribed flap motion on the aerodynamic loads on a blade sectional and rotor integral level. Results of the engineering models used by DTU (HAWC2), TUDelft (Bladed) and NTUA (hGAST) are compared to the CFD predictions of USTUTT-IAG (FLOWer). Results show fairly good comparison in terms of axial loading, while alignment of tangential and drag-related forces across the numerical codes needs to be improved, together with unsteady corrections associated with rotor wake dynamics. The use of a new wake model in HAWC2 shows considerable accuracy improvements.

  11. Numerical analysis of a variable camber rotor blade as a lift control device

    NASA Technical Reports Server (NTRS)

    Awani, A. O.; Stroub, R. H.

    1984-01-01

    A new rotor configuration called the variable camber rotor was numerically investigated as a lift control device. This rotor differs from a conventional (baseline) rotor only in the blade aft section. In this configuration, the aft section or flap is attached to the forward section by pin joint arrangement, and also connected to the rotor control system for the control of rotor thrust level and vectoring. Pilot action to the flap deflection controls rotor lift and tip path plane tilt. The drag due to flaps is presented and the theoretical result correlated with test data. The assessment of payoff for the variable camber rotor in comparison with conventional (baseline) rotor was examined in hover. The variable camber rotor is shown to increase hover power required by 1.35%, but such a minimal power penalty is not significant enough to be considered a negative result. In forward flight, the control needs of the variable camber rotor were evaluated.

  12. Low Speed Wind Tunnel Tests on a One-Seventh Scale Model of the H.126 Jet Flap Aircraft

    NASA Technical Reports Server (NTRS)

    Laub, G. H.

    1975-01-01

    Low speed wind tunnel tests were performed on a one-seventh scale model of the British H.126 jet flap research aircraft over a range of jet momentum coefficients. The primary objective was to compare model aerodynamic characteristics with those of the aircraft, with the intent to provide preliminary data needed towards establishing small-to-full scale correlating techniques on jet flap V/STOL aircraft configurations. Lift and drag coefficients from the model and aircraft tests were found to be in reasonable agreement. The pitching moment coefficient and trim condition correlation was poor. A secondary objective was to evaluate a modified thrust nozzle having thrust reversal capability. The results showed there was a considerable loss of lift in the reverse thrust operational mode because of increased nozzle-wing flow interference. A comparison between the model simulated H.126 wing jet efflux and the model uniform pressure distribution wing jet efflux indicated no more than 5% loss in weight flow rate.

  13. Bistable flapping of flexible flyers in oscillatory flow

    NASA Astrophysics Data System (ADS)

    Huang, Yangyang; Kanso, Eva

    2016-11-01

    Biological and bio-inspired flyers move by shape actuation. The direct control of shape variables for locomotory purposes is well studied. Less is known about indirect shape actuation via the fluid medium. Here, we consider a flexible Λ-flyer in oscillatory flow that is free to flap and rotate around its fixed apex. We study its motion in the context of the inviscid vortex sheet model. We first analyze symmetric flapping about the vertical axis of gravity. We find that there is a finite value of the flexibility that maximizes both the flapping amplitude and elastic energy storage. Our results show that rather than resonance, the flyer relies on fluidic effects to optimize these two quantities. We then perturb the flyer away from the vertical and analyze its stability. Four distinct types of rolling behavior are identified: mono-stable, bistable, bistable oscillatory rotations and chaotic dynamics. We categorize these types of behavior in terms of the flyer's and flow parameters. In particular, the transition from mono-stable to bistable behavior occurs at a constant value of the product of the flow amplitude and acceleration. This product can be interpreted as the ratio of fluidic drag to gravity, confirming the fluid role in this transition.

  14. Calculation of unsteady airfoil loads with and without flap deflection at -90 degrees incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1991-01-01

    A method has been developed for calculating the viscous flow about airfoils with and without deflected flaps at -90 deg incidence. This unique method provides for the direct solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body-fitted computational mesh incorporating a staggered grid method. The vorticity is determined at the node points, and the velocity components are defined at the mesh-cell sides. The staggered-grid orientation provides for accurate representation of vorticity at the node points and for the conservation of mass at the mesh-cell centers. The method provides for the direct solution of the flow field and satisfies the conservation of mass to machine zero at each time-step. The results of the present analysis and experimental results obtained for a XV-15 airfoil are compared. The comparisons indicate that the calculated drag reduction caused by flap deflection and the calculated average surface pressure are in excellent agreement with the measured results. Comparisons of the numerical results of the present method for several airfoils demonstrate the significant influence of airfoil curvature and flap deflection on the predicted download.

  15. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

    PubMed Central

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-01-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects. PMID:27095674

  16. Influence of movable test section elements configuration on its drag and flow field uniformity at transonic speeds

    NASA Astrophysics Data System (ADS)

    Glazkov, S. A.; Gorbushin, A. R.; Osipova, S. L.; Semenov, A. V.

    2016-10-01

    The report describes the results of flow field experimental research in TsAGI T-128 transonic wind tunnel. During the tests Mach number, stagnation pressure, test section wall perforation ratio, angles between the test section panels and mixing chamber flaps varied. Based on the test results one determined corrections to the free-stream Mach number related to the flow speed difference in the model location and in the zone of static pressure measurement on the test section walls, nonuniformity of the longitudinal velocity component in the model location, optimal position of the movable test section elements to provide flow field uniformity in the test section and minimize the test leg drag.

  17. Active Tailoring of Lift Distribution to Enhance Cruise Performance

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D. (Technical Monitor); Pfeiffer, Neal J.; Christians, Joel G.

    2005-01-01

    During Phase I of this project, Raytheon Aircraft Company (RAC) has analytically and experimentally evaluated key components of a system that could be implemented for active tailoring of wing lift distribution using low-drag, trailing-edge modifications. Simple systems such as those studied by RAC could be used to enhance the cruise performance of a business jet configuration over a range of typical flight conditions. The trailing-edge modifications focus on simple, deployable mechanisms comprised of extendable small flap panels over portions of the span that could be used to subtly but positively optimize the lift and drag characteristics. The report includes results from low speed wind tunnel testing of the trailing-edge devices, descriptions of potential mechanisms for automation, and an assessment of the technology.

  18. Numerical study on the aerodynamic characteristics of both static and flapping wing with attachments

    NASA Astrophysics Data System (ADS)

    Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan

    2017-10-01

    The purpose of this paper is to investigate the aerodynamic mechanism of airfoils under different icing situations which are different icing type, different icing time, and different icing position. Numerical simulation is carried out by using the finite volume method for both static and flapping airfoils, when Reynolds number is kept at 135000. The difference of aerodynamic performance between the airfoil with attachments and without attachments are be investigated by comparing the force coefficients, lift-to-drag ratios and flow field contour. The present simulations reveal that some influences of attachment are similar in the static airfoil and the flapping airfoil. Specifically, the airfoil with the attachment derived from glaze ice type causes the worse aerodynamic performance than that derived from rime ice type. The longer the icing time, the greater influence of aerodynamic performance the attachment causes. The attachments on the leading-edge have the greater influence of aerodynamic performance than other positions. Moreover, there are little differences between the static airfoil and the flapping airfoil. Compared with the static airfoil, the flapping airfoil which attachment located on the trailing edge causes a worse aerodynamic performance. Both attachments derived from rime ice type and glaze ice type all will deteriorate the aerodynamic performance of the asymmetrical airfoils. Present work provides the systematic and comprehensive study about icing blade which is conducive to the development of the wind power generation technology.

  19. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings.

  20. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings. PMID:19692394

  1. Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions: Part 1 - Aerodynamic Model (Postprint)

    DTIC Science & Technology

    2010-01-01

    Experimental Biology, Vol. 46, 1967, pp. 431–443. 5Sane, S. P. and Dickenson , M. H., “The Control of Flight Force by a Flapping Wing: Lift and Drag Force...Production,” The Journal of Experimental Biology, Vol. 204, 2001, pp. 2607–2626. 6Sane, S. P. and Dickenson , M. H., “The aerodynamic effects of wing

  2. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  3. Effects of Convoluted Divergent Flap Contouring on the Performance of a Fixed-Geometry Nonaxisymmetric Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the effects of convoluted divergent-flap contouring on the internal performance of a fixed-geometry, nonaxisymmetric, convergent-divergent exhaust nozzle. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and four convoluted configurations. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at overexpanded conditions. Convoluted configurations were found to significantly reduce, and in some cases totally alleviate separation at overexpanded conditions. This result was attributed to the ability of convoluted contouring to energize and improve the condition of the nozzle boundary layer. Separation alleviation offers potential for installed nozzle aeropropulsive (thrust-minus-drag) performance benefits by reducing drag at forward flight speeds, even though this may reduce nozzle thrust ratio as much as 6.4% at off-design conditions. At on-design conditions, nozzle thrust ratio for the convoluted configurations ranged from 1% to 2.9% below the baseline configuration; this was a result of increased skin friction and oblique shock losses inside the nozzle.

  4. Experimental study of wing leading-edge devices for improved maneuver performance of a supercritical maneuvering fighter configuration. [Langley 7- by 10-ft high speed tunnel tests

    NASA Technical Reports Server (NTRS)

    Mann, M. J.; Huffman, J. K.; Fox, C. H., Jr.; Campbell, R. L.

    1983-01-01

    Wind tunnel tests were conducted to examine the use of wing leading-edge devices for improved subsonic and transonic maneuver performance. These devices were tested on a fighter configuration which utilized supercritical-wing technology. The configuration had a leading-edge sweep of 45 deg and an aspect ratio of 3.28. The tests were conducted at Mach numbers of 0.60 and 0.85 with angles of attack from -0.5 deg to 22 deg. At both Mach numbers, sharp leading-edge flaps produced vortices which greatly altered the flow pattern on the wing and resulted in substantial reductions in drag at high lift. Underwing or pylon-type vortex generators also reduced drag at high lift. The vortex generators worked better at a Mach number of 0.60. The vortex generators gave the best overall results with zero toe-in angle and when mounted on either the outboard part of the wing or at both an outboard location and halfway out the semispan. Both the flaps and the vortex generators had a minor effect on the pitching moment. Fluorescent minitufts were found to be useful for flow visualization at transonic maneuver conditions.

  5. Calculations of the flow past bluff bodies, including tilt-rotor wing sections at alpha = 90 deg

    NASA Technical Reports Server (NTRS)

    Raghavan, V.; Mccroskey, W. J.; Baeder, J. D.; Van Dalsem, W. R.

    1990-01-01

    An attempt was made to model in two dimensions the effects of rotor downwash on the wing of the tilt-rotor aircraft and to compute the drag force on airfoils at - 90 deg angle of attack, using a well-established Navier-Stokes code. However, neither laminar nor turbulent calculations agreed well with drag and base-pressure measurements at high Reynolds numbers. Therefore, further efforts were concentrated on bluff-body flows past various shapes at low Reynolds numbers, where a strong vortex shedding is observed. Good results were obtained for a circular cylinder, but the calculated drag of a slender ellipse at right angles to the freestream was significantly higher than experimental values reported in the literature for flat plates. Similar anomalous results were obtained on the tilt-rotor airfoils, although the qualitative effects of flap deflection agreed with the wind tunnel data. The ensemble of results suggest that there may be fundamental differences in the vortical wakes of circular cylinders and noncircular bluff bodies.

  6. Reverse radial artery flap for soft tissue defects of hand in pediatric age group.

    PubMed

    Cheema, Saeed Ashraf; Talaat, Nabeela

    2009-01-01

    To highlight the usefulness of reverse radial artery flap in covering various soft tissue defects of hand in paediatric age group. A total of 16 reverse radial artery flaps were utilized in a period of three years to cover various soft tissue defects of hand for paediatric age group patients. The age ranged from 5-18 years. The two common causes of soft tissue defects in this series were mechanical trauma and fireworks trauma with five cases in each group. Three of the cases were burn victims and other two presented with earth quake injuries. One patient had wound because of road traffic accident. Soft tissue defects of palm were covered with this flap in eight cases while in three cases it was wrapped around the thumb. First web space defects were covered with this flap in two cases. Two cases required coverage of amputation stump at transmetacarpal level and yet another required a big flap to cover the soft tissue defects at palm, dorsum and thumb. Donor site was covered with split skin graft in all cases but one, which was closed primarily. We had partial loss of flap in one case. Grafted donor sites healed uneventfully and were quite acceptable to the patients in due course of time. Reverse radial artery flap has a quite long arc of rotation which brings it great ease to cover the soft tissue defects of various areas of hand like palm, dorsum, first web space and thumb.

  7. Case Report Reconstruction of Exposed Ilium With Reverse Turnover Latissimus Dorsi Muscle Flap

    PubMed Central

    Hayashida, Kenji; Endo, Yoshie; Kamebuchi, Katsuhiko

    2011-01-01

    Objective: It is difficult to cover a large skin and soft tissue defect with exposure of the ilium. We therefore performed a new reconstruction technique, using a reverse latissimus dorsi muscle flap fed by perforating branches of only the 10th intercostal artery. Methods: A 45-year-old man had a large traumatic defect located on the hip with exposure of the iliac crest. After confirming and preserving perforating branches of the 10th intercostal artery, the latissimus dorsi muscle flap was turned over just proximal to the perforating branch, and a split-thickness skin graft was performed over the flap. Results: The skin graft took place well and there were no circulation problems. Conclusions: This flap covered a larger area on the hip than the musculocutaneous flap. Furthermore, this is easier to perform and is less invasive than a vascularized free flap. Skin and soft tissue defects that expose bones of the lumbar or hip region can be reconstructed with a local flap; however, the deficit is small for this coverage and usually there is little skin and soft tissue to cover the wound defect in the surrounding area. Thus, it is often difficult to deal with large defects. We performed a reconstruction, using a reverse latissimus dorsi flap fed by perforating branches of the 10th intercostal artery for a large skin and soft tissue defect of the hip with exposure of the iliac crest, resulting in a good outcome. This technique is thought to be useful for reconstruction when the ilium is exposed, and we report the case and surgical procedure. PMID:21559059

  8. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

    NASA Technical Reports Server (NTRS)

    Gerhardt, H. A.; Chen, W. S.

    1978-01-01

    The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.

  9. Generalization and refinement of an automatic landing system capable of curved trajectories

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.

    1976-01-01

    Refinements in the lateral and longitudinal guidance for an automatic landing system capable of curved trajectories were studied. Wing flaps or drag flaps (speed brakes) were found to provide faster and more precise speed control than autothrottles. In the case of the lateral control it is shown that the use of the integral of the roll error in the roll command over the first 30 to 40 seconds of flight reduces the sensitivity of the lateral guidance to the gain on the azimuth guidance angle error in the roll command. Also, changes to the guidance algorithm are given that permit pi-radian approaches and constrain the airplane to fly in a specified plane defined by the position of the airplane at the start of letdown and the flare point.

  10. Swimming performance and unique wake topology of the sea hare (Aplysia)

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuoyu; Mittal, Rajat

    2018-03-01

    The Aplysia, commonly referred to as the "sea hare," is a marine mollusc that swims using large-amplitude flapping of its wide, winglike parapodia. In this study, flow simulations with a relatively simple kinematical model are used to gain insights into the vortex dynamics, thrust generation, and energetics of locomotion for this animal. A unique vortex pattern characterized by three distinct trains of vortex ringlike structures is observed in the wake of this animal. These vortex rings are associated with a positive momentum flux in the wake that counteracts the drag generated by the body. Simulations indicate propulsive efficiencies of up to 24% and terminal swimming speeds of about 0.9 body length per cycle. Swimming speeds are found to increase with increasing parapodial flapping amplitude as well as wavelength of undulation.

  11. Free Vastus Intermedius Muscle Flap: A Successful Alternative for Complex Reconstruction of the Neurocranium in Preoperated Patients.

    PubMed

    Horn, Dominik; Freudlsperger, Christian; Berger, Moritz; Freier, Kolja; Ristow, Oliver; Hoffmann, Jürgen; Sakowitz, Oliver; Engel, Michael

    2017-07-01

    The reconstruction of large cranial and scalp defects is a surgical and esthetic challenge. Single autologous tissue transfer can be insufficient due to the defect size and the anatomic complexity of the recipient site. Alloplastic patient-specific preformed implants can be used to recover hard tissue defects of the neurocranium. Nevertheless, for long-term success adequate soft tissue support is required. In this brief clinical study, the authors describe calvarian reconstruction in a 33-year-old patient with wound healing disorder after an initial resection of ependymoma. The patient suffered from osteonecrosis and wound breakdown in the fronto-parietal region. An alloplastic polymethylmethacrylate implant for hard tissue support was manufactured based on 3-dimensional visualization of a computed tomography scan. After the resection of remaining pathologic bone from earlier surgical procedures, the alloplastic implant was inserted to achieve functional coverage of the brain. Due to anatomic variation of donor site vessels during anterolateral thigh flap preparation, the authors performed a vastus intermedius free flap as a new muscular flap for craniofacial reconstruction. The authors achieved excellent functional and esthetic results. The muscular vastus intermedius free flap in combination with a split skin graft proves to be a new alternative to the anterolateral thigh flap for soft tissue reconstruction of the neurocranium.

  12. Modeling and Control of a Tethered Rotorcraft

    DTIC Science & Technology

    2010-07-30

    viscous damper with damping coefficient Cv. Visco-elastic line force is written in terms of components Δx, Δy, and Δz, of the difference vector formed...tether drag coefficient CS = tether damping coefficient Cv = viscous damping coefficient d = diameter of the tether En = n x n identity matrix FA...matrix consisting of Iyy and Izz k = rotor head stiffness KLAT, KLON = steady state flapping gains Ks, Kv = static and viscous stiffness Lj

  13. Study on airflow characteristics of rear wing of F1 car

    NASA Astrophysics Data System (ADS)

    Azmi, A. R. S.; Sapit, A.; Mohammed, A. N.; Razali, M. A.; Sadikin, A.; Nordin, N.

    2017-09-01

    The paper aims to investigate CFD simulation is carried out to investigate the airflow along the rear wing of F1 car with Reynold number of 3 × 106 and velocity, u = 43.82204 m/s. The analysis was done using 2-D model consists of main plane and flap wing, combined together to form rear wing module. Both of the aerofoil is placed inside a box of 350mm long and 220mm height according to regulation set up by FIA. The parameters for this study is the thickness and the chord length of the flap wing aerofoil. The simulations were performed by using FLUENT solver and k-kl-omega model. The wind speed is set up to 43 m/s that is the average speed of F1 car when cornering. This study uses NACA 2408, 2412, and 2415 for the flap wing and BE50 for the main plane. Each cases being simulated with a gap between the aerofoil of 10mm and 50mm when the DRS is activated. Grid independence test and validation was conduct to make sure the result obtained is acceptable. The goal of this study is to investigate aerodynamic behavior of airflow around the rear wing as well as to see how the thickness and the chord length of flap wing influence the airflow at the rear wing. The results show that increasing in thickness of the flap wing aerofoil will decreases the downforce. The results also show that although the short flap wing generate lower downforce than the big flap wing, but the drag force can be significantly reduced as the short flap wing has more change in angle of attack when it is activated. Therefore, the type of aerofoil for the rear wing should be decided according to the circuit track so that it can be fully optimized.

  14. Low Speed Analysis of Mission Adaptive Flaps on a High Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Lessard, Victor R.

    1999-01-01

    Thin-layer Navier-Stokes analyses were done on a high speed civil transport configuration with mission adaptive leading-edge flaps. The flow conditions simulated were Mach = 0.22 and Reynolds number of 4.27 million for angles-of-attack ranging from 0 to 18 degrees. Two turbulence closure models were used. Analyses were done exclusively with the Baldwin-Lomax turbulence model at low angle-of-attack conditions. At high angles-of-attack where considerable flow separation and vortices occurred the Spalart-Allmaras turbulence model was also considered. The effects of flow transition were studied. Predicted aerodynamic forces, moment, and pressure are compared to experimental data obtained in the 14- by 22-Foot Subsonic Tunnel at NASA Langley. The forces and moments correlated well with experimental data in terms of trends. Drag and pitching moment were consistently underpredicted. Predicted surface pressures compared well with experiment at low angles-of-attack. Above 10 angle-of-attack the pressure comparisons were not as favorable. The two turbulent models affected the pressures on the flap considerably and neither produced correct results at the high angles-of-attack.

  15. Validation of a computer code for analysis of subsonic aerodynamic performance of wings with flaps in combination with a canard or horizontal tail and an application to optimization

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.; Mann, Michael J.

    1990-01-01

    Extensive correlations of computer code results with experimental data are employed to illustrate the use of a linearized theory, attached flow method for the estimation and optimization of the longitudinal aerodynamic performance of wing-canard and wing-horizontal tail configurations which may employ simple hinged flap systems. Use of an attached flow method is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. The results indicate that linearized theory, attached flow, computer code methods (modified to include estimated attainable leading-edge thrust and an approximate representation of vortex forces) provide a rational basis for the estimation and optimization of aerodynamic performance at subsonic speeds below the drag rise Mach number. Generally, good prediction of aerodynamic performance, as measured by the suction parameter, can be expected for near optimum combinations of canard or horizontal tail incidence and leading- and trailing-edge flap deflections at a given lift coefficient (conditions which tend to produce a predominantly attached flow).

  16. Numerical analyses of evolution of unsteady flow structures in the wake of flapping starling wing model

    NASA Astrophysics Data System (ADS)

    Krishnan, Krishnamoorthy; Naqavi, Iftekhar Z.; Gurka, Roi

    2017-11-01

    Understanding the physics of flapping wings at moderate Reynolds number flows takes on greater importance in the context of avian aerodynamics as well as in the design of miniature-aerial-vehicles. Analyzing the characteristics of wake vortices generated downstream of flapping wings can help to explain the unsteady contribution to the aerodynamics loads. In this study, numerical simulations of flow over a bio-inspired pseudo-2D flapping wing model was conducted to characterize the evolution of unsteady flow structures in the downstream wake of flapping wing. The wing model was based on a European starling's wing and wingbeat kinematics were incorporated to simulate a free-forward flight. The starling's wingbeat kinematics were extracted from experiments conducted in a wind tunnel where freely flying starling was measured using high-speed PIV as well as high-speed imaging yielding a series of kinematic images sampled at 500 Hz. The average chord of the wing section was 6 cm and simulations were carried out at a Reynolds number of 54,000, reduced frequency of 0.17, and Strouhal number of 0.16. Large eddy simulation was performed using a second order, finite difference code ParLES. Characteristics of wake vortex structures during the different phases of the wing strokes were examined. The role of wingbeat kinematics in the configuration of downstream vortex patterns is discussed. Evaluated wake topology and lift-drag characteristics are compared with the starling's wind tunnel results.

  17. Resurfacing the Penis of Complex Hypospadias Repair ("Hypospadias Cripples").

    PubMed

    Fam, Mina M; Hanna, Moneer K

    2017-03-01

    After the creation of a neourethra in a "hypospadias cripple," resurfacing the penis with healthy skin is a significant challenge because local tissue is often scarred and unusable. We reviewed our experience with various strategies to resurface the penis of hypospadias cripples. We retrospectively reviewed the records of 215 patients referred after multiple unsuccessful hypospadias repairs from 1981 to 2014. In 130 of 215 patients we performed resurfacing using local penile flaps using various techniques, including Byars flaps, Z-plasty or double Z-plasty, or a dorsal relaxing incision. Of the 215 patients 85 did not have adequate healthy local penile skin to resurface the penis after urethroplasty. Scrotal skin was used to resurface the penis in 54 patients, 6 underwent tissue expansion of the dorsal penile skin during a 12 to 16-week period prior to penile resurfacing, 23 underwent full-thickness skin grafting and another 4 received a split-thickness skin graft. Of the 56 patients who underwent fasciomyocutaneous rotational flaps, tissue expansion or a combination of both approaches 54 (96.4%) finally had a successful outcome. All 6 patients who underwent tissue expansion had a successful outcome without complications and were reported on previously. All 23 full-thickness skin grafts took with excellent results. All 4 patients who underwent fenestrated split-thickness skin grafting had 100% graft take but secondary contraction and ulceration were associated with sexual activity. In our experience scrotal skin flaps, tissue expansion of the dorsal penile skin and full-thickness skin grafts serve as reliable approaches in resurfacing the penis in almost any hypospadias cripple lacking healthy local skin. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Temporalis myofascial flap for primary cranial base reconstruction after tumor resection.

    PubMed

    Eldaly, Ahmed; Magdy, Emad A; Nour, Yasser A; Gaafar, Alaa H

    2008-07-01

    To evaluate the use of the temporalis myofascial flap in primary cranial base reconstruction following surgical tumor ablation and to explain technical issues, potential complications, and donor site consequences along with their management. Retrospective case series. Tertiary referral center. Forty-one consecutive patients receiving primary temporalis myofascial flap reconstructions following cranial base tumor resections in a 4-year period. Flap survival, postoperative complications, and donor site morbidity. Patients included 37 males and 4 females ranging in age from 10 to 65 years. Two patients received preoperative and 18 postoperative radiation therapy. Patient follow-up ranged from 4 to 39 months. The whole temporalis muscle was used in 26 patients (63.4%) and only part of a coronally split muscle was used in 15 patients (36.6%). Nine patients had primary donor site reconstruction using a Medpor((R)) (Porex Surgical, Inc., Newnan, GA) temporal fossa implant; these had excellent aesthetic results. There were no cases of complete flap loss. Partial flap dehiscence was seen in six patients (14.6%); only two required surgical débridement. None of the patients developed cerebrospinal leaks or meningitis. One patient was left with complete paralysis of the temporal branch of the facial nerve. Three patients (all had received postoperative irradiation) developed permanent trismus. The temporalis myofascial flap was found to be an excellent reconstructive alternative for a wide variety of skull base defects following tumor ablation. It is a very reliable, versatile flap that is usually available in the operative field with relatively low donor site aesthetic and functional morbidity.

  19. Single perforator greater saphenous neuro-veno-fasciocutaneous propeller flaps for lower extremity reconstructions.

    PubMed

    Zhong, Wanrun; Lu, Shengdi; Wang, Chunyang; Wen, Gen; Han, Pei; Chai, Yimin

    2017-07-01

    The lack of soft tissue that is available for medial leg and foot defect reconstructions presents a challenge for plastic surgeons. The saphenous neurofasciocutaneous perforator flap application presents an effective alternative to local flap transfers. However, the venous flow and pedicle twisting problems are still disputed. Here, we present our experiences with modified cutaneous pedicles with a single perforator pedicle, which improves the venous flow and the pedicle twisting problem. This study was conducted from June 2007 through September 2011, and a total of 15 patients with lower medial leg and foot defects were included. There were 11 men and four women. An asymmetric 'propeller' flap was planned around a perforator that was adjacent to the defects, which was preoperatively confirmed by Doppler. The perforator was sufficiently dissociated to allow for the flap to be turned towards the defects. We preserved some distal skin and subcutaneous tissue from the short side of the 'propeller' to cover some donor site regions, and other regions were covered with split thickness skin grafts. The follow-up period ranged from 3 to 12 months. An infection occurred in one case. Partial flap necrosis was noted in two cases. The other 12 flaps completely survived and matched the recipient sites with regard to colour, texture and thickness. The single perforator greater saphenous neuro-veno-fasciocutaneous propeller flap is an effective solution for medial leg and foot defects, and it has a large rotation arc and a satisfactory aesthetic result. © 2015 Royal Australasian College of Surgeons.

  20. Field estimates of body drag coefficient on the basis of dives in passerine birds.

    PubMed

    Hedenström, A; Liechti, F

    2001-03-01

    During forward flight, a bird's body generates drag that tends to decelerate its speed. By flapping its wings, or by converting potential energy into work if gliding, the bird produces both lift and thrust to balance the pull of gravity and drag. In flight mechanics, a dimensionless number, the body drag coefficient (C(D,par)), describes the magnitude of the drag caused by the body. The drag coefficient depends on the shape (or streamlining), the surface texture of the body and the Reynolds number. It is an important variable when using flight mechanical models to estimate the potential migratory flight range and characteristic flight speeds of birds. Previous wind tunnel measurements on dead, frozen bird bodies indicated that C(D,par) is 0.4 for small birds, while large birds should have lower values of approximately 0.2. More recent studies of a few birds flying in a wind tunnel suggested that previous values probably overestimated C(D,par). We measured maximum dive speeds of passerine birds during the spring migration across the western Mediterranean. When the birds reach their top speed, the pull of gravity should balance the drag of the body (and wings), giving us an opportunity to estimate C(D,par). Our results indicate that C(D,par) decreases with increasing Reynolds number within the range 0.17-0.77, with a mean C(D,par) of 0.37 for small passerines. A somewhat lower mean value could not be excluded because diving birds may control their speed below the theoretical maximum. Our measurements therefore support the notion that 0.4 (the 'old' default value) is a realistic value of C(D,par) for small passerines.

  1. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  2. Use of various free flaps in progressive hemifacial atrophy.

    PubMed

    Baek, Rongmin; Heo, Chanyeong; Kim, Baek-kyu

    2011-11-01

    Romberg disease is an uncommon condition manifested by progressive hemifacial atrophy of the skin, soft tissue, and bone. Facial asymmetry with soft tissue deficiency in Romberg disease causes a significant disability affecting the social life and can bring about many psychological problems. The aim of surgical treatment is cosmetic amelioration of the defect. Several conventional reconstructive procedures have been used for correcting facial asymmetry. They include fat injections, dermal fat grafts, filler injections, cartilage and bone grafts, and pedicled and free flaps. We report our experiences with 11 patients involving 11 free flaps with a minimum 1-year follow-up. All patients were classified as having moderate to severe atrophy. The average age at disease onset was 4.5 years; the average duration of atrophy was 5.2 years. No patients were operated on with a quiescent interval of less than 1 year. The average age at operation was 20.1 years, ranging from 10 to 55 years. Reconstruction was performed using 4 groin dermofat free flaps, 4 latissimus dorsi muscle free flaps, and 3 other perforator flaps. To achieve the finest symmetrical and aesthetic results, several ancillary procedures were performed in 4 patients. These procedures included Le Fort I leveling osteotomy, sagittal split ramus osteotomy, reduction malarplasty and angle plasty, rib and calvarial bone graft, correction of alopecia, and additional fat graft. All patients were satisfied with the results. We believe that a free flap transfer is the requisite treatment modality for severe degree of facial asymmetry in Romberg disease.

  3. Calculated Low-Speed Steady and Time-Dependent Aerodynamic Derivatives for Some Airfoils Using a Discrete Vortex Method

    NASA Technical Reports Server (NTRS)

    Riley, Donald R.

    2015-01-01

    This paper contains a collection of some results of four individual studies presenting calculated numerical values for airfoil aerodynamic stability derivatives in unseparated inviscid incompressible flow due separately to angle-of-attack, pitch rate, flap deflection, and airfoil camber using a discrete vortex method. Both steady conditions and oscillatory motion were considered. Variables include the number of vortices representing the airfoil, the pitch axis / moment center chordwise location, flap chord to airfoil chord ratio, and circular or parabolic arc camber. Comparisons with some experimental and other theoretical information are included. The calculated aerodynamic numerical results obtained using a limited number of vortices provided in each study compared favorably with thin airfoil theory predictions. Of particular interest are those aerodynamic results calculated herein (such as induced drag) that are not readily available elsewhere.

  4. Advanced Concept Architecture Design and Integrated Analysis (ACADIA)

    DTIC Science & Technology

    2017-11-03

    and the vertical drag due to the induced velocity download on the vehicle structure. The propeller blades are assumed to be rigid and therefore any...flapping of the blades is assumed to be negligible. Thus, the tip path plane angle of attack gives an indication of the multicopter attitude when used...The software required to run this printer is called Catalyst EX. Catalyst EX generates an estimated print time with a given STL file. Fixed wing

  5. Supersonic aerodynamic characteristics of a proposed Assured Crew Return Capability (ACRC) lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.

    1989-01-01

    An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range.

  6. The proximally based long peroneal muscle turnover flap: A novel salvage flap for small to medium-sized defects of the knee.

    PubMed

    Wagner, Till; Hupkens, Pieter; Slater, Nicholas J; Ulrich, Dietmar J O

    2016-04-01

    Coverage of soft-tissue defects of the knee due to multiple operations, trauma, and infection remains a surgical challenge. Often, these defects are repaired using free tissue transfer. The aim of this study was to find an easy and reliable local method of repair for small to medium-sized defects. The authors describe a new surgical option for tissue coverage using a proximally based long peroneal muscle turnover flap (LPTF) with split-thickness skin graft. Proximally based LPTFs were harvested and transposed into same-size created defects in five cadavers. After optimizing this technique, it was clinically used in two patients with defects secondary to total knee replacement revisions. Average cadaver flap size was 4.7 × 15.8 cm allowing reach of all knee joint areas and was based consistently on a sufficient (2-mm-diameter average) proximal arterial branch of the anterior tibial artery. Donor sites were closed without tension. Subsequent application of the flap on two patients resulted in good functional outcome. The proximally based LPTF is a new option available in the reconstruction of knee defects and should be added to the reconstructive surgeon's armamentarium of pedicled flaps, providing short operating time and promising clinical outcome. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Histopathological comparative analysis of peri-implant soft tissue response after dental implant placement with flap and flapless surgical technique. Experimental study in pigs.

    PubMed

    Vlahovic, Zoran; Markovic, Aleksa; Golubovic, Mileta; Scepanovic, Miodrag; Kalanovic, Milena; Djinic, Ana

    2015-11-01

    The aim of this study was comparing the effect of flapless vs. flap technique of implant placement on inflammation degree of peri-implant soft tissue, through histopathological analysis. The experiment was conducted on five domestic pigs. Nine weeks after tooth extraction, implants were installed. Each animal received six implants in mandible. According to split-mouth design, randomly one side was used for flapless technique using mini-incision, while on the other side, flap was raised. After 7, 14, 21, 28, and 90 days, the experimental animals were sacrificed. Samples for histopathological analyzes were taken from the buccal side of peri-implant mucosa next to the neck of implants, from three levels. The degree of inflammatory response in the peri-implant soft tissue was estimated through ordinal scores from 0 to 3. In the flap group Score 3 indicating high degree of inflammation was present from day 7 to day 21, in contrast to flapless group where Score 3 was not recorded during the entire follow-up. Three months after implantation, there were no signs of inflammation neither around flap nor around flapless implants. Flapless surgical implantation technique using mini-incision decreases peri-implant soft tissue inflammatory reaction compared with flap surgery. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Aerodynamic Improvements of an Empty Timber Truck can Have the Potential of Significantly Reducing Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts

    2012-11-01

    In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.

  9. A Summary of the Experimental Results for a Generic Tractor-Trailer in the Ames Research Center 7- by 10-Foot and 12-Foot Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Satran, Dale R.; Heineck, James T.; Walker, Stephen M.

    2006-01-01

    Experimental measurements of a generic tractor-trailer were obtained in two wind tunnels at Ames Research Center. After a preliminary study at atmospheric conditions in the 7- by 10-Foot Wind Tunnel, additional testing was conducted at Reynolds numbers corresponding to full-scale highway speeds in the 12-Foot Pressure Wind Tunnel. To facilitate computational modeling, the 1:8-scale geometry, designated the Generic Conventional Model, included a simplified underbody and omitted many small-scale details. The measurements included overall and component forces and moments, static and dynamic surface pressures, and three-component particle image velocimetry. This summary report highlights the effects of numerous drag reduction concepts and provides details of the model installation in both wind tunnels. To provide a basis for comparison, the wind-averaged drag coefficient was tabulated for all configurations tested. Relative to the baseline configuration representative of a modern class-8 tractor-trailer, the most effective concepts were the trailer base flaps and trailer belly box providing a drag-coefficient reduction of 0.0855 and 0.0494, respectively. Trailer side skirts were less effective yielding a drag reduction of 0.0260. The database of this experimental effort is publicly available for further analysis.

  10. Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.

    2017-01-01

    A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.

  11. Free tissue transfer in acute burns.

    PubMed

    Oni, Georgette; Saint-Cyr, Michel; Mojallal, Ali

    2012-02-01

    Major burn injuries can be devastating for the patients and their carers both in terms of morbidity and mortality. Therefore, it is important to optimize the treatment of the injured patient. After initial resuscitation and physiological stabilization, thorough surgical débridement of the burn is necessary. Often resultant defects can be resurfaced with split skin grafting or local flaps. However, in a small percentage of cases free flap surgery is necessary. Free tissue transfer in burns surgery is rare, but is indicated in those patients in which there is loss of a vascularized surface suitable for grafting such as exposed tendon, or bone following surgical débridement, and in extreme cases for limb salvage. This review article discusses the rationale for free flap surgery in terms of types of burn injuries, perioperative considerations, and summarizes the literature in free tissue transfer in acute burns. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. V/STOL model fan stage rig design report

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.; Creason, T. L.

    1983-01-01

    A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.

  13. Wind-tunnel test results of airfoil modifications for the EA-6B

    NASA Technical Reports Server (NTRS)

    Sewall, W. G.; Mcghee, R. J.; Ferris, J. C.

    1987-01-01

    Wind-tunnel tests have been conducted (to determine the effects on airfoil performance for several airfoil modifications) for the EA-6B Wing Improvement Program. The modifications consist of contour changes to the leading-edge slat and trailing-edge flap to provide a higher low-speed maximum lift with no high-speed cruise-drag penalty. Airfoil sections from the 28- and 76-percent span stations were selected as baseline shapes with the major testing devoted to the inboard airfoil section (28-percent span station). The airfoil modifications increased the low-speed maximum lift coefficient between 20 and 35 percent over test conditions of 3 to 14 million chord Reynolds number and 0.14 to 0.34 Mach number. At the high-speed test conditions of 0.4 to 0.80 Mach number and 10 million chord Reynolds number, the modified airfoils had either matched or had lower drag coefficients for all normal-force coefficients above 0.2 as compared to the baseline airfoil. At normal-force coefficients less than 0.2, the baseline (original) airfoil had lower drag coefficients than any of the modified airfoils.

  14. A concept for adaptive performance optimization on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R.; Enns, Dale F.

    1995-01-01

    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.

  15. Two-dimensional converging-diverging rippled nozzles at transonic speeds. [performed in the Langley 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Asbury, Scott C.

    1994-01-01

    An experimental investigation was performed in the Langley 16-Foot Transonic tunnel to determine the effects of external and internal flap rippling on the aerodynamics of a nonaxisymmetric nozzle. Data were obtained at several Mach numbers from static conditions to 1.2 over a range of nozzle pressure ratios. Nozzles with chordal boattail angles of 10, 20, and 30 degrees, with and without surface rippling, were tested. No effect on discharge coefficient due to surface rippling was observed. Internal thrust losses due to surface rippling were measured and attributed to a combination of additional internal skin friction and shock losses. External nozzle drag for the baseline configurations were generally less than that for the rippled configurations at all free-stream Mach numbers tested. The difference between the baseline and rippled nozzle drag levels generally increased with increasing boat tail angle. The thrust-minus-drag level for each rippled nozzle configuration was less than the equivalent baseline configuration for each Mach number at the design nozzle pressure ratio.

  16. Diving Simulation concerning Adélie Penguin

    NASA Astrophysics Data System (ADS)

    Ito, Shinichiro; Harada, Masanori

    Penguins are sea birds that swim using lift and drag forces by flapping their wings like other birds. Although diving data can be obtained using a micro-data logger which has improved in recent years, all the necessary diving conditions for analysis cannot be acquired. In order to determine all these hard-to-get conditions, the posture and lift and drag forces of penguins were theoretically calculated by the technique used in the analysis of the optimal flight path of aircrafts. In this calculation, the actual depth and speed of the dive of an Adélie penguin (Pygoscelis adeliae) were utilized. Then, the calculation result and experimental data were compared, and found to be in good agreement. Thus, it is fully possible to determine the actual conditions of dive by this calculation, even those that cannot be acquired using a data logger.

  17. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    NASA Astrophysics Data System (ADS)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.

  18. Critical assessment of the anterolateral thigh flap donor site.

    PubMed

    Townley, W A; Royston, E C; Karmiris, N; Crick, A; Dunn, R L R

    2011-12-01

    The free anterolateral thigh flap (ALT) is now used as a 'workhorse flap'. The donor site morbidity is thought to be minimal, although most evidence derives from questionnaire-based studies rather than rigorous objective clinical assessment. In particular, robust quantitative data on thigh sensibility and quadriceps function is lacking. The aim of this study was to provide a comprehensive clinical assessment of donor site morbidity. We performed a prospective study of consecutive free ALT perforator flaps performed at Salisbury Foundation Trust between March 2008 and April 2010. The donor site was assessed at six months including a questionnaire (symptoms, function), scar analysis (Vancouver Scar Scale, VSS), and evaluation of quadriceps power and lateral thigh sensibility (compared with the contralateral unoperated thigh). One hundred ALT flaps were performed on 97 patients (mean age 46.8 years). The donor site was closed directly in 88 cases and using a split skin graft in 12 cases. At follow-up (n=68), tingling was the most common reported symptom (59%), whereas pain, itching and muscle herniation were reported infrequently. Donor site scars were mostly flat, pale and soft but widened. Pathological scarring was rare. Sensibility was reduced in donor thighs (p<0.001) and correlated with flap width but peak quadriceps contraction was similar between donor and unoperated thighs. There was a high throughput and diverse application of ALT flap reconstructions during the study period. Reduced sensibility was common around the scar but rarely troublesome. Quadriceps function was not affected even when dissection of intramuscular perforators was required. The ALT is a versatile flap that can deliver a large skin paddle with minimal impact on thigh function. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings

    NASA Technical Reports Server (NTRS)

    Yates, John E.

    1991-01-01

    A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.

  20. Portable tomographic PIV measurements of swimming shelled Antarctic pteropods

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Webster, Donald R.; Yen, Jeannette

    2016-12-01

    A portable tomographic particle image velocimetry (tomographic PIV) system is described. The system was successfully deployed in Antarctica to study shelled Antarctic pteropods ( Limacina helicina antarctica)—a delicate organism with an unusual propulsion mechanism. The experimental setup consists of a free-standing frame assembled with optical rails, thus avoiding the need for heavy and bulky equipment (e.g. an optical table). The cameras, lasers, optics, and tanks are all rigidly supported within the frame assembly. The results indicate that the pteropods flap their parapodia (or "wings") downward during both power and recovery strokes, which is facilitated by the pitching of their shell. Shell pitching significantly alters the flapping trajectory, allowing the pteropod to move vertically and/or horizontally. The pronation and supination of the parapodia, together with the figure-eight motion during flapping, suggest similarities with insect flight. The volumetric velocity field surrounding the freely swimming pteropod reveals the generation of an attached vortex ring connecting the leading-edge vortex to the trailing-edge vortex during power stroke and a presence of a leading-edge vortex during recovery stroke. These vortex structures play a major role in accelerating the organism vertically and indicate that forces generated on the parapodia during flapping constitute both lift and drag. After completing each stroke, two vortex rings are shed into the wake of the pteropod. The complex combination of body kinematics (parapodia flapping, shell pitch, sawtooth trajectory), flow structures, and resulting force balance may be significantly altered by thinning of the pteropod shell, thus making pteropods an indicator of the detrimental effects of ocean acidification.

  1. Flight Investigation of the Cooling Characteristics of a Two-Row Radial Engine Installation. 2 - Cooling-Air Pressure Recovery and Pressure Distribution

    DTIC Science & Technology

    1946-07-01

    good distribution of cooling air, as well as minimum drag for the installation. The fact that these tests showed that the front recovery decreased...installations on engine cooling-air distribution indicates that good coin-elation of the cooling results of like engines in different installations...tests indicate that an important consider- ation in the design of cowlings and cowl flaps should be the obtaining of good distribution of cooling air

  2. The Lymphatic Response to Injury with Soft-Tissue Reconstruction in High-Energy Open Tibial Fractures of the Lower Extremity.

    PubMed

    van Zanten, Malou C; Mistry, Raakhi M; Suami, Hiroo; Campbell-Lloyd, Andrew; Finkemeyer, James P; Piller, Neil B; Caplash, Yugesh

    2017-02-01

    Severe compound tibial fractures are associated with extensive soft-tissue damage, resulting in disruption of lymphatic pathways that leave the patient at risk of developing chronic lymphedema. There are limited data on lymphatic response following lower limb trauma. Indocyanine green fluorescence lymphography is a novel, real-time imaging technique for superficial lymphatic mapping. The authors used this technique to image the superficial lymphatic vessels of the lower limbs in patients with severe compound tibial fracture. Baseline demographics and clinical and operative details were recorded in a prospective cohort of 17 patients who had undergone bone and soft-tissue reconstruction after severe compound tibial fracture between 2009 and 2014. Normal lymphatic images were obtained from the patients' noninjured limbs as a control. In this way, the authors investigated any changes to the normal anatomy of the lymphatic system in the affected limbs. Of the 17 patients, eight had free muscle flaps with split-thickness skin grafting, one had a free fasciocutaneous flap, one had a full-thickness skin graft, six had local fasciocutaneous flaps, and one had a pedicled gastrocnemius flap. None of the free flaps demonstrated any functional lymphatic vessels; the fasciocutaneous flaps and the skin graft demonstrated impaired lymphatic vessel function and dermal backflow pattern similar to that in lymphedema. Local flaps demonstrated lymphatic blockage at the scar edge. Severe compound fractures and the associated soft-tissue injury can result in significant lymphatic disruption and an increased risk for the development of chronic lymphedema.

  3. Computational wing optimization and comparisons with experiment for a semi-span wing model

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.

    1978-01-01

    A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.

  4. Monitoring the biomechanics of a wheelchair sprinter racing the 100 m final at the 2016 Paralympic Games

    NASA Astrophysics Data System (ADS)

    Barbosa, Tiago M.; Coelho, Eduarda

    2017-07-01

    The aim was to run a case study of the biomechanics of a wheelchair sprinter racing the 100 m final at the 2016 Paralympic Games. Stroke kinematics was measured by video analysis in each 20 m split. Race kinetics was estimated by employing an analytical model that encompasses the computation of the rolling friction, drag, energy output and energy input. A maximal average speed of 6.97 m s-1 was reached in the last split. It was estimated that the contributions of the rolling friction and drag force would account for 54% and 46% of the total resistance at maximal speed, respectively. Energy input and output increased over the event. However, we failed to note a steady state or any impairment of the energy input and output in the last few metres of the race. Data suggest that the 100 m is too short an event for the sprinter to be able to achieve his maximal power in such a distance.

  5. Full-Thickness Reconstruction with Pedicle Flap and Diced Homologous Cartilage Over the Pericardium Complicated. Cardiac Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, Thomas D.

    1961-01-01

    Successful repair by plastic surgery of nonhealing ulceration of the chest wall, induced by radiotherapy for breast cancer, is described. Reconstruction of the chest wali defect by pedicle flap coverage was carried out. Radiation injury extended through the entire thickness of the chest wall and osteoradionecrosis of the ribs was present. Reconstruction with thoracoabdominal tube was considered to be the best technique, so a 4- by 9-in. tube pedicle was constructed. The underlying donor wound of the pedicle was covered with a split- thickness skin graft. Healing was without incident, and approximates 3 weeks after formation, the inferior end ofmore » this tube pedicle was migrated to the left epigastrium as an intermediate step. Healing was uncomplicated, and the lateral attachment of the pedicle was partially severed. Three weeks later, resection of all avascular tissue along with portions of the fourth and fifth ribs was carried out. This created a full-thickness chest wall defect measuring 4 by 8 in., with the anterior surface of the pericardial sac exposed in the wound. The end of the abdominal tube pedicle was elevated from its bed, rotated into position, and sutured to the healthy margins of the chest wall defect. The exposed subcutaneous fat of the undersurface of the pedicle was placed in juxtaposition to the pericardium. A split-thickness skin graft was cut from the skin of the left thigh and draped over the pedicle flap donor wound. All sutured wounds healed per primum and the entire skin graft survived. The inferior inset of the tube pedicle was cut free and the pedicle flap was tailored into position 6 weeks later. The patient was discharged from the hospital in good condition and engaged in normal activities. An attempt was made to provide protection for the heart beneath the pedicle inset by introduction of diced homologous cartilage grafts, just beneath the skin of the pedicle flap. This healed with the formation of a thick fibrocartilaginous structure providing some protection for the pericardial contents beneath.« less

  6. Self-Propulsion of a Flapping Airfoil Using Cyber-Physical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Young, Jay; Asselin, Daniel; Williamson, C. H. K.

    2017-11-01

    The fluid dynamics of biologically-inspired flapping propulsion provides a fertile testing ground for the field of unsteady aerodynamics, serving as important groundwork for the design and development of underwater vehicles and micro air vehicles (MAVs). These technologies can provide low cost, compact, and maneuverable means for terrain mapping, search and rescue operations, and reconnaissance. However, most laboratory experiments and simulations have been conducted using tethered airfoils with an imposed freestream velocity, which does not necessarily reflect the conditions under which an airfoil employed as a propulsor would operate. Using a closed-loop force-feedback control system, defined as Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, & 2016), we allow a flapping airfoil to fly forward freely, achieving an equilibrium velocity at which thrust and drag are balanced. We study a combination of actively and passively controlled pitching and heaving dynamics in order to find motions that minimize the energy expended per distance traveled by the propulsion system. This work was supported by the National Science Foundation and the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  7. Lift-Enhancing Tabs on Multielement Airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Storms, Bruce L.; Carrannanto, Paul G.

    1995-01-01

    The use of flat-plate tabs (similar to Gurney flaps) to enhance the lift of multielement airfoils is extended here by placing them on the pressure side and near the trailing edge of the main element rather than just on the furthest downstream wing element. The tabs studied range in height from 0.125 to 1.25% of the airfoil reference chord. In practice, such tabs would be retracted when the high-lift system is stowed. The effectiveness of the concept was demonstrated experimentally and computationally on a two-dimensional NACA 63(sub 2)-215 Mod B airfoil with a single-slotted, 30%-chord flap. Both the experiments and computations showed that the tabs significantly increase the lift at a given angle of attack and the maximum lift coefficient of the airfoil. The computational results showed that the increased lift was a result of additional turning of the flow by the tab that reduced or eliminated now separation on the flap. The best configuration tested, a 0.5%-chord tab placed 0.5% chord upstream of the trailing edge of the main element, increased the maximum lift coefficient of the airfoil by 12% and the maximum lift-to-drag ratio by 40%.

  8. [Antegrade extended peroneal artery perforator flap for knee reconstruction].

    PubMed

    Ruan, Hongjiang; Cai, Peihua; Fan, Cunyi; Chai, Yimin; Liu, Shenghe

    2009-03-01

    To investigate the operative technique and clinical results of repairing the soft tissue defects of knee with antegrade extended peroneal artery perforator flap. From October 2007 to January 2008, 3 patients (2 men and 1 woman) with the soft tissue defects of knee were treated, with the ages of 18, 31 and 42 years, respectively. The first case sustained femur and pelvis fractures and soft tissue defect over his right popliteal fossa, which were treated with open reduction and internal fixation (ORIF) and debridement of knee joint 2 weeks ago. The second case was necrosis of skin 3 weeks after ORIF for fracture of tibial plateau. The third case suffered from open fracture of tibial plateau and soft tissue defect, which were treated with external fixation and debridement 3 weeks ago. The defect sizes were 16 cm x 9 cm, 11 cm x 6 cm and 14 cm x 7 cm. The flap was raised by dividing the peroneal artery and veins distally and elevating them proximally, which covered for the defects of knee. The flaps were designed with the size of 18 cm x 10 cm, 12 cm 7 cm and 15 cm x 8 cm. The pure vascular pedicle of the flap was 10 cm to 17 cm in length, including the peroneal vessels and one or two perforator branches. The donor site is covered by a split thickness skin graft. All flaps survived after surgery. The donor sites healed by first intention and the skin grafts survived. After following up for 6, 8 and 11 months, the appearance and function of the flaps were all satisfactory. Based on the modified HSS knee performance system, post-operative knee functional outcomes of three patients were excellent. The antegrade extended peroneal artery perforator flap supplied by a pure vascular pedicle can be a good alternative for reconstruction of knee. The flap, with a long and thin pure vascular pedicle, could provide good texture and contour matching the recipient area.

  9. Flap reconstruction for soft-tissue defects with exposed hardware following deep infection after internal fixation of ankle fractures.

    PubMed

    Ovaska, Mikko T; Madanat, Rami; Tukiainen, Erkki; Pulliainen, Lea; Sintonen, Harri; Mäkinen, Tatu J

    2014-12-01

    The aim of the present study was to determine the outcome for patients treated with flap reconstruction following deep ankle fracture infection with exposed hardware. Out of 3041 consecutive ankle fracture operations in 3030 patients from 2006 to 2011, we identified 56 patients requiring flap reconstruction following deep infection. Thirty-two of these patients could be examined at a follow-up visit. Olerud-Molander Ankle (OMA) score, 15D score, Numeric Rating Scale (NRS), and clinical examination were used to assess the outcome. A total of 58 flap reconstructions were performed in 56 patients with a mean age of 57 years (range 25–93 years) and mean follow-up time of 52 months. The most commonly used reconstruction was a distally based peroneus brevis muscle flap with a split-thickness skin graft. A microvascular free flap was required in only one patient. 22 (39%) patients required subsequent surgical interventions because of a flap-related complication. With flap reconstruction, hardware could eventually be salvaged in 53% of patients with a non-consolidated fracture. The mean OMA score was fair or poor in 53% of the patients, and only 56% had recovered their pre-injury level of function. Half of the patients had shoe wear limitations. The 15D score showed a significantly poorer health-related quality of life compared to an age-standardised sample of the general population. The mean pain NRS was 2.1 (range 0–6), and the mean satisfaction NRS was 6.6 (range 0–10). Our study showed that successful treatment of a soft-tissue defect with exposed hardware following ankle fracture infections can be achieved with local flaps. Despite eventual reconstructive success, complications are common. Patients perceive a poorer health-related quality of life, have shoe wear limitations, and only half of them achieve their pre-injury level of function.

  10. The Sternocleidomastoid Muscle Flap: A Versatile Local Method for Repair of External Penetrating Injuries of Hypopharyngeal-Cervical Esophageal Funnel.

    PubMed

    Ellabban, Mohamed A

    2016-04-01

    A primary repair of external penetrating injury to hypopharyngeal-cervical esophageal (HP-CE) funnel without reinforcement has more complications if compared with muscle reinforcement. The aim of the present study was to assess the outcome of using sternocleidomastoid (SCM) muscle flap for reinforcement of primary repair of HP-CE funnel injury. The study proposed an algorithm for different uses of SCM flap repair according to site and size of funnel perforation. A prospective analysis of 12 patients, who had surgical treatment for external penetrating injuries of HP-CE funnel between January 2011 and September 2014, was recorded. The following factors were studied for each case: demographic data, Revised Trauma Score (RTS), mechanism of injury, time interval between injury and definitive surgical care, injury morphology, any associated injuries, technique of SCM flap used, length of hospital stay, and surgical outcome and complications. They were 10 males and 2 females and the mean age was 31.9 years. The cause of injury was stab wound in 5 (41.7 %) cases, gunshot injury in 4 (33.3 %) cases and 3 (25 %) cases after anterior cervical spine surgery. Isolated injury to HP and CE was recorded in 5 cases (41.7 %) for each site. However, 2 (16.7 %) cases had injury to both HP and CE. Cranially based SCM flap was mainly used in cases with HP injury and caudally based flap in CE cases with some limitations. The whole muscle flap was used in large (≥ 1 cm) defects while and the split muscle flap in small (<1 cm) defects. Oral intake started 7 days postoperatively with only one (8.3 %) case of small leakage, which was treated conservatively. The SCM flap is a very useful and versatile tool in reinforcement of HP-CE funnel injury with the advantages of high success rates of leakage prevention.

  11. The Effects of High-lift Devices on the Low-speed Stability of a Tapered 37.5 Degree Sweptback Wing of Aspect Ratio 3 in Straight and Rolling Flow

    NASA Technical Reports Server (NTRS)

    Queijo, M J; Lichtenstein, Jacob H

    1948-01-01

    Contains results of tunnel tests to determine effects of various combinations of split flaps, slats, and nose slats on the stability characteristics of a tapered 37.5 degree sweptback wing of aspect ratio 3 in straight and rolling flow.

  12. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  13. Lockheed L-1011 Test Station installation in support of the Adaptive Performance Optimization flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians John Huffman, Phil Gonia and Mike Kerner of NASA's Dryden Flight Research Center, Edwards, California, carefully insert a monitor into the Research Engineering Test Station during installation of equipment for the Adaptive Performance Optimization experiment aboard Orbital Sciences Corporation's Lockheed L-1011 in Bakersfield, California, May, 6, 1997. The Adaptive Performance Optimization project is designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. Reducing the drag will improve aircraft efficiency and performance, resulting in signifigant fuel savings for the nation's airlines worth hundreds of millions of dollars annually. Flights for the NASA experiment will occur periodically over the next couple of years on the modified wide-bodied jetliner, with all flights flown out of Bakersfield's Meadows Field. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.

  14. Muscle-splitting approach to superior and inferior gluteal vessels: versatile source of recipient vessels for free-tissue transfer to sacral, gluteal, and ischial regions.

    PubMed

    Park, S

    2000-07-01

    The superior gluteal vessel has been reported as a recipient in free-tissue transfer for the coverage of complex soft-tissue defects in the lumbosacral region, where a suitable recipient vessel is difficult to find. The characteristics of proximity, vessel caliber, and constancy make the superior gluteal vessel preferable to previously reported recipient vessels. However, there are technical difficulties in microsurgery (e.g., short pedicle length and deep location) and muscle injury (transection of the muscle) associated with use of the superior gluteal vessel. The purpose of this article is to present a modification of an approach to the gluteal vessel to alleviate technical difficulties and minimize muscle injury. From August of 1997 to January of 1999, six patients received microvascular transfer of the latissimus dorsi muscle or myocutaneous flap to the sacral (4) and ischial (2) regions. The causes of defects were tumor (1), trauma (1), and pressure sores (4). A muscle-splitting approach was used on the superior gluteal vessel and was later applied to the inferior gluteal vessel. The gluteus maximus muscle was split as needed in the direction of its fibers, and the perforators were dissected down to the superior or inferior gluteal artery and vein deep into the muscle. The follow-up period ranged from 6 to 22 months, and all of the flaps survived with complete recovery of the lesion. The major drawbacks of using the superior and inferior gluteal vessels can be overcome with the muscle-splitting approach, which provides increased accessibility and additional length to the vascular pedicle while causing minimal injury to the muscle itself. It also proves to be an easy, safe, and reliable method of dissection. When free-tissue transfer to sacral, gluteal, and ischial regions is indicated, the muscle-splitting approach to the superior and inferior gluteal vessels is a recommended option in the selection of a recipient vessel.

  15. Finite micro-tab system for load control on a wind turbine

    NASA Astrophysics Data System (ADS)

    Bach, A. B.; Lennie, M.; Pechlivanoglou, G.; Nayeri, C. N.; Paschereit, C. O.

    2014-06-01

    Finite micro-tabs have been investigated experimentally to evaluate the potential for load control on wind turbines. Two dimensional full span, as well as multiple finite tabs of various aspect ratios have been studied on an AH93W174 airfoil at different chord wise positions. A force balance was used to measure the aerodynamic loads. Furthermore, the wake vortex system consisting of the Karman vortex street as well as the tab tip vortices was analyzed with a 12-hole probe and hot wire anemometry. Finally, conventional oil paint as well as a quantitative digital flow analysis technique called SMARTviz were used to visualize the flow around the finite tab configurations. Results have shown that the devices are an effective solution to alleviate the airfoils overall load. The influence of the tab height, tab position as well as the finite tab aspect ratio on the lift and lift to drag ratio have been evaluated. It could be shown, that the lift difference can either be varied by changing the tab height as well as by altering the aspect ratio of the finite tabs. The drag of a two-dimensional flap is directly associated with the vortex street, while in the case of the finite tab, the solidity ratio of the tabs has the strongest effect on the drag. Therefore, the application of a finite tab system showed to improve the lift to drag ratio.

  16. Computational study of the effect of Reynolds number and motion trajectory asymmetry on the aerodynamics of a pitching airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Hammer, Patrick R.

    It is well established that natural flyers flap their wings to sustain flight due to poor performance of steady wing aerodynamics at low Reynolds number. Natural flyers also benefit from the propulsive force generated by flapping. Unsteady airfoils allow for simplified study of flapping wing aerodynamics. Limited previous work has suggested that both the Reynolds number and motion trajectory asymmetry play a non-negligible role in the resulting forces and wake structure of an oscillating airfoil. In this work, computations are performed to on this topic for a NACA 0012 airfoil purely pitching about its quarter-chord point. Two-dimensional computations are undertaken using the high-order, extensively validated FDL3DI Navier-Strokes solver developed at Wright-Patterson Air Force Base. The Reynolds number range of this study is 2,000-22,000, reduced frequencies as high as 16 are considered, and the pitching amplitude varies from 2° to 10°. In order to simulate the incompressible limit with the current compressible solver, freestream Mach numbers as low as 0.005 are used. The wake structure is accurately resolved using an overset grid approach. The results show that the streamwise force depends on Reynolds number such that the drag-to-thrust crossover reduced frequency decreases with increasing Reynolds number at a given amplitude. As the amplitude increases, the crossover reduced frequency decreases at a given Reynolds number. The crossover frequency data show good collapse for all pitching amplitudes considered when expressed as the Strouhal number based on trailing edge-amplitude for different Reynolds numbers. Appropriate scaling causes the thrust data to become nearly independent of Reynolds number and amplitude. An increase in propulsive efficiency is observed as the Reynolds number increases while less dependence is seen in the peak-to-peak lift and drag amplitudes. Reynolds number dependence is also seen for the wake structure. The crossover reduced frequency to produce a switch in the wake vortex configuration from von Karman (drag) to reverse von Karman (thrust) patterns decreases as the Reynolds number increases. As the pitching amplitude increases, more complex structures form in the wake, particularly at the higher Reynolds numbers considered. Although both the transverse and streamwise spacing depend on amplitude, the vortex array aspect ratio is nearly amplitude independent for each Reynolds number. Motion trajectory asymmetry produces a non-zero average lift and a decrease in average drag. Decomposition of the lift demonstrates that the majority of the average lift is a result of the component from average vortex (circulatory) lift. The average lift is positive at low reduced frequency, but as the reduced frequency increases at a given motion asymmetry, an increasing amount of negative lift occurs over a greater portion of the oscillation cycle, and eventually causes a switch in the sign of the lift. The maximum value, minimum value, and peak-to-peak amplitude of the lift and drag increase with increasing reduced frequency and asymmetry. The wake structure becomes complex with an asymmetric motion trajectory. A faster pitch-up produces a single positive vortex and one or more negative vortices, the number of which depends on the reduced frequency and asymmetry. When the airfoil motion trajectory is asymmetric, the vortex trajectories and properties in the wake exhibit asymmetric behavior.

  17. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Viken, Jeffrey K.; Viken, Sally A.; Carter, Melissa B.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of the wing for the distributed electric propulsion X-57 Maxwell airplane configuration at cruise and takeoff/landing conditions was completed. Two unstructured-mesh, Navier-Stokes computational fluid dynamics methods, FUN3D and USM3D, were used to predict the wing performance. The goal of the X-57 wing and distributed electric propulsion system design was to meet or exceed the required lift coefficient 3.95 for a stall speed of 58 knots, with a cruise speed of 150 knots at an altitude of 8,000 ft. The X-57 Maxwell airplane was designed with a small, high aspect ratio cruise wing that was designed for a high cruise lift coefficient (0.75) at angle of attack of 0deg. The cruise propulsors at the wingtip rotate counter to the wingtip vortex and reduce induced drag by 7.5 percent at an angle of attack of 0.6deg. The unblown maximum lift coefficient of the high-lift wing (with the 30deg flap setting) is 2.439. The stall speed goal performance metric was confirmed with a blown wing computed effective lift coefficient of 4.202. The lift augmentation from the high-lift, distributed electric propulsion system is 1.7. The predicted cruise wing drag coefficient of 0.02191 is 0.00076 above the drag allotted for the wing in the original estimate. However, the predicted drag overage for the wing would only use 10.1 percent of the original estimated drag margin, which is 0.00749.

  18. Soft tissue reconstruction of the oral cavity: a review of current options.

    PubMed

    Rigby, Matthew H; Taylor, S Mark

    2013-08-01

    This article provides an overview of the principles of soft tissue reconstruction of the oral cavity, and reviews the recent clinical outcomes for described options. For small defects of the oral cavity, healing by secondary intention and primary closure are both excellent options and may provide functionally superior results. In defects where a split-thickness skin graft is appropriate, acellular dermis may provide results that are at least as good at lower cost. Free flaps, particularly the radial forearm and the anterolateral thigh, have become the mainstays of oral cavity soft tissue reconstruction for larger defects. Recent clinical series suggest that relatively novel regional flaps provide a reasonable alternative to free flap reconstructions for moderate and some large soft tissue defects. Soft tissue reconstruction of the oral cavity is a complex task with significant functional implications. There are a large number of reconstructive options available. Systematic appraisal of the defect and options allows the reconstructive surgeon to optimize functional potential by choosing the most appropriate reconstructive option.

  19. Optimal pitching axis location of flapping wings for efficient hovering flight.

    PubMed

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when using kinetic energy recovery drive systems.

  20. Results of a carrier aircraft (model AX13191-4) verification test in the Boeing transonic wind tunnel using a 0.03-scale 747 CAM/orbiter model 45-0 (CA6), volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Force and moment data were obtained on each vehicle both mated and separated. The investigation included the effects of orbiter incidence, orbiter tail cone, orbiter strut fairings, elevon, and body flap settings. Analysis of the data indicated the 747 is suitable as a carrier of the orbiter in both the ALT launch and ferry mode. The effect of configuration changes on drag and stability was determined.

  1. Turbulence Measurements on a Flap-Edge Model

    NASA Technical Reports Server (NTRS)

    Moriarty, Patrick; Bradshaw, Peter; Cantwell, Brian; Ross, James

    1998-01-01

    Turbulence measurements have been made on a flap-edge and leading-edge slat model using hot-wire anemometry, and, later, particle image velocimetry. The properties of hot-wire anemometry were studied using facilities at NASA Ames Research Center. Hot-film probes were used because of their durability, but cross-films were limited by non-linear end effects. As a warm-up exercise, hot-film probes were used to measure velocities in the farfield wake of a cylinder with an airfoil in the near-field wake. The airfoil reduced the drag coefficient of the system by 10%. A single-wire hot-film probe was used to measure velocity profiles over the top of a NACA 63(sub 2)-215 Mod. B wing with a Fowler flap and leading,-edge slat. Results showed the size of slat wake was dependent upon the slat deflection angle. Velocity increased through the slat gap with increased deflection. The acoustically modified slat decreased the chance of separation. Measurements were taken at the flap edge with a single hot-film. Trends in the data indicate velocity and turbulence levels increase at the flap edge. The acoustically modified flap modifies the mean flow near the flap edge. Correlations were made between the hot-film signal and the unsteady pressure transducers on the wing which were published in a NASA CDTM. The principles of Particle Image Velocimetry (PIV) were studied at Florida State University. Spectral PIV was used to measure the spectra of a subsonic jet. Measured frequencies were close to the predicted frequency of jet shedding. Spectral PIV will be used to measure the spectra of the slat flow in the second 7 x lO-ft. wind tunnel test. PIV has an advantage that it can measure velocity and spectra of the entire flowfield instantaneously. However, problems arise when trying, to store this massive amount of PIV data. Support for this research has continued through a NASA Graduate Student Program Fellowship which will end in June 1999. The thesis should be completed by this time.

  2. Effects of spanwise flexibility on the performance of flapping flyers in forward flight.

    PubMed

    Kodali, Deepa; Medina, Cory; Kang, Chang-Kwon; Aono, Hikaru

    2017-11-01

    Flying animals possess flexible wings that deform during flight. The chordwise flexibility alters the wing shape, affecting the effective angle of attack and hence the surrounding aerodynamics. However, the effects of spanwise flexibility on the locomotion are inadequately understood. Here, we present a two-way coupled aeroelastic model of a plunging spanwise flexible wing. The aerodynamics is modelled with a two-dimensional, unsteady, incompressible potential flow model, evaluated at each spanwise location of the wing. The two-way coupling is realized by considering the transverse displacement as the effective plunge under the dynamic balance of wing inertia, elastic restoring force and aerodynamic force. The thrust is a result of the competition between the enhancement due to wing deformation and induced drag. The results for a purely plunging spanwise flexible wing agree well with experimental and high-fidelity numerical results from the literature. Our analysis suggests that the wing aspect ratio of the abstracted passerine and goose models corresponds to the optimal aeroelastic response, generating the highest thrust while minimizing the power required to flap the wings. At these optimal aspect ratios, the flapping frequency is near the first spanwise natural frequency of the wing, suggesting that these birds may benefit from the resonance to generate thrust. © 2017 The Author(s).

  3. Change in reimbursement and costs in German oncological head and neck surgery over the last decade: ablative tongue cancer surgery and reconstruction with split-thickness skin graft vs. microvascular radial forearm flap.

    PubMed

    Hoefert, Sebastian; Lotter, Oliver

    2018-05-01

    Defects after ablative tongue cancer surgery can be reconstructed by split-thickness skin grafts or free microvascular flaps. The different surgical options may influence costs, reimbursement, and therefore possible profits. Our goal was to analyze the development of these parameters for different procedures in head and neck reconstruction in Germany over the last decade. After tumor resection and neck dissection of tongue cancer, three different scenarios were chosen to calculate costs, reimbursement, length of stay (LoS), and profits. Two options considered were reconstruction by split-thickness skin graft with (option Ia) and without (option Ib) tracheotomy. In addition, we analyzed microvascular reconstruction with radial forearm flap (option II). Furthermore, unsatisfactory results after options Ia and Ib may make secondary tongue plastic with split-thickness skin grafting necessary (option I+). The calculations were performed considering the German Diagnosis Related Group (DRG) system and compared to the specific DRG cost data of 250 German reference hospitals. The overall average length of stay (aLoS) declined from 16.7 to 12.8 days with a reduction in every option. Until 2011, all options showed similar accumulated DRG reimbursement. From 2012 onwards, earnings almost doubled for option II due to changes in the DRG allocation. As was expected, the highest costs were observed in option II. Profits (reimbursement minus costs) were also highest for option II (mean 2052 €, maximum 3630 Euros in 2015) followed by options Ia (765 €) and Ib/I+ (681 €). Average profits over time would be 17 to 19% higher if adjusted for inflation. We showed the development of the DRG allocation of two commonly used methods of reconstruction after ablative tongue cancer surgery and the associated LoS, reimbursement, costs, and profits. As expected, the highest values were found for microvascular reconstruction. Microvascular reconstruction may also be the primary choice of treatment from a medical point of view. However, prolonged operation times, intensive care, and hospital stay in connection with complex microvascular operations can easily turn profits into losses as opposed to the results of simple, reliable, and fast split-thickness skin grafting. The inflation rate influences profits in reimbursement systems where costs are based on a previous period of time. Surgeons find themselves daily in an area of conflict between economic interests and medical decision-making. Due to its multidimensional aspects, the choice of the reconstructive technique should be primarily based on the best medical care for the patient. But there should also be awareness of the economic risk of all three surgical procedures.

  4. System and Method for Modeling the Flow Performance Features of an Object

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles (Inventor); Ross, James (Inventor)

    1997-01-01

    The method and apparatus includes a neural network for generating a model of an object in a wind tunnel from performance data on the object. The network is trained from test input signals (e.g., leading edge flap position, trailing edge flap position, angle of attack, and other geometric configurations, and power settings) and test output signals (e.g., lift, drag, pitching moment, or other performance features). In one embodiment, the neural network training method employs a modified Levenberg-Marquardt optimization technique. The model can be generated 'real time' as wind tunnel testing proceeds. Once trained, the model is used to estimate performance features associated with the aircraft given geometric configuration and/or power setting input. The invention can also be applied in other similar static flow modeling applications in aerodynamics, hydrodynamics, fluid dynamics, and other such disciplines. For example, the static testing of cars, sails, and foils, propellers, keels, rudders, turbines, fins, and the like, in a wind tunnel, water trough, or other flowing medium.

  5. Dynamics and flight control of a flapping-wing robotic insect in the presence of wind gusts.

    PubMed

    Chirarattananon, Pakpong; Chen, Yufeng; Helbling, E Farrell; Ma, Kevin Y; Cheng, Richard; Wood, Robert J

    2017-02-06

    With the goal of operating a biologically inspired robot autonomously outside of laboratory conditions, in this paper, we simulated wind disturbances in a laboratory setting and investigated the effects of gusts on the flight dynamics of a millimetre-scale flapping-wing robot. Simplified models describing the disturbance effects on the robot's dynamics are proposed, together with two disturbance rejection schemes capable of estimating and compensating for the disturbances. The proposed methods are experimentally verified. The results show that these strategies reduced the root-mean-square position errors by more than 50% when the robot was subject to 80 cm s -1 horizontal wind. The analysis of flight data suggests that modulation of wing kinematics to stabilize the flight in the presence of wind gusts may indirectly contribute an additional stabilizing effect, reducing the time-averaged aerodynamic drag experienced by the robot. A benchtop experiment was performed to provide further support for this observed phenomenon.

  6. Numerical Simulations of the Steady and Unsteady Aerodynamic Characteristics of a Circulation Control Wing Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.

    2003-01-01

    The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.

  7. Dynamics and flight control of a flapping-wing robotic insect in the presence of wind gusts

    PubMed Central

    Chen, Yufeng; Helbling, E. Farrell; Ma, Kevin Y.; Cheng, Richard; Wood, Robert J.

    2017-01-01

    With the goal of operating a biologically inspired robot autonomously outside of laboratory conditions, in this paper, we simulated wind disturbances in a laboratory setting and investigated the effects of gusts on the flight dynamics of a millimetre-scale flapping-wing robot. Simplified models describing the disturbance effects on the robot's dynamics are proposed, together with two disturbance rejection schemes capable of estimating and compensating for the disturbances. The proposed methods are experimentally verified. The results show that these strategies reduced the root-mean-square position errors by more than 50% when the robot was subject to 80 cm s−1 horizontal wind. The analysis of flight data suggests that modulation of wing kinematics to stabilize the flight in the presence of wind gusts may indirectly contribute an additional stabilizing effect, reducing the time-averaged aerodynamic drag experienced by the robot. A benchtop experiment was performed to provide further support for this observed phenomenon. PMID:28163872

  8. Jet transport energy management for minimum fuel consumption and noise impact in the terminal area

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Foster, J. D.

    1974-01-01

    Significant reductions in both noise and fuel consumption can be gained through careful tailoring of approach flightpath and airspeed profile, and the point at which the landing gear and flaps are lowered. For example, the noise problem has been successfully attacked in recent years with development of the 'two-segment' approach, which brings the aircraft in at a steeper angle initially, thereby achieving noise reduction through lower thrust settings and higher altitudes. A further reduction in noise and a significant reduction in fuel consumption can be achieved with the 'decelerating approach' concept. In this case, the approach is initiated at high airspeed and in a drag configuration that allows for low thrust. The landing flaps are then lowered at the appropriate time so that the airspeed slowly decelerates to V sub r at touchdown. The decelerating approach concept can be applied to constant glideslope flightpaths or segmented flightpaths such as the two-segment approach.

  9. Reconstructive Surgery in the Thermally Injured Patient

    DTIC Science & Technology

    2012-01-01

    Pedicle flaps • Reconstructive Surgery • Thermal injury • Z-plasties • Skin grafting AN INCREASED NEED FOR RECONSTRUCTIVE SURGERY Reconstruction is a...dermal structure and include the tendency for recurrent contractures. full-thickness skin graft s are usually reserved for reconstructions with...dermatologic surgery: review and update on full- and split thickness skin grafts , free cartilage grafts, and composite grafts. Dermatol Surg 2005;31

  10. The effect of wing flexibility on sound generation of flapping wings.

    PubMed

    Geng, Biao; Xue, Qian; Zheng, Xudong; Liu, Geng; Ren, Yan; Dong, Haibo

    2017-12-13

    In this study, the unsteady flow and acoustic characteristics of a three-dimensional (3D) flapping wing model of a Tibicen linnei cicada in forward-flight are numerically investigated. A single cicada wing is modelled as a membrane with a prescribed motion reconstructed from high-speed videos of a live insect. The numerical solution takes a hydrodynamic/acoustic splitting approach: the flow field is solved with an incompressible Navier-Stokes flow solver based on an immersed boundary method, and the acoustic field is solved with linearized perturbed compressible equations. The 3D simulation allows for the examination of both the directivity and frequency compositions of the flapping wing sound in a full space. Along with the flexible wing model, a rigid wing model that is extracted from real motion is also simulated to investigate the effects of wing flexibility. The simulation results show that the flapping sound is directional; the dominant frequency varies around the wing. The first and second frequency harmonics show different radiation patterns in the rigid and flexible wing cases, which are demonstrated to be highly associated with wing kinematics and loadings. Furthermore, the rotation and deformation in the flexible wing is found to help lower the sound strength in all directions.

  11. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  12. Flow of colloid particle solution past macroscopic bodies and drag crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iordanskii, S. V., E-mail: iordansk@itp.ac.ru

    2013-11-15

    The motion of colloid particles in a viscous fluid flow is considered. Small sizes of colloid particles as compared to the characteristic scale of the flow make it possible to calculate their velocity relative to the liquid. If the density of a colloid particle is higher than the density of the liquid, the flow splits into regions in which the velocity of colloid particles coincides with the velocity of the liquid and regions of flow stagnation in which the colloid velocity is higher than the velocity of the fluid. This effect is used to explain qualitatively the decrease in themore » drag to the flows past macroscopic bodies and flows in pipes.« less

  13. Space shuttle: Experimental investigations for base drag reduction on a 0.015 scale model MSFS proposed space shuttle booster at Mach numbers from 0.40 to 1.10

    NASA Technical Reports Server (NTRS)

    Bradley, D.

    1972-01-01

    A 0.015-scale model of a modified version of the MDAC space shuttle booster was tested to obtain force, static stability, and control effectiveness data. The objective of this test was the reduction of cruise (M = 0.4) base drag by the use of base flaps, base vents, elevon deflection and base flow from a plenum mounted forward of the base heat shield. Transonic data were also obtained to determine the aerodynamic characteristics of the new base shape. Six component aerodynamic force and moment data were recorded over an angle of attack range from 4 deg to 20 deg at 0 deg sideslip and over a sideslip range from -6 deg to 6 deg at 0 deg, 6 deg and 15 deg angle of attack. Mach number varied from 0.4 to 1.10 at a constant R of 2 million per unit length.

  14. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Hubbard, Joel J.; Fleming, Maxwell; Pugal, David; Kim, Sungjun; Kim, Kwang J.; Leang, Kam K.

    2013-01-01

    This paper discusses the design, fabrication, and characterization of an ionic polymer-metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s-1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These results suggest that such IPMC-enabled fin designs can be used for developing active propeller blades or control surfaces on underwater vehicles.

  15. The Use of Split-Thickness Skin Grafts on Diabetic Foot Ulcerations: A Literature Review

    PubMed Central

    McCartan, Brant; Dinh, Thanh

    2012-01-01

    Diabetic foot ulcerations are historically difficult to treat despite advanced therapeutic modalities. There are numerous modalities described in the literature ranging from noninvasive topical wound care to more invasive surgical procedures such as primary closure, skin flaps, and skin grafting. While skin grafting provides faster time to closure with a single treatment compared to traditional topical wound treatments, the potential risks of donor site morbidity and poor wound healing unique to the diabetic state have been cited as a contraindication to its widespread use. In order to garner clarity on this issue, a literature review was undertaken on the use of split-thickness skin grafts on diabetic foot ulcers. Search of electronic databases yielded four studies that reported split-thickness skin grafts as definitive means of closure. In addition, several other studies employed split-thickness skin grafts as an adjunct to a treatment that was only partially successful or used to fill in the donor site of another plastic surgery technique. When used as the primary closure on optimized diabetic foot ulcerations, split-thickness skin grafts are 78% successful at closing 90% of the wound by eight weeks. PMID:22666573

  16. Refinements in pectus carinatum correction: the pectoralis muscle split technique.

    PubMed

    Schwabegger, Anton H; Jeschke, Johannes; Schuetz, Tanja; Del Frari, Barbara

    2008-04-01

    The standard approach for correction of pectus carinatum deformity includes elevation of the pectoralis major and rectus abdominis muscle from the sternum and adjacent ribs. A postoperative restriction of shoulder activity for several weeks is necessary to allow stable healing of the elevated muscles. To reduce postoperative immobilization, we present a modified approach to the parasternal ribs using a pectoralis muscle split technique. At each level of rib cartilage resection, the pectoralis muscle is split along the direction of its fibers instead of elevating the entire muscle as performed with the standard technique. From July 2000 to May 2007, we successfully used this technique in 33 patients with pectus carinatum deformity. After the muscle split approach, patients returned to full unrestricted shoulder activity as early as 3 weeks postoperatively, compared to 6 weeks in patients treated with muscle flap elevation. Postoperative pain was reduced and the patients were discharged earlier from the hospital than following the conventional approach. The muscle split technique is a modified surgical approach to the parasternal ribs in patients with pectus carinatum deformity. It helps to maintain pectoralis muscle vascularization and function and can reduce postoperative pain, hospitalization, and rehabilitation period.

  17. The calculated effect of various hydrodynamic and aerodynamic factors on the take-off of a large flying boat

    NASA Technical Reports Server (NTRS)

    Olson, R E; Allison, J M

    1940-01-01

    Report presents the results of an investigation made to determine the influence of various factors on the take-off performance of a hypothetical large flying boat by means of take-off calculations. The factors varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The take-off times and distances were calculated to the stalling speeds and the performance above these speeds was separately studied to determine piloting technique for optimum take-off.

  18. Piezosurgery for the lingual split technique in mandibular third molar removal: a suggestion.

    PubMed

    Pippi, Roberto; Alvaro, Roberto

    2013-03-01

    The lingual split technique is a surgical procedure for extraction of impacted mandibular third molar throughout a lingual approach. The main disadvantage of this technique is the high rate of temporary lingual nerve injury mainly because of the trauma induced by the lingual flap retraction. The purpose of this paper is to suggest the use of piezosurgery in performing the lingual cortical plate osteotomy of the third molar alveolar process. Surgical procedure was performed under general anesthesia, and it lasted approximately 60 minutes. After the buccal and lingual full-thickness flaps were incised and elevated, a piezosurgical device was used for osteotomy. A well-defined bony window was then removed, and it allowed the entire tooth was extracted in a lingual direction. The patient did not show any neurological postoperative complication. Lingual and inferior alveolar nerve functionality was normal before as well as after surgery. The use of piezoelectric surgery seems to be a good option in removing lower third molars when a lingual access is clearly indicated. The only disadvantage of this technique can be represented by an operating time lengthening possibly because of a lower power cut of the piezoelectric device, to the high mineralization of the mandibular cortical bone and to the use of inserts with a low degree of sharpening.

  19. Analysis of a Split-Plot Experimental Design Applied to a Low-Speed Wind Tunnel Investigation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A procedure to analyze a split-plot experimental design featuring two input factors, two levels of randomization, and two error structures in a low-speed wind tunnel investigation of a small-scale model of a fighter airplane configuration is described in this report. Standard commercially-available statistical software was used to analyze the test results obtained in a randomization-restricted environment often encountered in wind tunnel testing. The input factors were differential horizontal stabilizer incidence and the angle of attack. The response variables were the aerodynamic coefficients of lift, drag, and pitching moment. Using split-plot terminology, the whole plot, or difficult-to-change, factor was the differential horizontal stabilizer incidence, and the subplot, or easy-to-change, factor was the angle of attack. The whole plot and subplot factors were both tested at three levels. Degrees of freedom for the whole plot error were provided by replication in the form of three blocks, or replicates, which were intended to simulate three consecutive days of wind tunnel facility operation. The analysis was conducted in three stages, which yielded the estimated mean squares, multiple regression function coefficients, and corresponding tests of significance for all individual terms at the whole plot and subplot levels for the three aerodynamic response variables. The estimated regression functions included main effects and two-factor interaction for the lift coefficient, main effects, two-factor interaction, and quadratic effects for the drag coefficient, and only main effects for the pitching moment coefficient.

  20. Correlation between vortex structures and unsteady loads for flapping motion in hover

    NASA Astrophysics Data System (ADS)

    Jardin, Thierry; Chatellier, Ludovic; Farcy, Alain; David, Laurent

    2009-10-01

    During the past decade, efforts were made to develop a new generation of unmanned aircrafts, qualified as Micro-Air Vehicles. The particularity of these systems resides in their maximum dimension limited to 15 cm, which, in terms of aerodynamics, corresponds to low Reynolds number flows ( Re ≈ 102 to 104). At low Reynolds number, the concept of flapping wings seems to be an interesting alternative to the conventional fixed and rotary wings. Despite the fact that this concept may lead to enhanced lift forces and efficiency ratios, it allows hovering coupled with a low-noise generation. Previous studies (Dickinson et al. in Science 284:1954-1960, 1999) revealed that the flow engendered by flapping wings is highly vortical and unsteady, inducing significant temporal variations of the loads experienced by the airfoil. In order to enhance the aerodynamic performance of such flapping wings, it is essential to give further insight into the loads generating mechanisms by correlating the spatial and temporal evolution of the vortical structures together with the time-dependent lift and drag. In this paper, Time Resolved Particle Image Velocimetry is used as a basis to evaluate both unsteady forces and vortical structures generated by an airfoil undergoing complex motion (i.e. asymmetric flapping flight), through the momentum equation approach and a multidimensional wavelet-like vortex parameterization method, respectively. The momentum equation approach relies on the integration of flow variables inside and around a control volume surrounding the airfoil (Noca et al. in J Fluids Struct 11:345-350, 1997; Unal et al. in J Fluids Struct 11:965-971, 1997). Besides the direct link performed between the flow behavior and the force mechanisms, the load characterization is here non-intrusive and specifically convenient for flapping flight studies thanks to its low Reynolds flows’ sensitivity and adaptability to moving bodies. Results are supported by a vortex parameterization which evaluates the circulation of the multiple vortices generated in such complex flows. The temporal evolution of the loads matches the flow behavior and hence reveals the preponderant inertial force component and that due to vortical structures.

  1. A Passive Cavity Concept for Improving the Off-Design Performance of Fixed-Geometry Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Gunther, Christopher L.; Hunter, Craig A.

    1996-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to study a passive cavity concept for improving the off-design performance of fixed-geometry exhaust nozzles. Passive cavity ventilation (through a porous surface) was applied to divergent flap surfaces and tested at static conditions in a sub-scale, nonaxisymmetric, convergent-divergent nozzle. As part of a comprehensive investigation, force, moment and pressure measurements were taken and focusing schlieren flow visualization was obtained for a baseline configuration and D passive cavity configurations. All tests were conducted with no external flow and high-pressure air was used to simulate jet-exhaust flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable shock-induced boundary-layer separation at off-design conditions, which came about through the natural tendency of overexpanded exhaust flow to satisfy conservation requirements by detaching from the nozzle divergent flaps. Passive cavity ventilation added the ability to control off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. Separation alleviation offers potential for installed nozzle performance benefits by reducing drag at forward flight speeds, even though it may reduce off-design static thrust efficiency as much as 3.2 percent. Encouraging stable separation of the exhaust flow offers significant performance improvements at static, low NPR and low Mach number flight conditions by improving off-design static thrust efficiency as much as 2.8 percent. By designing a fixed-geometry nozzle with fully porous divergent flaps, where both cavity location and percent open porosity of the flaps could be varied, passive flow control would make it possible to improve off-design nozzle performance across a wide operating range. In addition, the ability to encourage separation on one flap while alleviating it on the other makes it possible to generate thrust vectoring in the nozzle through passive flow control.

  2. Efficacy of immediate replacement of cranial bone graft following drainage of intracranial empyema.

    PubMed

    Lajthia, Orgest; Chao, Jerry W; Mandelbaum, Max; Myseros, John S; Oluigbo, Chima; Magge, Suresh N; Zarella, Christopher S; Oh, Albert K; Rogers, Gary F; Keating, Robert F

    2018-06-22

    OBJECTIVE Intracranial empyema is a life-threatening condition associated with a high mortality rate and residual deleterious neurological effects if not diagnosed and managed promptly. The authors present their institutional experience with immediate reimplantation of the craniotomy flap and clarify the success of this method in terms of cranial integrity, risk of recurrent infection, and need for secondary procedures. METHODS A retrospective analysis of patients admitted for management of intracranial empyema during a 19-year period (1997-2016) identified 33 patients who underwent emergency drainage and decompression with a follow-up duration longer than 6 months, 23 of whom received immediate bone replacement. Medical records were analyzed for demographic information, extent and location of the infection, bone flap size, fixation method, need for further operative intervention, and duration of intravenous antibiotics. RESULTS The mean patient age at surgery was 8.7 ± 5.7 years and the infections were largely secondary to sinusitis (52.8%), with the most common location being the frontal/temporal region (61.3%). Operative intervention involved removal of a total of 31 bone flaps with a mean surface area of 22.8 ± 26.9 cm 2 . Nearly all (96.8%) of the bone flaps replaced at the time of the initial surgery were viable over the long term. Eighteen patients (78.3%) required a single craniotomy in conjunction with antibiotic therapy to address the infection, whereas the remaining 21.7% required more than 1 surgery. Partial bone flap resorption was noted in only 1 (3.2%) of the 31 successfully replaced bone flaps. This patient eventually had his bone flap removed and received a split-calvaria bone graft. Twenty-one patients (91.3%) received postoperative CT scans to evaluate bone integrity. The mean follow-up duration of the cohort was 43.9 ± 54.0 months. CONCLUSIONS The results of our investigation suggest that immediate replacement and stabilization of the bone flap after craniectomy for drainage of intracranial empyemas has a low risk of recurrent infection and is a safe and effective way to restore bone integrity in most patients.

  3. Evaluation of the use of a 940 nm diode laser as an adjunct in flap surgery for treatment of chronic periodontitis

    PubMed Central

    Lobo, Tanya Marguerite; Pol, Dilip Ganpat

    2015-01-01

    Background: Lasers have several potential benefits such as antibacterial effect and stimulation of wound healing. In addition, hemostasis and delaying epithelial migration may facilitate the outcome of flap surgery. There is a minimal research and evidence currently available for the optimum method of use of a diode laser in flap surgery and its benefit and safety. Hence, this study aimed to investigate the adjunctive effect of diode laser irradiation in open flap debridement (OFD), while treating chronic periodontitis. Materials and Methods: A total of 30 patients with generalized chronic moderate to severe periodontitis with pocket probing depth (PD) ≥5 mm post - Phase I therapy were selected for a split-mouth study. Flap surgery with adjunctive diode laser irradiation was performed in the test quadrant while routine OFD was done in the control quadrant. Clinical parameters including PD, clinical attachment level, gingival recession, plaque index, gingival index and tooth mobility were recorded at baseline, 3 months and 6 months following treatment. In addition, patients’ rating of procedural pain as well as the development of complications postoperatively was assessed. Results: All clinical parameters significantly improved after therapy without any statistically significant difference between the two groups for any of the parameters. The exception was a significantly greater reduction in gingival inflammation in the laser treated group. The laser treatment was acceptable to the patient and did not cause any complications. Conclusion: The diode laser can be safely and effectively used as an adjunct to the treatment of chronic periodontitis with the advantage of decreased gingival inflammation. PMID:25810592

  4. A modeling approach to energy savings of flying Canada geese using computational fluid dynamics.

    PubMed

    Maeng, Joo-Sung; Park, Jae-Hyung; Jang, Seong-Min; Han, Seog-Young

    2013-03-07

    A flapping flight mechanism of the Canada goose (Branta canadensis) was estimated using a two-jointed arm model in unsteady aerodynamic performance to examine how much energy can be saved in migration. Computational fluid dynamics (CFD) was used to evaluate airflow fields around the wing and in the wake. From the distributions of velocity and pressure on the wing, it was found that about 15% of goose flight energy could be saved by drag reduction from changing the morphology of the wing. From the airflow field in the wake, it was found that a pair of three-dimensional spiral flapping advantage vortices (FAV) was alternately generated. We quantitatively deduced that the optimal depth (the distance along the flight path between birds) was around 4m from the wing tip of a goose ahead, and optimal wing tip spacing (WTS, the distance between wing tips of adjacent birds perpendicular to the flight path) ranged between 0 and -0.40m in the spanwise section. It was found that a goose behind can save about 16% of its energy by induced power from FAV in V-formation. The phase difference of flapping between the goose ahead and behind was estimated at around 90.7° to take full aerodynamic benefit caused by FAV. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Tip Fence for Reduction of Lift-Generated Airframe Noise

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor); Storms, Bruce L. (Inventor)

    1998-01-01

    The present invention is directed toward a unique lift-generated noise reduction apparatus. This apparatus includes a plurality of tip fences that are secured to the trailing and leading assemblies of the high-lift system, as close as possible to the discontinuities where the vortices are most likely to form. In one embodiment, these tip fences are secured to some or all of the outboard and inboard tips of the wing slats and flaps. The tip fence includes a generally flat, or an aerodynamically shaped plate or device that could be formed of almost any rigid material, such as metal, wood, plastic, fiber glass, aluminum, etc. In a preferred embodiment, the tip fences extend below and perpendicularly to flaps and the slats to which they are attached, such that these tip fences are aligned with the nominal free stream velocity of the aircraft. In addition to reducing airframe noise, the tip fence tends to decrease drag and to increase lift, thus improving the overall aerodynamic performance of the aircraft. Another advantage presented by the tip fence lies in the simplicity of its design, its elegance, and its ready ability to fit on the wing components, such as the flaps and the slats. Furthermore, it does not require non-standard materials or fabrication techniques, and it can be readily, easily and inexpensively retrofited on most of the existing aircraft, with minimal design changes.

  6. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  7. Simulation of swimming strings immersed in a viscous fluid flow

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  8. Muscle function in avian flight: achieving power and control

    PubMed Central

    Biewener, Andrew A.

    2011-01-01

    Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern. PMID:21502121

  9. Aquatic wing flapping at low Reynolds numbers: swimming kinematics of the Antarctic pteropod, Clione antarctica.

    PubMed

    Borrell, Brendan J; Goldbogen, Jeremy A; Dudley, Robert

    2005-08-01

    We studied swimming kinematics of the Antarctic pteropod, Clione antarctica, to investigate how propulsive forces are generated by flexible oscillating appendages operating at low Reynolds numbers (1025) exhibited gliding during the recovery phase of each half-stroke. Maximum translational and rotational accelerations of the body occurred at the initiation of each power phase, suggesting that rotational circulation, the acceleration reaction, and wake recapture may all potentially contribute to vertical force production. Individual contributions of these mechanisms cannot, however, be assessed from these kinematic data alone. During recovery phases of each half-stroke, C. antarctica minimized adverse drag forces by orienting the wings parallel to flow and by moving them along the body surface, possibly taking advantage of boundary layer effects. Vertical force production was altered through changes in the hydrodynamic angle of attack of the wing that augmented drag during the power phase of each half-stroke. At higher translational velocities of the body, the inclination of the power phase also became more nearly vertical. These results indicate that, in addition to serotonin-mediated modulation of wingbeat frequency reported previously in Clione, geometric alteration of wingbeat kinematics offers a precise means of controlling swimming forces.

  10. Three-dimensional transition after wake deflection behind a flapping foil.

    PubMed

    Deng, Jian; Caulfield, C P

    2015-04-01

    We report the inherently three-dimensional linear instabilities of a propulsive wake, produced by a flapping foil, mimicking the caudal fin of a fish or the wing of a flying animal. For the base flow, three sequential wake patterns appear as we increase the flapping amplitude: Bénard-von Kármán (BvK) vortex streets; reverse BvK vortex streets; and deflected wakes. Imposing a three-dimensional spanwise periodic perturbation, we find that the resulting Floquet multiplier |μ| indicates an unstable "short wavelength" mode at wave number β=30, or wavelength λ=0.21 (nondimensionalized by the chord length) at sufficiently high flow Reynolds number Re=Uc/ν≃600, where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity of the fluid. Another, "long wavelength" mode at β=6 (λ=1.05) becomes critical at somewhat higher Reynolds number, although we do not expect that this mode would be observed physically because its growth rate is always less than the short wavelength mode, at least for the parameters we have considered. The long wavelength mode has certain similarities with the so-called mode A in the drag wake of a fixed bluff body, while the short wavelength mode appears to have a period of the order of twice that of the base flow, in that its structure seems to repeat approximately only every second cycle of the base flow. Whether it is appropriate to classify this mode as a truly subharmonic mode or as a quasiperiodic mode is still an open question however, worthy of a detailed parametric study with various flapping amplitudes and frequencies.

  11. Three-dimensional transition after wake deflection behind a flapping foil

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Caulfield, C. P.

    2015-04-01

    We report the inherently three-dimensional linear instabilities of a propulsive wake, produced by a flapping foil, mimicking the caudal fin of a fish or the wing of a flying animal. For the base flow, three sequential wake patterns appear as we increase the flapping amplitude: Bénard-von Kármán (BvK) vortex streets; reverse BvK vortex streets; and deflected wakes. Imposing a three-dimensional spanwise periodic perturbation, we find that the resulting Floquet multiplier |μ | indicates an unstable "short wavelength" mode at wave number β =30 , or wavelength λ =0.21 (nondimensionalized by the chord length) at sufficiently high flow Reynolds number Re=U c /ν ≃600 , where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity of the fluid. Another, "long wavelength" mode at β =6 (λ =1.05 ) becomes critical at somewhat higher Reynolds number, although we do not expect that this mode would be observed physically because its growth rate is always less than the short wavelength mode, at least for the parameters we have considered. The long wavelength mode has certain similarities with the so-called mode A in the drag wake of a fixed bluff body, while the short wavelength mode appears to have a period of the order of twice that of the base flow, in that its structure seems to repeat approximately only every second cycle of the base flow. Whether it is appropriate to classify this mode as a truly subharmonic mode or as a quasiperiodic mode is still an open question however, worthy of a detailed parametric study with various flapping amplitudes and frequencies.

  12. A novel technique for repair of mid-penile hypospadias using a preputial skin flap: results of 110 patients.

    PubMed

    Elmoghazy, Hazem; Hussein, Mohamed M; Mohamed, Elnisr; Badawy, Abdelbasset; Alsagheer, Gamal; Abd Elhamed, Ahmed Mamdouh

    2016-12-01

    Several techniques have been used to repair mid-penile hypospadias; however, high failure rates and major complications have been reported. In this study, we describe a novel technique using a well-vascularized flap of the inner and outer preputial skin. A total of 110 male children with hypospadias underwent repair by our technique between 2008 and 2015. The inclusion criteria were children with mid-penile or slightly more proximal hypospadias, with or without ventral chordae, and an intact prepuce of the cobra eyes variety. Recurrent cases, patients with other preputial types, and circumcised children were excluded from this study. The prepared flap was sutured in its natural longitudinal orientation to the created urethral plate strip to form a neo-urethra over a urethral catheter. Outcome measures included surgical success without the formation of a urethra-cutaneous fistula, no ischaemia of the flaps, glans dehiscence or infection and functional outcome and cosmetic appearance. The median follow-up duration was 3.3 years. There were 63 cases of mid-penile hypospadias (57.3 %), and in 47 cases (42.7 %), the meatus was slightly more proximal. The age of the patients ranged from 1.1 to 8.0 years, with a mean age of 4.6 ± 1.2 years. Surgery was successful in 106 (96.4 %) cases. Minor complications occurred in 11 patients (10 %) and included oedema of glans in ten patients and bluish discoloration on the ventral aspect of the glans close to the suture line in three patients. All patients improved within 2 weeks after surgery. Long-term follow-up revealed a properly functioning urethra with a forward, projectile, single, compact, and rifled urinary stream of adequate calibre and cosmetically acceptable repair. No cases of meatal retraction, meatal stenosis, urethral stricture, or acquired urethral diverticulum occurred. Our technique is different from the split prepuce in situ technique. We create a narrow strip of the urethral plate that facilitates glanular closure, and we use the inner and adjacent outer skin in a vertical manner to preserve excess skin for penile coverage. Prepuce is split at midline to preserve more preputial skin with favourable dartos tissue for penile skin coverage. The glans is closed using a stitch-by-stitch method that has not been described previously. This study presents a novel technique for mid-penile hypospadias repair using a preputial skin flap with excellent results in terms of short- and long-term outcomes.

  13. The use of a panel code on high lift configurations of a swept forward wing

    NASA Technical Reports Server (NTRS)

    Scheib, J. S.; Sandlin, D. R.

    1985-01-01

    A study was done on high lift configurations of a generic swept forward wing using a panel code prediction method. A survey was done of existing codes available at Ames, frow which the program VSAERO was chosen. The results of VSAERO were compared with data obtained from the Ames 7- by 10-foot wind tunnel. The results of the comparison in lift were good (within 3.5%). The comparison of the pressure coefficients was also good. The pitching moment coefficients obtained by VSAERO were not in good agreement with experiment. VSAERO's ability to predict drag is questionable and cannot be counted on for accurate trends. Further studies were done on the effects of a leading edge glove, canards, leading edge sweeps and various wing twists on spanwise loading and trim lift with encouraging results. An unsuccessful attempt was made to model spanwise blowing and boundary layer control on the trailing edge flap. The potential results of VSAERO were compared with experimental data of flap deflections with boundary layer control to check the first order effects.

  14. Amelioration de l'implementation des volets dans un modele de dynamique et controle de vol de l'avion L1011-500

    NASA Astrophysics Data System (ADS)

    Saafi, Kais

    The aerodynamic model of the aircraft L1011-500 was designed and simulated in Matlab and Simulink by Bombardier to serve the Esterline-CMC Electronics Company in its goals to improve the Flight Management System FMS. In this model implemented in FLSIM by CMC-Electronics Esterline, a longitudinal instability appears during the approach phase and when flaps have a higher or equal angle to 4 degrees. The global project at LARCASE consisted in the improvement of the L1011-500 aerodynamic model stability under Matlab / Simulink and mainly for flaps angles situated between 4 degrees and 22 degrees. The L1011-500 global model was finalized in order to visualize and analyze its dynamic behavior. When the global model of the aircraft L1011-500 was generated, corrections were added to the lift coefficient (CL), the drag coefficient (CD) and the pitching moment coefficient (CM) to ensure the trim of the aircraft. The obtained results are compared with the flight tests data delivered by CMC Electronics-Esterline to validate our numerical studies.

  15. Downwash and Wake Behind Plain and Flapped Airfoils

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S; Bullivant, W Kenneth

    1939-01-01

    Extensive experimental measurements have been made of the downwash angles and the wake characteristics behind airfoils with and without flaps and the data have been analyzed and correlated with the theory. A detailed study was made of the errors involved in applying lifting-line theory, such as the effects of a finite wing chord, the rolling-up of the trailing vortex sheet, and the wake. The downwash angles, as computed from the theoretical span load distribution by means of the Biot-Savart equation, were found to be in satisfactory agreement with the experimental results. The rolling-up of the trailing vortex sheet may be neglected, but the vertical displacement of the vortex sheet requires consideration. By the use of a theoretical treatment indicated by Prandtl, it has been possible to generalize the available experimental results so the predictions can be made of the important wake parameters in terms of the distance behind the airfoil trailing edge and the profile-drag coefficient. The method of application of the theory to design and the satisfactory agreement between predicted and experimental results when applied to an airplane are demonstrated.

  16. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    NASA Technical Reports Server (NTRS)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  17. Biomimetic Flow Control

    NASA Technical Reports Server (NTRS)

    Anders, John B.

    2000-01-01

    Biologic flight has undoubtedly intrigued man for thousands of years, yet it has been only the last 100 years or so that any serious challenge has been mounted to the pre-eminence of birds. Although present-day large-scale aircraft are now clearly able to fly higher, faster and farther than any bird or insect, it is obvious that these biological creatures have a mastery of low Reynolds number, unsteady flows that is unrivaled by man-made systems. This paper suggests that biological flight should be examined for mechanisms that may apply to engineered flight systems, especially in the emerging field of small-scale, uninhabited aerial vehicles (UAV). This paper discusses the kinematics and aerodynamics of bird and insect flight, including some aspects of unsteady aerodynamics. The dynamics of flapping wing flight is briefly examined, including gait selection, flapping frequency and amplitude selection, as well as wing planform and angle-of-attack dynamics. Unsteady aerodynamic mechanisms as practiced by small birds and insects are reviewed. Drag reduction morphologies of birds and marine animals are discussed and fruitful areas of research are suggested.

  18. Aerodynamic characteristics of a propeller-powered high-lift semispan wing

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.

    1994-01-01

    A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.

  19. Aircraft High-Lift Aerodynamic Analysis Using a Surface-Vorticity Solver

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Albertson, Cindy W.

    2016-01-01

    This study extends an existing semi-empirical approach to high-lift analysis by examining its effectiveness for use with a three-dimensional aerodynamic analysis method. The aircraft high-lift geometry is modeled in Vehicle Sketch Pad (OpenVSP) using a newly-developed set of techniques for building a three-dimensional model of the high-lift geometry, and for controlling flap deflections using scripted parameter linking. Analysis of the low-speed aerodynamics is performed in FlightStream, a novel surface-vorticity solver that is expected to be substantially more robust and stable compared to pressure-based potential-flow solvers and less sensitive to surface perturbations. The calculated lift curve and drag polar are modified by an empirical lift-effectiveness factor that takes into account the effects of viscosity that are not captured in the potential-flow solution. Analysis results are validated against wind-tunnel data for The Energy-Efficient Transport AR12 low-speed wind-tunnel model, a 12-foot, full-span aircraft configuration with a supercritical wing, full-span slats, and part-span double-slotted flaps.

  20. Flight experience with a fail-operational digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    Brown, S. R.; Szalai, K. J.

    1977-01-01

    The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

  1. Reynolds number scalability of bristled wings performing clap and fling

    NASA Astrophysics Data System (ADS)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  2. On the generation of a reverse von Kármán street for the controlled cylinder wake in the laminar regime

    NASA Astrophysics Data System (ADS)

    Bergmann, Michel; Cordier, Laurent; Brancher, Jean-Pierre

    2006-02-01

    In this Brief Communication we are interested in the maximum mean drag reduction that can be achieved under rotary sinusoidal control for the circular cylinder wake in the laminar regime. For a Reynolds number equal to 200, we give numerical evidence that partial control restricted to an upstream part of the cylinder surface may considerably increase the effectiveness of the control. Indeed, a maximum value of relative mean drag reduction equal to 30% is obtained when applying a specific sinusoidal control to the whole cylinder, where up to 75% of reduction can be obtained when the same control law is applied only to a well-selected upstream part of the cylinder. This result suggests that a mean flow correction field with negative drag is observable for this controlled flow configuration. The significant thrust force that is locally generated in the near wake corresponds to a reverse von Kármán vortex street as commonly observed in fish-like locomotion or flapping wing flight. Finally, the energetic efficiency of the control is quantified by examining the power saving ratio: it is shown that our approach is energetically inefficient. However, it is also demonstrated that for this control scheme the improvement of the effectiveness generally occurs along with an improvement of the efficiency.

  3. Electrical burns of the abdomen.

    PubMed

    Srivastava, Rakesh Kumar; Kumar, Ritesh

    2013-09-01

    A 35-year-old male farmer came in contact with 11,000 volts high tension electric wire and sustained full thickness burn wounds over scapula, upper limb and anterior abdominal wall along with perforation of the intestine. Patient was initially managed conservatively in general surgery ward and was referred to us after 3 days with necrosis of the burned skin and muscles over the shoulder and abdomen. Patient was initially managed conservatively and then thorough debridement of the necrotic skin over the left shoulder and upper arm was done and the area was split skin grafted. Patient developed enterocutaneous fistula, which healed over a period of 8 weeks. The granulating wound over the abdomen was also skin grafted and patient was discharged after 18 days. About 4 months, after the discharge patient presented with ventral hernia. Repair of ventral hernia by synthetic mesh application and reconstruction of the abdominal wall with a free tensor fascia lata flap was done over the mesh, but the flap failed. Then after debridement two random pattern transposition skin flaps, one from the right upper and another from the left lower abdomen were transposed over the abdominal wound and donor area was skin grafted. Patient was discharged after 17 days.

  4. Experience With Wound VAC and Delayed Primary Closure of Contaminated Soft Tissue Injuries in Iraq

    DTIC Science & Technology

    2006-11-01

    wound was definitively closed by delayed primary closure, flap mobilization, or split-thickness skin grafting . The VAC system was also used...postoperatively for 3 to 5 days over skin grafts , then removed at the bedside to assess graft take. Granulation tissue was not a prerequisite for wound closure...hospital until the closed wounds were clean and dry with good skin graft incorporation. All patients were scheduled for follow-up in our outpatient

  5. Scrotal reconstruction and testicular prosthetics

    PubMed Central

    Lucas, Jacob W.; Lester, Kyle M.; Chen, Andrew

    2017-01-01

    Scrotal surgery encompasses a wide-variety of surgical techniques for an even wider variety of indications. In this manuscript, we review our indications, techniques, and pit-falls for various reconstructive scrotal surgeries as-well-as surgical tips for placement of testicular prostheses. Penoscrotal webbing (PSW) is an abnormal, often-problematic distal insertion of scrotal skin onto the ventral penile shaft. There are several effective and straightforward techniques used to revise this condition, which include simple scrotoplasty, single- or double-Z-plasty, or the VY-flap scrotoplasty. Reconstruction is also commonly indicated following scrotal skin loss caused by infection, trauma, lymphedema, hidradenitis, and cancer. Although initial management of these conditions often involves scrotal skin removal, repair of expansive scrotal skin loss can be technically difficult and can be accomplished by using one of several skin flaps or skin grafting. Split-thickness skin grafting of scrotal defects can be accomplished easily, and provides durable results. PMID:28904904

  6. Wind-tunnel tests of a Clark Y wing with 'Maxwell' leading-edge slots

    NASA Technical Reports Server (NTRS)

    Gauvain, William E

    1937-01-01

    Aerodynamic force tests of a Clark Y wing equipped with "Maxwell" type leading-edge slots were conducted in the N.A.C.A. 7- by 10-foot tunnel to ascertain the aerodynamic characteristics, which involved the determination of the best slot-gap opening, the effects of slat width, and the effect of a trailing-edge flap. The Maxwell wing with a wide-chord slat (0.30 c(sub w)) and with a 0.211 c(sub w) split flap deflected 60 degrees had a C(sub L sub max) of 2.53 or about twice that of the plain wing. The wing with the wide slat also had, in general, improved aerodynamic characteristics over those of the Maxwell wing with slat, and had about the same aerodynamic characteristics as a Handley Page slotted wing with approximately the same size of slat.

  7. A shark attack treated in a tertiary care centre: Case report and review of the literature.

    PubMed

    Roy, Mélissa; Plant, Mathew A; Snell, Laura

    2018-01-01

    Although uncommon, shark attacks can lead to devastating outcomes for victims. Surgeons also face unique challenges during operative management such as exsanguination, shock, specific injury patterns and infections. This case report presents the management of a 39-year-old previously healthy female attacked by a shark while on vacation in Mexico. The patient sustained severe injuries to her left arm and her left thigh. She was transferred to a Canadian institution after ambiguous operative management in Mexico and presented with no clear antibiotic coverage and a Volkman's contracture of the left upper extremity. In total, the patient underwent four washouts of wounds, two split-thickness skin grafts, one free anterolateral thigh flap, and one free transverse rectus abdominus myocutaneous flap for the reconstruction and salvage of the left lower extremity. This article highlights the specifics of this case and describes important points in managing these devastating injuries.

  8. A shark attack treated in a tertiary care centre: Case report and review of the literature

    PubMed Central

    Roy, Mélissa; Plant, Mathew A; Snell, Laura

    2018-01-01

    Although uncommon, shark attacks can lead to devastating outcomes for victims. Surgeons also face unique challenges during operative management such as exsanguination, shock, specific injury patterns and infections. This case report presents the management of a 39-year-old previously healthy female attacked by a shark while on vacation in Mexico. The patient sustained severe injuries to her left arm and her left thigh. She was transferred to a Canadian institution after ambiguous operative management in Mexico and presented with no clear antibiotic coverage and a Volkman’s contracture of the left upper extremity. In total, the patient underwent four washouts of wounds, two split-thickness skin grafts, one free anterolateral thigh flap, and one free transverse rectus abdominus myocutaneous flap for the reconstruction and salvage of the left lower extremity. This article highlights the specifics of this case and describes important points in managing these devastating injuries. PMID:29076325

  9. Single-Stage Reconstruction of Achilles Tendon and Overlying Tissue With the Extended Temporoparietal Fasciagaleal Flap--23-Year Follow-Up and the Review of the Literature.

    PubMed

    Dobke, Marek; Suliman, Ahmed; Mackert, Gina A; Herrera, Fernando A; Singer, Robert; Nelson, Jeffrey

    2016-05-01

    In the absence of an established "gold standard" for complex Achilles tendon and regional soft tissue defect reconstruction, many techniques have been advocated. Two cases describing a novel technique of successful repair with the review of literature are presented. The underlying problem consisted of Achilles tendon necrosis with local inflammation in the first case and tendon contracture with foot malposition due to a burn injury in the other. Each patient, upon debridement, had a 6-cm Achilles tendon defect with associated overlying soft tissue deficits reconstructed with an extended temporoparietal fasciagaleal flap and a split thickness skin graft. Both cases highlight the successful functional and aesthetic quality as well as the durability of concurrent vascularized tendon and soft tissue replacement and coverage in 2 distinct clinical scenarios.

  10. Static investigation of the circulation control wing/upper surface blowing concept applied to the quiet short haul research aircraft

    NASA Technical Reports Server (NTRS)

    Eppel, J. C.; Shovlin, M. D.; Jaynes, D. N.; Englar, R. J.; Nichols, J. H., Jr.

    1982-01-01

    Full scale static investigations were conducted on the Quiet Short Haul Research Aircraft (QSRA) to determine the thrust deflecting capabilities of the circulation control wing/upper surface blowing (CCW/USB) concept. This scheme, which combines favorable characteristics of both the A-6/CCW and QSRA, employs the flow entrainment properties of CCW to pneumatically deflect engine thrust in lieu of the mechanical USB flap system. Results show that the no moving parts blown system produced static thrust deflections in the range of 40 deg to 97 deg (depending on thrust level) with a CCW pressure of 208,900 Pa (30.3 psig). In addition, the ability to vary horizontal forces from thrust to drag while maintaining a constant vertical (or lift) value was demonstrated by varying the blowing pressure. The versatility of the CCW/USB system, if applied to a STOL aircraft, was confirmed, where rapid conversion from a high drag approach mode to a thrust recovering waveoff or takeoff configuration could be achieved by nearly instantaneous blowing pressure variation.

  11. Wind tunnel and analytical investigation of over-the-wing propulsion/air frame interferences for a short-haul aircraft at Mach numbers from 0.6 to 0.78. [conducted in the Lewis 8 by 6 foot tunnel

    NASA Technical Reports Server (NTRS)

    Wells, O. D.; Lopez, M. L.; Welge, H. R.; Henne, P. A.; Sewell, A. E.

    1977-01-01

    Results of analytical calculations and wind tunnel tests at cruise speeds of a representative four engine short haul aircraft employing upper surface blowing (USB) with a supercritical wing are discussed. Wind tunnel tests covered a range of Mach number M from 0.6 to 0.78. Tests explored the use of three USB nozzle configurations. Results are shown for the isolated wing body and for each of the three nozzle types installed. Experimental results indicate that a low angle nacelle and streamline contoured nacelle yielded the same interference drag at the design Mach number. A high angle powered lift nacelle had higher interference drag primarily because of nacelle boattail low pressures and flow separation. Results of varying the spacing between the nacelles and the use of trailing edge flap deflections, wing upper surface contouring, and a convergent-divergent nozzle to reduce potential adverse jet effects were also discussed. Analytical comparisons with experimental data, made for selected cases, indicate favorable agreement.

  12. Comprehensive modeling and control of flexible flapping wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Nogar, Stephen Michael

    Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the importance of considering coupled aeroelastic and actuator dynamics in closed-loop control of flapping wings. A controller is developed that decouples the normal form of the vehicle dynamics, which accounts for coupling of the forces and moments acting on the vehicle and enables enhanced tuning capabilities. This controller, using the same control design model as the baseline controller, stabilizes the system despite the uncertainty between the control design and evaluation models. The controller is able to stabilize cases with significant wing flexibility and limited actuator capabilities, despite a reduction in control effectiveness. Additionally, to achieve a minimally actuated vehicle, the wing bias mechanism is removed. Using the same control design methodology, increased performance is observed compared to the baseline controller. However, due to the dependence on the split-cycle mechanism to generate a pitching moment instead of wing bias, the controller is more susceptible to instability from wing flexibility and limited actuator capacity. This work highlights the importance of coupled dynamics in the design and control of flapping wing micro air vehicles. Future enhancements to this work should focus on the reduced order structural and aerodynamics models. Applications include using the developed dynamics model to evaluate other kinematics and control schemes, ultimately enabling improved vehicle and control design.

  13. [Effects of anteriolateral thigh perforator flap and fascia lata transplantation in combination with computed tomography angiography on repair of electrical burn wounds of head with skull exposure and necrosis].

    PubMed

    Li, X Q; Wang, X; Han, Y L; Ji, G; Chen, Z H; Zhang, J; Zhu, J P; Duan, J X; He, Y J; Yang, X M; Liu, W J

    2018-05-20

    Objective: To explore the effects of anteriolateral thigh perforator flap and fascia lata transplantation in combination with computed tomography angiography (CTA) on repair of electrical burn wounds of head with skull exposure and necrosis. Methods: Seven patients with head electrical burns accompanied by skull exposure and necrosis were admitted to our burn center from March 2016 to December 2017. Head CTA was performed before the operation. The diameters of the facial artery and vein or the superficial temporal artery and vein were measured, and their locations were marked on the body surface. Preoperative CTA for flap donor sites in lower extremities were also performed to track the descending branch of the lateral circumflex femoral artery with the similar diameter as the recipient vessels on the head, and their locations were marked on the body surface. Routine wound debridement and skull drilling were performed successively. The size of the wounds after debridement ranged from 12 cm×8 cm to 20 cm×12 cm, and the areas of skull exposure ranged from 8 cm×6 cm to 15 cm×10 cm. Anteriolateral thigh perforator flaps with areas from 13 cm×9 cm to 21 cm×13 cm containing 5-10 cm long vascular pedicles were designed and dissected accordingly. The fascia lata under the flap with area from 5 cm×2 cm to 10 cm×3 cm was dissected according to the length of vascular pedicle. The fascia lata was transplanted to cover the exposed skull, and the anteriolateral thigh perforator flap was transplanted afterwards. The descending branch of the lateral circumflex femoral artery and its accompanying vein of the flap were anastomosed with superficial temporal artery and vein or facial artery and vein before the suture of flap. The flap donor sites were covered by intermediate split-thickness skin graft collected from contralateral thigh or abdomen. Results: The descending branch of the lateral circumflex femoral artery and its accompanying vein were anastomosed with superficial temporal artery and vein in six patients, while those with facial artery and vein in one patient. All the flaps survived after the operation, and no vascular crisis was observed. Wound healing was satisfactory. One patient was lost to follow up. Six patients were followed up for 6 to 10 months. The patients were bald in the head operation area with acceptable appearance. No psychiatric symptom such as headache or epileptic seizure was reported. The flap donor sites were normal in appearance. The muscle strength of the lower extremities all reached grade V. The sensation and movement of the lower extremities were normal. Conclusions: Anterolateral thigh perforator flap with fascia lata transplantation can effectively repair electrical burn wounds of head with skull exposure and necrosis. The fascia lata can be used to protect the vascular pedicle of flaps, which is beneficial to the survival of the flap. Preoperative head and lower extremities CTA can provide reference for intraoperative vascular exploration in donor site and recipient area, so as to shorten operation time.

  14. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag minimization demonstrates the effectiveness of the proposed solution. In-flight structural loads are also an important consideration. As wing flexibility increases, maneuver load and gust load responses can be significant and therefore can pose safety and flight control concerns. In this paper, we will extend the multi-objective flight control framework to include load alleviation control. The study will focus initially on maneuver load minimization control, and then subsequently will address gust load alleviation control in future work.

  15. A Parametric Investigation of Nozzle Planform and Internal/External Geometry at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Cler, Daniel L.

    1995-01-01

    An experimental investigation of multidisciplinary (scarfed trailing edge) nozzle divergent flap geometry was conducted at transonic speeds in the NASA Langley 16-Foot Transonic Tunnel. The geometric parameters investigated include nozzle planform, nozzle contouring location (internal and/or external), and nozzle area ratio (area ratio 1.2 and 2.0). Data were acquired over a range of Mach Numbers from 0.6 to 1.2, angle-of-attack from 0.0 degrees to 9.6 degrees and nozzle pressure ratios from 1.0 to 20.0. Results showed that increasing the rate of change internal divergence angle across the width of the nozzle or increasing internal contouring will decrease static, aeropropulsive and thrust removed drag performance regardless of the speed regime. Also, increasing the rate of change in boattail angle across the width of the nozzle or increasing external contouring will provide the lowest thrust removed drag. Scarfing of the nozzle trailing edges reduces the aeropropulsive performance for the most part and adversely affects the nozzle plume shape at higher nozzle pressure ratios thus increasing the thrust removed drag. The effects of contouring were primary in nature and the effects of planform were secondary in nature. Larger losses occur supersonically than subsonically when scarfing of nozzle trailing edges occurs. The single sawtooth nozzle almost always provided lower thrust removed drag than the double sawtooth nozzles regardless the speed regime. If internal contouring is required, the double sawtooth nozzle planform provides better static and aeropropulsive performance than the single sawtooth nozzle and if no internal contouring is required the single sawtooth provides the highest static and aeropropulsive performance.

  16. A comparative study of root coverage using two different acellular dermal matrix products.

    PubMed

    Barker, Thomas S; Cueva, Marco A; Rivera-Hidalgo, Francisco; Beach, M Miles; Rossmann, Jeffrey A; Kerns, David G; Crump, T Bradley; Shulman, Jay D

    2010-11-01

    Gingival recession remains an important problem in dental esthetics. A new dermal matrix material has been introduced, but its effectiveness has not been studied and compared to current dermal matrix material. The aim of this study is to compare the healing associated with a coronally advanced flap for root coverage in areas of localized tissue recession when using Alloderm (ADM) and Puros Dermis (PDM). A split-mouth design was used for this study, with 52 contralateral sites in 14 patients with Miller Class I or III facial tissue recession. Twenty-six sites were treated with coronally advanced flap using PDM, and 26 sites were treated with coronally advanced flap using ADM, all followed for 6 months. Clinical measurements of vertical recession, keratinized tissue, probing depths, and attachment levels were made initially, at 3 months, and at 6 months. Both groups had significant improvement in the amount of recession coverage with means of 2.83 mm for the PDM and 3.13 mm for the ADM. The percentage of root coverage was 81.4% for the PDM and 83.4% for the ADM; differences between the materials were not statistically significant. Based on the results of this study, there was no statistical or clinical difference in the amount of root coverage, probing depth, or keratinized tissue in coronally advanced flaps for root coverage with either of the two acellular dermal matrix materials. Both materials were successful in achieving root coverage.

  17. Improved outcomes after technical modifications in tubularized incised plate urethroplasty for mid-shaft and proximal hypospadias.

    PubMed

    Tam, Yuk Him; Pang, Kristine Kit Yi; Wong, Yuen Shan; Tsui, Siu Yan; Wong, Hei Yi; Mou, Jennifer Wai Cheung; Chan, Kin Wai; Lee, Kim Hung

    2016-11-01

    To investigate and compare the outcomes after tubularized incised plate (TIP) urethroplasty in mid-shaft and proximal hypospadias using a standard and a modified technique. We conducted a retrospective study in 104 consecutive children who underwent mid-shaft or proximal TIP repairs from Jan 2007 to Sept 2015. Patients in Cohort One had dorsal dartos (DD) neourethral coverage while patients in Cohort Two had either de-epithelialized split preputial (DESP) or tunica vaginalis (TV) flap coverage. TV flap was used only when DESP flap was not sufficient to cover the neourethra. There were 52 patients each in Cohort One (DD, n = 52) and Cohort Two (DESP, n = 38; TV, n = 14) with no difference in ratio of mid-shaft/proximal between the two cohorts. At a median follow-up of 28 months, 36 patients (34.6 %) developed 47 complications including fistula (n = 19; 18.3 %) and neourethral dehiscence (n = 4; 3.8 %). Cohort One patients had significantly more fistula (28.8 vs 7.7 %; p = 0.005) and neourethral dehiscence (7.7 vs 0 %; p = 0.04) than Cohort Two. There was no difference between the two cohorts in the complication rates of meatal stenosis, recurrent ventral curvature and neourethral stricture. Both DESP and TV flap appear to be superior to DD in preventing fistula and neourethral dehiscence in non-distal TIP repairs.

  18. Longitudinal Stability and Control Characteristics as Determined by the Rocket-model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-aspect-ratio Wing Having Trailing-edge Flap Controls for a Mach Number Range of 0.7 to 1.

    NASA Technical Reports Server (NTRS)

    Baber, Hal T , Jr; Moul, Martin T

    1955-01-01

    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.

  19. Longitudinal Stability and Control Characteristics as Determined by the Rocket-Model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-Aspect-Ratio Wing Having Trailing-Edge Flap Controls for a Mach Number Range of 0.7 to 1.8

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Moul, M. T.

    1955-01-01

    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle-of-attack range of this test (0 deg to 8 deg ). The aerodynamic-center location for angles of attack near 5 deg remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near O deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of O deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle-of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.

  20. Pedal macrodactyly: coverage of a large defect with a rectus abdominus free flap.

    PubMed

    Hendrix, C L; Thomson, J G; Blume, P A

    2000-01-01

    The authors report a case of a unique reconstructive approach for an isolated macrodactyly of the lower extremity in an otherwise healthy African male. Surgical treatment included excision and local resection of the affected hypertrophied skin, soft tissue, and bone. A rectus abdominis free-tissue transfer and split-thickness skin graft were used for coverage of the defect. The foot healed without complication, and at 2-year follow-up, the patient had an aesthetically pleasing and fully functional result.

  1. Avian furcula morphology may indicate relationships of flight requirements among birds

    USGS Publications Warehouse

    Hui, C.A.

    2002-01-01

    This study examined furcula (wishbone) shape relative to flight requirements. The furculae from 53 museum specimens in eight orders were measured: 1) three-dimensional shape (SR) as indicated by the ratio of the direct distance between the synostosis interclavicularis and the ligamentous attachment of one of its clavicles to the actual length of the clavicle between those same two points, and 2) curvature within the primary plane (LR) as indicated by the ratio of the length of the clavicle to the sum of the orthogonal distances between the same points using a projected image. Canonical discriminant analysis of these ratios placed the individuals into a) one of four general flight categories and b) one of eight taxonomic orders. The four flight categories were defined as: i) soaring with no flapping, ii) flapping with no soaring, iii) subaqueous (i.e., all wingbeats taking place under water), and iv) partial subaqueous (i.e., wingbeats used for both aerial and submerged flapping). The error rate for placement of the specimens in flight categories was only 26.4%, about half of the error rate for placement in taxonomic orders (51.3%). Subaqueous fliers (penguins, great auks) have furculae that are the most V-shaped. Partial subaqueous fliers (alcids, storm petrels) have furculae that are more U-shaped than the subaqueous fliers but more V-shaped than the aerial flapping fliers. The partial subaqueous fliers have furculae that are also the most anteriorly curved, possibly increasing protraction capability by changing the angle of applied force and increasing attachment area for the origin of the sternobrachialis pectoralis. The increased protraction capability can counteract profile drag, which is greater in water than in air due to the greater density of water. Soaring birds have furculae that are more U-shaped or circular than those of flapping birds and have the smallest range of variation. These results indicate that the shape of the furcula is functionally related to general differences in flight requirements and may be used to infer relationships of these requirements among birds. ?? 2002 Wiley-Liss, Inc.

  2. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets

    NASA Astrophysics Data System (ADS)

    Yang, Shao-Qiong; Li, Shan; Tian, Hai-Ping; Wang, Qing-Yi; Jiang, Nan

    2016-04-01

    Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect. In the present study, the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer (TBL) is investigated. This is done by means of tomographic particle image velocimetry (TPIV) measurements in channel flows over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190. The turbulent flows over drag-reducing riblets are verified by a planar time-resolved particle image velocimetry (TRPIV) system initially, and then the TPIV measurements are performed. Two-dimensional (2D) experimental results with a drag-reduction rate of around 4.81 % are clearly visible over triangle riblets with a peak-to-peak spacing s+ of 14, indicating from the drag-reducing performance that the buffer layer within the TBL has thickened; the logarithmic law region has shifted upward and the Reynolds shear stress decreased. A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudes of the spanwise vorticity when ejection (Q2) and sweep (Q4) events occur at the near wall, having the greatest effect on Q4 events in particular. The so-called quadrupole statistical model for coherent structures in the whole TBL is verified. Meanwhile, their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent flow over riblets are changed, suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events (Q2 and Q4), thereby reducing the skin friction drag.

  3. Ontogeny of lift and drag production in ground birds.

    PubMed

    Heers, Ashley M; Tobalske, Bret W; Dial, Kenneth P

    2011-03-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight.

  4. Analysis of X-15 Landing Approach and Flare Characteristics Determined from the First 30 Flights

    NASA Technical Reports Server (NTRS)

    Matranga, Gene J.

    1961-01-01

    The approach and flare maneuvers for the first 30 flights of the X-15 airplane and the various control problems encountered are discussed. The results afford a relatively good cross section of landing conditions that might be experienced with future glide vehicles having low lift-drag ratios. Flight-derived drag data show that preflight predictions based on wind-tunnel tests were, in general, somewhat higher than the values measured in flight. Depending on configuration, the peak lift-drag ratios from flight varied from 3.5 to 4.5 as compared with a predicted range of from 3.0 to 4.2. By employing overhead, spiral-type patterns beginning at altitudes as high as 40,000 feet, the pilots were consistently able to touch down within about +/-1,000 feet of a designated point. A typical flare was initiated at a "comfortable" altitude of about 800 feet and an indicated airspeed of approximately 300 knots., which allowed a margin of excess speed. The flap and gear were extended when the flare was essentially completed, and an average touchdown was accomplished at a speed of about 185 knots indicated airspeed, an angle of attack of about 7 deg, and a rate of descent of about 4 feet per second. In general, the approach and landing characteristics were predicted with good accuracy in extensive preflight simulations. F-104 airplanes which simulated the X-15 landing characteristics were particularly valuable for pilot training.

  5. Periodontal Responses to Augmented Corticotomy with Collagen Membrane Application during Orthodontic Buccal Tipping in Dogs

    PubMed Central

    Herr, Yeek; Kwon, Young-Hyuk; Kim, Seong-Hun; Kim, Eun-Cheol

    2014-01-01

    This prospective randomized split-mouth study was performed to examine the effects of absorbable collagen membrane (ACM) application in augmented corticotomy using deproteinized bovine bone mineral (DBBM), during orthodontic buccal tipping movement in the dog. After buccal circumscribing corticotomy and DBBM grafting into the decorticated area, flaps were repositioned and sutured on control sides. ACM was overlaid and secured with membrane tacks, on test sides only, and the flaps were repositioned and sutured. Closed coil springs were used to apply 200 g orthodontic force in the buccolingual direction on the second and third premolars, immediately after primary flap closure. The buccal tipping angles were 31.19 ± 14.60° and 28.12 ± 11.48° on the control and test sides, respectively. A mean of 79.5 ± 16.0% of the buccal bone wall was replaced by new bone on the control side, and on the test side 78.9 ± 19.5% was replaced. ACM application promoted an even bone surface. In conclusion, ACM application in augmented corticotomy using DBBM might stimulate periodontal tissue reestablishment, which is useful for rapid orthodontic treatment or guided bone regeneration. In particular, ACM could control the formation of mesenchymal matrix, facilitating an even bone surface. PMID:25276824

  6. The actuation of microflaps inspired by shark scales deeply embedded in a boundary layer

    NASA Astrophysics Data System (ADS)

    Morris, Jackson; Lang, Amy; Hubner, Paul

    2016-11-01

    Thanks to millions of years of natural selection, sharks have evolved to become quick apex predators. Shark skin is made up of microscopic scales on the order of 0.2 mm in size. This array of scales is hypothesized to be a flow control mechanism where individual scales are capable of being passively actuated by reversed flow in water due to their preferential orientation to attached flow. Previous research has proven shark skin to reduce flow separation in water, which would result in lower pressure drag. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs close to the wall. To test the capability of micro-flaps to be actuated in air various sets of flaps, inspired by shark scale geometry, were rapidly prototyped. These microflaps were tested in a low-speed wind tunnel at various flow speeds and boundary layer thicknesses. Boundary layer flow conditions were measured using a hot-wire probe and microflap actuation was observed. Microflap actuation in airflow would mean that this bio-inspired separation control mechanism found on shark skin has potential application for aircraft. Boeing.

  7. Flow over a traveling wavy foil with a passively flapping flat plate

    NASA Astrophysics Data System (ADS)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  8. Penile Reconstruction with Skin Grafts and Dermal Matrices: Indications and Management

    PubMed Central

    Triana Junco, Paloma; Dore, Mariela; Nuñez Cerezo, Vanesa; Jimenez Gomez, Javier; Miguel Ferrero, Miriam; Díaz González, Mercedes; Lopez-Pereira, Pedro; Lopez-Gutierrez, Juan Carlos

    2017-01-01

    Introduction  The penis eventually needs specific cutaneous coverage in the context of reconstructive procedures following trauma or congenital anomalies. Local flaps are the first choice but are not always available after multiple previous procedures. In these cases, skin graft and dermal matrices should be considered. Materials and Methods  This study was a retrospective review of the past 4 years of four patients with severe loss of penile shaft skin who underwent skin reconstruction. Dermal matrices and skin grafts were utilized. Dermal matrices were placed for a median of 4.5 weeks (3.0–6.0 weeks). The skin graft was harvested from the inner thigh region for split-thickness skin graft (STSG) and the inguinal region for full-thickness skin graft (FTSG). Results  The four patients presented with complete loss of skin in the penile shaft. One patient had a vesical exstrophy, one had a buried penis with only one corpus cavernosum, one had a wide congenital lymphedema of the genitalia, and one had a lack of skin following circumcision at home. They underwent reconstruction with three patients undergoing split-thickness skin graft; two dermal matrices; and one full-thickness graft, respectively, thereby achieving a good cosmetic and functional result. There were no complications, and all the patients successfully accepted the graft. Conclusion  Dermal matrices and skin grafts may serve as effective tools in the management of severe penile skin defects unable to be covered with local flaps. PMID:28868232

  9. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these experimental evaluations are presented herein, as are recommendations for further development and follow-on investigations. Also provided as an Appendix for reference are the basic results from the previous pneumatic HSCT investigations.

  10. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation.

    PubMed

    Fei, Yueh-Han John; Yang, Jing-Tang

    2015-09-01

    A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J=0.89) at the beginning of the downstroke, and a decrease to a minimum (J=0.17) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.

  11. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation

    NASA Astrophysics Data System (ADS)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2015-09-01

    A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J =0.89 ) at the beginning of the downstroke, and a decrease to a minimum (J =0.17 ) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.

  12. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Airplane During Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Roberts, Chistopher L.

    2001-01-01

    Aircraft travel has become a major form of transportation. Several of our major airports are operating near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity without sacrificing public safety. One solution to the problem is to increase the number of airports and build new. runways; yet, this solution is becoming increasingly difficult due to limited space. A better solution is to increase the production per runway. This solution increases the possibility that one aircraft will encounter the trailing wake of another aircraft. Hazardous wake vortex encounters occur when an aircraft encounters the wake produced by a heavier aircraft. This heavy-load aircraft produces high-intensity wake turbulence that redistributes the aerodynamic loads of trailing smaller aircraft. This situation is particularly hazardous for smaller aircraft during takeoffs and landings. In order to gain a better understanding of the wake-vortex/aircraft encounter phenomena, NASA Langley Research Center conducted a series of flight tests from 1995 through 1997. These tests were designed to gather data for the development a wake encounter and wake-measurement data set with the accompanying atmospheric state information. This data set is being compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results. The purpose of this research is to derive and implement a procedure for calculating the wake-vortex/aircraft interaction portion of that database by using the data recorded during those flight tests. There were three objectives to this research. Initially, the wake-induced forces and moments from each flight were analyzed based on varying flap deflection angles. The flap setting alternated between 15 and 30 degrees while the separation distance remained constant. This examination was performed to determine if increases in flap deflection would increase or decrease the effects of the wake-induced forces and moments. Next, the wake-induced forces and moments from each flight were analyzed based on separation distances of 1-3 nautical miles. In this comparison, flap deflection was held constant at 30 degrees. The purpose of this study was to determine if increased separation distances reduced the effects of the wake vortex on the aircraft. The last objective compared the wake-induced forces and moments of each flight as it executed a series of maneuvers through the wake-vortex. This analysis was conducted to examine the impact of the wake on the B737 as it traversed the wake horizontally and vertically. Results from the first analysis indicated that there was no difference in wake effect at flap deflections of 15 and 30 degrees. This conclusion is evidenced in the cases of the wake-induced sideforce, rolling moment, and yawing moment. The wake-induced lift, drag, and pitching moment cases yielded less conclusive results. The second analysis compared the wake-induced forces and moments at separation distances of 1-3 nautical miles. Results indicated that there was no significant difference in the wake-induced lift, drag, sideforce, or yawing moment coefficients. The analysis compared the wake-induced forces and moments based on different flight maneuvers. It was found that the wake-induced forces and moments had the greatest impact on out-to-in and in-to-out maneuvers.

  13. National Waterways Study. Waterway Science and Technology.

    DTIC Science & Technology

    1981-08-01

    Revetments 278 VII-A Split Hull Type Trailing Suction Hopper Dredge 304 VII-B Drag Heads 306 VII-C Overflow Systems 307 VII-D Trailing Suction Hopper... head reversals are possible. Poor approach conditions currently exist at some locks which could have been mitigated if modern, improved design...of ti,.c that a navigable pass section can be used. Navigation dams must be designed to pass high flows and floods with minor swell head and without in

  14. Flight in hairy and sticky situations

    NASA Astrophysics Data System (ADS)

    Santhanakrishnan, Arvind

    2017-11-01

    The smallest flying insects such as thrips and fairyflies have body lengths less than 1 mm. Despite their ecological importance, the fluid dynamic mechanisms that enable very tiny insects to generate lift at Reynolds number (Re) on the order of 10 remain unclear. Flapping motion in tiny insects is often characterized by `clap and fling' wing-wing interaction. Further, these insects possess wings consisting of a thin solid membrane with long bristles on the fringes. Why is there a noted biological preference in almost all tiny insects to employ interacting bristled wings under highly viscous conditions that would require large forces to peel the wings apart? In this talk, I will present numerical and experimental studies examining the role of bristled wings in clap and fling aerodynamics. At Re = 10, bristled wings are observed to reduce both lift and drag forces as compared to geometrically equivalent solid (non-bristled) wings. Recirculating flow through the bristles leads to disproportionally larger drag reduction by bristled wings, as compared to lift reduction between bristled and solid wings. The impact of alterations to bristled wing design variables, including spacing between bristles and ratio of solid membrane to total wing areas, on aerodynamic force coefficients and scalability with Re will be discussed.

  15. Transonic airfoil design for helicopter rotor applications

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed A.; Jackson, B.

    1989-01-01

    Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.

  16. Effects of afterbody boattail design and empennage arrangement on aeropropulsive characteristics of a twin-engine fighter model at transonic speeds

    NASA Technical Reports Server (NTRS)

    Bangert, Linda S.; Leavitt, Laurence D.; Reubush, David E.

    1987-01-01

    The effects of empennage arrangement and afterbody boattail design of nonaxisymmetric nozzles on the aeropropulsive characteristics of a twin-engine fighter-type model have been determined in an investigation conducted in the Langley 16-Foot Transonic Tunnel. Three nonaxisymmetric and one twin axisymmetric convergent-divergent nozzle configurations were tested with three different tail arrangements: a two-tail V-shaped arrangement; a staggered, conventional three-tail arrangement; and a four-tail arrangement similar to that on the F-18. Two of the nonaxisymmetric nozzles were also vectorable. Tests were conducted at Mach numbers from 0.60 to 1.20 over an angle-of-attack range from -3 deg to 9 deg. Nozzle pressure ratio was varied from 1 (jet off) to approximately 12, depending on Mach number. Results indicate that at design nozzle pressure ratio, the medium aspect ratio nozzle (with equal boattail angles on the nozzle sidewalls and upper and lower flaps) had the lowest zero angle of attack drag of the nonaxisymmetric nozzles for all tail configurations at subsonic Mach numbers. The drag levels of the twin axisymmetric nozzles were competitive with those of the medium-aspect-ratio nozzle at subsonic Mach number.

  17. The FM-007: An advanced jet commuter for HUB to spoke transportation

    NASA Technical Reports Server (NTRS)

    Blouke, Peter Scott; Engel, George Bryan; Fordham, Kari Suzanne; Layne, Steven James; Moore, Joel David; Shaver, Frederick Martin; Thornton, Douglas Hershal, Jr.

    1991-01-01

    Due to the increasing need for new commuter aircraft, the FM-007 is proposed, a technologically advanced jet propelled short takeoff and landing (STOL) airplane. The proposed commuter is designed for hub to spoke air travel. In order to reduce drag, natural laminar flow technology is integrated into the design using the natural laminar flow airfoil section for the wing. A three lifting surface configuration provides for more efficient cruise flight. This unique design includes a small forward wing (canard), a rear mounted high aspect ratio main wing, and a small horizontal stabilizer high atop the vertical tail. These three surfaces act together to reduce drag by minimizing the downward force the horizontal stabilizer has to account for due to the nose down pitching moment. Commuter aircraft must also incorporate passenger comfort. This is achieved by providing a spacious pressurized cabin with a large galley and reduced cabin noise due to incorporation of noise reduction gear. A basic oval design is adopted, as opposed to a circular design in order to allow for the seating of five passengers abreast. To get STOL capability, an over the wing blown flap is used using a Rolls Royce Tay series engine.

  18. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    NASA Astrophysics Data System (ADS)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  19. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  20. Feasibility of Human Skin Grafts on an Isolated But Accessible Vascular Supply on Athymic Rats as a System to Study Percutaneous Penetration and Cutaneous Injury.

    DTIC Science & Technology

    1986-04-01

    Ai87 466 FEASIBILITY OF HUMAN SKIN GRAFTS ON AN ISOLATED BUT / ACCESSIBLE VASCULAR 5 (U) UTAH UNIV SALT LAKE CITY SCHOOL OF MEDICINE 6 G KRUEGER APR...GOVT ACCESSION NO . RrCIPIcNTrS CATALOG NUMIER Feasibility of Human Skin Grafts on an Isolated 9 but Accessible Vascular Supply on Athymic Rats as...of the Skin Sandwich Flap....... . . . . . . . 35 Figure 15. Photograph of Hair Growth in a Human Split-Thickness Skin Graft on a Nude Rat

  1. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.

    1945-01-01

    Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from Tests at Large Reynolds Number and Low Turbulence," by Eastman N. Jacobs, Ira R. Abbott, and Milton Davidson, March 1942 has been corrected and included in the present paper, which supersedes the previously published paper.

  2. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    NASA Astrophysics Data System (ADS)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used by several species of birds. Hovering, which is generating only lift through flapping alone rather than as a product of thrust, demands a lot of energy. On the other hand, for practical knowledge we also fabricate the various bird's, insect's & fighter jet wing by using random value of parameter & test those airfoil in wind tunnel. Finally for comparison & achieving analytical knowledge we also test those airfoil model in various simulation software.

  3. Aeroelastic Considerations For Rotorcraft Primary Control with On-Blade Elevons

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    Replacing the helicopter rotor swashplate and blade pitch control system with on-blade elevon control surfaces for primary flight control may significantly reduce weight and drag to improve mission performance. Simplified analyses are used to examine the basic aeroelastic characteristics of such rotor blades, including pitch and flap dynamic response, elevon reversal, and elevon control effectiveness. The profile power penalty associated with deflections of elevon control surfaces buried within the blade planform is also evaluated. Results suggest that with aeroelastic design for pitch frequencies in the neighborhood of 2/rev, reasonable elevon control effectiveness may be achieved and that, together with collective pitch indexing, the aerodynamic profile power penalty of on-blade control surface deflections may be minimized.

  4. An aerodynamic analysis of the autogiro rotor with a comparison between calculated and experimental results

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1935-01-01

    This report presents an extension of the autogiro theory of Glauert and Lock in which the influence of a pitch varying with the blade radius is evaluated and methods of approximating the effect of blade tip losses and the influence of reversed velocities on the retreating blades are developed. A comparison of calculated and experimental results showed that most of the rotor characteristics could be calculated with reasonable accuracy, and that the type of induced flow assumed has a secondary effect upon the net rotor forces, although the flapping motion is influenced appreciably. An approximate evaluation of the effect of parasite drag on the rotor blades established the importance of including this factor in the analysis.

  5. [Clinical effect of distally-based dorsal thumb neurocutaneous vascular flap on repair of soft tissue defect in thumb].

    PubMed

    Huang, Yixiong; Shen, Zunli; Wang, Yongchun; Zhang, Shimin

    2009-10-01

    To investigate the surgical methods and clinical results of repairing soft tissue defects in the thumb with distally-based dorsal thumb neurocutaneous vascular flap. From January 2006 to October 2007, 23 patients with soft tissue defect in the thumb were treated, including 20 males and 3 females aged 19-46 years old (average 27.5 years old). The defect was caused by crush injury in 1 case, electric planer accident in 6 cases, incised injury in 8 cases, and avulsion injury in 8 cases. The defect was located on the palmar aspect of the thumb distal phalanx in 3 cases, the dorsal-radial aspect of the thumb distal phalanx in 3 cases, and ulnar or dorsal aspect in 17 cases. The defect size ranged from 3.3 cm x 1.2 cm to 4.2 cm x 1.2 cm. Among them, 18 cases were complicated with distal 1/2 nail bed defect or injury. The time between injury and hospital admission was 1-72 hours (average 22 hours). During operation, the defect was repaired with distally-based dorsal-radial neurovenocutaneous vascular flap of the thumb in 3 cases and distally-based dorsal-ulnar neurovenocutaneous vascular flap of the thumb in 20 cases. The size of those flaps was 4.0 cm x 1.6 cm-5.0 cm x 3.0 cm. The donor site underwent direct suture or split thickness skin graft repair. At 10 days after operation, 3 cases suffered from the epidermal necrosis in the distal part of the flap, 2 of them experienced the exfoliation of dark scab 14 days later and the flap survived, and the flap of the rest one survived after dressing change. The other flaps and the skin graft at the donor site all survived uneventfully. The wounds healed by first intention. All the patients were followed up for 10-16 months (average 12.6 months). The flaps were soft in texture and full in appearance. The two-point discrimination value 6 months after operation was 8-10 mm. At 12 months after operation, the growth of the residual fingernail was evident in 18 cases, including 4 cases of curved or hook fingernail. Active flexion and extension of the thumb were normal. The abduction of the first web space reached or surpassed 80 percent of the normal side in 20 cases and was below 80 percent of the normal side in 3 cases. The clinical outcomes were satisfactory in 11 cases, approximately satisfactory in 8 cases, and unsatisfactory in 4 cases according to self-designed evaluation system. The operative method of repairing the soft tissue defects in the thumb with the distally-based dorsal thumb neurocutaneous vascular flap is simple, stable in anatomy, in line with the principle of proximity, and suitable for repairing thumb tip defect 3 cm in size. It can bring a good postoperative appearance of the thumb and little influence on the hand function.

  6. Numerical Fluid Dynamics.

    DTIC Science & Technology

    1983-01-01

    COROLLARY. Similar bodies held in uniform streams of two incompressible viscous fluids with the same orientation must have the same drag coefficient at...Prandtl’s concept [A8, p. 59] was that the flow field around a streamlined body "splits up into two regions: 1. Surrounding the surface of the solid body ...them in ’source panels’ on the 6surface of the body . As in the two -dimensional case, it may be convenient to assume the solid to be at rest, and immersed

  7. Ontogeny of lift and drag production in ground birds

    PubMed Central

    Heers, Ashley M.; Tobalske, Bret W.; Dial, Kenneth P.

    2011-01-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight. PMID:21307057

  8. Analysis of the microcirculation after soft tissue reconstruction of the outer ear with burns in patients with severe burn injuries.

    PubMed

    Medved, Fabian; Medesan, Raluca; Rothenberger, Jens Martin; Schaller, Hans-Eberhard; Schoeller, Thomas; Manoli, Theodora; Weitgasser, Lennart; Naumann, Aline; Weitgasser, Laurenz

    2016-07-01

    Reconstruction of soft tissue defects of the ear with burns remains one of the most difficult tasks for the reconstructive surgeon. Although numerous reconstructive options are available, the results are often unpredictable and worse than expected. Besides full and split skin grafting, local random pattern flaps and pedicled flaps are frequently utilized to cover soft tissue defects of the outer auricle. Because of the difficulty and unpredictable nature of outer ear reconstruction after burn injury, a case-control study was conducted to determine the best reconstructive approach. The microcirculatory properties of different types of soft tissue reconstruction of the outer ear with burns in six severely burned Caucasian patients (three men and three women; mean age, 46 years (range, 22-70)) were compared to those in the healthy tissue of the outer ear using the O2C device (Oxygen to See; LEA Medizintechnik, Gießen, Germany). The results of this study revealed that the investigated microcirculation parameters such as the median values of blood flow (control group: 126 AU), relative amount of hemoglobin (control group: 59.5 AU), and tissue oxygen saturation (control group: 73%) are most similar to those of normal ear tissue when pedicled flaps based on the superficial temporal artery were used. These findings suggest that this type of reconstruction is superior for soft tissue reconstruction of the outer ear with burns in contrast to random pattern flaps and full skin grafts regarding the microcirculatory aspects. These findings may improve the knowledge on soft tissue viability and facilitate the exceptional and delicate process of planning the reconstruction of the auricle with burns. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Nanofat grafting under a split-thickness skin graft for problematic wound management.

    PubMed

    Kemaloğlu, Cemal Alper

    2016-01-01

    Obesity and certain medical disorders make the reconstruction of skin defects challenging. Different kind of procedure can be used for these defect, besides, skin grafting is one of the most common and simplest procedure. Fat grafting and stem cells which are located in the adipose tissue have been commonly used in plastic surgery for regeneration and rejuvenation purposes. To decrease graft failure rate we performed nanofat grafting under an autologous split-thickness skin graft in our patient who had a problematic wound. The case of a 35-year-old female patient with a traumatic skin defect on her left anterior crural region is described herein. After subsequent flap reconstruction, the result was disappointing and the defect size was widened. The defect was treated with combined grafting (nanofat grafting under an autologous split-thickness skin graft). At the 6 months follow-up assessment after combined grafting, the integrity of the skin graft was good with excellent pliability. Combined grafting for problematic wounds seems to be a useful technique for cases requiring reconstruction. The potential existence of stem cells may be responsible for the successful result in our patient.

  10. [Open window thoracostomy and muscle flap transposition for thoracic empyema].

    PubMed

    Nakajima, Y

    2010-07-01

    Open window thoracostomy for thoracic empyema: Open window thoracostomy is a simple, certain and final drainage procedure for thoracic empyema. It is most useful to drain purulent effusion from empyema space, especially for cases with broncho-pleural fistulas, and to clean up purulent necrotic debris on surface of empyema sac. For changing of packing gauzes in empyema space through a window once or twice every day after this procedure, thoracostomy will have to be made on the suitable position to empyema space. Usually skin incision will be layed along the costal bone just at the most expanded position of empyema. Following muscle splitting to thoracic wall, a costal bone just under the incision will be removed as 8-10 cm as long, and opened the empyema space through a costal bed. After the extension of empyema space will be preliminarily examined through a primary window by a finger or a long forceps, it will be decided costal bones must be removed how many (usually 2 or 3 totally) and how long (6-8 cm) to make a window up to 5 cm in diameter. Thickened empyema wall will be cut out just according to a window size, and finally skin edge and empyema wall will be sutured roughly along circular edge. Muscle flap transposition for empyema space: Pediclued muscle flap transposition is one of space-reducing operations for (chronic) empyema Usually this will be co-performed with other several procedures as curettages on empyema surface, closure of bronchopleural fistula and thoracoplasty. This is radically curable for primarily non fistulous empyema or secondarily empyema after open window thoracostomy done for fistula. Furthermore this is less invasive than other radical operations as like pleuro-pneumonectomy, decortication or air-plombage for empyema. There are 2 important points to do this technique. One is a volume of muscle flap and another is good blood flow in flap. The former suitable muscle volume is need to impact empyema space or to close fistula, and the latter over-elongation and bending of pedicles should be avoided. Actually, after removing several costal bones on the empyema space, empyema wall will be incised for about 2/3 of total empyema length along costal beds. Then muscle flap will be introduced into cleaned up space and sutured on empyema surface at several points. It is better to lay small vacuum drain tubes along flap within empyema space.

  11. Refined AFC-Enabled High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed, as are AFC architecture aspects such as AFC unit placement, number AFC units, operating pressures, mass flow rates, and steady versus unsteady AFC applications. These efforts led to the development of a novel traversing AFC actuation concept which is efficient in that it reduces the AFC mass flow requirements by as much as an order of magnitude compared to previous AFC technologies, and it is predicted to be effective in driving the aerodynamic performance of a mechanical simplified high-lift system close to that of the reference conventional high-lift system. Conceptual system integration studies were conducted for the AFC-enhanced high-lift concept applied to a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. The results from these design integration assessments identify overall system performance improvement opportunities over conventional high-lift systems that suggest the viability of further technology maturation efforts for AFC-enabled high lift flap systems. To that end, technical challenges are identified associated with the application of AFC-enabled high-lift systems to modern transonic commercial transports for future technology maturation efforts.

  12. Orbiter entry trajectory corridors: 32000 pound payload, 67.5 percent center of gravity. [glide path data compilation

    NASA Technical Reports Server (NTRS)

    Treybig, J. H.

    1975-01-01

    Thermal and equilibrium glide boundaries were used to analyze and/or design shuttle orbiter entry trajectories. Plots are presented of orbiter thermal and equilibrium glide boundaries in the drag/mass-relative velocity dynamic pressure-relative velocity, and altitude-relative velocity planes for an orbiter having a 32,000 pound payload and a 67.5% center of gravity location. These boundaries were defined for control points 1 through 4 of the shuttle orbiter for 40 deg-30 deg and 38 deg-28 deg ramped angle of attack entry profiles and 40 deg, 38 deg, 35 deg, 30 deg, 28 deg, and 25 deg constant angle of attack entry profiles each at 20 deg, 15 deg, and 10 deg constant body flap settings.

  13. Vortex wakes of a flapping foil in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Schnipper, Teis; Andersen, Anders; Bohr, Tomas

    2008-11-01

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von Kármán wake, reverse von Kármán wake, 2P wake, and 2P+2S wake. We characterize the transition from the von Kármán wake (drag) to the reverse von Kármán wake (thrust) and discuss the results in relation to fish swimming. We visualize the time evolution of the vortex shedding in detail, identify the origins of the vortices comprising the wake, and propose a simple model to account for the transition from von Kármán like wakes to more exotic wake structures.

  14. Comparison of experimental surface pressures with theoretical predictions on twin two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Pendergraft, O. C., Jr.; Burley, J. R., II

    1986-01-01

    A three-dimensional subsonic aerodynamic panel code (VSAERO) was used to predict the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle pressure coefficient distributions and external nozzle drag of nonaxisymmetric convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine high performance aircraft model. Nozzle static pressure coefficient distributions along the upper and lower surfaces near the model centerline and near the outer edges (corner) of the two surfaces were calculated, and nozzle drag was predicted using these surface pressure distributions. A comparison between the theoretical predictions and experimental wind tunnel data is made to evaluate the utility of the code in calculating the flow about these types of non-axisymmetric afterbody configurations. For free-stream Mach numbers of 0.60 and 0.90, the conditions where the flows were attached on the boattails yielded the best comparison between the theoretical predictions and the experimental data. For the Boattail terminal angles of greater than 15 deg., the experimental data for M = 0.60 and 0.90 indicated areas of separated flow, so the theoretical predictions failed to match the experimental data. Even though calculations of regions of separated flows are within the capabilities of the theoretical method, acceptable solutions were not obtained.

  15. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    2007-11-01

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode ( φ = -75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1-H1 and S2-H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two anti-symmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  16. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  17. The Triton: Design concepts and methods

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Singer, Michael; Vanryn, Percy; Brown, Rhonda; Tella, Gustavo; Harvey, Bob

    1992-01-01

    During the design of the C & P Aerospace Triton, a few problems were encountered that necessitated changes in the configuration. After the initial concept phase, the aspect ratio was increased from 7 to 7.6 to produce a greater lift to drag ratio (L/D = 13) which satisfied the horsepower requirements (118 hp using the Lycoming O-235 engine). The initial concept had a wing planform area of 134 sq. ft. Detailed wing sizing analysis enlarged the planform area to 150 sq. ft., without changing its layout or location. The most significant changes, however, were made just prior to inboard profile design. The fuselage external diameter was reduced from 54 to 50 inches to reduce drag to meet the desired cruise speed of 120 knots. Also, the nose was extended 6 inches to accommodate landing gear placement. Without the extension, the nosewheel received an unacceptable percentage (25 percent) of the landing weight. The final change in the configuration was made in accordance with the stability and control analysis. In order to reduce the static margin from 20 to 13 percent, the horizontal tail area was reduced from 32.02 to 25.0 sq. ft. The Triton meets all the specifications set forth in the design criteria. If time permitted another iteration of the calculations, two significant changes would be made. The vertical stabilizer area would be reduced to decrease the aircraft lateral stability slope since the current value was too high in relation to the directional stability slope. Also, the aileron size would be decreased to reduce the roll rate below the current 106 deg/second. Doing so would allow greater flap area (increasing CL(sub max)) and thus reduce the overall wing area. C & P would also recalculate the horsepower and drag values to further validate the 120 knot cruising speed.

  18. Symmetry breaking and un-breaking in microhydrodynamical systems: Swimming, pumping and bio-ballistics

    NASA Astrophysics Data System (ADS)

    Roper, Marcus Leigh

    This thesis describes the numerical and asymptotic analysis of symmetry breaking phenomena in three fluid dynamical systems. The first part concerns modeling of a micrometer sized swimming device, comprising a filament composed of superparamagnetic micron-sized beads and driven by an applied magnetic field. The swimming mechanics are deciphered in order to show how actuation by a spatially-homogeneous but temporally-varying torque leads to propagation of a bending wave along the filament and thence to propulsion. Absence of swimming unless the lateral symmetry of the filament is broken by tethering one end to a high drag body is explained. The model is used to determine whether, and to what extent, the micro-swimmer behaves like a flagellated eukaryotic cell. The second part concerns modeling of locomotion using a reversible stroke. Although forbidden at low Reynolds numbers, such symmetric gaits are favored by some microscopic planktonic swimmers. We analyze the constraints upon generation of propulsive force by such swimmers using a numerical model for a flapped limb. Effective locomotion is shown to be possible at arbitrarily low rates of energy expenditure, escaping a formerly postulated time-symmetry constraint, if the limb is shaped in order to exploit slow inertial-streaming eddies. Finally we consider the evolution of explosively launched ascomycete spores toward perfect projectile shapes---bodies that are designed to experience minimum drag in flight---using the variance of spore shapes between species in order to quantify the stiffness of the drag minimization constraint. A surprising observation about the persistent fore-aft symmetry of perfect projectiles, even up to Reynolds numbers great enough that the flow around the projectile is highly asymmetric, points both toward a model for spore ontogeny and to a novel linear approximation for moderate Reynolds flows.

  19. Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima).

    PubMed

    Gough, William T; Farina, Stacy C; Fish, Frank E

    2015-06-01

    Common eiders (Somateria mollissima) are heavy sea-ducks that spend a large portion of their time swimming at the water surface. Surface swimming generates a bow and hull wave that can constructively interfere and produce wave drag. The speed at which the wavelengths of these waves equal the waterline length of the swimming animal is the hull speed. To increase surface swimming speed beyond the hull speed, an animal must overtake the bow wave. This study found two distinct behaviors that eider ducks used to exceed the hull speed: (1) 'steaming', which involved rapid oaring with the wings to propel the duck along the surface of the water, and (2) 'paddle-assisted flying', during which the ducks lifted their bodies out of the water and used their feet to paddle against the surface while flapping their wings in the air. An average hull speed (0.732±0.046 m s(-1)) was calculated for S. mollissima by measuring maximum waterline length from museum specimens. On average, steaming ducks swam 5.5 times faster and paddle-assisted flying ducks moved 6.8 times faster than the hull speed. During steaming, ducks exceeded the hull speed by increasing their body angle and generating dynamic lift to overcome wave drag and hydroplane along the water surface. During paddle-assisted flying, ducks kept their bodies out of the water, thereby avoiding the limitations of wave drag altogether. Both behaviors provided alternatives to flight for these ducks by allowing them to exceed the hull speed while staying at or near the water surface. © 2015. Published by The Company of Biologists Ltd.

  20. Optical activity via Kerr nonlinearity in a spinning chiral medium

    NASA Astrophysics Data System (ADS)

    Khan, Anwar Ali; Bacha, Bakht Amin; Khan, Rahmat Ali

    2016-11-01

    Optical activity is investigated in a chiral medium by employing the four level cascade atomic model, in which the optical responses of the atomic medium are studied with Kerr nonlinearity. Light entering into a chiral medium splits into circular birefringent beams. The angle of divergence between the circular birefringent beams and the polarization states of the two light beams is manipulated with Kerr nonlinearity. In the stationary chiral medium the angle of divergence between the circular birefringent beams is calculated to be 1.3 radian. Furthermore, circular birefringence is optically controlled in a spinning chiral medium, where the maximum rotary photon drag angle for left (right) circularly polarized beam is ±1.1 (±1.5) microradian. The change in the angle of divergence between circular birefringent beams by rotary photon drag is calculated to be 0.4 microradian. The numerical results may help to understand image designing, image coding, discovery of photonic crystals and optical sensing technology.

  1. Polypropylene Darning: A New Alternative for Reconstruction of Orbital Floor after Total Maxillectomy.

    PubMed

    Sharma, Prashant

    2015-06-01

    Removal of orbital floor is an integral part of total (radical) maxillectomy (type IIIa), which if not managed properly, may lead to some eye related distressing complications like diplopia, eyelid malposition, epiphora, dacryocystitis, enopthalmos and ectoprion. Among all, diplopia is the most distressing complication which hampers daily activity. Various options for orbital floor reconstruction are available like titanium sheet, polypropylene mesh, non-vascularized or vascularized bone graft, pedicled flaps, micro-vascular free flaps, prosthesis placement, and split skin graft followed by obturator placement. Till date no-body has tried stabilization of eye ball by 'darning' the orbital floor using non-absorbable suture. 'Polypropylene suture darning' is an easy to learn, novel method with equally good results. Five patients with potentially resectable tumors underwent total maxillectomy. I used polypropylene 3-0 round body suture and 'darning' was done at orbital floor, incorporating periosteum (if remaining) and peri-orbital fat into the sutures. Muscle flaps were done to provide bulk and palatal reconstruction. Assessment of patients was done post-operatively at day-5 i.e., before discharge and at 1 month after surgery, and also in further follow up visits. The results were very good in terms of clear vision & eye movements (directly related to 'darning'), and the aesthetic look of patients and bilateral symmetry were satisfactory (not related to darning). Darning of orbital floor by polypropylene after total maxillectomy is an easy to learn and cost-effective method of reconstruction with good results.

  2. Clap and Fling Interaction of Bristled Wings: Effects of Varying Reynolds Number and Bristle Spacing on Force Generation and Flow Structures

    NASA Astrophysics Data System (ADS)

    Kasoju, Vishwa Teja

    The smallest flying insects with body lengths under 1 mm, such as thrips and fairyflies, typically show the presence of long bristles on their wings. Thrips have been observed to use wing-wing interaction via 'clap and fling' for flapping flight at low Reynolds number (Re) on the order of 10, where a wing pair comes into close contact at the end of upstroke and fling apart at the beginning of downstroke. We examined the effects of varying the following parameters on force generation and flow structures formed during clap and fling: (1) Re ranging from 5 to 15 for a bristled wing pair (G/D = 17) and a geometrically equivalent solid wing pair; and (2) ratio of spacing between bristles to bristle diameter (G/D) for Re = 10. The G/D ratio in 70 thrips species were quantified from published forewing images. Scaled-up physical models of three bristled wing pairs of varying G/D (5, 11, 17) and a solid wing pair (G/D = 0) were fabricated. A robotic model was used for this study, in which a wing pair was immersed in an aquarium tank filled with glycerin and driven by stepper motors to execute clap and fling kinematics. Dimensionless lift and drag coefficients were determined from strain gauge measurements. Phase-locked particle image velocimetry (PIV) measurements were used to examine flow through the bristles. Chordwise PIV was used to visualize the leading edge vortex (LEV) and trailing edge vortex (TEV) formed over the wings during clap and fling. With increasing G/D, larger reduction was observed in peak drag coefficients as compared to reduction in peak lift coefficients. Net circulation, defined as the difference in circulation (strength) of LEV and TEV, diminished with increasing G/D. Reduction in net circulation resulted in reducing lift generated by bristled wings as compared to solid wings. Leaky, recirculating flow through the bristles provided large drag reduction during fling of a bristled wing pair. If flight efficiency is defined as the ratio of lift to drag, largest peak lift to peak drag ratios were obtained in bristled wings as compared to the solid wings across the entire range of Re and G/D tested.

  3. Advances in Surgical Reconstructive Techniques in the Management of Penile, Urethral, and Scrotal Cancer.

    PubMed

    Bickell, Michael; Beilan, Jonathan; Wallen, Jared; Wiegand, Lucas; Carrion, Rafael

    2016-11-01

    This article reviews the most up-to-date surgical treatment options for the reconstructive management of patients with penile, urethral, and scrotal cancer. Each organ system is examined individually. Techniques and discussion for penile cancer reconstruction include Mohs surgery, glans resurfacing, partial and total glansectomy, and phalloplasty. Included in the penile cancer reconstruction section is the use of penile prosthesis in phalloplasty patients after penectomy, tissue engineering in phallic regeneration, and penile transplantation. Reconstruction following treatment of primary urethral carcinoma and current techniques for scrotal cancer reconstruction using split-thickness skin grafts and flaps are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Results of tests CS4 and CS5 to investigate dynamic loads and pressures on 0.03-scale models (Ax1319-3/4 and 45-0) of mated 747 cam and space shuttle orbiter in the Boeing transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 0.03-scale model of the 747 CAM/Orbiter was tested in an 8 x 12 foot transonic wind tunnel. Dynamic loads, pressure, and empennage flow field data were obtained using pressure transducers, strain gages, and a split film anemometer. The test variables included Mach number, angle of attack, sideslip angle, orbiter tailcone on and off, orbiter partial tailcone, orbiter nozzle air scoops, orbiter body flap angle, and orbiter elevon angle.

  5. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    PubMed Central

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-01-01

    Summary Mosquitoes exhibit unique wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz) and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects2, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report wing kinematics and solve the full Navier-Stokes equations using computational fluid dynamics with overset grids and validate our results with in vivo flow measurements. We show that, while familiar separated flow patterns are used by mosquitoes, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described flying animal. In total, there are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a novel form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half stroke, and are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well-suited to high-aspect ratio mosquito wings. PMID:28355184

  6. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    NASA Astrophysics Data System (ADS)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  7. Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control

    NASA Astrophysics Data System (ADS)

    Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul

    2017-11-01

    Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  8. Free-Spinning-Tunnel Tests of a 1/20-Scale Model of the Northrop N-9M Airplane

    NASA Technical Reports Server (NTRS)

    MacDougall, George F., Jr.; Lichtenstein, Jacob H.

    1946-01-01

    Spin tests of a 1/20-scale model of the Northrop N-9M airplane have been performed in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics were determined for various loading conditions and the effect of deflecting the flaps and of extending the landing gear was investigated. The investigation also included tests to determine the size parachute required for satisfactory spin recovery by parachute action alone. The tests were performed at an equivalent spin altitude of 15,000 feet. A specialized recovery technique consisting of rapid full reversal of the rudder pedals against the spin combined with turning the wheel against the spin and movement of the stick forward is recommended for all loadings and configurations of the airplane. The results also indicated that a 7-foot-diameter spin-recovery parachute having a drag coefficient of 0.7 attached to the outboard wing tip with a towline of 10 to 30 feet or an 8.8-foot-diameter parachute attached to the fixed portion of the wing between the elevons and the pitch flaps with a 30-foot towline would provide satisfactory recovery from demonstration spins by parachute action alone. It appears possible that the first N-9M airplane may have crashed because of failure to recover from a spin.

  9. Parametric investigation of single-expansion-ramp nozzles at Mach numbers from 0.60 to 1.20

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Re, Richard J.; Bare, E. Ann

    1992-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of varying six nozzle geometric parameters on the internal and aeropropulsive performance characteristics of single-expansion-ramp nozzles. This investigation was conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.5 to 12, and angles of attack of 0 deg +/- 6 deg. Maximum aeropropulsive performance at a particular Mach number was highly dependent on the operating nozzle pressure ratio. For example, as the nozzle upper ramp length or angle increased, some nozzles had higher performance at a Mach number of 0.90 because of the nozzle design pressure was the same as the operating pressure ratio. Thus, selection of the various nozzle geometric parameters should be based on the mission requirements of the aircraft. A combination of large upper ramp and large lower flap boattail angles produced greater nozzle drag coefficients at Mach number greater than 0.80, primarily from shock-induced separation on the lower flap of the nozzle. A static conditions, the convergent nozzle had high and nearly constant values of resultant thrust ratio over the entire range of nozzle pressure ratios tested. However, these nozzles had much lower aeropropulsive performance than the convergent-divergent nozzle at Mach number greater than 0.60.

  10. Dynamics of the vortex wakes of flying and swimming vertebrates.

    PubMed

    Rayner, J M

    1995-01-01

    The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail.

  11. Transonic wind tunnel test of a 14 percent thick oblique wing

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Kroo, Ilan M.; Strong, James M.; Carmichael, Ralph L.

    1990-01-01

    An experimental investigation was conducted at the ARC 11- by 11-Foot Transonic Wind Tunnel as part of the Oblique Wing Research Aircraft Program to study the aerodynamic performance and stability characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing designed by Rockwell International. The 10.3 aspect ratio, straight-tapered wing of 0.14 thickness/chord ratio was tested at two different mounting heights above the fuselage. Additional tests were conducted to assess low-speed behavior with and without flaps, aileron effectiveness at representative flight conditions, and transonic drag divergence with 0 degree wing sweep. Longitudinal stability data were obtained at sweep angles of 0, 30, 45, 60, and 65 degrees, at Mach numbers ranging from 0.25 to 1.40. Test Reynolds numbers varied from 3.2 to 6.6 x 10 exp 6/ft. and angle of attack ranged from -5 to +18 degrees. Most data were taken at zero sideslip, but a few runs were at sideslip angles of +/- 5 degrees. The raised wing position proved detrimental overall, although side force and yawing moment were reduced at some conditions. Maximum lift coefficient with the flaps deflected was found to fall short of the value predicted in the preliminary design document. The performance and trim characteristics of the present wing are generally inferior to those obtained for a previously tested wing designed at ARC.

  12. Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality

    NASA Astrophysics Data System (ADS)

    Paraz, Florine; Schouveiler, Lionel; Eloy, Christophe

    2016-01-01

    Flexibility of marine animal fins has been thought to enhance swimming performance. However, despite numerous experimental and numerical studies on flapping flexible foils, there is still no clear understanding of the effect of flexibility and flapping amplitude on thrust generation and swimming efficiency. Here, to address this question, we combine experiments on a model system and a weakly nonlinear analysis. Experiments consist in immersing a flexible rectangular plate in a uniform flow and forcing this plate into a heaving motion at its leading edge. A complementary theoretical model is developed assuming a two-dimensional inviscid problem. In this model, nonlinear effects are taken into account by considering a transverse resistive drag. Under these hypotheses, a modal decomposition of the system motion allows us to predict the plate response amplitude and the generated thrust, as a function of the forcing amplitude and frequency. We show that this model can correctly predict the experimental data on plate kinematic response and thrust generation, as well as other data found in the literature. We also discuss the question of efficiency in the context of bio-inspired propulsion. Using the proposed model, we show that the optimal propeller for a given thrust and a given swimming speed is achieved when the actuating frequency is tuned to a resonance of the system, and when the optimal forcing amplitude scales as the square root of the required thrust.

  13. Flight motor modulation with speed in the hawkmoth Manduca sexta.

    PubMed

    Hedrick, Tyson L; Martínez-Blat, Jorge; Goodman, Mariah J

    2017-01-01

    The theoretical underpinnings for flight, including animal flight with flapping wings, predict a curvilinear U-shaped or J-shaped relationship between flight speed and the power required to maintain that speed. Experimental data have confirmed this relationship for a variety of bird and bat species but not insects, possibly due to differences in aerodynamics and physiology or experimental difficulties. Here we quantify modulation of the main flight motor muscles (the dorsolongitudinal and dorsoventral) via electromyography in hawkmoths (Manduca sexta) flying freely over a range of speeds in a wind tunnel and show that these insects exhibit a U-shaped speed-power relationship, with a minimum power speed of 2ms -1 , indicating that at least large flying insects achieve sufficiently high flight speeds that drag and power become limiting factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Predictions of Control Inputs, Periodic Responses and Damping Levels of an Isolated Experimental Rotor in Trimmed Flight

    NASA Technical Reports Server (NTRS)

    Gaonkar, G. H.; Subramanian, S.

    1996-01-01

    Since the early 1990s the Aeroflightdynamics Directorate at the Ames Research Center has been conducting tests on isolated hingeless rotors in hover and forward flight. The primary objective is to generate a database on aeroelastic stability in trimmed flight for torsionally soft rotors at realistic tip speeds. The rotor test model has four soft inplane blades of NACA 0012 airfoil section with low torsional stiffness. The collective pitch and shaft tilt are set prior to each test run, and then the rotor is trimmed in the following sense: the longitudinal and lateral cyclic pitch controls are adjusted through a swashplate to minimize the 1/rev flapping moment at the 12 percent radial station. In hover, the database comprises lag regressive-mode damping with pitch variations. In forward flight the database comprises cyclic pitch controls, root flap moment and lag regressive-mode damping with advance ratio, shaft angle and pitch variations. This report presents the predictions and their correlation with the database. A modal analysis is used, in which nonrotating modes in flap bending, lag bending and torsion are computed from the measured blade mass and stiffness distributions. The airfoil aerodynamics is represented by the ONERA dynamic stall models of lift, drag and pitching moment, and the wake dynamics is represented by a state-space wake model. The trim analysis of finding, the cyclic controls and the corresponding, periodic responses is based on periodic shooting with damped Newton iteration; the Floquet transition matrix (FTM) comes out as a byproduct. The stabillty analysis of finding the frequencies and damping levels is based on the eigenvalue-eigenvector analysis of the FTM. All the structural and aerodynamic states are included from modeling to trim analysis. A major finding is that dynamic wake dramatically improves the correlation for the lateral cyclic pitch control. Overall, the correlation is fairly good.

  15. Steady-state and transitional aerodynamic characteristics of a wing in simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Bezos, Gaudy M.

    1989-01-01

    The steady-state and transient effects of simulated heavy rain on the subsonic aerodynamic characteristics of a wing model were determined in the Langley 14- by 22-Foot Subsonic Tunnel. The 1.29 foot chord wing was comprised of a NACA 23015 airfoil and had an aspect ratio of 6.10. Data were obtained while test variables of liquid water content, angle of attack, and trailing edge flap angle were parametrically varied at dynamic pressures of 10, 30, and 50 psf (i.e., Reynolds numbers of .76x10(6), 1.31x10(6), and 1.69x10(6)). The experimental results showed reductions in lift and increases in drag when in the simulated rain environment. Accompanying this was a reduction of the stall angle of attack by approximately 4 deg. The transient aerodynamic performance during transition from dry to wet steady-state conditions varied between a linear and a nonlinear transition.

  16. Three-dimensional simulation for fast forward flight of a calliope hummingbird

    PubMed Central

    Song, Jialei; Powers, Donald R.; Hedrick, Tyson L.; Luo, Haoxiang

    2016-01-01

    We present a computational study of flapping-wing aerodynamics of a calliope hummingbird (Selasphorus calliope) during fast forward flight. Three-dimensional wing kinematics were incorporated into the model by extracting time-dependent wing position from high-speed videos of the bird flying in a wind tunnel at 8.3 m s−1. The advance ratio, i.e. the ratio between flight speed and average wingtip speed, is around one. An immersed-boundary method was used to simulate flow around the wings and bird body. The result shows that both downstroke and upstroke in a wingbeat cycle produce significant thrust for the bird to overcome drag on the body, and such thrust production comes at price of negative lift induced during upstroke. This feature might be shared with bats, while being distinct from insects and other birds, including closely related swifts. PMID:27429779

  17. Xenogeneic Collagen Matrix Versus Connective Tissue Graft: Case Series of Various Gingival Recession Treatments.

    PubMed

    Chevalier, Grégoire; Cherkaoui, Selma; Kruk, Hanna; Bensaïd, Xavier; Danan, Marc

    A xenogeneic collagen matrix recently has been suggested as an alternative to connective tissue graft for the treatment of gingival recession. The matrix avoids the second surgical site, and as a consequence could decrease surgical morbidity. This new matrix was used in various clinical situations and compared to connective tissue graft (CTG) in a split-mouth design case series. A total of 17 recessions were treated with a coronally advanced flap, 9 with CTG, and 8 with the matrix. Mean recession reduction was 2.00 mm with the CTG and 2.00 mm with the matrix. No significant statistical differences between the techniques were observed in this case report.

  18. Xenogeneic Collagen Matrix Versus Connective Tissue Graft: Case Series of Various Gingival Recession Treatments.

    PubMed

    Chevalier, Grégoire; Cherkaoui, Selma; Kruk, Hanna; Bensaïd, Xavier; Danan, Marc

    2016-08-24

    A xenogeneic collagen matrix recently has been suggested as an alternative to connective tissue graft for the treatment of gingival recession. The matrix avoids the second surgical site, and as a consequence could decrease surgical morbidity. This new matrix was used in various clinical situations and compared to connective tissue graft (CTG) in a split-mouth design case series. A total of 17 recessions were treated with a coronally advanced flap, 9 with CTG, and 8 with the matrix. Mean recession reduction was 2.00 mm with the CTG and 2.00 mm with the matrix. No significant statistical differences between the techniques were observed in this case report.

  19. Transonic Free-Flight Investigation of the Longitudinal Aerodynamic Characteristics of a 1/10-Scale Steel-Wing Model of the Northrop MX-775A Missile with Leading-Edge Extensions, Inboard Trailing-Edge Flaps, and a Speed Brake on the Vertical Tail

    NASA Technical Reports Server (NTRS)

    Arbic, R. G.

    1955-01-01

    Results are presented of a free-flight investigation between Mach numbers of 0.7 to 1.3 and Reynolds numbers of 3.1 x 10(exp 6) to 7.0 x 10(exp 6) to determine the longitudinal aerodynamic characteristics of the Northrop MX-775A missile. This missile has a weng, body, and vertical tail, but has no horizontal tail. The basic wing plan form has an aspect ratio of 5.5, 45 deg of sweepback of the 0.406 streamwise chord line, and a taper ratio of 0.4. A 1/10-scale steel-wing model of the missile was flown with modifications to the basic wing plan form consisting of leading-edge chord-extensions deflected 7 deg downward together with the forward 15 percent of the wing chord, and inboard trailing-edge flaps deflected 5 deg downward. In addition, the model had a static-pressure tube mounted at the tip of the vertical tail for position-error measurements and had a speed brake also mounted on the vertical tail to trim the model to positive lift coefficients and to permit determination of the trim and drag effectiveness of the brake. The data are uncorrected for the effects of wing elasticity, but experimental wing influence coefficients are presented.

  20. Shear wave splitting hints at dynamical features of mantle convection: a global study of homogeneously processed source and receiver side upper mantle anisotropy

    NASA Astrophysics Data System (ADS)

    Walpole, J.; Wookey, J. M.; Masters, G.; Kendall, J. M.

    2013-12-01

    The asthenosphere is embroiled in the process of mantle convection. Its viscous properties allow it to flow around sinking slabs and deep cratonic roots as it is displaced by intruding material and dragged around by the moving layer above. As the asthenosphere flows it develops a crystalline fabric with anisotropic crystals preferentially aligned in the direction of flow. Meanwhile, the lithosphere above deforms as it is squeezed and stretched by underlying tectonic processes, enabling anisotropic fabrics to develop and become fossilised in the rigid rock and to persist over vast spans of geological time. As a shear wave passes through an anisotropic medium it splits into two orthogonally polarised quasi shear waves that propagate at different velocities (this phenomenon is known as shear wave splitting). By analysing the polarisation and the delay time of many split waves that have passed through a region it is possible to constrain the anisotropy of the medium in that region. This anisotropy is the key to revealing the deformation history of the deep Earth. In this study we present measurements of shear wave splitting recorded on S, SKS, and SKKS waves from earthquakes recorded at stations from the IRIS DMC catalogue (1976-2010). We have used a cluster analysis phase picking technique [1] to pick hundreds of thousands of high signal to noise waveforms on long period data. These picks are used to feed the broadband data into an automated processing workflow that recovers shear wave splitting parameters [2,3]. The workflow includes a new method for making source and receiver corrections, whereby the stacked error surfaces are used as input to correction rather than a single set of parameters, this propagates uncertainty information into the final measurement. Using SKS, SKKS, and source corrected S, we recover good measurements of anisotropy beneath 1,569 stations. Using receiver corrected S we recover good measurements of anisotropy beneath 470 events. We compare our results to a large compilation of previous regional studies and find good agreement. Our results are compared with upper mantle anisotropy recovered from surface waves, and other seismic observables such as wave speed tomography. The comparison with tomography beneath the USA is particularly interesting; here we observe the vivid toroidal swirl beneath Nevada branching off along the Snake River Plateau in excellent agreement with tomographic images at 150 km depth. We compare our results to absolute plate motion vectors to see how well drag from the plate can explain the development of anisotropic fabric; and to a more sophisticated asthenospheric flow model which takes into account the effect of mantle density heterogeneities [4]. Finally, we investigate patterns in the source side anisotropy, globally we detect a fabric with a fast shear wave polarisation parallel to the strike of subducting slabs, however, in several regions interesting deviations are found. [1] Houser et al. (2008) Geophys. J. Int. (2008) 174, 195-212. [2] Teanby et al. (2004). Bulletin Of The Seismological Society Of America, 94(2), 453-463. [3] Wuestefeld et al. (2010). Geophysical Prospecting, 58(5), 753-771. [4] Conrad & Behn (2010). Geochemistry Geophysics Geosystems, 11.

  1. Comparison of applying particulate demineralized bone matrix (DBM), putty DBM and open flap debridement in periodontal horizontal bone defects. A 12-month longitudinal, multi-centre, triple-blind, split-mouth, randomized, controlled clinical study. Part 2 - evaluation of the interdental soft tissue.

    PubMed

    Kaya, Y; Yalim, M; Bahçecitapar, M; Baloş, K

    2009-07-01

    To date, there have been many studies clinically evaluating periodontal regenerative procedures by the help of routinely used hard and soft tissue parameters; however, these parameters are not capable of assessing interdental soft tissue located above the regenerative periodontal surgery area. The purpose of this study was to assess interproximal soft tissue changes following application of (i) particulate form demineralized bone matrix (DBM), (ii) putty form DBM and (ii) open flap debridement (OFD, control), using modified curtain technique in the treatment of interproximal suprabony (horizontal) defects located in anterior maxillary region, as previously reported. Twenty-five chronic periodontitis patients with 125 interproximal surgery sites (radiologically >or=4 mm horizontal bone defect) were also participate in this second stage of the triple-blind, split mouth, randomized, controlled clinical trial. Surgery sites were assessed by (i) plaque index (PI), (ii) gingival index (GI), (iii) the presence of interdental soft tissue clefts or craters and (iv) the loss of interdental papilla height by using papilla presence index (PPI), during the healing period. At the baseline and 3, 6, 9 and 12 months after the operations, these measurements were repeated. In all groups, there is a significant increase in the prevalence of soft tissue cleft and crater formation (P < 0.01), with increase in PI and GI scores at interdental soft tissue defect areas (P < 0.001), 3 months after the operations. There was also an increase in PPI scores after the operations in all treatment groups (P < 0.01). Three procedures affected the interproximal soft tissues similarly. There was no significant difference among groups in terms of all parameters (P > 0.05). Particulate DBM, putty DBM and OFD demostrated similar interproximal soft tissue changes especially increasing interproximal PI and GI scores in 3 months follow-up.

  2. A comparative clinical study of the efficacy of subepithelial connective tissue graft and acellular dermal matrix graft in root coverage: 6-month follow-up observation

    PubMed Central

    Thomas, Libby John; Emmadi, Pamela; Thyagarajan, Ramakrishnan; Namasivayam, Ambalavanan

    2013-01-01

    Aims: The purpose of this study was to compare the clinical efficacy of subepithelial connective tissue graft and acellular dermal matrix graft associated with coronally repositioned flap in the treatment of Miller's class I and II gingival recession, 6 months postoperatively. Settings and Design: Ten patients with bilateral Miller's class I or class II gingival recession were randomly divided into two groups using a split-mouth study design. Materials and Methods: Group I (10 sites) was treated with subepithelial connective tissue graft along with coronally repositioned flap and Group II (10 sites) treated with acellular dermal matrix graft along with coronally repositioned flap. Clinical parameters like recession height and width, probing pocket depth, clinical attachment level, and width of keratinized gingiva were evaluated at baseline, 90th day, and 180th day for both groups. The percentage of root coverage was calculated based on the comparison of the recession height from 0 to 180th day in both Groups I and II. Statistical Analysis Used: Intragroup parameters at different time points were measured using the Wilcoxon signed rank test and Mann–Whitney U test was employed to analyze the differences between test and control groups. Results: There was no statistically significant difference in recession height and width, gain in CAL, and increase in the width of keratinized gingiva between the two groups on the 180th day. Both procedures showed clinically and statistically significant root coverage (Group I 96%, Group II 89.1%) on the 180th day. Conclusions: The results indicate that coverage of denuded root with both subepithelial connective tissue autograft and acellular dermal matrix allograft are very predictable procedures, which were stable for 6 months postoperatively. PMID:24174728

  3. Tooth movements in foxhounds after one or two alveolar corticotomies.

    PubMed

    Sanjideh, Payam A; Rossouw, P Emile; Campbell, Phillip M; Opperman, Lynne A; Buschang, Peter H

    2010-02-01

    The aim of this split-mouth experimental study was to determine (1) whether corticotomy procedures increase tooth movement and (2) the effects of a second corticotomy procedure after 4 weeks on the rate of tooth movement. The mandibular third and maxillary second premolars of five skeletally mature male foxhounds, approximately 2 years of age, were extracted. One randomly selected mandibular quadrant had buccal and lingual flaps and corticotomies performed around the second premolar; the other quadrant served as the control. Both maxillary quadrants had initial buccal flaps and corticotomies; one randomly selected quadrant had a second buccal flap surgery and corticotomy after 28 days. Coil springs (200 g force), along with a 0.045 mm diameter tube on a 0.040 mm diameter guiding wire, were used to move the mandibular second and maxillary third premolars. Records, including digital calliper measurements and radiographs, were taken on days 0, 10, 14, 28, 42, and 56. Multilevel statistical procedures were used to model longitudinal tooth movements. The radiographic measurements initially showed increasing mandibular tooth movement rates, peaking between 22 and 25 days, and then decelerating. Total mandibular tooth movements were significantly (P < 0.05) greater on the experimental (2.4 mm) than on the control (1.3 mm) side. The rates of maxillary tooth movement slowed over time, with significantly (P < 0.05) more overall tooth movement on the side that had two (2.3 mm) than one (2.0 mm) corticotomy procedure. Alveolar corticotomy significantly increases orthodontic tooth movement. Performing a second corticotomy procedure after 4 weeks maintained higher rates of tooth movement over a longer duration and produced greater overall tooth movement than performing just one initial corticotomy, but the difference was small.

  4. Repair of Craniomaxillofacial Traumatic Soft Tissue Defects With Tissue Expansion in the Early Stage.

    PubMed

    Han, Yan; Zhao, Jianhui; Tao, Ran; Guo, Lingli; Yang, Hongyan; Zeng, Wei; Song, Baoqiang; Xia, Wensen

    2017-09-01

    Craniomaxillofacial traumatic soft tissue defects severely affect the function and appearance of the patients. The traditional skin grafting or free flap transplantation can only close the defects in the early stage of operation but cannot ensure similar color, texture, and relative aesthetic contour. In the present study, the authors have explored a novel strategy to repair craniomaxillofacial traumatic soft tissue defects by tissue expansion in the early stage and have obtained satisfactory results. Eighteen patients suffering large craniomaxillofacial traumatic soft tissue defects were treated by thorough debridement leaving the wounds unclosed or simply closed with thin split-thickness scalp grafts, adjacent expander implantation in the first stage, and expanded flap transposition in the second stage. There were 11 male patients and 7 female patients ranging in age from 3.5 to 40 years (mean, 19.4 ± 12.2 years), with average 15 months follow-up (range, 3-67 months). The average expansion time was 74.3 days (range, 53-96 days). The 18 patients with a total of 22 expanders were treated with satisfactory results. All the flaps survived and the skin color, texture, and contour well matched those of the peripheral tissue. Only 1 complication of infection happened in the 18 cases (5.56%) and the 22 expanders (4.55%), which was similar to the rate reported in the literature. No other complications related to the expanders occurred. Debridement and tissue expansion in the early stage has been proved to be a more effective strategy to repair craniomaxillofacial traumatic soft tissue defects. This strategy can not only achieve satisfactory color, unbulky and well-matched texture similar to normal, but also avoid unnecessary donor site injuries.

  5. Description, Usage, and Validation of the MVL-15 Modified Vortex Lattice Analysis Capability

    NASA Technical Reports Server (NTRS)

    Ozoroski, Thomas A.

    2015-01-01

    MVL-15 is the most recent version of the Modified Vortex-Lattice (MVL) code developed within the Aerodynamics Systems Analysis Branch (ASAB) at NASA LaRC. The term "modified" refers to the primary modification of the core vortex-lattice methodology: inclusion of viscous aerodynamics tables that are linked to the linear solution via iterative processes. The inclusion of the viscous aerodynamics inherently converts the MVL-15 from a purely analytic linearized method to a semi-empirical blend which retains the rapid execution speed of the linearized method while empirically characterizing the section aerodynamics at all spanwise lattice points. The modification provides a means to assess non-linear effects on lift that occur at angles of attack near stall, and provides a means to determine the drag associated with the application of design strategies for lift augmentation such as the use of flaps or blowing. The MVL-15 code is applicable to the analyses of aircraft aerodynamics during cruise, but it is most advantageously applied to the analysis of aircraft operating in various high-lift configurations. The MVL methodology has been previously conceived and implemented; the initial concept version was delivered to the ASAB in 2001 (van Dam, C.), subsequently revised (Gelhausen, P. and Ozoroski, T. 2002 / AVID Inc., Gelhausen, P., and Roberts, M. 2004), and then overhauled (Ozoroski, T., Hahn, A. 2008). The latest version, MVL-15 has been refined to provide analysis transparency and enhanced to meet the analysis requirements of the Environmentally Responsible Aviation (ERA) Project. Each revision has been implemented with reasonable success. Separate applications of the methodology are in use, including a similar in-house capability, developed by Olson, E. that is tailored for structural and acoustics analyses. A central premise of the methodology is that viscous aerodynamic data can be associated with analytic inviscid aerodynamic results at each spanwise wing section, thereby providing a pathway to map viscous data to the inviscid results. However, a number of factors can sidetrack the analysis consistency during various stages of this process. For example, it should be expected that the final airplane lift curve and drag polar results depend strongly on the geometry and aerodynamics of the airfoil section; however, flap deflections and flap chord extensions change the local reference geometry of the input airfoil, the airplane wing, the tabulated non-dimensional viscous aerodynamics, and the spanwise links between the linear and the viscous aerodynamics. These changes also affect the bound circulation and therefore, calculation and integration of the induced angle of attack and induced drag. MVL-15 is configured to ensure these types of challenges are properly addressed. This report is a comprehensive manual describing the theory, use, and validation of the MVL-15 analysis tool. Section 3 summarizes theoretical, procedural, and characteristic features of MVL-15, and includes a list of the files required to setup, execute, and summarize an analysis. Section 4, Section 5, Section 6, and Section 7 combine to comprise the User's Guide portions of this report. The MVL-15 input and output files are described in Section 4 and Section 5, respectively; the descriptions are supplemented with example files and information about the file formats, parameter definitions, and typical parameter values. Section 6 describes the Wing Geometry Setup Utility and the 2d-Variants Utility files that simplify and assist setting up a consistent set of MVL-15 geometry and aerodynamics input parameters and input files. Section 7 describes the use of the 3d-Results Presentation Utility file that can be used to automatically create summary tables and charts from the MVL-15 output files. Section 8 documents the Validation Results of an extensive and varied validation test matrix, including results of an airplane analysis representative of the ERA Program. A start-to-finish example of the airplane analysis procedure is described in Section 7.

  6. Wing flexibility improves bumblebee flight stability.

    PubMed

    Mistick, Emily A; Mountcastle, Andrew M; Combes, Stacey A

    2016-11-01

    Insect wings do not contain intrinsic musculature to change shape, but rather bend and twist passively during flight. Some insect wings feature flexible joints along their veins that contain patches of resilin, a rubber-like protein. Bumblebee wings exhibit a central resilin joint (1m-cu) that has previously been shown to improve vertical force production during hovering flight. In this study, we artificially stiffened bumblebee (Bombus impatiens) wings in vivo by applying a micro-splint to the 1m-cu joint, and measured the consequences for body stability during forward flight in both laminar and turbulent airflow. In laminar flow, bees with stiffened wings exhibited significantly higher mean rotation rates and standard deviation of orientation about the roll axis. Decreasing the wing's flexibility significantly increased its projected surface area relative to the oncoming airflow, likely increasing the drag force it experienced during particular phases of the wing stroke. We hypothesize that higher drag forces on stiffened wings decrease body stability when the left and right wings encounter different flow conditions. Wing splinting also led to a small increase in body rotation rates in turbulent airflow, but this change was not statistically significant, possibly because bees with stiffened wings changed their flight behavior in turbulent flow. Overall, we found that wing flexibility improves flight stability in bumblebees, adding to the growing appreciation that wing flexibility is not merely an inevitable liability in flapping flight, but can enhance flight performance. © 2016. Published by The Company of Biologists Ltd.

  7. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    PubMed

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the stall behavior more gentle. The benefits of using the effector could include care-free operations at high angles of attack during perching and maneuvering flight, especially in gusty conditions.

  8. [Atraumatic bone expansion: Interest of piezo-surgery, conicals expanders and immediate implantation combination].

    PubMed

    Iraqui, O; Lakhssassi, N; Berrada, S; Merzouk, N

    2016-06-01

    The durability of dental implants depends on the presence of a 1mm coating bone sheath all around the fixture. Therefore, bone resorption represents a challenge for the practitioner. Bone expansion is a surgical technique that allows the management of horizontal bone atrophy. Cortical bone splitting allows for an enlargement of the residual crest by displacement of the vestibular bone flap. The immediate placement of implants secures the widening and allows for a 97% survival rate. However, bone expansion is hard to undertake in sites with high bone density. Furthermore, the use of traditional instruments increases patient's stress and the risk for an interruptive fracture during bone displacement. Non-traumatic bone expansion is one solution to this problem. The combination of piezo-surgery and conical expanders allows for a secured displacement of the selected bone flap as well as an immediate implant placement, avoiding the risk of slipping, overheating, or fracture, all within an undeniable operative comfort. Non-traumatic bone expansion is a reliable, reproducible, conservative, and economical in time and cost procedure. We describe our atraumatic bone expension and immediate implant placement technique in high bone density sites and illustrate it by a clinical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Low-speed wind-tunnel investigation of the stability and control characteristics of a series of flying wings with sweep angles of 50 deg

    NASA Technical Reports Server (NTRS)

    Fears, Scott P.; Ross, Holly M.; Moul, Thomas M.

    1995-01-01

    A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 50 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had trailing-edge flaps in three segments that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.

  10. Low-speed wind-tunnel investigation of the stability and control characteristics of a series of flying wings with sweep angles of 70 deg

    NASA Technical Reports Server (NTRS)

    Ross, Holly M.; Fears, Scott P.; Moul, Thomas M.

    1995-01-01

    A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 70 deg, and all the trailing edges and control surface hinge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.

  11. Low-speed wind tunnel investigation of the stability and control characteristics of a series of flying wings with sweep angles of 60 deg

    NASA Technical Reports Server (NTRS)

    Moul, Thomas M.; Fears, Scott P.; Ross, Holly M.; Foster, John V.

    1995-01-01

    A wind tunnel investigation was conducted in the Langley 12-Foot Low-Speed Wind Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 60 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved pitching-moment characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Top bodies of three widths and twin vertical tails of various sizes and locations were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced radar cross section and good flight dynamic characteristics.

  12. Transposition cutaneous flap and split skin mesh graft as combined optimal treatment approach for Giant Neglected multicentric BCC of the Shoulder.

    PubMed

    Tchernev, Georgi; Pidakev, Ivan

    2018-05-31

    We report for a 70-year-old cachectic patient - 165 cm, 45 kg, who was admitted for the first time to the dematosurgical unit for a surgical removal of a tumor formation localized in the region of the back from more than 15 years (fig. 1a). In the last few months the lesion has increased significantly in size and causes burning sensation, mild pain and abundant secretion of bloody yellow secretions (fig. 1a). During the dermatological examination a tumor-like formation in the left scapular region was visualized, This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  14. Temporal variability of gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Miksovsky, Jiri; Sacha, Petr; Kuchar, Ales; Pisoft, Petr

    2017-04-01

    In the atmosphere, the internal gravity waves (IGW) are one of the fastest ways of natural information transfer in the vertical direction. Tropospheric changes that result in modification of sourcing, propagation or breaking conditions for IGWs almost immediately influence the distribution of gravity wave drag in the stratosphere. So far most of the related studies deal with IGW impacts higher in the upper stratospheric/mesospheric region and with the modulation of IGWs by planetary waves. This is most likely due to the fact that IGWs induce highest accelerations in the mesosphere and lower thermosphere region. However, the imposed drag force is much bigger in the stratosphere. In the presented analysis, we have assessed the relationship between the gravity wave activity in the stratosphere and other climatic phenomena through statistical techniques. Multivariable regression has been applied to investigate the IGW-related eastward and northward wind tendencies in the CMAM30-SD data, subject to the explanatory variables involving local circulation characteristics (derived from regional configuration of the thermobaric field) as well as the phases of the large-scale internal climate variability modes (ENSO, NAO, QBO). Our tests have highlighted several geographical areas with statistically significant responses of the orographic gravity waves effect to each of the variability modes under investigation; additional experiments have also indicated distinct signs of nonlinearity in some of the links uncovered. Furthermore, we have also applied composite analysis of displaced and split stratospheric polar vortex events (SPV) from CMAM30-SD to focus on how the strength and occurrence of the IGW hotspots can play a role in SPV occurrence and frequency.

  15. Influence of immediate post-extraction socket irrigation on development of alveolar osteitis after mandibular third molar removal: a prospective split-mouth study, preliminary report.

    PubMed

    Tolstunov, L

    2012-12-01

    The aim of this prospective comparative split-mouth study was to evaluate the role of socket irrigation with a normal saline solution routinely used at the end of extraction on the development of alveolar osteitis (AO) after removal of impacted mandibular third molars (MTMs). Thirty-five patients who satisfied the inclusion criteria were involved in the study and underwent extraction of four third-molars. To be included in the study, the mandibular third molars had to be impacted (partial or full bone) and require an osteotomy for extraction with use of a motorised drill. All surgeries were done under local anaesthesia or IV sedation. This was a prospective split-mouth study. The patient's left (assistant) side was a control side; it had a standard extraction technique of an impacted mandibular third molar that required a buccal full-thickness flap, buccal trough (osteotomy) and extraction of the tooth (with or without splitting the tooth into segments), followed by a traditional end-of-surgery debridement protocol consisting of a gentle curettage, bone filing of the socket walls, socket irrigation with approximately 5 ml of sterile normal saline solution and socket suctioning. The patient's right (operator) side was an experimental side; it also had a standard extraction technique of an impacted mandibular third molar at the beginning with a flap and osteotomy, but it was followed by a modified end-of-surgery protocol. It consisted of gentle curettage but the socket was not irrigated and not suctioned. It was simply left to bleed. The gauze was placed on top of the socket for haemostasis on both sides and the patient was asked to bite. On both sides, the buccal flap was positioned back without the suture. All patients were seen for a follow-up appointment four to seven days after the surgery to assess healing and check for symptoms and signs of alveolar osteitis, if present, on both irrigated and non-irrigated sides. This study followed the ethical guidelines of human subjects based on the Helsinki Declaration. Thirty-five patients or 70 sockets were evaluated. Eleven out of 35 patients in the study were subjected to a dry socket syndrome (31.4%). The higher number of AO was likely related to specifics of MTM selection in this study - only impacted (partial and full bone) MTMs were chosen. Among eleven patients with AO, two patients had a bilateral condition. By excluding two patients with bilateral dry sockets from the study, there were nine patients (18 extraction sites) with unilateral AO in the study. Seven out of nine patients (14 extraction sites) developed unilateral dry socket on the control (irrigated) side (77.8%) and only two (four extraction sites) on the experimental (non-irrigated) side (22.2%). Therefore, in this study there were 3.5 times more patients (extraction sites) with dry socket syndrome on the irrigated (control) side than patients (extraction sites) in the non-irrigated (experimental) side. A noticeable difference of dry socket syndromes (77.8% on the irrigated versus 22.2% on non-irrigated side) was demonstrated between the traditional extraction protocol versus modified approach without the end-of-surgery irrigation. The study demonstrated that the post-extraction socket bleeding is very important for the proper uncomplicated socket healing. If it's not washed away with irrigation solution at the end of extraction, the normal blood clot has a higher likelihood to form, and therefore, can potentially lead to an uncomplicated socket healing without development of alveolar osteitis. Socket bleeding at the extraction site creates a favourable environment for the formation of a blood clot - a protective dressing - necessary for a favourable osseous healing of the socket.

  16. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  17. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface.

    PubMed

    Long, Zhicheng; Shetty, Abhishek M; Solomon, Michael J; Larson, Ronald G

    2009-06-07

    We systematically investigate droplet movement, coalescence, and splitting on an open hydrophobic surface. These processes are actuated by magnetic beads internalized in an oil-coated aqueous droplet using an external magnet. Results are organized into an 'operating diagram' that describes regions of droplet stable motion, breakage, and release from the magnet. The results are explained theoretically with a simple model that balances magnetic, friction, and capillary-induced drag forces and includes the effects of particle type, droplet size, surrounding oil layer, surface tension, and viscosity. Finally, we discuss the implications of the results for the design of magnet-actuated droplet systems for applications such as nucleic acid purification, immunoassay and drug delivery.

  18. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface†

    PubMed Central

    Long, Zhicheng; Shetty, Abhishek M.; Solomon, Michael J.; Larson, Ronald G.

    2010-01-01

    We systematically investigate droplet movement, coalescence, and splitting on an open hydrophobic surface. These processes are actuated by magnetic beads internalized in an oil-coated aqueous droplet using an external magnet. Results are organized into an ‘operating diagram’ that describes regions of droplet stable motion, breakage, and release from the magnet. The results are explained theoretically with a simple model that balances magnetic, friction, and capillary-induced drag forces and includes the effects of particle type, droplet size, surrounding oil layer, surface tension, and viscosity. Finally, we discuss the implications of the results for the design of magnet-actuated droplet systems for applications such as nucleic acid purification, immunoassay and drug delivery. PMID:19458864

  19. Aerodynamics of wing-assisted incline running in birds.

    PubMed

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet capable of flight, can produce useful lift during WAIR. We predict that neuromuscular control or power output, rather than external wing morphology, constrain the onset of flight ability during development in birds.

  20. Free-style puzzle flap: the concept of recycling a perforator flap.

    PubMed

    Feng, Kuan-Ming; Hsieh, Ching-Hua; Jeng, Seng-Feng

    2013-02-01

    Theoretically, a flap can be supplied by any perforator based on the angiosome theory. In this study, the technique of free-style perforator flap dissection was used to harvest a pedicled or free skin flap from a previous free flap for a second difficult reconstruction. The authors call this a free-style puzzle flap. For the past 3 years, the authors treated 13 patients in whom 12 pedicled free-style puzzle flaps were harvested from previous redundant free flaps and recycled to reconstruct soft-tissue defects at various anatomical locations. One free-style free puzzle flap was harvested from a previous anterolateral thigh flap for buccal cancer to reconstruct a foot defect. Total flap survival was attained in 12 of 13 flaps. One transferred flap failed completely. This patient had received postoperative radiotherapy after the initial cancer ablation and free anterolateral thigh flap reconstruction. Another free flap was used to close and reconstruct the wound. All the donor sites could be closed primarily. The free-style puzzle flap, harvested from a previous redundant free flap and used as a perforator flap to reconstruct a new defect, has proven to be versatile and reliable. When indicated, it is an alternative donor site for further reconstruction of soft-tissue defects.

  1. CFD Computations for a Generic High-Lift Configuration Using TetrUSS

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Parlette, Edward B.

    2011-01-01

    Assessment of the accuracy of computational results for a generic high-lift trapezoidal wing with a single slotted flap and slat is presented. The paper is closely aligned with the focus of the 1st AIAA CFD High Lift Prediction Workshop (HiLiftPW-1) which was to assess the accuracy of CFD methods for multi-element high-lift configurations. The unstructured grid Reynolds-Averaged Navier-Stokes solver TetrUSS/USM3D is used for the computational results. USM3D results are obtained assuming fully turbulent flow using the Spalart-Allmaras (SA) and Shear Stress Transport (SST) turbulence models. Computed solutions have been obtained at seven different angles-of-attack ranging from 6 -37 . Three grids providing progressively higher grid resolution are used to quantify the effect of grid resolution on the lift, drag, pitching moment, surface pressure and stall angle. SA results, as compared to SST results, exhibit better agreement with the measured data. However, both turbulence models under-predict upper surface pressures near the wing tip region.

  2. Morphing Wings: A Study Using High-Fidelity Aerodynamic Shape Optimization

    NASA Astrophysics Data System (ADS)

    Curiale, Nathanael J.

    With the aviation industry under pressure to reduce fuel consumption, morphing wings have the capacity to improve aircraft performance, thereby making a significant contribution to reversing climate change. Through high-fidelity aerodynamic shape optimization, various forms of morphing wings are assessed for a hypothetical regional-class aircraft. The framework used solves the Reynolds-averaged Navier-Stokes equations and utilizes a gradient-based optimization algorithm. Baseline geometries are developed through multipoint optimization, where the average drag coefficient is minimized over a range of flight conditions with additional dive constraints. Morphing optimizations are then performed, beginning with these baseline shapes. Five distinct types of morphing are investigated and compared. Overall, a theoretical fully adaptable wing produces roughly a 2% improvement in average performance, whereas trailing-edge morphing with a 27-point multipoint baseline results in just over a 1% improvement in average performance. Trailing-edge morphing proves to be more beneficial than leading-edge morphing, upper-surface morphing, and a conventional flap.

  3. Free-Spinning-Tunnel Tests of a 1/24-Scale Model of the Grumman XF9F-2 Airplane, TED No. NACA DE 317

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1948-01-01

    An investigation of the spin and recovery characteristics of a scale model of the Grumman XF9F-2 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics of the model in the flight loading were determined. The investigation also included spin-recovery-parachute, pilot-escape, and rudder-pedal- . force tests. The recovery characteristics of the model were satisfactory for all configurations tested. Spins for the normal control configuration were oscillatory in roll and yaw. Deflecting the leading-edge flaps or the dive brakes did not change the spin and recovery characteristics of the model noticeably. A 10.0-foot tail parachute or a 6.0-foot wing-tip parachute (drag coefficient of 0.75) was found to be effective for recoveries from demonstration spins. The rudder forces in the spin appeared to be within the capabilities of the pilot.

  4. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  5. Design of the low-speed NLF(1)-0414F and the high-speed HSNLF(1)-0213 airfoils with high-lift systems

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.; Watson-Viken, Sally A.; Pfenninger, Werner; Morgan, Harry L., Jr.; Campbell, Richard L.

    1987-01-01

    The design and testing of Natural Laminar Flow (NLF) airfoils is examined. The NLF airfoil was designed for low speed, having a low profile drag at high chord Reynolds numbers. The success of the low speed NLF airfoil sparked interest in a high speed NLF airfoil applied to a single engine business jet with an unswept wing. Work was also conducted on the two dimensional flap design. The airfoil was decambered by removing the aft loading, however, high design Mach numbers are possible by increasing the aft loading and reducing the camber overall on the airfoil. This approach would also allow for flatter acceleration regions which are more stabilizing for cross flow disturbances. Sweep could then be used to increase the design Mach number to a higher value also. There would be some degradation of high lift by decambering the airfoil overall, and this aspect would have to be considered in a final design.

  6. The design of high-performance gliders

    NASA Technical Reports Server (NTRS)

    Mueller, B.; Heuermann, V.

    1985-01-01

    A high-performance glider is defined as a glider which has been designed to carry the pilot in a minimum of time a given distance, taking into account conditions which are as conveniently as possible. The present investigation has the objective to show approaches for enhancing the cross-country flight cruising speed, giving attention to the difficulties which the design engineer will have to overcome. The characteristics of the cross-country flight and their relation to the cruising speed are discussed, and a description is provided of mathematical expressions concerning the cruising speed, the sinking speed, and the optimum gliding speed. The effect of aspect ratio and wing loading on the cruising speed is illustrated with the aid of a graph. Trends in glider development are explored, taking into consideration the design of laminar profiles, the reduction of profile-related drag by plain flaps, and the variation of wing loading during the flight. A number of suggestions are made for obtaining gliders with improved performance.

  7. Network community-based model reduction for vortical flows

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya G.; Taira, Kunihiko

    2018-06-01

    A network community-based reduced-order model is developed to capture key interactions among coherent structures in high-dimensional unsteady vortical flows. The present approach is data-inspired and founded on network-theoretic techniques to identify important vortical communities that are comprised of vortical elements that share similar dynamical behavior. The overall interaction-based physics of the high-dimensional flow field is distilled into the vortical community centroids, considerably reducing the system dimension. Taking advantage of these vortical interactions, the proposed methodology is applied to formulate reduced-order models for the inter-community dynamics of vortical flows, and predict lift and drag forces on bodies in wake flows. We demonstrate the capabilities of these models by accurately capturing the macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present formulation is found to be robust against simulated experimental noise and turbulence due to its integrating nature of the system reduction.

  8. "Reading man flap" design for reconstruction of circular infraorbital and malar skin defects.

    PubMed

    Seyhan, Tamer; Caglar, Baris

    2008-11-01

    Surgical complications such as lid retraction and ectropion from graft or flap scar contracture make reconstruction of skin defects in the malar and infraorbital regions challenging. A new flap design, the reading man flap, was used to overcome these problems. The Limberg and bilobed flap were compared with the reading man flap. The reading man flap consists mainly of a superiorly based quadrangular flap and an inferiorly based triangular flap. Malar and infraorbital circular skin defects measuring 14 x 14 to 40 x 40 mm were reconstructed with a reading man flap in 13 patients. The defects occurred after basal cell carcinoma in all patients. The Limberg flap, bilobed flap, and reading man flap were planned for same-sized defects on the abdominoplasty resection material. The results were compared in terms of total scar area, scar length, and total healthy skin area discarded. When comparing the 3 flap designs, the reading man flap was the most suitable flap in terms of total scar area and length. The reading man flap can be used to reconstruct malar and infraorbital circular defects with good cosmetic results and without creating any tractional forces to the eyelids.

  9. Four-flap Breast Reconstruction: Bilateral Stacked DIEP and PAP Flaps

    PubMed Central

    Mayo, James L.; Allen, Robert J.

    2015-01-01

    Background: In cases of bilateral breast reconstruction when the deep inferior epigastric perforator (DIEP) free flap alone does not provide sufficient volume for body-specific reconstruction, stacking each DIEP flap with a second free flap will deliver added volume and maintain a purely autologous reconstruction. Stacking the profunda artery perforator (PAP) flap with the DIEP flap offers favorable aesthetics and ideal operative efficiency. We present the indications, technique, and outcomes of our experience with 4-flap breast reconstruction using stacked DIEP/PAP flaps. Methods: The authors performed 4-flap DIEP/PAP breast reconstruction in 20 patients who required bilateral reconstruction without adequate single donor flap volume. The timing of reconstruction, average mastectomy/flap weights, and operative time are reported. Complications reviewed include fat necrosis, dehiscence, hematoma, seroma, mastectomy flap necrosis, and flap loss. Results: Twenty patients underwent 4-flap DIEP/PAP breast reconstruction. Surgical time averaged 7 hours and 20 minutes. The primary recipient vessels were the antegrade and retrograde internal mammary vessels. No flap losses occurred. Complications included 1 hematoma, 1 incidence of arterial and venous thrombosis successfully treated with anastomotic revision, 1 incidence of thigh donor site dehiscence, and 3 episodes of minor mastectomy skin flap necrosis. Conclusions: Four-flap breast reconstruction is a favorable autologous reconstructive option for patients requiring bilateral reconstruction without adequate single donor flap volume. Stacking DIEP/PAP flaps as described is both safe and efficient. Furthermore, this combination provides superior aesthetics mirroring the natural geometry of the breast. Bilateral stacked DIEP/PAP flaps represent our first choice for breast reconstruction in this patient population. PMID:26090273

  10. Free Boomerang-shaped Extended Rectus Abdominis Myocutaneous flap: The longest possible skin/myocutaneous free flap for soft tissue reconstruction of extremities.

    PubMed

    Koul, Ashok R; Nahar, Sushil; Prabhu, Jagdish; Kale, Subhash M; Kumar, Praveen H P

    2011-09-01

    A soft tissue defect requiring flap cover which is longer than that provided by the conventional "long" free flaps like latissimus dorsi (LD) and anterolateral thigh (ALT) flap is a challenging problem. Often, in such a situation, a combination of flaps is required. Over the last 3 years, we have managed nine such defects successfully with a free "Boomerang-shaped" Extended Rectus Abdominis Myocutaneous (BERAM) flap. This flap is the slightly modified and "free" version of a similar flap described by Ian Taylor in 1983. This is a retrospective study of patients who underwent free BERAM flap reconstruction of soft tissue defects of extremity over the last 3 years. We also did a clinical study on 30 volunteers to compare the length of flap available using our design of BERAM flap with the maximum available flap length of LD and ALT flaps, using standard markings. Our clinical experience of nine cases combined with the results of our clinical study has confirmed that our design of BERAM flap consistently provides a flap length which is 32.6% longer than the standard LD flap and 42.2% longer than the standard ALT flap in adults. The difference is even more marked in children. The BERAM flap is consistently reliable as long as the distal end is not extended beyond the mid-axillary line. BERAM flap is simple in design, easy to harvest, reliable and provides the longest possible free skin/myocutaneous flap in the body. It is a useful new alternative for covering long soft tissue defects in the limbs.

  11. Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martín-Alcántara, A.; Fernandez-Feria, R.; Sanmiguel-Rojas, E.

    The thrust efficiency of a two-dimensional heaving airfoil is studied computationally for a low Reynolds number using a vortex force decomposition. The auxiliary potentials that separate the total vortex force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil. With these auxiliary potentials, the added-mass components of the lift and drag (or thrust) coefficients are also obtained analytically for any heaving motion of the airfoil and for any value of the mean angle of attack α. The contributions of the leading- and trailing-edge vortices to the thrust during their down- and up-stroke evolutions are computedmore » quantitatively with this formulation for different dimensionless frequencies and heave amplitudes (St{sub c} and St{sub a}) and for several values of α. Very different types of flows, periodic, quasi-periodic, and chaotic described as St{sub c}, St{sub a}, and α, are varied. The optimum values of these parameters for maximum thrust efficiency are obtained and explained in terms of the interactions between the vortices and the forces exerted by them on the airfoil. As in previous numerical and experimental studies on flapping flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermediate frequencies (St{sub c} slightly smaller than one) and a heave amplitude corresponding to an advance ratio close to unity. The optimal mean angle of attack found is zero. The corresponding flow is periodic, but it becomes chaotic and with smaller average thrust efficiency as |α| becomes slightly different from zero.« less

  12. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  13. Free Boomerang-shaped Extended Rectus Abdominis Myocutaneous flap: The longest possible skin/myocutaneous free flap for soft tissue reconstruction of extremities

    PubMed Central

    Koul, Ashok R.; Nahar, Sushil; Prabhu, Jagdish; Kale, Subhash M.; Kumar, Praveen H. P.

    2011-01-01

    Background: A soft tissue defect requiring flap cover which is longer than that provided by the conventional “long” free flaps like latissimus dorsi (LD) and anterolateral thigh (ALT) flap is a challenging problem. Often, in such a situation, a combination of flaps is required. Over the last 3 years, we have managed nine such defects successfully with a free “Boomerang-shaped” Extended Rectus Abdominis Myocutaneous (BERAM) flap. This flap is the slightly modified and “free” version of a similar flap described by Ian Taylor in 1983. Materials and Methods: This is a retrospective study of patients who underwent free BERAM flap reconstruction of soft tissue defects of extremity over the last 3 years. We also did a clinical study on 30 volunteers to compare the length of flap available using our design of BERAM flap with the maximum available flap length of LD and ALT flaps, using standard markings. Results: Our clinical experience of nine cases combined with the results of our clinical study has confirmed that our design of BERAM flap consistently provides a flap length which is 32.6% longer than the standard LD flap and 42.2% longer than the standard ALT flap in adults. The difference is even more marked in children. The BERAM flap is consistently reliable as long as the distal end is not extended beyond the mid-axillary line. Conclusion: BERAM flap is simple in design, easy to harvest, reliable and provides the longest possible free skin/myocutaneous flap in the body. It is a useful new alternative for covering long soft tissue defects in the limbs. PMID:22279271

  14. The possibility for use of venous flaps in plastic surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baytinger, V. F., E-mail: baitinger@mail.tomsknet.ru; Kurochkina, O. S., E-mail: kurochkinaos@yandex.ru; Selianinov, K. V.

    2015-11-17

    The use of venous flaps is controversial. The mechanism of perfusion of venous flaps is still not fully understood. The research was conducted on 56 white rats. In our experimental work we studied two different models of venous flaps: pedicled venous flap (PVF) and pedicled arterialized venous flap (PAVF). Our results showed that postoperative congestion was present in all flaps. However 66.7% of all pedicled venous flaps and 100% of all pedicled arterialized venous flaps eventually survived. Histological examination revealed that postoperatively the blood flow in the skin of the pedicled arterialized venous flap became «re-reversed» again; there were nomore » differences between mechanism of survival of venous flaps and other flaps. On the 7-14th day in the skin of all flaps were processes of neoangiogenesis and proliferation. Hence the best scenario for the clinical use of venous flaps unfolds when both revascularization and skin coverage are required.« less

  15. Treatment of gingival recession defects with a coronally advanced flap and a xenogeneic collagen matrix: a multicenter randomized clinical trial.

    PubMed

    Jepsen, Karin; Jepsen, Søren; Zucchelli, Giovanni; Stefanini, Martina; de Sanctis, Massimo; Baldini, Nicola; Greven, Björn; Heinz, Bernd; Wennström, Jan; Cassel, Björn; Vignoletti, Fabio; Sanz, Mariano

    2013-01-01

    To evaluate the clinical outcomes of the use of a xenogeneic collagen matrix (CM) in combination with the coronally advanced flap (CAF) in the treatment of localized recession defects. In a multicentre single-blinded, randomized, controlled, split-mouth trial, 90 recessions (Miller I, II) in 45 patients received either CAF + CM or CAF alone. At 6 months, root coverage (primary outcome) was 75.29% for test and 72.66% for control defects (p = 0.169), with 36% of test and 31% of control defects exhibiting complete coverage. The increase in mean width of keratinized tissue (KT) was higher in test (from 1.97 to 2.90 mm) than in control defects (from 2.00 to 2.57 mm) (p = 0.036). Likewise, test sites had more gain in gingival thickness (GT) (0.59 mm) than control sites (0.34 mm) (p = 0.003). Larger (≥3 mm) recessions (n = 35 patients) treated with CM showed higher root coverage (72.03% versus 66.16%, p = 0.043), as well as more gain in KT and GT. CAF + CM was not superior with regard to root coverage, but enhanced gingival thickness and width of keratinized tissue when compared with CAF alone. For the coverage of larger defects, CAF + CM was more effective. © 2012 John Wiley & Sons A/S.

  16. The effectiveness of corticotomy and piezocision on canine retraction: A systematic review.

    PubMed

    Viwattanatipa, Nita; Charnchairerk, Satadarun

    2018-05-01

    The aim of this systematic review was to evaluate the effectiveness and complications of corticotomy and piezocision in canine retraction. Five electronic databases (PubMed, SCOPUS, Web of Science, Embase, and CENTRAL) were searched for articles published up to July 2017. The databases were searched for randomized control trials (RCTs), with a split-mouth design, using either corticotomy or piezocision. The primary outcome reported for canine retraction was either the amount of tooth movement, rate of tooth movement, or treatment time. The secondary outcome was complications. The selection process was based on the PRISMA guidelines. A risk of bias assessment was also performed. Our search retrieved 530 abstracts. However, only five RCTs were finally included. Corticotomy showed a more significant (i.e., 2 to 4 times faster) increase in the rate of tooth movement than did the conventional method. For piezocision, both accumulative tooth movement and rate of tooth movement were twice faster than those of the conventional method. Corticotomy (with a flap design avoiding marginal bone incision) or flapless piezocision procedures were not detrimental to periodontal health. Nevertheless, piezocision resulted in higher levels of patient satisfaction. The main limitation of this study was the limited number of primary research publications on both techniques. For canine retraction into the immediate premolar extraction site, the rate of canine movement after piezocision was almost comparable to that of corticotomy with only buccal flap elevation.

  17. Evaluation of periosteum eversion and coronally advanced flap techniques in the treatment of isolated Miller's Class I/II gingival recession: A comparative clinical study

    PubMed Central

    Debnath, Koel; Chatterjee, Anirban

    2018-01-01

    Aim: The present investigation aimed to evaluate root coverage (RC) with periosteum eversion technique (PET) using periosteum as a graft and coronally advanced flap (CAF) with platelet-rich fibrin (PRF) membrane as a graft in the treatment of isolated Miller's class I and II gingival recession defects. Materials and Methods: Thirty sites in 15 participants with Miller's Class I or II gingival recession were randomly treated either with PET using periosteum as graft and CAF + PRF as graft. In a split mouth design, the parameters such as recession depth, recession width at cementoenamel junction, probing depth, periodontal attachment level (PAL), and keratinized gingival width were assessed at baseline, 3 months, and 6 months postoperative follow-up with William's graduated probe and Vernier caliper. Results: Both the treatment modalities yielded statistically nonsignificant desirable treatment outcomes at both postoperative levels in terms of all the parameters The mean RC with probe method and Vernier method in CAF + PRF was 75.01% and 86.86%, respectively, and PET showed a mean RC of 61.112% and 83.971%, respectively, at 6-month interval period which showed a nonstatistically significant difference. Conclusion: Both the treatment modalities, i.e., CAF + PRF and PET are essentially and equally effective in the treatment of Miller's Class I or II gingival recession defects. PMID:29769769

  18. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  19. Evaluation of the cranial rectus abdominus muscle pedicle flap as a blood supply for the caudal superficial epigastric skin flap in dogs.

    PubMed

    Degner, D A; Walshaw, R; Arnoczky, S P; Smith, R J; Patterson, J S; Degner, L A; Hamaide, A; Rosenstein, D

    1996-01-01

    This study evaluates the cranial rectus abdominus muscle pedicle flap as the sole blood supply for the caudal superficial epigastric skin flap. This flap was composed of a cranially based rectus abdominus muscle pedicle flap that was attached to the caudal superficial epigastric island skin flap (including mammary glands 2 to 5) via the pudendoepigastric trunk. Selective angiography of the cranial epigastric artery in eight cadaver dogs proved that the arterial vasculature in the cranial rectus abdominus was contiguous with that in the caudal superficial epigastric skin flap. In the live dog study, three of six of the flaps failed because of venous insufficiency. Necrosis of mammary gland 2 occurred in two of six flaps. One of six flaps survived with the exception of the cranial most aspect of mammary gland 2. Angiography of the cranial epigastric artery proved that arterial blood supply to these flaps was intact. Histological evaluation of the failed flaps showed full-thickness necrosis of the skin and subcutaneous tissues, the presence of severe congestion, and venous thrombosis. Retrograde venous blood flow through the flap was inconsistent, and hence resulted in failure of this myocutaneous flap. Use of this flap for clinical wound reconstruction cannot be recommended.

  20. The Differential Use of Bilobed and Trilobed Transposition Flaps in Cutaneous Nasal Reconstructive Surgery.

    PubMed

    Knackstedt, Thomas; Lee, Kachiu; Jellinek, Nathaniel J

    2018-05-22

    Bilobed and trilobed transposition flaps are versatile random pattern transposition flaps which reliably restore nasal symmetry, topography, light reflex, contour and are frequently used in cutaneous nasal reconstructive surgery. We wish to compare the characteristics of bilobed and trilobed flaps in cutaneous reconstructive surgery and to identify scenarios for their differential use. A retrospective chart review over 7 years of consecutive patients reconstructed with a bilobed or trilobed flap after Mohs micrographic surgery was performed. Statistical analysis of patient and surgery characteristics, anatomic distribution, postprocedural events and need for revisions after both flap types was conducted. One hundred eleven patients with bilobed flaps and 74 patients with trilobed flaps were identified. Bilobed flaps are significantly more frequently used on the inferior nasal dorsum and on the sidewall whereas trilobed flaps are significantly more frequently used on the nasal tip and infratip. No significant difference in postprocedural events (complications, erythema, trapdoor, etc) was noted between the two flap types. Bilobed and trilobed transposition flaps are versatile repairs for nasal reconstruction. Trilobed flaps may be used to repair defects in a more distal nasal location than bilobed flaps. Regardless of flap type, complications are rare.

  1. Vascularized osseous flaps and assessing their bipartate perfusion pattern via intraoperative fluorescence angiography.

    PubMed

    Valerio, Ian; Green, J Marshall; Sacks, Justin M; Thomas, Shane; Sabino, Jennifer; Acarturk, T Oguz

    2015-01-01

    Large segmental bone and composite tissue defects often require vascularized osseous flaps for definitive reconstruction. However, failed osseous flaps due to inadequate perfusion can lead to significant morbidity. Utilization of indocyanine green (ICG) fluorescence angiography has been previously shown to reliably assess soft tissue perfusion. Our group will outline the application of this useful intraoperative tool in evaluating the perfusion of vascularized osseous flaps. A retrospective review was performed to identify those osseous and/or osteocutaneous bone flaps, where ICG angiography was employed. Data analyzed included flap types, success and failure rates, and perfusion-related complications. All osseous flaps were evaluated by ICG angiography to confirm periosteal and endosteal perfusion. Overall 16 osseous free flaps utilizing intraoperative ICG angiography to assess vascularized osseous constructs were performed over a 3-year period. The flaps consisted of the following: nine osteocutaneous fibulas, two osseous-only fibulas, two scapular/parascapular with scapula bone, two quadricep-based muscle flaps, containing a vascularized femoral bone component, and one osteocutaneous fibula revision. All flap reconstructions were successful with the only perfusion-related complication being a case of delayed partial skin flap loss. Intraoperative fluorescence angiography is a useful adjunctive tool that can aid in flap design through angiosome mapping and can also assess flap perfusion, vascular pedicle flow, tissue perfusion before flap harvest, and flap perfusion after flap inset. Our group has successfully extended the application of this intraoperative tool to assess vascularized osseous flaps in an effort to reduce adverse outcomes related to preventable perfusion-related complications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Integra™ permits early durable coverage of improvised explosive device (IED) amputation stumps.

    PubMed

    Foong, Deborah P S; Evriviades, Demetrius; Jeffery, Steven L A

    2013-12-01

    Improvised explosive device (IED) blasts cause serious injury. Survivors are left with multiple amputations, considerable soft tissue loss and open fractures with gross contamination. We present our early experience of Integra™ in the acute management of military wounds. The clinical records of all patients with IED injuries who underwent early reconstruction with Integra™ during the six month period between August and December 2009 in our unit were reviewed and data gathered prospectively. There were 7 male soldiers, aged 21-31 years (mean=26). All sustained trunk and limb injuries, including multiple amputations. Number of procedures prior to application of Integra™ was 4-10 (mean=5). Application of Integra™ took place 6-24 days post-injury (mean=13). Size of wounds covered with Integra™ was 1-11.5% TBSA (mean=5%). Anatomical sites reconstructed included amputation stumps, and both upper and lower limbs. There was partial take of Integra in 3 wounds in 2 patients. All wounds were eventually treated with delayed split skin grafting and healed satisfactorily. IEDs produce a large zone of injury with massive soft tissue damage, multiple discontinuous wounds which are significantly contaminated. The physiological insult is equivalent to a large cutaneous burn and there is a paucity of available donor sites. Multiple amputees also have a greater energy and power requirement(1-4) and cannot spare remaining functional muscles as donors. The literature suggests that microvascular flaps have a high failure rate in military patients.(5) Reconstruction began as soon as wounds were considered sufficiently clean. Integra™ was applied with the aim of providing higher quality coverage than that provided by split skin grafting alone (particularly for amputation stumps) whilst minimising operative time and morbidity. Integra™ allows timely closure of battlefield wounds with minimal operative time and morbidity. The procedure can begin whilst still in the acute phase and certainly before one would consider lengthy complex operations such as free flaps. Our experience suggests that Integra™ can allow early closure with robust tissue, promoting early rehabilitation and return to duties. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. An Integration of the Turbojet and Single-Throat Ramjet

    NASA Technical Reports Server (NTRS)

    Trefny, C. J.; Benson, T. J.

    1995-01-01

    A turbine-engine-based hybrid propulsion system is described. Turbojet engines are integrated with a single-throat ramjet so as to minimize variable geometry and eliminate redundant propulsion components. The result is a simple, lightweight system that is operable from takeoff to high Mach numbers. Non-afterburning turbojets are mounted within the ramjet duct. They exhaust through a converging-diverging (C-D) nozzle into a common ramjet burner section. At low speed the ejector effect of the C-D nozzle aerodynamically isolates the relatively high pressure turbojet exhaust stream from the ramjet duct. As the Mach number increases, and the turbojet pressure ratio diminishes, the system is biased naturally toward ramjet operation. The common ramjet burner is fueled with hydrogen and thermally choked, thus avoiding the weight and complexity of a variable geometry, split-flow exhaust system. The mixed-compression supersonic inlet and subsonic diffuser are also common to both the turbojet and ramjet cycles. As the compressor face total temperature limit is approached, a two-position flap within the inlet is actuated, which closes off the turbojet inlet and provides increased internal contraction for ramjet operation. Similar actuation of the turbojet C-D nozzle flap completes the enclosure of the turbojet. Performance of the hybrid system is compared herein to that of the discrete turbojet and ramjet engines from takeoff to Mach 6. The specific impulse of the hybrid system falls below that of the non-integrated turbojet and ramjet because of ejector and Rayleigh losses. Unlike the discrete turbojet or ramjet however, the hybrid system produces thrust over the entire Mach number range. An alternate mode of operation for takeoff and low speed is also described. In this mode the C-D nozzle flap is deflected to a third position, which closes off the ramjet duct and eliminates the ejector total pressure loss.

  4. Soft tissue augmentation around osseointegrated and uncovered dental implants: a systematic review.

    PubMed

    Bassetti, Renzo G; Stähli, Alexandra; Bassetti, Mario A; Sculean, Anton

    2017-01-01

    The aim was to compile the current knowledge about the efficacy of different soft tissue correction methods around osseointegrated, already uncovered and/or loaded (OU/L) implants with insufficient soft tissue conditions. Procedures to increase peri-implant keratinized mucosa (KM) width and/or soft tissue volume were considered. Screening of two databases: MEDLINE (PubMed) and EMBASE (OVID), and manual search of articles were performed. Human studies reporting on soft tissue augmentation/correction methods around OU/L implants up to June 30, 2016, were considered. Quality assessment of selected full-text articles to weight risk of bias was performed using the Cochrane collaboration's tool. Overall, four randomized controlled trials (risk of bias = high/low) and five prospective studies (risk of bias = high) were included. Depending on the surgical techniques and graft materials, the enlargement of keratinized tissue (KT) ranged between 1.15 ± 0.81 and 2.57 ± 0.50 mm. The apically positioned partial thickness flap (APPTF), in combination with a free gingival graft (FGG), a subepithelial connective tissue graft (SCTG), or a xenogeneic graft material (XCM) were most effective. A coronally advanced flap (CAF) combined with SCTG in three, combined with allogenic graft materials (AMDA) in one, and a split thickness flap (STF) combined with SCTG in another study showed mean soft tissue recession coverage rates from 28 to 96.3 %. STF combined with XCM failed to improve peri-implant soft tissue coverage. The three APPTF-techniques combined with FGG, SCTG, or XCM achieved comparable enlargements of peri-implant KT. Further, both STF and CAF, both in combination with SCTG, are equivalent regarding recession coverage rates. STF + XCM and CAF + AMDA did not reach significant coverage. In case of soft tissue deficiency around OU/L dental implants, the selection of both an appropriate surgical technique and a suitable soft tissue graft material is of utmost clinical relevance.

  5. Clinical applications of perforator-based propeller flaps in upper limb soft tissue reconstruction.

    PubMed

    Ono, Shimpei; Sebastin, Sandeep J; Yazaki, Naoya; Hyakusoku, Hiko; Chung, Kevin C

    2011-05-01

    A propeller flap is an island flap that moves from one orientation to another by rotating around its vascular axis. The vascular axis is stationary, and flap movement is achieved by revolving on this axis. Early propeller flaps relied on a thick, subcutaneous pedicle to maintain vascularity, and this limited the flap rotation to 90°. With increasing awareness of the location and the vascular territory perfused by cutaneous perforators, it is now possible to design propeller flaps based on a single perforator, so-called "perforator-based propeller flaps." These flaps permit flap rotation up to 180°. We present the results of upper limb soft tissue reconstruction using perforator-based propeller flaps. We constructed a treatment strategy based on the location of the soft tissue defect and the perforator anatomy for expedient wound coverage in 1 stage. All perforator-based propeller flaps derived from 3 institutions that were used for upper limb soft tissue reconstruction were retrospectively analyzed. The parameters studied included the size and location of the defect, the perforator that was used, the size and shape of the flap, the direction (ie, clockwise or counter-clockwise) of flap rotation, the degree of twisting of the perforator, the management of the donor site (ie, linear closure or skin grafting), and flap survival (recorded as the percentage of the flap area that survived). Twelve perforator-based propeller flaps were used to reconstruct upper limb soft tissue defects in 12 patients. Six different perforators were used as vascular pedicles. The donor defects of 11 flaps could be closed primarily. One flap was partially lost in a patient with electrical burns. Perforator-based propeller flaps provide a reliable option for covering small- to medium-size upper limb soft tissue defects. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  6. [APPLICATION VALUE OF INDOCYANINE GREEN ANGIOGRAPHY IN FLAP RECONSTRUCTIVE SURGERY].

    PubMed

    Yang, Kai; Mu, Lan; Liu, Yan; Peng, Zhe; Li, Guangxue

    2015-09-01

    To investigate the utility of indocyanine green angiography in flap reconstructive surgery and possibility of decrease the complications. Indocyanine green angiography was performed on 14 patients undergoing flap reconstructive surgery between February and December 2014 to evaluate the blood perfusion of the flap and to adjust the operation plan. Of 14 cases, 2 were male and 12 were female, aged 23-58 years (mean, 35.5 years); 11 flaps were used for breast reconstruction [including 3 free deep inferior epigastric antery perforator (DIEP) flaps, 4 pedicled transverse rectus abdominis myocutaneous flaps (TRAM), 2 pedicled TRAM and free TRAM, and 2 pedicled latissimus dorsi myocutaneous flaps and prosthesis], 1 pedicled latissimus dorsi myocutaneous flap for repairing chest wall defect, 1 pedicled profunda artery perforator (PAP) flap for upper leg defect, and 1 pedicled descending genicular artery perforator flap for knee defect. The size of the flaps ranged from 9 cm x 6 cm to 26 cm x 12 cm. A total of 32 indocyanine green angiography were performed. There was no adverse reactions to the infusion of indocyanine green. The surgery management was adjusted according to results of indocyanine green angiography findings in 5 of 14 cases. The distal part of flap were discarded because of poor perfusion in 3 cases (1 DIEP flap, 1 TRAM, and 1 PAP flap) and the other 2 cases (pedicled TRAM) needed additional free anastomosis to ensure sufficient blood supply (pedicled TRAM and free TRAM); the other flaps were harvested according to preoperative plan and repaired defect successfully. The mean follow-up was 5 months (range, 1-9 months). The other flaps survived without infection or fat necrosis except 1 PAP flap with distal necrosis. Intraoperative indocyanine green angiography can provide real-time information of flap perfusion and then the operation plan can be adjusted in time to ensure the flap survival.

  7. PIV Measurements on a Blowing Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  8. Long-Term Follow-Up of Flap Prefabrication in Facial Reconstruction.

    PubMed

    Wang, Weixin; Zhao, Muxin; Tang, Yong; Chen, Wen; Yang, Zhe; Ma, Ning; Xu, Lisi; Feng, Jun; Li, Yangqun

    2017-07-01

    Flap prefabrication is to turn a random flap into an axial flap by transferring a vascular pedicle. In the past 13 years, we have prefabricated 20 flaps in 20 patients by the superficial temporal artery and its concomitant veins. Typically, a 50- to 800-mL tissue expander was implanted in the donor site. After flap maturation, the prefabricated flap was raised and transferred locally to cover the large defect on the face. All the cases were followed up regularly. The patients' age were between 3 and 27 years, the size of the flaps were between 3.5 × 5.5 cm and 13 × 15 cm, the superficial temporal artery length was between 10 and 15 cm. All flaps were transferred successfully: 10 of the flaps had venous congestion, partial epidermis exfoliation and flap necrosis occurred in 4 flaps. All cases were followed up for at least 1 year, the longest follow-up period was 9 years. Long-term follow-up results showed the prefabricated flap survived in good condition and had a satisfactory outcome. Because flap prefabrication is practical, and long-term follow-ups have proved its preferable characters and stability, it is a fine method for large area facial reconstructions.

  9. Long-Term Patency of Twisted Vascular Pedicles in Perforator-Based Propeller Flaps.

    PubMed

    Jakubietz, Rafael G; Nickel, Aljoscha; Neshkova, Iva; Schmidt, Karsten; Gilbert, Fabian; Meffert, Rainer H; Jakubietz, Michael G

    2017-10-01

    Propeller flaps require torsion of the vascular pedicle of up to 180 degrees. Contrary to free flaps, where the relevance of an intact vascular pedicle has been documented, little is known regarding twisted pedicles of propeller flaps. As secondary surgeries requiring undermining of the flap are common in the extremities, knowledge regarding the necessity to protect the pedicle is relevant. The aim of this study was a long-term evaluation of the patency of vascular pedicle of propeller flaps. In a retrospective clinical study, 22 patients who underwent soft-tissue reconstruction with a propeller flap were evaluated after 43 months. A Doppler probe was used to locate and evaluate the patency of the vascular pedicle of the flap. The flaps were used in the lower extremity in 19 cases, on the trunk in 3 cases. All flaps had healed. In all patients, an intact vascular pedicle could be found. Flap size, source vessel, or infection could therefore not be linked to an increased risk of pedicle loss. The vascular pedicle of propeller flaps remains patent in the long term. This allows reelevation and undermining of the flap. We therefore recommend protecting the pedicle in all secondary cases to prevent later flap loss.

  10. Intercostal artery perforator propeller flap for reconstruction of trunk defects following sarcoma resection.

    PubMed

    Zang, Mengqing; Yu, Shengji; Xu, Libin; Zhao, Zhenguo; Zhu, Shan; Ding, Qiang; Liu, Yuanbo

    2015-06-01

    Trunk defects following soft tissue sarcoma resection are usually managed by myocutaneous flaps or free flaps. However, harvesting muscle will cause functional morbidities and some trunk regions lack reliable recipient vessels. The intercostal arteries give off multiple perforators, which distribute widely over the trunk and can supply various pedicle flaps. Our purpose is to use various intercostal artery perforator propeller flaps for trunk oncologic reconstruction. Between November 2013 and July 2014, nine intercostal artery perforator propeller flaps were performed in seven patients to reconstruct the defects following sarcoma resection in different regions of the trunk, including the back, lumbar, chest, and abdomen. Two perforators from intercostal arteries were identified for each flap using Doppler ultrasound probe adjacent to the defect. The perforator with visible pulsation was chosen as the pedicle vessel. An elliptical flap was raised and rotated in a propeller fashion to repair the defects. There were one dorsal intercostal artery perforator flap, four dorsolateral intercostal artery perforator flaps, three lateral intercostal artery perforator flaps, and one anterior intercostal artery perforator flap. The mean skin paddle dimension was 9.38 cm in width (range 6-14 cm) and 21.22 cm in length (range 13-28 cm). All intercostal artery perforator flaps survived completely, except for marginal necrosis in one flap harvested close to the previous flap donor site. The intercostal artery perforator propeller flap provides various and valuable options in our reconstructive armamentarium for trunk oncologic reconstruction. To our knowledge, this is the first case series of using intercostal artery perforator propeller flaps for trunk oncologic reconstruction and clinical application of dorsolateral intercostal artery perforator flaps. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions.

    PubMed

    Hummelink, S; Verhulst, Arico C; Maal, Thomas J J; Hoogeveen, Yvonne L; Schultze Kool, Leo J; Ulrich, Dietmar J O

    2017-07-01

    Determining the ideal volume of the harvested flap to achieve symmetry in deep inferior epigastric artery perforator (DIEP) flap breast reconstructions is complex. With preoperative imaging techniques such as 3D stereophotogrammetry and computed tomography angiography (CTA) available nowadays, we can combine information to preoperatively plan the optimal flap volume to be harvested. In this proof-of-concept, we investigated whether projection of a virtual flap planning onto the patient's abdomen using a projection method could result in harvesting the correct flap volume. In six patients (n = 9 breasts), 3D stereophotogrammetry and CTA data were combined from which a virtual flap planning was created comprising perforator locations, blood vessel trajectory and flap size. All projected perforators were verified with Doppler ultrasound. Intraoperative flap measurements were collected to validate the determined flap delineation volume. The measured breast volume using 3D stereophotogrammetry was 578 ± 127 cc; on CTA images, 527 ± 106 cc flap volumes were planned. The nine harvested flaps weighed 533 ± 109 g resulting in a planned versus harvested flap mean difference of 5 ± 27 g (flap density 1.0 g/ml). In 41 out of 42 projected perforator locations, a Doppler signal was audible. This proof-of-concept shows in small numbers that flap volumes can be included into a virtual DIEP flap planning, and transferring the virtual planning to the patient through a projection method results in harvesting approximately the same volume during surgery. In our opinion, this innovative approach is the first step in consequently achieving symmetric breast volumes in DIEP flap breast reconstructions. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Influence of Flap Thickness on Nipple Projection After Nipple Reconstruction Using a Modified Star Flap.

    PubMed

    Ishii, Naohiro; Ando, Jiro; Harao, Michiko; Takemae, Masaru; Kishi, Kazuo

    2018-05-07

    In nipple reconstruction, the width, length, and thickness of modified star flaps are concerns for long-term reconstructed nipple projection. However, the flap's projection has not been analyzed, based on its thickness. The aim of the present study was to investigate how flap thickness in a modified star flap influences the resulting reconstructed nipple and achieves an appropriate flap width in design. Sixty-three patients who underwent nipple reconstruction using a modified star flap following implant-based breast reconstruction between August 2014 and July 2016 were included in this case-controlled study. The length of laterally diverging flaps was 1.5 times their width. The thickness of each flap was measured using ultrasonography, and the average thickness was defined as the flap thickness. We investigated the correlation between the resulting reconstructed nipple and flap thickness, and the difference of the change in the reconstructed nipple projection after using a thin or thick flap. The average flap thickness was 3.8 ± 1.7 (range 2.5-6.0) mm. There was a significant, linear correlation between the flap thickness and resulting reconstructed nipple projection (β = 0.853, p < 0.01). Furthermore, the difference between the thin and thick flaps in the resulting reconstructed nipple projection was significant (p < 0.01). Measuring the flap thickness preoperatively may allow surgeons to achieve an appropriate flap width; otherwise, alternative methods for higher projection might be used. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  13. Medium- and Large-Sized Autologous Breast Reconstruction using a Fleur-de-lys Profunda Femoris Artery Perforator Flap Design: A Report Comparing Results with the Horizontal Profunda Femoris Artery Perforator Flap.

    PubMed

    Hunsinger, Vincent; Lhuaire, Martin; Haddad, Kevin; Wirz, Francesco-Saverio; Abedalthaqafi, Samah; Obadia, Déborah; Derder, Mohamed; Marchac, Alexandre; Benjoar, Marc David; Hivelin, Mikael; Lantieri, Laurent

    2018-06-02

     The volume of the profunda femoris artery perforator (PAP) flap limits its indications to small- and medium-sized breast reconstructions after modified radical mastectomy for cancer. We report a modified PAP flap design, including not only a vertical extension that increases its volume but also the skin surface, which suits larger breasts requiring immediate or delayed breast reconstructions and compare the results with our horizontal skin paddle PAP flap experience.  In our center between November 2014 and November 2016, 51 consecutive patients underwent a PAP flap breast reconstruction following breast cancer. A retrospective analysis on the collected data was performed to compare 34 patients with a bra cup smaller than C who underwent 41 horizontal PAP flap procedures, with those ( n  = 17) of a bra cup greater than or equal to C who underwent 21 fleur-de-lys PAP flap procedures. Demographic, anthropometric, flap and surgical characteristics, postoperative complication rates, and hospital stay were compared between the two groups.  The average flap weight was 480 g (range: 340-735 g) for the fleur-de-lys PAP flap group compared with 222 g (range: 187-325 g) for the horizontal PAP flap procedure ( p  < 0.001). The mean flap dimensions were 25 × 18 cm for the fleur-de-lys PAP flap group compared with 25 × 7 cm in the horizontal PAP flap group. No flap failure was observed in the fleur-de-lys PAP flap group compared with two flap failures secondary to venous thrombosis in the horizontal PAP flap group ( NS ). Three patients (14%) experienced delayed healing at the donor site compared with four patients (10%) in the horizontal PAP flap group ( NS ).  The fleur-de-lys skin paddle design not only allows an increase of the horizontal PAP flap volume, but also increases the skin surface, with an acceptable donor site morbidity. For medium- or large-sized breasts, the fleur-de-lys PAP flap seems to be ideal when a DIEP flap-based reconstruction is contraindicated. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Free-style dual plane recycling tensor fascia lata musculocutaneous perforator flap for reconstruction of recurrent trochanteric defects.

    PubMed

    Han, Ba Leun; Choi, Hwan Jun

    2014-03-01

    Sequential flap coverage might be required for recurrent defects, but reusing a flap as a donor site has seldom been reported. The concept of a "free-style flap" has been developed, and it allows reconstructive surgeons to raise flaps with various designs reliably, even at sites of previous flap surgery. This article presents the concept of free-style recycling of a tensor fascia lata flap into a perforator-based flap separated in 2 planes in a patient with a recurrent bilateral trochanteric defect. If a reliable perforator is preserved and identified within the tissues by computed tomography angiography or a Doppler device, a new perforator flap can be designed and raised at the previous flap site.

  15. Foucher first dorsal metacarpal artery flap versus littler heterodigital neurovascular flap in resurfacing thumb pulp loss defects.

    PubMed

    Delikonstantinou, Iraklis P; Gravvanis, Andreas I; Dimitriou, Vasilios; Zogogiannis, Ioannis; Douma, Amalia; Tsoutsos, Dimosthenis A

    2011-08-01

    Our study aims to illustrate the advantages and disadvantages of Foucher's first dorsal metacarpal artery flap and Littler's heterodigital neurovascular flap in thumb pulp reconstruction, by assessing wound healing of donor and recipient sites, sensibility, and functional outcome of the reconstructed thumb. Fourteen male patients were reconstructed either with Foucher (n = 8) or Littler flap (n = 6). Dissection of Foucher's flap was faster than that of Littler's flap. All Littler flaps survived completely, but we experienced 1 partial Foucher flap necrosis. Thumb motility and stability was optimal in all patients. Wound healing of donor sites was achieved in both groups. Two patients reconstructed with Littler flap developed scar contractures and presented a reduced range of motion of donor finger and first webspace, respectively. Although Littler flap resulted in better sensibility and tactile gnosis of the reconstructed thumb-pulp, Foucher flap ensured negligible donor site morbidity, complete cortical reorientation, and better overall hand function.

  16. The Economy in Autologous Tissue Transfer: Part 1. The Kiss Flap Technique.

    PubMed

    Zhang, Yi Xin; Hayakawa, Thomas J; Levin, L Scott; Hallock, Geoffrey G; Lazzeri, Davide

    2016-03-01

    All reconstructive microsurgeons realize the need to improve aesthetic and functional donor-site outcomes. A "kiss" flap design concept was developed to increase the surface area of skin flap coverage while minimizing donor-site morbidity. The main goal of the kiss flap technique is to harvest multiple skin paddles that are smaller than those raised with traditional techniques, to minimize donor-site morbidity. These smaller flap components are then sutured to each other, or said to kiss each other side-by-side, to create a large, wide flap. The skin paddles in the kiss technique can be linked to one another by a variety of native intrinsic vascular connections, by additional microanastomosis, or both. This technique can be widely applied to both free and pedicle flaps, and essentially allows for the reconstruction of a large defect while providing the easy primary closure of a smaller donor-site defect. According to their origin of blood supply, kiss flaps are classified into three styles and five types. All of the different types of kiss flaps are unique in both flap design and harvest technique. Most kiss flaps are based on common flaps already familiar to the reconstructive surgeon. The basis of the kiss flap design concept is to convert multiple narrow flaps into a single unified flap of the desired greater width. This maximizes the size of the resulting flap and minimizes donor-site morbidity, as a direct linear closure is usually possible. Therapeutic, V.

  17. The Temporalis Muscle Flap for Palate Reconstruction: Case Series and Review of the Literature

    PubMed Central

    Brennan, Tara; Tham, Tristan M.; Costantino, Peter

    2017-01-01

    Introduction  The temporalis myofascial (TM) is an important reconstructive flap in palate reconstruction. Past studies have shown the temporalis myofascial flap to be safe as well as effective. Free flap reconstruction of palate defects is also a popular method used by contemporary surgeons. We aim to reaffirm the temporalis myofascial flap as a viable alternative to free flaps for palate reconstruction. Objective  We report our results using the temporalis flap for palate reconstruction in one of the largest case series reported. Our literature review is the first to describe complication rates of palate reconstruction using the TM flap. Methods  Retrospective chart review and review of the literature. Results  Fifteen patients underwent palate reconstruction with the TM flap. There were no cases of facial nerve injury. Five (33%) of these patients underwent secondary cranioplasty to address temporal hollowing after the TM flap. Three out of fifteen (20%) had flap related complications. Fourteen (93%) of the palate defects were successfully reconstructed, with the remaining case pending a secondary procedure to close the defect. Ultimately, all of the flaps (100%) survived. Conclusion  The TM flap is a viable method of palate defect closure with a high defect closure rate and flap survival rate. TM flaps are versatile in repairing palate defects of all sizes, in all regions of the palate. Cosmetic deformity created from TM flap harvest may be addressed using cranioplasty implant placement, either primarily or during a second stage procedure. PMID:28680495

  18. Improved wound healing of postischemic cutaneous flaps with the use of bone marrow-derived stem cells.

    PubMed

    Hu, Melissa; Ludlow, David; Alexander, J Steven; McLarty, Jerry; Lian, Timothy

    2014-03-01

    To determine if the intravascular delivery of mesenchymal stem cells improves wound healing and blood perfusion to postischemic cutaneous flap tissues. Randomized controlled study. A murine model of a cutaneous flap was created based on the inferior epigastric vessels. Mice (n = 14) underwent 3.5 hours of ischemia followed by reperfusion. Bone marrow stromal cells (BMSCs) 1 × 10(6) were injected intravenously. Wound healing was then assessed measuring percent flap necrosis, flap perfusion, and tensile strength of the flap after a period of 14 days. Localization of BMSCs was determined with radiolabeled and fluorescent labeled BMSCs. Postischemic cutaneous flap tissues treated with BMSCs demonstrated significantly less necrosis than control flaps (P <0.01). Beginning on postoperative day 5, BMSC-treated flaps demonstrated greater blood perfusion than untreated flaps (P <0.01). Tensile strength of BMSC-treated cutaneous flaps was significantly higher (P <0.01), with a mean strength of 283.4 ± 28.4 N/m than control flaps with a mean of 122.4 ± 23.5 N/m. Radiolabeled BMSCs localized to postischemic flaps compared to untreated tissues (P = 0.001). Fluorescent microscopy revealed incorporation of BMSCs into endothelial and epithelial tissues of postischemic flaps. This study demonstrates that the intravascular delivery of BMSCs increases wound healing and promotes flap survival following ischemia-reperfusion injury of cutaneous tissue flaps. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  19. On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation

    PubMed Central

    Nabawy, Mostafa R. A.; Crowther, William J.

    2014-01-01

    This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping. PMID:24554578

  20. Aeroelastic stability analysis of a large civil aircraft equipped with morphing winglets and adaptive flap tabs

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Noviello, M. C.; Dimino, I.; Concilio, A.

    2018-03-01

    The in-flight control of the wing shape is widely considered as one of the most promising solutions to enhance the aerodynamic efficiency of the aircraft thus minimizing the fuel burnt per mission ([1]-[26]). In force of the fallout that the implementation of such a technology might have on the greening of the next generation air transport, ever increasing efforts are spent worldwide to investigate on robust solutions actually compliant with industrial standards and applicable airworthiness requirements. In the framework of the CleanSky2, a research program in aeronautics among the largest ever founded by the European Union, the authors focused on the design and validation of two devices enabling the camber-morphing of winglets and flaps specifically tailored for EASA CS-25 category aircraft ([29]). The shape transition was obtained through smart architectures based on segmented (finger-like) ribs with embedded electromechanical actuators. The combined actions of the two smart systems was conceived to modulate the load distribution along the wing while keeping it optimal at all flight conditions with unequalled benefits in terms of lift-over-drag ratio increase and root bending moment alleviation. Although characterized by a quasi-static actuation, and not used as primary control surfaces, the devices were deeply analysed with reference to their impact on aircraft aeroelastic stability. Rational approaches were adopted to duly capture their dynamics through a relevant number of elastic modes; aeroelastic coupling mechanisms were identified in nominal operative conditions as well as in case of systems' malfunctioning or failure. Trade off flutter and divergence analyses were finally carried out to assess the robustness of the adopted solutions in terms of movable parts layout, massbalancing and actuators damping.

  1. Preliminary Evaluation of the Spin and Recovery Characteristics of the Douglas XF3D-1 Airplane

    NASA Technical Reports Server (NTRS)

    Scher, Stanley H.

    1947-01-01

    A preliminary evaluation of the spin and recovery characteristics of the XF3D-1 airplane has been made, based primarily on the results of the free-spinning tunnel tests of a model which closely simulated the XF3D-1 in tail design, tail length, and mass loading. Estimates have been made of the rudder-pedal force that may be encountered in effecting recovery from a spin and of the spin recovery parachute requirements of the airplane for demonstration spins. The method of bail-out which should be used if it becomes necessary for the crew to abandon the airplane during a spin is indicated. It was indicated that the recovery characteristics of the XF3D-1 airplane in the clean condition for erect and inverted spins would be satisfactory for all loadings specified by the contractor as possible on the airplane. However, if a spin is inadvertently entered while the landing flaps are down, recovery may be slow. The slow-down brakes and the landing flaps should be retracted immediately upon the inception of a spinning condition, after which recovery from the spin should be attempted. The pedal force necessary to reverse the rudder during a spin will be within the physical capabilities of the pilot. Opening a 10-foot diameter parachute attached to the tail (laid-out-flat diameter, drag coefficient 0.7) or a 4.5-foot diameter parachute attached to the outboard wing tip will insure satisfactory spin recovery from demonstration spins. If it becomes necessary for the crew to abandon the airplane during a spin, they should leave from the outboard side of the cockpit.

  2. On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2014-05-06

    This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping.

  3. [A variant of island flaps for the covering of pressure sores: the hatchet flap. Apropos of 31 cases].

    PubMed

    Quillot, M; Lodde, J P; Pegorier, O; Reynaud, J P; Cormerais, A

    1994-08-01

    The authors propose a modification of the classical design of island flaps for cover of pressure sores, applied to gluteus maximus and tensor fascia lata muscles: the hatchet flap. 31 flaps have been used including 13 gluteus maximus superior flaps for sacral pressure sores, 9 gluteal inferior flaps for ischial pressure sores and 9 tensor fascia lata flaps for trochanteric pressure sores. A small partial necrosis and two cases of sepsis were observed in this series, but did not require surgical revision. The authors emphasize the value of this modification of the classical flap design, which preserves an even better musculocutaneous capital in these patients, who are often already multi-operated. The very rapid recovery of patients supports the authors' application of hatchet flaps to the surgery of pressure sores, and suggests the extension to other musculocutaneous flaps in the future.

  4. The Anterior Interosseus Artery Perforator Flap: Anatomical Dissections and Clinical Study.

    PubMed

    Panse, Nikhil S; Joshi, Sheetal B; Sahasrabudhe, Parag B; Bahetee, B; Gurude, Pradnya; Chandanwale, Ajay

    2017-05-01

    Reconstruction of upper extremity deformities continues to be a challenge to the reconstructive surgeon. Various loco regional, distant and free flaps are available for reconstruction. However, each has its own set of advantages and disadvantages. Of the commonly performed local flaps, radial artery forearm flap, and the posterior interosseus artery flap stand out prominently. Recently, perforator propeller flaps have been used for resurfacing the upper extremity. The anterior interosseus artery perforator flap is an uncommonly used and described flap. This study was divided into anatomical study and clinical application in a IV level of evidence. In the anatomical study, five upper extremities were studied. Clinically, 12 patients underwent reconstruction using the anterior interosseus artery perforator flap. Flaps were performed by a single surgeon. A retrospective review of these cases from November 2008 to May 2014 is presented. The anterior interosseus artery perforator was identified in four out of five cadaver limbs. The septocutaneous perforator was in the fifth extensor compartment around 4 cm proximal to the wrist joint. Of the twelve flaps, there was complete necrosis in one flap, and partial necrosis in one flap. The patient with complete necrosis underwent skin grafting at a later date. The wound healed secondarily in case of partial flap necrosis. Anterior interosseus artery perforator flap must be considered as an important reconstructive option in the armamentarium of the plastic surgeon, while managing hand and wrist defects.

  5. [Aesthetic effect of wound repair with flaps].

    PubMed

    Tan, Qian; Zhou, Hong-Reng; Wang, Shu-Qin; Zheng, Dong-Feng; Xu, Peng; Wu, Jie; Ge, Hua-Qiang; Lin, Yue; Yan, Xin

    2012-08-01

    To investigate the aesthetic effect of wound repair with flaps. One thousand nine hundred and ninety-six patients with 2082 wounds hospitalized from January 2004 to December 2011. These wounds included 503 deep burn wounds, 268 pressure sores, 392 soft tissue defects caused by trauma, 479 soft tissue defects due to resection of skin cancer and mole removal, 314 soft tissue defects caused by scar excision, and 126 other wounds. Wound area ranged from 1.5 cm x 1.0 cm to 30.0 cm x 22.0 cm. Sliding flaps, expanded flaps, pedicle flaps, and free flaps were used to repair the wounds in accordance with the principle and timing of wound repair with flaps. Five flaps showed venous congestion within 48 hours post-operation, 2 flaps of them improved after local massage. One flap survived after local heparin wet packing and venous bloodletting. One flap survived after emergency surgical embolectomy and bridging with saphenous vein graft. One flap showed partial necrosis and healed after skin grafting. The other flaps survived well. One thousand three hundred and twenty-one patients were followed up for 3 months to 2 years, and flaps of them were satisfactory in shape, color, and elasticity, similar to that of normal skin. Some patients underwent scar revision later with good results. Application of suitable flaps in wound repair will result in quick wound healing, good function recovery, and satisfactory aesthetic effect.

  6. [Predictability of the corneal flap creation with the femtosecond laser in LASIK].

    PubMed

    Mai, Zhi-bin; Liu, Su-bing; Nie, Xiao-li; Sun, Hong-xia; Xin, Bao-li; Tang, Xiu-xia

    2012-05-01

    To observe the predictability of corneal flap creation with the FEMTO LDV femtosecond laser and analyze preliminarily the factors correlating to the thickness and diameter of the flap . It was a study of serial cases. 260 eyes of 130 consecutive patients were treated with the FEMTO LDV. The eyes were assigned to two groups according to intended flap thickness, 110 µm (208 eyes) and 90 µm (52 eyes). Intended flap diameter varied from 8.5 to 9.5 mm. Difference analysis of flap diameter and intended diameter as well as flap thickness and intended thickness were made. The data was analyzed with SPSS to sum up a multiple stepwise regression formula that could express their quantitative relationship. The 90 µm flap group had a average flap thickness of (95.12 ± 7.65) µm, while for the 110 µm group the average flap thickness was (104.81 ± 3.09) µm. The difference between right and left eyes was not statistically significant (t(110 µm) = -1.223, t(90 µm) = -1.343, P > 0.05). Corneal flap thickness was inversely correlated with flap diameter (r(110 µm) = -0.143, r(90 µm) = -0.315, P < 0.05), but was not related to preoperative patient age, corneal thickness, keratometric value K or intraocular pressure (r(110 µm) = -0.160, 0.054, -0.011, -0.363; r(90 µm) = 0.024, 0.074, -0.212, -0.434, all P > 0.05). Corneal flap diameter was positively correlated with preoperative corneal keratometric value K and thickness (P < 0.001, P < 0.05). Multiple stepwise regression analysis showed flap diameter was an influencing factor for flap thickness. Preoperative corneal keratometric value K and thickness were influencing factors for flap diameter. The LASIK flap creation with the FEMTO LDV laser has relatively good predictability. Flap diameter is an influencing factor for flap thickness.

  7. [Pedicle flap of nasal septum-basis nasi and temporal muscucofascial flap to repair nasoseptal perforation].

    PubMed

    Yin, Xinghong; Hu, Wei; Zhang, Xinhai; Sun, Min

    2014-10-01

    To explore curative effect with pedicle flap of nasal septum-basis nasi and temporal muscucofascial flap to repair nasal septal perforation. Dissecting mucoperichondrium and mucoperioseptum around the perforation and taking dowm and out xia-ward to the floor of nasal cavity to make a inferior extremity pedicle flap. Then,the flap was tumbled and sutured onto raw surface of contralateral side through perforation. Reapplicating autoallergic temporal musculofascial flap to repair another side perforation. Repairing perforation Sin twelve cases were sucessfully healed in endoscope. The pedicle flap of nasal septum-basis nasi and temporal muscucofascial flap is easy to acquire and no rejection. The flap has good blood supplying, high survival rate and provides adequate transplantating materail to repair comparatively large perforation.

  8. [The repair of bulky tissue defect of forearm with skin flaps].

    PubMed

    Huang, Xiaoyuan; Long, Jianhong; Xie, Tinghong; Zhang, Minghua; Zhang, Pihong; Yang, Xinghua; Zhong, Keqin

    2002-12-01

    To evaluate the repairing methods of bulky tissue defect of forearm with flaps. Twenty-one burned patients with wounds in the forearm were enrolled in this study. The injury causes were high-voltage electricity, hot press or crush injury. After local debridement, the forearm defects were repaired with pedicled complex flaps, latissimus dorsi musculocutaneous island flaps or large thoraco-abdominal flaps immediately. All the flaps survived very well with satisfactory results except for 1 patient in whom local ischemic necrosis and sub-flap infection at the distal end of the flap occurred. Early debridement followed by skin flaps with pedicles or musculocutaneous flaps transfer could be simple, safe and reliable treatment strategies in the management of bulky tissue defects of the forearm due to burn, electric injury, or other devastating injuries.

  9. The perforator pedicled propeller (PPP) flap method: report of two cases.

    PubMed

    Hyakusoku, Hiko; Ogawa, Rei; Oki, Koichiro; Ishii, Nobuaki

    2007-10-01

    Perforator flaps are thin free-tissue transfers consisting of skin and subcutaneous tissue which have the advantage of decreasing donor site morbidity. We have reconstructed postburn scar contractures using "propeller flaps" of the remaining healthy skin around the recipient sites. In this paper, we report on two cases and describe the concept of using "perforator flaps" and "propeller flaps" together as what are called "perforator pedicled propeller (PPP) flaps." Patient 1 was an 18-year-old man with a sacral pressure ulcer. The soft tissue defect was reconstructed with a rotated superior gluteal artery PPP flap. Patient 2 was a 53-year-old woman who presented with an open fracture of the right elbow. The skin defect over the fracture was covered with a rotated deep brachial artery PPP flap raised on the lateral upper arm. The PPP flaps are useful for burn reconstruction and repairing various types of wound. Moreover, microsurgery is unnecessary. The PPP flap may be classified into two types: the central axis type and the acentric axis type. The central axis PPP flap is significant when used as a 90-degree-rotation island flap, and the acentric axis PPP flap is significant when used as a 180-degree-rotation island flap. Both types are easy to harvest and useful for repairing various kinds of wound.

  10. The "Tokyo" consensus on propeller flaps.

    PubMed

    Pignatti, Marco; Ogawa, Rei; Hallock, Geoffrey G; Mateev, Musa; Georgescu, Alexandru V; Balakrishnan, Govindasamy; Ono, Shimpei; Cubison, Tania C S; D'Arpa, Salvatore; Koshima, Isao; Hyakusoku, Hikko

    2011-02-01

    Over the past few years, the use of propeller flaps, which base their blood supply on subcutaneous tissue or isolated perforators, has become increasingly popular. Because no consensus has yet been reached on terminology and nomenclature of the propeller flap, different and confusing uses of the term can be found in the literature. In this article, the authors report the consensus on the definition and classification of propeller flaps reached by the authors that gathered at the First Tokyo Meeting on Perforator and Propeller Flaps in June of 2009. Some peculiar aspects of the surgical technique are discussed. A propeller flap can be defined as an "island flap that reaches the recipient site through an axial rotation." The classification is based on the nourishing pedicle (subcutaneous pedicled propeller flap, perforator pedicled propeller flap, supercharged propeller flap), the degrees of skin island rotation (90 to 180 degrees) and, when possible, the artery of origin of the perforator. The propeller flap is a useful reconstructive tool that can achieve good cosmetic and functional results. A flap should be called a propeller flap only if it fulfils the definition above. The type of nourishing pedicle, the source vessel (when known), and the degree of skin island rotation should be specified for each flap.

  11. Reconstruction of the Foot and Ankle Using Pedicled or Free Flaps: Perioperative Flap Survival Analysis

    PubMed Central

    Li, Xiucun; Cui, Jianli; Maharjan, Suraj; Lu, Laijin; Gong, Xu

    2016-01-01

    Objective The purpose of this study is to determine the correlation between non-technical risk factors and the perioperative flap survival rate and to evaluate the choice of skin flap for the reconstruction of foot and ankle. Methods This was a clinical retrospective study. Nine variables were identified. The Kaplan-Meier method coupled with a log-rank test and a Cox regression model was used to predict the risk factors that influence the perioperative flap survival rate. The relationship between postoperative wound infection and risk factors was also analyzed using a logistic regression model. Results The overall flap survival rate was 85.42%. The necrosis rates of free flaps and pedicled flaps were 5.26% and 20.69%, respectively. According to the Cox regression model, flap type (hazard ratio [HR] = 2.592; 95% confidence interval [CI] (1.606, 4.184); P < 0.001) and postoperative wound infection (HR = 0.266; 95% CI (0.134, 0.529); P < 0.001) were found to be statistically significant risk factors associated with flap necrosis. Based on the logistic regression model, preoperative wound bed inflammation (odds ratio [OR] = 11.371,95% CI (3.117, 41.478), P < 0.001) was a statistically significant risk factor for postoperative wound infection. Conclusion Flap type and postoperative wound infection were both independent risk factors influencing the flap survival rate in the foot and ankle. However, postoperative wound infection was a risk factor for the pedicled flap but not for the free flap. Microvascular anastomosis is a major cause of free flap necrosis. To reconstruct complex or wide soft tissue defects of the foot or ankle, free flaps are safer and more reliable than pedicled flaps and should thus be the primary choice. PMID:27930679

  12. Supraclavicular artery perforator flap in management of post-burn neck reconstruction: clinical experience

    PubMed Central

    Ismail, H.; Elshobaky, A.

    2016-01-01

    Summary Anterior cervical contractures of the neck represent a great challenge for plastic and reconstructive surgeons. Necks can be reconstructed with a wide range of surgical techniques, including chimeric flaps, supercharged flap, pre-expanded flaps, “superthin” flaps and perforator flaps. The supraclavicular flap is easy to harvest without the need for free tissue transfer. It provides a relatively large flap for neck resurfacing with tissue very similar to that of the neck. Between January 2013 and March 2015, 20 patients suffering from postburn neck contracture underwent reconstruction with 20 unilateral supraclavicular artery perforator flaps. Nineteen patients had post-burn neck contractures (9 cases type Іc, 10 cases type Пc) while only one had post-burn granulation tissue in the neck. We harvested fifteen flaps from the right side and five from the left. Size of the reconstructed defect ranged from 23x10 to14x6, and flap size varied from 25/11 to 16/7cm. Period of follow up ranged from 27-2months (average 12.3). Nineteen flaps survived well (95% survival rate): only one was lost due to iatrogenic extensive dissection over the pedicle. Five cases showed distal superficial epidermolysis, and 2 cases showed 2 cm complete distal necrosis. All patients were managed conservatively. Our results coincide with other literature results confirming the efficacy and rich vascularity of this flap. In all cases with distal partial necrosis, flaps were 23 cm or more. We recommend that supraclavicular flaps of more than 22 cm in length are not harvested immediately and that flaps are expanded before harvesting. Expanding the supraclavicular flap increases its surface area and decreases donor site morbidity. PMID:28149252

  13. Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps.

    PubMed

    Ludolph, Ingo; Arkudas, Andreas; Schmitz, Marweh; Boos, Anja M; Taeger, Christian D; Rother, Ulrich; Horch, Raymund E; Beier, Justus P

    2016-10-01

    The aim of this prospective study was to assess the correlation of flap perfusion analysis based on laser-assisted Indocyanine Green (ICG) angiography with combined laser Doppler spectrophotometry in autologous breast reconstruction using free DIEP/ms-TRAM flaps. Between February 2014 and July 2015, 35 free DIEP/ms-TRAM flaps were included in this study. Besides the clinical evaluation of flaps, intraoperative perfusion dynamics were assessed by means of laser-assisted ICG angiography and post-capillary oxygen saturation and relative haemoglobin content (rHb) using combined laser Doppler spectrophotometry. Correlation of the aforementioned parameters was analysed, as well as the impact on flap design and postoperative complications. Flap survival rate was 100%. There were no partial flap losses. In three cases, flap design was based on the angiography, contrary to clinical evaluation and spectrophotometry. The final decision on the inclusion of flap areas was based on the angiographic perfusion pattern. Angiography and spectrophotometry showed a correlation in most of the cases regarding tissue perfusion, post-capillary oxygen saturation and relative haemoglobin content. Laser-assisted ICG angiography is a useful tool for intraoperative evaluation of flap perfusion in autologous breast reconstruction with DIEP/ms-TRAM flaps, especially in decision making in cases where flap perfusion is not clearly assessable by clinical signs and exact determination of well-perfused flap margins is difficult to obtain. It provides an objective real-time analysis of flap perfusion, with high sensitivity for the detection of poorly perfused flap areas. Concerning the topographical mapping of well-perfused flap areas, laser-assisted angiography is superior to combined laser Doppler spectrophotometry. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Evolution in Monitoring of Free Flap Autologous Breast Reconstruction after Nipple-Sparing Mastectomy: Is There a Best Way?

    PubMed

    Frey, Jordan D; Stranix, John T; Chiodo, Michael V; Alperovich, Michael; Ahn, Christina Y; Allen, Robert J; Choi, Mihye; Karp, Nolan S; Levine, Jamie P

    2018-05-01

    Free flap monitoring in autologous reconstruction after nipple-sparing mastectomy remains controversial. The authors therefore examined outcomes in nipple-sparing mastectomy with buried free flap reconstruction versus free flap reconstruction incorporating a monitoring skin paddle. Autologous free flap reconstructions with nipple-sparing mastectomy performed from 2006 to 2015 were identified. Demographics and operative results were analyzed and compared between buried flaps and those with a skin paddle for monitoring. Two hundred twenty-one free flaps for nipple-sparing mastectomy reconstruction were identified: 50 buried flaps and 171 flaps incorporating a skin paddle. The most common flaps used were deep inferior epigastric perforator (64 percent), profunda artery perforator (12.1 percent), and muscle-sparing transverse rectus abdominis myocutaneous flaps (10.4 percent). Patients undergoing autologous reconstructions with a skin paddle had a significantly greater body mass index (p = 0.006). Mastectomy weight (p = 0.017) and flap weight (p < 0.0001) were significantly greater in flaps incorporating a skin paddle. Comparing outcomes, there were no significant differences in flap failure (2.0 percent versus 2.3 percent; p = 1.000) or percentage of flaps requiring return to the operating room (6.0 percent versus 4.7 percent; p = 0.715) between groups. Buried flaps had an absolute greater mean number of revision procedures per nipple-sparing mastectomy (0.82) compared with the skin paddle group (0.44); however, rates of revision procedures per nipple-sparing mastectomy were statistically equivalent between the groups (p = 0.296). Although buried free flap reconstruction in nipple-sparing mastectomy has been shown to be safe and effective, the authors' technique has evolved to favor incorporating a skin paddle, which allows for clinical monitoring and can be removed at the time of secondary revision. Therapeutic, III.

  15. Refining the cross-finger flap: Considerations of flap insetting, aesthetics and donor site morbidity.

    PubMed

    Chong, Chew-Wei; Lin, Cheng-Hung; Lin, Yu-Te; Hsu, Chung-Chen; Chen, Shih-Heng

    2018-04-01

    We described a laterally based cross-finger flap for reconstruction of soft tissue defects in the fingers. This modification enables coverage of volar or dorsal soft tissue defects at the distal, middle or proximal phalanx. From March 2015 to January 2017, a total of 12 patients (13 fingers) underwent soft tissue reconstruction of the fingers with a laterally based cross-finger flap. The flap dimensions ranged from 13 ×7 mm to 43 ×13 mm. Eleven of the 13 flaps survived completely. The two flap failures were attributed to injuries in the donor fingers, rendering the blood supply of the flaps unreliable. All donor sites were closed primarily without the need for skin grafting, negating the problem of donor site morbidity that is associated with skin graft harvesting. The laterally based cross-finger flap is a versatile flap with less donor site morbidity and better aesthetics than a conventional cross-finger flap. We described the design of the flap, as well as the advantages and disadvantages, in doing a laterally based cross-finger flap. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Propeller Perforator Flaps in Distal Lower Leg: Evolution and Clinical Applications

    PubMed Central

    2012-01-01

    Simple or complex defects in the lower leg, and especially in its distal third, continue to be a challenging task for reconstructive surgeons. A variety of flaps were used in the attempt to achieve excellence in form and function. After a long evolution of the reconstructive methods, including random pattern flaps, axial pattern flaps, musculocutaneous flaps and fasciocutaneous flaps, the reappraisal of the works of Manchot and Salmon by Taylor and Palmer opened the era of perforator flaps. This era began in 1989, when Koshima and Soeda, and separately Kroll and Rosenfield described the first applications of such flaps. Perforator flaps, whether free or pedicled, gained a high popularity due to their main advantages: decreasing donor-site morbidity and improving aesthetic outcome. The use as local perforator flaps in lower leg was possible due to a better understanding of the cutaneous circulation, leg vascular anatomy, angiosome and perforasome concepts, as well as innovations in flaps design. This review will describe the evolution, anatomy, flap design, and technique of the main distally pedicled propeller perforator flaps used in the reconstruction of defects in the distal third of the lower leg and foot. PMID:22783507

  17. Free versus perforator-pedicled propeller flaps in lower extremity reconstruction: What is the safest coverage? A meta-analysis.

    PubMed

    Bekara, Farid; Herlin, Christian; Somda, Serge; de Runz, Antoine; Grolleau, Jean Louis; Chaput, Benoit

    2018-01-01

    Currently, increasingly reconstructive surgeon consider the failure rates of perforator propeller flaps especially in the distal third of the lower leg are too important and prefer to return to the use of free flap at first line option with failure rates frequently lower than 5%. So, we performed a systematic review with meta-analysis comparing free flaps (perforator-based or not) and pedicled-propeller flaps to respond to the question "what is the safest coverage for distal third of the lower limb?" This review was conducted according to PRISMA criteria. From 1991 to 2015, MEDLINE®, Pubmed central, Embase and Cochrane Library were searched. The pooled estimations were performed by meta-analysis. The homogeneity Q statistic and the I 2 index were computed. We included 36 articles for free flaps (1,226 flaps) and 19 articles for pedicled-propeller flaps (302 flaps). The overall failure rate was 3.9% [95%CI:2.6-5.3] for free flaps and 2.77% [95%CI:0.0-5.6] for pedicled-propeller flaps (P = 0.36). The complication rates were 19.0% for free flaps and 21.4% for pedicled-propeller flaps (P = 0.37). In more detail, we noted for free flaps versus pedicled-propeller flaps: partial necrosis (2.70 vs. 6.88%, P = 0.001%), wound dehiscence (2.38 vs. 0.26%, P = 0.018), infection (4.45 vs. 1.22%, P = 0.009). The coverage failure rate was 5.24% [95%CI:3.68-6.81] versus 2.99% [95%CI:0.38-5.60] without significant difference (P = 0.016). In the lower limb the complications are not rare and many teams consider the free flaps to be safer. In this meta-analysis we provide evidence that failure and overall complications rate of perforator propeller flaps are comparable with free flaps. Although, partial necrosis is significantly higher for pedicled-propeller flaps than free flaps, in reality the success of coverage appears similar. © 2016 Wiley Periodicals, Inc. Microsurgery, 38:109-119, 2018. © 2016 Wiley Periodicals, Inc.

  18. Surgical therapy of vulvar cancer: how to choose the correct reconstruction?

    PubMed Central

    2016-01-01

    Objective To create a comprehensive algorithmic approach to reconstruction after vulvar cancer ablative surgery, which includes both traditional and perforator flaps, evaluating anatomical subunits and shape of the defect. Methods We retrospectively reviewed 80 cases of reconstruction after vulvar cancer ablative surgery, performed between June 2006 and January 2016, transferring 101 flaps. We registered the possibility to achieve the complete wound closure, even in presence of very complex defects, and the postoperative complications. On the basis of these experience, analyzing the choices made and considering the complications, we developed an algorithm to help with the selection of the flap in vulvoperineal reconstruction after oncologic ablative surgery for vulvar cancer. Results We employed eight types of different flaps, including 54 traditional fasciocutaneous V-Y flaps, 23 rectus abdominis myocutaneous flaps, 11 anterolateral thigh flaps, three V-Y gracilis myocutaneous flaps, three free style perforators V-Y flaps from the inner thigh, two Limberg flaps, two lotus flaps, two deep inferior epigastric artery perforator flap, and one superficial circumflex iliac artery perforator flap. The structures most frequently involved in resection were vulva, perineum, mons pubis, groins, vagina, urethra and, more rarely, rectum, bladder, and lower abdominal wall. Conclusion The algorithm we implemented can be a useful tool to help flap selection. The key points in the decision-making process are: anatomical subunits to be covered, overall shape and symmetry of the defect and some patient features such as skin laxity or previous radiotherapy. Perforator flaps, when feasible, must be considered standard in vulvoperineal reconstruction, although in some cases traditional flaps remain the best choice. PMID:27550406

  19. Reconstruction of Complex Facial Defects Using Cervical Expanded Flap Prefabricated by Temporoparietal Fascia Flap.

    PubMed

    Zhang, Ling; Yang, Qinghua; Jiang, Haiyue; Liu, Ge; Huang, Wanlu; Dong, Weiwei

    2015-09-01

    Reconstruction of complex facial defects using cervical expanded flap prefabricated by temporoparietal fascia flap. Complex facial defects are required to restore not only function but also aesthetic appearance, so it is vital challenge for plastic surgeons. Skin grafts and traditional flap transfer cannot meet the reconstructive requirements of color and texture with recipient. The purpose of this sturdy is to create an expanded prefabricated temporoparietal fascia flap to repair complex facial defects. Two patients suffered severe burns on the face underwent complex facial resurfacing with prefabricated cervical flap. The vasculature of prefabricated flap, including the superficial temporal vessel and surrounding fascia, was used as the vascular carrier. The temporoparietal fascia flap was sutured underneath the cervical subcutaneous tissue, and expansion was begun in postoperative 1 week. After 4 to 6 months of expansion, the expander was removed, facial scars were excised, and cervical prefabricated flap was elevated and transferred to repair the complex facial defects. Two complex facial defects were repaired successfully by prefabricated temporoparietal fascia flap, and prefabricated flaps survived completely. On account of donor site's skin was thinner and expanded too fast, 1 expanded skin flap was rupture during expansion, but necrosis was not occurred after the 2nd operation. Venous congestion was observed in 1 patient, but after dressing, flap necrosis was not happened. Donor site was closed primarily. Postoperative follow-up 6 months, the color, texture of prefabricated flap was well-matched with facial skin. This method of expanded prefabricated flap may provide a reliable solution to the complex facial resurfacing.

  20. Reconstruction of Large Postburn Facial-Scalp Scars by Expanded Pedicled Deltopectoral Flap and Random Scalp Flap: Technique Improvements to Enlarge the Reconstructive Territory.

    PubMed

    Ma, Xianjie; Li, Yang; Li, Weiyang; Liu, Chaohua; Peng, Pai; Song, Baoqiang; Xia, Wensen; Yi, Chenggang; Lu, Kaihua; Su, Yingjun

    2017-09-01

    The scars of face and scalp caused by burning often show as 1 large facial-scalp scar. The deltopectoral flap was recognized as one of the first choices for the facial scar reconstruction. However, this flap cannot cross the level of zygomatic arch traditionally when it was transferred with pedicle. When the flap reconstructed the facial-scalp scars with expanded random scalp flap, another flap was often needed to reconstruct the remaining temple and forehead scars. The authors reviewed 24 patients of large facial-scalp scars reconstructed by expanded pedicled deltopectoral flap and scalp flap with several technique improvements. The seaming scar between the deltopectoral flap and scalp flap in the temple region formed the new hairline. The technique improvements included ligation of the perforating branches of the transverse cervical artery and thoracoacromial artery when dissecting the pocket, the partial bolster compressive dressing to the distal part of the flap and dividing the pedicle partly as a delaying procedure before dividing the pedicle completely. Good skin compliance, normal contours, and emotional expression were noted. There were complications including expander exposure in 3 patients, stretch marks in 5 patients, flap tip necrosis in 2 patients, and mild postoperative hypertrophic scars in 3 patients. In conclusion, the expanded pedicled deltopectoral flap can enlarge the reconstructive territory in face successfully with the technique improvements. The combination of the expanded pedicled deltopectoral flap and scalp flap is a reliable and excellent reconstructive option for large postburn facial-scalp scars.

  1. Free style perforator based propeller flaps: Simple solutions for upper extremity reconstruction!

    PubMed

    Panse, Nikhil; Sahasrabudhe, Parag

    2014-01-01

    The introduction of perforator flaps by Koshima et al. was met with much animosity in the plastic surgery fraternity. The safety concerns of these flaps following the intentional twist of the perforators have prevented widespread adoption of this technique. Use of perforator based propeller flaps in the lower extremity is gradually on the rise, but their use in upper extremity reconstruction is infrequently reported, especially in the Indian subcontinent. We present a retrospective series of 63 free style perforator flaps used for soft tissue reconstruction of the upper extremity from November 2008 to June 2013. Flaps were performed by a single surgeon for various locations and indications over the upper extremity. Patient demographics, surgical indication, defect features, complications and clinical outcome are evaluated and presented as an uncontrolled case series. 63 free style perforator based propeller flaps were used for soft tissue reconstruction of 62 patients for the upper extremity from November 2008 to June 2013. Of the 63 flaps, 31 flaps were performed for trauma, 30 for post burn sequel, and two for post snake bite defects. We encountered flap necrosis in 8 flaps, of which there was complete necrosis in 4 flaps, and partial necrosis in four flaps. Of these 8 flaps, 7 needed a secondary procedure, and one healed secondarily. Although we had a failure rate of 12-13%, most of our failures were in the early part of the series indicative of a learning curve associated with the flap. Free style perforator based propeller flaps are a reliable option for coverage of small to moderate sized defects. Therapeutic IV.

  2. Parasacral Perforator Flaps for Reconstruction of Sacral Pressure Sores.

    PubMed

    Lin, Chin-Ta; Chen, Shih-Yi; Chen, Shyi-Gen; Tzeng, Yuan-Sheng; Chang, Shun-Cheng

    2015-07-01

    Despite advances in reconstruction techniques, pressure sores continue to present a challenge to the plastic surgeon. The parasacral perforator flap is a reliable flap that preserves the entire contralateral side as a future donor site. On the ipsilateral side, the gluteal muscle itself is preserved and all flaps based on the inferior gluteal artery are still possible. We present our experience of using parasacral perforator flaps in reconstructing sacral defects. Between August 2004 and January 2013, 19 patients with sacral defects were included in this study. All the patients had undergone surgical reconstruction of sacral defects with a parasacral perforator flap. The patients' sex, age, cause of sacral defect, flap size, flap type, numbers of perforators used, rotation angle, postoperative complications, and hospital stay were recorded. There were 19 parasacral perforator flaps in this series. All flaps survived uneventfully except for 1 parasacral perforator flap, which failed because of methicillin-resistant Staphylococcus aureus infection. The overall flap survival rate was 95% (18/19). The mean follow-up period was 17.3 months (range, 2-24 months). The average length of hospital stay was 20.7 days (range, 9-48 days). No flap surgery-related mortality was found. Also, there was no recurrence of sacral pressure sores or infected pilonidal cysts during the follow-up period. Perforator-based flaps have become popular in modern reconstructive surgery because of low donor-site morbidity and good preservation of muscle. Parasacral perforator flaps are durable and reliable in reconstructing sacral defects. We recommend the parasacral perforator flap as a good choice for reconstructing sacral defects.

  3. Improving Pressure Ulcer Reconstruction: Our Protocol and the COP (Cone of Pressure) Flap

    PubMed Central

    Edstrom, Lee; Szymanski, Karen; Schmidt, Scott; Bevivino, Jack; Zienowicz, Richard; Stark, Jennifer; Taylor, Helena O.; Podda, Silvio; Liu, Paul

    2017-01-01

    Background: Surgical treatment of pressure ulcers is challenging for high recurrence rates. Deepithelialized flaps have been used previously with the aim to eliminate shearing forces and the cone of pressure (COP) effect. The goal of this study is to adopt a standardized protocol and evaluate if 2 different flap techniques affect outcomes. Methods: The novel COP flap is illustrated. Twenty patients were prospectively treated with flap coverage over a 36-month period. According to the flap type, patients were assigned to 2 groups: group 1 with 11 patients treated with the COP flap and group 2 with 9 patients treated with conventional flap without anchoring technique. We adopted a standardized protocol of debridement, tissue cultures, and negative-pressure wound therapy. Rotation fasciocutaneous flaps were used for both groups and mean follow-up was 19 months. The COP flap is a large deepithelialized rotation flap inset with transcutaneous nonabsorbable bolster sutures. The 2 groups were comparable for demographics and ulcer location and size (P < 0.05). Five patients showed positive cultures and were treated with antibiotics and negative-pressure therapy before surgery. Results: Recurrence rates were 12% in the COP flap group and 60% in the conventional flap coverage group (P < 0.001). Results were compared at 16-month follow-up. Conclusions: The COP flap significantly reduces recurrences and eliminates shearing forces, suture ripping, and tension on superficial soft-tissue layers. The technique can be applied to both ischial and sacral pressure sores. The flap provides padding over bony prominence without jeopardizing flap vascularity. PMID:28458961

  4. Wind tunnel results for a high-speed, natural laminar-flow airfoil designed for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Sewall, William G.; Mcghee, Robert J.; Viken, Jeffery K.; Waggoner, Edgar G.; Walker, Betty S.; Millard, Betty F.

    1985-01-01

    Two dimensional wind tunnel tests were conducted on a high speed natural laminar flow airfoil in both the Langley 6 x 28 inch Transonic Tunnel and the Langley Low Turbulence Pressure Tunnel. The test conditions consisted of Mach numbers ranging from 0.10 to 0.77 and Reynolds numbers ranging from 3 x 1 million to 11 x 1 million. The airfoil was designed for a lift coefficient of 0.20 at a Mach number of 0.70 and Reynolds number of 11 x 1 million. At these conditions, laminar flow would extend back to 50 percent chord of the upper surface and 70 percent chord of the lower surface. Low speed results were also obtained with a 0.20 chord trailing edge split flap deflected 60 deg.

  5. Study of short haul high-density V/STOL transportation systems, volume 1

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.

    1972-01-01

    The relative advantages of STOL aircraft concepts were examined by simulating the operations of a short haul high-density intercity STOL system set in two arenas, the California corridor and the Chicago-Detroit-Cleveland triangle, during the 1980 time period. The study was constrained to the use of three aircraft concepts designated as the deflected slipstream turboprop, externally blown flap, and augmentor wing turbofan configurations. The projected demographic, economic, travel demand, and travel characteristics of the representative arenas were identified. The STOL airline operating scenarios were then formulated and through the use of the aerospace modal split simulation program, the traveler modal choices involving alternative STOL concepts were estimated in the context of the total transportation environment for 1980. System combinations that presented the best potential for economic return and traveler acceptance were then identified for each STOL concept.

  6. In Search of the Physics: The Interplay of Experiment and Computation in Slat Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Choudhari, Meelan; Singer, Bart A.; Lockard, David P.; Streett, Craig L.

    2003-01-01

    The synergistic use of experiments and numerical simulations can uncover the underlying physics of airframe noise sources. We focus on the high-lift noise component associated with a leading-edge slat; flap side-edge noise is discussed in a companion paper by Streett et al. (2003). The present paper provides an overview of how slat noise was split into subcomponents and analyzed with carefully planned complementary experimental and numerical tests. We consider both tonal and broadband aspects of slat noise. The predicted far-field noise spectra are shown to be in good qualitative (and, to lesser extent, good quantitative agreement) with acoustic array measurements. Although some questions remain unanswered, the success of current airframe noise studies provides ample promise that remaining technical issues can be successfully addressed in the near future.

  7. Propeller thoracodorsal artery perforator flap for breast reconstruction.

    PubMed

    Angrigiani, Claudio; Rancati, Alberto; Escudero, Ezequiel; Artero, Guillermo; Gercovich, Gustavo; Deza, Ernesto Gil

    2014-08-01

    The thoracodorsal artery perforator (TDAP) flap has been described for breast reconstruction. This flap requires intramuscular dissection of the pedicle. A modification of the conventional TDAP surgical technique for breast reconstruction is described, utilizing instead a propeller TDAP flap. The authors present their clinical experience with the propeller TDAP flap in breast reconstruction alone or in combination with expanders or permanent implants. From January 2009 to February 2013, sixteen patients had breast reconstruction utilizing a propeller TDAP flap. Retrospective analysis of patient characteristics, clinical indications, procedure and outcomes were performed. The follow-up period ranged from 4 to 48 months. Sixteen patients had breast reconstruction using a TDAP flap with or without simultaneous insertion of an expander or implant. All flaps survived, while two cases required minimal resection due to distal flap necrosis, healing by second intention. There were not donor-site seromas, while minimal wound dehiscence was detected in two cases. The propeller TDAP flap appears to be safe and effective for breast reconstruction, resulting in minimal donor site morbidity. The use of this propeller flap emerges as a true alternative to the traditional TDAP flap.

  8. The Anterior Interosseus Artery Perforator Flap: Anatomical Dissections and Clinical Study

    PubMed Central

    Panse, Nikhil S; Joshi, Sheetal B; Sahasrabudhe, Parag B; Bahetee, B; Gurude, Pradnya; Chandanwale, Ajay

    2017-01-01

    BACKGROUND Reconstruction of upper extremity deformities continues to be a challenge to the reconstructive surgeon. Various loco regional, distant and free flaps are available for reconstruction. However, each has its own set of advantages and disadvantages. Of the commonly performed local flaps, radial artery forearm flap, and the posterior interosseus artery flap stand out prominently. Recently, perforator propeller flaps have been used for resurfacing the upper extremity. The anterior interosseus artery perforator flap is an uncommonly used and described flap. METHODS This study was divided into anatomical study and clinical application in a IV level of evidence. In the anatomical study, five upper extremities were studied. Clinically, 12 patients underwent reconstruction using the anterior interosseus artery perforator flap. Flaps were performed by a single surgeon. A retrospective review of these cases from November 2008 to May 2014 is presented. RESULTS The anterior interosseus artery perforator was identified in four out of five cadaver limbs. The septocutaneous perforator was in the fifth extensor compartment around 4 cm proximal to the wrist joint. Of the twelve flaps, there was complete necrosis in one flap, and partial necrosis in one flap. The patient with complete necrosis underwent skin grafting at a later date. The wound healed secondarily in case of partial flap necrosis. CONCLUSION Anterior interosseus artery perforator flap must be considered as an important reconstructive option in the armamentarium of the plastic surgeon, while managing hand and wrist defects. PMID:28713704

  9. Facial artery musculomucosal flap for reconstruction of skull base defects: a cadaveric study.

    PubMed

    Xie, Liyue; Lavigne, François; Rahal, Akram; Moubayed, Sami Pierre; Ayad, Tareck

    2013-08-01

    Failure in skull base defects reconstruction following tumor resection can have serious consequences such as ascending meningitis and pneumocephaly. The nasoseptal flap showed a very low incidence of cerebrospinal fluid leak but is not always available. The superiorly pedicled facial artery musculomucosal (FAMM) flap has been successfully used for reconstruction of head and neck defects. Our objective is to show that the FAMM flap can be used as a new alternative in skull base reconstruction. Cadaveric study. Feasibility. Thirteen specimens underwent bilateral FAMM flap dissection. Two new modifications of the traditional FAMM flap have been developed. Feasibility in FAMM flap transfer to the skull base was investigated through endoscopic skull base dissection and maxillectomy in four specimens. Measurements were recorded for each harvested flap. The mean surface area of the modified FAMM flap efficient for reconstruction was 15.90 cm(2) . The flaps easily covered the simulated defects of the frontal sinus and the fovea ethmoidalis areas. Modifications of the traditional FAMM flap were necessary for a tension-free coverage of the planum sphenoidale and sella turcica. The FAMM flap holds high potential as a new alternative vascular flap in skull base reconstruction. However, it has not been used in patients yet and should be considered only when other options are not available. New modifications developed in this article can elongate the traditional FAMM flap, potentially contributing to a tighter seal of the skull base defect than FAMM flap alone. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Reconstruction of Anterolateral Thigh Defects Using Perforator-Based Propeller Flaps.

    PubMed

    Iida, Takuya; Yoshimatsu, Hidehiko; Koshima, Isao

    2017-10-01

    Usually, anterolateral thigh (ALT) defects with width more than 8 cm cannot be closed directly. Although several methods of using local flaps exist, flap mobility of these methods is limited. We introduced a perforator-based propeller flap for such reconstruction. Their maximal mobility, which minimizes their size, is their greatest advantage. In addition, we present our technical refinements including double-axes propeller flap, the use of indocyanine green real-time angiography, and supercharged propeller flap for safer flap transfer. Seven patients underwent perforator-based propeller flap reconstruction of ALT defects. Flaps were designed cranial or caudal to the defect according to the perforator locations. To maximize mobility, flaps were designed so that the perforator was located at the periphery and closer to the defect. After rotating the flap to the defect, indocyanine green angiography was performed to determine the need for supercharge. In all cases, all flaps survived completely. Defect size ranged from 12 × 11 cm to 18 × 16 cm, and flap size ranged from 7 × 5 cm to 15 × 7 cm. The number of perforators in the flap was 1 in 3 cases and 2 in 4 cases. Supercharging was performed in 3 cases. Donor-site complications, including gait disturbance, were not observed. This method achieves ALT defect closure with minimal donor-site morbidity and can provide prompt and aesthetically acceptable results. Indocyanine green real-time angiography and supercharging technique are also useful for safer and reliable flap transfer.

  11. Comparison of Dorsal Intercostal Artery Perforator Propeller Flaps and Bilateral Rotation Flaps in Reconstruction of Myelomeningocele Defects.

    PubMed

    Tenekeci, Goktekin; Basterzi, Yavuz; Unal, Sakir; Sari, Alper; Demir, Yavuz; Bagdatoglu, Celal; Tasdelen, Bahar

    2018-04-09

    Bilateral rotation flaps are considered the workhorse flaps in reconstruction of myelomeningocele defects. Since the introduction of perforator flaps in the field of reconstructive surgery, perforator flaps have been used increasingly in the reconstruction of various soft tissue defects all over the body because of their appreciated advantages. The aim of this study was to compare the complications and surgical outcomes between bilateral rotation flaps and dorsal intercostal artery perforator (DICAP) flaps in the soft tissue reconstruction of myelomeningocele defects. Between January 2005-February 2017, we studied 47 patients who underwent reconstruction of myelomeningocele defects. Patient demographics, operative data, and postoperative data were reviewed retrospectively and are included in the study. We found no statistically significant differences in patient demographics and surgical complications between these two groups; this may be due to small sample size. With regard to complications-partial flap necrosis, cerebrospinal fluid (CSF) leakage, necessity for reoperation, and wound infection-DICAP propeller flaps were clinically superior to rotation flaps. Partial flap necrosis was associated with CSF leakage and wound infection, and CSF leakage was associated with wound dehiscence. Although surgical outcomes obtained with DICAP propeller flaps were clinically superior to those obtained with rotation flaps, there was no statistically significant difference between the two patient groups. A well-designed comparative study with adequate sample size is needed. Nonetheless, we suggest using DICAP propeller flaps for reconstruction of large myelomeningocele defects.

  12. Indocyanine green laser angiography improves deep inferior epigastric perforator flap outcomes following abdominal suction lipectomy.

    PubMed

    Casey, William J; Connolly, Katharine A; Nanda, Alisha; Rebecca, Alanna M; Perdikis, Galen; Smith, Anthony A

    2015-03-01

    The reliability of deep inferior epigastric artery perforator (DIEP) flap reconstruction following abdominal liposuction is controversial. The authors' early cases were technically successful; however, they experienced high partial flap loss and fat necrosis rates. The authors sought to compare DIEP flap outcomes in the setting of prior liposuction after the use of intraoperative indocyanine green angiography compared to when flaps were assessed on clinical grounds alone. A retrospective review of a consecutive series of DIEP flaps following liposuction at a single institution was performed, comparing those evaluated on clinical grounds alone and those in which indocyanine green angiography was used intraoperatively. Outcomes measured included anastomotic complications, total flap loss, partial flap loss, fat necrosis, and postoperative abdominal wounds. Thirteen DIEP flaps following prior liposuction were performed on 11 patients from July of 2003 through January of 2014. All patients had preoperative imaging with duplex ultrasound or computed tomographic angiography to analyze perforator suitability before surgical exploration. Seven flaps were evaluated intraoperatively on clinical grounds alone. Six flaps were assessed and modified based on indocyanine green angiography. All flaps were successful; however, partial flap loss and fat necrosis rates dropped from 71.4 percent to 0 percent when indocyanine green angiography was used intraoperatively (p = 0.02). Indocyanine green angiography is an excellent vascular imaging modality for intraoperative use to assess flap perfusion, and improves outcomes in DIEP flaps when harvested after prior abdominal suction lipectomy.

  13. The changing role of pectoralis major flap in head and neck reconstruction.

    PubMed

    Liu, Hin-Lun; Chan, Jimmy Yu-Wai; Wei, William Ignace

    2010-11-01

    Although pectoralis major flap (PM flap) has been used as the workhorse flap in head and neck reconstruction, its use in head and neck defects seems to fall out of favour in the era of free tissue transfer. The aim of this review is to find out the role of PM flap in modern head and neck surgery. Medical records of patients who underwent PM flap reconstruction for head and neck defect in our division were reviewed. The age, gender, flap type, indication and complication rate were described. Between January 1998 and December 2008, 202 PM flaps were used for head and neck reconstruction in 192 patients. In the early study period (1998-June 2003), out of the 119 PM flap reconstructions, 106 (89%) were performed for immediate reconstruction after resection of head and neck tumour, while 10 (8%) were performed as salvage procedures for complication after tumour resection e.g. failure of free flap, pharyngocutaneous fistula. In the late study period (July 2003-2008), out of the 83 PM flap reconstructions, 58 (70%) were performed for immediate reconstruction, while 24 (29%) were performed as salvage procedures. For immediate reconstruction after tumour extirpation, 51 flaps (48%) were performed for reconstruction of the tongue in the early study period, while only 14 (24%) were performed in the late study period. The number of PM flap used for immediate reconstruction for other head and neck defects remained relatively static throughout the two study periods. Over the study period, there were 10 (5%) cases of partial flap necrosis and 2 (1%) total flap loss, making the overall flap necrosis rate 6%. In the era of free tissue transfer, the role of PM flap in head and neck surgery has shifted from immediate reconstruction to salvage operation. However, PM flap still has an unique role in the repair of certain head and neck defects.

  14. Tensor fascia lata flap versus tensor fascia lata perforator-based island flap for the coverage of extensive trochanteric pressure sores.

    PubMed

    Kim, Youn Hwan; Kim, Sang Wha; Kim, Jeong Tae; Kim, Chang Yeon

    2013-06-01

    Tensor fascia lata (TFL) musculocutaneous flaps often require a donor site graft when harvesting a large flap. However, a major drawback is that it also sacrifices the muscle. To overcome this disadvantage, we designed a TFL perforator-based island flap that was harvested from a site near the defect and involved transposition within 90 degrees without full isolation of the pedicles. We performed procedures on 17 musculocutaneous flaps and 23 perforator-based island flaps, and compared the outcomes of these surgeries. The overall complication rate was 27.5% (11 regions). There were 7 complications related to the musculocutaneous flaps and 4 complications related to the perforator flaps. Although there were no statistical differences between those groups, lower complication rates were associated with procedures involving perforator flaps. The TFL perforator procedure is a simple and fast operation that avoids sacrificing muscle. This decreases complication rates compared to true perforator flap techniques that require dissection around the perforator or pedicle.

  15. Propeller Flap for Complex Distal Leg Reconstruction: A Versatile Alternative when Reverse Sural Artery Flap is Not Feasible.

    PubMed

    Ademola, Samuel A; Michael, Afieharo I; Oladeji, Femi J; Mbaya, Kefas M; Oyewole, O

    2015-01-01

    Reverse sural artery fasciocutaneous flap has become a workhorse for the reconstruction of distal leg soft tissue defects. When its use is not feasible, perforator-based propeller flap offers a better, easier, faster, and cheaper alternative to free flap. We present our experience with two men both aged 34 years who sustained Gustilo 3B injuries from gunshot. The donor area for reversed sural artery flap was involved in the injuries. They had early debridement, external fixation, and wound coverage with perforator-based propeller flaps. The donor sites were covered with skin graft. All flaps survived. There were minor wound edge ulcers due to the pressure of positioning that did not affect flap survival and the ulcers healed with conservative management. Perforator-based propeller flap is a versatile armamentarium for reconstruction of soft tissue defects of the distal leg in resource-constrained settings, especially when the donor area for a reverse flow sural flap artery is involved in the injury.

  16. The Arterialized Facial Artery Musculo-Mucosal Island Flap for Post-Oncological Tongue Reconstruction.

    PubMed

    Moro, Alessandro; Saponaro, Gianmarco; Doneddu, Piero; Cervelli, Daniele; Pelo, Sandro; Gasparini, Giulio; Garagiola, Umberto; D'Amato, Giuseppe; Todaro, Mattia

    2018-05-15

    In 1992, Pribaz described the facial artery musculomucosal flap (FAMM), an axial musculomucosal flap based on the facial artery. The FAMM flap, a modification of the nasolabial and buccal mucosal flaps, is widely used in the reconstruction of defects in the oral cavity. Many modifications of this flap have been described in the literature. Here we aimed to explore the use of an arterialized tunnelized FAMM island flap (a-FAMMIF) for the reconstruction tongue defects after tumor resection. From January 2015 to December 2016, five cases of tongue cancer were selected for the use of arterialized FAMMIF flap to reconstruct defects after tumor resection. Reconstruction was successful in all cases, except one case of total flap necrosis; partial necrosis of the flap occurred in two patients, which were solved with medications. The authors consider the a-FAMMIF an unreliable flap in the reconstruction of tongue defects.The authors recommend avoiding tunneling and island modification when the vein is not included in the pedicle.

  17. Piloted simulation study of two tilt-wing flap control concepts, phase 2

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.

    1994-01-01

    A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.

  18. Free flap reconstruction for diabetic foot limb salvage.

    PubMed

    Sato, Tomoya; Yana, Yuichiro; Ichioka, Shigeru

    2017-12-01

    Although free flap is gaining popularity for the reconstruction of diabetic foot ulcers, it is unclear whether free flap reconstruction increases the chances of postoperative independent ambulation. The aim of this study is to evaluate the relationship between free flap success and postoperative ambulation. This study reviewed 23 cases of free flap reconstruction for diabetic foot ulcers between January 2007 and March 2014. Free rectus abdominis, latissimus dorsi, and anterolateral thigh flaps were used in ten, eight, and five patients, respectively. A comparison was made between free flap success and postoperative independent ambulation using Fisher's exact test. Two patients developed congestive heart failure with fatal consequences within 14 days postoperatively, resulting in an in-hospital mortality rate of 8.7%. Five patients lost their flaps (21.7%). Of the 16 patients who had flap success, 12 achieved independent ambulation. Five patients with flap loss did not achieve independent ambulation, except one patient who underwent secondary flap reconstruction using a distally based sural flap. Fisher's exact test revealed that independent ambulation was associated with free flap success (p = 0.047). The present study indicates that free flap reconstruction may increase the possibility of independent ambulation for patients with extensive tissue defects due to diabetic ulcers. Intermediate limb salvage rates and independent ambulation rates were favourable in patients with successful reconstruction. The use of foot orthoses and a team approach with pedorthists were effective to prevent recurrence.

  19. Pedicled Temporalis Muscle Flap for Craniofacial Reconstruction: A 35-Year Clinical Experience with 366 Flaps.

    PubMed

    Spanio di Spilimbergo, Stefano; Nordera, Paolo; Mardini, Samir; Castiglione, Giusy; Chim, Harvey; Pinna, Vittore; Brunello, Massimo; Cusino, Claudio; Roberto, Squaquara; Baciliero, Ugo

    2017-02-01

    In the past 130 years, the temporalis muscle flap has been used for a variety of different indications. In this age of microsurgery and perforator flaps, the temporalis muscle flap still has many useful applications for craniofacial reconstruction. Three hundred sixty-six temporalis muscle flaps were performed in a single center between 1978 and 2012. The authors divided the cases into two series-before and after 1994-because, after 1994, they started to perform free flap reconstructions, and indications for reconstruction with a temporalis muscle flap were changed RESULTS:: In the series after 1994, flaps were most commonly used for reconstruction of defects in the maxilla, mandible, and oropharynx, in addition to facial reanimation and filling of orbital defects. Complications included total flap necrosis (1.6 percent) and partial flap necrosis (10.7 percent). The rate of material extrusion at the donor site decreased after porous polyethylene was uniformly used for reconstruction from 17.1 to 7.9 percent. The pedicled temporalis muscle flap continues to have many applications in craniofacial reconstruction. With increasing use of free flaps, the authors' indications for the pedicled temporalis muscle flap are now restricted to (1) orbital filling for congenital or acquired anophthalmia; (2) filling of unilateral maxillectomy defects; and (3) facial reanimation in selected cases of facial nerve palsy. Therapeutic, IV.

  20. The versatile use of revisited de-epithelialization concept in superficial circumflex iliac and anterolateral thigh perforator free flap for head and neck reconstructions.

    PubMed

    Choi, Jong Woo; Kim, Young Chul; Oh, Tae Suk; Koh, Kyung S; Jeong, Woo Shik

    2017-06-01

    Although the perforator free flap is now a standard choice for head and neck reconstruction, problems such as microvascular complications, insufficient volume support for the defect, and fistula formation occur. We revisited a de-epithelialized concept for superficial circumflex iliac artery and anterolateral thigh perforator free flap to overcome these problems. We applied the de-epithelized perforator free flaps in 35 cases among 761 microsurgical head and neck reconstructions and investigated flap characteristics (length gain of pedicle, flap size, and volumetric analysis) and outcomes (flap failure, partial flap necrosis, hematoma, infection, and fistula). Satisfactory results were achieved regarding flap survival, volumetric compensation, and fistula formation. Flaps were transferred successfully in all patients, although 1 patient underwent revisional operation due to venous congestion. Transferred flap volume was significantly higher than the resected tumor volume (p < 0.01), which suggests volume augmentation in the destroyed neck envelope and a protective role against adjuvant radiation. Minor dehiscence and bleeding were seen in two cases, and no other complications were identified. The de-epithelialization concept for perforator free flap is helpful to overcome obstacles related to traditional free flaps in terms of flap survival and volumetric augmentation in head and neck reconstructions. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

Top